

Қазақстан Республикасы, Ақиюла облысы, Кокшетау қаласы, Шапқар көшесі, 18/15 теп/факс (8 716-2) 29-45-86

Республика Казахстан, Акмолинская область, г.Кокшетау, ул.Шалқар, 18/15 теп/факс (8 716-2) 29-45-86

ГСЛ 01583P №13012285 om 01.08.2013 г.

Проект «Отчет о возможных воздействиях» к Плану горных работ по добыче известняков месторождения «Мета» в Целиноградском районе Акмолинской области

КӨКШЕТАУ қ. – г. КОКШЕТАУ - 2023 -

СПИСОК ИСПОЛНИТЕЛЕЙ

Должность	Подпись	ФИО
Инженер-эколог	Threecean	Баймурат Б.К.

СОДЕРЖАНИЕ

АННОТАЦИЯ	
ВВЕДЕНИЕ	9
1. ОПИСАНИЕ ПРЕДПОЛОГАЕМОГО МЕСТА ОСУЩЕСТВЛЕНИЯ НАМЕ	
ДЕЯТЕЛЬНОСТИ	11
2. ОПИСАНИЕ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ В ПРЕДПОЛАГАЕМО	M MECTE
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
2.1. Климатические условия района проведения работ	
2.2. Качество атмосферного воздуха	
2.3. Экологическая обстановка исследуемого района	
2.4. Сейсмические особенности исследуемого района	
2.5. Геологическое строение	
2.5.1. Краткие сведения об изученности района	18
2.5.2. Геологическая характеристика района работ	
2.5.3. Качественная характеристика сырья	
2.5.4. Инженерно-геологические и горнотехнические условия разработки	
2.6. Гидрогеологическое условия месторождения	
2.7. Почвенный покров исследуемого района	
2.8. Растительный мир района проектируемого объекта	
2.9. Животный мир района проектируемого объекта	
2.10. Исторические памятники, охраняемые объекты, археологические ценности	
проектируемого объекта	
2.11. Социально-экономические условия исследуемого района	
3. ОПИСАНИЕ ИЗМЕНЕНИЙ ОКРУЖАЮЩЕЙ СРЕДЫ, КОТОРЫЕ	
ПРОИЗОЙТИ В СЛУЧАЕ ОТКАЗА ОТ НАЧАЛА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНО	
4. ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ ИХ ИСПОЛЬЗОВАНИЯ 5. ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМІ	
5. ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМІ	
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	34
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ5.1. Горнотехнические особенности разработки месторождения	34 34
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	34 34
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	34 34 и горно-
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	34 34 и горно- 35
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера	3434 и горно3536
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	3434 и горно3536
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки	3434 и горно353636
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы	3434 и горно35363637
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы	3434 и горно3536363739
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы	3434 и горно353636373939
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для	3434 и горно35363739393939
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ	3434 и горно353636393939393939
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ 5.11. Основные решения технологической схемы карьера, касающиеся карьерного	3434 и горно3536363939393939393939
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ 5.11. Основные решения технологической схемы карьера, касающиеся карьерного	3434 и горно35363739393939393939393939
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ 5.11. Основные решения технологической схемы карьера, касающиеся карьерного 5.12. Отвалообразование	3434 и горно3536373939393939393939393939393939393939
5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ. 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы. 5.8. Вскрышные работы. 5.9. Добычные работы. 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ. 5.11. Основные решения технологической схемы карьера, касающиеся карьерного 5.12. Отвалообразование. 5.13. Рекультивация земель, нарушенных горными работами.	3434 и горно35363739
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ 5.11. Основные решения технологической схемы карьера, касающиеся карьерного 5.12. Отвалообразование 5.13. Рекультивация земель, нарушенных горными работами 6. ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ	3434 и горно3536363739393939393939393939393934343434343434343434343434343434
5.1. Горнотехнические особенности разработки месторождения	3434 и горно35363739 .
5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ 5.11. Основные решения технологической схемы карьера, касающиеся карьерного 5.12. Отвалообразование 5.13. Рекультивация земель, нарушенных горными работами 6. ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛН 7. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛ	3434 и горно3536373939393940 транспорта40 транспорта4041 ЗДАНИЙ, ЕНИЯ41 ИЧЕСТВЕ
5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ 5.11. Основные решения технологической схемы карьера, касающиеся карьерного 5.12. Отвалообразование 5.13. Рекультивация земель, нарушенных горными работами 6. ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛН 7. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛ ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ ВРЕДНЫХ АНТРОПОВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СО СТРОИТЕ.	343434343536363739
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ 5.1. Горнотехнические особенности разработки месторождения 5.2. Границы проектируемого карьера и промышленные запасы 5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные подготовительные работы 5.4. Производительность, режим работы и срок существования карьера 5.5. Система разработки и технологические схемы горных работ 5.6. Элементы системы разработки 5.7. Выемочно-погрузочные работы 5.8. Вскрышные работы 5.9. Добычные работы 5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для работ 5.11. Основные решения технологической схемы карьера, касающиеся карьерного 5.12. Отвалообразование	343434343536363739

ПОЧВЫ, НЕДРА, А ТАКЖЕ ВИБРАЦИИ, ШУМОВЫЕ, ЭЛЕКТРОМАГ	
ГЕПЛОВЫЕ И РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ	
7.1. Оценка ожидаемого воздействия на атмосферный воздух	
7.1.1. Характеристика предприятия как источника загрязнения атмосферы	
7.1.2. Расчет и анализ приземных концентраций загрязняющих веществ в атмосфере	
разработки месторождения	97
7.1.3. Предложения по нормативам допустимых выбросов	
7.1.4. Мероприятия по предотвращению и снижению негативного воздействия на ат	
воздух	
7.1.5. Методы и средства контроля за состоянием воздушного бассейна	
7.1.6. Характеристика санитарно-защитной зоны	
7.1.6.1. Требования по ограничению использования территории расчетной СЗЗ, орг	
благоустройство СЗЗ	112
7.1.6.2. Функциональное зонирование территории СЗЗ	
7.1.6.3. Мероприятия и средства по организации и благоустройству СЗЗ	
7.1.7. Общие выводы	
7.2. Оценка ожидаемого воздействия на воды	
7.2.1. Водопотребление и водоотведение	
7.2.2 Воздействие на поверхностные и подзменые воды	116
7.2.3 Карьерный водоотлив	
7.2.4 Расчет прогнозного водопритока	
7.2.4 Расчет нормативов предпологаемого-допустимого сброса загрязняющих вещест	
7.2.5 Мероприятия по снижению воздействия на водные объекты	
7.2.6 Методы и средства контроля за состоянием водных объектов	
7.2.7 Общие выводы	
7.3. Оценка ожидаемого воздействия на недра	
7.4. Оценка ожидаемого воздействия на земельные ресурсы и почвы	
7.4.1. Условия землепользования	
7.4.2. Мероприятия по снижению воздействия на земельные ресурсы и почвы	
7.4.3. Методы и средства контроля за состоянием земельных ресурсов и почв	
7.4.4. Общие выводы	
7.5. Оценка ожидаемых физических воздействий на окружающую среду	
7.6. Оценка ожидаемого воздействия на растительный и животный мир	
7.7. Оценка ожидаемого воздействия на социально-экономическую среду	
7.7.1 Санитарно-бытовое обслуживание	
7.7.2 Прогноз изменений социально-экономических условий жизни населения при	
намечаемой деятельности	
7.8 Оценка приемлемого риска для здоровья человека	
7.8.1 Общее представление о риске	
7.8.2 Количественные показатели риска	
7.8.3. Определение риска для здоровья рабочих карьера	139
8. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛ	
ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ ЭКСПЛУАТАЦИИ ОБ	
РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
8.1. Виды и объемы образования отходов	
8.1.1 Рекомендации по управлению отходами	
8.1.2 Программа управления отходами	
8.2. Сведения о классификации отходов. Рекомендации по управлению отходами: на	
сбору, транспортировке, восстановлению или удалению	
8.3 Мероприятия по снижению воздействия отходов на окружающую среду	
8.4. Общие выводы	148

9. ОПИСАНИЕ ЗАТРАГИВАЕМОЙ ТЕРРИТОРИИ И УЧАСТКОВ, НА КОТОРЫХ	МОГУТ
БЫТЬ ОБНАРУЖЕНЫ ВЫБРОСЫ, СБРОСЫ И ИНЫЕ НЕГАТИВНЫЕ ВОЗДЕЙ	ІСТВИЯ
НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, УЧА	
ИЗВЛЕЧЕНИЯ ПРИРОДНЫХ РЕСУРСОВ И ЗАХОРОНЕНИЯ ОТХОДОВ	
10. ОПИСАНИЕ ВОЗМОЖНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАМЕЧ	
ДЕЯТЕЛЬНОСТИ	150
11. ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪ	ЕКТАХ.
КОТОРЫЕ МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙС	
НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
11.1. Жизнь и здоровье людей, условия их проживания и деятельности	
11.2. Биоразнообразие	
11.3. Земли и почвы	
11.4. Воды	
11.5. Атмосферный воздух	152
11.6. Сопротивляемость к изменению климата экологических и социально-эконо-	мических
систем	
11.7. Материальные активы, объекты историко-культурного наследия	
11.8. Взаимодействие затрагиваемых компонентов	
12. ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧ	АЕМОЙ
ДЕЯТЕЛЬНОСТИ НА ОБЪЕКТЫ ОКРУЖАЮЩЕЙ СРЕДЫ	
13. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВ	
показателей эмиссий, физических воздействий на окружа	ЮШУЮ
СРЕДУ, ВЫБОРА ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ	
13.1. Атмосферный воздух	
13.2. Физическое воздействие	
13.3. Операции по управлению отходами	
14. ОБОСНОВАНИЕ ПРЕДЕЛЬНОГО КОЛИЧЕСТВА НАКОПЛЕНИЯ ОТХОДОВ	я по их
ВИДАМ	
15. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ ОБЪЕМОВ ЗАХОРОНЕНИЯ ОТХОДОВ	
ВИДАМ	
16. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ А	
И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ	
17. ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ ДЛЯ ПЕРИОДОВ СТРОИТЕЛЬО	
ЭКСПЛУАТАЦИИ ОБЪЕКТА МЕР ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЦ	
СМЯГЧЕНИЮ ВЫЯВЛЕННЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧ	АЕМОЙ
ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ	
18. МЕРЫ ПО СОХРАНЕНИЮ И КОМПЕНСАЦИИ ПОТЕРИ БИОРАЗНООБРАЗ	ИЯ 160
19. ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖА	
СРЕЛУ	161
СРЕДУ 20. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛ	ИЗА 161
21. СПОСОБЫ И МЕРЫ ВОССТАНОВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА С	'ЛУЧАИ
ПРЕКРАЩЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, ОПРЕДЕЛЕННЫ	
НАЧАЛЬНОЙ СТАДИИ ЕЕ ОСУЩЕСТВЛЕНИЯ	163
22. ОПИСАНИЕ МЕТОДОЛОГИИ ИССЛЕДОВАНИЙ И СВЕДЕНИЯ ОБ ИСТОЧ	НИКАХ
ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ СОСТАВ	пении
ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ	
23. ОПИСАНИЕ ТРУДНОСТЕЙ, ВОЗНИКШИХ ПРИ ПРОВЕДЕНИИ ИССЛЕДО	ВАНИЙ
23. OHICAHIE 113 AHOCTEH, DOSHIKHIIA HIT HI ODEAEHIII NCCSIEAC	
24. КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ	168
Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2024	
Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2025	
Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2026	

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2027 год	. 214
Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2028-2032 г	
C	
Список использованной литературы	
Приложения	
Приложение 1	
Ситуационная карта-схема района размещения месторождения «Мета», с указанием гран С33	
Приложение 1.1	
Карта-схема размещения месторождения «Мета», с нанесенными на нее источниками выбро	
карта-схема размещения месторождения «мета», с нанесенными на нее источниками выоров атмосферу	
Приложение 2	
Материалы результатов расчета рассеивания и карты рассеивания загрязняющих веществ	
Приложение 3	
Копия государственной лицензии TOO «Алаит» №01583 P от 01.08.2013 года на выполно	
работ и оказание услуг в области охраны окружающей среды	
Приложение 4	
Копия письма №3Т-2022-02570548 от 28.10.2022 г. выданным РГУ «Акмолин-	
территориальная инспекция лесного хозяйства и животного мира РК»	
Приложение 5	
Копия письма №26-14-03/1843 от 22.12.2022 г. выданным АО «Национальная геологиче	ская
служба»	
Приложение 6	
Копия письма №3T-2022-02570691 от 02.11.2022 г. выданным ГУ «Управление ветерина	
Акмолинской области»	
Приложение 7	
Копия письма №3T-2022-02570583 от 11.11.2022 г. выданным РГУ «Есильская бассейно	овая
инспекция по регулирования использования и охране водных ресурсов КВР МЭГиПР РК»	
Приложение 8	
Копия письма №01-26/227 от 07.11.2022 г. выданным КГУ «Центр по охране и использова	
историко-культурного наследия» Управления культуры Акмолинской области	
Приложение 9	
Копия горного отвода	. 338

АННОТАЦИЯ

В соответствии ст. 72 Экологического Кодекса РК и заключения об определении сферы охвата оценки воздействия на окружающую среду инициатор обеспечивает проведение мероприятий, необходимых для оценки воздействия намечаемой деятельности на окружающую среду, и подготовку по их результатам отчета о возможных воздействиях.

Проект «Отчет о возможных воздействиях» (OoBB) – это выявление, анализ, оценка и учет в проектных решениях предполагаемых воздействий намечаемой хозяйственной деятельности, вызываемых ими изменений в окружающей среде, а также последствий для обшества.

В проекте разработки приведены сведения о геологической характеристике месторождения, физико-химических свойствах полезного ископаемого.

Проанализированы результаты гидрогеологических и геологических сведений района работ. Дано обоснование выбора эксплуатационных объектов и расчётных вариантов разработки. На основе анализа технико-экономических показателей выбран рекомендуемый вариант разработки месторождения. По рекомендуемому варианту разработки рассмотрены вопросы техники и технологии добычи полезного ископаемого. Составлены мероприятия по контролю за разработкой, состоянием и эксплуатацией месторождения, охране недр и окружающей среды месторождения.

Основная цель настоящего Отчета о возможных воздействиях — определение экологических и иных последствий, принимаемых управленческих и хозяйственных решений, разработка рекомендаций по оздоровлению окружающей среды, предотвращение уничтожения, деградации, повреждения и истощения естественных экологических систем и природных ресурсов.

Отчет о возможных воздействиях выполнен в соответствии с Экологическим кодексом Республики Казахстан от 2 января 2021 года № 400-VI, «Инструкцией по организации и проведению экологической оценки», утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 и другими действующими в республике нормативными и методическими документами.

В проекте определены предварительные нормативы предельно-допустимых эмиссий согласно рекомендуемому варианту разработки: проведена предварительная оценка воздействия объекта на атмосферный воздух: выполнены расчеты выбросов загрязняющих веществ в атмосферный воздух от источников загрязнения, обоснование санитарно-защитной зоны объекта, расчет рассеивания приземных концентраций; приводятся данные по водопотреблению и водоотведению; предварительные нормативы по отходам, образующиеся в период проведения работ; произведена предварительная оценка воздействия на поверхностные и подземные воды, на почвы, растительный и животный мир; описаны социальные аспекты воздействия при проведении работ.

Объект представлен одной промышленной площадкой – месторождение «Мета» с 11-ю неорганизованными источниками выбросов ЗВ в атмосферу в 2024-2032 гг.

В выбросах, отходящих от источников загрязнения атмосферного воздуха предприятия, содержится 10 загрязняющих веществ:

- 1. Азота (IV) диоксид (Азота диоксид) (4);
- 2. Азот (II) оксид (Азота оксид) (6)
- 3. Углерод (Сажа, Углерод черный) (583);
- 4. Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516);
- 5. Сероводород (Дигидросульфид) (518);

7

- 6. Углерод оксид (Окись углерода, Угарный газ) (584);
- 7. Керосин (654*);
- 8. Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)
- 9. Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494);
 - 10. Пыль неорганическая, содержащая двуокись кремния в %: менее 20.

Эффектом суммации вредного действия обладают 2 группы веществ:

- **31 (0301+0330)**: азота диоксид + сера диоксид;
- **30 (0330+0333):** сера диоксид + сероводород.
- **ПЫЛИ (2908+2909):** пыль неорганическая двуокиси кремния% 70-20 + пыль неорганическая двуокиси кремния% менее 20.

Валовый выброс вредных веществ, отходящих от стационарных источников загрязнения атмосферы предприятия, составит:

- 2024 г. -9,3372116 т/год;
- 2025 г. 9,2296816 т/год;
- -2026 г. -9,3553216 т/год;
- -2027 г. -9,4243216 т/год;
- 2028-2032 г. -9,2777416 т/год.

Валовый сброс вредных веществ, в пруде-испарителе загрязнения сточных вод предприятия, составит:

- 2024-2032 гг. -0.011096 т/год.

Объемы размещения вскрышной породы относящиеся к горнодобывающей промышленности:

- -2024 г. -28800 т/год;
- 2025 г. -12600 т/год;
- 2026 г. -15660 т/год;
- 2027 г. -13500 т/год.

Характеристики и параметры воздействия на окружающую среду определялись в соответствии с планом горных работ и предоставленными исходными данными на разработку проектной документации.

Объем изложения достаточен для анализа принятых решений и обеспечения охраны окружающей среды от негативного воздействия объекта исследования на компоненты окружающей среды.

ВВЕДЕНИЕ

ТОО «Metal Technology» получило право недропользования на разведку и добычу цементного сырья на участке Мета Целиноградского района Акмолинской области (Контракт № 383 от 25.01.2008 г.). По результатам 1 этапа геологоразведочных работ, материалы отчета апробированы. Государственным балансом учтены запасы известняков по категории С2 (Протокол ЦКО ГКЗ №1147 от 11.12.2008 г.).

В соответствии с рекомендациями СКО ГКЗ на участке продолжены геологоразведочные работы. Проведена доразведка залежи по сети 100-50х200-100м (с перекрытием разреза по разведочной линии). Проведены лабораторно-технологические исследования известняка (в шихте с глинами Софиевского месторождения) с получением клинкера и цемента марки 500. По итогам геологоразведочных работ протоколом ЦК МТД «Центрказнедра» №1161 от 13.03.2009 года утверждены запасы известняков месторождения Мета в качестве сырья, пригодного для производства цемента, по категории С1 в количестве 21293,5 тыс.тонн.

Контракт №599 от 23.07.2009 года на проведение работ по добыче известняка на месторождении Мета Целиноградского района Акмолинской области заключен между ТОО «Metal Technology» и ГУ «Управление предпринимательства и промышленности Акмолинской области» (Далее по тексту Контракт).

Дополнением №1639 от 22.10.2020 года к Контракту право недропользования перешло от TOO «Metal Technology» к TOO «Гео Север».

25 февраля 2021 года дополнением №1665 к Контракту право недропользования перешло от TOO «Гео Север» к TOO «Akzhar mining».

8 ноября 2021 года дополнением №1697 к Контракту право недропользования перешло от TOO «Akzhar mining» к TOO «GOLDENPIT».

По обращению ТОО «GOLDENPIT» ГУ «Управление предпринимательства и туризма Акмолинской области» письмом от 19.09.2022 г. №01-06/2803 сообщило о начале переговоров по внесению изменений и дополнений в Контракт в части внесения изменений в рабочую программу (уменьшение объемов добычи) по годам в следующем виде:

- в 2023 году с 650,0 тыс.тонн до 30,0 тыс.тонн;
- в 2024-2034 годах с 650,0 тыс.тонн до 40,0 тыс.тонн.
- В этой связи разработан настоящий План горных работ по добыче известняков месторождения «Мета» в Целиноградском районе Акмолинской области.

Месторождение ранее не вскрывалось, запасы известняков числятся на балансе в авторских цифрах.

В настоящее время в Республике Казахстан действует ряд законодательных актов, регулирующих общественные отношения в области экологии с целью предотвращения негативного воздействия хозяйственной деятельности на окружающую среду, жизнь и здоровье населения.

Отчет о возможных воздействиях намечаемой (планируемой) хозяйственной деятельности проводится на базе анализа вариантных технических решений и использования имеющихся фондовых и специализированных научных материалов. При сложных и крупных предпроектных разработках необходимо проведение предварительных инженерно-геологических изысканий.

Отчет о возможных воздействиях разработан в соответствии с Экологическим кодексом Республики Казахстан и иными нормативными правовыми актами Республики Казахстан.

Целью проведения данной работы является определение экологических и иных последствий вариантов, принимаемых управленческих и хозяйственных решений, разработки рекомендаций по оздоровлению окружающей среды, предотвращению уничтожения, деградации, повреждения и истощения естественных экологических систем и природных ресурсов. Проект оформлен в соответствии с «Инструкцией по организации и проведению экологической оценки», утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 и представлен процедурой оценки воздействия на окружающую среду, соответствующей первой стадии разработки материалов.

9

Отчет о возможных воздействии разработан на основании:

- Плана горных работ и чертежей;
- Технического задания на план горных работ.

Объем изложения достаточен для анализа принятых решений и обеспечения охраны окружающей среды от негативного воздействия объекта исследования на компоненты окружающей среды.

В Отчете о возможных воздействиях приведены основные характеристики природных условий района, проведения работ, определены предложения по охране природной среды, в том числе:

- охране атмосферного воздуха и предложения по нормативам эмиссий;
- охране поверхностных и подземных вод;
- охране почв, утилизации отходов;
- охране растительного и животного мира.

Разработчиком проекта является ТОО «Алаит», действующее на основании Государственной лицензии ГСЛ 01583Р №13012285 от 01.08.2013 года на выполнение работ и оказание услуг в области охраны окружающей среды на территории Республики Казахстан, выданной Министерством охраны окружающей среды РК (приложение 4).

Адрес исполнителя:

ТОО «Алаит» Акмолинская область, г. Кокшетау, ул. Шалкар18/15 тел/факс 8 (716 2) 29 45 86

Адрес заказчика: TOO «GOLDENPIT»

Юридический адрес: Акмолинская область, Целиноградский район, с. Кабанбай батыра, ул. Сарыадыр, дом 3, тел.: 87015554650 БИН 210940016517

1. ОПИСАНИЕ ПРЕДПОЛОГАЕМОГО МЕСТА ОСУЩЕСТВЛЕНИЯ намечаемой деятельности

Участок Мета расположен в Целиноградском районе Акмолинской области, в 45 км к северо-востоку от г. Астаны, в 6 км к северу от п. Софиевка.

Район сравнительно густо населен, население занято в основном: сельский хозяйством. Промышленность развита умеренно.

Площадь и глубина отвода определены, исходя из вовлечения в отработку всех утверждённых и числящихся на балансе месторождения запасов. Площадь горного отвода составляет— 33,8 га, площадь разрабатываемого карьера на 2024-2032 гг. -1,67 га.

Контракт №599 от 23.07.2009 на проведение добычи известняка на месторождении «Мета» действует до 23 июля 2034 года. В контрактный период предусматривается отработать 470,0 тыс.тонн от балансовых запасов известняка месторождения «Мета». В контрактный разработка полезного ископаемого будет производиться уступами по 13 м, с разделением на подуступы по 6,5 м. Вскрышные породы предусматривается вывозить во внешний отвал, расположенный юго-западнее от карьера на расстоянии 40 м.

Разработка месторождения будет вестись в пределах горного отвода рег.№744 от 22.11.2021 года

Географические координаты угловых точек месторождений представлены в таблице 1.1.

Координаты угловых точек горного отвода приведены в таблице 3.3., координаты участка добычи представлены в таблице 1.2.

Координаты угловых точек горного отвода №744

Географические координаты N_0N_0 Северная широта Восточная долгота точек 510 27' 16,4" 710 44' 10,0" 510 27' 16,6" 710 44' 26,5" 510 27' 00.8" 71⁰ 44' 19.6"

2 3 510 26' 48,2" 710 44' 28,3" 4 510 26' 43,3" 71⁰ 44' 11,8" 5 510 27' 00,5" 710 43' 59,8" 6 510 27' 07.1" 710 44' 05,9" 7

Таблица 1.2

Таблица 1.1

Координаты угловых точек участка добычи

$N_{\underline{0}}N_{\underline{0}}$	Географические координаты					
точек	Северная широта	Восточная долгота				
1	51° 26′ 51,66″	71 ⁰ 44' 15,83"				
2	51 ⁰ 26' 53,33"	71 ⁰ 44' 18,76"				
3	51° 26′ 53,61″	71 ⁰ 44' 20,01"				
4	51° 26' 49,84"	71 ⁰ 44' 22,97"				
5	51 ⁰ 26' 48,44"	71 ⁰ 44' 19,46"				
6	51° 26' 49,79"	71 ⁰ 44' 16,99"				

Обзорная карта района работ представлена на рисунке 1.

1

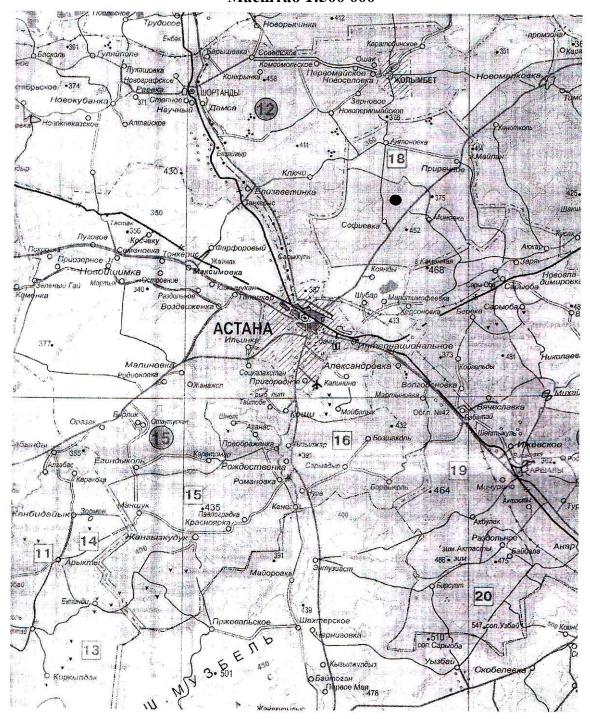
Технические границы карьера определены с учетом рельефа местности, угла откоса уступа, предельного угла борта карьера, границ разработки месторождения. Основные параметры элементов карьерной отработки установлены исходя из физико-механических

свойств пород, применяемой техники и технологии в соответствии с Нормами технологического проектирования (НТП), Правилами технической эксплуатации (ПТЭ), Едиными правилами безопасности при разработке месторождении открытым способом и Правилами обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы. Границы карьера в плане отстроены с учетом вовлечения в отработку всех утвержденных запасов.

Площадка отвечает санитарно-гигиеническим, пожаро-взрывобезопасным, экологическим, социальным, экономическим, функциональным, технологическим и инженерно-техническим требованиям. Эксплуатацию камерьра намечено осуществлять так, чтобы минимизировать воздействие на окружающую природную среду.

Жилые объекты, а также объекты с повышенными санитарно-эпидемиологическими требованиями (зоны отдыха, территории курортов, территории садоводческих товариществ, образовательные и детские организации, оздоровительные организации и т.п.) в санитарно-защитную зону месторождения не входят.

Ближайший населенный пункт (жилая зона) – п. Софиевка, расположен южнее от месторождения «Мета» на расстоянии 6.0 км.


Территория не располагается в границах санитарно-защитных зон и границах санитарных разрывов объектов, являющихся источниками воздействия на среду обитания и здоровье человека (СТО и др. производственные объекты). Также вблизи территории отсутствуют автозаправочные станции (более 3000 м) и кладбища (более 3000 м).

На исследуемой территории отсутствуют скотомогильники и места захоронения животных, неблагополучных по сибирской язве и других особо опасных инфекций.

Ближайший водный объект — река Селеты, протекающая свыше 1,5 км западнее участка. В соответствии с постановлением акимата Акмолинской области от 26 января 2009 года № А-1/19, ширина водоохранной зоны реки Селеты составляет — 500 м, ширина водоохранной полосы 35-100 м. Согласно Водного кодекса РК исследуемый объект не входит в водоохранную зону и полосу водного объекта.

Обзорная карта района работ Масштаб 1:500 000

•- Месторождение цементного сырья Мета

Рисунок 1

2. ОПИСАНИЕ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ В ПРЕДПОЛАГАЕМОМ МЕСТЕ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

2.1. Климатические условия района проведения работ

Климат района резко континентальный с жарким сухим летом и холодной зимой. Характерны значительные колебания температуры и влажности воздуха как в годовом, таки в суточном цикле.

Холодный период продолжается с ноября по март включительно. Самый холодный месяц-январь с минимальной среднемесячной температурой -27,8°C, а самый жаркий - июль с максимальной среднемесячной температурой 26,4°C. Годовая амплитуда колебания температуры достигает 73°. Среднегодовое количество осадков составляет 240-250мм с колебаниями в отдельные годы от 163мм до 540мм. Основная масса осадков выпадает в летние месяцы в виде ливневых дождей. Устойчивый снежный покров образуется в начале ноября. Его глубина к концу марта достигает 35 см. Среднегодовая скорость ветра составляет 5,6 м/с, вызывая летом пыльные, а зимой снежные бури. Преобладающее направление ветров северо-восточное.

Район не сейсмоопасен.

Основные характеристики региона, определяющие условия рассеивания загрязняющих веществ в атмосферном воздухе, приведены в таблице 7.2.1.

Таблица 7.2.1 Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере Целиноградского район

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы, А	200
Коэффициент рельефа местности в городе	1.00
Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, град.С	26.9
Средняя температура наружного воздуха наиболее холодного месяца (для котельных, работающих по отопительному графику), град С	-17.6
Среднегодовая роза ветров, %	
C	10.0
CB	11.0
В	11.0
ЮВ	7.0
Ю	11.0
ЮЗ	22.0
3	14.0
С3	14.0
Среднегодовая скорость ветра, м/с	4.7
Скорость ветра (по средним многолетним	12.0
данным), повторяемость превышения которой составляет 5 %, м/с	
данным), повторяемость превышения которой	

Район не сейсмоопасен.

2.2. Качество атмосферного воздуха

Метеорологические (климатические) условия оказывают существенное влияние на перенос и рассеивание вредных примесей, поступающих в атмосферу. К основным факторам, определяющим рассеивание примесей в атмосфере, относятся ветра и температурная стратификация атмосферы. На формирование уровня загрязнения воздуха оказывают также влияние туманы, осадки и радиационный режим.

Характеристика состояния окружающей природной среды определяется значениями фоновых концентраций загрязняющих веществ.

Численность населения в близлежащем к объекту населенном пункте (п. Софиевка) составляет менее 2013 человек. Согласно РД 52.04.186-89 «Руководство по контролю загрязнения атмосферы» для населенных пунктов с численностью населения более 10000 человек расчет рассеивания загрязняющих веществ в атмосфере проводится с учетом фоновых концентраций загрязняющих веществ.

2.3. Экологическая обстановка исследуемого района

Атмосферный воздух. В Акмолинской области действует 19068 предприятий, осуществляющих эмиссии в окружающую среду. Фактические суммарные выбросы загрязняющих веществ от стационарных источников составляют 84,5 тысяч тонн. Количество зарегистрированных автотранспортных средств составляет 174922 тысяч единиц, главным образом легковых автомобилей.

Наблюдения за состоянием атмосферного воздуха на территории г. Астана проводятся на 10 постах наблюдения, в том числе на 4 постах ручного отбора проб и на 6 автоматических станциях.

В целом по городу определяется до 25 показателя: 1) взвешенные частицы (пыль); 2) взвешенные частицы РМ-2,5; 3) взвешенные частицы РМ-10; 4) диоксид серы; 5) оксид углерода; 6) диоксид азота; 7) оксид азота; 8) озон; 9) сероводород; 10) фтористый водород; 11) аммиак; 12) бензапирен; 13) бензол; 14) этилбензол; 15) хлорбензол; 16) параксилол; 17) метаксилол; 18) кумол; 19) ортаксилол; 20) кадмий; 21) медь; 22) свинец; 23) цинк; 24) хром; 25) мышьяк.

Результаты мониторинга качества атмосферного воздуха г. Астана за 2022 год.

Уровень загрязнения атмосферного воздуха оценивался как очень высокий, он определялся значением СИ=9,4 (высокий уровень) и НП=100% (очень высокий уровень) по сероводороду в районе поста №8. *Согласно РД 52.04.667-2005, если СИ и НП попадают в разные градации, то степень загрязнения атмосферы оценивается по наибольшему значению из этих показателей. Максимально-разовые концентрации взвешенных частиц РМ-2,5 - 2,5 ПДКм.р., взвешенных частиц РМ-10 - 2,4 ПДКм.р., оксид углерода - 1,9 ПДКм.р., диоксида азота - 4,9 ПДКм.р., оксид азота - 2,3 ПДКм.р., сероводорода - 9,4 ПДКм.р., озона - 1,8 ПДКм.р. концентрации остальных загрязняющих веществ не превышали ПДК.

Наибольшее количество превышений максимально-разовых ПДК было отмечено по взвешенным частицам РМ-2,5 (901), взвешенным частицам РМ-10 (8), оксид углерода (6), диоксиду азота (1981), оксид азота (247), сероводороду (2897), озону (1154). Превышения ПДК среднесуточных концентраций по городу наблюдались по взвешенным частицам (пыль) — 1,0 ПДКс.с., диоксиду азота — 1,7 ПДКс.с., озону — 5,4 ПДКс.с., концентрации остальных загрязняющих веществ не превышали ПДК. Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Таблица 2.3.2

Характеристика загрязнения атмосферного воздуха

характеристика загрязнения атмосферного воздуха								
_	Средняя концентрация		Максимальная разовая концентрация		нп	Число случаев превышения ПДК $_{\text{м.р.}}$		
Примесь	мг/м ³	Крат- ность	мг/м ³	Крат- ность	%	>пдк		>10 ПДК
		ПДКе.с.		ПДК _{м.р.}			В том	числе
		г. Ас	тана					
Взвешенные частицы (пыль)	0,15	1,0	0,40	0,80	0	0		
Взвешенные частицы РМ-2,5	0,02	0,69	0,40	2,5	41	901		
Взвешенные частицы РМ-10	0,03	0,52	0,71	2,4	0	9		
Диоксид серы	0,01	0,14	0,33	0,67	0	0		
Оксид углерода	0,27	0,09	9,34	1,9	0	6		
Диоксид азота	0,07	1,7	0,99	4,9	91	1981		
Оксид азота	0,03	0,49	0,91	2,3	11	247		
Сероводород	0,01		0,08	9,4	100	2897	27	
Озон	0,16	5,4	0,29	1,8	54	1154		
Фтористый водород	0,0004	0,08	0,010	0,50	0			
Бен(а)пирен	0,00003	0,03	0,0002		0			
Бензол	0,00	0,00	0,00	0,0	0			
Этилбензол	0,00		0,00	0,0	0			
Хлорбензол	0,00		0,00	0,0	0			
Параксилол	0,00		0,00	0,0	0			
Метаксилол	0,00		0,00	0,0	0			
Кумол	0,00		0,00	0,0	0			
Ортаксилол	0,00		0,00	0,0	0			
Кадмий	0,0001	0,32			0			
Медь	0,0004	0,18			0			
Свинец	0,0001	0,42			0			
Цинк	0,002	0,03			0			
Хром	0,001	0,67			0			
Мышьяк	0,00	0,00			0			

Максимально-разовые концентрации загрязняющих веществ находились в пределах допустимой нормы.

Выводы:

За последние четыре лет уровень загрязнения атмосферного воздуха изменялся следующим образом:

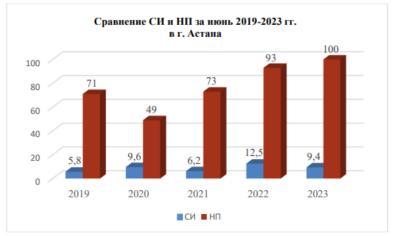


Диаграмма 1.

Как видно из графика, уровень загрязнения атмосферного воздуха г. Астана в июне рассматриваемого периода оставался высоким. В основном, загрязнение воздуха характерно для холодного периода года, сопровождающегося влиянием выбросов от теплоэнергетических предприятий и отопления частного сектора. Загрязнение воздуха диоксидом азота свидетельствует о значительном вкладе в загрязнение воздуха от автотранспорта на загруженных перекрестках города. На формирование загрязнения воздуха также оказывают влияние погодные условия, так в июне 2023 года было отмечено 13 дней НМУ (слабый ветер 1-7 м/с, некоторые дни наблюдался штиль). Днем 19 июня наблюдался дым. Превышения нормативов среднесуточных концентраций наблюдались по взвешенным частицам (пыль), диоксиду азота и озону.

Превышений среднесуточных и максимально-разовых ПДК не наблюдались.

Химический состав атмосферных осадков. Наблюдения за химическим составом атмосферных осадков на территории Акмолинской области показали, что концентрации всех определяемых загрязняющих веществ в осадках не превышали предельно допустимые концентрации. В пробах осадков преобладало содержание: гидрокарбонатов — 29,0%; кальция — 20,8%; хлоридов — 19,6%; сульфатов — 15,2%; магния — 11,7%; натрия — 4,0%; калия — 1,0%; аммония — 0,3%; нитратов — 0,11%. Общая минерализация осадков составила — 70,8 мг/л. Удельная электропроводимость атмосферных осадков — 136,5 мкСм/см. Кислотность выпавших осадков находится в пределах от 4,2 до 6,5.

Поверхностные воды. По Единой классификации качество воды водных объектов на территории Акмолинской области за 1 полугодие 2022 года оценивается следующим образом: 2 класс – река Беттыбулак; 3 класс – река Жабай, вдхр. Вячеславское; 4 класс – реки Есиль, Силеты и Шагалалы, канал Нура-Есиль; не нормируются (>5 класса) – реки Акбулак, Сарыбулак, Нура, Аксу, Кылшыкты. В сравнении с 1 полугодием 2021 года качество поверхностных вод в реках Акбулак, Сарыбулак, Нура, Силеты, Аксу, Кылшыкты, Шагалалы и Вячеславское водохранилище существенно не изменилось. Качество воды в реках Есиль с выше 4 класса перешло в 4 класс, Беттыбулак с 3 класса во 2 класс, Жабай с 4 класса в 3 класс – улучшилось. Качество воды в канале Нура-Есиль с 3 класса перешло в 4 класс – ухудшилось. Основными загрязняющими веществами в водных объектах Акмолинской области являются: магний, кальций, хлориды, марганец, железо общее, минерализация, сульфаты, аммоний-ион, фосфор общий, ХПК. Превышение нормативов качества по данным показателям в основном характерны для сбросов сточных городских вод в условиях многочисленности населения.

Таблица 2.3.3

Информация о качестве поверхностных вод:

река Силеты	температура во	оды отмечен	a 0-20	°C,	водородный		
	показатель 8,11-	9,29, концент	рация ра	створ	енного в воде		
	кислорода – 4,5-	кислорода — 4,5-10,48 мг/дм3 , БПК5 — 1,64-3,31 мг/дм3 ,					
	прозрачность – 2	5 см.					
створ с.Селетинское	4 класс		Магний-	42,36	мг/дм		

Гамма-излучение. Средние значения радиационного гамма-фона приземного слоя атмосферы по населенным пунктам Акмолинской области находились в пределах 0,02-0,24 мкЗв/ч (норматив — до 5 мкЗв/ч).

Радиоактивное загрязнение. Наблюдение за радиоактивным загрязнением приземного слоя атмосферы на территории г. Астана и Акмолинской области осуществлялся на 5-ти метеорологических станциях (Астана, Атбасар, Кокшетау,

Степногорск, СКФМ «Боровое») путем пятисуточного отбора проб воздуха горизонтальными планшетами.

Среднесуточная плотность радиоактивных выпадений в приземном слое атмосферы Акмолинской области колебалась в пределах 1,2-2,5 Бк/м2. Средняя величина плотности выпадений составила 1,8 Бк/м2, что не превышает предельно-допустимый уровень.

2.4. Сейсмические особенности исследуемого района

Согласно СП РК 2.03-30-2017 «Строительство в сейсмических зонах» рассматриваемая территория расположена вне зоны развития сейсмических процессов.

2.5. Геологическое строение

2.5.1. Краткие сведения об изученности района

Из первых геологических исследований района необходимо отметить отдельные работы, связанные с изучением гидрогеологии края в 1894-1911 годах (Козырев А.А.). В них даны детальные описания геологических маршрутов, проведенных по долине реки Селеты и ее притоков.

В 1930-1931 годах по поручению Института геологической карты проведена геологическая съемка масштаба 1:500000 (Водорезов Г.И.). По ее результатам освещена петрография пород бассейна реки Селеты. Впервые найдена фауна, характеризующая кембрийские и нижнесилурийские отложения.

В 1947 году Акмолинской доломитовой партией Казгеолуправления исследованы выходы карбонатных пород в бассейне реки Селеты (Руманова Д.А.). Описаны проявления карбонатных пород, приуроченные к отложениям нижнего палеозоя. Изучался химический состав известняков.

В 1947-1948 годах Геологическим институтом Академии наук Казахской ССР (Борукаев М.А.) проведена геологическая съемка территории, включающей восточные районы Акмолинской области, а также район города Ерейментау. Выделены нижнепалозойские толщи: нижняя - известняково-эффузивная (Ерементауская) и верхняя - туфогенно-осадочная.

В 1952 году Карагандинским геологическим управлением в бассейне р. Селеты начаты геологические исследования по поискам месторождений бокситов (Салин Д.А., Дручинин Е.В.). Получены краткие сведения о проявлениях бокситов, выполняющих карстовые депрессии в известняках.

В 1954 -1955 годах проведены детальные геологоразведочные работы на Софиевском месторождении известняков. Карбонатные породы изучались в качестве флюсового сырья для глиноземного производства. Материалы детальной разведки месторождения обрабатывались Д. А. Румановой. По результатам исследований ГКЗ СССР утверждены запасы известняков в качестве флюсового сырья в количестве 89135 тыс. т (протокол № 1350 от 25 августа 1956 г.). Позже на Софиевском месторождении (1981-1986 г.г.) проводились работы по оценке карбонатных пород в качестве сырья для производства строительного щебня, строительной извести и цементного сырья.

2.5.2. Геологическая характеристика района работ

В геологическом строении района принимают участие разнообразные по возрасту и составу комплексы пород. Отложения палеозойского возраста представляют вулканогенные, вулканогенно-осадочные и осадочные породы кембрийской и ордовикской систем. В целом они составляют ядро антиклинальной структуры субмеридионального простирания. Выше по разрезу распространены мезозойские образования коры

выветривания палеозойского фундамента и континентальный комплекс палеогеновых и четвертичных отложений.

Кембрийская система

Включает нижний отдел, расчлененный по литологическому составу на две подсвиты. Нижняя подсвита представлена спилитами, диабазовыми и базальтовыми порфиритами, средне- и грубообломочными агломератовыми туфами с подчиненными прослоями осадочных пород (конгломератов, песчаников, алевролитов и аргиллитов). Площадь развития этих отложений выделена по данным картировочного бурения. Мощность их достигает 2000 м. Породы верхней подсвиты, мощностью около 1200 м, залегают согласно с отложениями нижней подсвиты и представлены рифогенными и пластовыми известняками, кремнистыми сланцами, кварцитами, песчаниками и алевролитами.

Ордовикская система

Представлена породами нерасчлененной толщи нижнего и среднего отделов и отложениями еркебидаикской и сарыбидаикской свит среднего отдела. Отложения нерасчлененной толщи составляют песчаники, алевролиты, кремнистые алевролиты, аргиллиты и туффиты. В составе сарыбидаикской свиты преобладают андезитовые и диабазовые порфириты и их туфы, туфоконгломераты, в меньшей мере, отмечаются прослои известняков, песчаников, туфопесчаников и алевролитов. Еркебидаикская свита характеризуется осадочными и туфогенно-осадочными образованиями: конгломераты, гравелиты, песчаники, алевролиты, линзы известняков и агломератовых туфов.

Мезозой

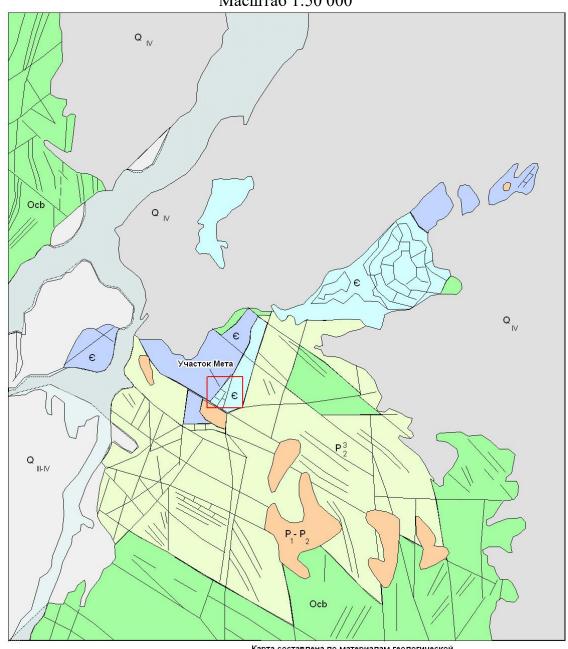
Представлен глинистыми, дресвянисто-глинистыми и дресвянисто-щебенистыми образованиями коры выветривания палеозойских пород. Мощность их в рассматриваемом районе относительно небольшая (5-20 м). Для мезозойских образований, нередко выступающих на дневную поверхность, характерна сохранность структур и элементов материнских пород. Установлена их вертикальная зональность:

- зона дезинтеграции (выщелачивания);
- зона глинисто-щебенистых образований;
- зона цветных каолинов.

Глинистая зона часто разделяется на две подзоны: нижнюю — зеленоцветную каолинит-гидрослюдистую и верхнюю красноцветную — гематит-каолинит-гидрослюдистую.

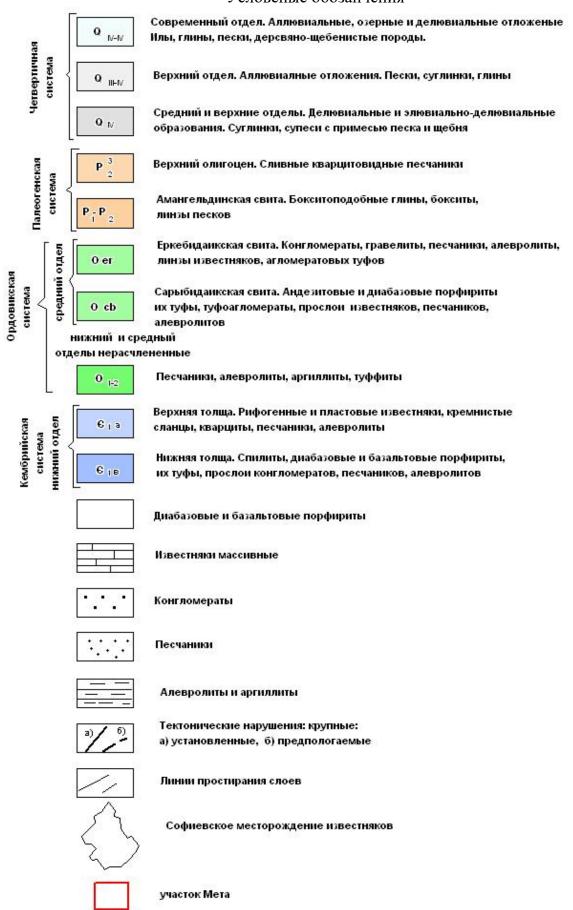
Палеогеновая система

Представлена отложениями Амангельдинской свиты (бокситоподобные глины, бокситы и линзы песков) и верхнего олигоцена (сливные кварцитовидные песчаники).


Четвертичная система

Четвертичные отложения имеют повсеместное распространение и покрывают сплошным чехлом все отложения за исключением редких обнажений пород в повышенных частях рельефа. Этими отложениями выполнены балки и долины р. Селеты, а также верхние части карстовых депрессий. Мощность четвертичных отложений не имеет значительных колебаний и возрастает ближе к подножью сопок, а также в зоне тектонических нарушений. Четвертичные отложения представляют аллювиальные, делювиальные и элювиально-делювиальные осадки (пески, супеси, бурые, желто-бурые глины, суглинки). В глинах и суглинках встречается щебень сланцев, известняков и порфиритов. На водоразделах мощность отложений не превышает 3-5м.

Геологическая карта района работ Масштаб 1:50 000



Карта составлена по материалам геологической съемки масштаба 1:50 000, 1970г. Григорьева Д.М.

Рисунок 3

Условеные обозанчения

2.5.3. Качественная характеристика сырья

Известняки и глинистые породы месторождения Мета изучались как исходные сырьевые материалы для получения портландцемента. При оценке качества сырья основное внимание уделялось их химическому и гранулометрическому составу, физикомеханическим свойствам и технологическим особенностям. Оценка качества цементного сырья проводилась также путем сопоставления результатов анализа и испытаний, полученных по рядовым и валовым пробам, с аналогичными данными ранее изученных месторождений (Софиевское и Акмолинское). Кроме того, проведены опытные технологические испытания исходного сырья (известняка) месторождения в сырьевой смеси с глинами Софиевского карьера.

Известняки Софиевского месторождения (в шихте с Акмолинскими глинами) испытывались по двум технологическим пробам: проба № 1 испытана на Шымкентском заводе АзНИИЦемент (г. Шымкент); проба № 2 на Подольском опытном заводе РОСНИИЦемент. В обоих случаях по результатам полузаводских испытаний установлена пригодность известняков Софиевского месторождения, в шихте с Акмолинскими глинами и корректирующими кремнистыми добавками, для производства цемента марки 600 – 700.

Пригодность глин Софиевского месторождения (Восточный участок) для производства цемента определялась по результатам лабораторно-технологических исследований пробы глины в шихте с известняками одноименного месторождения и кремнистыми песками Арыктинского месторождения. В лабораторных условиях получен клинкер с оптимальным химическим составом, характеризующим принципиальную возможность создания промышленного производства цемента с учетом дальнейшего совершенствования технологического процесса.

Известняки

Известняки, слагающие основную залежь месторождения, по своим структурнотекстурным особенностям неслоистые, массивные однородные. Для них характерны монотонные серые и светло-серые цвета окраски, тонкозернистая структура. Изредка встречаются кальцитовые овоидные выделения на общем светло-сером фоне известняков. Причем, кальцитовые пятна имеют большую степень кристалличности по сравнению с основной тканью. В отдельных случаях отмечены рассекающие породу, хаотично ориентированные прожилки молочно-белого кальцита. Мощность их колеблется от 1-2 мм до 1см.

Минералогический состав известняков, независимо от их редких структурнотекстурных особенностей, характеризуется устойчивой выдержанностью в пространстве. Преобладающая роль принадлежит кальциту с незначительной примесью мелких зерен кварца, доломита и агрегатов гидроокислов железа (гетита). По результатам лабораторных исследований представлен следующий минеральный состав известняков:

Таблица 2.5.1

	Минеральный состав известняков								
<u>№</u> пробы		Содержание, %							
	кварц	ц плагиоклаз группа доломит кальцит гетит хлорита					сумма		
1	0,5	<1,0	<3,0	<1,0	96,0	<2,0	96,5		
2	1,0	<1,0	<3,0	<1,0	97,0	<2,0	98,0		
3	<0,5	<1,0	<3,0	<1,0	97,0	<2,0	97,0		
6	0,5	<1,0	<3,0	<1,0	96,0	<2,0	96,5		
7	1,0	<1,0	<3,0	<1,0	94,0	<2,0	97,0		

22

0	0.5	-1.0	-2.0	-1.0	00.0	-2.0	00.0
8	0,5	<1,0	< 3,0	<1,0	98,0	<2,0	98,0
10	<0,5	<1,0	<3,0	<1,0	89,0	<2,0	97,0

В химическом составе разведанного сырья основное значение имеет карбонат кальция (CaCO₃), составляющий в среднем около 95,5 % от общей массы породы. По содержанию окиси магния (в среднем 1,00 %), глинозема (0,46%), окислов железа (0,28) и соединений кремния и щелочей (в сумме не более 2,18 %) сырье в соответствии с классификацией С. С. Виноградова (1951г.) относится к чистым известнякам.

Средний химический состав карбонатных пород месторождения приведен в сравнительной таблице 2.5.2 и рассчитан по результатам анализов рядовых и валовых проб, отобранных из керна разведочных скважин.

Средний химический состав известняков

Среднии химический состав известняков						
Химический	M	есторождение М	Лета	MAATAAAMAAAAAA		
компонент	по валовым	по рядовым	по всем пробам	месторождение Софиевское		
	пробам	пробам	по веем пробам	Софисьское		
1	2	3	4	5		
CaO	55,05	53,64	53,99*	52,67		
MgO	0,89	1,04	1,00*	1,34		
SiO ₂	0,62	1,71	1,44*	1,75		
Na ₂ O+K ₂ O	0,20	-	0,20	-		
SO_3	0,25	0,01	0,07*	0,1-0,08		
Al_2O_3	0,40	0,25	0,29*	0,11		
1	2	3	4	5		
Fe ₂ O ₃	0,11	0,27	0,23*	0,09		
P_2O_5	0,12	0,023	0,05*	0,05		
TiO ₂	0,09	-	0,09	-		
MnO	0,01	-	0,01	-		

Основными критериями оценки качества известняков как цементного сырья являются, прежде всего, содержание окиси кальция, а также количество вредных примесей-соединений магния, серы, щелочей, фосфора и титана. Допустимые содержания химических компонентов регламентируются действующими «Техническими условиями на качество основных видов сырьевых материалов для производства портландцемента» и ГОСТ 10178-95.

Институтом Гипроцемент СССР по результатам исследований многих месторождений карбонатных пород (известняков) были разработаны следующие основные средние параметры оценки их качества для производства цемента, %: CaO - не менее 45; MgO не более 3,0 (Na₂O + K₂O) не более 3 - 4 (суммарно); SO₃ - не более 1,0; P₂O₅ - не более 0,40.

По техническим условиям, выданным заказчиком, на качество сырья (известняков) следует: содержание в пробе CaO не менее 43,5%; MgO не более 3,5 %; SO₃ не более 0,5%;

Сопоставление среднего химического состава разведанных известняков месторождения Мета (таблица 2.3.) с вышеприведенными параметрами кондиций свидетельствует о хорошем их качестве, как сырья для производства портландцемента.

Таблина 2.5.2

Достаточно сказать, что содержание окиси кальция в среднем превышает 53%, а количество вредных примесей намного ниже допустимых пределов.

Рассматриваемые породы достаточно однородны по составу и относительно выдержаны по мощности полезной толщи. Даек, прорывающих карбонатную толщу и оказывающих отрицательное влияние на качество известняков, не отмечено. Единичное ухудшение качества известняков отмечено в районе южного контакта залежи по разведочной линии 5 (скважина 16: среднее содержание CaO по выработке не превышает 47 %). Это локальное ухудшение качества известняков объясняется близостью контактовой зоны с вмещающими породами. На остальной разведанной площади существенных качественных изменений известняков по скважинам не отмечено.

По содержанию вредных химических компонентов в известняках не выявлено ни одной разведочной скважины, где бы среднее количество MgO, щелочей, SO_3 и P_2O_5 превышало их допустимые пределы. Среднее содержание окиси магния по выработкам варьирует от 0,5 до 3,0 % (среднее по месторождению 1,00 %). Содержание двуокиси титана колеблется от 0,05 % до 0,13 % и по большинству проб составляет 0,09 %. Содержание щелочей - не более 0,2 %. Серный ангидрит и пятиокись фосфора присутствуют в известняках в очень небольших количествах, их средние значения по участку составляют соответственно 0,13 и 0,08 %.

Величина потери при прокаливании в пробах находится в прямой зависимости от содержания окиси кальция. Среднее количество (п.п.п.) по пересечениям разведочных скважин изменяется от 42,81 до 43,38 % (среднее значение по месторождению составляет 42,91 %). Основная масса потери при прокаливании связана с CO₂.

Ниже приводится средний химический состав известняков по единому блоку подсчета запасов месторождения (таблица 2.5.3.).

Таблица 2.5.3 Химический состав известняков по блоку подсчета запасов месторождения Мета

No		Среднее содержание химических компонентов, %								
блоков	SiO_2	Al_2O_3	Fe ₂ O ₃	CaO	MgO	R_2O	TiO ₂	P_2O_5	SO_3	п.п.п.
Б-1С1	1,71	0,25	0,27	53,64	1,04	0,2	0,09	0,0027	0,007	42,91

Известняки, заключенные в блоке подсчета запасов, являются достаточно качественным сырьем для производства портландцемента.

К химическому составу известняков для производства белых и цветных цементов техническими условиями предъявляются жесткие ограничения к содержаниям окислов железа и марганца, обусловленные их красящими свойствами. Содержание окислов хрома (Cr₂O₃) не допускается. Известняки месторождения Мета потенциально могут быть использованы в качестве карбонатного компонента в сырьевой смеси для производства белого (класс Б) и цветных цементов (класс В). Ниже в таблице 2.4. представляется сравнительная характеристика известняков по содержанию вредных примесей для производства белого и цветных цементов.

Таблица 2.4. Допустимые содержания вредных примесей для производства белого и цветных цементов

Содержание, %				
для белого цемента		для цветных цементов	месторождение	
класс А	класс Б	класс В	Мета	
54,0	52,0	50,5	53,99	
	класс А	класс А класс Б	для белого цемента для цветных цементов класс A класс Б класс В	

Fe ₂ O ₃ не более	0,15	0,25	0,35	0,23
MnO не более	0,015	0,03	0,04	0,01

При использовании в цементном производстве в качестве компонента сырьевой смеси, так называемого белитового или нефелинового шлама (отход глиноземного производства) или доменного шлака, заменяющих полностью глинистую составляющую, допустимые содержания вредных примесей в известняках (при указанном содержании CaO) имеют определенные величины (таблица 2.5.). Известняки месторождения Мета по содержанию вредных примесей не превышают предельно допустимых значений для случая использования их в сырьевой смеси с белитовым шламом или доменным шлаком.

Таблица 2.5. Допустимое содержание вредных примесей в известняках при белитовом шламе и доменном шлаке

Содержание	Содержание, % не более						
CaO, %	MgO	SO ₃	Na ₂ O+K ₂ O	P ₂ O ₅	TiO ₂		
	∂a	опуск при бел	итовом шлам	е			
53,0	не огранич.	1,40	0,50	0,70	не огранич.		
50,0	5,60	1,30	0,60	0,60	«		
47,0	5,20	1,20	0,70	0,50	«		
	ò	опуск при до	менном шлаке				
53,0	1,80	0,80	0,40	0,60	не огранич.		
50,0	2,10	0,60	0,50	0,50	«		
47,0	2,70	0,70	0,60	0,50	«		
среднее по известнякам месторождения Мета							
53,41	1,00	0,07	0,2	0,05	0,09		

Таблица 2.6.

Физико-механические свойства известняков

Параметры	месторождение Мета	месторождение Софиевское	
удельный вес	2,72 г/см ³	2,73 г/см ³	
объемный вес	$2,70 \Gamma/\text{см}^3$	$2,56 \Gamma/\text{см}^3$	
пористость	0,4-1,5 %	0,4-1,1 %	
водопоглощение	0,1-0,5 %	0,05-0,41 %	
естественная влажность	-	0,01-0,04 %	
сопротивление сжатию	56,4(34,3-88,6) Мпа	65,0-23,2 Мпа	

По физико-механическим свойствам известняки месторождения Мета (породы низкой - средней прочности) имеют оптимальные показатели для их использования в цементном производстве.

2.5.4. Инженерно-геологические и горнотехнические условия разработки

Продуктивный горизонт участка представлен делювиальными-аллювиальными отложениями средне-верхнечетвертичного возраста. Мощность полезной толщи известняков изменяется от 30,0 до 49,8 м, при среднем значении 44,6 м. К вскрышным породам относится почвенно-растительный слой с суглинками и переотложенные глины мощностью от 0,2 до 20,0 м (средняя -5,1 м). Коэффициент вскрыши составляет 0,11 м 3 /м 3 .

Незначительная мощность вскрышных пород и сравнительно благоприятные горнотехнические условия предопределяют открытую разработку скального грунта. Вскрышные породы могут быть удалены любыми средствами механизации, чему способствует поверхность участка и кровли продуктивной толщи, а также рыхлое состояние пород вскрыши. Наиболее целесообразно на вскрышных работах использовать бульдозеры, скреперы, которые при необходимом годовом объеме вскрышных работ и дальности транспортировки могут осуществлять полный цикл работ по удалению вскрышных пород. Породы вскрыши необходимо транспортировать и складировать автотранспортными средствами в отвал, для использования их при рекультивации.

Отработка запасов месторождения Мета предусматривается открытым способом карьером.

Учитывая опыт разработки аналогичных месторождений скальных грунтов, углы откосов бортов карьера рекомендуется принимать во вскрышной части 30° - 60° , по полезной толще -70° - 80° .

Залежь известняков по типизации инженерно-геологических условий их разработки (по М.Хордикайнен) относится к месторождениям третьего типа: «а» — с простыми инженерно-геологическими условиями. По гидрогеологическим условиям месторождение относится к типу средней сложности. При эксплуатации месторождения потребуется проведение защитных мероприятий и предварительное осущение месторождения.

2.6. Гидрогеологическое условия месторождения

Месторождение цементного сырья Мета обводнено и фактически более 90 % запасов находится ниже уровня подземных вод. В районе месторождения развиты три основных типа подземных вод:

- грунтовые воды, приуроченные к четвертичным отложениям и глинистым породам коры выветривания;
 - трещинные воды туфогенно-осадочной толщи;
 - трещинные воды известняков.

Все три типа подземных вод гидравлически связаны между собой и образуют единый поток трещинно-грунтовых вод. Статистический уровень воды залегает на глубине от 1,0 до 6,0 м от поверхности земли, абсолютная отметка уровня воды колеблется от 313,5 до 314 м.

Первый тип грунтовых вод на месторождении имеет спорадическое распространение (водоносный горизонт не выдержанный и залегает в виде линз разделочной величины и мощности) и циркулирует в покровных отложениях водораздельных пространств, представленных суглинками, глинами и супесями. Питание

водоносных горизонтов, имеющих распространение в четвертичных отложениях, происходит за счет инфильтрации атмосферных осадков (в период весеннего паводка).

Второй и третий типы грунтовых вод имеют широкое распространение.

По степени водообильности подразделяются ориентировочно на две группы:

- водообильные с удельным дебитом 0,01-0,10 л/сек (плотные известняки, глинистая кора выветривания);
- сильноводообильные с удельным дебитом от 0,1 до 0,5 л /сек и выше (трещиноватые и сильнотрещиноватые известняки, аргиллиты, алевропесчаники)

К залежи известняков приурочен горизонт трещинных вод и, в силу значительной водообильности пород, имеет наибольшее значение. Известняки в зависимости от трещиноватости обладают различными скоростями фильтрации подземного потока, и способны аккумулировать значительную часть местного атмосферного питания. Производительность скважин, пройденных в этом водоносном комплексе пород, варьирует в пределах 0,1- 0,5 л/с (скв. 12, 13, 14, 15). Причем наиболее водообильными оказались скважины, заложенные на участке распространения кор выветривания. Следует отметить, что при разработке месторождения приток воды в карьер на разных его участках будет зависеть от степени обводненности, как известняков, так и вмещающих пород.

В качественном отношении среди подземных вод пород преобладают воды повышенной минерализации, известняки содержат воды с сухим остатком до $1~\mathrm{г/л}$. Основным источникам питания подземных вод водоносного комплекса служат атмосферные осадки.

2.7. Почвенный покров исследуемого района

По почвенно-географическому районированию исследуемая территория относится к подзоне обыкновенных среднегумусных черноземов. Большинство местных черноземов в той или иной степени солонцеватые. Встречаются карбонатные и карбонатно-солонцеватые черноземы. Среди черноземов очень широко распространены луговочерноземные почвы, которые, как и черноземы, часто бывают солонцеватыми.

На территории земель города Кокшетау выделен следующий состав почв^[31]:

- 1. чернозёмы обыкновенные среднемощные;
- 2. чернозёмы обыкновенные солонцеватые маломощные;
- 3. лугово-чернозёмные среднемощные и маломощные почвы, солончаковые почвы;
- 4. пойменные луговые почвы;
- 5. лугово-болотные почвы;
- 6. солончаки луговые.

Вся освоенная территория города Кокшетау относится к землям с частично нарушенным почвенным профилем в результате деятельности человека. В связи с этим, на значительных территориях зон озеленения создан искусственный почвенный покров. Озеленение осуществляется путём посадки искусственных насаждений.

В городе Астана и Акмолинской области в пробах почвы, отобранных в различных районах содержание кадмия находилось в пределах 0.01-2.2 мг/кг, свинца -0.01-2.4 мг/кг, меди -0.01-0.1 мг/кг, хрома -0.1-0.5 мг/кг, цинка -0.6-1.4 мг/кг.

Почвенный покров сформировался в условиях резко континентального климата, который отличается высокой сухостью и резкой сменной температурных условий. В зимний период температура воздуха может опускаться до -40° С и ниже. В условиях невысокого снежного покрова это способствует глубокому промерзанию почв (до 1,5-2,0 м) и накладывает свои особенности на процессы почвообразования. Максимальное выпадение годовых осадков приходится на июнь-июль месяцы. Для территории объекта

характерна высокая ветровая активность, что является одной из причин интенсивного развития процессов дефляции почв.

2.8. Растительный мир района проектируемого объекта

Естественный растительный покров Акмолинской области изменяется в соответствии с широтной географической зональностью, чему способствует равнинность территории, обуславливающая закономерное размещение климатических условий. Кроме климатических, большое влияние на размещение типов растительного покрова оказывают местные особенности природы: мезо- и микрорельеф, состав материнских пород, гидрологический режим почв и т.д.

На территории планируемого строительства выделяются 3 типа районов:

- 1) посевные поля представленные зерновыми культурами;
- 2) земли запаса, представленные залежами;
- 3) водное проявление с неопределенной береговой линией.

Растительность распространена степная с кустарниками. Березовые леса встречаются в виде небольших рощ.

В районе размещения объекта данные о растительном и животном мире соответствуют не исконной, а уже антропогенно - преобразованной флоры и фауны.

Территория проектируемого объекта освоена ранее недропользователями, поэтому рассматриваемая зона бедна естественной травянистой растительностью, имеется луговая растительность на техногенных отложениях.

Древесная и кустарниковая растительность непосредственно на прилегающей к карьеру территории отсутствует.

Согласно письму № 3Т-2022-02570548 от 28.10.2022 г. выданным РГУ «Акмолинская областная территориальная инспекция лесного хозяйства и животного мира», на месторождении «Мета» дикие животные, занесенные в Красную книгу Республики Казахстан, отсутствуют. Информация о наличии либо отсутствии древесных растений, занесенных в Красную книгу Республики Казахстан, не может быть выдана в связи с тем, что вышеуказанный участок не располагаются на землях государственного лесного фонда и особо охраняемых природных территорий.

Воздействие на растительность будет выражаться двумя факторами: через нарушение растительного покрова и посредством выбросов загрязняющих веществ в атмосферу, которые, оседая, накапливаются в почве и растениях.

Выбросы загрязняющих веществ в атмосферу существенно не повлияют на растительный мир, превышений ПДК по всем ингредиентам на границе СЗЗ не ожидается.

Изменения видового состава растительности, ее состояния, продуктивности сообществ в районе намечаемой деятельности исключается.

2.9. Животный мир района проектируемого объекта

Животный мир Акмолинской области насчитывает 55 видов млекопитающих, 180 видов птиц и 30 видов рыб. Четко прослеживается тесная связь животного мира с определенными типами почв и растительностью. Поскольку, большую часть области занимают разнотравно-злаковые степи, основное ядро населения животных образуют: лугово-степные зеленоядные виды, питающиеся преимущественно разнотравьем и широколистными злаками; прямокрылые насекомые; полевки, суслики, степные сурки.

Из птиц наиболее многочисленны полевые жаворонки, кулики. Все они питаются смешанной пищей и в большом количестве поедают семена и побеги растений. С обилием массовых зеленоядных насекомых и грызунов связана довольно высокая численность

хищников, среди которых наиболее обычны лисица, степной хорь, луговые и степные луни, пустельга обыкновенная, обыкновенный канюк.

В водоемах водятся щука, карась, окунь, ерш, язь и др.

К промысловым видам диких животных и птиц в Акмолинской области относятся:

* Млекопитающие — лось, марал, асканийский олень, сибирская косуля, кабан, рысь, лисица, корсак, енотовидная собака, ласка, горностай, степной хорек, барсук, обыкновенная белка, байбак или степной сурок, ондатра или мускусная крыса, заяц-русак, заяц беляк.

* Птицы – все виды гусей, все виды уток, белая куропатка, тетерев, глухарь, серая куропатка, лысуха, перепел, кулик, голубь.

Обитают: волк, лисица, барсук, тушканчик, суслик; в водоемах - ондатра; в камышовых зарослях, кабан; из птиц гнездятся гусь, утка, чайка, куропатка, тетерев, журавль, скопа.

В соответствии с литературными источниками на данной территории могут обитать 38 видов млекопитающих (Обыкновенный Еж - Erinaceuseuropaeus Linnaeus, Прудовая Ночница - Myotisdasycneme, Двухцветный кожан - Vespertiliomurinus, Кожанок Бобринского - Vespeniliobobrinskii Kuzyakin, Длиннохвостая Ночница - Fraternal Myotis, Усатая Ночница - Whiskered bat, Длиннопалая Ночница – Eastern Long-fingered Bat, Волк - Canis lupus, Корсак - Vulpescorsac, Лисица - Vulpesvulpes, Ласка - Mustelanivalis, Степной хорёк - Mustelaeversmann, Горностай – Mustelaerminea Linnaeus, Барсук - Melesmeles, Кабан - Susscrofa, Косуля - Roe deer, Лесная Мышовка - Sicistabetulina Pallas, Степная Мышовка - Sicistasubtilis Pallas, Тарбаганчик - Pygeretmuspumilio, Малый тушканчик - Allactaga elater, Земляной Заяц - Allactagajaculus Pallas, Мышь-Малютка - Micromysminutus Pallas, Лесная Мышь - Ароdemussylvaticus Linnaeus, Азиатская Мышь - Ароdemusspeciosus Temminck, Домовая мышь - Musmusculus Linnaeus, Черная крыса - Rattusrattus Linnaeus, Обыкновенная слепушонка - Ellobiustalpinus Pallas, Ондатра - Ondatrazibethica Linnaeus, Общественная полевка - Microtussocialis Pallas, Полевка-экономка - Microtusoeconomus Pallas.

Обыкновенная полевка - MicrotusarvalisPallas, Водяная крыса (водянаяполевка) - Arvicolaterrestris Linnaeus, Степная пеструшка - Laguruslagurus Pallas, Хомячок Эверсманна - Allocricetuluseversmanni Brandt, Обыкновенный хомяк - Cricetuscricetus Linnaeus, Заяц- Русак - Lepuseuropaeus Pallas, Заяц Беляк - Lepustimidus Linnaeus, Степная пищуха - Ochotonapusilla Pallas, из них большинство - 35 видов находиться под статусом LeastConcern (LC) - находятся под наименьшей угрозой, 2 вида (Прудовая Ночница и Кожанок Бобринского) близки к уязвимому положению (степень угрозы NT), 1 вид (Длиннохвостая Ночница) под статусом DataDeficient (DD) - данных недостаточно.

Для проведения оценки видового состава территории применялись пешие и ночные трансекты, установка ловушек.

По факту Лисица - Vulpes vulpes, Водяная крыса (водяная полевка) — Arvicola terrestris Linn, Лесная Мышь - Apodemus sylvaticus Linnaeus, Обыкновенная полевка - Microtus arvalis Pallas, Тарбаганчик - Pygeretmus pumilio) встреченные виды находятся под статусом LC - находятся под наименьшей угрозой.

На рассматриваемой территории гнездовья редких птиц, а также животные, занесенные в Красную Книгу РК отсутствуют, ввиду того, проектируемый объект распологается на землях Софиевского сельского округа.

С целью снижения негативного воздействия на растительный мир предусматриваются следующие мероприятия:

- подъездные пути между участками работ проводить с учетом существующих границ и т.п., с максимальным использованием имеющейся дорожной сети;
 - максимальное сохранение естественных ландшафтов;
 - предупреждение возникновение пожаров;
- максимальное возможное снижение присутствия человека за пределами разрабатываемого участка и дорог;
 - не допускать расширения дорожного полотна;
 - строго соблюдать технологию ведения работ;
- во избежание нанесения ущерба биоразнообразию соблюдать правила по технике безопасности;

Воздействие хозяйственной деятельности не окажет значительного воздействия на растительный покров. После завершения работ и рекультивации почв произойдет быстрое восстановление видового состава растительного мира.

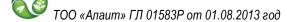
2.10. Исторические памятники, охраняемые объекты, археологические ценности в районе проектируемого объекта

В границах территории проектируемого объекта исторические памятники и археологические объекты культуры не обнаружены.

В случае обнаружения объектов историко-культурного наследия, в соответствие со статьей 30 Закона Республики Казахстан «Об охране и использовании историко-культурного наследия» обязаны поставить в известность КГУ «Центр по охране и использованию историко-культурного наследия» в месячный срок.

Согласно ранее полученного Акту №84 исследования территория на предмет наличия объектов историко-культурного наследия от 07 ноября 2022 г. выданным КГУ «Центр по охране и использованию историко-культурного наследия» управления культуры Акмолинской области» памятников историко-культурного наследия не выявлено (приложение 8).

2.11. Социально-экономические условия исследуемого района


Основу экономики района составляет сельское хозяйство, в котором доминирует производство зерна. Значительное место занимают также овощеводство и мясомолочное животноводство.

Промышленность г. Астаны представлена сельскохозяйственным машиностроением и производством строительных материалов и конструкций, а также предприятиями пищевой и лёгкой промышленности. Горнорудная промышленность представлена мелкими карьерами по добыче строительных материалов - камня, щебня, дресвы, глины и суглинков, а также по поймам рек Ишим и Нура - песка и гравия.

В непосредственной близости от площади месторождения проходят железные дороги и дороги с твердым покрытием, связывающие г. Нур-Султан с городами Караганда, Кокшетау, Павлодар, Атбасар и поселками Коргалжын, Киевка, Аршалы и другими.

Вывод. Анализ воздействия хозяйственной деятельности ТОО «GOLDENPIT» показывает, что намечаемая деятельность не окажет негативного воздействия на социально-экономические условия района, а наоборот положительно повлияет на социально-экономическую сферу путем организации рабочих мест, отчислениями в виде различных налогов.

Для исключения влияния на социально-экономические факторы жизнедеятельности людей в период проведения добычных работ все необходимые технологические процессы необходимо вести с соблюдением норм и правил техники безопасности, промышленной

санитарии, противопожарной безопасности, что обеспечит безопасное функционирование всех производственных участков и не вызовет дополнительной, нежелательной нагрузки на социально-бытовую инфраструктуру района.

3. ОПИСАНИЕ ИЗМЕНЕНИЙ ОКРУЖАЮЩЕЙ СРЕДЫ, КОТОРЫЕ МОГУТ ПРОИЗОЙТИ В СЛУЧАЕ ОТКАЗА ОТ НАЧАЛА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

В настоящем проекте дана качественная и количественная оценка воздействия намечаемой деятельности на окружающую среду.

Анализ воздействия на окружающую среду намечаемой деятельности показывает, что значительного ухудшения состояния природной среды не прогнозируется. Анализ намечаемой деятельности показал, что выбросы загрязняющих веществ не создают на границах санитарно-защитной и жилой зон концентраций, превышающих предельнодопустимые нормы. Использование водных ресурсов будет осуществляться в рамках необходимой потребности. Сброс производственных и хозяйственно-бытовых сточных вод в поверхностные и подземные водные источники не предусмотрен. Негативное воздействие на водные ресурсы отсутствует. Предполагаемые к образованию отходы будут временно (не более 6 месяцев) храниться в специально отведенных организованных местах, а затем передаваться для дальнейшей утилизации, переработки или захоронения сторонним организациям согласно договоров. Осуществление намечаемой деятельности не приведет к деградации экологических систем, истощению природных ресурсов, не приведет к нарушению экологических нормативов качества окружающей среды; не приведет к ухудшению условий проживания людей и их деятельности.

В зоне влияния намечаемой деятельности зоны отдыха, территории курортов, территории садоводческих товариществ, образовательные и детские организации, оздоровительные организации и т.п. отсутствуют.

Ближайший населенный пункт расположен на значительном удалении от территории намечаемой деятельности (6 км).

В районе расположения объекта отсутствуют скотомогильники и места захоронения животных, неблагополучных по сибирской язве и других особо опасных инфекций. Исследуемая территория находится вне земель государственного лесного фонда и особо охраняемых природных территорий Республики Казахстан, а также не входит в водоохранные зоны и полосы водных объектов. Также на территории отсутствуют объекты историко-культурного наследия. Редких видов деревьев и растений, животных, занесенных в Красную книгу, которые могут быть подвергнуты отрицательному влиянию в ходе эксплуатации объекта, не выявлено.

Территория осуществления деятельности осуществляется с учетом логистических ресурсов и производственной необходимости при добыче песчаников и алевролита ТОО «GOLDENPIT» (ЛЭП, дорожная развязка, наличие потребителей, и т.п.).

Реализация намечаемой деятельности не нарушит существующего экологического равновесия, воздействие на все компоненты окружающей среды будет допустимым, так как Планом горных работ изменения в деятельности является смена направления горных работ с юго на север.

В случае отказа от намечаемой деятельности изменений в окружающей среде района расположения объекта не прогнозируется. Отказ планируемых работ по добыча не изменит воздействия в атмосферный воздух, учитывая отдаленные расстояние от ближайшей территории.

На исследуемой территории будут происходить естественные природные процессы в экосистеме рассматриваемой территории, а также антропогенные факторы, возникающие при эксплуатации.

При проведении добычных работ существенных воздействия не ожидается.

4. ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ ИХ ИСПОЛЬЗОВАНИЯ

Согласно Статье 1 Земельного кодекса РК земельные участки должны использоваться в соответствии с установленным для них целевым назначением.

Также, в соответствии п. 4 ст. 32 Земельного кодекса РК, если земельный участок предназначен для осуществления деятельности или совершения действий, требующих разрешения, лицензии на недропользование ИЛИ заключения контракта недропользование, то предоставление права землепользования на данный участок производится после получения соответствующих разрешения, недропользование или заключения контракта на недропользование.

Эксплуатация месторождения будет осуществляться с соблюдением экологических и санитарно-гигиенических требований, а также требованиям кодекса «О недрах и недропользования».

Земельный участок, отведенный для добычи расположен на землях Целиноградского района, Акмолинской области и планируется оформить во временном возмездном землепользовании. Площадь земельного участка для оформления — 1,67 га. Ограничения в использовании и обременения земельного участка — соблюдение санитарно-экологических норм, доступ к линейным объектам, беспрепятственный проезд и доступ уполномоченым органам, смежным землепользователям для эксплуатации подземных и наземных коммуникаций.

Целевое назначение земельного участка – для добычи известняка.

5. ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

5.1. Горнотехнические особенности разработки месторождения

Благоприятные горно-геологические условия (мощная залежь, покрытая незначительным слоем вскрышных пород и слоем почвы) предопределили открытый способ разработки месторождения «Мета».

Контракт №599 от 23.07.2009 на проведение добычи известняка на месторождении «Мета» действует до 23 июля 2034 года. В контрактный период предусматривается отработать 470,0 тыс.тонн от балансовых запасов известняка месторождения «Мета». В контрактный разработка полезного ископаемого будет производиться уступами по 13 м, с разделением на подуступы по 6,5м. Вскрышные породы предусматривается вывозить во внешний отвал, расположенный юго-западнее от карьера на расстоянии 40 м.

За выемочную единицу разработки принимается уступ.

Построение контуров карьера выполнено графическим методом с учетом морфологии, рельефа месторождения, мощности вскрышных пород и полезного слоя.

За нижнюю границу отработки месторождения в настоящем плане горных работ принята отметка +293 м. Основные технико-экономические показатели по месторождению «Мета» приведены в таблице 5.1.

Основные технико-экономические показатели

No	Наименование	Единица	Показатели
п/п		измерения	
1	Геологические запасы месторождения, предусмотренные к отработке:	тыс.м ³	470,0
2	Проектные потери не предусматриваются	тыс.м ³	-
3	Эксплуатационные запасы, подлежащие отработке	тыс.м ³	470,0
4	Годовая мощность по добыче	тыс.м ³	2023 г. – 30,0 тыс.тонн 2024-2034 гг. – 40,0 тыс.тонн/год
5	Горная масса: - известняк (объемный вес 2,7 т/м ³) - вскрыша - ПРС	тыс.м ³ тыс.м ³ тыс.м ³	174,1 53,2 2,6
6	Средний объемный коэффициент вскрыши	M^3/M^3	0,3

5.2. Границы проектируемого карьера и промышленные запасы

Технические границы карьера определены с учетом рельефа местности, объема запасов, предусмотренных отработке в контрактный период, угла откоса уступов, предельного угла борта карьера, границ горного отвода. Основные параметры элементов карьерной отработки установлены исходя из физико-механических свойств пород, применяемой техники и технологии в соответствии с «Правилами обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы».

Размеры планируемого карьера на конец отработки приведены в таблице 5.2.

Таблица 5.2

Таблина 5.1

№ п/п	Наименование показателей	Ед. изм.	Значения
1	Длина по поверхности	M	150
2	Ширина по поверхности	M	124
3	Длина по дну	M	104
4	Ширина по дну	M	80,4
5	Площадь карьера по поверхности	M^2	16 664,3
6	Отметка дна карьера (абсолютная)	M	293
7	Углы откосов уступов: по скальным породам по глинистым отложениям	град град	75 50
8	Высота уступа на момент погашения	M	13
9	Ширина рабочей площадки	M	46,49
10	Руководящий уклон автосъездов	‰	80

5.3. Вскрытие и порядок отработки месторождения. Горно-капитальные и горно-подготовительные работы

Вскрытие месторождение предусматривается временными съездами в южной стороне горного отвода до отметки +306м.

На всех добычных горизонтах капитальные съезды шириной 10 м, с уклоном –80‰.

Положение въездных траншей при отработке карьера определено проработками календарного планирования по развитию карьерного пространства для обеспечения планируемых объемов добычи полезного ископаемого.

Среднее значение длины въездной траншеи при равенстве углов откосов уступа и бортов траншеи составит:

$$L_{BT} = h/ipyk$$

где ірук – руководящий уклон, равен 0,08;

h – глубина траншеи, м.

Длина въездной траншеи на месторождении при глубине въездной траншеи 13 м, составит:

$$L_{BT} = 13/0,08 = 162,5 \text{ M}$$

Выемка полезного ископаемого предусматривается с предварительным рыхлением буровзрывным способом. Буровзрывные роботы будут проводиться подрядной организацией, имеющей соответствующую лицензию.

Добычу в контрактный период предусматривается вести 2 уступами высотой 13м с разделением их на подуступы высотой по 6,5 м.

Оборудование на вскрытых горизонтах необходимо располагать таким образом, чтобы в процессе работы не создавалось помехи в его работе, и обеспечивалась наиболее высокая производительность.

Производство горно-капитальных работ (ГКР) в карьере осуществляется оборудованием, подобным предусмотренному для его эксплуатации.

Принятые проектные решения в части режима работы и системы разработки карьера в целом остаются обязательными и для производства ГКР.

Таким образом, работы по подготовке месторождения заключаются в снятии почвенно-растительного слоя и вскрышных пород.

Почвенно-растительный слой срезается бульдозером и транспортируется в бурт ПРС формируемый на расстоянии 15 м от западного борта карьера.

Выемка вскрышных пород осуществляется экскаватором, с погрузкой пород в автосамосвалы и транспортированием их в отвал.

Ежегодная производительность карьера по вскрыше определялась с учетом обеспечения годовых объемов добычи.

5.4. Производительность, режим работы и срок существования карьера

Месторождение «Мета» будет эксплуатироваться в течении 12 лет до 23 июля 2034 года. Календарный график развития горных работ по годам представлен в таблице 5.4.2.

Режим горных работ, в соответствии с требованиями заказчика, принимается 7 дней в неделю, две смены в сутки с продолжительностью смены 8 часов. Среднее количество рабочих дней принимается 244 дней. Нормы рабочего времени приведены в таблиц 5.4.1.

Таблица 5.4.1

Нормы рабочего времени

Наименование показателей	Единицы измерения	Показатели
1	2	3
Количество рабочих дней в течение года	суток	244
Количество рабочих дней в неделе	суток	7
Количество рабочих смен в течение суток:	смен	2
Продолжительность смены	часов	8

Календарный план добычных работ приведен в таблице 5.4.2.

Таблица 5.4.2

Календарный график развития горных работ

№ п/п	Год	Добычные работы,	Вскрышные работы,	Снятие ПРС,
	отработки	тыс.тонн	тыс.м ³	тыс.м ³
2	2024	40,0	16,0	0,8
3	2025	40,0	7,0	0,3
4	2026	40,0	8,7	0,4
5	2027	40,0	7,5	0,4
6	2028	40,0		
7	2029	40,0		
8	2030	40,0		
9	2031	40,0		
10	2032	40,0		
11	2033	40,0		
12	2034	40,0		
Итого		470,0	39,2	1,9

5.5. Система разработки и технологические схемы горных работ

Система разработки определяется способом и порядком производства горноподготовительных, вскрышных и добычных работ. Рациональная система должна обеспечить безопасность работ, минимальные потери полезного ископаемого, достижения наилучших показателей интенсивности разработки, а также труда и себестоимости продукции.

По классификации профессора Е.Ф. Шешко планом горных работ принята транспортная система разработки с перевозкой вскрыши во внешний отвал.

Отработка месторождения осуществляется экскаватором с отгрузкой в

автосамосвалы. Почвенно-растительный слой срезается бульдозером и транспортируется в бурт ПРС. Вскрышные породы отрабатываются экскаватором с отгрузкой в автосамосвалы.

При снятии вскрыши принимается схема: экскаватор-автосамосвал-отвал. При разработке полезного ископаемого: экскаватор-автосамосвал-промежуточный склад известняков (после предварительного буровзрывного рыхления).

Предусматривается следующий порядок ведения горных работ на карьере.

Снятие и транспортировка почвенно-растительного слоя в бурт.

Выемка и погрузка вскрышных пород в забоях карьера.

Бурение и взрывание полезного ископаемого.

Выемка и погрузка горной массы в забоях.

Транспортировка полезного ископаемого на промежуточный склад.

Для выполнения объемов по приведенному порядку горных работ предусматриваются следующие типы и модели горного и транспортного оборудования:

- Экскаватор гусеничный САТ 330, емкость ковша 1,8м3;
- Погрузчик фронтальный ZL50G, емкость ковша 3,0м3;
- Автосамосвал Камаз, грузоподъёмность 25 тонн;
- Бульдозер SHANTUI SD22.

5.6. Элементы системы разработки

Основными элементами системы разработки являются: высота уступа, угол откоса уступов, ширина рабочей площадки, длина фронта работ.

При выборе элементов системы разработки учтены следующие факторы:

- физико-механические свойства разрабатываемых пород;
- технические характеристики применяемого оборудования;
- требования «Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы».

Высота уступа

Оптимальная высота уступа выбирается из параметров экскаватора, физикомеханических свойств пород, а также с учетом безопасности ведения горных работ.

Экскаватор САТ 330 (обратная лопата) используемый на добычных работах, будет использоваться так же и при вскрышных работах.

С учетом выбранного горного и транспортного оборудования при разработке одноковшовым экскаватором типа «механическая лопата» высота уступа не должна превышать максимальной глубины копания экскаватора:

$$H_y \leq H_{r.max}$$
, M,

где $H_{r,max}$ — максимальная глубина копания экскаватора САТ 330 — 8,1м.

Отработка запасов в контрактный период предусматривается двумя добычными уступами по 13м, с делением на подуступы по 6,5м.

Маломощные покровные отложения предусматривается срезать бульдозером, выемка вскрышных пород предусматривается экскаватором CAT 330.

Высота уступа предусмотренная планом горных работ полностью соответствует условию $H_y \le H_{r.max}$, м.

Угол откоса уступа

В соответствии с п. 1719 «Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы

Приказ Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 352.» углы откосов рабочих уступов определяются с учетом физико-механических свойств горных пород и должны не превышать:

- 1) при работе экскаваторов типа механической лопаты, драглайна, роторных экскаваторов и разработке вручную скальных пород 80 градусов;
- 2) при разработке вручную: мягких, но устойчивых пород 50 градусов, скальных пород 80 градусов.

Полезное ископаемое месторождения «Мета» представлено известняками являющимися скальными породами, вскрыша представлена суглинками и переотложенными глинами.

Учитывая физико-механические свойства полезного ископаемого и вскрышных пород месторождения «Мета», углы откоса уступа принимаются:

- скальные породы 75°;
- глинистые породы 50° .

Ширина экскаваторной заходки

Экскавация разрыхленных буровзрывными работами известняков производится экскаватором САТ 330, с вместимостью ковша 1,8 м³. Ширина экскаваторной заходки для данного экскаватора при погрузке горной массы в автотранспорт определяется по выражению:

$$A_n = 1,5 \times R_{zy}, M$$

где R_{zy} – наибольший радиус копания – 10,2м.

$$A_n = 1.5 \times 10.2 = 15.3 \text{ M}$$

Ширина рабочей площадки

Рабочая площадка служит для размещения на ней горного оборудования и транспортных коммуникаций. Ширина рабочей площадки определяется размерами и видами горнотранспортного оборудования, а также физико-механическими свойствами разрабатываемых пород. Расчет ширины рабочей площадки при погрузке взорванных пород в автосамосвалы произведен по формуле:

$$\coprod_{p.п.} = F + \Pi_n + \Pi_o + \Pi_{o'} + \Pi_6 = 39,3+6+2,5+4,0+0,6 \approx 52,4 \text{ м}$$

гле:

 F — полная ширина развала разрыхленной взрывом породы, м (принимается по нормам технологического проектирования предприятий промышленности нерудных строительных материалов);

При
$$\coprod_{93}$$
= 15,3 м, Б= 3,02H, Б=39,3 м

H – высота уступа, 13м;

 Π_{Π} – ширина проезжей части;

 Π_{o} — ширина обочины с нагорной стороны — со стороны вышележащего уступа, с учетом водоотводной канавы и площадки для сбора осыпей, м;

 $\Pi_{\rm o}'$ – ширина обочины с низовой стороны с учетом лотка и ограждения;

 Π_{6} — ширина полосы безопасности — призмы обрушения, м определяемая по формуле:

$$\Pi_{\delta} = H^*(\operatorname{ctg}\varphi - \operatorname{ctg}\alpha)$$

H – высота подуступа 6,5 м φ и α – углы устойчивого и рабочего откосов подуступа, град.

$$\Pi_6 = 6.5*(ctg70 - ctg75) = 6.5*(0.364 - 0.268) = 0.6 \text{ m}.$$

Проезжая часть автомобильной дороги внутри контура карьера (кроме забойных дорог) ограждается от призмы возможного обрушения породным валом или защитной стенкой. Высота породного вала принимается не менее половины диаметра колеса наибольшего по грузоподъемности эксплуатируемого на карьере автомобиля, в данном случае диаметр колеса самосвала КАМАЗ равен 1,2м, высота породного вала составит 0,6м. Вертикальная ось, проведенная через вершину породного вала, располагается вне призмы обрушения.

5.7. Выемочно-погрузочные работы

На добычных и вскрышных работах используется экскаватор САТ 330, с емкостью ковша — 1,8 м3. При снятии ПРС и маломощных вскрышных пород используется бульдозер SHANTUI SD22. При транспортировке вскрышных пород и полезного ископаемого используется автосамосвал Камаз грузоподъемностью 25 тонн.

Для зачистки рабочих площадок, планировки подъездов в карьерах и переброски оборудования предусмотрен бульдозер SHANTUI SD 22.

На выемочно-погрузочных работах может использоваться горнотранспортное оборудование других моделей с аналогичными технологическими характеристиками.

5.8. Вскрышные работы

Покрывающие породы участка представлены ПРС мощностью от 0,1 до 0,2м, вскрышные породы представлены суглинками и переотложенными глинами. Мощность вскрыши на участке работ составляет от 1,7 до - 6,5м.

Вскрышные породы по трудности разработки механизированным способом относятся к II категории по ЕНиР-90, поэтому проведение предварительного рыхления не требуется.

Маломощные покровные отложения предусматривается срезать бульдозером, выемка вскрышных пород предусматривается экскаватором САТ 330, транспортирование будет осуществляться автосамосвалами Камаз (грузоподъемностью 25 тонн) на внешний отвал. Зачистка кровли полезного ископаемого будет производиться бульдозером SHANTUI SD22.

5.9. Добычные работы

Мощность продуктивной толщи (от ее кровли до отметки проектируемого дна карьера +293 м) составляет от 18,4 м до 28,3 м.

Учитывая небольшую мощность карьера и послойную отработку, в карьере планируется в работе один экскаваторный блок. Отработка полезного ископаемого

производится экскаватором САТ 330 (обратная лопата) с объемом ковша 1,8 м³.

Доставка полезной толщи непосредственно на дробильную установку осуществляется автосамосвалами Камаз. На планировочных и вспомогательных работах используются бульдозеры SHANTUI SD22.

5.10. Выбор типа забоя и схемы работы выемочно-погрузочного оборудования для добычных работ

В качестве вспомогательного оборудования на карьере применяется бульдозер Shantui SD 22, который выполняет следующие необходимые операции:

- 1. формирование отвалов,
- 2. разравнивание и зачистка рабочих площадок, использование на подчистке внутрикарьерных автодорог, а также на хозяйственных работах.

5.11. Основные решения технологической схемы карьера, касающиеся карьерного транспорта

В качестве технологического транспорта принят автомобильный транспорт. Вывоз полезного ископаемого будет осуществляться при помощи автосамосвала Камаз, грузоподъёмностью 25 т.

Для обеспечения кратчайшего расстояния перевозок, безопасности движения и требуемой производительности карьера предусмотрено устройство автомобильных дорог до места складирования.

5.12. Отвалообразование

Горнотехнические условия разработки месторождения предопределили последовательное ведение вскрышных и добычных работ.

Покрывающие породы участка представлены ПРС мощностью от 0,1 до 0,2м, вскрышные породы представлены суглинками и переотложенными глинами. Мощность вскрыши на участке работ составляет от 1,7 до - 6,5м.

Разработка вскрыши производится без предварительного рыхления.

ПРС по карьеру срезается бульдозером SHANTUI SD22 и формируются в бурты.

Настоящим планом горных работ предусматривается бульдозерное внешнее отвалообразование. Внешний отвал вскрыши расположен в 40 м южнее от участка работ, площадью 10450 м^2 , высотой 7м. Объем вскрышных пород хранящийся на отвале на конец отработки составит $39,2 \text{ тыс.м}^3$.

Для хранения почвенно-растительного слоя для использования его при рекультивационных работах после отработки месторождения, планом горных работ предусматривается бурт ПРС. Бурт ПРС формируется на расстоянии 15 м от западного борта карьера.

Также планом горных работ предусматривается промежуточный склад хранения, взорванного полезного ископаемого, площадью 1800 м², максимальной высотой до 5м.

Промежуточные отвалы не предусматриваются. Отвал вскрыши расположен в границах горного отвода за контуром подсчета запасов.

В плане горных работ предусматривается отвод грунтовых, паводковых и дождевых вод от отвалов.

Для отвода паводковых и дождевых вод от отвалов планом горных работ предусматривается обустройство нагорной канавы.

Не допускается производить сброс (сток) поверхностных и карьерных вод, вывозку снега от очистки уступов и карьерных дорог в породный отвал.

Формирование отвалов при бульдозерном отвалообразовании осуществляют двумя способами – периферийным и площадным.

При периферийном отвалообразовании автосамосвалы разгружаются по периферии отвального фронта в непосредственной близости от верхней бровки отвального откоса или под откос. Часть породы в этом случае сталкивается бульдозером под откос.

При площадном отвалообразовании разгрузка породы из самосвалов производится по всей площади отвала или на значительной части его, а затем бульдозером планируют отсыпной слой породы, укатываемый катками, после чего цикл повторяется.

Технологический процесс периферийного бульдозерного отвалообразования при автомобильном транспорте состоит из трех операций: разгрузки автосамосвалов, планировки отвальной бровки и устройстве автодорог.

Отвальные дороги профилируются бульдозером и укатываются катком без дополнительного покрытия.

Согласно п.п. 1765, 1766 «Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы» автомобили и транспортные средства разгружаются на отвале в местах, предусмотренных паспортом, вне призмы обрушения (сползания) породы. Размеры призмы устанавливаются работниками маркшейдерской службы организации и регулярно доводятся до сведения лиц, работающих на отвале.

Площадки бульдозерных отвалов должны иметь по всему фронту разгрузки поперечный уклон не менее 3°, направленный от бровки откоса в глубину отвала на длину базы работающих автосамосвалов, и фронт для маневровых операций автомобилей, бульдозеров и транспортных средств.

Зона разгрузки ограничивается с обеих сторон знаками. Для ограничения движения машин задним ходом разгрузочные площадки должны иметь предохранительную стенку (вал) высотой не менее 0,7 метров для автомобилей грузоподъемностью до 10 тонн и не менее 1 метров для автомобилей грузоподъемностью свыше 10 тонн. При отсутствии предохранительной стенки не допускается подъезжать к бровке разгрузочной площадки ближе чем на 3 метра машинам грузоподъемностью до 10 тонн и ближе чем 5 метров грузоподъемностью свыше 10 тонн. Предохранительный вал служит ориентиром для водителя. Наезд на предохранительный вал при разгрузке не допускается.

5.13. Рекультивация земель, нарушенных горными работами

В процессе отработки карьера почвенно-растительный слой (ПРС) будет снят и уложен в бурты с целью их использования впоследствии для восстановления и рекультивации участка нарушенных земель, после отработки месторождения.

6. ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛНЕНИЯ

Земельный участок, на котором предполагается осуществление намечаемой деятельности свободен от застройки, существующих строений и сооружений, в связи с чем, проведение работ по постутилизации существующих зданий, строений, сооружений и оборудования не планируется.

7. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ ВРЕДНЫХ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СО СТРОИТЕЛЬСТВОМ И ЭКСПЛУАТАЦИЕЙ ОБЪЕКТОВ ДЛЯ ОСУЩЕСТВЛЕНИЯ РАССМАТРИВАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ВОЗДЕЙСТВИЕ НА ВОДЫ, АТМОСФЕРНЫЙ ВОЗДУХ, ПОЧВЫ, НЕДРА, А ТАКЖЕ ВИБРАЦИИ, ШУМОВЫЕ, ЭЛЕКТРОМАГНИТНЫЕ, ТЕПЛОВЫЕ И РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ

7.1. Оценка ожидаемого воздействия на атмосферный воздух

7.1.1. Характеристика предприятия как источника загрязнения атмосферы

При разработке раздела были использованы расчетные показатели для выбросов загрязняющих веществ в атмосферу в соответствии с существующими методиками расчета, с учетом предусмотренной проектом максимальной загрузке оборудования. Расчет валовых выбросов произведен с помощью программного комплекса «Эра-Воздух» у 3.0.

В проекте произведен расчет нормативов допустимых выбросов загрязняющих веществ на период добычи открытым способом.

При разработке месторождения возможны незначительные изменения в окружающей среде. Основными источниками воздействия на окружающую среду в производстве проектных горных работ являются:

- Пыление при проведении работ по снятию ПРС, вскрышных пород;
- Пыление при выемочно-погрузочных работах, транспортировании горной массы;
- Выбросы токсичных веществ при работе горнотранспортного оборудования;
- Выбросы ЗВ при заправке диз. топливом.

Снятие и перемещение почвенно-растительного слоя (ПРС)

Объем снятия и перемещения ПРС согласно календарному плану составит:

Таблица 7.1.1

Год отработки	2024	2025	2026-2027
Объем, м ³	800	300	400
Объем, тонн	1400	525	700

Плотность ПРС принят 1,75 т/м³, влажность принято 9%. Мощность почвенно-растительного слоя составляет 0,1-0,2 м.

Снятие и перемещение ПРС *(ист.№6001)* предусмотрено бульдозером производительностью 713,1 м 3 /см (156 т/час) в бурты.

Время работы техники:

Таблица 7.1.2

Техника	Бульдозер SHANTUI SD 22
Год отработки	(1 ед)
2024	8 час/сутки, 8,8 час/год
2025	3,2 час/сутки, 3,2 час/год
2026-2027	4,8 час/сутки, 4,8 час/год

При снятии, погрузке ПРС, неорганизованно выделяется пыль неорганическая, содержащая 70-20% двуокиси кремния. При работе ДВС автосамосвалов в атмосферу

выделяются азота диоксид, азота оксид, углерод (сажа), сера диоксид, углерод оксид, керосин. При транспортировке ПРС, в результате взаимодействия колес с полотном дороги и сдува с поверхности материала, груженного в кузов машины в атмосферу, неорганизованно выделяется пыль неорганическая, содержащая 70-20% двуокиси кремния. При работе ДВС автосамосвалов в атмосферу выделяются азота диоксид, азота оксид, углерод (сажа), сера диоксид, углерод оксид, керосин.

В качестве средства пылеподавления применяется гидроорошение перерабатываемой породы, эффективность пылеподавления составит — 85%. Процент пылеподавления (гидрообеспыливание) принят согласно приложению №11 к Приказу Министра ООС РК № 100-п от 18.04.2008 г. «Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов».

Выемочно-погрузочные работы вскрышной породы

Объем работ по вскрышным породам согласно календарному плану составит:

Таблица 7.1.3

Год отработки	2024	2025	2026	2027		
Объем, м ³	16000	7000	8700	7500		
Объем, тонн	28800	12600	15660	13500		

Средняя плотность вскрышных пород составляет 1,8 т/м³. Влажность 9%. Вскрышные породы представлены суглинками и переотложенными глинами. Мощность вскрыши на участке работ составляет от 1,7 до - 6,5м.

Вскрышные породы грузятся экскаватором *(ист. №6002)* производительностью $1555.2 \text{ m}^3/\text{см} (349.92 \text{ т/час})$ в автосамосвал *(ист. №6003)* и вывозятся во внешний отвал.

Грузоподъемность техники - 25 т, площадь кузова — 12 м^2 .

Среднее расстояние транспортировки составляет -0.5 км. Количество ходок в час составляет 6.6.

Время работы техники:

Таблица 7.1.4

Техника	Погрузчик Lg-850	Автосамосвал КАМАЗ 6520
Год отработки	(1 ед.)	(2 ед)
2024	8 час/сутки, 82,4 час/год	8 час/сутки, 82,4 час/год
2025	8 час/сутки, 36 час/год	8 час/сутки, 36 час/год
2026	8 час/сутки, 44,8 час/год	8 час/сутки, 44,8 час/год
2027	8 час/сутки, 38,4 час/год	8 час/сутки, 38,4 час/год

При выемке, погрузке вскрышных пород в атмосферу неорганизованно выделяется пыль неорганическая, содержащая 70-20% двуокиси кремния. При работе ДВС техники в атмосферу выделяются: азота диоксид, азота оксид, углерод (сажа), керосин, сера диоксид, углерод оксид.

При транспортировке вскрышных пород, в результате взаимодействия колес с полотном дороги и сдува с поверхности материала, груженного в кузов машины в атмосферу, неорганизованно выделяется пыль неорганическая, содержащая 70-20% двуокиси кремния. При работе ДВС автосамосвалов в атмосферу выделяются азота диоксид, азота оксид, углерод (сажа), сера диоксид, углерод оксид, керосин.

В качестве средства пылеподавления применяется гидроорошение перерабатываемой породы, эффективность пылеподавления составит — 85%. Процент пылеподавления (гидрообеспыливание) принят согласно приложению №11 к Приказу Министра ООС РК № 100-п от 18.04.2008 г. «Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов».

Буровзрывные (подготовительные) работы

Буровые работы (*ист.* №6004): Для производства выемочно-погрузочных работ требуется предварительное рыхление полезной толщи буровзрывным способом. Для выполнения заданных объемов принимается станок марки KY-140A. с электродвигателем (диаметр скважин 200 мм). Сменная производительность бурового станка 80 погонных метров. Количество используемых буровых станков – 1.

Время работы бурового станка:

2024-2032 г. -8 час/сутки, 60,8 час/год.

Процесс бурения сопровождается выделением пыли неорганической, содержащей 70-20% двуокиси кремния.

Взрывные работы *(ист. №6005):* В качестве взрывчатого вещества (ВВ) используется: гранитол, гранулит, аммонал, ифзанит или другие аналогичные ВВ. Крепость породы по шкале проф.Протодьяконова в среднем составляет f=8.

Таблица 7.1.5

Расход ВВ

Наименование	2024-2032 г.
Годовой объем взорванной горной породы, м ³ /год	14800
Количество взорванного взрывчатого вещества, т/год	4,8297
Максимальный объем взорванной горной породы за один массовый взрыв, м ³	14800
Количество взорванного взрывчатого вещества за один массовый взрыв, т	4,8297

Во время проведения взрывных работ на производственной площадке планируется приостановка всех остальных производственных процессов.

Способ взрывания — короткозамедленный с инициированием зарядов детонирующим шнуром, средняя продолжительность одного взрыва — 8-10 мин. Для пылеподавления перед взрывными работами проводится орошения. Взрывные работы сопровождаются массовым выделением в атмосферу следующих загрязняющих веществ: азота диоксид, азота оксид, углерод оксид, пыль неорганическая содержащая 70-20% двуокиси кремния.

Большая мощность пылевыделения обуславливает кратковременное загрязнение атмосферы, в сотни раз превышающее ПДК. Поскольку длительность эмиссии пыли при взрывных работах невелика (в пределах 10 минут), эти загрязнения будут считаться залповыми выбросами и следует принимать во внимание в основном при расчете залповых выбросов предприятия. Залповые выбросы такого типа не относятся к аварийным, т.к. они предусмотрены технологическим регламентом. Для оценки влияния залповых выбросов на загрязнение, атмосферного воздуха и их нормирования в проекте выполнены расчеты рассеивания вредных веществ, в которые, наряду с залповыми выбросами, включены выбросы источников, которые функционируют в период осуществления залповых выбросов.

Поскольку длительность эмиссий пылегазового облака при взрывных работах невелика (8-10 мин), то эти загрязнения считаются кратковременными.

В соответствии п. 19 Методики определения нормативов эмиссии, утв. Приказом МЭГиПР РК №63 от 10.03.2021 г.: Для залповых выбросов, которые являются составной частью технологического процесса, оценивается разовая и суммарная за год величина (г/с, m/год). Максимальные разовые залповые выбросы (г/с) не нормируются ввиду их кратковременности и в расчетах рассеивания вредных веществ в атмосфере не учитываются. Суммарная за год величина залповых выбросов нормируется при установлении общего годового выброса с учетом штатного (регламентного) режима работы оборудования (m/год).

Выемочно-погрузочные работы полезного ископаемого

Объем добычи гранита согласно календарному плану составит:

Таблица 7.1.6

Год отработки	2024-2032
Объем, м ³	14800
Объем, тонн	43200

Полезное ископаемое месторождения «Мета» представлено известняками являющимися скальными породами. Плотность породы составляет 2,7 т/m^3 . Влажность породы принято — 9%. Мощность продуктивной толщи (от ее кровли до отметки проектируемого дна карьера +293 м) составляет от 18,4 м до 28,3 м.

Выемка полезного ископаемого предусмотрена экскаватором (*ист.* №6006) производительностью 1278 м³/см (434,36 т/час), с последующей погрузки в автосамосвал (*ист.* №6007).

Грузоподъемность техники - 25 т, площадь кузова – 12 м^2 .

Среднее расстояние транспортировки составляет -0.5 км. Количество ходок в час составляет 6.6.

Время работы техники:

Таблица 7.1.7

Техника	Погрузчик Lg-850	Автосамосвал КАМАЗ
Год	(1 ед)	(3 ед)
отработки		
2024-2032	8 час/сутки, 92 час/год	8 час/сутки, 92 час/год

При выемке и погрузке П/И в атмосферу неорганизованно выделяется пыль неорганическая, содержащая 70-20% двуокиси кремния. При работе ДВС техники в атмосферу выделяются: азота диоксид, азота оксид, углерод (сажа), керосин, сера диоксид, углерод оксид.

В качестве средства пылеподавления применяется гидроорошение перерабатываемой породы, эффективность пылеподавления составит — 85%. Процент пылеподавления (гидрообеспыливание) принят согласно приложению №11 к Приказу Министра ООС РК № 100-п от 18.04.2008 г. «Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов».

Статическое хранения ПРС (ист. №6008)

ПРС по карьеру срезается бульдозером SHANTUI SD22 и формируются в бурты.

Таблица 7.1.8

Параметры бурта ПРС по годам отработки:

Год отработки	Площадь, м ²	Длина, м	Ширина, м	Высота, м
2024	824,5	97,0	8,5	2,5
2025	990,3	116,5	8,5	2,5
2026	1210,4	142,4	8,5	2,5
2027	1429,7	168,2	8,5	2,5

При статическом хранении ПРС с поверхности склада сдувается пыль неорганическая, содержащая 70-20% двуокиси кремния.

В качестве средства пылеподавления применяется гидроорошение склада, эффективность пылеподавления составит — 85%. Процент пылеподавления (гидрообеспыливание) принят согласно приложению №11 к Приказу Министра ООС РК № 100-п от 18.04.2008 г. «Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов».

Внешний отвал вскрышных пород (ист. №6009)

Настоящим планом горных работ предусматривается бульдозерное внешнее отвалообразование. Внешний отвал вскрыши расположен в 40 м южнее от участка работ, площадью 10450 m^2 , высотой 7м. Объем вскрышных пород хранящийся на отвале на конец отработки составит 39.2 тыс.m^3 .

Таблица 7.1.9 Параметры отвала вскрышных пород

			<u> </u>	
Год отработки	Площадь, м ²	Длина, м	Ширина, м	Средняя высота,
				M
2024	10450	246,5	55	4,0
2025	10450	246,5	55	4,9
2026	10450	246,5	55	6,0
2027	10450	246,5	55	7.0

Заправка техники

Заправка технологического оборудования будет производиться на рабочие места топливозаправщиком по мере необходимости. Пропускная способность узла выдачи топлива 0,4 м³/час. Годовой расход дизельного топлива составляет 2000 м³.

Выброс загрязняющих веществ в атмосферу происходит при отпуске дизтоплива техники через горловины бензобаков ($ucm. \, N\! 26010$).

При отпуске дизтоплива выделяются следующие загрязняющие вещества: сероводород, углеводороды предельные С12-19.

Горнотранспортное оборудование (ист. №6011)

Перечень основного и вспомогательного оборудования

Таблица 7.1.10

	1	1 2 7	
№ п/п	Наименование оборудования	Потребное количество (шт.)	Время работы техники
Oci	новное и вспомогательное горнотранспортное	е оборудование	
1	Экскаватор Cat 330	1	500 ч/год
2	Бульдозер Shantui SD 22	1	500 ч/год
3	Погрузчик ZL-50G	1	500 ч/год
4	Автосамосван Камаз	2	500 и/гол

№ п/п	Наименование оборудования	Потребное количество (шт.)	Время работы техники
5	Поливомоечная машина на базе ЗИЛ-130	1	500 ч/год
6	Буровой станок Atlas Copco ROC L8	1	500 ч/год
7	Автозаправщик типа АТЗ-11 на базе Камаз	1	500 ч/год

Поливомоечная машина

В качестве средства пылеподавления применяется гидроорошение склада ПРС, эффективность пылеподавления составит — 85%. Процент пылеподавления (гидрообеспыливание) принят согласно приложению № 11 к Приказу Министра ООС РК №100-п от 18.04.2008 г. «Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов».

На внутренних карьерных и подъездных дорогах, пылеподавление рабочей зоны карьера, отвалов ПРС, внутриплощадочных и внутрикарьерных дорог планируется производить поливомоечной машиной ЗИЛ-130. Эффективность пылеподавления составляет 85%. Пылеподавление будет производится в течение теплого периода времени, с учетом климатических условий. Расход воды при поливе автодорог -0.3 л/м².

Загрязняющими веществами при работе горнотранспортного оборудования являются: азота диоксид, азота оксид, углерод (сажа), сера диоксид, углерод оксид, керосин.

В соответствии п. 24 Методики определения нормативов эмиссий в окружающую среду, утв. приказом МЭГиПР РК от 10.03.2021 г. №63, максимальные разовые выбросы газовоздушной смеси от двигателей передвижных источников грамм в секунду (г/с) учитываются в целях оценки воздействия на атмосферный воздух только в тех случаях, когда работа передвижных источников связана с их стационарным расположением. Валовые выбросы от двигателей передвижных источников тонна в год (т/год) не нормируются и в общий объем выбросов вредных веществ не включаются.

Согласно ст.28 п.6 Экологического кодекса РК нормативы эмиссий от передвижных источников выбросов загрязняющих веществ в атмосферу не устанавливаются. Выбросы от автотранспорта не подлежат нормированию, плата за эмиссии осуществляется по фактическому расходу топлива.

Количественная и качественная характеристика, всех источников выделения вредных веществ и выбросов их в атмосферу представлена в таблице параметров загрязняющих веществ 7.1.11-7.1.20.

Перечень загрязняющих веществ, отходящих от источников выделения и выбрасываемых в атмосферу на период проведения работ по разработке и их объемы, приведены в таблицах 7.1.21-7.3.30.

Таблица групп суммации представлена в таблице 7.3.31.

Параметры выбросов загрязняющих веществ в атмосферу для расче

п		Источник выдел		Число	Наименование	Номер	Высо	Диа-		ры газовозд.смеси	Í		рдинаты ист	
Про изв	Цех	загрязняющих вещест	В	часов рабо-	источника выброса вредных веществ	источ ника	та источ	метр устья		на выходе из трубы при максимальной разовой		I I	на карте-схем	ие, м
изв одс тво	цех			Наименование Коли- ты	выбро сов		трубы		максимальной разовой нагрузке		точечного источ. /1-го конца лин.		2-го кон /длина, ш	
			BO, IIIT.	году	,		М	, М	ско- рость м/с	объем на 1 трубу, м3/с	тем- пер. oC	/центра плоп ного источні		площадн источни
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Снятие и перемещение ПРС бульдозером Выемочно-погрузочные работы вскрыши экскаватором	1		Пылящая поверхность Пылящая поверхность	6001	2						7 446 I 410	Площадка 10
001		Транспортировк а вскрышных	1	82.4	Пылящая поверхность	6003	2	2				54:	5 439	10

та нормативов допустимых выбросов на 2024 год

	Наименование газоочистных	Вещество по кото-	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выбро	с загрязняющего в	ещества	
ца лин. ирина ого ка	установок, тип и мероприятия по сокращению выбросов	рому произво- дится газо- очистка	газо- очист кой, %	степень очистки/ тах.степ очистки%		вещества	г/с	мг/нм3	т/год	Год дос- тиже ния
Y2	-									НДВ
16	17	18	19	20	21	22	23	24	25	26
10					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских	1.633		0.02117	
10					2908	месторождений) (494) Пыль неорганическая, содержащая двуокись	0.0567		0.906	2024

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		пород во внешний отвал												
001		Буровые работы	1	60.8	Пылящая поверхность	6004	2					461	442	10
001		Взрывные работы	1	0.01	Пылящая поверхность	6005	2					520	486	10

та нормативов допустимых выбросов на 2024 год

16	17	18	19	20	21	22	23	24	25	26
10		10		20	2908	кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских	0.325	27	0.0711	2024
10					0301	месторождений) (494) Азота (IV) диоксид (Азота диоксид) (4)	9.98		0.0174	2024
					0304	Азот (II) оксид (Азота оксид) (6)	1.62		0.002825	2024
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	181.1		0.314	2024
					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (23.7		0.0284	2024
						шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,				

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Выемочно- погрузочные работы П/И экскаватором	1	82.4	Пылящая поверхность	6006	2					498	504	10
001		Транспортировк а П/И	1	82.4	Пылящая поверхность	6007	2					459	482	10
002		Бурт ПРС	1	8760	Пылящая поверхность	6008	2.5					419	444	9

та нормативов допустимых выбросов на 2024 год

16	17	18	19	20	21	22	23	24	25	26
10					2909	клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного	0.0152		0.003266	2024
10					2908	производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного	0.0197		0.315	2024
97					2908	производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,	0.0359		0.344	2024

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
002		Отвал вскрыши	1	8760	Пылящая поверхность	6009	4					604	383	247
001		Заправка техники Д/Т	1	200	Дыхательный клапан	6010	2					426	545	10
003		Горнотранспорт ное оборудование	1	500	Выхлопная труба	6011	2					421	382	10

та нормативов допустимых выбросов на 2024 год

16	17	18	19	20	21	22	23	24	25	26
						казахстанских месторождений) (494)				
55					2908	Пыль неорганическая,	0.727		6.97	2024
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10					0333	Сероводород (0.000000977		0.0001506	2024
						Дигидросульфид) (518)				
					2754	Алканы С12-19 /в	0.000348		0.0536	2024
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
10					0001	265II) (10)	0.24206		0.50500	2024
10					0301	Азота (IV) диоксид (0.34206		0.79582	2024
					0204	Азота диоксид) (4)	0.05550		0.12022	2024
					0304	Азот (II) оксид (0.05558		0.12932	2024
					0220	Азота оксид) (6)	0.0506		0.100070	2024
					0328	Углерод (Сажа,	0.0586		0.109979	2024
					0220	Углерод черный) (583)	0.06412		0.12601	2024
					0330	Сера диоксид (0.06413		0.13601	2024
						Ангидрид сернистый,				
						Сернистый газ, Сера (
					0227	IV) оксид) (516)	0.603		1 20246	2024
					0337	Углерод оксид (Окись	0.603		1.30246	2024
						углерода, Угарный				
					2722	газ) (584) Кара сууу (654*)	0.11476		0.242064	2024
					2132	Керосин (654*)	0.11476		0.243964	2024

Таблица 7.1.12

Параметры выбросов загрязняющих веществ в атмосферу для расче

		Источник выделе	ния	Число	Наименование	Номер	Высо	Диа-		ры газовозд.смеси це из трубы при	I		рдинаты ист	
Про изв	Цех	загрязняющих вещести	3	часов рабо-	источника выброса вредных веществ	источ ника	та источ	метр устья		це из трубы при иаксимальной разо	овой	F	а карте-схег	MC, M
одс тво	,	Наименование	Коли- чест-	ты В		выбро сов	ника выбро	трубы		нагрузке		точечного ис		2-го кон /длина, ш
			во, шт.	году	,		М	М	ско- рость м/с	объем на 1 трубу, м3/с	тем- пер. oC	/центра плоц ного источни	іка	площадн источни
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Снятие и перемещение ПРС бульдозером Выемочно-погрузочные работы вскрыши экскаватором	1		Пылящая поверхность Пылящая поверхность	6001	2						410	Площадка 10
001		Транспортировк а вскрышных	1	36	Пылящая поверхность	6003	2	,				545	5 439	10

та нормативов допустимых выбросов на 2025 год

	Наименование газоочистных	Вещество по кото-	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выбро	с загрязняющего в	ещества	
ца лин. ирина ого ка	установок, тип и мероприятия по сокращению выбросов	рому произво- дится газо- очистка	газо- очист кой, %	степень очистки/ max.степ очистки%		вещества	г/с	мг/нм3	т/год	Год дос- тиже ния НДВ
Y2 16	17	18	19	20	21	22	23	24	25	26
10	17	10	19	20	21	1	23	24		20
10					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	1.633		0.00794	
10					2908	Пыль неорганическая, содержащая двуокись	0.0567		0.906	2025

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		пород во внешний отвал												
001		Буровые работы	1	60.8	Пылящая поверхность	6004	2					461	442	10
001		Взрывные работы	1	0.01	Пылящая поверхность	6005	2					520	486	10

та нормативов допустимых выбросов на 2025 год

16	17	18	19	20	21	22	23	24	25	26
10					2908	кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских	0.325	<u></u>	0.0711	2025
10					0301	месторождений) (494) Азота (IV) диоксид (Азота диоксид) (4)	9.98		0.0174	2025
					0304	Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6)	1.62		0.002825	2025
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	181.1		0.314	2025
					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль	23.7		0.0284	2025
						щамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,				

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Выемочно- погрузочные работы П/И экскаватором	1	82.4	Пылящая поверхность	6006	2					498	504	10
001		Транспортировк а П/И	1	82.4	Пылящая поверхность	6007	2					459	482	10
002		Бурт ПРС	1	8760	Пылящая поверхность	6008	2.5					419	444	9

та нормативов допустимых выбросов на 2025 год

16	17	18	19	20	21	22	23	24	25	26
10					2909	клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного	0.0152		0.003266	2025
10					2908	производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного	0.0197		0.315	2025
117					2908	производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,	0.0431		0.413	2025

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
002		Отвал вскрыши	1	8760	Пылящая поверхность	6009	4					604	383	247
001		Заправка техники Д/Т	1	200	Дыхательный клапан	6010	2					426	545	10
003		Горнотранспорт ное оборудование	1	500	Выхлопная труба	6011	2					421	382	10

та нормативов допустимых выбросов на 2025 год

16	17	18	19	20	21	22	23	24	25	26
55						казахстанских месторождений) (494) Пыль неорганическая,	0.727		6,97	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина, глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10						Сероводород (0.000000977		0.0001506	2025
						Дигидросульфид) (518)	0.000000777		0.0001200	2020
						Алканы С12-19 /в	0.000348		0.0536	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
10					0301	Азота (IV) диоксид (0.34206		0.79582	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.05558		0.12932	2025
						Азота оксид) (6)				
						Углерод (Сажа,	0.0586		0.109979	2025
						Углерод черный) (583)				
						Сера диоксид (0.06413		0.13601	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)	0.400		4 2024	2025
						Углерод оксид (Окись	0.603		1.30246	2025
						углерода, Угарный				
						газ) (584)	0.11.1=		0.0400 54	2025
					2732	Керосин (654*)	0.11476		0.243964	2025

Параметры выбросов загрязняющих веществ в атмосферу для расче

_		Источник выдел		Число	Наименование	Номер	Высо	Диа-		ры газовозд.смеси	Ī		рдинаты ист	
Про		загрязняющих вещест	B.	часов рабо-	источника выброса	источ	та	метр		де из трубы при	-	I	на карте-схем	ие, м
изв одс тво	Цех	Наименование	Коли-	раоо- ты в	вредных веществ	ника выбро сов	источ ника выбро	устья трубы	ſ	максимальной разо нагрузке	овои	точечного ис		2-го кон /длина, ш
			во, шт.	году	7		СОВ	, М	ско- рость м/с	объем на 1 трубу, м3/с	тем- пер. oC	/центра плоп	цад-	площадн источни
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Снятие и перемещение ПРС бульдозером Выемочно-погрузочные работы вскрыши экскаватором	1		Пылящая поверхность Пылящая поверхность	6001	2						7 446 I 410	Площадка 10
001		Транспортировк а вскрышных	1	44.8	В Пылящая поверхность	6003	2	2				54:	5 439	10

та нормативов допустимых выбросов на 2026 год

	Наименование	Вещество	Коэфф	Средняя	Код		Выбро	с загрязняющего в	вещества	
	газоочистных	по кото-	обесп	эксплуат		Наименование				
	установок,	рому	газо-	степень	ще-	вещества				
ца лин.	тип и	произво-	очист	очистки/	ства		г/с	мг/нм3	т/год	Год
ирина	мероприятия	дится	кой,	тах.степ						дос-
ого	по сокращению	газо-	%	очистки%						тиже
ка	выбросов	очистка								кин
Y2	_									НДВ
16	17	18	19	20	21	22	23	24	25	26
		1	I	•		1			•	L
10					2908	Пыль неорганическая,	1.092		0.01058	2026
						содержащая двуокись кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10					2908	Пыль неорганическая,	1.633		0.158	2026
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10						Пыль неорганическая,	0.0567		0.906	2026
						содержащая двуокись				

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		пород во внешний отвал												
001		Буровые работы	1	60.8	Пылящая поверхность	6004	2					461	442	10
001		Взрывные работы	1	0.01	Пылящая поверхность	6005	2					520	486	10

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10					2908	Пыль неорганическая,	0.325		0.0711	2026
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10						Азота (IV) диоксид (9.98		0.0174	2026
						Азота диоксид) (4)				
						Азот (II) оксид (1.62		0.002825	2026
						Азота оксид) (6)				
						Углерод оксид (Окись	181.1		0.314	2026
						углерода, Угарный				
						газ) (584)				
					2908	Пыль неорганическая,	23.7		0.0284	2026
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				

Таблица 7.1.14

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Выемочно- погрузочные работы П/И экскаватором	1	82.4	Пылящая поверхность	6006	2					498	504	10
001		Транспортировк а П/И	1	82.4	Пылящая поверхность	6007	2					459	482	10
002		Бурт ПРС	1	8760	Пылящая поверхность	6008	2.5					419	444	9

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
10					2909	клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного	0.0152		0.003266	2026
10					2908	производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного	0.0197		0.315	2026
142					2908	производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,	0.0527		0.505	2026

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
002		Отвал вскрыши	1	8760	Пылящая поверхность	6009	4					604	383	247
001		Заправка техники Д/Т	1	200	Дыхательный клапан	6010	2					426	545	10
003		Горнотранспорт ное оборудование	1	500	Выхлопная труба	6011	2					421	382	10

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
55						казахстанских месторождений) (494) Пыль неорганическая,	0.727		6,97	2026
						содержащая двуокись	0.727		0.57	2020
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10						Сероводород (0.000000977		0.0001506	2026
						Дигидросульфид) (518)	0.000240		0.070	2024
						Алканы С12-19 /в	0.000348		0.0536	2026
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
10						265П) (10) Азота (IV) диоксид (0.34206		0.79582	2026
10						Азота (1 V) диоксид (Азота диоксид) (4)	0.34200		0.19362	2020
						Азота диоксиду (4) Азот (II) оксид (0.05558		0.12932	2026
						Азот (п) оксид (Азота оксид) (6)	0.03336		0.12732	2020
						Углерод (Сажа,	0.0586		0.109979	2026
						Углерод (Сажа, Углерод черный) (583)	0.0300		0.107777	2020
						Сера диоксид (0.06413		0.13601	2026
						Ангидрид сернистый,	0.00413		0.13001	2020
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.603		1.30246	2026
						углерода, Угарный	2.300			
						газ) (584)				
						Керосин (654*)	0.11476		0.243964	2026

Параметры выбросов загрязняющих веществ в атмосферу для расче

		Источник выдел		Число	Наименование	Номер	Высо	Диа-		ры газовозд.смеси	I		ординаты ис	
Про		загрязняющих вещес	ТВ	часов	источника выброса	источ	та	метр		де из трубы при			на карте-схе	ме, м
изв	Цех		ı	рабо-	вредных веществ	ника	источ	устья	1	максимальной разо	овой			
одс		Наименование	Коли-	ТЫ		выбро	ника	трубы		нагрузке		точечного и		2-го кон
TBO			чест-	В		сов	выбро			ı	1	/1-го конца	лин.	/длина, ш
			во,	году	7		сов	, М		объем на 1	тем-	/центра пло		площадн
			шт.				М		рость м/с	трубу, м3/с	пер. oC	ного источн	ика	источни
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	ı	1			i		1			i	1	1	Площадка
001		Снятие и перемещение ПРС		4.8	В Пылящая поверхность	6001	2					50	7 446	10
		бульдозером												
001		Выемочно- погрузочные работы вскрыши экскаватором	1	38.4	Пылящая поверхность	6002	2	2				50)1 410	10
001		Транспортировк а вскрышных		38.4	Пылящая поверхность	6003	2	2				54	5 439	10

та нормативов допустимых выбросов на 2027 год

	Наименование газоочистных	Вещество по кото-	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выбро	с загрязняющего в	ещества	
ца лин. ирина ого ка	установок, тип и мероприятия по сокращению выбросов	рому произво- дится газо- очистка	газо- очист кой, %	степень очистки/ max.степ очистки%		вещества	г/с	мг/нм3	т/год	Год дос- тиже ния НДВ
Y2 16	17	18	19	20	21	22	23	24	25	26
10	17	18	19	20	21	1	23	24	23	20
10					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	1.092		0.01058	
10					2908	Пыль неорганическая, содержащая двуокись	0.0567		0.906	2027

ЭРА v3.0 ТОО "Алаит"

Параметры выбросов загрязняющих веществ в атмосферу для расче


1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		пород во внешний отвал												
001		Буровые работы	1	60.8	Пылящая поверхность	6004	2					461	442	10
001		Взрывные работы	1	0.01	Пылящая поверхность	6005	2					520	486	10

та нормативов допустимых выбросов на 2027 год

16	17	18	19	20	21	22	23	24	25	26
10		10		20	2908	кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских	0.325	27	0.0711	2027
10					0301	месторождений) (494) Азота (IV) диоксид (9.98		0.0174	2027
					0304	Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6)	1.62		0.002825	2027
					0337	Углерод оксид (Окись углерода, Угарный	181.1		0.314	2027
					2908	газ) (584) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (23.7		0.0284	2027
						шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,				

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Выемочно- погрузочные работы П/И экскаватором	1	82.4	Пылящая поверхность	6006	2					498	504	10
001		Транспортировк а П/И	1	82.4	Пылящая поверхность	6007	2					459	482	10
002		Бурт ПРС	1		Пылящая поверхность	6008	2.5					419	444	9

та нормативов допустимых выбросов на 2027 год

Таблица 7.1.15

10	16	17	18	19	20	21	22	23	24	25	26
10 10 10 10 10 10 10 10	10					2909	кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного	0.0152		0.003266	2027
глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) 168 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль	10					2908	известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль	0.0197		0.315	2027
производства - глина, глинистый сланец, доменный шлак, песок,	168					2908	глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец,	0.0622		0.596	2027

ЭРА v3.0 ТОО "Алаит"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
002		Отвал вскрыши	1	8760	Пылящая поверхность	6009	4					604	383	247
001		Заправка техники Д/Т	1	200	Дыхательный клапан	6010	2					426	545	10
003		Горнотранспорт ное оборудование	1	500	Выхлопная труба	6011	2					421	382	10

та нормативов допустимых выбросов на 2027 год

16	17	18	19	20	21	22	23	24	25	26
						казахстанских				
						месторождений) (494)				
55					2908	Пыль неорганическая,	0.727		6.97	2027
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10					0333	Сероводород (0.000000977		0.0001506	2027
						Дигидросульфид) (518)				
					2754	Алканы C12-19 /в	0.000348		0.0536	2027
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
10					0301	Азота (IV) диоксид (0.34206		0.79582	2027
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.05558		0.12932	2027
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.0586		0.109979	2027
						Углерод черный) (583)				
					0330	Сера диоксид (0.06413		0.13601	2027
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.603		1.30246	2027
						углерода, Угарный				
						газ) (584)				
					2732	Керосин (654*)	0.11476		0.243964	2027

ЭРА v3.0 ТОО "Алаит"

Параметры выбросов загрязняющих веществ в атмосферу для расче

		Источник выдел	пения	Число	Наименование	Номер	Высо	Диа-	Парамет	ры газовозд.смеси	I	Кос	рдинаты ист	гочника
Про		загрязняющих вещест	ГВ	часов	источника выброса	источ	та	метр		це из трубы при			на карте-схег	ме, м
изв	Цех			рабо-	вредных веществ	ника	источ	устья	N	иаксимальной разо	овой			
одс		Наименование	Коли-	ТЫ		выбро	ника	трубы		нагрузке		точечного и		2-го кон
TBO			чест-	В		сов	выбро					/1-го конца .	ин.	/длина, ш
			во,	году	7		сов	, м	ско-	объем на 1	тем-	/центра плог	цад-	площадн
			шт.				M		рость м/с	трубу, м3/с	пер. оС	ного источн	ика	источни
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	i	ı	1	1	ı	1				1	1	•	1	Площадка
001		Транспортировк а вскрышных пород во внешний отвал		1 38.4	Пылящая поверхность	6003	2					54	5 439	10
001		Буровые работы	1	60.8	Пылящая поверхность	6004	2					46	1 442	10
001		Взрывные работы	1	0.01	Пылящая поверхность	6005	2	2				52	0 486	10

та нормативов допустимых выбросов на 2028 год

	Наименование	Вещество	Коэфф	Средняя	Код		Выбро	с загрязняющего в	вещества	
	газоочистных	по кото-	обесп	эксплуат		Наименование			1	
	установок,	рому	газо-	степень	ще-	вещества				
ца лин.	тип и	произво-	очист	очистки/	ства		г/с	мг/нм3	т/год	Год
ирина	мероприятия	дится	кой,	тах.степ						дос-
ого	по сокращению	газо-	%	очистки%						тиже
ка	выбросов	очистка								ния
Y2	_									НДВ
	17	10	10	20	21	22	22	2.4	25	26
16	17	18	19	20	21	22	23	24	25	26
10	I	I	1	I	2908	I Пыль неорганическая,	0.0567		0.906	2028
10						содержащая двуокись	0.0307		0.500	2020
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10						Пыль неорганическая,	0.325		0.0711	2028
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10						Азота (IV) диоксид (9.98		0.0174	2028
						Азота диоксид) (4)				

ЭРА v3.0 ТОО "Алаит"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Выемочно- погрузочные работы П/И экскаватором	1	82.4	Пылящая поверхность	6006	2					498	504	10
001		Транспортировк а П/И	1		Пылящая поверхность	6007	2					459	482	10

та нормативов допустимых выбросов на 2028 год

16	17	18	19	20	21	22	23	24	25	26
					0304	Азот (II) оксид (1.62		0.002825	2028
						Азота оксид) (6)				
					0337	Углерод оксид (Окись	181.1		0.314	2028
						углерода, Угарный				
						газ) (584)				
					2908	Пыль неорганическая,	23.7		0.0284	2028
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
10					2000	месторождений) (494) Пыль неорганическая,	0.0152		0.003266	2028
10					2909	содержащая двуокись	0.0132		0.003200	2020
						кремния в %: менее 20				
						(доломит, пыль				
						цементного				
						производства -				
						известняк, мел,				
						огарки, сырьевая				
						смесь, пыль				
						вращающихся печей,				
						боксит) (495*)				
10					2908	Пыль неорганическая,	0.0197		0.315	2028
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				

ЭРА v3.0 ТОО "Алаит"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
002		Бурт ПРС	1		Пылящая поверхность	6008	2.5					419	444	9
002		Отвал вскрыши	1	8760	Пылящая поверхность	6009	4					604	383	247
001		Заправка техники Д/Т	1	200	Дыхательный клапан	6010	2					426	545	10
003		Горнотранспорт	1	500	Выхлопная труба	6011	2					421	382	10

та нормативов допустимых выбросов на 2028 год

16	17	18	19	20	21	22	23	24	25	26
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
168					2908	Пыль неорганическая,	0.0622		0.596	2028
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
55					2908	Пыль неорганическая,	0.727		6.97	2028
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10						Сероводород (0.000000977		0.0001506	2028
						Дигидросульфид) (518)				
						Алканы С12-19 /в	0.000348		0.0536	2028
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				ļ
10		ĺ			0301	Азота (IV) диоксид (0.34206		0.79582	2028

Таблица 7.1.16

ЭРА v3.0 ТОО "Алаит"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		ное												
		оборудование												

та нормативов допустимых выбросов на 2028 год

Таблица 7.1.16

16	17	18	19	20	21	22	23	24	25	26
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.05558		0.12932	2028
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.0586		0.109979	2028
						Углерод черный) (583)				
						Сера диоксид (0.06413		0.13601	2028
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.603		1.30246	2028
						углерода, Угарный				
						газ) (584)				
						Керосин (654*)	0.11476		0.243964	2028

ЭРА v3.0 ТОО "Алаит" Таблица 7.1.18.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на 2024 год

Целиноградский р-н, АкМ, ТОО "Goldenpit", месторождение Мета

Код	Наименование	ЭНК,	ПДК	ПДК		Класс	Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	М/ЭНК
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки,т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	10.32206	0.81322	20.3305
	диоксид) (4)								
0304	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	1.67558	0.132145	2.20241667
0328	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.0586	0.109979	2.19958
	583)								
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	0.06413	0.13601	2.7202
	Сернистый газ, Сера (IV) оксид) (
	516)								
0333	Сероводород (Дигидросульфид) (0.008			2	0.000000977	0.0001506	0.018825
	518)								
0337	Углерод оксид (Окись углерода,		5	3		4	181.703	1.61646	0.53882
	Угарный газ) (584)								
	Керосин (654*)				1.2		0.11476		0.20330333
2754	Алканы С12-19 /в пересчете на С/		1			4	0.000348	0.0536	0.0536
	(Углеводороды предельные С12-С19								
	(в пересчете на С); Растворитель								
	РПК-265П) (10)								
	Пыль неорганическая, содержащая		0.3	0.1		3	27.5893	8.94597	89.4597
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
	Пыль неорганическая, содержащая		0.5	0.15		3	0.0152	0.003266	0.02177333
	двуокись кремния в %: менее 20 (
	доломит, пыль цементного								
	производства - известняк, мел,								
	огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)								
	ВСЕГО:						221.542978977	12.0547646	117.748718

В С Е Г О : Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

ЭРА v3.0 ТОО "Алаит" Таблица 7.1.19.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на 2025 г.

Целиноградский р-н, АкМ, ТОО "Goldenpit", месторождение Мета

Код	Наименование	ЭНК,	ПДК	ПДК		Класс	Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	М/ЭНК
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки,т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	10.32206	0.81322	20.330
	диоксид) (4)								
	Азот (II) оксид (Азота оксид) (6)		0.4			3	1.67558	l l	2.2024166
0328	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.0586	0.109979	2.1995
	583)								
	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	0.06413	0.13601	2.7202
	Сернистый газ, Сера (IV) оксид) (516)								
	Сероводород (Дигидросульфид) (0.008			2	0.000000977	0.0001506	0.01882
0555	518)		0.000			_	0.000000777	0.0001200	0.01002
0337	Углерод оксид (Окись углерода,		5	3		4	181.703	1.61646	0.53882
	Угарный газ) (584)								
2732	Керосин (654*)				1.2		0.11476	0.243964	0.20330333
	Алканы С12-19 /в пересчете на С/		1			4	0.000348		0.0536
	(Углеводороды предельные С12-С19								
	(в пересчете на С); Растворитель								
	РПК-265П) (10)								
2908	Пыль неорганическая, содержащая		0.3	0.1		3	27.5965	8.83844	88.3844
	двуокись кремния в %: 70-20 (
ĺ	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
2909	Пыль неорганическая, содержащая		0.5	0.15		3	0.0152	0.003266	0.02177333
	двуокись кремния в %: менее 20 (
	доломит, пыль цементного								
	производства - известняк, мел,								
	огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)					<u> </u>			
1	ВСЕГО:						221.550178977	11.9472346	116.673418

В С Е Г О :
Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

ЭРА v3.0 ТОО "Алаит" Таблица 7.1.20.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на 2026 год

Целиноградский р-н, АкМ, ТОО "Goldenpit", месторождение Мета

Код	Наименование	ЭНК,	ПДК	ПДК		Класс	Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	М/ЭНК
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки,т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	10.32206	0.81322	20.3305
	диоксид) (4)								
	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	1.67558		2.20241667
0328	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.0586	0.109979	2.19958
	583)								
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	0.06413	0.13601	2.7202
	Сернистый газ, Сера (IV) оксид) (
	516)								
0333	Сероводород (Дигидросульфид) (0.008			2	0.000000977	0.0001506	0.018825
	518)								
0337	Углерод оксид (Окись углерода,		5	3		4	181.703	1.61646	0.53882
	Угарный газ) (584)								
	Керосин (654*)				1.2	2	0.11476		0.20330333
2754	Алканы С12-19 /в пересчете на С/		1			4	0.000348	0.0536	0.0536
	(Углеводороды предельные С12-С19								
	(в пересчете на С); Растворитель								
	РПК-265П) (10)								
2908	Пыль неорганическая, содержащая		0.3	0.1		3	27.6061	8.96408	89.6408
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
2909	Пыль неорганическая, содержащая		0.5	0.15		3	0.0152	0.003266	0.02177333
	двуокись кремния в %: менее 20 (
	доломит, пыль цементного								
	производства - известняк, мел,								
	огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)								
1	ВСЕГО:						221.559778977	12.0728746	117.929818

В С Е Г О : Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

ЭРА v3.0 ТОО "Алаит" Таблица 7.1.21.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на 2027 год

Целиноградский р-н, АкМ, ТОО "Goldenpit", месторождение Мета

Код	Наименование	ЭНК,	ПДК	ПДК		Класс	Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	М/ЭНК
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки,т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	10.32206	0.81322	20.3305
	диоксид) (4)								
	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	1.67558		2.20241667
0328	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.0586	0.109979	2.19958
	583)								
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	0.06413	0.13601	2.7202
	Сернистый газ, Сера (IV) оксид) (
	[516]		0.008			2	0.000000077	0.0001506	0.010025
0333	Сероводород (Дигидросульфид) (518)		0.008			2	0.000000977	0.0001506	0.018825
0337	Углерод оксид (Окись углерода,		5	3		4	181.703	1.61646	0.53882
0337	Угарный газ) (584)			3			161.703	1.01040	0.53662
2732	Керосин (654*)				1.2	2	0.11476	0.243964	0.20330333
	Алканы С12-19 /в пересчете на С/		1		1.,	4	0.000348		0.20330333
2134	(Углеводороды предельные С12-С19		1				0.000348	0.0330	0.0550
	(в пересчете на С); Растворитель								
	РПК-265П) (10)								
2008	Пыль неорганическая, содержащая		0.3	0.1		3	27.6156	9.03308	90.3308
2908	двуокись кремния в %: 70-20 (0.3	0.1		3	27.0130	9.03308	90.3308
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
2000			0.5	0.15		3	0.0152	0.003266	0.02177333
2909	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (0.3	0.13		3	0.0132	0.003266	0.02177333
	доломит, пыль цементного								
	производства - известняк, мел,								
İ	огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)					+	201 570270077	10.1410746	110 (10010
1	Β C E Γ O:	I	1	1		1	221.569278977	12.1418746	118.619818

В С Е Г О : Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

ЭРА v3.0 ТОО "Алаит" Таблица 7.1.22.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на 2028-2032 гг.

Целиноградский р-н, АкМ, ТОО "Goldenpit", месторождение Мета

Код	Наименование	ЭНК,	пдк	ПДК	OFUD	Класс	Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	М/ЭНК
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки,т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	10.32206	0.81322	20.3305
	диоксид) (4)								
	Азот (II) оксид (Азота оксид) (6)		0.4			3	1.67558		2.20241667
0328	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.0586	0.109979	2.19958
	583)								
	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	0.06413	0.13601	2.7202
	Сернистый газ, Сера (IV) оксид) (
	516)								
0333	Сероводород (Дигидросульфид) (0.008			2	0.000000977	0.0001506	0.018825
	518)								
0337	Углерод оксид (Окись углерода,		5	3		4	181.703	1.61646	0.53882
	Угарный газ) (584)								
2732	Керосин (654*)				1.2		0.11476	0.243964	0.20330333
2754	Алканы С12-19 /в пересчете на С/		1			4	0.000348	0.0536	0.0536
	(Углеводороды предельные С12-С19								
	(в пересчете на С); Растворитель								
	РПК-265П) (10)								
2908	Пыль неорганическая, содержащая		0.3	0.1		3	24.8906	8.8865	88.865
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
2909	Пыль неорганическая, содержащая		0.5	0.15		3	0.0152	0.003266	0.02177333
	двуокись кремния в %: менее 20 (
	доломит, пыль цементного								
	производства - известняк, мел,								
	огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)								
	Β C Ε Γ O :						218.844278977	11.9952946	117.154018

Таблица групп суммации

Номер	Код								
группы	загряз-	Наименование							
сумма-	няющего	загрязняющего вещества							
ции	вещества								
1	2	3							
		Площадка:01,Площадка 1							
30	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,							
		Сера (IV) оксид) (516)							
	0333	Сероводород (Дигидросульфид) (518)							
31	0301	Азота (IV) диоксид (Азота диоксид) (4)							
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,							
		Сера (IV) оксид) (516)							
ПЫЛИ	2908+2909	Пыль неорганическая двуокиси кремния %: 70-20 (2908)							
		Пыль неорганическая двуокиси кремния %: менее 70							

7.1.2. Расчет и анализ приземных концентраций загрязняющих веществ в атмосфере на период разработки месторождения

Количество выбросов загрязняющих веществ в атмосферный воздух в период добычи определено расчетным путем по действующим методическим документам и на основании календарного плана в составле Плана горных работ, представленных предприятием (приложение 2).

В проекте рассмотрен уровень загрязнения воздушного бассейна и проведен расчет рассеивания вредных веществ в период разработки месторождения, с целью определения НДВ для источников выбросов.

Расчет максимальных приземных концентраций вредных веществ позволяет выделить зоны с нормативным качеством воздуха и повышенным содержанием отдельных ингредиентов по отношению к ПДК.

Прогнозирование загрязнения воздушного бассейна производилось унифицированной программе расчета величин приземных концентраций вредных веществ в атмосферном воздухе «ЭРА» версия 3.0. Программа предназначена для расчета полей концентраций вредных веществ в приземном слое атмосферы, содержащихся в выбросах предприятий, с целью установления нормативов допустимых выбросов (НДВ). Использованная программа внесена в список программ, разрешенных к использованию в Республике Казахстан МЭПР РК.

В данном проекте проведены расчеты уровня загрязнения атмосферы на период разработки месторождения «Мета», а также определены максимальные приземные концентрации, создаваемые выбросами загрязняющих веществ. На картах рассеивания загрязняющих веществ изображены:

- изолинии расчетных концентраций загрязняющих веществ;
- значение максимальных приземных концентраций на расчетном прямоугольнике;
- значение максимальной приземной концентрации на границе санитарно защитной зоны.

Расчет рассеивания загрязняющих веществ в атмосфере представлен в материалах расчетов максимальных приземных концентраций вредных веществ и картах рассеивания, с нанесенными на них изолиниями расчетных концентраций.

Результаты расчета рассеивания загрязняющих веществ в приземном слое атмосферы показали, что максимальные концентрации загрязняющих веществ не превышают норм ПДК на границе санитарно-защитной зоны.

Согласно п. 5.21. приложения № 18 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. № 100-п «Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий», п. 5.58. приложения № 12 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-Ө «Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий»:

* период эксплуатации: из 10 выбрасываемых в атмосферу загрязняющих веществ от стационарных и передвижных источников загрязнения, расчет приземных концентраций требуется для всех веществ.

Размер основного расчетного прямоугольника определен с учетом влияния загрязнения со сторонами 2256*1880 м; шаг сетки основного прямоугольника по осям X и Y принят 188 метров.

В связи с сезонностью работы карьера с учетом режима и интенсивности работ выбран летний период расчета. Расчеты уровня загрязнения атмосферы на период эксплуатации проведены в расчетном прямоугольнике; на границе санитарно-защитной зоны $-300\,\mathrm{M}$ и на границе жилой зоны.

Расчет рассеивания, с картографическом материалом, по требующим расчета загрязняющим веществам и группам суммации представлен в приложении 3 на период добычи.

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы на период эксплуатации приведен в таблице 7.1.24.

ЭРА v3.0 ТОО "Алаит" Таблица 7.1.24

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Код	р-н, Акім, 100 "Goldenpit", месторож	Расчетная максимальная приземная Координаты точек Источники, дак					ики, дающ	ие	Принадлежность
вещества	Наименование	концентрация (общ	ая и без учета фона)	с макси	мальной	наиболі	ьший вкла,	ц в	источника
/	вещества	доля ПД	К / мг/м3	приземн	юй конц.	макс. ко	онцентраці	ию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	N % вклада		
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
			вующее положение (2024-2032)						
			рязняющие вещества	:					
0301	Азота (IV) диоксид (25.65452/5.1309041		726/979	6005		98.2	Карьер
	Азота диоксид) (4)								
0304	Азот (II) оксид (Азота		2.0822179/0.8328872		726/979	6005		98.2	Карьер
0.000	оксид) (6)				00/044	4044		400	
0328	Углерод (Сажа, Углерод		0.1357178/0.0203577		-82/341	6011		100	Передвижные
0220	черный) (583)		0.0505504/0.0252052		01/000	6011		100	источники
0330	Сера диоксид (Ангидрид		0.0707704/0.0353852		-81/328	6011		100	Передвижные
	сернистый, Сернистый								источники
	газ, Сера (IV) оксид) (
0337	516) Углерод оксид (Окись		19 219264/01 50122		726/070	6005		00.0	I/
0557	углерод оксид (Окись углерода, Угарный газ)		18.318264/91.59132		726/979	6005		99.8	Карьер
	(584)								
2732	(384) Керосин (654*)		0.0527679/0.0633215		-81/328	6011		100	Передвижные
2132	Repoemi (034)		0.0327077/0.0033213		-01/320	0011		100	источники
2908	Пыль неорганическая,		26.50329/7.9509874		726/979	6005		90.5	Карьер
2,000	содержащая двуокись		20.3032377.3303074		120/5/5	6002		4.5	Карьер
	кремния в %: 70-20 (6001		3.5	Карьер
	шамот, цемент, пыль					0001			тар 2 ор
	цементного производства								
	- глина, глинистый								
	сланец, доменный шлак,								
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (494)								
			Группы суммации:	•	•				•
30 0330	Сера диоксид (Ангидрид		0.070771		-81/328	6011		100	Передвижные
	сернистый, Сернистый								источники
	газ, Сера (IV) оксид) (
	516)								
0333	Сероводород (

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

69

31 0301	Дигидросульфид) (518) Азота (IV) диоксид (Азота диоксид) (4)	25.689209	726/979	6005	98.1	Карьер
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)					
		Пыли:				
2908	Пыль неорганическая,	15.910542	726/979	6005	90.4	Карьер
	содержащая двуокись			6002		Карьер
	кремния в %: 70-20 (6001		Карьер
	шамот, цемент, пыль					
	цементного производства					
	- глина, глинистый					
	сланец, доменный шлак,					
	песок, клинкер, зола,					
	кремнезем, зола углей					
	казахстанских					
	месторождений) (494)					
	Пыль неорганическая,					
2000	содержащая двуокись					
2909	кремния в %: менее 20 (
	доломит, пыль					
	цементного производства					
	- известняк, мел, огарки, сырьевая смесь,					
	пыль вращающихся печей,					
	боксит) (495*)					
	/(:/6/)					

Результаты расчетов рассеивания при проведении добычных работ представлены в таблицах 7.1.25.

Таблица 7.1.25 Результат расчета рассеивания по предприятию при проведении добычных работ на 2024-2032 гг.

Код ЗВ	Наименование загрязняющих веществ и состав групп суммаций	Cm	РП 	C33	колич АЕИ	ПДК (ОБУВ) мг/м3	Класс опасн			
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2835	0.282375	0.099647	1	0.2000000	2			
0304		4.9628	0.565293	 0.076669 	1 1 1	0.4000000	3			
0328	Углерод (Сажа, Углерод черный) (583)	41.8598	1.877532	0.135718		0.1500000	3			
0330	Сера диоксид (Ангидрид серанистый, Сернистый газ, Сера (IV) оксил) (516)	4.5810	0.521803	0.070770		0.5000000	3			
0333 I	Сероводород (Дигидросульфид) (518)	0.0044	Cm<0.05	Cm<0.05	1 1 1	0.0080000	2			
0337 	Углерод оксид (Окись углерода, Угарный газ) (584)	4.3074	0.490640 	0.066544 	1	5.0000000	4			
2732	Керосин (654*)	3.4157	0.389067	0.052768	1	1.2000000	-			
2754 	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.0124	Cm<0.05 	Cm<0.05	1	1.0000000	4			
2908		0.7601	0.650613	0.278722	7 	0.3000000	3 1 1 1 1 1 1 1 1 1			
2909	Месторождении) (494) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*	3.2573	 0.277951 	 0.009505 		0.5000000	3 1 1 1 1 1 1 1 1 1			
30 _31 _ПЛ	0330 + 0333	4.5854 0.3048 3.7134	,	0.107120	2 1 1 1 8					

Анализ результатов расчета рассеивания показал, что расчетные максимальные концентрации по всем ингредиентам на границе санитарно-защитной зоны составляют менее 1,0 ПДК, т.е. нормативное качество воздуха на границе СЗЗ обеспечивается и соответствует Гигиеническим нормативам к атмосферному воздуху в городских и сельских населенных пунктах, утвержденные Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № КР ДСМ-70.

Результаты расчета рассеивания и карты рассеивания по веществам на период разработки месторождения, представлены в приложениях 3.

7.1.3. Предложения по нормативам допустимых выбросов

Предельно допустимым для предприятия считается суммарный выброс загрязняющего вещества в атмосферу от всех источников данного предприятия, установленный с учетом перспективы развития данного предприятия.

Рассчитанные значения НДВ являются научно обоснованной технической нормой выброса промышленным предприятием вредных химических веществ, обеспечивающей соблюдения требований санитарных органов по чистоте атмосферного воздуха населенных мест и промышленных площадок.

Основными критериями качества атмосферного воздуха при установлении НДВ для источников загрязнения атмосферы являются ПДК.

Для населенных мест требуется выполнение соотношения:

C_M/Π ДK < 1

Выбросы загрязняющих веществ (г/с, т/год) на период разработки месторождения известняка «Мета», предложены в качестве НДВ и устанавливаются согласно Методике определения нормативов эмиссий в окружающую среду, утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63..

Предложенные нормативы ПДВ с 3В и с ИЗА на период 2024-2032 годы для месторождения «Мета», приведены в таблице 7.1.26.

Производств		Нормативы выбросов загрязняющих веществ								
о цех, участок	Номе	существующее поло	жение на 2024 год	на 202	4 год	на 202	5 год			
Код и наименован	р источ	,	,	,	,	,	,			
ие загрязняюще го вещества	ника	г/с	т/год	г/с	т/год	г/с	т/год			
1	2	3	4	7	8	9	10			
	1	Неор	ганизованные ист	гочники		1				
(0301) Азота (IV) дион	ссид (Азота диоксид) (4)								
Карьер	6005	-	_	_	0,0174	-	0,0174			
(0304) Азот (І		(Азота оксид) (6)				,				
Карьер	6005	-		-	0,002825	-	0,002825			
(0333) Серово		Цигидросульфид) (518)				1				
Карьер	6010	-	-	0,000000977	0,0001506	0,000000977	0,0001506			
		(Окись углерода, Угарный п	ra3) (584)			1				
Карьер	6005	-	-	-	0,314	-	0,314			
) /в пересчете на С/ (Углево <mark>д</mark>	ороды предельные С12-С		· /					
Карьер	6010	-	-	0,000348	0,0536	0,000348	0,0536			
		ическая, содержащая двуоки	<u>ісь кремния в %: 70-20 (ша</u>							
Карьер	6001	-	-	1,092	0,02117	1,092	0,00794			
	6002	-	-	1,633	0,2903	1,633	0,127			
	6003	-	-	0,0567	0,906	0,0567	0,906			
	6004	-	-	0,325	0,0711	0,325	0,0711			
	6005	-	-	-	0,0284		0,0284			
	6007	-		0,0197	0,315	0,0197	0,315			
Склад	6008	-	-	0,0359	0,344	0,0431	0,413			
хранение	6009	-		0,727	6,97	0,727	6,97			
(2909) Пыль н	еорганич	неская, содержащая двуокись в	кремния в %: менее 20 (доло	омит,(495*)						

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

Карьер 6006	-	-	0,0152	0,003266	0,0152	0,003266
Итого по			3,904848977	9,3372116	3,912048977	9,2296816
неорганизованным	-	-				
источникам:						
Всего по объекту:	-	-	3,904848977	9,3372116	3,912048977	9,2296816

Производств			Нормативы выбросов загрязняющих веществ							
о цех, участок Номе		на 2026 год		на 202	на 2027 год		на 2028-2032 год		ĮΒ	дос- тиже
Код и наименован ие загрязняюще го вещества	р источ ника	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	ния НДВ
1	2	3	4	5	6	7	8	9	10	11
				еорганизо	ванные и	сточники	I			
(0301) Азота (IV) дио	ксид (Азота ди	юксид) (4)							
Карьер	6005		0,01304	-	0,01304	-	0,0174	-	0,0174	2024
(0304) Азот (І	I) оксид	(Азота оксид)	(6)							
Карьер	6005	-	0,00212	-	0,00212	-	0,002825	_	0,002825	2024
(0333) Серово	дород (Д	Дигидросульф	ид) (518)							
Карьер	6010	0,000000977	0,0001506	0,000000977	0,0001506	0,000000977	0,0001506	0,000000977	0,0001506	2024
(0337) Углеро	д оксид	(Окись углер	ода, Угарный	газ) (584)						
Карьер	6005	-	0,2354	-	0,2354	-	0,314	-	0,314	2024
(2754) Алкані	ы C12-1	9 /в пересчете	на С/ (Углево	дороды преде	льные С12-С1	9 (в пересчето	e(10)			
Карьер	6010	-	-	0,000348	0,0536	0,000348	0,0536	0,000348	0,0536	2024
(2908) Пыль і	неорган	ическая, содер	жащая двуок	ись кремния і	з %: 70-20 (ша	мот, цемент,(494)			
Карьер	6001	1,092	0,01058	1,092	0,01058	1	1	1,092	0,01852	2024
	6002	1,633	0,158	1,633	0,136	-	-	1,633	0,2903	2024
	6003	0,0567	0,906	0,0567	0,906	0,0567	0,906	0,0567	0,906	2024
	6004	0,325	0,0711	0,325	0,0711	0,325	0,0711	0,325	0,0711	2026

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

|--|

Всего по объ	екту:	3,921648977	9,3553216	3,931148977	9,4243216	1,206148977	9,2777416	3,931148977	9,5865616	
источникам:										
неорганизованным										
Итого	по	3,921648977	9,3553216	3,931148977	9,4243216	1,206148977	9,2777416	3,931148977	9,5865616	
Карьер	6006	0,0152	0,003266	0,0152	0,003266	0,0152	0,003266	0,0152	0,003266	2026
(2909) Пыль н	(2909) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, (495*)									
хранение	6009	0,727	6,97	0,727	6,97	0,727	6,97	0,727	6,97	2024
Склад	6008	0,0527	0,505	0,0622	0,596	0,0622	0,596	0,0622	0,596	2027
	6007	0,0197	0,315	0,0197	0,315	0,0197	0,315	0,0197	0,315	2026
	6005	-	0,0284		0,0284		0,0284	-	0,0284	2024

7.1.4. Мероприятия по предотвращению и снижению негативного воздействия на атмосферный воздух

Мероприятия по снижению отрицательного воздействия на период эксплуатации.

В целях предупреждения загрязнения окружающей среды в процессе эксплуатации мобильной месторождения, проектом предусмотрены следующие мероприятия:

- Тщательное соблюдение проектных решений;
- Проведение своевременных профилактических и ремонтных работ;
- Герметизация горнотранспортного оборудования;
- Своевременный вывоз отходов с территории объекта;
- Организация системы упорядоченного движения автотранспорта и техники на территории объекта.

При соблюдении всех решений принятых в проекте и всех предложенных мероприятий, негативного воздействия на атмосферный воздух в период эксплуатации исследуемого объекта не ожидается.

Мероприятия по снижению отрицательного воздействия в период особо неблагоприятных метеорологических условий (НМУ).

Регулирование выбросов загрязняющих веществ в атмосферу при неблагоприятных метеорологических условиях подразумевает кратковременное сокращение производственных работ при сильных инверсиях температуры, штиле, тумане, пыльных бурях, влекущих за собой резкое увеличение загрязнения атмосферы.

При неблагоприятных метеорологических условиях, в кратковременные периоды загрязнения атмосферы опасного для здоровья населения, предприятия обеспечивают снижение выбросов вредных веществ, вплоть до частичной или полной остановки работы предприятия.

Необходимость разработки мероприятий при НМУ обосновывается территориальным управлением по гидрометеорологии и мониторингу природной среды. Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в период НМУ разрабатывают предприятия, организации, учреждения, расположенные в населенных пунктах, где органами Казгидромета проводится прогнозирование НМУ или планируется прогнозирование.

Для месторождения «Мета)» ТОО «GOLDENPIT», расположенного в Целиноградском районе в Акмолинской области разработка мероприятий по регулированию выбросов при НМУ не требуется.

7.1.5. Методы и средства контроля за состоянием воздушного бассейна

Согласно Экологическому Кодексу РК (глава 13, ст. 182) операторы объектов I и II категорий обязаны осуществлять производственный экологический контроль.

Производственный экологический контроль — система мер, осуществляемых природопользователем, для наблюдения за изменениями окружающей среды под влиянием хозяйственной деятельности предприятия и направлена на соблюдение нормативов по охране окружающей среды и соблюдению экологических требований.

Программа производственного экологического контроля ориентирована на организацию наблюдений, сбор данных, проведения анализа, оценки воздействия производственной деятельности на состояние окружающей среды с целью принятия своевременных мер по предотвращению, сокращению и ликвидации загрязняющего воздей7ствия данного вида деятельности на окружающую среду.

Основным направлением «Программы производственного экологического контроля» является обеспечение достоверной информацией о воздействии деятельности

предприятия на окружающую среду, возможных изменениях воздействия и неблагоприятных или опасных ситуациях.

Осуществление производственного экологического контроля является обязательным условием специального природопользования. Одним из элементов производственного экологического контроля является производственный мониторинг, выполняемый для получения объективных данных с установленной периодичностью.

Производственный контроль должен осуществляться на источниках выбросов, которые вносят наибольший вклад в загрязнение атмосферы. Для таких организованных источников контроль рекомендуется проводить инструментальным или инструментальнолабораторным методом, с проведением прямых инструментальных замеров выбросов. Для неорганизованных источников — расчетный метод.

Оперативная информация, полученная и обобщенная специалистами охраны окружающей среды в виде табличных данных, сопровождаемых пояснительным текстом, должна предоставляться ежеквартально до первого числа второго месяца за отчетным кварталом в информационную систему уполномоченного органа в области охраны окружающей среды в соответствии с приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 14.07.2021 г. № 250 «Об утверждении Правил разработки программы производственного экологического контроля объектов I и II категорий, ведения внутреннего учета, формирования и предоставления периодических отчетов по результатам производственного экологического контроля».

План-график контроля на предприятии за соблюдением нормативов допустимых выбросов на источниках выбросов расчетным методом приведен в таблице 7.1.26. Планграфик инструментального контроля на предприятии за соблюдением нормативов допустимых выбросов на контрольных точках приведен в таблице 7.1.27.

На участке работ по добыче производственный экологический контроль будет осуществляться расчетным методом, т.е. будет проводиться операционный мониторинг (мониторинг производственного процесса). Операционный мониторинг представляет собой комплекс организационно-технических мероприятий, направленных на наблюдение за физическими и химическими параметрами технологического процесса, за состоянием работы оборудования и техники, а также за расходом строительных материалов и сырья для подтверждения того, что показатели производственной деятельности находятся в диапазоне, который считается целесообразным для надлежащей проектной эксплуатации. Кроме того, мониторинг важен для гарантии предотвращения и минимизации перебоев в производственном процессе и их воздействии на окружающую среду в любой ситуации.

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов

Производство, цех, участок.	Контролируемое вещество	Периодичность	Норматив допусти	мых выбросов	Кем осуществляется	Методика проведения
		контроля	г/с	мг/м ³	контроль	контроля
2	3	5	6	7	8	9
Карьер Карьер Карьер	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	Ежекватально	1.092 1.633 0.0567		Сотрудники предприятия и/или Сторонняя организация	Расчетный метод контроля
Карьер	Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, пемент, пыль пементного производства	Ежекватально			Сотрудники предприятия и/или Сторонняя организация	Расчетный метод контроля
	2 Карьер Карьер Карьер	Деректрация Деректрация	Троизводство, нех, участок: За 3 5	Тус Том Тус Тус	Тус Ми/м³	Поризводство, нех, участок: Контролируемое вещество

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

3	

6010	Карьер	двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Сероводород (Дигидросульфид) (518) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в	Ежекватально	0.000000977 0.000348	Сотрудники предприятия и/или Сторонняя организация	Расчетный метод контроля	
6009	Статическое хранение	цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая		0.727			
6008	Статическое хранение	цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,		0.0359			
6007	Карьер	двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,		0.0197			
6006	Карьер	- глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая		0.0152			

ЭРА v3.0 ТОО "Алаит"

План - график контроля на предприятии за соблюдением нормативов ПДК на границе санитарно-защитной зоны на 2024-2032 гг.

N контрольной точки /Координаты контрольной точки	Производство, цех, участок.	Контролируемое вещество	Периоди чность контро- ля	в перио- ды НМУ раз/сутк	Кем осуществляет ся контроль	Методика проведения контроля
Точка №1 –Север	2	1) Сероводород	4	5	/	8
Точка №2 — Восток Точка №3 — Юг Точка №4 — Запад Точка №5 —жилая зона	Месторождение Мета	 Углеводороды предельные C12-C19 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503) 	Ежеквартально на границе C33		Сторонняя организация	Согласно перечню
Физические факторы (шум, вибрация) Точка №1 –Север Точка №2 – Восток Точка №3 – Юг Точка №4 – Запад Точка №5 –жилая зона	(граница СЗЗ)	Шум, вибрация	1 раз в год		согласно договору	утвержденных методик

7.1.6. Характеристика санитарно-защитной зоны

В настоящее время в Республике Казахстан действуют Санитарноэпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека, утвержденные Приказ и.о. Министра здравоохранения Республики Казахстан от 11.01.2022 г. №ҚР ДСМ-2.

Для предприятий с технологическими процессами, являющимися источниками производственных вредностей, устанавливается ориентировочно-нормативный минимальной размер санитарно-защитной зоны (СЗЗ), включающий в себя зону загрязнения. Устройство санитарно-защитной зоны между предприятием и жилой застройкой является одним из основных воздухоохранных мероприятий, обеспечивающих требуемое качество воздуха в населенных пунктах.

В рамках настоящего проекта проведены расчеты рассеивания загрязняющих веществ в приземном слое атмосферы на период отработки проектируемого объекта. По результатам расчета рассеивания были определены зоны наибольшего загрязнения атмосферного воздуха на прилегающей территории.

<u>Нормативное расстояние от источников выброса до границы санитарно-</u> защитной зоны принимается согласно приложения 1, раздел 3, пункт 12, подпункт 13:

- производства (карьеры) по добыче мрамора, гравия, песка, глины открытой разработкой с использованием взрывчатых веществ — C33 не менее 500 метров.

Согласно Экологического Кодекса РК (приложение 1 ЭК РК, раздел 2 п.2.5) объект относится ко II категории (добыча и переработка общераспространенных полезных ископаемых свыше 10 тыс. тонн в год).

Построение расчетной санитарно-защитной зоны осуществлялось автоматически лицензионным программным комплексом «ЭРА», версии 3.0, при проведении расчетов рассеивания загрязняющих веществ в атмосфере, путем задания радиуса санитарно-защитной зоны от источников вредных выбросов с учетом различных направлении ветра и среднегодовой розы ветров.

Достаточность ширины санитарно-защитной зоны подтверждена расчетами прогнозируемых уровней загрязнения в соответствии с действующими указаниями по расчету рассеивания в атмосфере вредных веществ, содержащихся в выбросах предприятия.

В границах расчетной СЗЗ – 500 метров не имеется жилых, иных производственных объектов, курортов, санаториев, зон отдыха, коллективных и индивидуальных дачных и садово-огородных участков, а также сельскохозяйственных полей.

При вышеуказанных размерах C33, концентрация 3B не превышает ПДК на границе C33.

Санитарно-эпидемиологические требования предусматривают разработку СЗЗ последовательно:

- расчетная (предварительная), выполненная на основании проекта с расчетами рассеивания загрязнения атмосферного воздуха и физического воздействия на атмосферный воздух (шум, вибрация, неионизирующие излучения);
- установленная (окончательная) на основании результатов годичного цикла натурных исследований и измерений для подтверждения расчетных параметров.

Санитарно-эпидемиологические требования предусматривают критерии для определения размера СЗЗ — соответствие на ее внешней границе и за ее пределами концентрации загрязняющих веществ для атмосферного воздуха населенных мест ПДК и/или ПДУ физического воздействия на атмосферный воздух.

111

Построение расчетной санитарно-защитной зоны осуществлялось автоматически лицензионным программным комплексом «ЭРА», версии 3.0, при проведении расчетов рассеивания загрязняющих веществ в атмосфере, путем задания радиуса санитарно-защитной зоны от источников вредных выбросов с учетом различных направлений ветра и среднегодовой розы ветров.

Достаточность ширины санитарно-защитной зоны подтверждена расчетами прогнозируемых уровней загрязнения в соответствии с действующими указаниями по расчету рассеивания в атмосфере вредных веществ, содержащихся в выбросах предприятия.

Действующие нормативно-правовые акты на территории Республики Казахстан регламентируют предельно-допустимые уровни шума, вибрации, неионизирующего излучения только на территориях населенных пунктов. По данной причине физические воздействия на атмосферный воздух (шум, вибрация, неионизирующее излучение) по настоящее время не проводились, в связи с удаленностью промышленного объекта от территорий населенных пунктов.

В границах расчетной СЗЗ не имеется жилых, иных производственных объектов, курортов, санаториев, зон отдыха, коллективных и индивидуальных дачных и садовоогородных участков, а также сельскохозяйственных полей.

После ввода производственного объекта в эксплуатацию, необходимо ежегодно производить натурные исследования и измерения образцов атмосферного воздуха населенных мест и на границе C33.

Графическая интерпритация расчета рассеивания представлен в приложении 3.

7.1.6.1. Требования по ограничению использования территории расчетной СЗЗ, организация и благоустройство СЗЗ

Согласно санитарно-эпидемиологических требований, в границах СЗЗ не допускается размещение жилой застройки, ландшафтно-рекреационных зон, зон отдыха, территории курортов, санаториев и домов отдыха, садоводческих товариществ, дачных и садово-огородных участков, спортивных сооружений, детских площадок, образовательных и детских организаций, лечебно-профилактических и оздоровительных организаций общего пользования.

В границах СЗЗ допускается размещать здания и сооружения для обслуживания работников производственного объекта, а также сооружений для обеспечения деятельности объекта.

В границах СЗЗ производственного объекта также допускается размещать сельскохозяйственные угодья для выращивания технических культур, неиспользуемых для производства продуктов питания.

Территория СЗЗ или какая-либо ее часть не могут рассматриваться как резервная территория объекта для расширения жилой зоны, размещения дачных и садово-огородных участков.

При условии наличия проекта обоснования соблюдения ПДК и/или ПДУ на внешней границе СЗЗ, часть СЗЗ может рассматриваться как резервная территория объекта для расширения производственной зоны.

Организация и благоустройство санитарно-защитной зоны должны предусматривать озеленение территории в зависимости от климатических условий района.

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

7.1.6.2. Функциональное зонирование территории СЗЗ

Согласно СанПиН внутри территории С33 не допускается размещать жилую застройку, зоны отдыха, садово-огородные участки, оздоровительно-спортивные, детские учреждения, объекты по производству лекарственных веществ и т.п, объекты пищевых отраслей промышленности, комплексы водопроводных сооружений для подготовки и хранения питьевой воды. Данные виды объектов на территории санитарно-защитной зоны месторождений отсутствуют.

При обосновании размера СЗЗ устанавливается функциональное зонирование территории и режим пользования различных зон.

Земельные участки расположения месторождений расположены на открытой местности.

В границах расчетной СЗЗ отсутствует жилая застройка, коммунальные объекты селитебных территорий, какие-либо другие промышленные объекты.

Предприятием соблюдён режим санитарно-защитной зоны.

Производственная площадка предприятия расположена вне водоохранных зон ближайших водных объектов, а также зон санитарной охраны поверхностных и подземных источников водоснабжения.

7.1.6.3. Мероприятия и средства по организации и благоустройству СЗЗ

Организация и благоустройство санитарно-защитной зоны должны предусматривать озеленение территории в зависимости от климатических условий района.

Планировочная организация СЗЗ имеет целью основную задачу – защиты воздушной среды населенных пунктов от промышленных загрязнений, что осуществляется путем озеленения территории санитарно-защитной зоны.

Растения, используемые для озеленения СЗЗ, являются эффективными в санитарном отношении и достаточно устойчивыми к загрязнению атмосферы и почв промышленными выбросами. В зоне зеленых насаждений загазованность воздуха снижается до 40%.

Озеленение санитарно-защитной зоны, ее благоустройство и соблюдение нормативов ПДВ позволит уменьшить вредное воздействие промышленного предприятия на окружающую природную среду.

Рекомендуется посадка саженцев на границе СЗЗ (при плотной застройке объектами, а также при расположении объекта на удалении от населенных пунктов, в пустынной и полупустынной местности), допускается озеленение свободных от застройки территорий и территории ближайших населенных пунктов, по согласованию с местными исполнительными органами, с обязательным обоснованием в проекте СЗЗ, в количестве 250 штук в 2024-2032 гг. на площади по 4,16 га ежегодно.

Рекомендуемый видовой состав для озеленения границы СЗЗ следующий: акация, сирень, клен, тополь.

7.1.7. Общие выводы

Технологические процессы, которые будут применяться при добыче окажут определенное воздействие на состояние атмосферного воздуха непосредственно на территории размещения объекта. Как показывает, проведенный в проекте, анализ намечаемой деятельности, выбросы от источников загрязнения атмосферного воздуха не окажут вредного воздействия на санитарно-защитную и селитебную зоны.

По масштабам распространения загрязнения атмосферного воздуха выбросы в период добычи относятся к локальному типу загрязнения. Продолжительность воздействия выбросов от исследуемого объекта будет постоянной в период добычи.

Интенсивность воздействия на атмосферный воздух находится в пределах допустимых норм, изменения природной среды не выходят за существующие пределы естественной природной изменчивости.

Соблюдение принятых проектных решений позволит исключить негативное влияние на здоровье людей и изменение фоновых концентраций загрязняющих веществ.

7.2. Оценка ожидаемого воздействия на воды

7.2.1. Водопотребление и водоотведение

Расчетный расход воды на месторождении принят:

- -на хозяйственно-питьевые нужды будет соответствовать Санитарным правилам «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов» утвержденные Приказом Министра здравоохранения Республики Казахстан от 20 февраля 2023 года № 26 25 л/сут. на одного работающего;
 - -на нужды пылеподавления пылящих поверхностей;
- -на нужды наружного пожаротушения $10~\pi/c$ в течении 3 часов (п.5.27 СниП РК 4.01-02-2009).

Наружное пожаротушение осуществляется из противопожарных резервуаров переносными мотопомпами. Противопожарные резервуары емкостью 50м^3 , расположены на промплощадке.

Заполнение противопожарных резервуаров производится привозной водой, автоцистерной.

Схема водоснабжения следующая:

- вода питьевого качества доставляется в емкостях из п.Софиевка (водозаборная колонка по договору с МИО) или в бутилированная из г. Астана ежедневно (заказываемой по договору). В нарядной предусматривается установка эмалированной закрытой емкости объемом 0.5м³:
- для хозяйственных нужд в нарядной устанавливается умывальник. Расчет на хозяйственно-питьевые нужды приведен с учетом того, что явочный состав изменяться не планируется. Удаление сточных вод предусматривается вручную. Количество удаленных сточных вод принимаем в объеме 70% от хозяйственно-питьевых нужд (с учетом потерь 30%).
- пылеподавление рабочей зоны карьера, отвалов ПРС, внутриплощадочных и внутрикарьерных дорог планируется производить поливомоечной машиной. Вода для нужд пылеподавления будет набираться из пруда. Пылеподавление будет производиться в течение теплого периода времени, с учетом климатических условий района этот период составит 185 дней.

В настоящем проекте предусматривается следующие мероприятия по борьбе с загрязнением окружающей природной среды при работе автотранспорта:

- очистка от просыпей автодорог;
- обработка водой.

Пылеподавление при экскавации горной массы, бульдозерных работах и взрывного блока перед взрывом предусматривается орошением водой с помощью поливомоечных машин Howo Sinotruk.

Для предотвращения сдувания пыли с поверхности отвалов предусматривается орошение их водой.

Орошение автодорог водой намечено производить в течение 1 смены поливомоечной машиной Howo Sinotruk.

Общая длина автодорог и забоев составит 2000м. Расход воды при поливе автодорог $-0.3~\mathrm{n/m^2}$.

Общая площадь орошаемой части автодорог:

$$S_{06}=2000 \text{ m}*10 \text{ m}=20000 \text{ m}^2$$

где, 10 м – ширина поливки Howo Sinotruk, согласно технической характеристики машины.

Площадь автодороги, орошаемой одной машиной за смену:

$$S_{cm} = Q*K/q = 8000*1/0,3 = 26666,6 \text{ m}^2$$

где $Q = 8000\pi$ – емкость цистерны Howo Sinotruk;

K = 1 -количество заправок Howo Sinotruk;

q = 0.3л/м² – расход воды на поливку.

Потребное количество поливомоечных машин Howo Sinotruk:

$$N = (S_{o6}/S_{cm})*n = (20000/26666,6)*1 = 1 \text{ mit}$$

Суточный расход воды на орошение автодорог и забоев составит:

$$V_{\text{cyt}} = S_{\text{o}6} * q * n * N_{\text{cm}} = 20000 * 0.3 * 1 * 1 = 6000 \pi = 6.0 \text{m}^3$$

где $N_{cm} = 1$ — количество смен поливки автодорог и забоев.

Таблица 5.1.1.

Расчет водопотребления и водоотведения

Производ			Box	допотребл	ение, м ³ /го		Водоотведение, м ³ /год					
ство	Bce	Ha	производ	ственные	нужды	Ha	Безвозвр	Bce	Объем	Прои	Хоз.	Примеч
	го,	Свеж	сая вода	Оборот	Повто	хоз.	атное	го	сточной	3В.	быто	ание
	м ³ /г	Bce	В том	ная	рно-	Быто	потребле		воды	сточ	вые	
	ОД	ГО	числе	вода	испол.	вые	ние		повторно	ные	сточн	
			питье		вода	нужд			использу	воды	ые	
			вого			Ы			емой		воды	
			качест									
77 9	100		Ba					100			122	
Хозяйстве	122	-	122	-	-	-	-	122	-	-	122	-
HHO-												
питьевые												
нужды На	111					1110	1110	_				
орошение	0	-	-	_	-	1110	1110	_	_	_	_	-
пылящих	0											
поверхнос												
тей												
На нужды	50,0	-	-	-	-	50,0	50,0	-	-	-	-	-
пожароту						, , ,	, , ,					
шения												
Итого по	128		122	-	-	1160	1160	122	-	-	122	-
предприя	2											
тию												

Водоотведение. Настоящим проектом канализование административного вагончика не предусматривается. Удаление сточных вод предусматривается вручную. Для сбора сточно-бытовых вод от мытья рук работников карьера и мытья полов на промплощадке предусмотрено устройство туалета с выгребной ямой (септиком) обсаженными железобетонными плитами, с водонепроницаемым выгребом объемом 4,5 м³ и наземной частью с крышкой и решеткой для отделения твердых фракций, на расстоянии 25 метров от бытового вагончика (нарядной).

Стоки из ёмкости будут откачиваться ассенизационной машиной, заказываемой по договору с коммунальным предприятием района на основе договора по факту выполнения услуг. Периодически будет производиться дезинфекция емкости хлорной известью.

Сточных вод, непосредственно сбрасываемых в поверхностные и подземные водные объекты, предприятие не имеет.

7.2.2 Воздействие на поверхностные и подзменые воды Поверхностные воды

Ближайший водный объект – река Селеты, протекающая свыше 1,5 км западнее участка. В соответствии с постановлением акимата Акмолинской области от 26 января 2009 года № А-1/19, ширина водоохранной зоны реки Селеты составляет – 500 м, ширина водоохранной полосы 35-100 м. Согласно Водного кодекса РК исследуемый объект не входит в водоохранную зону и полосу водного объекта (приложение 7).

Предприятие не осуществляет сбросов производственных сточных вод непосредственно в подземные и поверхностные водные объекты прилегающей территории, поэтому прямого воздействия на поверхностные и подземные воды не оказывает.

На промплощадке карьера природного и техногенного загрязнения вредными опасными химическими и токсическими веществами и их соединениями, теплового, бактериального, радиационного и другого загрязнения в ходе работ не предусматривается.

Засорение твердыми, нерастворимыми предметами, отходами производственного, бытового и иного происхождения происходить не будет, так как на территории промплощадки организовывается централизованное складирование бытовых отходов в металлических контейнерах с крышками с водонепроницаемым покрытием. В дальнейшем, по договору со сторонней организацией, хозяйственно-бытовые отходы по мере заполнения контейнеров вывозятся, для их дальнейшей утилизации, с последующей обработкой и дезинфекцией контейнеров хлорсодержащими средствами.

Подземные воды На исследуемом участке отсутствуют месторождения подземных вод справка № 26-14-03/1843 от 22.12.2022 г. (Приложение 5). Намечаемая деятельность не предусматривает проведение архитектурно-строительных работ, заливку фундамента и других работ, предусматривающих проведение земляных работ, в связи с чем влияние объекта на подземные воды исключается.

7.2.3 Карьерный водоотлив

Карьерный водоотлив при разработке месторождения Мета предусмотрен устройством пруда-испарителя. Проект на строительство пруда-испарителя при необходимости будет разрабатываться отдельно от Плана горных работ специализированной организацией, имеющей соответствующую лицензию. В плане горных работ приводятся примерные расчетные параметры пруда-испарителя и водного баланса.

Пруд-испаритель запроектирован с целью сбора и испарения подземных вод, атмосферных осадков паводкового периода и для забора воды для полива дорог и пылеподавления в забое. Строительство и эксплуатация пруда будет производиться только после согласования с местными исполнительными органами и получения разрешения на строительство, согласно пункта 3-1 статьи 225 Экологического Кодекса Республики Казахстан: «Создание новых (расширение действующих) накопителей-испарителей допускается по разрешению местных исполнительных органов областей, городов республиканского значения, столицы». Пруд-испаритель запроектирован за пределами горного отвода, путем устройства ограждающей дамбы в наиболее удобном месте.

Основанием дамбы и дна пруда, после снятия растительного слоя, будут служить породы с недостаточными водоупорными качествами. Коэффициент фильтрации пород 0,6 см/с.

Пруд-испаритель предусматривается расположить за границами горного отвода, на расстоянии 80 м восточнее проектируемого карьера.

Суммарные водопритоки по карьеру составят $21622,5\,\mathrm{m}^3/\mathrm{год}$, в том числе за счет подземных вод $21060,5\,\mathrm{m}^3$, снеготаяния $62\,\mathrm{m}^3$, интенсивного ливня $500,0\,\mathrm{m}^3$.

Водопотребление для полива дорог и пылеподавления горной массы составляет $1110 \, \mathrm{m}^3$ в гол.

Объем водосброса из карьера составит 20512,5 ${\rm m}^3/{\rm год}$.

Объем испарения для данного региона составляет $1,1\,\mathrm{m}^3$ с $1\mathrm{m}^2$, среднегодовое количество осадков $0,062\,\mathrm{m}$.

Площадь пруда составляет:

$$20512,5:(1,1-0,062)=21292$$
 м $2=2,1$ га

Площадь пруда-накопителя по зеркалу воды при глубине воды в нем 1,0 м составит: $150*142 = 21300 \text{ м}^2$.

Объем испарения с пруда составляет:

$$21300*(1,1-0,062)=22109,4$$
 м³ в год.

Определим водный баланс для пруда:

Как видно из расчетов вся поступающая вода из карьера в пруд будет испаряться.

Ограждающая дамба запроектирована из вскрышных пород, вынимаемых из карьеров с использованием искусственной мембраны непосредственно в ложе пруда и его откосах, что полностью исключит фильтрацию вод. При строительстве дамбы необходимо определить характеристики грунтов основания, ядра и зуба в соответствии с требованиями ГОСТ 25100-2011; СНиП2.02.02 и СНиП202.04.

Ширина гребня дамбы принята 1,0 м из расчета безопасного ведения строительных работ и работы механизмов в период эксплуатации.

Заложение откосов дамбы приняты в соответствии с расчетными значениями угла внутреннего трения грунтов, из которых она отсыпается. При этом заложение верхового откоса принято 1:2,5 из условия устойчивости на нем укрепления в виде экранов из глины. Заложение низового откоса принято 1:3,5. Высота дамбы составляет 1,5 м.

Подготовка основания под дамбой и прудком заключается в выполнении следующих мероприятий:

- а) удаление почвенно- растительного слоя грунта;
- б) планировка поверхности с последующим тщательным уплотнением;
- в) укладка искуственной мембраны в ложе пруда.

Для качественного сопряжения экрана и тела дамбы с основанием первый слой грунта отсыпанной дамбы должен быть особо тщательно уложен и уплотнен.

С этой целью рекомендуется повысить влажность грунта на 1÷3 %.

Возведение тела дамбы и экранов планируется выполнять с максимальным использованием имеющихся машин и механизмов.

Срезку почвенно-растительного слоя следует производить бульдозером с дальностью перемещения до 50 м в бурты. ПРС грузится на а/самосвалы и перевозятся к месту складирования.

Отсыпка грунта в тело дамбы и экранов выполняется слоями, толщиной 0,2 и от краев к середине, с тщательным уплотнением. Укладка грунта в тело производится постоянными по толщине слоями, без волнистости, по всей длине отсыпаемого участка.

Проезд транспортных средств должен производиться по свежеуложенному слою грунта.

Отсыпка грунта в экраны дамбы производится после формирования тела дамбы. Разравнивание грунта, отсыпаемого в тело экрана, производится послойно бульдозером. Послойное уплотнение грунта в экранах производится трамбованием и укаткой за $6 \div 8$ проходов катка или трамбовочной плиты.

Крепление верхового откоса производится в следующей последовательности:

- планировка поверхности откоса;
- уплотнение грунта на откосе;

Для обеспечения безопасности проезда по гребню дамбы в соответствии с требованиями ГОСТ23457-86 предусмотрена установка сигнальных столбиков.

Все строительные работы по отсыпке дамбы необходимо производить в соответствии со СНиП 3.01.01; «Организация строительного производства», СНиП3.01.04. «Приемка в эксплуатацию законченных строительством объектов. Основные положения» и СНиП III-4 «Техника безопасности в строительстве».

При разработке месторождения необходимо уточнить фактический водоприток и при необходимости внести корректировку в план горных работ в части водоотлива. Расчет водопритока в карьер выполнен на основании гидрогеологических исследований, проведенных в период разведки месторождения, за это время гидрогеологический режим мог измениться.

7.2.4 Расчет прогнозного водопритока

Разработка месторождения будет производиться открытым способом. Исходя из объема отрабатываемых в контрактный период запасов определены наиболее целесообразные параметры карьера (таблица 7.2.1).

Таблица 7.2.1.

Параметры проектного карьера для расчета возможных водопритоков

№ <u>№</u> п.п.	Основные параметры	Единица измерения	Карьер
1	площадь карьерного поля	\mathbf{M}^2	16 664,3
2	площадь по дну	\mathbf{M}^2	7969,8
3	средняя глубина карьера	M	27,5

Водопритоки за счет твердых атмосферных осадков проявляются весной в паводковый период, когда происходит интенсивное таяние скопившихся за зиму (ноябрьмарт) твердых осадков.

Расчет притока воды за счет твердых атмосферных осадков выполняется по формуле:

$$Q = (\lambda \times \delta \times N_c \times F_{\text{Bepx}}) / t_c$$

гле:

- λ коэффициент поверхностного стока для бортов и дна карьера, сложенных скальными породами 0,3;
 - δ коэффициент удаления снега из карьера 0,2;

N_c – максимальное количество твердых осадков с ноября по апрель-0,062м;

 $F_{\text{верх}}$ – площадь карьера по верху;

 t_{c} - средняя продолжительность интенсивного снеготаяния в паводковое время 20 суток.

Тогда величина максимальных водопритоков за счет снеготалых вод паводок составит:

$$Q = (0.3 \times 0.2 \times 0.062 \times 16644.3)/20 = 3.1 \text{ m}^3/\text{cyt} = 0.13 \text{ m}^3/\text{q} = 0.03 \text{ J/c}$$

Расчет водопритоков в карьер за счет ливневых дождей

Величина возможного водопритока за счет ливневых дождей определяется по формуле:

$$Q_n = (\lambda \times N_{\pi} \times F_{\text{верх}}) / t_{\pi \mu B}$$

Где:

 λ — коэффициент поверхностного стока для бортов и дна карьера, сложенных скальными породами — 0,3;

 $F_{\text{верх}}$ – площадь карьера по верху;

 N_{π} – максимальное суточное количество осадков- 0,1м;

t_{лив} – продолжительность ливня 1 сутки.

Максимально возможная величина водопритока за счет ливневых дождей составит:

$$Q=0.3\times16~664,3\times0,1=500~\text{m}^3/\text{сут}=20.8~\text{m}^3/\text{q}=5.8~\text{л/c}$$

Расчет водопритока за счет подземных вод в карьер

Приток воды из водоносного горизонта в карьер определен по формуле «большего колодца»:

$$Q = ((F^*H^* \; \mu)/T) + ((1,36 \; KH^2)/\; \ell gR + \ell gr^\circ)$$

Гле:

Q – приток воды в карьер, $M^3/\text{сут}$;

F – средняя площадь осущаемых пород в пределах контура - 16 664,3 м²;

H- мощность обводненной зоны – 20 м;

и - водоотдача пород по О.Б. Скиргелло 0,01;

Т – период откачки дренажных вод принимается 365 суток;

К- коэффициент фильтрации пород - 0,6 м/сут;

r^o – приведенный радиус «большего колодца», м;

R- радиус влияния карьера, м.

Средняя мощность обводненной зоны (H) принимается как разность между средней отметкой уровня подземных вод+313 м и средней отметкой глубины карьера +293 и составляет 20,0м.

Приведенный радиус «большого колодца» или приведенный радиус карьера определяется по формуле:

$$r^{\circ}=F/\pi=16\ 664,3/3,14=5307,1$$

Радиус влияния карьера рассчитывается по формуле:

$$R = 1.5*\sqrt{at}$$

$$a = (K*H)/\mu = (0.6*20)/0.01 = 1200 \text{ m}^2/\text{cyt}$$

$$R = 1.5*\sqrt{1200*365} = 992.7$$

С учетом приведенных выше расчетов водоприток в карьер за счет подземных вод составит:

Сводные данные по возможным водопритокам в карьер приведены в таблице 7.2.2.

Таблица 7.2.2

Величины возможных водопритоков в карьер

No	Matananan pananananan piranan		Карьер	
Π/Π	Источники водопритоков в карьер	м ³ /сут	м ³ /час	л/с
1	за счет подземных вод	57,7	2,4	0,67
2	за счет снеготалых вод паводкового периода	3,1	0,13	0,03
3	разовый водоприток за счет ливневых дождей	500	20,8	5,8

По предварительным расчетам осущение месторождения не потребуется так как незначительные водопритоки за счет подземных вод будут испаряться естественным путем. При эксплуатации месторождения будут выявлены фактические значения водопритоков за счет подземных вод, и при необходимости отдельным проектом будет рассмотрено осущение месторождения.

7.2.4 Расчет нормативов предпологаемого-допустимого сброса загрязняющих веществ

Сброс сточных вод осуществляется в проектируемый пруд — испаритель, расположенного за границами горного отвода, на расстоянии 80 м восточнее проектируемого карьера.

В связи с тем, что по существующему состоянию среды карьер не вскрыт горными работами, фактический объем сброса сточных вод в пруд-испаритель применяется согласно расчетным показателям. Соответственно принимается объем водопритока за счет подземных и снеготалых вод павкового периода: 2,53 м³/час, 60,8 м³/сутки, 22192 м³/год.

Учитывая мелкие размеры месторождения «Мета» и небольшой срок их отработки, для целей оценки, приведенных данных о гидрогеологических условиях месторождения не достаточно. На стадии горного-капитальных работ будут проведены необходимые гидрогеологические исследования.

Требования к выбору приоритетных показателей воды в подземных водоисточниках в зонах влияния различных объектов хозяйственной деятельности при проведении лабораторных исследований в рамках производственного контроля, в соответствии Приложение 7 и 6 к Санитарным правилам «Санитарно-эпидемиологические требования к

водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», утв. Приказом Министра здравоохранения Республики Казахстан от 20 февраля 2023 года № 26 привдены предпологаемые загрязняющие вещства в нижеследующей таблице.

Перечень предпологаемых загрязняющих веществ

Таблица 3.5.1

№	Наименование загрязняющих веществ	Концентрация, мг/л
1	Минерализация (сухой остаток)	1000
2	Общая жесткость	7,0
3	Окисляемость перманганатная	-
4	Алюминий	0,5
5	Барий	0,7
6	Бериллий	0,0002
7	Бор	0,5
8	Бром	-
9	Кремний	10,0
10	Литий	0,03
11	Мышьяк	0,05
12	Ртуть	0,0005
13	Селен	0,01
14	Стронций	7,0
15	Фтор	-
16	Железо	0,3
17	Марганец	0,1
18	Нефтепродукты	0,1
19	Поверхностно-активные вещества (ПАВ)	0,5

^{*} для веществ, попадающих под общие требования показателей состава и свойств воды, такие как pH, растворенный кислород, прозрачность, эфир экстрагируемые жиры, температура, окраска, запах и т.д. нормативы HДС не рассчитываются.

Таблица 3.5.2 **Эффективность работы очистных сооружений**

			Мощн	ость очист	тных с	ооружений Эффектиі			фективн	ность работы			
Состав	Наименов ание показател	ание			фактическая			Проектные показатели			Фактические показатели (средние за 3 года.)		средние
X	которым								центра	Степе		центра	Степе
сооруже ний	производи	м ³ /	м ³ /с	37	-3/	м ³ /с	3/		мг/дм³	нь очист	<u> </u>	мг/дм³	нь очист
нии	тся	M°/	M ³ /C	тыс.м ³ /	M ³ /	M°/C	тыс.м ³ /	до	после		до	посл	
	очистка	Ч	УT	год	Ч	ут	год			ки, %		e	ки, %
	0 1110 1110							очио	тки		очис	тки	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

Для очистки сточных вод применяется механическая очистка направленая на очищение сточной воды от взвешенных частиц, от грубодисперсных нерастворимых элементов

Данные о гидрогеологическом режиме водного объекта не проведены.

Динамика фоновых концентраций загрязняющих веществ

Загрязняющее	Концентрац	ция ЗВ					Средняя	ЭНК
вещество (ЗВ)	1 год		2 год		3 год	за 3 года		
	I	II	I	II	I	II		
	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие		
1	2	3	4	5	6	7	8	9

Отсутсвуют, в связи с тем, что по существующему состоянию среды карьер не вскрыт горными работами

Предпологаемые результаты инвентаризации выпусков сточных вод

Наименование предприятия (участка, цеха)	Номер выпуска сточных вод	Диаметр выпуска, м	Категория сбрасываемых сточных вод	отве	ежим едения ных вод сут./год	сбрасы	еход ваемых ых вод м3/год	Место сброса (приемник сточных вод)	Наименование загрязняющих веществ	конце:	погаемая грация изющих общих общих общих общем.
Месторождение	1	0,25	Сточные воды	24	365	2,53	22192	Пруд-	Минерализация	1000	1000
Мета			из карьера					испаритель	(сухой остаток)		
									Общая	7,0	7,0
									жесткость		
									Алюминий	0,5	0,5
									Барий	0,7	0,7
									Бериллий	0,0002	0,0002
									Бор	0,5	0,5
									Кремний	10,0	10,0
									Литий	0,03	0,03
									Мышьяк	0,05	0,05
									Ртуть	0,0005	0,0005
									Селен	0,01	0,01
									Стронций	7,0	7,0
									Железо	0,3	0,3
									Марганец	0,1	0,1
									Нефтепродукты	0,1	0,1
									Поверхностно-	0,5	0,5
									активные		
									вещества (ПАВ)		

^{*} в свящи отсутсвием гидрогеологических исселдовании, представлены предпологаемые ЗВ.

Расчет нормативов допустимого сброса загрязняющих веществ

Расчет предельно-допустимых сбросов загрязняющих веществ выполнен на основании «Методики определения нормативов эмиссий в окружающую среду» приказом Министра охраны окружающей среды РК от 10 марта 2021 года № 63 в соответствии с разделом 3, «Расчет нормативов сбросов загрязняющих веществ» и программой комплекс «ЭРА-Вода» версии 1.0.

Согласно п.74 методики, в случае, если конечным водоприемником сточных вод является накопитель замкнутого типа, то есть когда нет открытых водозаборов воды на орошение или не осуществляются сбросы части стоков накопителя в реки или другие природные объекты, расчет допустимой концентрации производится по формуле:

$$C_{\text{пдс}} = C_{\phi \text{акт}},$$

где $C_{\phi a \kappa \tau}$ — фактический сброс загрязняющих веществ, мг/л.

Пояснения к таблицам расчета:

Сфакт - фактическая концентрация вещества в сточных водах

Сфон - фоновая концентрация вещества в водном объекте- приемнике сточных вод;

Снорм - нормативное значение вещества (по умолчанию равно предельно-допустимой концентрации вещества (ПДК) для данной категории водопользования приемника сточных вод);

Сфон/Снорм - отношение фоновой концентрации вещества в сточных водах к его нормативному значению;

Скс/Снорм - отношение расчетной концентрации вещества в контрольном створе водопользования к его нормативному значению;

Сидс - расчетная (предельно-допустимая) концентрация вещества в сточных водах;

НДС (г/час) - нормативно-допустимый сброс вещества (грамм в час);

НДС (т/год) - нормативно-допустимый сброс вещества (тонн в год);

Скс - средняя концентрация вещества в граничном сечении.

Норматив предельно - допустимого сброса загрязняющих веществ рассчитывается по формуле:

ПДС =
$$M^3/\text{час} * C_{\phi \text{акт}} = \Gamma/c$$

ПДС = $M^3/\text{год} * C_{\phi \text{акт}/10}^6 = T/\Gamma$

Предпологаемый расход сточных вод для установления НДС (м.куб/час): 2,53

Предпологаемый расход сточных вод для установления НДС (м.куб/сут): 60,8

Предпологаемый расход сточных вод для установления НДС (тыс.м.куб/год): 22192

Расчет нормативов предельно-допустимых сбросов сточных вод

			1 , ,	•	•		, ,
Показатели	ПДК,	Предпологаемая	фоновые	расчетные	нормы	утвержде	ный ПДС
загрязнения	$M\Gamma/дM^3$	концентрация,	концентрации	концентрации	ПДС	г/час	т/год
		$M\Gamma/дM^3$	мг/ дм3	мг/ дм3	мг/		
					дм ³		
1	2	3	4	5	6	7	8
Минерализация	1000	1000	0	0	1000	2530	22,192
(сухой остаток)	1000	1000	U	U	1000	2550	22,192
Общая	7,0	7,0	0	0	7,0	17,71	0,155344
жесткость	7,0	7,0	U	U	7,0	17,71	0,133344
Алюминий	0,5	0,5	0	0	0,5	1,265	0,011096
Барий	0,7	0,7	0	0	0,7	1,771	0,0155344
Бериллий	0,0002	0,0002	0	0	0,0002	0,000506	0,0000044384
Бор	0,5	0,5	0	0	0,5	1,265	0,011096
Кремний	10,0	10,0	0	0	10,0	25,3	0,22192

124

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

Литий	0,03	0,03	0	0	0,03	0,0759	0,00066576
Мышьяк	0,05	0,05	0	0	0,05	0,1265	0,0011096
Ртуть	0,0005	0,0005	0	0	0,0005	0,001265	0,000011096
Селен	0,01	0,01	0	0	0,01	0,0253	0,00022192
Стронций	7,0	7,0	0	0	7,0	17,71	0,155344
Железо	0,3	0,3			0,3	0,759	0,0066576
Марганец	0,1	0,1	0	0	0,1	0,253	0,0022192
Нефтепродукты	0,1	0,1			0,1	0,253	0,0022192
Поверхностно- активные вещества (ПАВ)	0,5	0,5	0	0	0,5	1,265	0,011096

Предпологаемый нормативно – допустимый сброс и состав сточных вод

			<u> </u>			
№	Загрязняющие	Предпологаемая	Предпологаемый	Предпологаемая	Предпологаемый	Предпологаемый
п/п	вещества	концентрация,	сброс, г/час	допустимая	сброс, г/час	допустимый
	сточных вод	$M\Gamma/дM^3$		концентрация,		сброс, т/год
				мг/дм ³		
1	Минерализация	1000	2530	1000	2530	22,192
	(сухой остаток)	1000	2330	1000	2330	22,192
2	Общая	7,0	17,71	7,0	17,71	0,155344
	жесткость		17,71	7,0	17,71	0,133344
3	Алюминий	0,5	1,265	0,5	1,265	0,011096
4	Барий	0,7	1,771	0,7	1,771	0,0155344
5	Бериллий	0,0002	0,000506	0,0002	0,000506	0,0000044384
6	Бор	0,5	1,265	0,5	1,265	0,011096
7	Кремний	10,0	25,3	10,0	25,3	0,22192
8	Литий	0,03	0,0759	0,03	0,0759	0,00066576
9	Мышьяк	0,05	0,1265	0,05	0,1265	0,0011096
10	Ртуть	0,0005	0,001265	0,0005	0,001265	0,000011096
11	Селен	0,01	0,0253	0,01	0,0253	0,00022192
12	Стронций	7,0	17,71	7,0	17,71	0,155344
13	Железо	0,3	0,759	0,3	0,759	0,0066576
14	Марганец	0,1	0,253	0,1	0,253	0,0022192
15	Нефтепродукты	0,1	0,253	0,1	0,253	0,0022192
16	Поверхностно-					
	активные	0.5	1 265	0.5	1 265	0.011006
	вещества	0,5	1,265	0,5	1,265	0,011096
	(ПАВ)					

Предпологаемые нормативы сбросов загрязняющих веществ пруд – испаритель м-я Мета

								_		стисств п сбросов загря					<u> </u>		
			Сущес	твующее п	оложение				на 2024-20	032 гг.				НД	С		
Номер выпуска сточных вод	Наименовани е показателя		сход ных вод	Концен трация на выпуск е,	Сбр	оос		сточных вод	Допуст имая концент рация на выпуск	Сбұ	оос		сход ных вод	Допуст имая концент рация на выпуск	Сбрс	oc	Год дост ижен ия
		м ³ /ч	тыс. м ³ /год	мг/дм ³	г/час	т/год	м ³ /ч	тыс. м ³ /год	е, мг/дм ³	г/час	т/год	м ³ /ч	тыс. м ³ /год	е, мг/дм ³	г/час	т/год	
Пруд- испаритель карьер Мета	Минерализ ация (сухой остаток)			-	-	-			1000	2530	22,192			1000	2530	22,192	2024
	Общая жесткость			-	-	-			7,0	17,71	0,15534 4			7,0	17,71	0,1553 44	2024
	Алюминий			-	-	-			0,5	1,265	0,01109 6			0,5	1,265	0,0110 96	2024
	Барий			-	-	-			0,7	1,771	0,01553 44			0,7	1,771	0,0155 344	2024
	Бериллий			-	-	-			0,0002	0,000506	0,00000 44384			0,0002	0,000506	0,0000 044384	2024
	Бор	-	-	-	-	-	2,53	22192	0,5	1,265	0,01109	2,53	22192	0,5	1,265	0,0110 96	2024
	Кремний			-	-	-			10,0	25,3	0,22192			10,0	25,3	0,2219	2024
	Литий			-	-	-			0,03	0,0759	0,00066 576			0,03	0,0759	0,0006 6576	2024
	Мышьяк			-	-	-			0,05	0,1265	0,00110 96			0,05	0,1265	0,0011 096	2024
	Ртуть			-	-	-			0,0005	0,001265	0,00001 1096			0,0005	0,001265	0,0000 11096	2024
	Селен			-	-	-			0,01	0,0253	0,00022 192			0,01	0,0253	0,0002 2192	2024
	Стронций			-	-	-			7,0	17,71	0,15534 4			7,0	17,71	0,1553 44	2024

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

	459
1	
,	

Желез	•			-	-	-			0,3	0,759	0,00665 76			0,3	0,759	0,0066 576	2024
Марга	ец -	-		-	-	-			0,1	0,253	0,00221 92			0,1	0,253	0,0022 192	2024
Нефте:	ірод	-		-	-	ı			0,1	0,253	0,00221 92			0,1	0,253	0,0022 192	2024
Поверх тно- активн вещест (ПАВ)	ые -	-		-	ı	ı			0,5	1,265	0,01109			0,5	1,265	0,0110 96	2024
Всего:	-		-	-	-	-	2,53	22192		2597,78047 1	22,78653 92144	2,53	22192		2597,78047 1	22,7865 392144	

7.2.5 Мероприятия по снижению воздействия на водные объекты

Для предотвращения возможных отрицательных воздействий при ведении работ по добыче полезных ископаемых на водные ресурсы, настоящим проектом предусмотрены водоохранные мероприятия, согласно требований Водного Кодекса РК.

Водные объекты подлежат охране с целью предотвращения:

- нарушения экологической устойчивости природных систем;
- причинения вреда жизни и здоровью населения;
- уменьшения рыбных ресурсов и других водных животных;
- ухудшения условий водоснабжения;
- снижения способности водных объектов к естественному воспроизводству и очищению;
 - ухудшения гидрологического и гидрогеологического режима водных объектов;
- других неблагоприятных явлений, отрицательно влияющих на физические, химические и биологические свойства водных объектов.

Мероприятия по охране поверхностных вод от загрязнения, засорения и истощения включают в себя следующее:

- внедрение технически обоснованных норм водопотребления;
- сбор хозяйственно-бытовых стоков в специальный герметичный выгреб с последующей откачкой и вывозом в специальные места;
- туалеты с выгребными ямами для сточных вод, обсаженные железобетонными плитами, которые ежедневно дезинфицируются, периодически промываются каналопромывочной машиной и вычищаются ассенизационной машиной, содержимое вывозится в специализированные места. В целях гидроизоляции предусмотрена обмазка блоков горячим битумом за два раза;
- планировка территории с целью организованного отведения ливневых стоков с площадки предприятия;
- при производстве работ предусмотрены механизмы и материалы исключающие загрязнения территории;
- не осуществлять сбросов производственных сточных вод непосредственно в подземные и поверхностные водные объекты прилегающей территории;
- заправка механизмов на участках горных работ топливом и маслом предусматривается топливозаправщиком, оборудованным специальными наконечниками на наливных шлангах, с применением маслоулавливающих поддонов, а также установкой специальных емкостей для опускания в них шлангов во избежание утечки горючего;
- сбор всех видов образующихся отходов в специальные емкости или контейнеры с последующим вывозом по договорам со специализированными организациями.

Соблюдение этих мероприятий сведет к минимуму отрицательное воздействие от проведения работ.

Эксплуатация месторождений не приведет к загрязнению водных объектов через сброс или диффузно через поверхность земли и воздух, в связи с выполнением предусмотренным проектом водоохранных мероприятий.

7.2.6 Методы и средства контроля за состоянием водных объектов

Организация экологического мониторинга поверхностных и подземных вод проектом не предусматривается ввиду отдаленостью от поверхностного водного объекта и отсутствии подземных вод

7.2.7 Общие выводы

Проектируемый объект не предполагает забор воды из поверхностных водных источников и сбросов непосредственно в поверхностные и подземные водные объекты, поэтому прямого воздействия на водные ресурсы не оказывает. Также намечаемая деятельность не предполагает загрязнение токсичными компонентами подземных вод.

При реализации указанного проекта и выполнении предложенных мероприятий по охране поверхностных и подземных водных ресурсов ущерба водным источникам от объекта не ожидается.

7.3. Оценка ожидаемого воздействия на недра

Геологическая среда является системой чрезвычайной сложности и в сравнении с другими составляющими окружающей среды, обладает некоторыми особенностями, определяющими специфику геоэкологических прогнозов, важнейшими из которых являются:

- Необратимость процессов, вызванных внешними воздействиями (полная и частичная). О восстановлении состояния и структуры геологической среды после их нарушений можно говорить с определенной долей условности лишь по отношению к подземным водам, частично почвам.
- Инерционность, т. е. способность в течение определенного времени противостоять действию внешних факторов без существенных изменений своей структуры и состояния.
- Разная по времени динамика формирования компонентов полихронности. Породная компонента, сформировавшаяся, в основном, в течение многих миллионов лет находится, в равновесии (преимущественно статическом) с окружающей средой, газовая компонента более динамична, промежуточное положение занимают почвы.
- Низкая способность к саморегулированию или самовосстановлению по сравнению с биологической компонентой экосистем.

В результате техногенных воздействий на геологическую среду при производстве различных работ в ней происходят или могут происходить изменения, существенным образом меняющие ее свойства.

Оценка воздействия на геологическую среду базируется на требованиях к охране недр, включающих систему правовых, организационных, экономических, технологических и других мероприятий, направленных на сохранение свойств энергетического состояния верхних частей недр с целью предотвращения землетрясений, оползней, подтоплений, просадок грунтов.

Мероприятия на воздействия недра:

- 1. Осуществлять работы в пределах географических координат;
- 2. Добычные работы производить в соответствии проектным решениям;
- 3. Осуществлять добычу в пределах утвержденных запасов полезного ископаемого;
- 4. Предусмотреть возможность заполнить вынутую горную массу вскрышными породами.

Выводы. При проведении работ, предусмотренных Планом горных работ при эксплуатации объекта каких-либо нарушений геологической среды не ожидается. Работы на объекте планируется проводить в пределах контуров горного отвода ТОО «GOLDENPIT». Технологические процессы в период эксплуатации месторождения не выходят за пределы территории предприятия, что исключает какое-либо негативное воздействие на компоненты окружающей среды.

7.4. Оценка ожидаемого воздействия на земельные ресурсы и почвы 7.4.1. Условия землепользования

Земельный участок, отведенный для добычи свободен от землепользователей.

Участок располагается на значительном удалении от жилых застроек. Строений и лесонасаждений, подлежащих сносу или вырубке, на отведенной территории нет.

На земельном участке предполагается антропогенный физический фактор воздействия, который характеризуется механическим воздействием на почво-грунты (добычны работы, движение автотранспорта, т.п.).

План организации рельефа участка разработан с учетом прилегающей территории и решен исходя из условий разработки минимального объема земляных работ, обеспечения водоотвода с рельефа местности и защиты грунтов от замачивания и заболачивания.

Минимизация площади нарушенных земель будет обеспечиваться тем, что будет контролироваться режим землепользования и не допущения производства каких-либо работ за пределами установленных границ земельного участка.

7.4.2. Мероприятия по снижению воздействия на земельные ресурсы и почвы

Согласно статьи 238 Экологического кодекса РК физические и юридические лица при использовании земель не должны допускать загрязнение земель, захламление земной поверхности, деградацию и истощение почв.

При выполнении работ, с целью снижения негативного воздействия на почвенный покров необходимо предусмотреть следующие технические и организационные мероприятия:

- соблюдать нормы и правила, включая соблюдение норм отвода земли и исключая нарушение почвенного покрова вне зоны отвода;
- исключить попадание в почвы отходов вредных материалов используемых в ходе работ;
 - выполнить устройство гидроизоляции сооружений;
- складировать отходы на специально оборудованных площадках, с последующим вывозом согласно заключенных договоров.

7.4.3. Методы и средства контроля за состоянием земельных ресурсов и почв

Организация мониторинга за состоянием земельных ресурсов и почв при реализации проектных решений не предусматривается.

7.4.4. Общие выводы

При оценке ожидаемого воздействия на земельные ресурсы и почвенный покров в части химического загрязнения прогнозируется, что при реализации проектных решений загрязнение земельных ресурсов и почв не ожидается. Загрязнение почвенного покрова отходами производства также не ожидается, в виду того, что отходы будут строго складироваться в специальных контейнерах, с недопущением разброса мусора по территории участка.

При эксплуатации месторождения значительного воздействия на почво-грунты и земельные ресурсы не прогнозируется. При выполнении проектных решений и предложенных мероприятий по охране почвенного покрова ущерба не ожидается.

7.5. Оценка ожидаемых физических воздействий на окружающую среду

К физическим факторам, действующим на урбанизированных территориях, относятся шум, а также искусственные физические поля (вибрационные,

130

электромагнитные, температурные). Источники шума и искусственных физических полей, с одной стороны, стохастически распределены по всей территории (транспортные магистрали, тепловые и электрические коммуникации и т.п.), а с другой — могут быть сосредоточены на ограниченных по площади участках в пределах городских территорий (крупное промышленное производство, ТЭЦ, телевизионные башни, железнодорожные узлы и др.). В зависимости от этого потенциал воздействия источников шума и физических полей может изменяться в широких пределах и достигать значительных величин.

Физическое загрязнение связано с изменениями физических, температурноэнергетических, волновых и радиационных параметров внешней среды. Различают следующие виды физического загрязнения: тепловое, световое, электромагнитное, шумовое, вибрационное, радиактивное.

Температурное (тепловое) загрязнение. Важным метеоэлементом окружающей среды является температура, особенно в сочетании с высокой или очень низкой влажностью и скоростью ветра. Тепловое загрязнение определяется влиянием тепловых полей на окружающую среду. Отрицательное воздействие тепла обнаруживается путем повышения тепловых градиентов, что влечет за собой изменение энергетических процессов в компонентах окружающей среды.

Тепловое загрязнение на территории исследуемого объекта в основном связано с работой теплоэнергетических агрегатов. Выбросы тепла в окружающую среду достаточно быстро рассеиваются на большие пространства и не оказывают существенного влияния на экологическую обстановку прилегающих к исследуемому объекту территорий.

Электромагнитное загрязнение — изменение электромагнитных свойств окружающей среды. Естественными источниками такого загрязнения являются постоянное электрическое и магнитное поля Земли, радиоволны, генерируемые космическими источниками (Солнце, звезды), электрические процессы в атмосфере (разряды молний).

Искусственными источниками являются — высоковольтные линии электропередач, радиопередач, теле- и радиолокационные станции, электротранспорт, трансформаторные подстанции, бытовые электроприборы, компьютеры, СВЧ-печи, сотовые и радиотелефоны, спутниковая радиосвязь и т.п.

В период эксплуатации месторождения воздействие электромагнитных полей на компоненты окружающей среды будет незначительным. На объекте будет применяться электротехника современного качества, а также современные технологии, обеспеченные средствами защиты от электромагнитного излучения.

Для защиты работающего персонала от поражения электрическим током предусмотрено заземление и зануление металлических конструкций и электроустановок.

Световое загрязнение — нарушение естественной освещенности среды. Приводит к нарушению ритмов активности живых организмов. Использование на территории объекта современного светового оборудования исключает возможность светового загрязнения.

Для снижения светового воздействия необходимо: отключение неиспользуемой осветительной аппаратуры и уменьшение до минимального количества освещения в нерабочее время; правильное ориентирование световых приборов общего, дежурного, аварийного, охранного и прочего освещения; снижение уровня освещенности на участках временного пребывания людей.

Шумовое и вибрационное загрязнение. Шумовое загрязнение — раздражающий шум антропогенного происхождения, нарушающий жизнедеятельность живых организмов и человека. Основные источники шума на исследуемом объекте — производственное

оборудование и транспорт. Вибрационное загрязнение — возникает в результате работы разных видов транспорта и вибрационного оборудования.

Максимальные уровни шума и вибрации от всего оборудования при работах горнотранспортного оборудования не будут превышать предельно допустимых уровней, установленных Гигиеническими нормативами к физическим факторам, оказывающим воздействие на человека, утвержденных приказом Министра здравоохранения Республики Казахстан № ҚР ДСМ-15 от 16.02.2022 г.

Для борьбы с шумом и вибрационными колебаниями предусматривается ряд мероприятий по ограничению шума и вибрации:

- использование строительных машин и оборудования, имеющих сертификаты соответствия и разрешенных к применению в РК;
- содержание оборудования в надлежащем порядке, своевременное проведение технического осмотра и ремонта, правильное осуществление монтажа вращающихся и движущихся деталей частей оборудования и тщательная их балансировка;
- поддержание в рабочем состоянии шумогасящих и виброизолирующих устройств основного технологического оборудования.
- применение эластичных амортизаторов, своевременное восстановление (замена) изношенных деталей;
 - обеспечение работающего персонала средствами индивидуальной защиты;
- прохождение работниками, занятыми при эксплуатации объекта, медицинского осмотра;
 - сокращение времени пребывания в условиях шума и вибрации.

Радиационное загрязнение — превышение природного радиоактивного уровня среды. Радиационная безопасность персонала, населения и окружающей природной среды обеспечивается в соответствии с Законом Республики Казахстан «О радиационной безопасности населения» и с санитарными правилами № ҚР ДСМ-275/2020 от 15.12.2020 г. «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности».

Радиационно-гигиеническая оценка песчаников с позиции требований НРБ-96 к строительным материалам, проведена в соответствии с методикой рекомендованной «Временными методическими указаниями по радиационно-гигиенической оценке полезных ископаемых при производстве. геологоразведочных работ на месторождениях строительных материалов», утвержденных бывшими МГ СССР и ГКЗ СССР. Основными критериями при этом являлись данные замеров гамма-активности пород в карьерах и шурфах. Знамения гамма-активности песчаников в пределах оконтуренной продуктивной толщи весьма малы и варьируют в пределах 7-13мкР/ч.

Проведенными радиологическими испытаниями 5 проб песчаников установлено, что удельная эффективная активность Аэфф составляет 56Бк/кг (норма по НД 370Бк/кг).

Строительные материалы должны отвечать требованиям гигиенических нормативов «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» и закону РК «О радиационной безопасности населения».

Контроль за содержанием природных радионуклидов в сырьевых материалах (песок, щебень) осуществляет организация-производитель. Значения удельной активности природных радионуклидов и класс опасности должны указываться в сопроводительной документации (паспорте) на каждую партию материалов и изделий.

Специальных мероприятий по радиационной безопасности населения и работающего персонала при работе предприятия не требуется

Выводы. При соблюдении предусмотренных проектных решений при эксплуатации месторождения вредные факторы физического воздействия на окружающую среду исключаются.

7.6. Оценка ожидаемого воздействия на растительный и животный мир

Рассматриваемая территория находится вне земель государственного лесного фонда и особо охраняемых природных территорий Республики Казахстан. Реликтовая растительность, а также растительность, занесенная в Красную Книгу РК, на исследуемой территории отсутствует. Также на территории намечаемой деятельности отсутствуют гнездовья редких птиц, а также животные занесенные в Красную Книгу РК.

Для минимизации негативного воздействия на объекты растительного и животного мира необходимо предусмотреть следующие мероприятия:

- не допускать расширения производственной деятельности за пределы отведенного земельного участка;
- строго соблюдать технологию ведения работ по производству, использовать технику и оборудование с минимальным шумовым уровнем;
 - запрещать перемещение автотранспорта вне проезжих мест;
 - соблюдать установленные нормы и правила природопользования;
- проводить просветительскую работу экологического содержания в области бережного отношения и сохранения растительного и животного мира;
 - проводить озеленение и благоустройство территории предприятия.
- озеленение территорий административно-территориальных единиц, увеличение площадей зеленых насаждений, посадок на территориях предприятий, вокруг больниц, школ, детских учреждений и освобождаемых территориях, землях, подверженных опустыниванию и другим неблагоприятным экологическим факторам;

Выводы. В целом воздействие намечаемой деятельности на природное состояние растительного и животного мира оценено как незначительное и не приведет к необратимым последствиям. Проектируемый объект находится на территории существующего промышленного объекта.

Так как количество и токсичность выбросов загрязняющих веществ проектируемого объекта будет ниже допустимых нормативов, а сброс в окружающую среду не предусматривается, то дополнительное отрицательное воздействие на растительный и животный мир отсутствует.

При условии выполнения всех природоохранных мероприятий отрицательное влияние на растительный и животный мир исключается. Программа мониторинга за наблюдением растительного и животного мира не требуется.

7.7. Оценка ожидаемого воздействия на социально-экономическую среду

В административном отношении месторождение расположена в Целиноградском районе, Акмолинской области.

Прогноз социально-экономических последствий от деятельности предприятия – благоприятный. Проведение работ с соблюдением норм и правил техники безопасности, промышленной санитарии, противопожарной безопасности обеспечит безопасное проведение планируемых работ и не вызовет дополнительной, нежелательной нагрузки на социально-бытовую сферу.

Согласно расчетам списочная численность персонала участка горных работ составит 20 человек.

Явочный состав трудящихся на предприятии представлен в таблице 7.7.1.

Таблица 7.7.1

Явочный состав трудящихся на карьере

NºNº	Наименование	Кол-во				
п/п						
1	Директор	1				
2	Бухгалтер	1				
3	Начальник карьера	1				
4	Горный мастер	1				
5	Маркшейдер	1				
6	Машинист экскаватора Komatsu CAT 330	2				
7	Водители автосамосвалов Камаз	4				
8	Машинист бульдозера Shantui SD 22	2				
9	Машинист погрузчика ZL-50G	2				
10	Водители вспомогательных машин	2				
11	Механик	1				
12	Охранник	2				
Итого	Итого по карьеру 20					

7.7.1 Санитарно-бытовое обслуживание

Питание обслуживающего персонала будет осуществляться в специальных термосах, расположенной территории промплощадки карьера.

Промышленная площадка предприятия TOO «GOLDENPIT» расположена за пределами площади проведения добычи вдоль автодороги. Промышленная площадка включает: пункт охраны, нарядную, столовую, открытую автостоянку, туалет, резервуар для пожаротушения.

Планом предусматривается обваловка месторождений по контуру карьера буртами ПРС, где возможен прорыв талых вод в карьер.

После получения согласований проектных решений в уполномоченных органах, будет заключен договор со специализированной организацией занимающейся вывозом и утилизацией жидких бытовых отходов.

Ha предусмотрено обязательное карьере ежедневное медицинское освидетельствование. Целью обязательного предсменного медицинского освидетельствования является комплексная оценка физического, психоэмоционального и психологического состояния работников, их трудоспособности на момент поступления на работу. Наблюдение за состоянием здоровья работников производится путем измерения артериального давления и температуры, определения наличия признаков алкогольного либо наркотического опьянения. В случае определения опьянения составляется акт и отстранение работника от работы производится приказом директора на основании заключения медицинского работника.

Медицинское обслуживание предусмотрено осуществлять в медпункте ближайшего населенного пункта.

На участке и на основных горных и транспортных агрегатах должны быть аптечки первой медицинской помощи.

Ремонтное хозяйство. В период отработки месторождения строительство капитальных и временных цехов, ремонтных мастерских не планируется. Текущий и капитальный ремонт основного горнотранспортного и вспомогательного оборудования будет производиться на договорной основе в специализированных станциях технического обслуживания (СТО), за пределами промплощадки карьера и предприятия.

Хранение горюче-смазочных материалов. В период отработки месторождения

строительство стационарных и установка передвижных автозаправочных станций не планируется.

ГСМ ежедневно будет завозиться топливозаправщиком с ближайших АЗС. Заправка технологического оборудования будет производиться ежедневно на специализированной площадке.

Не планируется строительство складов Γ CM, складов хранения запасных частей и агрегатов, хранение Γ CM также не предусматривается.

Теплоснабжение. Обогрев помещения – не предусматривается.

Энергоснабжение карьера. Энергоснабжение карьера планом не предусматривается. Сторож в темное время суток пользуется аккумуляторным фонарем.

7.7.2 Прогноз изменений социально-экономических условий жизни населения при реализации намечаемой деятельности

Социально-экологические последствия. При оценке воздействия на окружающую среду рассмотрены и проанализированы следующие виды влияния:

- загрязнение почвы, воздушного бассейна в результате пыления и работы транспорта;
 - физическое воздействие изъятие земель, изменение ландшафта;
- воздействие на водоемы, на животный и растительный мир, на состояние здоровья населения.

Оценка уровня воздействия на компоненты окружающей среды осуществлялась на основе сопоставления фактического уровня загрязнения экосистемы вредными веществами с существующими санитарно-гигиеническими нормами ПДК.

По результатам расчетов выбросов загрязняющих веществ и их рассеивании в приземном слое атмосферы, превышений ПДК на границе СЗЗ нет. Следовательно, влияние объекта оценивается как допустимое.

Социально-экономические последствия. Говоря о последствиях, которые будут иметь место в результате проведения работ на месторождении, стоит отметить такие положительные моменты как обеспечение занятости населения, сокращение безработицы, уплата различных налогов местным учреждениям и т.п.

Проведение работ на месторождении окажет положительный эффект на существующие социально-экономические структуры района:

- повысится занятость населения (обслуживающий персонал производственных объектов), снизится безработица;
- возрастут бюджетные поступления за счет прямых налогов, платежей, отчислений с предприятия и отчислений подоходного налога работников.

Проведение работ на рассматриваемом объекте, размах намечаемых действий предопределяет то, что проведение работ будет иметь большое значение в социально-экономической жизни района, с точки зрения занятости местного населения.

В течение реализации данного проекта, предполагается, что дополнительная требуемая рабочая сила составит 20 человек.

За исключением нескольких специалистов, связанных с производством работ и имеющих необходимый опыт, остальные работники и рабочие предприятия будут набираться из местного населения. Этот фактор окажет позитивное значение на социально-экономические условия жизни населения прилегающих районов.

Таким образом, влияние работ на социально-экономические аспекты оценено как позитивно-значительное, как для экономики PK, так и для создания дополнительных рабочих мест и трудоустройства местного населения.

В целом, воздействие производственной и хозяйственной деятельности на окружающую среду в районе участка оценивается как вполне допустимое при несомненно крупном социально-экономическом эффекте — обеспечении занятости населения, с вытекающими из этого другими положительными последствиями.

Санитарно-эпидемиологическое состояние территории и прогноз его изменений в результате намечаемой деятельности. Влияние проведения работ на здоровье человека и санитарно-эпидемиологическое состояние территории может осуществляться через две среды: гидросферу и атмосферу.

В состав выбросов при проведении работ входят вещества, преимущественно от работающей карьерной техники и автотранспорта.

Анализ результатов расчетов приземных концентраций показал, что превышение ПДКм.р. на границе санитарно-защитной зоны по всем рассматриваемым ингредиентам и группам суммаций не зафиксировано.

Для сбора хоз. фекальных стоков устанавливаются туалеты с выгребной ямой с водонепроницаемыми основанием и стенками. По мере накопления сточные воды вывозятся на ближайшие очистные сооружения по договору.

При проведении работ на месторождении дополнительного воздействия на население и его здоровье не произойдёт, и допустимого влияния на атмосферный воздух и водный бассейн. Воздействие на здоровье населения оценивается как *допустимое*.

7.8 Оценка приемлемого риска для здоровья человека

7.8.1 Общее представление о риске

Термин риск используется в разных сферах человеческой деятельности, в основном характеризуя негативные проявления в окружении человека. Например, слово «риск» означает: пускаться наудачу, отважиться, отдать себя на волю случая. С другой стороны, рисковать — значит подвергаться опасности, ожидать неудачу.

Понятие риска очень близко к понятию «вероятность». Исходя из теории вероятности, можно определить риск как количественный показатель опасности, вероятного ущерба, наступившего в результате проявления неблагоприятного события. При этом само событие тоже возникает с определенной вероятностью. Поэтому в целом к количественным показателям риска относятся:

- вероятность возникновения опасного фактора;
- возможность возникновения ущерба от проявления этого опасного фактора;
- неопределенность в оценке величины вероятности и ущерба.

Таким образом, в основе количественной оценки риска лежит статистический подход, который рассматривает риск как вероятность наступления неблагоприятного события и количественной меры проявления такого события в виде ущерба.

В современной экологии и гигиенической науке риск рассматривается как вероятность наступления события с неблагоприятными последствиями для окружающей среды или здоровья людей, обусловленными прогнозируемым негативным воздействием природных катаклизмов, хозяйственной деятельности, которое может привести к возникновению угроз экологической безопасности или здоровью населения.

Одним из важнейших показателей в анализе риска является так называемый *приемлемый риск*. Приемлемый риск — это риск, который общество может принять или согласиться с такой величиной на данном этапе своего исторического развития.

Приемлемый риск - это такой риск, который в данной ситуации (при данных обстоятельствах, при данном уровне развития науки и технологий) допустим при существующих общественных ценностях. Социально приемлемый риск оценивает не

только и не столько абсолютные значения риска с учетом многих аспектов жизнедеятельности, сколько существующие тенденции роста или снижения рисков различных консервативных и новых видов деятельности, принимаемых обществом.

Приемлемый риск уместно определять на различных уровнях - от организации отрасли экономики до государства.

Необходимость формирования концепции приемлемого (допустимого) риска абсолютно невозможностью создания безопасной (технологического процесса). Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты. На практике это всегда компромисс между достигнутым в обществе уровнем безопасности (исходя из показателей смертности, травматизма, инвалидности) и возможностями заболеваемости. технологическими, экономическими. организационными другими методами. Экономические возможности повышения безопасности технических и социотехнических систем не безграничны. Так, на производстве, затрачивая чрезмерные средства на повышение безопасности технических систем, можно ослабить финансирование социальных программ производства (сокращение затрат на приобретение спецодежды, медицинское обслуживание, санаторно-курортное лечение и др.).

Пример определения приемлемого риска представлен на рис. 3. При увеличении затрат на совершенствование оборудования технический риск снижается, но растет социальный. Суммарный риск имеет минимум при определенном соотношении между инвестициями в техническую и социальную сферу. Это обстоятельство надо учитывать при выборе приемлемого риска. Подход к оценке приемлемого риска очень широк. Так, график, представленный на рис. 4, в одинаковой мере приемлем как для государства, так и для конкретной организации. Главным остается в первом случае выбор приемлемого риска для общества, во втором - для коллектива организации.

В настоящее время с учетом международной практики принято считать, что действие техногенных опасностей (технический риск) должно находиться в пределах от 10^{-7} - 10^{-6} (смертельных случаев чел⁻¹ · год⁻¹), а величина 10^{-6} является максимально приемлемым уровнем индивидуального риска. В казахстанском законодательстве в области безопасности эта величина используется для оценки пожарной безопасности и радиационной безопасности.

Мотивированный (обоснованный) и немотивированный (необоснованный) риск. В случае производственных аварий, пожаров, в целях спасения людей, пострадавших от аварий и пожаров, человеку приходится идти на риск. Обоснованность такого риска определяется общественной необходимостью оказания помощи пострадавшим людям, служебной обязанностью, личным желанием спасти от разрушения дорогостоящее оборудование или сооружения предприятия.

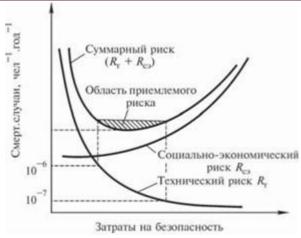


Рис. 3 Определение приемлемого риска

В то же время, пренебрежение человеком выявленных опасностей приводит к ситуациям, связанным с индивидуально и общественно неоправданным рискам. Так, нежелание работников на производстве руководствоваться действующими требованиями безопасности технологических процессов, неиспользование средств индивидуальной защиты и т.п. может сформировать необоснованный риск, как правило приводящий к травмам и формирующий предпосылки аварий на производстве.

На рис. 3.1 показана одна из возможных форм представления качественной оценки риска для различных видов и продуктов человеческой деятельности.

Рис. 5.1. Качественные оценки риска различных сфер и продуктов деятельности человека (общественное мнение граждан и средств массовой информации по проблемам управления рисками и снижения рисков)

Из рисунка видно, что обыденные представления о риске возможных неблагоприятных последствий, связанных с жизнью или здоровьем человека, включают в себя самые разнообразные аспекты и существенно зависят от принятых во внимание признаков - длительности воздействия, оправданности, тяжести последствий и т.д.

7.8.2 Количественные показатели риска

При проведении декларирования опасных производственных объектов следует рассматривать следующие количественные показатели риска:

Индивидуальный риск — частота поражения отдельного индивидуума в результате воздействия исследуемых факторов опасности.

Коллективный риск — ожидаемое количество смертельно травмированных в результате возможных аварий за определенный период времени.

Социальный риск – зависимость частоты событий, в которых пострадало на том или ином уровне число людей, больше определенного, от этого определенного числа людей.

Потенциальный территориальный риск — пространственное распределение частоты реализации негативного воздействия определенного уровня.

7.8.3. Определение риска для здоровья рабочих карьера

Определим риск для здоровья населения от загрязнения окружающей среды в результате выбросов стационарных источников при нормальном функционировании карьера. Основным загрязняющим веществом при эксплуатации предприятия является пыль неорганическая 70-20% двуокиси кремния (твердые вещества, менее 10 мкм). Таким образом, согласно таблице 7.8.3.1, диапазон риска находится в пределах $10^{-4}-10^{-3}$, что соответствует *среднему уровню риска*, *который* допустим для производственных условий.

Таблица 7.8.3.1

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СТЕПЕНИ РИСКА СМЕРТИ ДЛЯ НАСЕЛЕНИЯ [17]

Факторы опасности	Диапазон риска
для здоровья	< 10-7 10-6 10-5 10-4 10-3 10-2>
Загрязнение атмосферного воздуха: Взвешенные вещества Диоксид азота Мышьяк Кадмий Винилхлорид Никель Бензол Бенз(а)пирен Формальдегид	
Болезни со смертельным исходом: Заболевания сердца Злокачественные новообразования Заболевания сосудов мозга Бронхит хронический Диабет сахарный Алкоголизм хронический	X XX X X X X X X X X X X X X X X X X X
Самоубийства и самоповреждения: Убийства Несчастные случаи: автомототранспорт падения утопления пожары, ожоги прочие	X X X X X X
Природные явления: Наводнения, цунами Землетрясения Тайфуны, циклоны, бури Грозы Ураганы, торнадо	

Таблица 7.8.3.2

Градация уровней риска Всемирной Организацией Здравоохранения на 2000 г.

Качественный уровень риска	Величина
качественный уровень риска	индивидуального пожизненного риска
Высокий (De Manifestis) – не приемлем для производства и населения. Необходимо реализовать мероприятия по устранению или снижению риска	> 10 ⁻³
Средний — допустим для производственных условий; при воздействии вредных факторов на все население необходимы динамический контроль и углубленное изучение источников и, возможных последствий неблагоприятных воздействий для процедуры управления риском	$10^{-3} - 10^{-4}$
Низкий – допустимый риск. Соответственно ему устанавливаются гигиенические нормативы для населения	$10^{-4} - 10^{-6}$
Минимальный (De Minimus) – желательная величины риска при проведении оздоровительных и природоохранных мероприятий	<10 ⁻⁶

8. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ ЭКСПЛУАТАЦИИ ОБЪЕКТА В РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

8.1. Виды и объемы образования отходов

Питание обслуживающего персонала осуществляется на промплощадке.

Питьевая вода на рабочие места должна доставляться в специальных емкостях. Емкости для воды (30 л) в летний (теплый) период должны через 48 часов промываться, с применением моющих средств в горячей воде, дезинфицироваться, и промываются водой гарантированного качества.

На территории промплощадки производственного объекта не предусмотрено проведение капитального ремонта используемой техники, что исключает образование отходов отработанных материалов. Учитывая данные условия, воздействия на почвенный покров в загрязнении отходами производства выражаться не будет.

В результате производственной деятельности на территории предприятия образуются следующие виды отходов:

Твердые бытовые отходы (смешанные коммунальные отходы), код 200301, уровень опасности отхода – неопасный;

Вскрышные породы, код 010102, уровень опасности отхода – неопасный.

- Коммунальные (твердые бытовые) отходы образуются в процессе жизнедеятельности рабочего персонала предприятия и работы столовой. Отходы неоднородные, в их состав входят: бумага и древесина, тряпье, пищевые отходы, стеклобой, металл, пластмассы. Отходы нетоксичны, пожароопасны.

На территории карьера выделена специальная площадка для размещения контейнера для сбора отходов с подъездом для транспорта. Площадка с водонепроницаемым покрытием и сплошным ограждением. Образующиеся ТБО временно складируются в стандартном металлическом контейнере с крышкой с водонепроницаемым покрытием на специально отведенной площадке для сбора мусора и пищевых отходов, огражденной с трех сторон бетонной сплошной стеной.

В дальнейшем, по договору со сторонней организацией, мусор и пищевые отходы по мере заполнения контейнера вывозятся, для их дальнейшей утилизации, с последующей обработкой и дезинфекцией контейнера хлорсодержащими средствами.

Площадка расположена на расстоянии 25 м от административно-бытовых вагончиков.

- Вскрышные породы – удаление горных пород, покрывающих полезные ископаемые. Один из технологических процессов открытых горных работ по выемке и перемещению пород (вскрыши), покрывающих и вмещающих полезное ископаемое, с целью подготовки запасов полезного ископаемого к выемке.

Вскрышные породы перемещаются во внешний отвал. Вскрышные породы согласно ст. 357 п. 1 отностся к отходам горнодобываюзей промышленности, и должны контролироваться по ст. 358-359,397 ЭК РК.

Отходы на территории промплощадки хранится не более 6 месяцев и передаваться сторонним организациям, на основании договора или по факту вывоза отходов, для дальнейшей переработке или утилизации.

Обоснование и расчет образования объемов отходов Расчет образования твердых бытовых отходов

Список литературы:

1. приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-П,

Норма образования бытовых отходов (m1, т/год) определяется с учетом удельных санитарных норм образования бытовых отходов на промышленных предприятиях – 0,3 м3/год на человека, списочной численности работающих на предприятии и средней плотности отходов, которая составляет 0,25 т/м3.

Расчет бытовых отходов

Списочная численность работающих на предприятиии, чел. , N=20

Средняя плотность отходов, $\tau/м3$, RO=0.25

Удельная санитарная норма образования бытовых отходов на промышленном

предприятии, м3/год на человека , К=0.3

Наименование отхода по методике: Бытовые отходы

Отход по МК: 200301 Твердые бытовые отходы (коммунальные)

Отход по ЕК: 200100 Твердые бытовые отходы

Норма образования отхода, т/год , $\text{_M_=K*N*RO=0.3*20*0.25=1.5}$

Норма образования отхода, M3/год, G = K*N=0.3*20=6.0

Сводная таблица расчетов:

Вид	Число	Норма обр-я	н Код	по МК	Код по ЕК	Кол-во
отхода	раб-х,чел.	отхода,м3/1	год	1	1	OTX., T/F
І Бытовые от		10 3	120	03 01	1200100	11 51

Итоговая таблица:

 Код	 Отход				Кол-во,	т/год	- ц
200301	Твердые	бытовые	отходы	(коммунальные)	1	1.5	1

Объем образование вскрышной породы

Таблица 8.1

Год отработки	2024	2025	2026	2027
Объем, м ³	16000	7000	8700	7500
Объем, тонн	28800	12600	15660	13500

Лимиты накопления отходов производства и потребления на эксплуатации – в таблице 8.2.

Таблица 8.2

Лимиты накопления отходов производства и потребления

зиниты наконления отходов производетва и потреоления									
Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год							
1	2	3							
Всего	0	1,15							
в том числе отходов производства	0								
отходов потребления	0	1,15							
Опасные отходы									
отсутствуют	0	0							
Не опасные отходы									
смешанные коммунальные отходы (ТБО)	0	1,15							
Зеркальные									
перечень отходов	0	0							

Таблица 8.3

Лимиты захоронения отходов на 2024-2032 гг.

Наименование отходов 1	Объем захороненных	Образование,	Лимит захоронения, тонн/год	Повторное	Передача сторонним организациям, тонн/год
		2024	Γ.		
Всего	-	28801,5	28800	-	1,5
в том числе отходов производства	-	28800	28800	-	-
отходов потребления	-	1,5	-	-	1,5
Опасные отходы				.	.
отсутствуют	-	-	-	-	-
Не опасные отході	Ы				
смешанные коммунальные отходы (ТБО)	-	1,5	-	-	1,5
Вскрышные породы	-	28800	28800	-	-
Зеркальные					
перечень отходов	-	-	-	-	-
		2025	Γ.		
Всего	-	12601,5	12600	-	1,5
в том числе отходов производства	-	12600	12600	-	-
отходов потребления	-	1,5	-	-	1,5
Опасные отходы					
отсутствуют	-	-	-	-	-
Не опасные отході	Ы				
смешанные коммунальные отходы (ТБО)	-	1,5	-	-	1,5
Вскрышные породы	-	12600	12600	-	-
Зеркальные					
перечень отходов	-	-		-	-
		2026			
Всего	-	15661,5	15660	-	1,5

в том числе	-	15660	15660	-	-
отходов производства					
отходов	-	1,5	-	-	1,5
потребления					
Опасные отходы					
отсутствуют	-	-	-	-	-
Не опасные отходы	I				
смешанные коммунальные отходы (ТБО)	-	1,5	-	-	1,5
Вскрышные породы	-	15660	15660	-	-
Зеркальные					
перечень отходов	-	-	-	-	-
		2027	Γ.		
Всего	-	13501,5	13500	-	1,5
в том числе отходов производства	-	13500	13500	-	-
отходов потребления	-	1,5	-	-	1,5
Опасные отходы					
отсутствуют	-	-	-	-	-
Не опасные отходы					
смешанные	-	1,5	-	-	1,5
коммунальные					
отходы (ТБО)					
Вскрышные	-	13500	13500	-	-
породы					
Зеркальные					
перечень отходов	_	-	-	-	-

8.1.1 Рекомендации по управлению отходами

Управление отходами и безопасное обращение с ними являются одним из основных пунктов стратегического экологического планирования и управления. Обращение с отходами должно производиться в строгом соответствии с международными стандартами и действующими нормативами Республики Казахстан.

Система управления отходами начинается на стадии разработки и согласования проектной документации для промышленного или иного объекта.

Для рационального управления отходами необходим строгий учет и контроль над всеми видами отходов, образующихся в процессе деятельности предприятия.

Предложения по управлению отходами

Весь объем отходов, образующийся при эксплуатации, будет передан на основе договоров в специализированные организации, имеющие разрешительные документы на их захоронение, переработку и утилизацию.

На производственных объектах сбор и временное хранение отходов производства проводится на специальных площадках (местах), соответствующих классу опасности отходов. Отходы по мере их накопления собирают раздельно для каждой группы отходов в соответствии с классом опасности.

Сразу после образования отходов они сортируются по видам и складируются в контейнеры с плотно закрывающимися крышками, раздельно по видам.

Существует несколько приемов организации сортировки мусорных отходов. Сортировка твердых бытовых отходов происходит следующим образом:

На территории площадки устанавливаются контейнеры. Контейнеры оборудованы крышками с отверстиями. В каждый выбрасывается определенный материал: стеклотара, пластик, пищевые отходы, макулатура, текстильные изделия.

При паспортизации объектов и отходов (5-й этап) заполняют паспорта и регистрируют каталожные описания в соответствии с принятыми формами.

Согласно п.3 ст.343 Экологического кодекса РК Паспорт опасных отходов представляется в уполномоченный орган в области охраны окружающей среды в течение трех месяцев с момента образования отходов.

Упаковка объектов и отходов (6-й этап) состоит в обеспечении установленными методами и средствами (с помощью укладки в тару или другие емкости, пакетированием, брикетированием с нанесением соответствующей маркировки) целостности и сохранности объектов и отходов в период их сортировки, погрузки, транспортирования, складирования, хранения в установленных местах.

Проектом дается возможность использовать образуемые вскрышные породы для возведении карьерных автодор, переместить вскрышу в отработанное пространство, отсыпки защитных дамб.

8.1.2 Программа управления отходами

В соответствии со статьей 335 Экологического Кодекса РК операторы объектов I и (или) II категории, обязаны разработать программу управления отходами в соответствии с правилами, утвержденными уполномоченным органом в области охраны окружающей среды.

Программа разрабатывается в соответствии с принципом иерархии и должна содержать сведения об объеме и составе образуемых и (или) получаемых от третьих лиц отходов, способах их накопления, сбора, транспортировки, обезвреживания, восстановления и удаления, а также описание предлагаемых мер по сокращению образования отходов, увеличению доли их повторного использования, переработки и утилизации.

Программа для объектов II категории разрабатывается с учетом необходимости использования наилучших доступных техник в соответствии с заключениями по наилучшим доступным техникам, разрабатываемыми и утверждаемыми в соответствии со статьей 113 Кодекса. Программа управления отходами является неотъемлемой частью экологического разрешения.

Срок разработки программы зависит от срока действия экологического разрешения, но не превышает 10 лет.

Таким образом, разработка программы управления отходами будет осуществлена на стадии получения экологического разрешения на воздействие.

8.2. Сведения о классификации отходов. Рекомендации по управлению отходами: накоплению, сбору, транспортировке, восстановлению или удалению

Классификация отходов принимается согласно приказа и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 06.08.2021 г. № 314 «Об утверждении Классификатора отходов». В соответствии с Классификатором отходы делятся на опасные и неопасные.

Опасными признаются отходы, обладающие одним или несколькими из следующих свойств: взрывоопасность; окислительные свойства; огнеопасность; раздражающее действие; специфическая системная токсичность; острая токсичность; канцерогенность; разъедающее действие; инфекционные свойства; токсичность для деторождения; мутагенность; образование токсичных газов при контакте с водой, воздухом или кислотой; сенсибилизация; экотоксичность; способность проявлять опасные свойства, перечисленные выше, которые выделяются от первоначальных отходов косвенным образом; стойкие органические загрязнители.

Отходы, не обладающие ни одним из вышеперечисленных свойств и не представляющие непосредственной или потенциальной опасности для окружающей среды, жизни и (или) здоровья людей самостоятельно или в контакте с другими веществами, признаются неопасными отходами.

В процессе работы предполагается образование следующих видов отходов:

Твердо-бытовые отходы (20 03 01) — представляют собой продукты, образующиеся в процессе жизнедеятельности работников предприятия (период эксплуатации). Данный вид отходов относится к неопасным.

Вскрышная порода (01 01 02) — представляет собой горную породу, покрывающих и вмещающих полезное ископаемое, с целью подготовки запасов полезного ископаемого к выемке. Данный вид отходов относится к неопасным.

Техническое обслуживание горнотранспортного оборудования будет производиться по договору со специализированной организацией в СТО.

Накопление, сбор и удаление отходов будет осуществляться с учетом требований Экологического кодекса РК. Требования к управлению отходами также регулируются Санитарными правилами «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления», утвержденными приказом и.о. Министра здравоохранения Республики Казахстан от 25.12.2020 г. № ҚР ДСМ-331/2020.

Образующиеся отходы будут временно (не более 6 месяцев) храниться на специально организованных (твердое покрытие, ограждение, защита от воздействия атмосферных осадков и ветра) площадках (раздельный сбор отходов по видам – специальные контейнеры, герметичные емкости; оборудованные площадки и помещения и т.п.).

По мере накопления отходы будут передаваться для дальнейшей утилизации, переработки или захоронения сторонним организациям (коммунальные службы, специализированные предприятия по переработке вторичного сырья и т.п.) согласно договоров.

При транспортировке отходов производства и потребления не допускается загрязнение окружающей среды в местах их погрузки, перевозки и разгрузки. Количество перевозимых отходов должно соответствовать грузовому объему транспортного средства.

При перевозке твердых отходов транспортное средство должно обеспечиваться защитной пленкой или укрывным материалом.

8.3 Мероприятия по снижению воздействия отходов на окружающую среду

Для снижения возможного негативного воздействия отходов, образующихся при эксплуатации месторождения, предполагается осуществить следующие мероприятия природоохранного назначения:

- организованный сбор и временное хранение (не более 6 месяцев) отходов в контейнерах на специально-обустроенных площадках;
- тщательная регламентация проведения работ, связанных с загрязнением и нарушением рельефа;
- организация раздельного сбора отходов с последующим размещением их на предприятиях, имеющих разрешительные документы на обращение с отходами;
 - раздельный сбор отходов в сооветствии ст. 320 ЭК РК.

8.4. Общие выводы

Рассмотрев объект с точки зрения воздействия на окружающую среду отходов производства и потребления, можно сделать вывод, что образующиеся отходы не относятся к чрезвычайно опасным. В процессе и эксплуатации месторождения будут образовываться отходы, которые допускаются к временному хранению (не более 6 месяцев) на территории объекта. Образующиеся отходы относятся к материалам твердых фракций. Все отходы, по мере их накопления будут передаваться специализированным предприятиям для дальнейшей утилизации, переработки или захоронения согласно договоров.

По масштабам распространения загрязнения, воздействие отходов, образующихся в период эксплуатации месторождения, на компоненты природной среды относится к местному типу загрязнения. При условии строгого выполнения принятых проектных решений и соблюдения всех санитарно-эпидемиологических и экологических норм влияние отходов на компоненты окружающей среды будет незначительным. Интенсивность воздействия минимальная, изменения природной среды не выходят за существующие пределы естественной природной изменчивости.

9. ОПИСАНИЕ ЗАТРАГИВАЕМОЙ ТЕРРИТОРИИ И УЧАСТКОВ, НА КОТОРЫХ МОГУТ БЫТЬ ОБНАРУЖЕНЫ ВЫБРОСЫ, СБРОСЫ И ИНЫЕ НЕГАТИВНЫЕ ВОЗДЕЙСТВИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, УЧАСТКОВ ИЗВЛЕЧЕНИЯ ПРИРОДНЫХ РЕСУРСОВ И ЗАХОРОНЕНИЯ ОТХОДОВ

Участок Мета расположен в Целиноградском районе Акмолинской области, в 45 км к северо-востоку от г. Астаны, в 6 км к северу от п. Софиевка.

Степень воздействия планируемых работ на атмосферный воздух является незначительной. Основной вклад в выбросы в атмосферу дают источники загрязняющих веществ, связанные с основными технологическими процессами. Вклад остальных источников незначителен. Предприятие не оказывает значительного влияния на качество атмосферного воздуха на границе СЗЗ и жилой зоны, нормативное качество воздуха обеспечивается.

Использование водных ресурсов будет осуществляться в рамках необходимой потребности. Сбросы производственных и хозяйственно-бытовых сточных вод в поверхностные и подземные водные источники исключается. Негативное воздействие на водные ресурсы отсутствует.

Предполагаемые к образованию отходы будут временно (не более 6 месяцев) храниться в специально отведенных организованных местах, а затем передаваться для дальнейшей утилизации, переработки или захоронения сторонним организациям согласно договоров.

На рассматриваемой территории дикие животные, гнездовья птиц и растения, занесенные в Красную книгу РК отсутствуют.

На рассматриваемой территории природные зоны, памятники истории и культуры, входящие в список охраняемых государством объектов отсутствуют.

Ввиду незначительности вклада объекта в общее состояние окружающей природной среды существенного воздействия на здоровье населения не ожидается.

10. ОПИСАНИЕ ВОЗМОЖНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Участок Мета расположен в Целиноградском районе Акмолинской области, в 45 км к северо-востоку от г. Астаны, в 6 км к северу от п. Софиевка.

Территория осуществления намечаемой деятельности выбрана с учетом логистических ресурсов и производственной необходимости ТОО «GOLDENPIT» (ЛЭП, дорожная развязка, наличие потребителей и т.п.), а также исходя Протокола ГКЗ полезных ископаемых.

В основу выбора способа разработки месторождения положены следующие факторы:

- горнотехнические условия месторождения;
- обеспечение безопасных условий работ;
- обеспечение полноты выемки полезного ископаемого.

Анализ морфологии, геометрических параметров и условий залегания рудных тел месторождения позволяет считать целесообразным отработку открытыми горными работами.

Целесообразность данного способа добычи при отработке запасов месторождения обусловлена выходом их на дневную поверхность.

Разработка карьера предусматривает полную отработки запасов месторождения.

Построение контуров карьера графическим методом с учетом морфологии, рельефа месторождения, мощности покрывающих пород и полезного ископаемого, а также гидрогеологических условий.

На сегодняшний день альтернативных способов разработки месторождения открытым способом не существует. Таким образом, предусмотренный настоящим проектом вариант осуществления намечаемой деятельности является оптимальным.

Учитывая отдаленность карьера от ближайших населенных пунктах, воздействие на здоровье жителей и окружающей среды не окажут.

Проектируемая деятельность не подразумевает использование альтернативных технических технологических решений и мест расположения объекта, наиболее приемлемым вариантом являются принятые проектные решения.

Система разработки карьера представлено в разделе 5.5.

11. ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪЕКТАХ, КОТОРЫЕ МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

11.1. Жизнь и здоровье людей, условия их проживания и деятельности

Воздействие проектируемого объекта на здоровье населения находится на низком уровне в связи со значительным удалением ближайших населенных пунктов от промплощадки намечаемой деятельности.

Прогноз социально-экономических последствий от деятельности предприятия — благоприятный. Проведение работ по реализации намечаемой деяытельности с соблюдением норм и правил техники безопасности, промышленной санитарии, противопожарной безопасности обеспечит безопасное проведение планируемых работ и не вызовет дополнительной, нежелательной нагрузки на социально-бытовую сферу.

Анализ воздействия хозяйственной деятельности показывает, что намечаемая деятельность положительно повлияет на социально-экономическую сферу путем организации рабочих мест, отчислениями в виде различных налогов.

Экономическая деятельность предприятия окажет прямое и косвенное благоприятное воздействие на финансовое положение области.

11.2. Биоразнообразие

В процессе эксплуатации проектируемого объекта негативного воздействия на ландшафт территории не ожидается.

Рассматриваемая территория находится вне земель государственного лесного фонда и особо охраняемых природных территорий Республики Казахстан. Животные и растительность, занесенные в Красную книгу РК на рассматриваемой территории отсутствуют.

В целом воздействие намечаемой деятельности на природное состояние растительного и животного мира оценено как незначительное и не приведет к необратимым последствиям.

11.3. Земли и почвы

На земельном участке предполагается антропогенный физический фактор воздействия, который характеризуется механическим воздействием на почво-грунты (земляные работы, движение автотранспорта, строительство и пр.).

План организации рельефа участка разработан с учетом прилегающей территории и решен исходя из условий разработки минимального объема земляных работ, обеспечения водоотвода с рельефа местности и защиты грунтов от замачивания и заболачивания.

При реализации намечаемой деятельности значительного воздействия на почвогрунты и земельные ресурсы не прогнозируется. При выполнении проектных решений и предложенных мероприятий по охране почвенного покрова ущерба не ожидается.

11.4. Воды

Проектируемый объект не предполагает забор воды из поверхностных водных источников и сбросов непосредственно в поверхностные и подземные водные объекты, поэтому прямого воздействия на водные ресурсы не оказывает.

11.5. Атмосферный воздух

Технологические процессы, которые будут применяться при эксплуатации месторождения окажут определенное воздействие на состояние атмосферного воздуха непосредственно на территории размещения объекта. По масштабам распространения загрязнения атмосферного воздуха выбросы загрязняющих веществ в атмосферный воздух от источников загрязнения объектов намечаемой деятельности относятся к локальному типу загрязнения. Продолжительность воздействия выбросов от исследуемого объекта будет постоянной в период эксплуатации. Интенсивность воздействия на атмосферный воздух находится в пределах допустимых норм, изменения природной среды не выходят за существующие пределы естественной природной изменчивости.

11.6. Сопротивляемость к изменению климата экологических и социально-экономических систем

На затрагиваемой территории все виды флоры и фауны приспособлены к значительным колебаниям температуры. Не наблюдается также изменений видового состава или деградации животных и растений. Поэтому общее экологическое состояние территории можно характеризовать, как устойчивое, а сопротивляемость к изменению климата – высокой.

Проектируемый объект располагается на действующей промышленной площадке со сложившейся, устойчивой системой социально-экономических отношений, поэтому реализация намечаемой деятельности не приведет к изменению социально-экономических систем, соответственно сопротивляемость к изменению социально-экономической системы можно считать высокой.

11.7. Материальные активы, объекты историко-культурного наследия

Действующее производство TOO «GOLDENPIT» является самоокупаемым и осуществляет инвестиции из собственных активов. Дополнительных инвестиций за счет бюджета административных и иных органов Республики Казахстан при осуществлении намечаемой деятельности не требуется.

Согласно письма №01- $\frac{2}{6}$ / $\frac{2}{227}$ от 07.11.2023 г. выданным КГУ «Центр по охране и использованию историко-культурного наследия» Управления культуры Акмолинской области и акта № 84 исследования территории на предмет наличия объектов историко-культурного наследия от 22.10.2023 г. на исследуемой территории памятников историко-культурного наследия не выявлено.

11.8. Взаимодействие затрагиваемых компонентов

Природно-территориальный комплекс — это совокупность взаимосвязанных природных компонентов на определенной территории, который формируется в течение длительного времени под влиянием внешних и внутренних процессов. В природном комплексе происходит постоянное взаимодействие природных компонентов, все они взаимосвязаны и влияют друг на друга. При изменении одного природного компонента меняется весь природный комплекс.

При реализации намечаемой деятельности нарушения взаимодействия компонентов природной среды не предполагается.

12. ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОБЪЕКТЫ ОКРУЖАЮЩЕЙ СРЕДЫ

Порядок выявления возможных существенных воздействий намечаемой деятельности в рамках оценки воздействия на окружающую среду на окружающую среду определяется пунктами 25 и 26 «Инструкция по организации и проведению экологической оценки» утвержденой приказом Министра экологии, геологии и природных ресурсов Республики Казахстан № 280 от 30.07.2021 г.

Определение возможных существенных воздействий намечаемой деятельности приведено в таблице 13.1.

Таблица 13.1.

Определение возможных существенных воздействий намечаемой деятельности

1	Осуществляется в Каспийском море (в том числе в	Согласно письму № 3Т-2022-02570548
1	заповедной зоне), на особо охраняемых природных	от 28.10.2022 г. выданным РГУ
		«Акмолинская областная
	территориях, в их охранных зонах, на землях оздоровительного, рекреационного и историко-культурного	
		территориальная инспекция лесного
	назначения; в пределах природных ареалов редких и	хозяйства и животного мира», на
	находящихся под угрозой исчезновения видов животных и	месторождении «Мета» дикие
	растений; на участках размещения элементов экологической	животные, занесенные в Красную
	сети, связанных с системой особо охраняемых природных	книгу Республики Казахстан,
	территорий; на территории (акватории), на которой	отсутствуют. Информация о наличии
	компонентам природной среды нанесен экологический	либо отсутствии древесных растений,
	ущерб; на территории (акватории), на которой выявлены	занесенных в Красную книгу
	исторические загрязнения; в черте населенного пункта или	Республики Казахстан, не может быть
	его пригородной зоны; на территории с чрезвычайной	выдана в связи с тем, что
	экологической ситуацией или в зоне экологического	вышеуказанный участок не
	бедствия;	располагаются на землях
		государственного лесного фонда и
		особо охраняемых природных
		территорий.
2	оказывает косвенное воздействие на состояние земель,	Воздействие исключено
	ареалов, объектов, указанных в подпункте 1) настоящего	
	пункта;	
3	приводит к изменениям рельефа местности, истощению,	Воздействия исключено к истощению,
	опустыниванию, водной и ветровой эрозии, селям,	опустыниванию, водной и ветровой
	подтоплению, заболачиванию, вторичному засолению,	эрозии, селям, подтоплению,
	иссушению, уплотнению, другим процессам нарушения	заболачиванию, вторичному
	почв, повлиять на состояние водных объектов;	засолению, иссушению, уплотнению,
		другим процессам нарушения почв,
		Влияние на состояние водных
		объектов отсутствует.
		Согласно ответу РГУ «Есильская
		бассейновая инспекция по
		регулированию использования и
		охране водных ресурсов» № 3Т-2022-
		02570583 от 11.11.2022 г.,
		проектируемый объект находятся за
		пределами водоохранных зон и полос
		поверхностных водных объектов.
		Согласно информации,
		предоставленной АО «Национальная
		геологическая служба» № 26-14-
		03/1843 от 22.12.2022 г. в пределах
		координат участков недр
		месторождения подземных вод,

	TOO «Anaum» 171 010001 011 01.00.2	
		состоящих на государственном учете, отсутствуют. Горные работы проводятся в пределах
4	включает лесопользование, использование нелесной растительности, специальное водопользование, пользование животным миром, использование невозобновляемых или дефицитных природных ресурсов, в том числе дефицитных	географических координат. Воздействие исключено
5	для рассматриваемой территории; связана с производством, использованием, хранением, транспортировкой или обработкой веществ или материалов, способных нанести вред здоровью человека, окружающей среде или вызвать необходимость оценки действительных или предполагаемых рисков для окружающей среды или здоровья человека;	Воздействие исключено
6	приводит к образованию опасных отходов производства и (или) потребления;	Воздействие исключено
7	осуществляет выбросы загрязняющих (в том числе токсичных, ядовитых или иных опасных) веществ в атмосферу, которые могут привести к нарушению экологических нормативов или целевых показателей качества атмосферного воздуха, а до их утверждения – гигиенических нормативов;	Данный вид воздействия признается возможным. Интенсивность воздействия находится в пределах допустимых норм, изменения природной среды не выходят за существующие пределы естественной природной изменчивости.
8	является источником физических воздействий на природную среду: шума, вибрации, ионизирующего излучения, напряженности электромагнитных полей, световой или тепловой энергии, иных физических воздействий на компоненты природной среды;	Данный вид воздействия признается возможным. Интенсивность воздействия находится в пределах допустимых норм, изменения природной среды не выходят за существующие пределы естественной природной изменчивости.
9	создает риски загрязнения земель или водных объектов (поверхностных и подземных) в результате попадания в них загрязняющих веществ;	Воздействие исключено
10	приводит к возникновению аварий и инцидентов, способных оказать воздействие на окружающую среду и здоровье человека;	Воздействие исключено
11	приводит к экологически обусловленным изменениям демографической ситуации, рынка труда, условий проживания населения и его деятельности, включая традиционные народные промыслы;	Воздействие исключено
12	повлечет строительство или обустройство других объектов (трубопроводов, дорог, линий связи, иных объектов), способных оказать воздействие на окружающую среду;	Воздействие исключено
13	оказывает потенциальные кумулятивные воздействия на окружающую среду вместе с иной деятельностью, осуществляемой или планируемой на данной территории;	Воздействие исключено
14	оказывает воздействие на объекты, имеющие особое экологическое, научное, историко-культурное, эстетическое или рекреационное значение, расположенные вне особо охраняемых природных территорий, земель оздоровительного, рекреационного и историко-культурного назначения и не отнесенные к экологической сети, связанной с особо охраняемыми природными территориями, и объектам историко-культурного наследия;	Воздействие исключено
15	оказывает воздействие на компоненты природной среды, важные для ее состояния или чувствительные к воздействиям вследствие их экологической взаимосвязи с другими компонентами (например, водно-болотные угодья, водотоки или другие водные объекты, горы, леса);	Воздействие исключено

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

16	оказывает воздействие на места, используемые (занятые) охраняемыми, ценными или чувствительными к воздействиям видами растений или животных (а именно, места произрастания, размножения, обитания, гнездования, добычи корма, отдыха, зимовки, концентрации, миграции);	Воздействие исключено
17	оказывает воздействие на маршруты или объекты, используемые людьми для посещения мест отдыха или иных мест;	Воздействие исключено
18	оказывает воздействие на транспортные маршруты, подверженные рискам возникновения заторов или создающие экологические проблемы;	Воздействие исключено
19	оказывает воздействие на территории или объекты, имеющие историческую или культурную ценность (включая объекты, не признанные в установленном порядке объектами историко-культурного наследия);	Согласно письма №01-26/227 от 07.11.2022 г. выданным КГУ «Центр по охране и использованию историкокультурного наследия» Управления культуры Акмолинской области и акта № 84 исследования территории на предмет наличия объектов историкокультурного наследия от 07.11.2022 г. на исследуемой территории памятников историко-культурного наследия не выявлено. Воздействие исключено
20	осуществляется на неосвоенной территории и повлечет за собой застройку (использование) незастроенных (неиспользуемых) земель;	Воздействие исключено
21	оказывает воздействие на земельные участки или недвижимое имущество других лиц;	Воздействие исключено
22	оказывает воздействие на населенные или застроенные территории;	Воздействие исключено
23	оказывает воздействие на объекты, чувствительные к воздействиям (например, больницы, школы, культовые объекты, объекты, общедоступные для населения);	Воздействие исключено
24	оказывает воздействие на территории с ценными, высококачественными или ограниченными природными ресурсами, (например, с подземными водами, поверхностными водными объектами, лесами, участками, сельскохозяйственными угодьями, рыбохозяйственными водоемами, местами, пригодными для туризма, полезными ископаемыми);	Воздействие исключено
25	оказывает воздействие на участки, пострадавшие от экологического ущерба, подвергшиеся сверхнормативному загрязнению или иным негативным воздействиям, повлекшим нарушение экологических нормативов качества окружающей среды;	Воздействие исключено
26	создает или усиливает экологические проблемы под влиянием землетрясений, просадок грунта, оползней, эрозий, наводнений, а также экстремальных или неблагоприятных климатических условий (например, температурных инверсий, туманов, сильных ветров);	Воздействие исключено
27	факторы, связанные с воздействием намечаемой деятельности на окружающую среду и требующие изучения.	Воздействие исключено

Реализация намечаемой деятельности не приведет к деградации экологических систем, истощению природных ресурсов, включая дефицитные и уникальные природные ресурсы; не приведет к нарушению экологических нормативов качества окружающей среды; не приведет к ухудшению условий проживания людей и их деятельности, включая: состояние окружающей среды, влияющей на здоровье людей; посещение мест отдыха, туризма, культовых сооружений и иных объектов; заготовку природных ресурсов, использование транспортных и других объектов; осуществление населением

сельскохозяйственной деятельности, народных промыслов или иной деятельности; не приведет к ухудшению состояния особо охраняемых природных территориий, земель оздоровительного, рекреационного и историко-культурного назначения и т.п.; не повлечет негативных трансграничных воздействий на окружающую среду; не приведет к потере биоразнообразия в части объектов растительного и животного мира или их сообществ, являющихся редкими или уникальными.

На основании вышеизложенного можно сделать вывод, что ожидаемое воздействие проектируемого объекта не приведет к ухудшению существующего состояния компонентов окружающей среды и оценивается как несущественное.

13. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, ВЫБОРА ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОЛАМИ

13.1. Атмосферный воздух

В период эксплуатации месторождения в атмосферный воздух от стационарных и передвижных источников будет происходить выделение загрязняющих веществ в атмосферном воздухе, которые отводятся через 11 неорганизованных источника выбросов.

В выбросах, отходящих от источников загрязнения атмосферного воздуха предприятия, содержится 10 загрязняющих веществ:

- 1. Азота (IV) диоксид (Азота диоксид) (4);
- 2. Азот (II) оксид (Азота оксид) (6)
- 3. Углерод (Сажа, Углерод черный) (583);
- 4. Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516);
- 5. Сероводород (Дигидросульфид) (518);
- 6. Углерод оксид (Окись углерода, Угарный газ) (584);
- 7. Керосин (654*);
- 8. Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)
- 9. Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494);
 - 10. Пыль неорганическая, содержащая двуокись кремния в %: менее 20.

Эффектом суммации вредного действия обладают 2 группы веществ:

- **31 (0301+0330)**: азота диоксид + сера диоксид;
- **30 (0330+0333):** сера диоксид + сероводород.
- **ПЫЛИ (2908+2909):** пыль неорганическая двуокиси кремния% 70-20 + пыль неорганическая двуокиси кремния% менее 20.

Валовый выброс вредных веществ, отходящих от стационарных источников загрязнения атмосферы предприятия, составит:

- 2024 г. 9,3372116 т/год;
- -2025 г. -9,2296816 т/год;
- -2026 г. -9,3553216 т/год;
- 2027 г. -9,4243216 т/год;
- 2028-2032 г. -9,2777416 т/год;

Количественная характеристика (г/с, т/год) выбрасываемых в атмосферу загрязняющих веществ определена в зависимости от изменения режима работы объекта,

технологических процессов и оборудования и с учетом нестационарности выделений во времени.

Количество выбросов загрязняющих веществ в атмосферный воздух в период эксплуатации месторождения определено расчетным путем по действующим методическим документам.

Расчет рассеивания, с картографическом материалом, по требующим расчета загрязняющим веществам и группам суммации представлен в приложении 3 — на период добычи месторождения.

13.2. Физическое воздействие

Физическое воздействие намечаемой деятельности на компоненты природной среды не будет выходить за рамки предельно допустимых уровней, установленных гигиеническими нормативами Республики Казахстан к физическим факторам.

13.3. Операции по управлению отходами

Под управлением отходами понимаются операции, осуществляемые в отношении отходов с момента их образования до окончательного удаления. К операциям по управлению отходами относятся:

- накопление отходов на месте их образования;
- сбор отходов;
- транспортировка отходов;
- восстановление отходов;
- удаление отходов;
- вспомогательные операции;
- наблюдение за операциями по сбору, транспортировке, восстановлению и (или) удалению отходов;
- обслуживание ликвидированных (закрытых, выведенных из эксплуатации) объектов удаления отходов.

У оператора намечаемой деятельности нет собственных полигонов. В связи с этим управление отходами сводится к накоплению отходов в местах образования.

Операции по транспортировке, утилизации и т.д. будут осуществлять сторонние организации, имеющие соответствующие разрешительные документы на данный вид деятельности, согласно договоров.

Транспортировка отходов будет производиться специально оборудованными для этого транспортными средствами, исключающими попадание отходов в окружающую среду.

Накопление, сбор и удаление отходов осуществляется с учетом требований Экологического кодекса РК. Требования к управлению отходами также регулируются Санитарными правилами «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления», утвержденными приказом и.о. Министра здравоохранения Республики Казахстан от 25.12.2020 г. № ҚР ДСМ-331/2020.

14. ОБОСНОВАНИЕ ПРЕДЕЛЬНОГО КОЛИЧЕСТВА НАКОПЛЕНИЯ ОТХОДОВ ПО ИХ ВИДАМ

В процессе эксплуатации проектируемого объекта образуются следующие виды отходов:

Твердо-бытовые отходы (20 03 01) – 1,15 т/год;

• Вскрышные породы (01 01 02) – 2024 г. – 28800 т/год; 2025 г. – 12600 т/год; 2026 г. – 15660 т/год; 2027 г. – 13500 т/год.

Лимиты накопления отходов производства и потребления на период эксплуатации в таблице 9.1.2. Расчет объемов образования отходов на период эксплуатации приведен в разделе 9.

15. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ ОБЪЕМОВ ЗАХОРОНЕНИЯ ОТХОДОВ ПО ИХ ВИДАМ

Захоронение отходов в рамках намечаемой деятельности не прогнозируется.

Вскрышные породы в полном объеме погрузчиком грузятся в автосамосвал и вывозятся в выработанное пространство, расположенное на западной стороне участка, входящий в контур лицензионной площади, параллельно выполняя технический этап рекультивации.

16. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ

В целом, эксплуатация проектируемого объекта не относятся к категории опасных экологических видов деятельности. Строгое соблюдение правил техники безопасности и природоохранных мероприятий предусмотренных данным проектом позволяет максимально снизить негативные последствия для окружающей среды.

Руководители проекта несут ответственность за предотвращение аварийных ситуаций на проектируемом объекте, и обязаны обеспечить полную безопасность намечаемой деятельности, взаимодействуя с органами надзора и инспекциями, отвечающими за экологическую безопасность и здоровье людей работающих на объекте, соблюдать все нормативные требования Республики Казахстан к инженерно-экологической безопасности ведения работ на всех этапах намечаемой деятельности.

Основными причинами возникновения аварийных ситуаций на проектируемом объекте могут являться:

- нарушения технологических процессов;
- технические ошибки обслуживающего персонала;
- нарушения противопожарных норм и правил техники безопасности;
- аварийное отключение систем энергоснабжения;
- стихийные бедствия;
- террористические акты и т.п.

В целях предотвращения возникновения аварийных ситуаций на проектируемом объекте предполагается:

- соблюдение технологического процесса в период эксплуатации объекта;
- постоянный контроль за всеми видами воздействия, который осуществляет персонал, ответственный за ТБ и ООС;
 - пропаганда охраны природы;
 - оборудование сооружений системой контроля и автоматизации;
- соблюдение правил пожарной безопасности и техники безопасности, охраны здоровья и окружающей среды;
- привлечение для выполнения текущего ремонта оборудования специалистов, прошедших специальное обучение и имеющих допуск к подобным работам;
- подготовка обслуживающего персонала и технических средств к организованным действиям при аварийных ситуациях.

В случае возникновения аварийных ситуаций на объекте должно быть обеспечено оперативное оповещение лиц, ответственных за безопасность.

Для выяснения причин и устранения последствий аварий должны быть приняты безотлагательные меры, в связи, с чем необходимо иметь достаточное количество квалифицированных рабочих, техники и оборудования.

Анализ сценариев наиболее вероятных аварийных ситуаций констатирует возможность возникновения локальной по характеру аварии, которая не приведет к катастрофическим или необратимым последствиям.

Своевременное применение мероприятий по локализации и ликвидации последствий аварийных ситуаций позволит дополнительно уменьшить их возможные негативные влияния на окружающую среду, снизить уровни экологического риска.

17. ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ ДЛЯ ПЕРИОДОВ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТА МЕР ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ ВЫЯВЛЕННЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ

Одной из основных задач охраны окружающей среды при строительстве новых объектов является разработка и выполнение природоохранных мероприятий.

Одним из наиболее значимых и необходимых требований для контроля воздействий и разработки конкретных мероприятий по их ограничению и снижению является производственный мониторинг окружающей среды, который предусматривает регистрацию возникающих изменений. Вовремя выявленные негативные изменения в природной среде позволят определить источник негативного воздействия и принять меры по его снижению.

Основные мероприятия по снижению или исключению воздействий, включают современные методы предотвращения и снижения загрязнения, а именно:

- проведение архитектурно-строительных работ в пределах отведенного земельного участка;
- проведение своевременного технического обслуживания и ремонта оборудования;
- обеспечение технологического контроля за соблюдением технологии производственного процесса и технологическими характеристиками оборудования;
- применение пылеподавляющих технологий гидроорошение технологического оборудования;
- организация системы упорядоченного движения автотранспорта и техники на территории объекта;
 - контроль за объемами водопотребления и водоотведения;
- организация системы сбора и хранения отходов, образующихся при его эксплуатации;
- содержание отведенного земельного участка в состоянии, пригодном для дальнейшего использования его по назначению;
 - проведение озеленения и благоустройства территории предприятия;
 - соблюдение установленных норм и правил природопользования;
 - экологическое сопровождение всех видов производственной деятельности;

• проведение просветительской работы экологического содержания в области бережного отношения и сохранения атмосферного воздуха, водных объектов, почв и земельных ресурсов, растительного и животного мира.

При соблюдении предусмотренных проектных решений при эксплуатации месторождения, а также при условии выполнения всех предложенных данным проектом природоохранных мероприятий отрицательное влияние на компоненты окружающей среды при реализации намечаемой деятельности исключается.

18. МЕРЫ ПО СОХРАНЕНИЮ И КОМПЕНСАЦИИ ПОТЕРИ БИОРАЗНООБРАЗИЯ

Биоразнообразие – разнообразие жизни во всех ее проявлениях, а также показатель сложности биологической системы, разнокачественности ее компонентов.

Биоразнообразие — это общий термин, охватывающий виды всевозможных местообитаний, например, лесных, пресноводных, морских, почвенных, культурные растения, домашних и диких животных, микроорганизмов. В качестве основы можно выделить три типа разнообразия: экосистемы и ландшафты (разнообразие местообитаний).

Созранение биоразнообразия очень важно, так как экосистемы и живущие в них организмы очищают воздух, почву и воду, производят кислород, делают климат более благоприятным, защищают от плохих погодных условий, поддерживают плодородие почв и глобальный климат на Земле, поглощают загрязнения.

В целях сохранения биоразнообразия применяется следующая иерархия мер в порядке убывания их предпочтительности:

- первоочередными являются меры по предотвращению негативного воздействия;
- когда негативное воздействие на биоразнообразие невозможно предотвратить, должны быть приняты меры по его минимизации;
- когда негативное воздействие на биоразнообразие невозможно предотвратить или свести к минимуму, должны быть приняты меры по смягчению его последствий;
- в той части, в которой негативные воздействия на биоразнообразие не были предупреждены, сведены к минимуму или смягчены, должны быть приняты меры по компенсации потери биоразнообразия.

Принятые проектные решения по реализации намечаемой деятельности не приведут к потере биоразнообразия и исчезновению отдельных видов представителей флоры и фауны.

Характер намечаемой производственной деятельности показывает, что:

- использование объектов растительного и живоного мира отсутствует;
- территория воздействия находится вне земель государственного лесного фонда и особо охраняемых природных территорий, а также не входит в водоохранную зону и полосу водных объектов:
- негативного воздействия на здоровье населения прилегающих территорий не ожидается;
 - отсутствуют объекты историко-культурного наследия.

На основании вышеизложенного проведение оценки потери биоразнообразия и разработка мероприятий по их компенсации не требуется.

19. ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ

В настоящем проекте проведен анализ возможных воздействий намечаемой деятельности на различные компоненты природной среды, определены их характеристики в период эксплуатации проектируемого объекта.

Оценка воздействия на окружающую среду показывает, что месторождение не окажет критического или необратимого воздействия на окружающую среду территории, которая окажется под воздействием намечаемой деятельности.

Проектом установлено, что в период реализации намечаемой деятельности будут преобладать воздействия низкой значимости. Воздействия высокой значимости не выявлены. Обоснования необходимости выполнения операций, влекущих необратимые воздействия, не требуется.

Предпосылок к потере устойчивости экологических систем района проведения планируемых работ не установлено. Ожидаемые воздействия не приведут к необратимым изменениям экосистем.

В сравнительном анализе потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери, в экологическом, культурном, экономическом и социальном контекстах нет необходимости.

20. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА

Порядок проведения послепроектного анализа в соответствии с пунктом 3 статьи 78 Экологического кодекса Республики Казахстан определен приказом Министра экологии, геологии и природных ресурсов Республики Казахстан № 229 от 01.07.2021 г. «Об утверждении правил проведения послепроектного анализа и формы заключения по результатам послепроектного анализа».

Послепроектный анализ проводится составителем отчета о возможных воздействиях в целях подтверждения соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

В соответствии с пп. 1. п. 4 главы 2 «Правил проведения послепроектного анализа...», послепроектный анализ проводится при выявлении в ходе оценки воздействия на окружающую среду неопределенностей в оценке возможных существенных воздействий на окружающую среду и в случаях, если необходимость его проведения установлена и обоснована в отчете о возможных воздействиях на окружающую среду и в заключении по результатам оценки воздействия на окружающую среду.

В ходе оценки воздействия на окружающую среду неопределенностей в оценке возможных существенных воздействий на окружающую среду не выявлено. Так как проектируемый объект располагается на действующем производстве и в пределах существующей площадки каких-либо существенных изменений в компонентах окружающей среды и социально-экономическом положении территории воздействия не произойдет. Само воздействие проектируемых объектов оценивается, как допустимое.

В связи с тем, что настоящий проект характеризуется отсутствием выявленных неопределенностей в оценке возможных существенных воздействий проведение послепроектного анализа в рамках намечаемой деятельности не требуется.

Послепроектный анализ будет начат не ранее чем через двенадцать месяцев и завершен не позднее чем через восемнадцать месяцев после начала эксплуатации месторождений.

Проведение после проектного анализа осуществляется ТОО «GOLDENPIT» за свой счет.

Не позднее срока, указанного в части первой настоящего раздела, составитель отчета о возможных воздействиях подготавливает и подписывает заключение по результатам после проектного анализа, в котором делается вывод о соответствии или несоответствии реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам оценки воздействия на окружающую среду.

В случае выявления несоответствий в заключении по результатам после проектного анализа приводится подробное описание таких несоответствий.

Составитель направляет подписанное заключение по результатам после проектного анализа оператору соответствующего объекта и в уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты подписания заключения по результатам после проектного анализа.

21. СПОСОБЫ И МЕРЫ ВОССТАНОВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА СЛУЧАИ ПРЕКРАЩЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, ОПРЕДЕЛЕННЫЕ НА НАЧАЛЬНОЙ СТАДИИ ЕЕ ОСУЩЕСТВЛЕНИЯ

Проектные работы являются необходимой мерой для бесперебойной работы предприятия. Причин, которые бы препятствовали осуществлению намечаемой деятельности не выявлено, кроме как не зависящих от действий и решений ТОО «GOLDENPIT», т.е. обстоятельств непреодолимой силы, к которым относятся войны, наводнения, пожары, и прочие стихийные бедствия, забастовки, изменения действующего законодательства и т.п.

В случае, когда недропользователь решит прекратить намечаемую деятельность будут проведены следующие мероприятия:

- Вывоз горнотранспортного оборудование;
- Демонтаж вагончиков из промышленной площадок;
- Вывоз с территории материалов, отходов, бытовых стоков и т.п. согласно договоров.
- Проведение технической и биологической рекультивации с восстановлением плодородного слоя почвы и растительного покрова.

В соответствии с Кодексом «О недрах и недропользовании» от 27.12.2017 года, предприятия по добыче полезных ископаемых при прекращении, либо приостановлении проведения операций по недропользованию должны быть приведены в состояние, обеспечивающее безопасность жизни и здоровья населения, охрану окружающей природной среды.

Все работы по рекультивации и ликвидации карьера будут производиться только после прекращения действия разрешения на добычу полезных ископаемых либо после завершения работ по капитальному ремонту автомобильной дороги.

При ликвидации предприятия пользователь недр обязан обеспечить соблюдение утвержденных в установленном порядке стандартов (норм, правил), регламентирующих условия охраны недр, атмосферного воздуха, земель, лесов, вод, а также зданий и сооружений от вредного влияния работ, связанных с пользованием недрами, а также привести участки земли и другие природные объекты, нарушенные при пользовании недр, в состояние, пригодное для их дальнейшего использования.

Ликвидация предприятия — карьер на участке открытой отработки будет рассмотрена отдельным проектом после завершения горных работ — проектом рекультивации.

Наиболее эффективной мерой снижения отрицательного влияния открытых горных разработок на окружающую среду является своевременная рекультивация нарушенных земель, которая обеспечивает не только создание оптимальных ландшафтов с соответствующей организацией территории, флорой, фауной, но и способствует надежной охране воздушного бассейна и водных ресурсов. При этом техническая рекультивация рассматривается как неотъемлемая часть процесса горного производства, а качество и организация рекультивационных работ - как один из показателей культуры производства.

Возможны следующие направления рекультивации:

- сельскохозяйственное с целью создания на нарушенных землях сельскохозяйственных угодий;
 - лесохозяйственное с целью создания лесных насаждений различного типа;
- рыбохозяйственное с целью создания в понижениях техногенного рельефа рыбоводческих водоемов;
 - водохозяйственное с целью создания в понижениях техногенного рельефа

водоемов различного назначения;

- рекреационное с целью создания на нарушенных землях объектов отдыха;
- санитарно-гигиеническое с целью биологической или технической консервации нарушенных земель, оказывающих отрицательное воздействие на окружающую среду, рекультивация которых для использования в народном хозяйстве экономически неэффективна или нецелесообразна в связи с относительной кратковременностью существования и последующей утилизацией этих объектов;
- строительное с целью приведения нарушенных земель в состояние, пригодное для промышленного и гражданского строительства.

Выбор направления рекультивации земель осуществляется с учетом следующих факторов:

- природных условий района (климат, почвы, геологические, гидрогеологические и гидрологические условия, растительность, рельеф, определяющие геосистемы или ландшафтные комплексы);
- агрохимические и агрофизические свойства пород и их смесей в отвалах, гидроотвалах, хвостохранилищах;
- хозяйственных, социально-экономических и санитарно-гигиенических условий в районе размещения нарушенных земель;
- срока существования рекультивационных земель и возможности их повторных нарушений:
 - технологии производства комплекса горных и рекультивационных работ;
 - требований по охране окружающей среды;
 - планов перспективного развития территории района горных разработок;
- состояния ранее нарушенных земель, т.е. состояния техногенных ландшафтов карьерно-отвального типа, степени и интенсивности их самовозгорания.

Анализ факторов, влияющих на выбор направления рекультивации земель, нарушенных горными работами, показал приемлемым сельскохозяйственное направление рекультивации, полностью отвечающее природным, социальным условиям и целенаправленности рекультивации.

Учитывая изложенное, настоящим планом предусматривается сельскохозяйственное направление рекультивации земель, занятых открытыми горными работами. Срок начала проведения технического этапа рекультивации: 2035-2036 года. Срок начала проведения биологического этапа рекультивации — весна-лето следующего года.

В качестве основного оборудования занятого на отвально-рекультивационных работах будет использоваться бульдозер Shantui SD23.

Работы по обваловке контура карьера будут выполняться в процессе ведения работ существующим парком горнотранспортного оборудования.

Ниже излагаются основные требования правил техники безопасности при проведении рекультивационных работ.

При проведении рекультивационных работ должно быть обеспечено:

- лица, ответственные за содержание строительных машин в рабочем состоянии, обязаны обеспечивать проведение их технического обслуживания и ремонта в соответствии с требованиями эксплуатационных документов завода-изготовителя;
- до начала работы с применением машин руководитель должен определить схему движения и место установки машин, указать способы взаимодействия и сигнализации машиниста (оператора) с рабочим сигнальщиком, обслуживающим машину, определить (при необходимости) место нахождения сигнальщика;

- место работы машин должно быть определено так, чтобы было обеспечено пространство, достаточное для обзора рабочей зоны и маневрирования.
- значение сигналов, передаваемых в процессе работы или передвижения машины, должно быть разъяснено всем лицам, связанным с ее работой.
- в зоне работы машины должны быть установлены знаки безопасности и предупредительные надписи;
- оставлять без присмотра машины с работающим (включенным) двигателем не допускается;
- перемещение, установка и работа машин вблизи котлована (канавы, траншеи) с неукрепленными откосами разрешается только за пределами призмы обрушения грунта;
- при эксплуатации машин должны быть приняты меры, предупреждающие их опрокидывание или самопроизвольное перемещение под действием ветра или при наличии уклона местности;
- при перемещении машин своим ходом или на транспортных средствах должны соблюдаться требования Правил дорожного движения;
- валуны и камни, а также отслоения грунта, обнаруженные на откосах, должны быть удалены;
- изучение и выполнение исполнителями рекультивационных работ правил по безопасному ведению работ, а также мероприятий по предупреждению и ликвидации аварий;
- для предотвращения аварий нельзя допускать пересечения потоков транспортных перевозок;
 - систематическое проведение осмотров рабочих мест, оборудования;
 - прекращение работ при возникновении опасности, либо аварии.

По контуру карьера на период производства земляных работ необходимо установить знаки с надписью, запрещающей вход и въезд посторонних лиц и механизмов.

Перед началом работ каждая машина должна пройти техническое освидетельствование.

Ликвидация карьера на участке открытой отработки меняет характер техногенной нагрузки на окружающую среду в регионе.

А после проведения работ по ликвидации и технической рекультивации карьерной выемки предусматривается биологический этап рекультивации.

22. ОПИСАНИЕ МЕТОДОЛОГИИ ИССЛЕДОВАНИЙ И СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ СОСТАВЛЕНИИ ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

Настоящий Проект отчета о возможных воздействиях выполнен в соответствии с действующими экологическими, санитарно-гигиеническими и другими нормами и правилами Республики Казахстан.

Методологическая основа проведения экологической оценки представлена в списке использованной литературы данного проекта. Методики, инструкции и прочие подзаконные акты, имеющие отношение к данному проекту приняты согласно Экологического законодательства РК.

Согласно Заключения об определении сферы охвата оценки воздействия на окружающую среду № KZ01VWF00091126 от 06.03.2023 г. выданное РГУ «Департамент экологии по Акмолинской области» требуется проведение обязательной оценки воздействия на окружающую среду.

Превышения нормативов ПДКм.р в селитебной зоне по всем загрязняющим веществам не наблюдается. Проектными решениями исключается загрязнение поверхностных и подземных вод. Весь оставшийся от деятельности бригады мусор будет удален.

Таким образом, проведение добычных работ не окажет влияние на население ближайших населенных пунктов; не вызовет необратимых процессов, разрушающих существующую геосистему. Уровень воздействия на все компоненты природной среды оценивается как умеренный.

При соблюдении требований Водного, Лесного и Экологического кодексов Республики Казахстан строительные работы не окажут существенного негативного воздействия на окружающую среду.

После реализации проекта, предприятию необходимо провести после проектный анализ фактических воздействий в ходе реализации намечаемой деятельности.

Вывод: Приняты все меры, направленные на обеспечение соблюдения всех выставленных требований в заключении об определении сферы охвата оценки воздействия на окружающую среду.

Источниками экологической информации послужили общедоступные источники информации в интернет-ресурсах официальных сайтов соответвующих ведомств, а также данные сайтов https://ecogosfond.kz/; https://www.kazhydromet.kz/ru/; https://stat.gov.kz/; https://adilet.zan.kz/rus; https://www.gov.kz/memleket/entities/aqmola-zerendy?lang=ru; https://ecoportal.kz/.

23. ОПИСАНИЕ ТРУДНОСТЕЙ, ВОЗНИКШИХ ПРИ ПРОВЕДЕНИИ ИССЛЕДОВАНИЙ

При проведении исследований трудностей связанных с отсутствием технических возможностей и недостаточным уровнем знаний не возникло.

Требования к подготовке Отчета о возможных воздействиях регламентированы статьей 72 Экологического кодекса РК № 400-VI ЗРК от 02.01.2021 г., а также приказом Министра экологии, геологии и природных ресурсов Республики Казахстан № 280 от 30.07.2021 г «Об утверждении Инструкции по организации и проведению экологической оценки».

Трудности, связанные с отсутствием технических возможностей и недостаточным уровнем современных научных знаний при проектировании намечаемой деятельности, отсутствуют.

Однако хотелось бы обратить внимание на содержание Отчета и большое количество пунктов и подпунктов, которые в какой-то мере перекликаются друг с другом, дублируются. А что касается заполнения информации, подлежащей включению в Отчет согласно содержанию, то по ряду пунктов нет соответствующих методических документаций. В связи с этим, составитель Отчета основывался на опыте коллег в аналогичных проектах и на требованиях предшествующих новому экологическому законодательству законодательных актов, регламентирующих проведение оценки воздействия на окружающую среду.

24. КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ

1. Описание предполагаемого места осуществления намечаемой деятельности, план с изображением его границ

Участок Мета расположен в Целиноградском районе Акмолинской области, в 45 км к северо-востоку от г. Астаны, в 6 км к северу от п. Софиевка.

Район сравнительно густо населен, население занято в основном: сельский хозяйством. Промышленность развита умеренно.

Площадь и глубина отвода определены, исходя из вовлечения в отработку всех утверждённых и числящихся на балансе месторождения запасов. Площадь горного отвода составляет— 33,8 га, площадь разрабатываемого карьера на 2024-2032 гг. — 1,67 га.

Контракт №599 от 23.07.2009 на проведение добычи известняка на месторождении «Мета» действует до 23 июля 2034 года. В контрактный период предусматривается отработать 470,0 тыс.тонн от балансовых запасов известняка месторождения «Мета». В контрактный разработка полезного ископаемого будет производиться уступами по 13 м, с разделением на подуступы по 6,5 м. Вскрышные породы предусматривается вывозить во внешний отвал, расположенный югозападнее от карьера на расстоянии 40 м.

Разработка месторождения будет вестись в пределах горного отвода рег.№744 от 22.11.2021 года.

Координаты угловых точек горного отвода №744

$N_{\underline{0}}N_{\underline{0}}$	Географические координаты		
точек	Северная широта	Восточная долгота	
1	51 ⁰ 27' 16,4"	71 ⁰ 44' 10,0"	
2	51 ⁰ 27' 16,6"	71 ⁰ 44' 26,5"	
3	51 ⁰ 27' 00,8"	71 ⁰ 44' 19,6"	
4	51 ⁰ 26' 48,2"	71 ⁰ 44' 28,3"	
5	51 ⁰ 26' 43,3"	71 ⁰ 44' 11,8"	
6	51 ⁰ 27' 00,5"	71 ⁰ 43' 59,8"	
7	51° 27' 07,1"	71 ⁰ 44' 05,9"	

2. Описание затрагиваемой территории с указанием численности ее населения, участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой деятельности на окружающую среду, с учетом их характеристик и способности переноса в окружающую среду; участков извлечения природных ресурсов

Участок Мета расположен в Целиноградском районе Акмолинской области, в 45 км к северо-востоку от г. Астаны, в 6 км к северу от п. Софиевка.

Ближайший водный объект – река Селеты, протекающая свыше 1,5 км западнее участка. В соответствии с постановлением акимата Акмолинской области от 26 января 2009 года № А-1/19, ширина водоохранной зоны реки Селеты составляет – 500 м, ширина водоохранной полосы 35-100 м. Согласно Водного кодекса РК исследуемый объект не входит в водоохранную зону и полосу водного объекта.

Рельеф. Район представлен типичным мелкосопочником: отдельные невысокие холмы и группы сопок, образующие слабо возвышенную равнину с относительными превышениями 10-20 м. Равнинная площадь покрыта слоем рыхлых отложений. На вершинах и склонах сопок встречаются обнажения коренных пород.

Климат. Климат района резко континентальный с жарким сухим летом и холодной зимой. Характерны значительные колебания температуры и влажности воздуха как в годовом, таки в суточном цикле.

Холодный период продолжается с ноября по март включительно. Самый холодный месяц-январь с минимальной среднемесячной температурой -27,8°C, а самый жаркий - июль с максимальной среднемесячной температурой 26,4°C. Годовая амплитуда колебания температуры достигает 73°. Среднегодовое количество осадков составляет 240-250 мм с колебаниями в отдельные годы от 163 мм до 540 мм. Основная масса осадков выпадает в летние месяцы в виде ливневых дождей. Устойчивый снежный покров образуется в начале ноября. Его глубина к концу марта достигает 35см. Среднегодовая скорость ветра составляет 5,6 м/с, вызывая летом пыльные, а зимой снежные бури. Преобладающее направление ветров северо-восточное.

Гидрография. Гидрографическая сеть района развита слабо. Река Селеты, являющаяся единственной в районе, постоянного стока не имеет и в летний период распадается на отдельные плесы. Максимум расхода воды в реке наблюдается в апреле месяце (62,5-232,0 м³/сек). Ряд небольших котловин и блюдцеобразных впадин, расположенных на участке мелкосопочника, частично заполнены водой и образуют полувысохшие озера.

Растимельность распространена степная с кустарниками. Березовые леса встречаются в виде небольших рощ.

Экономическая характеристика района. Основу экономики района составляет сельское хозяйство, в котором доминирует производство зерна. Значительное место занимают также овощеводство и мясомолочное животноводство.

Промышленность г. Астаны представлена сельскохозяйственным машиностроением и производством строительных материалов и конструкций, а также предприятиями пищевой и лёгкой промышленности. Горнорудная промышленность представлена мелкими карьерами по добыче строительных материалов - камня, щебня, дресвы, глины и суглинков, а также по поймам рек Ишим и Нура - песка и гравия.

В непосредственной близости от площади месторождения проходят железные дороги и дороги с твердым покрытием, связывающие г. Нур-Султан с городами Караганда, Кокшетау, Павлодар, Атбасар и поселками Коргалжын, Киевка, Аршалы и другими.

3. Наименование инициатора намечаемой деятельности, его контактные данные

TOO «GOLDENPIT». Юридический адрес: Акмолинская область, Целиноградский район, с. Кабанбай батыра, ул. Сарыадыр, дом 3, тел.: 87015554650, БИН 210940016517.

4. Краткое описание намечаемой деятельности

Вид деятельности: добыча известняка на месторождении Мета, в Целиноградском районе Акмолинской области.

Объект, необходимый для ее осуществления, его мощность, габариты (площадь занимаемых земель, высота), производительность, физические и технические характеристики, влияющие на воздействия на окружающую среду:

Благоприятные горно-геологические условия (мощная залежь, покрытая незначительным слоем вскрышных пород и слоем почвы) предопределили открытый способ разработки месторождения «Мета».

Контракт №599 от 23.07.2009 на проведение добычи известняка на месторождении «Мета» действует до 23 июля 2034 года. В контрактный период предусматривается отработать 470,0 тыс.тонн от балансовых запасов известняка месторождения «Мета». В контрактный разработка полезного ископаемого будет производиться уступами по 13 м, с разделением на подуступы по 6,5м. Вскрышные породы предусматривается вывозить во внешний отвал, расположенный юго-западнее от карьера на расстоянии 40 м.

За выемочную единицу разработки принимается уступ.

Построение контуров карьера выполнено графическим методом с учетом морфологии, рельефа месторождения, мощности вскрышных пород и полезного слоя.

За нижнюю границу отработки месторождения в настоящем плане горных работ принята отметка +293 м.

Сведения о производственном процессе, в том числе об ожидаемой производительности предприятия, его потребности в энергии, природных ресурсах, сырье и материалах

Режим горных работ, в соответствии с требованиями заказчика, принимается 7 дней в неделю, две смены в сутки с продолжительностью смены 8 часов. Среднее количество рабочих дней принимается 244 дней.

Календарный план горных работ месторождения

№ п/п	Год	Добычные работы,	Вскрышные работы,	
	отработки	тыс.тонн	тыс.м ³	тыс.м ³
1	2024	40,0	16,0	0,8
2	2025	40,0	7,0	0,3
3	2026	40,0	8,7	0,4
4	2027	40,0	7,5	0,4
5	2028	40,0		
6	2029	40,0		
7	2030	40,0		
8	2031	40,0		
9	2032	40,0		
10	2033	40,0		
11	2034	40,0		
Итого		440	39,2	1,9

Схема водоснабжения следующая:

- вода питьевого качества доставляется в емкостях из п.Софиевка (водозаборная колонка по договору с МИО) или в бутилированная из г. Астана ежедневно (заказываемой по договору). В нарядной предусматривается установка эмалированной закрытой емкости объемом $0.5 \,\mathrm{m}^3$;
- для хозяйственных нужд в нарядной устанавливается умывальник. Расчет на хозяйственно-питьевые нужды приведен с учетом того, что явочный состав изменяться не планируется. Удаление сточных вод предусматривается вручную. Количество удаленных сточных вод принимаем в объеме 70% от хозяйственно-питьевых нужд (с учетом потерь 30%).
- пылеподавление рабочей зоны карьера, отвалов ПРС, внутриплощадочных и внутрикарьерных дорог планируется производить поливомоечной машиной. Вода для нужд пылеподавления будет набираться из пруда. Пылеподавление будет производиться в течение теплого периода времени, с учетом климатических условий района этот период

составит 185 дней. Предусматривается следующий порядок ведения горных работ на карьере:

- Для осуществления последующих рекультивационных работ почвенно-растительный слой будет складироваться во временные отвалы (бурты).
 - Выемка и погрузка полезного ископаемого в забоях.
 - Транспортировка полезного ископаемого на строительство дороги.

Примерная площадь земельного участка, необходимого для осуществления намечаемой деятельности

Площадь месторождения — 33,8 га, площадь разрабатываемого карьера на 2024-2032 гг. — 1.67 га.

Краткое описание возможных рациональных вариантов осуществления намечаемой деятельности и обоснование выбранного варианта

Учитывая геолого-литологическое строение района и непосредственно участка работ, а также вид полезного ископаемого и его качество, альтернатив по переносу и выбору участков не имеются.

5. Краткое описание существенных воздействий намечаемой деятельности на окружающую среду, включая воздействия на следующие природные компоненты и иные объекты

Жизнь и (или) здоровье людей, условия их проживания и деятельности.

По результатам расчетов выбросов загрязняющих веществ и их рассеивании в приземном слое атмосферы, превышений ПДК на границе СЗЗ нет.

При разработке месторождения будут соблюдаться правила промсанитарии и технологии производства с целью обеспечения безопасности для здоровья трудящихся.

Исходя из выше сказанного, воздействие на жизнь и здоровье людей, а также условия их проживания и деятельности оценивается как незначительное.

<u>Биоразнообразие</u> (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)

Изменения видового состава растительности, ее состояния, продуктивности сообществ в районе намечаемой деятельности исключается. ТОО «GOLDENPIT» будет выполнять работы, с условием минимального воздействия на любой вид растительности и строго в границах земельного отвода.

Для исключения физического уничтожения растительности Планом горных работ предусмотрено снятие плодородного слоя почвы. Снятый слой почвы будет заскладирован в отвалы ПРС и использоваться для последующей рекультивации нарушенных земель.

С учетом природоохранных мероприятий проведение работ на месторождении не повлечет за собой изменение видового состава и численности животного мира.

Следовательно, при проведении работ, существенного негативного влияния на растительный и животный мир не произойдет, воздействие *допустимое*.

Генетические ресурсы

В технологическом процессе добычных работ на месторождениях генетические ресурсы не используются.

<u>Природные ареалы растений и диких животных, пути миграции диких животных,</u> экосистемы

При проведении работ на месторождении строго будут соблюдаться охранные мероприятия по сохранению растительности и животного мира, улучшению состояния встречающихся растительных и животных сообществ и их воспроизводству.

Немаловажное значение для животных, обитающих в районе месторождения, будут иметь находящиеся на месторождении трудящиеся. Поэтому наряду с усилением охраны растительного и животного мира необходимо проводить экологическое воспитание рабочих и служащих.

Для снижения воздействия на растительный и животный мир после прекращения работ на месторождении, предусматривается рекультивация нарушенных земель. В связи с этим, воздействие намечаемой деятельности на растительный и животный мир оценивается как допустимое.

Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации).

На территории месторождений отсутствуют земли оздоровительного, рекреационного и историко-культурного назначения.

Добычные работы будут проводиться в границах земельного отвода.

Дополнительного изъятия земель проектом не предусмотрено.

Почвы (в том числе органический состав, эрозию, уплотнение, иные формы деградации)

Прямое воздействие на почвы района расположения месторождения производится при добычных работах. Косвенное воздействие производится в результате выбросов загрязняющих веществ.

Для предотвращения ветровой эрозии предусмотрено орошение водой рабочих мест ведения работ, технологических дорог и отвала ПРС поливочной машиной.

Производится посев трав после завершения формирования отвалов ПРС.

После окончания работ будет предусмотрена рекультивация нарушаемых земель.

Воздействие допустимое.

Воды (в том числе гидроморфологические изменения, количество и качество вод)

Проведение добычных работ на месторождении будет осуществляться с соблюдением мероприятий по охране подземных и поверхностных вод от загрязнения.

Осуществление экологического контроля за производственной деятельностью предприятия позволит своевременно определить возможные превышения целевых показателей качества поверхностных и подземных вод с целью недопущения их загрязнения и сохранения экологического равновесия окружающей природной среды данного района.

Атмосферный воздух

Основными объектами пылеобразования при разработке месторождениях являются технологические дороги, отвалы ПРС.

При разработке месторождений внедрены следующие мероприятия по охране атмосферного воздуха согласно приложения 4 Экологического кодекса Республики Казахстан:

- п.1, п.п.3 - выполнение мероприятий по предотвращению и снижению выбросов загрязняющих веществ от стационарных источников.

При высыхании отвалов ПРС с целью снижения запыления воздушной среды, в сухую ветреную погоду будет организован полив отвалов водой.

- п.1, п.п.9 - проведение работ по пылеподавлению на технологических дорогах, на рабочих площадках карьеров, увлажнение взорванной горной массы экскаваторных забоев.

В сухое летнее время с целью снижения запыленности воздушной среды будет организовано пылеподавление на технологических дорогах и рабочих площадках карьеров, увлажнение взорванной горной массы экскаваторных забоев водой. Вследствие применения операций по пылеподавлению, влажность транспортируемого полезного ископаемого составит более 10%, что позволит снизить пыление при их транспортировке. Полив технологических дорог также позволит снизить пыление от колес автосамосвалов, задействованных для транспортировки полезного ископаемого.

Воздействие намечаемой деятельности на атмосферный воздух оценивается как незначительное.

<u>Сопротивляемость к изменению климата экологических и социальноэкономических систем</u>

Проведение промышленной добычи на месторождении будет оказывать положительный эффект в первую очередь, на областном и местном уровне воздействий.

В регионе может незначительно увеличиться первичная и вторичная занятость местного населения, что приведет к увеличению доходов населения и росту благосостояния.

Экономическая деятельность оказывает прямое и косвенное благоприятное воздействие на финансовое положение области (увеличению поступлений денежных средств в местный бюджет, развитию системы пенсионного обеспечения, образования и здравоохранения).

<u>Материальные активы, объекты историко-культурного наследия (в том числе архитектурные и археологические), ландшафты.</u>

Предлагаемый вариант добычи на месторождениях рассчитан на срок отработки 10 лет (2024-2032 гг.).

Отработка месторождений потребует больших затрат для обеспечения надежности и безопасности производственного процесса. Финансирование будет осуществляться за счёт собственных и привлеченных финансовых средств.

Ландшафты, а также взаимодействие указанных объектов

На территории Акмолинской области выделяются лесостепная (колочная лесостепь), степень и сухостепная природные зоны.

Территория Акмолинской области характеризуется преобладанием увалисто-холмисто-мелкосопочным рельефом. Северную часть занимает возвышенность Кокшетау, с общим уклоном местности — с востока на запад. На крайнем юго- востоке расположены горы Ерейментау. Северо-западная часть (прилегающая к долине Есиль, на участке ее поворота к северу) представляет равнинное плато, расчлененное сухими оврагами и балками. Крайняя северо-восточная часть Акмолинской области лежит в пределах Западно-Сибирской низменности.

6. Информация о предельных количественных и качественных показателях эмиссий, физических воздействий на окружающую среду, предельном количестве

накопления отходов, а также их захоронения, если оно планируется в рамках намечаемой деятельности

Атмосферный воздух

Объект представлен одной промышленной площадкой – месторождение «Мета» с 11-ю неорганизованными источниками выбросов ЗВ в атмосферу в 2024-2032 гг.

В выбросах, отходящих от источников загрязнения атмосферного воздуха предприятия, содержится 10 загрязняющих веществ:

- 11. Азота (IV) диоксид (Азота диоксид) (4);
- 12. Азот (II) оксид (Азота оксид) (6)
- 13. Углерод (Сажа, Углерод черный) (583);
- 14. Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516);
- 15. Сероводород (Дигидросульфид) (518);
- 16. Углерод оксид (Окись углерода, Угарный газ) (584);
- 17. Керосин (654*);
- 18. Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)
- 19. Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494);
 - 20. Пыль неорганическая, содержащая двуокись кремния в %: менее 20.

Эффектом суммации вредного действия обладают 2 группы веществ:

- **31 (0301+0330)**: азота диоксид + сера диоксид;
- **30 (0330+0333):** сера диоксид + сероводород.
- **ПЫЛИ (2908+2909):** пыль неорганическая двуокиси кремния% 70-20 + пыль неорганическая двуокиси кремния% менее 20.

Валовый выброс вредных веществ, отходящих от стационарных источников загрязнения атмосферы предприятия, составит:

- -2024 г. -9,3372116 т/год;
- -2025 г. -9,2296816 т/год;
- -2026 г. -9,3553216 т/год;
- -2027 г. -9,4243216 т/год;
- 2028-2032 г. -9,2777416 т/год.

Отходы производства и потребления

Временное хранение всех образующихся видов отходов на участке проведения работ предусматривается не более 6 месяцев.

В дальнейшем отходы в полном объеме вывозятся по договорам со специализированными организациями или утилизируются на предприятии.

Объемы размещения вскрышной породы относящиеся к горнодобывающей промышленности:

- -2024 г. -28800 т/год;
- -2025 г. -12600 т/год;
- 2026 г. -15660 т/год;
- 2027 г. -13500 т/год.

Водные ресурсы

Ближайший водный объект – река Селеты, протекающая свыше 1,5 км западнее участка. В соответствии с постановлением акимата Акмолинской области от 26 января 2009 года № А-1/19, ширина водоохранной зоны реки Селеты составляет – 500 м, ширина водоохранной полосы 35-100 м. Согласно Водного кодекса РК исследуемый объект не входит в водоохранную зону и полосу водного объекта.

На исследуемом участке отсутствуют месторождения подземных вод справка № 26-14-03/1843 от 22.12.2022 г. (Приложение 5). Намечаемая деятельность не предусматривает проведение архитектурно-строительных работ, заливку фундамента и других работ, предусматривающих проведение земляных работ, в связи с чем влияние объекта на подземные воды исключается.

Карьерный водоотлив при разработке месторождения Мета предусмотрен устройством пруда-испарителя. Проект на строительство пруда-испарителя при необходимости будет разрабатываться отдельно от Плана горных работ специализированной организацией, имеющей соответствующую лицензию. В плане горных работ приводятся примерные расчетные параметры пруда-испарителя и водного баланса.

Пруд-испаритель запроектирован с целью сбора и испарения подземных вод, атмосферных осадков паводкового периода и для забора воды для полива дорог и пылеподавления в забое. Строительство и эксплуатация пруда будет производиться только после согласования с местными исполнительными органами и получения разрешения на строительство, согласно пункта 3-1 статьи 225 Экологического Кодекса Республики Казахстан: «Создание новых (расширение действующих) накопителей-испарителей допускается по разрешению местных исполнительных органов областей, городов республиканского значения, столицы». Пруд-испаритель запроектирован за пределами горного отвода, путем устройства ограждающей дамбы в наиболее удобном месте. Основанием дамбы и дна пруда, после снятия растительного слоя, будут служить породы с недостаточными водоупорными качествами. Коэффициент фильтрации пород 0,6 см/с.

Валовый сброс вредных веществ, в пруде-испарителе загрязнения сточных вод предприятия, составит:

- 2024-2032 гг. -0.011096 т/год.

Вероятность возникновения аварий

Возможные причины возникновения аварийных ситуаций при проведении проектируемых работ условно разделяются на две взаимосвязанные группы:

- отказы оборудования;
- внешние воздействия природного и техногенного характера.

К природным факторам на рассматриваемой территории могут быть отнесены аварии, связанные с подвижками, вызываемыми разрядкой напряженного состояния литосферы и ее верхней оболочки (осадочной толщи), региональными неотектоническими движениями, в том числе по активным разломам, техногенными процессами, приводящими к наведенной сейсмичности. Также к природным факторам, способным инициировать аварии можно отнести экстремальные погодные условия — ураганные ветры, степные пожары от молний и др.

Антропогенные факторы включают в себя целый перечень причин аварий, связанных с техническими и организационными мероприятиями, в частности, внешними силовыми воздействиями, браком при монтаже и ремонте оборудования, коррозийности металла, ошибочными действиями обслуживающего персонала, террактами.

Однако работа участка за весь период его существования показывает, что вероятность возникновения аварий от внешних источников крайне мала.

С учетом вероятности возникновения аварийных ситуаций, одним из эффективных методов минимизации ущерба от потенциальных аварий различных групп является готовность к ним: разработка сценариев возможного развития событий при аварии и сценариев реагирования на них.

Другие аварийные ситуации и инциденты, связанные с эксплуатацией карьера и его объектов, носят, как правило, локальный характер, ликвидируются силами работников карьера в соответствии с Планом ликвидации аварий.

7. Информация

Информация о вероятности возникновения аварий и опасных природных явлений, характерных соответственно для намечаемой деятельности и предполагаемого места ее осуществления

Отсутствует.

Информация о возможных существенных вредных воздействиях на окружающую среду, связанных с рисками возникновения аварий и опасных природных явлений

Отсутствует.

Информация о мерах по предотвращению аварий и опасных природных явлений, и ликвидации их последствий, включая оповещение населения

Неблагоприятные последствия для окружающей среды в результате возникновения возможного инцидента (розлив нефтепродуктов на земную поверхность) оцениваются как незначительные и локальные — пятно нефтепродуктов на поверхности земли, которые устраняются немедленно персоналом организации и направляются на осуществления процедур по обезвреживанию замазученных грунтов в специализированную организацию.

Информация о мерах по предотвращению аварий и опасных природных явлений, и ликвидации их последствий, включая оповещение населения

Учитывая отдельность от жилой зоны, негативное воздействие отсутствует для населения и в окружающую среду.

При возникновении опасных природных явлений, старатель уведомляет уполномоченные службы ЧС, гражданской защиты.

8. краткое описание:

Краткое описание мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду

В целях снижения пылевыделения на территории месторождения предусмотрено гидроорошение пылящих поверхностей, внутриплощадочного и внутрикарьерного дорожного полотна посредством поливомоечной машины.

Краткое описание мер по компенсации потерь биоразнообразия, если намечаемая деятельность может привести к таким потерям.

Для обеспечения быстрого восстановления растительного покрова на участках, где будут проводиться добычные работы, требующие снятие поверхностного почвенно-

растительного слоя, с целью сохранения растительного покрова, являющегося кормовой базой растительноядных животных, предусматривается снятие ПРС, складирование его в места, позволяющие обеспечить его сохранность на время проведение работ, и последующее возвращение его на поверхность в ходе рекультивации.

Краткое описание возможных необратимых воздействий намечаемой деятельности на окружающую среду и причин, по которым инициатором принято решение о выполнении операций, влекущих таких воздействия

По результатам проведённой оценки воздействия на окружающую среду, отражённым в настоящем Отчёте, необратимых воздействия на окружающую среду выявлено не было. В связи с чем, оценка возможных необратимых воздействий на окружающую среду не представляется возможным ввиду их отсутствия

Краткое описание способов и мер восстановления окружающей среды в случаях прекращения намечаемой деятельности.

После полной отработки запасов полезного ископаемого будет проведена рекультивация месторождения.

Направление рекультивации нарушенных земель для объектов недропользования определяется инженерно-геологическими и горнотехническими условиями на момент завершения горных работ.

<u>Краткое описание мер по компенсации потерь биоразнообразия, если намечаемая деятельность может привести к таким потерям.</u>

Для обеспечения быстрого восстановления растительного покрова на участке эксплуатации, требующие снятие поверхностного почвенно-растительного слоя, с целью сохранения растительного покрова, являющегося кормовой базой растительноядных животных, предусматривается снятие ПРС, складирование его в места, позволяющие обеспечить его сохранность на время проведение работ, и последующее возвращение его на поверхность в ходе рекультивации.

9. Список источников информации, полученной в ходе выполнения оценки воздействия на окружающую среду

- 1. Экологический кодекс Республики Казахстан от 02.01.2021 г. № 400-VI ЗРК. г. Нур-Султан, 2021 г.;
- 2. «Об утверждении Методики определения нормативов эмиссий в окружающую среду», Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.
- 3. ГОСТ 17.2.3.02-78 «Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями»;
- 4. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. ОНД-86. Госкомгидромет, Ленинград гидрометеоиздат, 1997;
- 5. Санитарные правила «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» утвержденным приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № КР ДСМ-2;

- 6. Рекомендации по делению предприятий на категории опасности в зависимости от массы и видового состава выбрасываемых в атмосферу загрязняющих веществ, Алматы, 1995 г;
- 7. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов п.5. От предприятий по переработке нерудных материалов и производству пористых заполнителей. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п:
- 8. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 9. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п;
- 10. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п;
- 11. Санитарные правила «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», утвержденные Приказом Министра здравоохранения Республики Казахстан от 20 февраля 2023 года № 26;
- 12. «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности», утвержденные Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71;
- 13. Программный комплекс «ЭРА-Воздух» Версия 3.0. Расчет приземных концентраций и выпуск томов ПДВ. Новосибирск 2004;
 - 14. Налоговый колекс РК.
 - 15. План горных работ.

Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2024 год

Источник загрязнения: 6001, Пылящая поверхность Источник выделения: 6001 01, Снятие и перемещение ПРС бульдозером

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.04

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.2

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.5**

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 156

Суммарное количество перерабатываемого материала, т/год, GGOD = 1400

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 10^6 / 3600 \cdot (1-NJ)$

 $0.04 \cdot 2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 156 \cdot 10^6 / 3600 \cdot (1 \cdot 0.85) = 1.092$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1400 \cdot (1-0.85) = 0.02117$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.092 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.02117 = 0.02117

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	1.092	0.02117
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6002, Пылящая поверхность Источник выделения: 6002 01, Выемочно-погрузочные работы вскрыши экскаватором

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Глина

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), **КЗSR = 1.2**

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.2

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.4

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 349.92

Суммарное количество перерабатываемого материала, т/год, GGOD = 28800

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

 $0.02 \cdot 2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 349.92 \cdot 10^{6} / 3600 \cdot (1-0.85) = 1.633$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1.2 \cdot 1.$

 $1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 28800 \cdot (1-0.85) = 0.2903$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.633 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.2903 = 0.2903

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	1.633	0.2903
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6003, Пылящая поверхность

Источник выделения: 6003 01, Транспортировка вскрышных пород во внешний отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - < = 30 тонн

Коэфф., учитывающий грузоподъемность(табл.3.3.1), C1 = 2.5

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), С2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L=0.5

Число ходок (туда + обратно) всего транспорта в час, N = 6.6

Коэфф., учитывающий долю пыли, уносимой в атмосферу, С7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, VI = 4.6

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (4.6 \cdot 30 / 3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Глина

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 9

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), **К5М = 0.2**

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450 / 3600 + 1.45 \cdot 1.38 \cdot 0.2 \cdot 0.004 \cdot 12 \cdot 2 = 0.0567$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0567 \cdot (365 \cdot (150 + 30)) = 0.906$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0567	0.906
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6004, Пылящая поверхность Источник выделения: 6004 01, Буровые работы

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов п.5. От предприятий по переработке нерудных материалов и производству пористых заполнителей.

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Технологический процесс: Добыча нерудных строительных материалов (Буровые работы)

Вид работ: Буровые работы

Буровая установка: Станки горизонтального бурения (легкие породы). Диам. скважины 100-200 мм

Количество пыли, выделяемое при бурении одним станком, г/с(табл.5.1), GI = 0.325

Общее кол-во буровых станков, шт., _KOLIV_ = 1

Количество одновременно работающих буровых станков, шт., N = 1

Время работы одного станка, ч/год, $_{T}$ = 60.8

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный из разовых выбросов, г/с (5.1), $_{G}$ = $G1 \cdot N = 0.325 \cdot 1 = 0.325$

Валовый выброс, т/год, $\underline{M} = G1 \cdot \underline{KOLIV} \cdot \underline{T} \cdot 0.0036 = 0.325 \cdot 1 \cdot 60.8 \cdot 0.0036 = 0.0711$

Итого выбросы от: 001 Буровые работы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.325	0.0711
	(шамот, цемент, пыль цементного производства - глина,		
	глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		

Источник загрязнения: 6005, Пылящая поверхность Источник выделения: 6005 01, Взрывные работы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов загрязняющих веществ при взрывных работах

Взрывчатое вещество: Гранулотол

Количество взорванного взрывчатого вещества данной марки, τ /год, A = 4.829

Количество взорванного взрывчатого вещества за один массовый взрыв, т, AJ = 4.829

Объем взорванной горной породы, м3/год, V = 14800

Максимальный объем взорванной горной породы за один массовый взрыв, м3, VJ = 14800

Крепость горной массы по шкале М.М.Протодьяконова: >8 - < = 10

Удельное пылевыделение, кг/м3 взорванной породы(табл.3.5.2), QN = 0.08

Эффективность средств газоподавления, в долях единицы, N=0

Эффективность средств пылеподавления, в долях единицы, N1 = 0.85

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Валовый, т/год (3.5.4), $M_{-} = 0.16 \cdot QN \cdot V \cdot (1-NI) / 1000 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) / 1000 = 0.0284$

 Γ/C (3.5.6), $G_{-} = 0.16 \cdot QN \cdot VJ \cdot (1-N1) \cdot 1000 / 1200 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) \cdot 1000 / 1200 = 23.70$

Крепость породы: < = 12

Удельное выделение CO из пылегазового облака, т/т(табл.3.5.1), Q = 0.045

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $M1GOD = Q \cdot A \cdot (1-N) = 0.045 \cdot 4.829 \cdot (1-0) = 0.2173$

Удельное выделение CO из взорванной горной породы, τ/τ (табл.3.5.1), QI = 0.02

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, $\tau/\text{год}$ (3.5.3), $M2GOD = Q1 \cdot A = 0.02 \cdot 4.829 = 0.0966$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Суммарное кол-во выбросов при взрыве, т/год (3.5.1), M = MIGOD + M2GOD = 0.2173 + 0.0966 = 0.314 Максимальный разовый выброс, г/с (3.5.5), $G = Q \cdot AJ \cdot (1-N) \cdot 10^6 / 1200 = 0.045 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 181.1$

Удельное выделение NOx из пылегазового облака, т/т(табл.3.5.1), Q = 0.0031

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $MIGOD = Q \cdot A \cdot (I-N) = 0.0031 \cdot 4.829 \cdot (1-0) = 0.01497$

Удельное выделение NOx из взорванной горной породы, т/т(табл.3.5.1), Q1 = 0.0014

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, $\tau/$ год (3.5.3), $M2GOD = Q1 \cdot A = 0.0014 \cdot 4.829 = 0.00676$

Суммарное кол-во выбросов NOx при взрыве, т/год (3.5.1), M = M1GOD + M2GOD = 0.01497 + 0.00676 = 0.02173 Максимальный разовый выброс NOx, г/с (3.5.5), $G = Q \cdot AJ \cdot (1-N) \cdot 10^6 / 1200 = 0.0031 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 12.47$

С учето трансформации оксидов азота, получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Суммарное кол-во выбросов при взрыве, т/год (2.7), $\underline{M} = 0.8 \cdot M = 0.8 \cdot 0.02173 = 0.0174$ Максимальный разовый выброс, г/с (2.7), $\underline{G} = 0.8 \cdot G = 0.8 \cdot 12.47 = 9.98$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Суммарное кол-во выбросов при взрыве, т/год (2.8), $_M_=0.13 \cdot M=0.13 \cdot 0.02173=0.002825$ Максимальный разовый выброс, г/с (2.8), $_G_=0.13 \cdot G=0.13 \cdot 12.47=1.62$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	9.98	0.0174
0304	Азот (II) оксид (Азота оксид) (6)	1.62	0.002825
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	181.1	0.314
2908	Пыль неорганическая, содержащая двуокись кремния в %:	23.7	0.0284
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6006, Пылящая поверхность Источник выделения: 6006 01, Выемочно-погрузочные работы П/И экскаватором

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Известняк карьерный

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.01

Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 20

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 150

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.2

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 434.36

Суммарное количество перерабатываемого материала, т/год, GGOD = 43200

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03$

 $0.01 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 434.36 \cdot 10^6 \, / \, 3600 \cdot (1 \text{-} 0.85) = 0.0152$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 43200 \cdot (1-0.85) = 0.003266$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0152 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.003266 = 0.003266

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в %:	0.0152	0.003266
	менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль вращающихся		
	печей, боксит) (495*)		

Источник загрязнения: 6007, Пылящая поверхность Источник выделения: 6007 01, Транспортировка П/И

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - < = 30 тонн

Коэфф., учитывающий грузоподъемность (табл. 3.3.1), C1 = 2.5

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), С2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L = 0.5

Число ходок (туда + обратно) всего транспорта в час, N = 6.6

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, С4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 4.6

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (4.6 \cdot 30 / 3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Известняк карьерный

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.003

Влажность перевозимого материала, %, VL = 20

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.01

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1/3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450/3600 + 1.45 \cdot 1.38 \cdot 0.01 \cdot 0.003 \cdot 12 \cdot 2 = 0.0197$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0197 \cdot (365 \cdot (150 + 30)) = 0.315$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0197	0.315
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6010, Дыхательный клапан Источник выделения: 6010 01, Заправка техники Д/Т

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.14

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3(Прил. 15), CAMOZ = 1.6

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3(Прил. 15), CAMVL = 2.2

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.14 \cdot 0.4 / 3600 = 0.000349$

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 1000 + 2.2 \cdot 1000) \cdot 10^{-6} = 0.0038$

Удельный выброс при проливах, r/m3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (1000 + 1000) \cdot 10^{-6} = 0.05$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.0038 + 0.05 = 0.0538

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 99.72 \cdot 0.0538 / 100 = 0.0536$

Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 99.72 \cdot 0.000349 / 100 = 0.000348$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.28 \cdot 0.0538 / 100 = 0.0001506$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 0.28 \cdot 0.000349 / 100 = 0.000000977$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000000977	0.0001506
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные	0.000348	0.0536
	С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 6008, Пылящая поверхность Источник выделения: 6008 01, Бурт ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Песчано-гравийная смесь (ПГС)

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), **КЗSR = 1.2**

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.5**

Поверхность пыления в плане, м2, S = 824.5

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 824.5 \cdot (1-0.85) = 0.0359$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 824.5 \cdot (365 \cdot (150 + 30)) \cdot (1 \cdot 0.85) = 0.344$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0359 = 0.0359

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.344 = 0.344

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0359	0.344
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6009, Пылящая поверхность Источник выделения: 6009 01, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), **КЗSR = 1.2**

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.4

Поверхность пыления в плане, м2, S = 9999

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, $\Gamma/M2*c(табл.3.1.1)$, Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (1-0.85) = 0.696$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (365 \cdot (150 + 30)) \cdot (1 \cdot 0.85) = 6.67$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.696 = 0.696

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 6.67 = 6.67

п.3.2.Статическое хранение материала

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.4**

Поверхность пыления в плане, м2, S = 451

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (1-0.85) = 0.0314$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 0.301$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0.696 + 0.0314 = 0.727

Сумма выбросов, т/год (3.2.4), M = M + MC = 6.67 + 0.301 = 6.97

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.727	6.97
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6011, Выхлопная труба Источник выделения: 6011 01, Горнотранспортное оборудование

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип маг	иины:	Тракт	р (Г), N	QBC = 101 -	160 кВт					
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		иm.	мин	мин	мин	мин	мин	мин	
100	2	2.	00	50	20	20	15	8	7	
<i>3B</i>	Mx	cx,	Ml,		г/ с			т/год		

TOO «Алаит» ГЛ 01583P om 01.08.2013 год

	г/мин	г/мин			
0337	3.91	2.295	0.0952	0.101	
2732	0.49	0.765	0.0254	0.02716	
0301	0.78	4.01	0.0954	0.1026	
0304	0.78	4.01	0.0155	0.01667	
0328	0.1	0.603	0.0178	0.01912	
0330	0.16	0.342	0.0109	0.01168	

				Тип м	ашины: Тр	актор (К),	<i>NДВС</i> = 10	1 - 160 кВп	!	
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	um		шm.	мин	мин	мин	мин	мин	мин	
100	1	1.00	1	50	20	20	15	8	7	
<i>3B</i>	Mxx	x,	Ml,		г/c			т/год		
	г/ми	ин г	/мин							
0337	3.91	2.29	95			0.0476	0.0476 0.02526		0.02526	
2732	0.49	0.76	55	•	0.0127 0.00679		0.00679			
0301	0.78	4.01			0.0			0.02563		
0304	0.78	4.01		0.00775			0.004165			
0328	0.1	0.60)3			0.0089			0.00478	
0330	0.16	0.34	12			0.00544			0.00292	

				Tun .	машины: <i>Т</i>	рактор (К),	$N \mathcal{A}BC = 6$	1 - 100 кВт		
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		шm.	мин	мин	мин	мин	мин	мин	
100	1	1.00	1	50	20	20	15	8	7	
3 B	Mxx,		Ml,		г/c			т/год		
	г/мин	2	/мин							
0337	2.4	1.41	13			0.0293			0.01554	
2732	0.3	0.45	59			0.00764			0.00409	
0301	0.48	2.47	7			0.02936			0.01578	
0304	0.48	2.47	7			0.00477			0.002565	
0328	0.06	0.36	59			0.00544			0.002924	
0330	0.097	0.20)7			0.0033			0.001767	

		Tun	машины:	Грузовые ав	втомобили	дизельные с	свыше 2 до	5 т (СНГ)		
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	L1, L1n, Txs,			L2n,	Txm,	
cym	шт		иm.	км	км	мин	км	км	мин	
100	2	2.00	2	50	20	20	15	8	7	
3B	Mxx	,	Ml,		г/с			т/год		
	г/ми	н .	г/км							
0337	1.5	3.87	7		0.121					
2732	0.25	0.72	2	0.02227						
0301	0.5	2.6		0.0618						
0304	0.5	2.6		0.01004						
0328	0.02	0.27	7	0.00778						
0330	0.072	0.44	41	0.013			0.01398			

			Tı	ип машины	: Грузовые	автомобил	и дизельны	е свыше 16	т (СНГ)	
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2, L2n, Txm,		
cym	шm		шm.	км	км	мин	км	км	мин	
100	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mxx	î,	Ml,		г/c			т/год		
	г/ми	н а	г/км							
0337	2.9	8.37	'			0.259			0.2776	
2732	0.45	1.17	'			0.03656			0.03916	
0301	1	4.5				0.1078			0.1158	
0304	1	4.5				0.01752			0.01882	
0328	0.04	0.45	5			0.013			0.014	
0330	0.1	0.87	'3			0.0254			0.0273	

	ВСЕГО по периоду: Переходный период (t>-5 и t<5)											
Код	Примесь	Выброс г/с	Выброс т/год									
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.5521	0.549									

2732	Керосин (654*)	0.10457	0.1011
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.32621
0328	Углерод (Сажа, Углерод черный) (583)	0.05292	0.049184
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.05803	0.057647
	(IV) оксид) (516)		
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.05302

Выбросы по периоду: Теплый период (t>5)

Тип машины: Трактор (Г), N ДВС = 101 - 160 кВт												
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,			
cym	шт		шm.	мин	мин	мин	мин	мин	мин			
114	2	2.00	2	50	20	20	15	8	7			
<i>3B</i>	Mxx,		Ml,		г/c			т/год				
	г/мин	2/	/мин									
0337	3.91	2.09)			0.0894			0.108			
2732	0.49	0.71				0.02384			0.0291			
0301	0.78	4.01	Į.			0.0954			0.1168			
0304	0.78	4.01				0.0155			0.01898			
0328	0.1	0.45	5			0.01348			0.0165			
0330	0.16	0.31	Į.			0.01			0.0122			

				Tun M	ашины: Тр	актор (К),	NДВС = 10	1 - 160 кВп	n
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,		
cym	um		иm.	мин	мин	мин	мин	мин	мин
114	1	1.0	0 1	50	20	20	15	8	7
<i>3B</i>	Mx.	x,	Ml,		z/c			т/год	
	г/мі	ин	г/мин						
0337	3.91	2.	09			0.0447			0.027
2732	0.49	0.	71			0.01192			0.00727
0301	0.78	4.	01			0.0477			0.0292
0304	0.78	4.	01			0.00775			0.004745
0328	0.1	0.	45			0.00674			0.00413
0330	0.16	0.	31			0.005			0.00305

				Tun .	машины: Т	рактор (К),	NД $BC = 6$.	1 - 100 кВт	!
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,		
cym	um		шm.	мин	мин	мин	мин	мин	мин
114	1	1.00	1	50	20	20	15	8	7
<i>3B</i>	Mxx	.,	Ml,		г/c			т/год	
	г/ми	н г	/мин						
0337	2.4	1.29)			0.02756			0.01664
2732	0.3	0.43	3			0.00723			0.00441
0301	0.48	2.47	7			0.02936			0.018
0304	0.48	2.47	7			0.00477			0.002925
0328	0.06	0.27	7			0.00404			0.002474
0330	0.097	0.19)			0.003056			0.001867

			Tun	машины: 1	Грузовые ав	томобили	дизельные с	свыше 2 до	5 т (СНГ)	
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	L1n,	Txs,	L2,	L2n,		
cym	um		шm.	км	км	мин	км	км	мин	
114	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mxx	;,	Ml,		г/с			т/год		
	г/ми	н а	г/км							
0337	1.5	3.5				0.1104			0.135	
2732	0.25	0.7				0.0217			0.02654	
0301	0.5	2.6				0.0618			0.0758	
0304	0.5	2.6	-	•		0.01004		•	0.0123	
0328	0.02	0.2				0.0058			0.00711	
0330	0.072	0.39)			0.01156			0.01418	

Dn, Nk , A $Nk1$ $L1$, $L1n$, Txs , $L2$, $L2n$, Txm ,		Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)										
	Dn,	Nk,	\boldsymbol{A}	N/1-1	<i>L1</i> ,	L1n,		L2,		Txm,		

TOO «Алаит» ГЛ 01583P om 01.08.2013 год

		1	1			I			l		
cym	шт		шm.	км	км	мин	км	км	мин		
114	2	2.00	2	50	20	20	15	8	7		
<i>3B</i>	Mxx,		Ml,		г/с			т/год			
	г/мин	í	г/км								
0337	2.9	7.5				0.234			0.2864		
2732	0.45	1.1				0.03456			0.0422		
0301	1	4.5				0.1078			0.132		
0304	1	4.5				0.01752			0.02145		
0328	0.04	0.4	-			0.0116			0.01423		
0330	0.1	0.78	3			0.0228			0.02795		

	ВСЕГО по периоду: Теплый период (t>5)									
Код	Примесь	Выброс г/с	Выброс т/год							
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.50606	0.57304							
2732	Керосин (654*)	0.09925	0.10952							
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.3718							
0328	Углерод (Сажа, Углерод черный) (583)	0.041664	0.044444							
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.052416	0.059247							
	(IV) оксид) (516)									
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0604							

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T=0

Тип ма	Гип машины: Трактор (Г), N ДВС = 101 - 160 кВт									
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		шm.	мин	мин	мин	мин	мин	мин	I
30	2	2.00	2	50	20	20	15	8	7	I
							•			
3 B	Mxx	,	Ml,		г/c			т/год		
	г/миі	н г	/мин							
0337	3.91	2.55	5			0.1023			0.03264	
2732	0.49	0.85	5			0.0278			0.00893	
0301	0.78	4.01				0.0954			0.03076	
0304	0.78	4.01				0.0155			0.005	
0328	0.1	0.67	7			0.0197			0.00635	
0330	0.16	0.38	3			0.01197			0.00385	

	Тип машины: Трактор (K), $N \mathcal{A} BC = 101$ - $160 \kappa Bm$									
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
30	1	1.00	1	50	20	20	15	8	7	
3 B	Mx	x,	Ml,		г/c			т/год		
	г/м	ин г	/мин							
0337	3.91	2.55	5			0.0512			0.00816	
2732	0.49	0.83	5			0.0139			0.00223	
0301	0.78	4.0	1			0.0477			0.00769	
0304	0.78	4.0	1			0.00775			0.00125	
0328	0.1	0.6	7			0.00984			0.001587	
0330	0.16	0.38	3			0.00598			0.000963	

	Тип машины: Трактор (K), N ДВС = 61 - 100 кВт								
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,
cym	шm		шm.	мин	мин	мин	мин	мин	мин
30	1	1.00	1	50	20	20	15	8	7
<i>3B</i>	Mxx	x,	Ml,		ı∕c			т/год	
	г/ми	ін г	/мин						
0337	2.4	1.5	7			0.0315			0.00502
2732	0.3	0.5	1			0.00836			0.001344
0301	0.48	2.4	7			0.02936			0.00474
0304	0.48	2.4	7			0.00477			0.00077
0328	0.06	0.4	1			0.00602			0.00097
0330	0.097	0.23	3			0.00362			0.000583

	·		Tun	машины:	Грузовые ав	т омобили	дизельные с	свыше 2 до	5 т (СНГ)
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,
cym	шт		шm.	км	км	мин	км	км	мин
30	2	2.00	2	50	20	20	15	8	7
<i>3B</i>	Mxx,	,	Ml,		г/c			т/год	
	г/миі	н а	г/км						
0337	1.5	4.3				0.133			0.0428
2732	0.25	0.8				0.0245			0.0079
0301	0.5	2.6				0.0618			0.01992
0304	0.5	2.6				0.01004			0.00324
0328	0.02	0.3				0.00862			0.002784
0330	0.072	0.49)	•		0.0144	•		0.00464

	Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)									
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	um		ит.	км	км	мин	км	км	мин	
30	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mxx	.,	Ml,		г/с			т/год		
	г/ми	н	г/км							
0337	2.9	9.3				0.285			0.0918	
2732	0.45	1.3				0.0402			0.01294	
0301	1	4.5				0.1078			0.0347	
0304	1	4.5				0.01752			0.00564	
0328	0.04	0.5				0.01442			0.00466	
0330	0.1	0.97	7			0.02816			0.00908	

	ВСЕГО по периоду: Холодный (t=,град.С)							
Код	Примесь	Выброс г/с	Выброс т/год					
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	0.18042					
2732	Керосин (654*)	0.11476	0.033344					
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.09781					
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.016351					
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.06413	0.019116					
	(IV) оксид) (516)							
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0159					

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.79582
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.12932
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.109979
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.06413	0.13601
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	1.30246
2732	Керосин (654*)	0.11476	0.243964

Максимальные разовые выбросы достигнуты в холодный период

Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2025 год

Источник загрязнения: 6001, Пылящая поверхность Источник выделения: 6001 01, Снятие и перемещение ПРС бульдозером

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.04

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.2

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 156

Суммарное количество перерабатываемого материала, т/год, *GGOD* = 525

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

 $0.04 \cdot 2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 156 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.092$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 1.0 \cdot 1.$

 $1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 525 \cdot (1-0.85) = 0.00794$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.092 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.00794 = 0.00794

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	1.092	0.00794
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6002, Пылящая поверхность Источник выделения: 6002 01, Выемочно-погрузочные работы вскрыши экскаватором

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Глина

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), **КЗSR = 1.2**

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.2

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.4

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, *GMAX* = 349.92

Суммарное количество перерабатываемого материала, т/год, GGOD = 12600

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

 $0.02 \cdot 2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 349.92 \cdot 10^{6} / 3600 \cdot (1-0.85) = 1.633$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1.1 \cdot 0.7 \cdot 1.2 \cdot 0.2 \cdot 0.4 \cdot 1.2 \cdot 0.7 \cdot 1.2 \cdot 0.2 \cdot 0.4 \cdot 1.2 \cdot 0.7 \cdot 1.2 \cdot 0.2 \cdot 0.4 \cdot 1.2 \cdot 0.7 \cdot 1.2 \cdot 0.2 \cdot 0.4 \cdot 1.2 \cdot 0.7 \cdot 1.2 \cdot 0.2 \cdot 0.4 \cdot 1.2 \cdot 0.7 \cdot 0.2 \cdot 0.4 \cdot 1.2 \cdot 0.2 \cdot 0.4 \cdot 0.2 \cdot 0.$

 $1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 12600 \cdot (1-0.85) = 0.127$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.633

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.127 = 0.127

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	1.633	0.127
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6003, Пылящая поверхность

Источник выделения: 6003 01, Транспортировка вскрышных пород во внешний отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - <= 30 тонн

Коэфф., учитывающий грузоподъемность(табл.3.3.1), CI = 2.5

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), С2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., N1 = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L=0.5

Число ходок (туда + обратно) всего транспорта в час, N = 6.6

Коэфф., учитывающий долю пыли, уносимой в атмосферу, С7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, VI = 4.6

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (4.6 \cdot 30 / 3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Глина

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 9

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), **К5М = 0.2**

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1/3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450/3600 + 1.45 \cdot 1.38 \cdot 0.2 \cdot 0.004 \cdot 12 \cdot 2 = 0.0567$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0567 \cdot (365 \cdot (150 + 30)) = 0.906$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0567	0.906
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6004, Пылящая поверхность Источник выделения: 6004 01, Буровые работы

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов п.5. От предприятий по переработке нерудных материалов и производству пористых заполнителей.

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Технологический процесс: Добыча нерудных строительных материалов (Буровые работы)

Вид работ: Буровые работы

Буровая установка: Станки горизонтального бурения (легкие породы). Диам. скважины 100-200 мм

Количество пыли, выделяемое при бурении одним станком, r/c(табл.5.1), GI = 0.325

Общее кол-во буровых станков, шт., _KOLIV_ = 1

Количество одновременно работающих буровых станков, шт., N = 1

Время работы одного станка, ч/год, $_{T}$ = 60.8

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный из разовых выбросов, г/с (5.1), $_G_ = G1 \cdot N = 0.325 \cdot 1 = 0.325$ Валовый выброс, т/год, $_M_ = G1 \cdot _KOLIV_ \cdot _T_ \cdot 0.0036 = 0.325 \cdot 1 \cdot 60.8 \cdot 0.0036 = 0.0711$

Итого выбросы от: 001 Буровые работы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.325	0.0711
	(шамот, цемент, пыль цементного производства - глина,		
	глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		

Источник загрязнения: 6005, Пылящая поверхность Источник выделения: 6005 01, Взрывные работы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов загрязняющих веществ при взрывных работах

Взрывчатое вещество: Гранулотол

Количество взорванного взрывчатого вещества данной марки, т/год, A = 4.829

Количество взорванного взрывчатого вещества за один массовый взрыв, т, AJ = 4.829

Объем взорванной горной породы, м3/год, V = 14800

Максимальный объем взорванной горной породы за один массовый взрыв, м3, VJ = 14800

Крепость горной массы по шкале М.М.Протодьяконова: >8 - <= 10

Удельное пылевыделение, кг/м3 взорванной породы(табл.3.5.2), QN = 0.08

Эффективность средств газоподавления, в долях единицы, N=0

Эффективность средств пылеподавления, в долях единицы, N1 = 0.85

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Валовый, т/год (3.5.4), $_{_}M_{_} = 0.16 \cdot QN \cdot V \cdot (1-NI) / 1000 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) / 1000 = 0.0284$ г/с (3.5.6), $_{_}G_{_} = 0.16 \cdot QN \cdot VJ \cdot (1-NI) \cdot 1000 / 1200 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) \cdot 1000 / 1200 = 23.7$

Крепость породы: <= 12

Удельное выделение CO из пылегазового облака, т/т(табл.3.5.1), Q = 0.045

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $M1GOD = Q \cdot A \cdot (1-N) = 0.045 \cdot 4.829 \cdot (1-0) = 0.2173$

Удельное выделение СО из взорванной горной породы, т/т(табл.3.5.1), Q1 = 0.02

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, $\tau/\text{год}$ (3.5.3), $M2GOD = Q1 \cdot A = 0.02 \cdot 4.829 = 0.0966$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Суммарное кол-во выбросов при взрыве, τ /год (3.5.1), M = MIGOD + M2GOD = 0.2173 + 0.0966 = 0.314 Максимальный разовый выброс, τ /с (3.5.5), $G = Q \cdot AJ \cdot (I-N) \cdot 10^6 / 1200 = 0.045 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 181.1$

Удельное выделение NOx из пылегазового облака, т/т(табл.3.5.1), Q = 0.0031

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $M1GOD = Q \cdot A \cdot (1-N) = 0.0031 \cdot 4.829 \cdot (1-0) = 0.01497$

Удельное выделение NOх из взорванной горной породы, T/T (табл.3.5.1), Q1 = 0.0014

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, $\tau/$ год (3.5.3), $M2GOD = Q1 \cdot A = 0.0014 \cdot 4.829 = 0.00676$

Суммарное кол-во выбросов NOx при взрыве, т/год (3.5.1), M = M1GOD + M2GOD = 0.01497 + 0.00676 = 0.02173 Максимальный разовый выброс NOx, г/с (3.5.5), $G = Q \cdot AJ \cdot (1-N) \cdot 10^6 / 1200 = 0.0031 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 12.47$

С учето трансформации оксидов азота, получаем:

<u>Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)</u>

Суммарное кол-во выбросов при взрыве, т/год (2.7), $\underline{M} = 0.8 \cdot M = 0.8 \cdot 0.02173 = 0.0174$ Максимальный разовый выброс, г/с (2.7), $\underline{G} = 0.8 \cdot G = 0.8 \cdot 12.47 = 9.98$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Суммарное кол-во выбросов при взрыве, т/год (2.8), $M = 0.13 \cdot M = 0.13 \cdot 0.02173 = 0.002825$ Максимальный разовый выброс, г/с (2.8), $G = 0.13 \cdot G = 0.13 \cdot 12.47 = 1.62$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	9.98	0.0174
0304	Азот (II) оксид (Азота оксид) (6)	1.62	0.002825
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	181.1	0.314
2908	Пыль неорганическая, содержащая двуокись кремния в %:	23.7	0.0284
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6006, Пылящая поверхность Источник выделения: 6006 01, Выемочно-погрузочные работы П/И экскаватором

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Известняк карьерный

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.01

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 20

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 150

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.2**

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 434.36

Суммарное количество перерабатываемого материала, т/год, GGOD = 43200

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03$

 $0.01 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 434.36 \cdot 10^{6} / 3600 \cdot (1-0.85) = 0.0152$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 0.7 \cdot 43200 \cdot (1-0.85) = 0.003266$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0152 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.003266 = 0.003266

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в %:	0.0152	0.003266
	менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль вращающихся		
	печей, боксит) (495*)		

Источник загрязнения: 6007, Пылящая поверхность Источник выделения: 6007 01, Транспортировка П/И

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - < = 30 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), CI = 2.5

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L = 0.5

Число ходок (туда + обратно) всего транспорта в час, N = 6.6

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, С4 = 1.45

Наиболее характерная для данного района скорость ветра, м/c, V1 = 4.6

Средняя скорость движения транспортного средства, $\kappa M/4$ ас, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (4.6 \cdot 30 / 3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Известняк карьерный

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.003

Влажность перевозимого материала, %, VL = 20

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.01

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450 / 3600 + 1.45 \cdot 1.38 \cdot 0.01 \cdot 0.003 \cdot 12 \cdot 2 = 0.0197$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0197 \cdot (365 \cdot (150 + 30)) = 0.315$

Итоговая таблица:

Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0197	0.315
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6010, Дыхательный клапан Источник выделения: 6010 01, Заправка техники Д/Т

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.14

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, r/m3 (Прил. 15), CAMOZ = 1.6

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, $\Gamma/M3$ (Прил. 15), CAMVL = 2.2

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, *VTRK* = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.14 \cdot 0.4 / 3600 = 1$ 0.000349

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 1000 + 2.2 \cdot 1000) \cdot 10^{-6}$ $10^{-6} = 0.0038$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (1000 + 1000) \cdot$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.0038 + 0.05 = 0.0538

Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-<u>265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 99.72 \cdot 0.0538 / 100 = 0.0536$

Максимальный из разовых выброс, г/с (5.2.4), $_{G}$ = $CI \cdot G / 100 = 99.72 \cdot 0.000349 / 100 = 0.000348$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 0.28 \cdot 0.0538 / 100 = 0.0001506$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 0.28 \cdot 0.000349 / 100 = 0.000000977$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000000977	0.0001506
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.000348	0.0536

Источник загрязнения: 6008, Пылящая поверхность Источник выделения: 6008 01, Бурт ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Песчано-гравийная смесь (ПГС)

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4** = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), **КЗSR = 1.2**

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.5**

Поверхность пыления в плане, м2, S = 990.3

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 990.3 \cdot (1-0.85) = 0.0431$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 990.3 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 0.413$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0431 = 0.0431

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.413 = 0.413

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0431	0.413
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6009, Пылящая поверхность Источник выделения: 6009 01, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4** = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), **КЗSR = 1.2**

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.4

Поверхность пыления в плане, м2, S = 9999

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (1-0.85) = 0.696$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 6.67$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.696 = 0.696

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 6.67 = 6.67

п.3.2.Статическое хранение материала

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), **КЗSR = 1.2**

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.4

Поверхность пыления в плане, м2, S = 451

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (1-0.85) = 0.0314$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 0.301$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0.696 + 0.0314 = 0.727

Сумма выбросов, т/год (3.2.4), M = M + MC = 6.67 + 0.301 = 6.97

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.727	6.97
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6011, Выхлопная труба Источник выделения: 6011 01, Горнотранспортное оборудование

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип машины: Трактор (Γ), N ДВС = 101 - 160 кВт										
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	

cym	шт			шm.	мин	мин	мин	мин	мин	мин	
100	2	2	2.00	2	50) 20	20	15	8	7	
3 B	Mxx	x,	İ	Ml,		ı∕c			т/год		
	г/ми	г/мин		мин							
0337	3.91		2.29	5			0.0952		0.101		
2732	0.49		0.76	5			0.0254		0.02716		
0301	0.78		4.01				0.0954		0.1026		
0304	0.78		4.01			0.0155				0.01667	
0328	0.1		0.60	3			0.0178		0.01912		
0330	0.16	,	0.34	-2	0.0109			0.01168			

				Tun A	ашины: Тр	рактор (К),	NДBC = 10	01 - 160 кЕ	3m	
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
100	1	1.00	1	50	20	20	15	{	3 7	
	•	•								
<i>3B</i>	Mxx,	,	Ml,	2/c			т/год			
	г/миі	н г	/мин							
0337	3.91	2.29	95		0.0476				0.02526	
2732	0.49	0.76	55			0.0127				
0301	0.78	4.01				0.0477			0.02563	
0304	0.78	4.01				0.00775			0.004165	
0328	0.1	0.60)3		0.0089					
0330	0.16	0.34	12	0.00544					0.00292	

				Tun .	машины: Т	рактор (К),	<i>NДВС</i> = 6	1 - 100 кВт	1	
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
100	1	1.00	1	50	20	20	15	8	7	
<i>3B</i>	Mxx	î,	Ml,	z/c			т/год			
	г/ми	н г	/мин							
0337	2.4	1.41	13			0.0293	0.01554			
2732	0.3	0.45	59			0.00764			0.00409	
0301	0.48	2.47	7			0.02936			0.01578	
0304	0.48	2.47	7	0.00477						
0328	0.06	0.36	59	0.00544			0.002924			
0330	0.097	0.20)7			0.0033			0.001767	

			Tun	машины:	Грузовые ав	томобили с	дизельные с	выше 2 до	5 m (СНГ)	
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шт		иm.	км	км	мин	км	км	мин	
100	2	2.00	2	50	20	20	15	8	7	
	•	•								
<i>3B</i>	Mxx,		Ml,		г/с			т/год		
	г/мин	ı	г/км							
0337	1.5	3.87	7			0.121			0.1296	
2732	0.25	0.72	2			0.02227			0.0239	
0301	0.5	2.6				0.0618			0.0664	
0304	0.5	2.6		0.01004					0.0108	
0328	0.02	0.27	7	0.00778			0.00836			
0330	0.072	0.44	1			0.013			0.01398	

				Tı	іп машины	: Грузовые	автомобил	и дизельные	е свыше 16	т (СНГ)	
Dn,	Nk, A N		Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,		
cym	шт			шm.	км	км	мин	км	км	мин	
100	2	2	00.2	2	50	20	20	15	8	7	
<i>3B</i>	3B Mxx, Ml,		Ml,	<i>₂/c</i>			т/год				
	г/м	ин		/км							
0337	2.9		8.37				0.259			0.2776	
2732	0.45		1.17				0.03656				
0301	1		4.5				0.1078			0.1158	
0304	1		4.5		0.01752						
0328	0.04		0.45		0.013			0.014			
0330	0.1		0.87	3	0.0254						

	ВСЕГО по периоду: Переходный период (t>-5 и t<5)										
Код	Примесь	Выброс г/с	Выброс т/год								
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.5521	0.549								
2732	Керосин (654*)	0.10457	0.1011								
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.32621								
0328	Углерод (Сажа, Углерод черный) (583)	0.05292	0.049184								
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.05803	0.057647								
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.05302								

Выбросы по периоду: Теплый период (t>5)


Тип ма	шины:	Тракт	<i>ор (Г), N</i> Д	QBC = 101 -	160 кВт					
Dn,	Nk,	A N		Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		иm.	мин	мин	мин	мин	мин	мин	
114	2	2	.00	50	20	20	15	8	7	
3 B	Mx	rх,	Ml,		г/c			т/год		
	г/м	ин	г/мин							
0337	3.91	2	2.09			0.0894			0.108	
2732	0.49	(0.71			0.02384			0.0291	
0301	0.78	4	4.01			0.0954			0.1168	
0304	0.78	4	4.01			0.0155			0.01898	
0328	0.1	(0.45			0.01348			0.0165	
0330	0.16	(0.31			0.01			0.0122	

				Tun A	лашины: Т	рактор (К),	<i>NДВС</i> = 10	01 - 160 кВи	n	
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		ит.	мин	мин	мин	мин	мин	мин	
114	1	1.00	1	50	20	20	15	8	7	
3 B	Mx	cx,	Ml,		г/с			т/год		
	г/м	ин	г/мин							
0337	3.91	2.0	9			0.0447			0.027	
2732	0.49	0.7	1			0.01192			0.00727	
0301	0.78	4.0	1			0.0477			0.0292	
0304	0.78	4.0	1			0.00775			0.004745	
0328	0.1	0.4	.5			0.00674			0.00413	
0330	0.16	0.3	1			0.005			0.00305	

				Tun .	машины: Т	рактор (К),	$N \mathcal{A}BC = 6$	1 - 100 кВт			
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,		
cym	шт		шm.	мин	мин	мин	мин	мин	мин		
114	1	1.00	1	50	20	20	15	8	7		
<i>3B</i>	Mxx	x,	Ml,		г/c			т/год			
	г/ми	ін г	/мин								
0337	2.4	1.29	9			0.02756			0.01664		
2732	0.3	0.4	3			0.00723			0.00441		
0301	0.48	2.4	7			0.02936			0.018		
0304	0.48	2.4	7			0.00477			0.002925		
0328	0.06	0.2	7			0.00404			0.002474		
0330	0.097	0.1)			0.003056			0.001867		

			Tui	п машины:	Грузовые ав	втомобили	дизельные с	свыше 2 до	5 т (СНГ)	
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шm		иm.	км	км	мин	км	км	мин	
114	2	2.0	0 2	50	20	20	15	8	7	
<i>3B</i>	Mx	rx,	Ml,		г/с			т/год		
	г/м	ин	г/км							
0337	1.5	3.	5			0.1104			0.135	
2732	0.25	0.	7			0.0217			0.02654	
0301	0.5	2.	6			0.0618			0.0758	
0304	0.5	2.	6			0.01004			0.0123	
0328	0.02	0.	2			0.0058			0.00711	

0330	0.072	0.39	0.01156	0.01418	

			Tu	п машины.	: Грузовые (автомобилі	и дизельные	свыше 16	т (СНГ)	
Dn,	Nk,	A	Nk1	L1,	L1n,	L1n, Txs,		L2n,	Txm,	
cym	um		um.	км	км	мин	км	км	мин	
114	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mxx	x,	Ml,		г/c			т/год		
	г/ми	ін .	г/км							
0337	2.9	7.5				0.234			0.2864	
2732	0.45	1.1				0.03456			0.0422	
0301	1	4.5				0.1078			0.132	
0304	1	4.5				0.01752			0.02145	
0328	0.04	0.4				0.0116			0.01423	
0330	0.1	0.78	3			0.0228			0.02795	

	ВСЕГО по периоду: Теплый	i период (t>5)	
Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.50606	0.57304
2732	Керосин (654*)	0.09925	0.10952
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.3718
0328	Углерод (Сажа, Углерод черный) (583)	0.041664	0.044444
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.052416	0.059247
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0604

Выбросы по периоду: Холодный период (t<-5) Температура воздуха за расчетный период, град. С, T=0

Тип ма	шины: Тр	актор	<u>(Г), NД</u>	BC = 101 - 1	160 кВт					
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	um		ит.	мин	мин	мин	мин	мин	мин	
30	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mxx,	,	Ml,		г/c			т/год		
	г/мин	4 Z	/мин							
0337	3.91	2.55	5			0.1023			0.03264	
2732	0.49	0.85	5			0.0278			0.00893	
0301	0.78	4.01				0.0954			0.03076	
0304	0.78	4.01			•	0.0155			0.005	
0328	0.1	0.67	7	•	•	0.0197		•	0.00635	
0330	0.16	0.38	3			0.01197			0.00385	

				Tun A	лашины: Тұ	рактор (К),	<i>NДВС</i> = 10	1 - 160 кВп	n	
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		шm.	мин	мин	мин	мин	мин	мин	
30	1	1.00	1	50	20	20	15	8	7	
3 B	Mx	x,	Ml,		г/с			т/год		
	г/мі	ин г	/мин							
0337	3.91	2.55	5			0.0512			0.00816	
2732	0.49	0.83	5			0.0139			0.00223	
0301	0.78	4.0	1			0.0477			0.00769	
0304	0.78	4.0	1			0.00775			0.00125	
0328	0.1	0.6	7			0.00984			0.001587	
0330	0.16	0.38	3			0.00598			0.000963	

		Tun машины: Трактор (K), N ДВС = 61 - 100 кВт													
Dn,	Nk,	\boldsymbol{A}		Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,					
cym	шm			шm.	мин	мин	мин	мин	мин	мин					
30	1		1.00	1	50	20	20	15	8	7					
								<u>. </u>							
<i>3B</i>	Mo	rx,	I	Ml,		г/c			т/год						
	г/м	ин	2/.	мин											
0337	2.4		1.57				0.0315			0.00502					
2732	0.3		0.51				0.00836			0.001344					
0301	0.48		2.47				0.02936			0.00474					

0304	0.48	2.47	0.00477	0.00077	
0328	0.06	0.41	0.00602	0.00097	
0330	0.097	0.23	0.00362	0.000583	

			Tun	машины: 1	Грузовые ав	томобили	дизельные с	свыше 2 до	5 т (СНГ)	
Dn,	Nk,	A	Nk1	L1,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шm		шm.	км	км	мин	км	км	мин	
30	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mxx,		Ml,		г/с			т/год		
	г/мин	ı .	г/км							
0337	1.5	4.3				0.133			0.0428	
2732	0.25	0.8				0.0245			0.0079	
0301	0.5	2.6				0.0618			0.01992	
0304	0.5	2.6				0.01004			0.00324	
0328	0.02	0.3				0.00862			0.002784	
0330	0.072	0.49)			0.0144			0.00464	

	Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)									
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	um		шm.	км	км	мин	км	км	мин	
30	2	2.00	2	50	20	20	15	8	7	
	•									
<i>3B</i>	Mxx,	,	Ml,		г/с			т/год		
	г/миі	н	г/км							
0337	2.9	9.3				0.285			0.0918	
2732	0.45	1.3				0.0402			0.01294	
0301	1	4.5				0.1078			0.0347	
0304	1	4.5				0.01752			0.00564	
0328	0.04	0.5				0.01442			0.00466	
0330	0.1	0.97	7			0.02816			0.00908	

	ВСЕГО по периоду: Холодный (t=,град.С)				
Код	Примесь	Выброс г/с	Выброс т/год		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	0.18042		
2732	Керосин (654*)	0.11476	0.033344		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.09781		
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.016351		
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.06413	0.019116		
	(IV) оксид) (516)				
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0159		

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.79582
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.12932
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.109979
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.06413	0.13601
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	1.30246
2732	Керосин (654*)	0.11476	0.243964

Максимальные разовые выбросы достигнуты в холодный период

Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2026 год

Источник загрязнения: 6001, Пылящая поверхность Источник выделения: 6001 01, Снятие и перемещение ПРС бульдозером

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.04

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.2

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 156

Суммарное количество перерабатываемого материала, т/год, GGOD = 700

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03$

 $0.04 \cdot 2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 156 \cdot 10^{6} / 3600 \cdot (1-0.85) = 1.092$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 700 \cdot (1-0.85) = 0.01058$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.092 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.01058 = 0.01058

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	1.092	0.01058
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6002, Пылящая поверхность Источник выделения: 6002 01, Выемочно-погрузочные работы вскрыши экскаватором

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Глина

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), **КЗSR = 1.2**

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.2

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.4

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 349.92

Суммарное количество перерабатываемого материала, т/год, GGOD = 15660

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

 $0.02 \cdot 2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 349.92 \cdot 10^{6} / 3600 \cdot (1-0.85) = 1.633$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1.2 \cdot 1.$

 $1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 15660 \cdot (1-0.85) = 0.158$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.633 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.158 = 0.158

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	1.633	0.158
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6003, Пылящая поверхность

Источник выделения: 6003 01, Транспортировка вскрышных пород во внешний отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - <= 30 тонн

Коэфф., учитывающий грузоподъемность(табл.3.3.1), C1 = 2.5

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), С2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L=0.5

Число ходок (туда + обратно) всего транспорта в час, N = 6.6

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/c, VI = 4.6

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (4.6 \cdot 30 / 3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Глина

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 9

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), **К5М = 0.2**

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1/3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450/3600 + 1.45 \cdot 1.38 \cdot 0.2 \cdot 0.004 \cdot 12 \cdot 2 = 0.0567$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0567 \cdot (365 \cdot (150 + 30)) = 0.906$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0567	0.906
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6004, Пылящая поверхность Источник выделения: 6004 01, Буровые работы

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов п.5. От предприятий по переработке нерудных материалов и производству пористых заполнителей.

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Технологический процесс: Добыча нерудных строительных материалов (Буровые работы)

Вид работ: Буровые работы

Буровая установка: Станки горизонтального бурения (легкие породы). Диам. скважины 100-200 мм

Количество пыли, выделяемое при бурении одним станком, г/с(табл.5.1), GI = 0.325

Общее кол-во буровых станков, шт., _KOLIV_ = 1

Количество одновременно работающих буровых станков, шт., N = 1

Время работы одного станка, ч/год, $_{T}$ = 60.8

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный из разовых выбросов, г/с (5.1), $G = G1 \cdot N = 0.325 \cdot 1 = 0.325$

Валовый выброс, т/год, $\underline{M} = G1 \cdot \underline{KOLIV} \cdot \underline{T} \cdot 0.0036 = 0.325 \cdot 1 \cdot 60.8 \cdot 0.0036 = 0.0711$

Итого выбросы от: 001 Буровые работы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.325	0.0711
	(шамот, цемент, пыль цементного производства - глина,		
	глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		

Источник загрязнения: 6005, Пылящая поверхность Источник выделения: 6005 01, Взрывные работы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов загрязняющих веществ при взрывных работах

Взрывчатое вещество: Гранулотол

Количество взорванного взрывчатого вещества данной марки, τ /год, A = 4.829

Количество взорванного взрывчатого вещества за один массовый взрыв, т, AJ = 4.829

Объем взорванной горной породы, м3/год, V = 14800

Максимальный объем взорванной горной породы за один массовый взрыв, м3, VJ = 14800

Крепость горной массы по шкале М.М.Протодьяконова: >8 - < = 10

Удельное пылевыделение, кг/м3 взорванной породы(табл.3.5.2), QN = 0.08

Эффективность средств газоподавления, в долях единицы, N=0

Эффективность средств пылеподавления, в долях единицы, N1 = 0.85

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Валовый, т/год (3.5.4), $M_{-} = 0.16 \cdot QN \cdot V \cdot (1-NI) / 1000 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) / 1000 = 0.0284$

 Γ/C (3.5.6), $G = 0.16 \cdot QN \cdot VJ \cdot (1-N1) \cdot 1000 / 1200 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) \cdot 1000 / 1200 = 23.7$

Крепость породы: < = 12

Удельное выделение СО из пылегазового облака, т/т(табл.3.5.1), Q = 0.045

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $M1GOD = Q \cdot A \cdot (1-N) = 0.045 \cdot 4.829 \cdot (1-0) = 0.2173$

Удельное выделение CO из взорванной горной породы, τ/τ (табл.3.5.1), Q1 = 0.02

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, $\tau/\text{год}$ (3.5.3), $M2GOD = Q1 \cdot A = 0.02 \cdot 4.829 = 0.0966$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Суммарное кол-во выбросов при взрыве, т/год (3.5.1), M = MIGOD + M2GOD = 0.2173 + 0.0966 = 0.314 Максимальный разовый выброс, г/с (3.5.5), $G = Q \cdot AJ \cdot (1-N) \cdot 10^6 / 1200 = 0.045 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 181.1$

Удельное выделение NOx из пылегазового облака, т/т(табл.3.5.1), Q = 0.0031

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $M1GOD = Q \cdot A \cdot (1-N) = 0.0031 \cdot 4.829 \cdot (1-0) = 0.01497$

Удельное выделение NOx из взорванной горной породы, т/т(табл.3.5.1), Q1 = 0.0014

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, $\tau/$ год (3.5.3), $M2GOD = Q1 \cdot A = 0.0014 \cdot 4.829 = 0.00676$

Суммарное кол-во выбросов NOx при взрыве, т/год (3.5.1), M = M1GOD + M2GOD = 0.01497 + 0.00676 = 0.02173 Максимальный разовый выброс NOx, г/с (3.5.5), $G = Q \cdot AJ \cdot (I-N) \cdot 10^6 / 1200 = 0.0031 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 12.47$

С учето трансформации оксидов азота, получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Суммарное кол-во выбросов при взрыве, т/год (2.7), $\underline{M} = 0.8 \cdot M = 0.8 \cdot 0.02173 = 0.0174$ Максимальный разовый выброс, г/с (2.7), $\underline{G} = 0.8 \cdot G = 0.8 \cdot 12.47 = 9.98$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Суммарное кол-во выбросов при взрыве, т/год (2.8), $\underline{M} = 0.13 \cdot M = 0.13 \cdot 0.02173 = 0.002825$ Максимальный разовый выброс, г/с (2.8), $\underline{G} = 0.13 \cdot \underline{G} = 0.13 \cdot 12.47 = 1.62$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	9.98	0.0174
0304	Азот (II) оксид (Азота оксид) (6)	1.62	0.002825
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	181.1	0.314
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	23.7	0.0284

Источник загрязнения: 6006, Пылящая поверхность Источник выделения: 6006 01, Выемочно-погрузочные работы П/И экскаватором

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Известняк карьерный

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.01

Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 20

Коэфф., учитывающий влажность материала(табл.3.1.4), К5 = 0.01

Размер куска материала, мм, G7 = 150

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.2

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 434.36

Суммарное количество перерабатываемого материала, т/год, GGOD = 43200

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03$

 $0.01 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 434.36 \cdot 10^6 \, / \, 3600 \cdot (1 - 0.85) = 0.0152$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 43200 \cdot (1-0.85) = 0.003266$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0152 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.003266 = 0.003266

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в %:	0.0152	0.003266
	менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль вращающихся		
	печей, боксит) (495*)		

Источник загрязнения: 6007, Пылящая поверхность Источник выделения: 6007 01, Транспортировка П/И

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - <= 30 тонн

Коэфф., учитывающий грузоподъемность (табл. 3.3.1), CI = 2.5

Средняя скорость передвижения автотранспорта: >20 - <= 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L = 0.5

Число ходок (туда + обратно) всего транспорта в час, N = 6.6

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, С4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 4.6

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (4.6 \cdot 30 / 3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Известняк карьерный

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.003

Влажность перевозимого материала, %, VL = 20

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.01

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1/3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450/3600 + 1.45 \cdot 1.38 \cdot 0.01 \cdot 0.003 \cdot 12 \cdot 2 = 0.0197$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0197 \cdot (365 \cdot (150 + 30)) = 0.315$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0197	0.315
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6010, Дыхательный клапан Источник выделения: 6010 01, Заправка техники Д/Т

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.14

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3(Прил. 15), CAMOZ = 1.6

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3(Прил. 15), CAMVL = 2.2

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.14 \cdot 0.4 / 3600 = 0.000349$

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 1000 + 2.2 \cdot 1000) \cdot 10^{-6} = 0.0038$

Удельный выброс при проливах, r/m3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (1000 + 1000) \cdot 10^{-6} = 0.05$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.0038 + 0.05 = 0.0538

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 99.72 \cdot 0.0538 / 100 = 0.0536$

Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 99.72 \cdot 0.000349 / 100 = 0.000348$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.28 \cdot 0.0538 / 100 = 0.0001506$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.000349 / 100 = 0.000000977$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000000977	0.0001506
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные	0.000348	0.0536
	С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 6008, Пылящая поверхность Источник выделения: 6008 01, Бурт ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Песчано-гравийная смесь (ПГС)

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Поверхность пыления в плане, м2, S = 1210.4

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (I-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 1210.4 \cdot (1-0.85) = 0.0527$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1-NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 1210.4 \cdot (365 \cdot (150 + 30)) \cdot (1-0.85) = 0.505$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0527 = 0.0527

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.505 = 0.505

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0527	0.505
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6009, Пылящая поверхность Источник выделения: 6009 01, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.4**

Поверхность пыления в плане, м2, S = 9999

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (1-0.85) = 0.696$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 6.67$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.696 = 0.696

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 6.67 = 6.67

п.3.2.Статическое хранение материала

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4** = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.4**

Поверхность пыления в плане, м2, S = 451

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (1-0.85) = 0.0314$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1-NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (365 \cdot (150 + 30)) \cdot (1-0.85) = 0.301$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0.696 + 0.0314 = 0.727

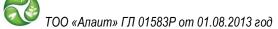
Сумма выбросов, т/год (3.2.4), M = M + MC = 6.67 + 0.301 = 6.97

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.727	6.97
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6011, Выхлопная труба Источник выделения: 6011 01, Горнотранспортное оборудование

Список литературы:


- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип машины: Трактор (Г), N ДВС = 101 - 160 кВт											
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,		
cym	шт		шm.	мин	мин	мин	мин	мин	мин		
100	2	2.00	2	50	20	20	15	8	7		

3 B	Mxx,	Ml,	z/c	т/год	
	г/мин	г/мин			
0337	3.91	2.295	0.0952	0.101	
2732	0.49	0.765	0.0254	0.02716	
0301	0.78	4.01	0.0954	0.1026	
0304	0.78	4.01	0.0155	0.01667	
0328	0.1	0.603	0.0178	0.01912	
0330	0.16	0.342	0.0109	0.01168	

				Tun A	лашины: Тр	актор (К),	<i>NДВС</i> = 10	01 - 160 кВп	ı	
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		шm.	мин	мин	мин	мин	мин	мин	
100	1	1.00	1	50	20	20	15	8	7	
<i>3B</i>	Mxx,		Ml,		г/с			т/год		
	г/мин	. 2	/мин							
0337	3.91	2.29	95			0.0476			0.02526	
2732	0.49	0.76	55			0.0127			0.00679	
0301	0.78	4.01				0.0477				
0304	0.78	4.01				0.00775				
0328	0.1	0.60)3			0.0089			0.00478	
0330	0.16	0.34	12			0.00544	0.00292			

	Тип машины: Трактор (K), N ДВС = 61 - 100 кВт												
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2, $Tv2n$, Txm ,					
cym	шm		шm.	мин	мин	мин	мин	мин	мин				
100	1	1.00	1	50	20	20	15	8	7				
<i>3B</i>	Mxx,		Ml,		г/c			т/год					
	г/мин	ı z	/мин										
0337	2.4	1.41	.3			0.0293			0.01554				
2732	0.3	0.45	59			0.00764			0.00409				
0301	0.48	2.47	1			0.02936			0.01578				
0304	0.48	2.47	1			0.00477			0.002565				
0328	0.06	0.36	59			0.00544			0.002924				
0330	0.097	0.20)7			0.0033			0.001767				

		5 т (СНГ)								
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	um		шm.	км	км	мин	км	км	мин	
100	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	3B Mxx, Ml, 2/c				т/год					
	г/мі	ин	г/км							
0337	1.5	3.8	7			0.121			0.1296	
2732	0.25	0.7	2			0.02227			0.0239	
0301	0.5	2.6				0.0618			0.0664	
0304	0.5	2.6				0.01004			0.0108	
0328	0.02	0.2	7			0.00778			0.00836	
0330	0.072	0.4	41			0.013			0.01398	

			Ti	ип машины	: Грузовые	автомобил	и дизельные	е свыше 16	т (СНГ)	
Dn,	Nk,	\boldsymbol{A}	Nk1	L1, L1n, Txs,		Txs,	L2,	L2n,	Txm,	
cym	шm		шm.	км	км	мин	км	км	мин	
100	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mxx	.,	Ml,		г/c		т/год			
	г/ми	н	2/км							
0337	2.9	8.37	7			0.259			0.2776	
2732	0.45	1.17	7			0.03656			0.03916	
0301	1	4.5				0.1078			0.1158	
0304	1	4.5		0.01752				0.01882		
0328	0.04	0.45	5			0.013			0.014	
0330	0.1	0.87	73			0.0254			0.0273	

ВСЕГО по периоду: Переходный период (t>-5 и t<5)

Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.5521	0.549
2732	Керосин (654*)	0.10457	0.1011
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.32621
0328	Углерод (Сажа, Углерод черный) (583)	0.05292	0.049184
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.05803	0.057647
	(IV) оксид) (516)		
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.05302

Выбросы по периоду: Теплый период (t>5)

Тип ма	шины: Тр	актор	<u>(Г), N Д</u>	BC = 101 -	160 кВт							
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,			
cym	шm		шm.	мин	мин	мин	мин	мин	мин			
114	2	2.00	2	50	20	20	15	8	7			
<i>3B</i>	,		Ml,	ı∕c			т/год					
	г/мин	ı z	/мин									
0337	3.91	2.09)			0.0894			0.108			
2732	0.49	0.71				0.02384			0.0291			
0301	0.78	4.01				0.0954	•		0.1168			
0304	0.78	4.01		0.015		0.0155		0.01898		0.01898		
0328	0.1	0.45	5			0.01348			0.0165			
0330	0.16	0.31	Į.			0.01			0.0122			

				Tun A	лашины: Тұ	рактор (К),	<i>NДВС</i> = 10	1 - 160 кВп	n		
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,		
cym	шm		иm.	мин	мин	мин	мин	мин	мин		
114	1	1.00	1	50	20	20	15	8	7		
3 B	<i>3B Mxx</i> ,		Ml,		г/с						
	г/м1	ин г	/мин								
0337	3.91	2.09	9			0.0447			0.027		
2732	0.49	0.7	1			0.01192		0.007			
0301	0.78	4.0	1			0.0477		0.0			
0304	0.78	4.0	1				.00775 0.00474		0.004745		
0328	0.1	0.4	5			0.00674			0.00413		
0330	0.16	0.3	1			0.005			0.00305		

				Tun .	машины: Т	рактор (К)	$N \mathcal{A}BC = 6$	1 - 100 кВт	!	
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
114	1	1.00	1	50	20	20	15	8	7	
3 B	3B Mxx, Ml,		г/с							
	г/м	ин г	/мин							
0337	2.4	1.29	9			0.02756			0.01664	
2732	0.3	0.43	3			0.00723			0.00441	
0301	0.48	2.4	7			0.02936		0.018	0.018	
0304	0.48	2.4	7			0.00477			0.002925	
0328	0.06	0.2	7			0.00404			0.002474	
0330	0.097	0.19	9			0.003056			0.001867	

			Tı	іп машины:	Грузовые ав	томобили	дизельные с	свыше 2 до	5 т (СНГ)
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,
cym	шm		иm.	км	км	мин	км	км	мин
114	2	2.0	00	2 50	20	20	15	8	7
3 B	Mx	x,	Ml,		г/с			т/год	
	г/м	ин	г/км						
0337	1.5	3	.5			0.1104			0.135
2732	0.25	0	.7			0.0217			0.02654
0301	0.5	2	.6			0.0618			0.0758
0304	0.5	2	.6			0.01004			0.0123
0328	0.02	0	2			0.0058			0.00711
0330	0.072	0	.39			0.01156			0.01418

	Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,		
cym	шт		шm.	км	км	мин	км	км	мин		
114	2	2.00	2	50	20	20	15	8	7		
<i>3B</i>	Mxx	,	Ml,		г/c			т/год			
	г/ми	н а	2/км								
0337	2.9	7.5				0.234			0.2864		
2732	0.45	1.1				0.03456			0.0422		
0301	1	4.5				0.1078			0.132		
0304	1	4.5				0.01752			0.02145		
0328	0.04	0.4				0.0116			0.01423		
0330	0.1	0.78	3			0.0228			0.02795		

	ВСЕГО по периоду: Теплый период (t>5)								
Код	Примесь	Выброс г/с	Выброс т/год						
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.50606	0.57304						
2732	Керосин (654*)	0.09925	0.10952						
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.3718						
0328	Углерод (Сажа, Углерод черный) (583)	0.041664	0.044444						
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.052416	0.059247						
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0604						

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T=0

Тип ма	Гип машины: Трактор (Г), N ДВС = 101 - 160 кВт									
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		шm.	мин	мин	мин	мин	мин	мин	
30	2	2.00	2	50	20	20	15	8	7	
								•		
<i>3B</i>	Mxx,		Ml,		г/с			т/год		
	г/мин	ı z	/мин							
0337	3.91	2.55	5			0.1023			0.03264	
2732	0.49	0.85	5			0.0278			0.00893	
0301	0.78	4.01				0.0954			0.03076	
0304	0.78	4.01				0.0155			0.005	
0328	0.1	0.67	7			0.0197			0.00635	
0330	0.16	0.38	3			0.01197			0.00385	

				Tun A	ашины: Тр	рактор (К),	NД $BC = 10$	01 - 160 к В п	ı	
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	um		шm.	мин	мин	мин	мин	мин	мин	
30	1	1.00	1	50	20	20	15	8	7	
3 B	3B Mxx, Ml,		Ml,	z/c			т/год			
	г/ми	н г/	/мин							
0337	3.91	2.55	5			0.0512			0.00816	
2732	0.49	0.85	5			0.0139			0.00223	
0301	0.78	4.01				0.0477			0.00769	
0304	0.78	4.01				0.00775			0.00125	
0328	0.1	0.67	7			0.00984			0.001587	
0330	0.16	0.38	3			0.00598			0.000963	

	Тип машины: Трактор (К), $N \mathcal{A}BC = 61 - 100$ кВт										
Dn,	Nk,	\boldsymbol{A}		Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm			шm.	мин	мин	мин	мин	мин	мин	
30	1		1.00	1	50	20	20	15	8	7	
<i>3B</i>	Mx	rx,	I	Ml,		г/c			т/год		
	г/м	ин	2/.	мин							
0337	2.4		1.57				0.0315			0.00502	
2732	0.3		0.51				0.00836			0.001344	
0301	0.48		2.47				0.02936			0.00474	
0304	0.48		2.47				0.00477			0.00077	
0328	0.06		0.41				0.00602			0.00097	

0330	0.097	0.23	0.00362	0.000583	

			Tun	машины:	Грузовые ав	томобили	дизельные с	свыше 2 до	5 т (СНГ)
Dn,	Nk, A		Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,
cym	шm		иm.	км	км	мин	км	км	мин
30	2	2.00	2	50	20	20	15	8	7
<i>3B</i>	3B Mxx , Ml ,		Ml,	z/c			т/год		
	г/м1	ин	г/км						
0337	1.5	4.3	3			0.133			0.0428
2732	0.25	0.0	3			0.0245			0.0079
0301	0.5	2.6	5			0.0618			0.01992
0304	0.5	2.6	ó			0.01004			0.00324
0328	0.02	0.3	3			0.00862			0.002784
0330	0.072	0.4	19			0.0144			0.00464

	Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,		
cym	шт		um.	км	км	мин	км	км	мин		
30	2	2.00	2	50	20	20	15	8	7		
<i>3B</i>	Mxx,	,	Ml,		г/c			т/год			
	г/миі	4 .	2/км								
0337	2.9	9.3				0.285			0.0918		
2732	0.45	1.3				0.0402			0.01294		
0301	1	4.5				0.1078			0.0347		
0304	1	4.5				0.01752			0.00564		
0328	0.04	0.5				0.01442			0.00466		
0330	0.1	0.97	'			0.02816			0.00908		

	ВСЕГО по периоду: Холодный (t=,град.С)									
Код	Примесь	Выброс г/с	Выброс т/год							
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	0.18042							
2732	Керосин (654*)	0.11476	0.033344							
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.09781							
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.016351							
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.06413	0.019116							
	(IV) оксид) (516)									
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0159							

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.79582
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.12932
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.109979
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.06413	0.13601
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	1.30246
2732	Керосин (654*)	0.11476	0.243964

Максимальные разовые выбросы достигнуты в холодный период

Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на **2027** год

Источник загрязнения: 6001, Пылящая поверхность Источник выделения: 6001 01, Снятие и перемещение ПРС бульдозером

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.04

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного <u>производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских</u> месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4** = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.2

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 156

Суммарное количество перерабатываемого материала, т/год, GGOD = 700

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

 $0.04 \cdot 2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 156 \cdot 10^{6} / 3600 \cdot (1-0.85) = 1.092$

Валовый выброс, т/год (3.1.2), $MC = KI \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (I-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.04 \cdot 1.2 \cdot 0.04$ $1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 700 \cdot (1-0.85) = 0.01058$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.092Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.01058 = 0.01058

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	1.092	0.01058
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6002, Пылящая поверхность Источник выделения: 6002 01, Выемочно-погрузочные работы вскрыши экскаватором

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Глина

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.2

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.4

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

¹ ТОО «Алаит» ГЛ 01583Р от 01.08.2013 год

Суммарное количество перерабатываемого материала, т/час, GMAX = 349.92

Суммарное количество перерабатываемого материала, т/год, GGOD = 13500

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = KI \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 349.92 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.633$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1 \cdot 1 \cdot 0.7 \cdot 13500 \cdot (1-0.85) = 0.136$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.633 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.136 = 0.136

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	1.633	0.136
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6003, Пылящая поверхность

Источник выделения: 6003 01, Транспортировка вскрышных пород во внешний отвал

Список литературы

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - < = 30 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 2.5

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), С2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L=0.5

Число ходок (туда + обратно) всего транспорта в час, N = 6.6

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 4.6

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V^2 / 3.6)^{0.5} = (4.6 \cdot 30 / 3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), С5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Глина

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, $\dot{V}L = 9$

Коэфф., учитывающий влажность перевозимого материала (табл. 3.1.4), K5M = 0.2

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1/3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450/3600 + 1.45 \cdot 1.38 \cdot 0.2 \cdot 0.004 \cdot 12 \cdot 2 = 0.0567$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0567 \cdot (365 \cdot (150 + 30)) = 0.906$

Итоговая таблица:

III OI OBAN I WOMINGA.				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0567	0.906	
	70-20 (шамот, цемент, пыль цементного производства -			
	глина, глинистый сланец, доменный шлак, песок, клинкер,			
	зола, кремнезем, зола углей казахстанских месторождений)			
	(494)			

Источник загрязнения: 6004, Пылящая поверхность Источник выделения: 6004 01, Буровые работы

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов п.5. От предприятий по переработке нерудных материалов и производству пористых заполнителей.

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Технологический процесс: Добыча нерудных строительных материалов (Буровые работы)

Вид работ: Буровые работы

Буровая установка: Станки горизонтального бурения (легкие породы). Диам. скважины 100-200 мм

Количество пыли, выделяемое при бурении одним станком, Γ/C (табл.5.1), GI = 0.325

Общее кол-во буровых станков, шт., _KOLIV_ = 1

Количество одновременно работающих буровых станков, шт., N = 1

Время работы одного станка, ч/год, $_{T}$ = 60.8

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный из разовых выбросов, г/с (5.1), $G_{-} = G1 \cdot N = 0.325 \cdot 1 = 0.325$

Валовый выброс, т/год, $M_{-} = G1 \cdot KOLIV_{-} \cdot T_{-} \cdot 0.0036 = 0.325 \cdot 1 \cdot 60.8 \cdot 0.0036 = 0.0711$

Итого выбросы от: 001 Буровые работы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.325	0.0711
	(шамот, цемент, пыль цементного производства - глина,		
	глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		

Источник загрязнения: 6005, Пылящая поверхность Источник выделения: 6005 01, Взрывные работы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов загрязняющих веществ при взрывных работах

Взрывчатое вещество: Гранулотол

Количество взорванного взрывчатого вещества данной марки, τ/τ од, A = 4.829

Количество взорванного взрывчатого вещества за один массовый взрыв, т, AJ = 4.829

Объем взорванной горной породы, м3/год, V = 14800

Максимальный объем взорванной горной породы за один массовый взрыв, м3, VJ = 14800

Крепость горной массы по шкале М.М.Протодьяконова: >8 - < = 10

Удельное пылевыделение, кг/м3 взорванной породы(табл.3.5.2), QN = 0.08

Эффективность средств газоподавления, в долях единицы, N=0

Эффективность средств пылеподавления, в долях единицы, N1 = 0.85

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Валовый, т/год (3.5.4),
$$M_{-} = 0.16 \cdot QN \cdot V \cdot (1-N1) / 1000 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) / 1000 = 0.0284$$
 г/с (3.5.6), $G_{-} = 0.16 \cdot QN \cdot VJ \cdot (1-N1) \cdot 1000 / 1200 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) \cdot 1000 / 1200 = 23.7$

Крепость породы: < = 12

Удельное выделение CO из пылегазового облака, т/т(табл.3.5.1), Q = 0.045

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $M1GOD = Q \cdot A \cdot (1-N) = 0.045 \cdot 4.829 \cdot (1-0) = 0.2173$

Удельное выделение CO из взорванной горной породы, τ/τ (табл.3.5.1), Q1 = 0.02

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, τ /год (3.5.3), $M2GOD = Q1 \cdot A = 0.02 \cdot 4.829 = 0.0966$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Суммарное кол-во выбросов при взрыве, т/год (3.5.1), M = MIGOD + M2GOD = 0.2173 + 0.0966 = 0.314 Максимальный разовый выброс, г/с (3.5.5), $G = Q \cdot AJ \cdot (1-N) \cdot 10^6 / 1200 = 0.045 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 181.1$

Удельное выделение NOx из пылегазового облака, т/т(табл.3.5.1), Q = 0.0031

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $MIGOD = Q \cdot A \cdot (I-N) = 0.0031 \cdot 4.829 \cdot (1-0) = 0.01497$

Удельное выделение NOx из взорванной горной породы, τ/τ (табл.3.5.1), QI = 0.0014

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, τ /год (3.5.3), $M2GOD = Q1 \cdot A = 0.0014 \cdot 4.829 = 0.00676$

Суммарное кол-во выбросов NOx при взрыве, т/год (3.5.1), M = M1GOD + M2GOD = 0.01497 + 0.00676 = 0.02173 Максимальный разовый выброс NOx, г/с (3.5.5), $G = Q \cdot AJ \cdot (1-N) \cdot 10^6 / 1200 = 0.0031 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 12.47$

С учето трансформации оксидов азота, получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Суммарное кол-во выбросов при взрыве, т/год (2.7), $\underline{M} = 0.8 \cdot M = 0.8 \cdot 0.02173 = 0.0174$ Максимальный разовый выброс, г/с (2.7), $\underline{G} = 0.8 \cdot G = 0.8 \cdot 12.47 = 9.98$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Суммарное кол-во выбросов при взрыве, т/год (2.8), $\underline{M} = 0.13 \cdot M = 0.13 \cdot 0.02173 = 0.002825$ Максимальный разовый выброс, г/с (2.8), $\underline{G} = 0.13 \cdot \underline{G} = 0.13 \cdot 12.47 = 1.62$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	9.98	0.0174
0304	Азот (II) оксид (Азота оксид) (6)	1.62	0.002825
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	181.1	0.314
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	23.7	0.0284

Источник загрязнения: 6006, Пылящая поверхность Источник выделения: 6006 01, Выемочно-погрузочные работы П/И экскаватором

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Известняк карьерный

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.01

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 20

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 150

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.2**

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), $\mathbf{\textit{B}} = \mathbf{0.7}$

Суммарное количество перерабатываемого материала, т/час, GMAX = 434.36

Суммарное количество перерабатываемого материала, т/год, GGOD = 43200

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.01 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 434.36 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.0152$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 43200 \cdot (1-0.85) = 0.003266$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0152 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.003266 = 0.003266

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в %:	0.0152	0.003266
	менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль вращающихся		
	печей, боксит) (495*)		

Источник загрязнения: 6007, Пылящая поверхность Источник выделения: 6007 01, Транспортировка П/И

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - < = 30 тонн

Коэфф., учитывающий грузоподъемность (табл. 3.3.1), CI = 2.5

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., N1 = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L = 0.5

Число ходок (туда + обратно) всего транспорта в час, N = 6.6

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, VI = 4.6

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (4.6 \cdot 30 / 3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Известняк карьерный

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.003

Влажность перевозимого материала, %, VL = 20

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.01

Количество дней с устойчивым снежным покровом, $\hat{T}SP = 150$

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450 / 3600 + 1.45 \cdot 1.38 \cdot 0.01 \cdot 0.003 \cdot 12 \cdot 2 = 0.0197$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0197 \cdot (365 \cdot (150 + 30)) = 0.315$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0197	0.315
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6010, Дыхательный клапан Источник выделения: 6010 01, Заправка техники Д/Т

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт:Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.14

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3(Прил. 15), CAMOZ = 1.6

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3(Прил. 15), CAMVL = 2.2

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, *VTRK* = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.14 \cdot 0.4 / 3600 = 0.000349$

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 1000 + 2.2 \cdot 1000) \cdot 10^{-6} = 0.0038$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (1000 + 1000) \cdot 10^{-6} = 0.05$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.0038 + 0.05 = 0.0538

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация 3B в парах, % масс(Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 99.72 \cdot 0.0538 / 100 = 0.0536$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 99.72 \cdot 0.000349 / 100 = 0.000348$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 0.28 \cdot 0.0538 / 100 = 0.0001506$

Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 0.28 \cdot 0.000349 / 100 = 0.000000977$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000000977	0.0001506
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные	0.000348	0.0536
	С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 6008, Пылящая поверхность Источник выделения: 6008 01, Бурт ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Песчано-гравийная смесь (ПГС)

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Поверхность пыления в плане, м2, S = 1429.7

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 1429.7 \cdot (1-0.85) = 0.0622$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 1429.7 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 0.596$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0622 = 0.0622

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.596 = 0.596

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0622	0.596
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6009, Пылящая поверхность Источник выделения: 6009 01, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.4**

Поверхность пыления в плане, м2, S = 9999

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (I-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (1-0.85) = 0.696$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 6.67$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.696 = 0.696

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 6.67 = 6.67

п.3.2.Статическое хранение материала

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.4

Поверхность пыления в плане, м2, S = 451

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (1-0.85) = 0.0314$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 0.301$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0.696 + 0.0314 = 0.727

Сумма выбросов, т/год (3.2.4), M = M + MC = 6.67 + 0.301 = 6.97

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.727	6.97
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6011, Выхлопная труба Источник выделения: 6011 01, Горнотранспортное оборудование

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип ма	шины: Т	Грактор	<i>(Г), NД</i>	BC = 101 -	160 кВт					
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
100	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mx	x,	Ml,		z/c			т/год		
	г/м1	ин а	г/мин							
0337	3.91	2.2	95			0.0952		0.101		
2732	0.49	0.7	65			0.0254	0.02716			
0301	0.78	4.0	1			0.0954		0.1026		
0304	0.78	4.0	1	0.01:		0.0155	0.01667			
0328	0.1	0.6	03			0.0178			0.01912	
0330	0.16	0.3	42			0.0109	•		0.01168	

				Tun A	лашины: Тр	актор (К),	NДBC = 10	01 - 160 кВп	ı	
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		um.	мин	мин	мин	мин	мин	мин	
100	1	1.	.00 1	50	20	20	15	8	7	
3 B	Mx	x,	Ml,		г/c			т/год		
	г/м	ин	г/мин							
0337	3.91	2	2.295			0.0476			0.02526	

2732	0.49	0.765	0.0127	0.00679	
0301	0.78	4.01	0.0477	0.02563	
0304	0.78	4.01	0.00775	0.004165	
0328	0.1	0.603	0.0089	0.00478	
0330	0.16	0.342	0.00544	0.00292	

				Tun.	машины: Т	рактор (К),	$N \mathcal{A}BC = 6$	1 - 100 кВт		
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	um		шm.	мин	мин	мин	мин	мин	мин	
100	1	1.00	1	50	20	20	15	8	7	
<i>3B</i>	Mxx	c,	Ml,	z/c			т/год			
	г/ми	H 2/	/мин							
0337	2.4	1.41	3			0.0293	0.01554			
2732	0.3	0.45	59			0.00764		0.00409		
0301	0.48	2.47	7			0.02936		0.01578		
0304	0.48	2.47	7			0.00477	•		0.002565	_
0328	0.06	0.36	59			0.00544			0.002924	
0330	0.097	0.20)7			0.0033			0.001767	

			Tun	машины: 1	Грузовые ав	томобили (дизельные с	звыше 2 до	5 т (СНГ)
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	L1n,	Txs,	L2,	L2n,	Txm,
cym	шт		шm.	км	км	мин	км	км	мин
100	2	2.00	2	50	20	20	15	8	7
<i>3B</i>	Mxx	r,	Ml,		г/c			т/год	
	г/ми	H.	г/км						
0337	1.5	3.8	7			0.121			0.1296
2732	0.25	0.72	2			0.02227			0.0239
0301	0.5	2.6				0.0618			0.0664
0304	0.5	2.6				0.01004			0.0108
0328	0.02	0.2	7			0.00778			0.00836
0330	0.072	0.44	41			0.013			0.01398

			Tı	ип машины	: Грузовые	автомобил	и дизельны	е свыше 16	т (СНГ)	
Dn,	Nk,	A	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шт		шm.	км	км	мин	км	км	мин	
100	2	2.00	2	50	20	20	15	8	7	
3 B	Mx.	x,	Ml,		г/с			т/год		
	г/мі	ин .	г/км							
0337	2.9	8.37	7			0.259			0.2776	
2732	0.45	1.17	7			0.03656			0.03916	
0301	1	4.5				0.1078			0.1158	
0304	1	4.5				0.01752			0.01882	
0328	0.04	0.45	5			0.013			0.014	
0330	0.1	0.87	73			0.0254			0.0273	

	ВСЕГО по периоду: Переходный	период (t>-5 и t<5)	
Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.5521	0.549
2732	Керосин (654*)	0.10457	0.1011
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.32621
0328	Углерод (Сажа, Углерод черный) (583)	0.05292	0.049184
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.05803	0.057647
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.05302

Выбросы по периоду: Теплый период (t>5)

Тип ма	шины:	Тракт	юр (Т), NД	BC = 101 - 1	160 кВт					
Dn,	Nk,	\boldsymbol{A}		Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm			um.	мин	мин	мин	мин	мин	мин	
114	2	2	.00	2	50	20	20	15	8	7	
3 B	Mx	cx,	1	Ml,		г/c			т/год		
	г/м	ин	2/.	мин							

700 «Алаит» ГЛ 01583P om 01.08.2013 год

0337	3.91	2.09	0.0894	0.108	
2732	0.49	0.71	0.02384	0.0291	
0301	0.78	4.01	0.0954	0.1168	
0304	0.78	4.01	0.0155	0.01898	
0328	0.1	0.45	0.01348	0.0165	
0330	0.16	0.31	0.01	0.0122	

				Tun A	ашины: Тр	актор (К),	<i>NДВС</i> = 10	1 - 160 кВп	ı	
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		шm.	мин	мин	мин	мин	мин	мин	
114	1	1.00	1	50	20	20	15	8	7	
<i>3B</i>	Mxx	x,	Ml,		г/c			т/год		
	г/ми	ін г	/мин							
0337	3.91	2.09)			0.0447			0.027	
2732	0.49	0.7	1			0.01192			0.00727	
0301	0.78	4.0	1			0.0477			0.0292	
0304	0.78	4.0	1			0.00775			0.004745	
0328	0.1	0.43	5	•	•	0.00674	0.00413			
0330	0.16	0.3	1	•	•	0.005	•		0.00305	

					Tun .	машины: Т	рактор (К),	NД $BC = 6$	1 - 100 кВт	!
Dn,	Nk,	A	L	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,
cym	шm			шm.	мин	мин	мин	мин	мин	мин
114	1		1.00	1	50	20	20	15	8	7
<i>3B</i>	Mx	rx,	1	Ml,		г/c			т/год	
	г/м	ин	2/.	мин						
0337	2.4		1.29)			0.02756			0.01664
2732	0.3		0.43				0.00723			0.00441
0301	0.48		2.47				0.02936			0.018
0304	0.48	•	2.47				0.00477			0.002925
0328	0.06	•	0.27	'			0.00404			0.002474
0330	0.097		0.19	1		•	0.003056			0.001867

			Tun	машины: 1	Грузовые ав	томобили (дизельные с	свыше 2 до	5 т (СНГ)	_
Dn,	Nk,	A	Nk1	L1,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	um		ит.	км	км	мин	км	км	мин	
114	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mx.	x,	Ml,		ı∕c			т/год		
	г/ми	ıн	г/км							
0337	1.5	3.5				0.1104			0.135	
2732	0.25	0.7				0.0217			0.02654	
0301	0.5	2.6				0.0618			0.0758	
0304	0.5	2.6				0.01004			0.0123	
0328	0.02	0.2				0.0058			0.00711	
0330	0.072	0.3	9			0.01156			0.01418	

			Tı	ип машины	: Грузовые	автомобил	и дизельны	е свыше 16	т (СНГ)	
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	um		шm.	км	км	мин	км	км	мин	
114	2	2.00	2	50	20	20	15	8	7	
3 B	Mxx,	,	Ml,		г/c			т/год		
	г/миі	н	г/км							
0337	2.9	7.5				0.234			0.2864	
2732	0.45	1.1				0.03456			0.0422	
0301	1	4.5				0.1078			0.132	
0304	1	4.5				0.01752			0.02145	
0328	0.04	0.4				0.0116			0.01423	
0330	0.1	0.78	3			0.0228			0.02795	

	ВСЕГО по периоду: Теплый период (t>5)									
Код	Примесь	Выброс г/с	Выброс т/год							
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.50606	0.57304							
2732	Керосин (654*)	0.09925	0.10952							

0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.3718
0328	Углерод (Сажа, Углерод черный) (583)	0.041664	0.044444
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.052416	0.059247
	(IV) оксид) (516)		
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0604

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = 0

Тип ма	шины: Т	Грактор	(Г), NД	BC = 101 - 1	160 кВт					
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шm		шm.	мин	мин	мин	мин	мин	мин	
30	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mx	x,	Ml,		г/c			т/год		
	г/м	ин а	г/мин							
0337	3.91	2.5	5			0.1023			0.03264	
2732	0.49	0.8	5			0.0278			0.00893	
0301	0.78	4.0	1			0.0954			0.03076	
0304	0.78	4.0	1			0.0155			0.005	
0328	0.1	0.6	7			0.0197			0.00635	
0330	0.16	0.3	8			0.01197			0.00385	

				Tun M	ашины: Тр	актор (К),	NДBC = 10)1 - 160 кВп	ı	
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
30	1	1.00	1	50	20	20	15	8	7	
3 B	3B Mxx , Ml ,		Ml,	z/c				т/год		
	г/мин г/мин		/мин							
0337	3.91	2.55	5	0.0512					0.00816	
2732	0.49	0.85	5	0.0139					0.00223	
0301	0.78	4.01				0.0477			0.00769	
0304	0.78	4.01				0.00775			0.00125	
0328	0.1	0.67	7			0.00984			0.001587	
0330	0.16	0.38	3			0.00598			0.000963	

	Тип машины: Трактор (K), N ДВС = 61 - 100 кВт									
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
30	1	1.00	1	50	20	20	15	8	7	
3 B	Mx.	x,	Ml,		г/с			т/год		
	г/мі	ин г	/мин							
0337	2.4	1.5	7			0.0315			0.00502	
2732	0.3	0.5	1			0.00836			0.001344	
0301	0.48	2.4	7			0.02936			0.00474	
0304	0.48	2.4	7			0.00477			0.00077	
0328	0.06	0.4	1			0.00602			0.00097	
0330	0.097	0.23	3			0.00362			0.000583	

			Tun	машины: 1	рузовые ав	томобили (дизельные с	выше 2 до	5 т (СНГ)	_
Dn,	Nk,	A	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шm		ит.	км	км	мин	км	км	мин	
30	2	2.00	2	50	20	20	15	8	7	
								·		
<i>3B</i>	Mxx	c,	Ml,		г/c			т/год		
	г/ми	н а	2/км							
0337	1.5	4.3				0.133			0.0428	
2732	0.25	0.8				0.0245			0.0079	
0301	0.5	2.6				0.0618			0.01992	
0304	0.5	2.6				0.01004			0.00324	
0328	0.02	0.3				0.00862			0.002784	
0330	0.072	0.49)			0.0144			0.00464	

	Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)									
Dn,	Dn, Nk, A Nk1 L1, L1n, Txs, L2, L2n, Txm,									

cym	шт		ит.	км	КМ	мин	км	км	мин
30	2	2.00	2	50	20	20	15	8	7
3 B	Mxx,		Ml,		г/ с			т/год	
	г/мин		г/км						
0337	2.9	9.3				0.285			0.0918
2732	0.45	1.3				0.0402			0.01294
0301	1	4.5				0.1078			0.0347
0304	1	4.5				0.01752			0.00564
0328	0.04	0.5				0.01442			0.00466
0330	0.1	0.97	7			0.02816			0.00908

	ВСЕГО по периоду: Холодный (t=,град.С)						
Код	Примесь	Выброс г/с	Выброс т/год				
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	0.18042				
2732	Керосин (654*)	0.11476	0.033344				
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.09781				
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.016351				
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.06413	0.019116				
	(IV) оксид) (516)						
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0159				

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.79582
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.12932
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.109979
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.06413	0.13601
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	1.30246
2732	Керосин (654*)	0.11476	0.243964

Максимальные разовые выбросы достигнуты в холодный период

Обоснование расчетов валовых выбросов загрязняющих веществ в атмосферу на 2028-2032 годы

Источник загрязнения: 6004, Пылящая поверхность Источник выделения: 6004 01, Буровые работы

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов п.5. От предприятий по переработке нерудных материалов и производству пористых заполнителей.

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Технологический процесс: Добыча нерудных строительных материалов (Буровые работы)

Вид работ: Буровые работы

Буровая установка: Станки горизонтального бурения (легкие породы). Диам. скважины 100-200 мм

Количество пыли, выделяемое при бурении одним станком, г/c(табл.5.1), G1 = 0.325

Общее кол-во буровых станков, шт., _KOLIV_ = 1

Количество одновременно работающих буровых станков, шт., N = 1

Время работы одного станка, ч/год, $_{T}$ = 60.8

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный из разовых выбросов, г/с (5.1), $_G_ = G1 \cdot N = 0.325 \cdot 1 = 0.325$ Валовый выброс, т/год, $_M_ = G1 \cdot _KOLIV_ \cdot _T_ \cdot 0.0036 = 0.325 \cdot 1 \cdot 60.8 \cdot 0.0036 = 0.0711$

Итого выбросы от: 001 Буровые работы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.325	0.0711
	(шамот, цемент, пыль цементного производства - глина,		
	глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		

Источник загрязнения: 6005, Пылящая поверхность Источник выделения: 6005 01, Взрывные работы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов загрязняющих веществ при взрывных работах

Взрывчатое вещество: Гранулотол

Количество взорванного взрывчатого вещества данной марки, τ год, A = 4.829

Количество взорванного взрывчатого вещества за один массовый взрыв, т, AJ = 4.829

Объем взорванной горной породы, м3/год, V = 14800

Максимальный объем взорванной горной породы за один массовый взрыв, м3, VJ = 14800

Крепость горной массы по шкале М.М.Протодьяконова: >8 - <= 10

Удельное пылевыделение, кг/м3 взорванной породы(табл.3.5.2), QN = 0.08

Эффективность средств газоподавления, в долях единицы, N=0

Эффективность средств пылеподавления, в долях единицы, N1 = 0.85

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Валовый, т/год (3.5.4), $_M_=0.16 \cdot QN \cdot V \cdot (1-N1) \, / \, 1000 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) \, / \, 1000 = 0.0284$ г/с (3.5.6), $_G_=0.16 \cdot QN \cdot VJ \cdot (1-N1) \cdot 1000 \, / \, 1200 = 0.16 \cdot 0.08 \cdot 14800 \cdot (1-0.85) \cdot 1000 \, / \, 1200 = 23.7$

Крепость породы: < = 12

Удельное выделение СО из пылегазового облака, т/т(табл.3.5.1), Q = 0.045

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $M1GOD = Q \cdot A \cdot (1-N) = 0.045 \cdot 4.829 \cdot (1-0) = 0.2173$

Удельное выделение CO из взорванной горной породы, τ/τ (табл.3.5.1), Q1 = 0.02

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, τ /год (3.5.3), $M2GOD = Q1 \cdot A = 0.02 \cdot 4.829 = 0.0966$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Суммарное кол-во выбросов при взрыве, т/год (3.5.1), M = MIGOD + M2GOD = 0.2173 + 0.0966 = 0.314

Максимальный разовый выброс, г/с (3.5.5), $G = Q \cdot AJ \cdot (I-N) \cdot 10^6 / 1200 = 0.045 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 181.1$

Удельное выделение NOx из пылегазового облака, т/т(табл.3.5.1), Q = 0.0031

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), $M1GOD = Q \cdot A \cdot (1-N) = 0.0031 \cdot 4.829 \cdot (1-0) = 0.01497$

Удельное выделение NOx из взорванной горной породы, τ/τ (табл.3.5.1), QI = 0.0014

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, τ год (3.5.3), $M2GOD = Q1 \cdot A = 0.0014 \cdot 4.829 = 0.00676$

Суммарное кол-во выбросов NOx при взрыве, т/год (3.5.1), M = M1GOD + M2GOD = 0.01497 + 0.00676 = 0.02173 Максимальный разовый выброс NOx, г/с (3.5.5), $G = Q \cdot AJ \cdot (I-N) \cdot 10^6 / 1200 = 0.0031 \cdot 4.829 \cdot (1-0) \cdot 10^6 / 1200 = 12.47$

С учето трансформации оксидов азота, получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Суммарное кол-во выбросов при взрыве, т/год (2.7), $\underline{M} = 0.8 \cdot M = 0.8 \cdot 0.02173 = 0.0174$ Максимальный разовый выброс, г/с (2.7), $\underline{G} = 0.8 \cdot G = 0.8 \cdot 12.47 = 9.98$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Суммарное кол-во выбросов при взрыве, т/год (2.8), $_{_}M_{_}=0.13 \cdot M=0.13 \cdot 0.02173=0.002825$ Максимальный разовый выброс, г/с (2.8), $_{_}G_{_}=0.13 \cdot G=0.13 \cdot 12.47=1.62$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	9.98	0.0174
0304	Азот (II) оксид (Азота оксид) (6)	1.62	0.002825
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	181.1	0.314
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	23.7	0.0284

Источник загрязнения: 6006, Пылящая поверхность Источник выделения: 6006 01, Выемочно-погрузочные работы П/И экскаватором

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Известняк карьерный

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.01

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 20

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 150

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.2**

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, *GMAX* = 434.36

Суммарное количество перерабатываемого материала, т/год, GGOD = 43200

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.01 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 434.36 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.0152$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 43200 \cdot (1-0.85) = 0.003266$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0152 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.003266 = 0.003266

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в %:	0.0152	0.003266
	менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль вращающихся		
	печей, боксит) (495*)		

Источник загрязнения: 6007, Пылящая поверхность Источник выделения: 6007 01, Транспортировка П/И

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - < = 30 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 2.5

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), С2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., N1 = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L = 0.5

Число ходок (туда + обратно) всего транспорта в час, $\hat{N} = 6.6$

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, $Q\hat{I} = 1450$

Влажность поверхностного слоя дороги, %, VL = 9

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.2

Коэфф., учитывающий профиль поверхности материала на платформе, С4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, \vec{VI} = 4.6

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2/3.6)^{0.5} = (4.6 \cdot 30/3.6)^{0.5} = 6.19$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.38

Площадь открытой поверхности материала в кузове, м2, S = 12

Перевозимый материал: Известняк карьерный

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.003

Влажность перевозимого материала, %, $\hat{V}L = 20$

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.01

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1/3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 2.5 \cdot 2.75 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 6.6 \cdot 0.5 \cdot 1450/3600 + 1.45 \cdot 1.38 \cdot 0.01 \cdot 0.003 \cdot 12 \cdot 2 = 0.0197$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0197 \cdot (365 \cdot (150 + 30)) = 0.315$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0197	0.315
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6010, Дыхательный клапан Источник выделения: 6010 01, Заправка техники Д/Т

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт: Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.14

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3(Прил. 15), САМОZ = 1.6

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 1000

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3(Прил. 15), CAMVL = 2.2

Производительность одного рукава TPK

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.14 \cdot 0.4 / 3600 = 0.000349$

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 1000 + 2.2 \cdot 1000) \cdot 10^{-6} = 0.0038$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (1000 + 1000) \cdot 10^{-6} = 0.05$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.0038 + 0.05 = 0.0538

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-</u>265П) (10)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = 99.72

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 99.72 \cdot 0.0538 / 100 = 0.0536$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 99.72 \cdot 0.000349 / 100 = 0.000348$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 0.28 \cdot 0.0538 / 100 = 0.0001506$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 0.28 \cdot 0.000349 / 100 = 0.000000977$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000000977	0.0001506
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные	0.000348	0.0536
	С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 6008, Пылящая поверхность Источник выделения: 6008 01, Бурт ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Песчано-гравийная смесь (ПГС)

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Поверхность пыления в плане, м2, S = 1429.7

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 1429.7 \cdot (1-0.85) = 0.0622$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 1429.7 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 0.596$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0622 = 0.0622

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.596 = 0.596

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.0622	0.596
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6009, Пылящая поверхность Источник выделения: 6009 01, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4** = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.4**

Поверхность пыления в плане, м2, S = 9999

Коэфф., учитывающий профиль поверхности складируемого материала, *К6* = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (1-0.85) = 0.696$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 9999 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 6.67$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.696 = 0.696

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 6.67 = 6.67

п.3.2.Статическое хранение материала

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала(табл.3.1.5), К7 = 0.4

Поверхность пыления в плане, м2, S = 451

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 360

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 360 / 24 = 30$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (1-0.85) = 0.0314$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (I - NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 1.45 \cdot 0.4 \cdot 0.004 \cdot 451 \cdot (365 \cdot (150 + 30)) \cdot (1 - 0.85) = 0.301$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0.696 + 0.0314 = 0.727

Сумма выбросов, т/год (3.2.4), M = M + MC = 6.67 + 0.301 = 6.97

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.727	6.97
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения: 6011, Выхлопная труба Источник выделения: 6011 01, Горнотранспортное оборудование

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип маг	шины: Тр	актор	(Г), NД	BC = 101 - 1	160 кВт					
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
100	2	2.00	2	50	20	20	15	8	7	
<i>3B</i>	Mxx,		Ml,		г/c			т/год		
	г/мин	ı z	/мин							
0337	3.91	2.29	95			0.0952			0.101	
2732	0.49	0.7ϵ	55			0.0254			0.02716	
0301	0.78	4.01				0.0954			0.1026	
0304	0.78	4.01				0.0155			0.01667	
0328	0.1	0.60)3			0.0178			0.01912	
0330	0.16	0.34	12			0.0109			0.01168	

	Tun машины: Трактор (K), N ДВС = 101 - 160 кВт												
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,				
cym	шm		мин										
100	1	1.00	1	50	20	20	15	8	7				
3B Mxx, Ml, 2/c							т/год						

	г/мин	г/мин			
0337	3.91	2.295	0.0476	0.02526	
2732	0.49	0.765	0.0127	0.00679	
0301	0.78	4.01	0.0477	0.02563	
0304	0.78	4.01	0.00775	0.004165	
0328	0.1	0.603	0.0089	0.00478	
0330	0.16	0.342	0.00544	0.00292	

				Tun .	иашины: Т	рактор (К),	NДВ $C = 6$	1 - 100 кВт			
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	v^2 , Tv^2n ,			
cym	шm		ит.	мин	мин	мин	мин	мин	мин		
100	1	1.00	1	50	20	20	15	8	7		
<i>3B</i>	Mxx	,	Ml,		г/с			т/год			
	г/ми	н г	/мин								
0337	2.4	1.41	13			0.0293			0.01554		
2732	0.3	0.459		0.3 0.459				0.00764			0.00409
0301	0.48	2.47	7			0.02936			0.01578		
0304	0.48	2.47	7			0.00477		0.0025		0.002565	
0328	0.06	0.36	59			0.00544	0.002924				
0330	0.097	0.20)7	0.0033							

			Tun	машины: 1	рузовые ав	томобили д	изельные с	выше 2 до	5 т (СНГ)	
Dn,	Nk,	, A Nk1 L1, L1n, Txs, L2, L2n, Txm,								
cym	шт		um.	км	км	мин	км	км	мин	
100	2	2.00	2	50	20	20	15	8	7	
3 B	Mxx	.,	Ml,		г/c			т/год		_
	г/ми	н	г/км							
0337	1.5	3.87	7			0.121			0.1296	
2732	0.25	0.72	2			0.02227			0.0239	
0301	0.5	2.6				0.0618			0.0664	
0304	0.5	2.6				0.01004			0.0108	
0328	0.02	0.27	7			0.00778			0.00836	
0330	0.072	0.44	11			0.013			0.01398	

		т (СНГ)								
Dn,	Nk,	\boldsymbol{A}	Nk1	L1, L1n,		Txs,	L2,	L2n,	Txm,	
cym	шт		шm.	км	км	мин	км	км	мин	
100	2	2.00	2	50	20	20	15	8	7	
3B	Mxx	,	Ml,		г/c			т/год		
	г/ми	н .	г/км							
0337	2.9	8.37	7			0.259			0.2776	
2732	0.45	1.17	7			0.03656			0.03916	
0301	1	4.5				0.1078			0.1158	
0304	1	4.5				0.01752			0.01882	
0328	0.04	0.45	5	0.013						
0330	0.1	0.87	73			0.0254	0.0273			

	ВСЕГО по периоду: Переходный	й период (t>-5 и t<5)	
Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.5521	0.549
2732	Керосин (654*)	0.10457	0.1011
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.32621
0328	Углерод (Сажа, Углерод черный) (583)	0.05292	0.049184
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.05803	0.057647
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.05302

Выбросы по периоду: Теплый период (t>5)

Тип ма	ип машины: Трактор (Г), N ДВС = 101 - 160 кВт										
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,		
cym	шm		шm.	мин	мин	мин	мин	мин	мин		
114	2	2.00	2	50	20	20	15	8	7		

TOO «Алаит» ГЛ 01583P om 01.08.2013 год

<i>3B</i>	Mxx,	Ml,	z/c	т/год	
	г/мин	г/мин			
0337	3.91	2.09	0.0894	0.108	
2732	0.49	0.71	0.02384	0.0291	
0301	0.78	4.01	0.0954	0.1168	
0304	0.78	4.01	0.0155	0.01898	
0328	0.1	0.45	0.01348	0.0165	
0330	0.16	0.31	0.01	0.0122	

				Tun A	ашины: Тр	рактор (К),	NДBC = 10	01 - 160 кВ	m	
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
114	1	1.00	1	50	20	20	15	8	7	
<i>3B</i>	Mxx	,	Ml,		г/c			т/год		
	г/ми	н г	/мин							
0337	3.91	2.09)			0.0447			0.027	
2732	0.49	0.71	1			0.01192			0.00727	
0301	0.78	4.01	1			0.0477		0.0292		
0304	0.78	4.01	1			0.00775	0.004745		0.004745	
0328	0.1	0.45	5			0.00674	0.00413			
0330	0.16	0.31	1			0.005	0.00305			

				Tun .	машины: Т	рактор (К),	$N \mathcal{A}BC = 6$	1 - 100 кВі	n	
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		шm.	мин	мин	мин	мин	мин	мин	
114	1	1.00	1	50	20	20	15	8	7	
<i>3B</i>	Mxx	.,	Ml,		г/с		•	т/год		
	г/ми	н г	/мин							
0337	2.4	1.29)			0.02756			0.01664	
2732	0.3	0.43	3			0.00723			0.00441	
0301	0.48	2.47	7			0.02936		0.018		
0304	0.48	2.47	7			0.00477	0.002925			
0328	0.06	0.27	7			0.00404		0.002474		
0330	0.097	0.19)			0.003056				

	Тип машины: Грузовые автомобили дизельные свыше 2 до 5 т (СНГ)										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,		
cym	um		шm.	км	км	мин	км	км	мин		
114	2	2.00	2	50	20	20	15	8	7		
	•										
3B	Mxx,		Ml,		г/c			т/год			
	г/мин	á	г/км								
0337	1.5	3.5				0.1104			0.135		
2732	0.25	0.7				0.0217			0.02654		
0301	0.5	2.6				0.0618			0.0758		
0304	0.5	2.6				0.01004			0.0123		
0328	0.02	0.2				0.0058			0.00711		
0330	0.072	0.39)			0.01156			0.01418		

			T	ип машины	: Грузовые	автомобил	и дизельны	е свыше 16	т (СНГ)	
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шm		um.	км	км	мин	км	км	мин	
114	2	2.0	0 2	50	20	20	15	8	7	
<i>3B</i>	Mx	x,	Ml,		г/c			т/год		
	г/м	ин	г/км							
0337	2.9	7.	5			0.234			0.2864	
2732	0.45	1.	1			0.03456			0.0422	
0301	1	4.	5			0.1078			0.132	
0304	1	4.	5			0.01752			0.02145	
0328	0.04	0.	4			0.0116			0.01423	
0330	0.1	0.	78			0.0228			0.02795	

ВСЕГО по периоду: Теплый период (t>5)								
Код	Примесь	Выброс г/с	Выброс т/год					

100	16

0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.50606	0.57304
2732	Керосин (654*)	0.09925	0.10952
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.3718
0328	Углерод (Сажа, Углерод черный) (583)	0.041664	0.044444
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.052416	0.059247
	(IV) оксид) (516)		
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0604

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T=0

Тип ма	Тип машины: Трактор (Г), N ДВС = 101 - 160 кВт											
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,			
cym	шm		иm.	мин	мин	мин	мин	мин	мин			
30	2	2.0	00 2	50	20	20	15	8	7			
<i>3B</i>	3B Mxx , Ml ,		Ml,	z/c			т/год					
	г/м	ин	г/мин									
0337	3.91	2	.55			0.1023			0.03264			
2732	0.49	0	.85			0.0278			0.00893			
0301	0.78	4	.01			0.0954			0.03076			
0304	0.78	4	.01			0.0155			0.005			
0328	0.1	0	.67			0.0197			0.00635			
0330	0.16	0	.38		•	0.01197			0.00385			

				Tun M	ашины: Тр	актор (К),	NДBC = 10)1 - 160 кВп	ı
Dn,	Nk,	A	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,
cym	um		ит.	мин	мин	мин	мин	мин	мин
30	1	1.00	1	50	20	20	15	8	7
3 B	Mx.	x,	Ml,	<i>₂/c</i>				т/год	
	г/мі	ин	г/мин						
0337	3.91	2.5	5			0.0512			0.00816
2732	0.49	0.8	5			0.0139			0.00223
0301	0.78	4.0	1			0.0477			0.00769
0304	0.78	4.0	1			0.00775			0.00125
0328	0.1	0.6	7			0.00984			0.001587
0330	0.16	0.3	8			0.00598			0.000963

				Tun.	машины: Т	рактор (К),	$N \mathcal{A}BC = 6$	1 - 100 кВт	l	
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv1n,	Txs,	Tv2,	Tv2n,	Txm,	
cym	шт		иm.	мин	мин	мин	мин	мин	мин	
30	1	1.00	0 1	50	20	20	15	8	7	
<i>3B</i>	Mx	cx,	Ml,		г/с			т/год		
	г/м	ин	г/мин							
0337	2.4	1.5	57			0.0315			0.00502	
2732	0.3	0.5	51			0.00836			0.001344	
0301	0.48	2.4	17			0.02936			0.00474	
0304	0.48	2.4	17			0.00477			0.00077	
0328	0.06	0.4	41			0.00602			0.00097	
0330	0.097	0.2	23			0.00362			0.000583	

			Tur	і машины:	Грузовые ав	втомобили	дизельные с	свыше 2 до	5 т (СНГ)	
Dn,	Nk,	A	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шm		иm.	км	км	мин	км	км	мин	
30	2	2.0	00 2	50	20	20	15	8	7	
<i>3B</i>	Mx	cx,	Ml,		г/c			т/год		
	г/м	ин	г/км							
0337	1.5	4	.3			0.133			0.0428	
2732	0.25	0	.8			0.0245			0.0079	
0301	0.5	2	.6			0.0618			0.01992	
0304	0.5	2	.6			0.01004			0.00324	
0328	0.02	0	.3			0.00862			0.002784	
0330	0.072	0	.49			0.0144			0.00464	

			Tu	іп машины	: Грузовые	автомобил	и дизельны	е свыше 1	6 т (СНГ)	
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шm		иm.	км	км	мин	км	км	мин	
30	2	2.00	2	50	20	20	15		8 7	
3 B	Mxx,		Ml,		г/c			т/год		
	г/мин	ı á	2/км							
0337	2.9	9.3				0.285			0.0918	
2732	0.45	1.3				0.0402			0.01294	
0301	1	4.5				0.1078			0.0347	
0304	1	4.5				0.01752			0.00564	
0328	0.04	0.5				0.01442			0.00466	
0330	0.1	0.97	7			0.02816			0.00908	

	ВСЕГО по периоду: Холодный (t=,град.С)										
Код	Примесь	Выброс г/с	Выброс т/год								
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	0.18042								
2732	Керосин (654*)	0.11476	0.033344								
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.09781								
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.016351								
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.06413	0.019116								
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.0159								

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

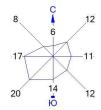
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.34206	0.79582
0304	Азот (II) оксид (Азота оксид) (6)	0.05558	0.12932
0328	Углерод (Сажа, Углерод черный) (583)	0.0586	0.109979
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV)	0.06413	0.13601
	оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.603	1.30246
2732	Керосин (654*)	0.11476	0.243964

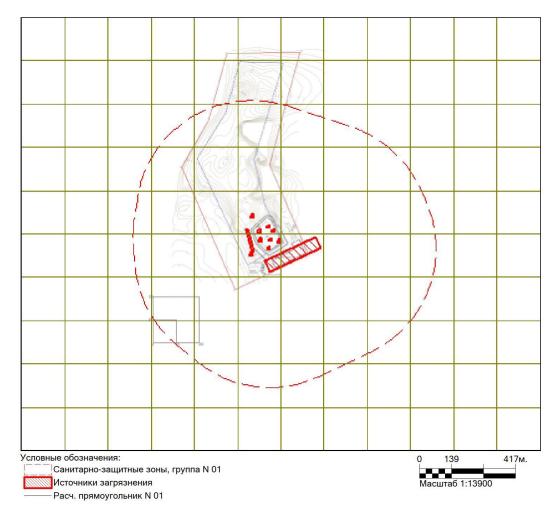
Максимальные разовые выбросы достигнуты в холодный период

Список использованной литературы

- 1. Экологический кодекс Республики Казахстан от 02.01.2021 г №400- VI 3РК;
- 2. Об утверждении Методики определения нормативов эмиссий в окружающую среду утвержденная Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63;
- 3. Об утверждении Классификатора отходов Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314. Зарегистрирован в Министерстве юстиции Республики Казахстан 9 августа 2021 года № 23903;
- 4. Об утверждении методики расчета лимитов накопления отходов и лимитов захоронения отходов Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 22 июня 2021 года № 206. Зарегистрирован в Министерстве юстиции Республики Казахстан 1 июля 2021 года № 23235;
- 5. Об утверждении Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду утвержденная Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246;
- 6. РНД 211.02.02. 97. Рекомендации по оформлению и содержанию проектов нормативов предельно допустимых выбросов в атмосферу (ПДВ) для предприятий Республики Казахстан. Алматы, 1997.
- 7. Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2;
- 8. Сборник методик по расчету выбросов вредных в атмосферу различными производствами. Алматы, КазЭКОЭКСП, 1996.
- 9. Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 10. Программный комплекс «ЭРА» Версия 3.0. Расчет приземных концентраций и выпуск томов НДВ. Новосибирск 2004;
 - 11. СНиП РК 2.04.01. 2017 «Строительная климатология»;
- 12. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов п.5. От предприятий по переработке нерудных материалов и производству пористых заполнителей. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п;
- 13. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 14. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п;

- 15. Гигиенические нормативы («Санитарно-эпидемиологические требования к обеспечению радиационной безопасности», утвержденных Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № КР ДСМ-71;
- 16. Гигиенические нормативы к атмосферному воздуху в городских и сельских населенных пунктах, утвержденные Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-70;
- 17. Санитарные правила «Санитарно-эпидемиологические требования к зданиям и сооружениям производственного назначения», утвержденные приказом Министра здравоохранения Республики Казахстан от 3 августа 2021 года № КР ДСМ-72
- 18. Об утверждении Инструкции по разработке проектов рекультивации нарушенных земель утвержденная Приказом и.о. Министра национальной экономики Республики Казахстан от 17 апреля 2015 года № 346;
 - 19. Налоговый кодекс РК.

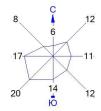

Приложения

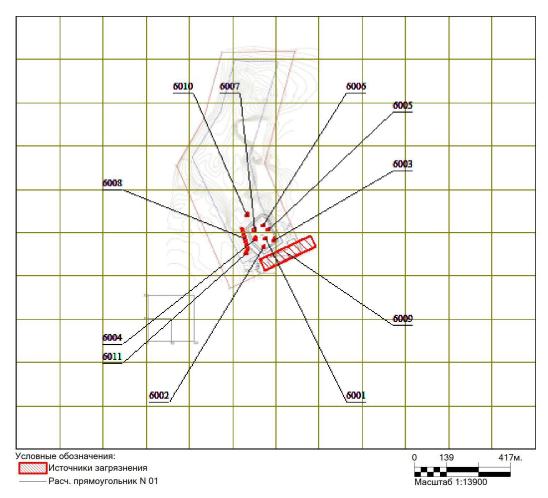

Приложение 1

Ситуационная карта-схема района размещения месторождения «Мета», с указанием границы СЗЗ

Город : 104 Целиноградский р-н, АкМ Объект : 0011 TOO "Goldenpit", месторождение Мета Вар.№ 2

ПК ЭРА v3.0

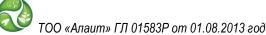



Приложение 1.1

Карта-схема размещения месторождения «Мета», с нанесенными на нее источниками выбросов в атмосферу

Город : 104 Целиноградский р-н, АкМ Объект : 0011 TOO "Goldenpit", месторождение Мета Вар.№ 2

ПК ЭРА v3.0


Приложение 2

Материалы результатов расчета рассеивания и карты рассеивания загрязняющих веществ


```
1. Общие сведения.
     Расчет проведен на ПК "ЭРА" v3.0 фирмы НПП "Логос-Плюс", Новосибирск
     Расчет выполнен ТОО "Алаит"
  | Заключение экспертизы Министерства природных ресурсов и Росгидромета
  | на программу: письмо № 140-09213/20и от 30.11.2020
2. Параметры города
   ПК ЭРА v3.0. Модель: MPK-2014
     Название: Целиноградский р-н, АкМ
     Коэффициент А = 200
     Скорость ветра Ump = 12.0 м/с
     Средняя скорость ветра = 4.6 м/с
     Средняя скорость ветра — 4.0 м/с
Температура летняя = 20.4 град.С
Температура зимняя = -16.8 град.С
Коэффициент рельефа = 1.00
Площадь города = 0.0 кв.км
     Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников
   ПК ЭРА v3.0. Модель: MPK-2014
                :104 Целиноградский р-н, АкМ.
:0011 Т00 "Goldenpit", месторождение Мета.
     Город
     Объект
     Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет пр
Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                                                          Расчет проводился 24.04.2023 18:37
                 ПДКм.р для примеси 0301 = 0.2 мг/м3
     Коэффициент рельефа (КР): индивидуальный с источников
     Коэффициент оседания (F): индивидуальный с источников
Признак источников "для зимы" - отрицательное значение высоты
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 </br>
<06~П>~</br>
NC> | ~~~ | ~~м~~ | ~~м~~ | ~м/с~ | ~м3/с~~ | градС | ~~~м~~~ | ~~~м~~~

                                                                             X2.
                                                                                        Y2.
                                                                                              |Alf| F | KP |Ди| Выброс
                                                                                             ~|rp.|~~~|~~~|~~r/c~~
                                                                                  ~ | ~~~M~~~
                                                                        ~ | ~ ~ ~ M~ ~ ~
001101 6011 П1
                  2.0
                                                        0.0
                                                                  421
                                                                            382
                                                                                       10
                                                                                                  10
                                                                                                       0 1.0 1.000 0 0.3420600
4. Расчетные параметры См, Им, Хм
   ПК ЭРА v3.0. Модель: MPK-2014
               :104 Целиноградский р-н, АкМ.
:0011 TOO "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расче
     Город
     Объект
                                                        Расчет проводился 24.04.2023 18:37
     Вар.расч. :2
                :ЗИМА для энергетики и ЛЕТО для остальных
     Сезон
              :0301 - Азота (IV) диоксид (Азота диоксид) (4)
     Примесь
                 ПДКм.р для примеси 0301 = 0.2 мг/м3
  - Для линейных и площадных источников выброс является суммарным по
    всей площади, а Ст - концентрация одиночного источника,
    расположенного в центре симметрии, с суммарным {\tt M}
 _Источники_
                                          ____Их расчетные параметры
                  | М | ТИП | СМ | UM | XM | S>|----[M/C]----[M]--
Номер
           Код
|-п/п-|<об-п>-<ис>|---
   1 |001101 6011|
                        0.342060| П1 |
                                           0.283536 | 0.50 |
     Суммарный Мq = 0.342060 г/с
     Сумма См по всем источникам =
                                            0.283536 долей ПДК
         Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
   ПК ЭРА v3.0. Модель: MPK-2014
                :104 Целиноградский р-н, АкМ.
:0011 ТОО "Goldenpit", месторождение Мета.
     Город
     объект
                       Расч.год: 2024-2032 (СП)
     Вар.расч. :2
                                                          Расчет проводился 24.04.2023 18:37
                 :ЗИМА для энергетики и ЛЕТО для остальных
     Примесь
                 :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                 ПДКм.р для примеси 0301 = 0.2 мг/м3
     Фоновая концентрация не задана
     Расчет по прямоугольнику 001 : 2256x1880 с шагом 188
     Расчет по границе санзоны. Покрытие РП 001
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
     Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы.
   ПК ЭРА v3.0. Модель: MPK-2014
                :104 Целиноградский р-н, АкМ.
:0011 Т00 "Goldenpit", месторождение Мета.
     Город
     Объект
              н. :2 Расч.год: 2024—2032 (СП) Расчет пр
:0301— Азота (IV) диоксид (Азота диоксид) (4)
     Вар.расч. :2
                                                         Расчет проводился 24.04.2023 18:37
                 ПДКм.р для примеси 0301 = 0.2 мг/м3
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X= 552, Y= 472
                      размеры: длина(по X) = 2256, ширина(по Y) = 1880, шаг сетки= 188
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
```


Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмр) м/с

	Скорос	ть ветр	ра: авто	оматичес	скии пог	иск опас	нои ско	рости о	т 0.5 д	0 12.0(UMP) M/	С	
						значений							
		Qc - суммарная концентрация [доли ПДК] Cc - суммарная концентрация [мг/м.куб] Фоп- опасное направл. ветра [угл. град											
						гра [уг гра [
	~~~~~	~~		_		_		~~~	~~~~~				
						о его вк го Фоп <b>,</b> U							
						~~~~~							
	1412 :	У-стро	ока 1	Cmax=	0.034	долей ПД	[K (x=	364.0;	напр.в	етра=17	7)		
	:		200	. 12.	176	261.	552.	740.	020.	1116.	1204.	1402.	1600.
						: 364: ::							
						: 0.034: : 0.007:							
						. 0.007.							
	1224 :	Ү-стро	ока 2	Cmax=	0.047	долей ПД	364.0:	напр.в	етра=17	6)			
	:	_							_	_			
						364:							
						: 0.047:							
						: 0.009:							
77=	1036 •	Y-cmpc	oka 3	Cmay=	0 069 -	цолей ПД	IK (v=	364 0.	напр р	етра=17	5)		
	:												
						: 364: ::							
Qc :	0.027:	0.034:	0.042	: 0.053:	0.063	: 0.069:	0.068:	0.060:	0.049:	0.039:	0.031:	0.025:	0.022:
						: 0.014: : 175 :							
						: 0.90 :							
												~~~~~	~~~~~
	848 :		ока 4	Cmax=	0.109	напр.в	етра=17	3)					
x=	-576 :	-388:				: 364:							
						:: : 0.109:							
Cc :	0.006:	0.008:	0.011:	: 0.015:	0.019	: 0.022:	0.021:	0.017:	0.013:	0.010:	0.007:	0.006:	0.005:
						: 173 : : 0.76 :							
						~~~~~							
			жа 5	Cmax=	0.183	долей ПД	ĮΚ (x=	364.0;	напр.в	етра=16	8)		
	: -576 :		-200:	: -12:	176	: 364:	552:	740:	928:	1116:	1304:	1492:	1680:
	:	:	:	::		::	:	:	:	:	:	:	:
						: 0.183: : 0.037:							
Фоп:	106 :	109 :	114	: 123 :	139	: 168 :	205 :	229 :	241 :	248 :	253 :	255 :	258 :
						: 0.63 :							
	172 •	V-ampa		Cmay-	0 202 -	цолей ПД	IV (v-	364 0.	HOED D	ompa=14	7)		
	:												
						: 364: ::				1116:			
Qc :	0.036:	0.050:	0.074	: 0.117:	0.196	: 0.282:	0.257:	0.160:	0.097:	0.063:	0.044:	0.032:	0.025:
Сс : Фоп:						: 0.056: : 147:							
	1.32 :	1.05 :	0.88	: 0.74 :	0.62	: 0.50 :	0.56:	0.66:	0.79 :	0.94 :	1.13:	1.63:	3.11 :
	284 :		ока 7	Cmax=	0.282	цолей ПД	(x=	364.0;	напр.в	етра= 3	0)		
											1204.	1.400	1680:
		-388:		-12:						1116:			
	:	-388:	::	::		::	:	:	:	:	:	:	:
Qc : Cc :	0.036: 0.007:	-388: 0.050: 0.010:	0.074	0.117:	0.194	:: : 0.282: : 0.056:	0.254: 0.051:	0.159: 0.032:	0.097: 0.019:	0.063: 0.013:	0.044: 0.009:	0.032: 0.006:	0.025: 0.005:
Qc : Сc : Фоп:	0.036: 0.007: 84:	-388: 0.050: 0.010: 83:	0.074: 0.015: 81	0.117: 0.023: 77:	0.194 0.039 68	0.282: 0.056: 30:	0.254: 0.051: 308:	0.159: 0.032: 287:	0.097: 0.019: 281:	: 0.063: 0.013: 278:	0.044: 0.009: 276:	0.032: 0.006: 275:	0.025: 0.005: 274:
Qc : Cc : Фол: Uoл:	0.036: 0.007: 84: 1.32:	-388: 0.050: 0.010: 83: 1.05:	0.074: 0.015: 81: 0.88:	: 0.117: : 0.023: : 77: : 0.74:	0.194 0.039 68 0.62	:: : 0.282: : 0.056:	0.254: 0.051: 308: 0.55:	0.159: 0.032: 287: 0.67:	0.097: 0.019: 281: 0.80:	0.063: 0.013: 278: 0.94:	0.044: 0.009: 276: 1.13:	0.032: 0.006: 275: 1.63:	0.025: 0.005: 274: 3.08:
Qc : Сc : Фоп: Uoп:	0.036: 0.007: 84: 1.32:	-388: : 0.050: 0.010: 83: 1.05:	0.074:	: 0.117: : 0.023: : 77: : 0.74:	0.194 0.039 68 0.62	:: : 0.282: : 0.056: : 30: : 0.51:	0.254: 0.051: 308: 0.55:	0.159: 0.032: 287: 0.67:	0.097: 0.019: 281: 0.80:	0.063: 0.013: 278: 0.94:	0.044: 0.009: 276: 1.13:	0.032: 0.006: 275: 1.63:	0.025: 0.005: 274: 3.08:
Qc : Cc : Фол: Uoл:	0.036: 0.007: 84: 1.32: ~~~~~	-388: : 0.050: 0.010: 83: 1.05: Y-ctpc	: 0.074: : 0.015: : 81: : 0.88:	:::: 0.117::: 0.023::: 77::: 0.74::	0.194 0.039 68 0.62	:: : 0.282: : 0.056: : 30 : : 0.51 :	0.254: 0.051: 308: 0.55:	0.159: 0.032: 287: 0.67:	0.097: 0.019: 281: 0.80: ~~~~~	0.063: 0.013: 278: 0.94: ~~~~~	0.044: 0.009: 276: 1.13:	0.032: 0.006: 275: 1.63:	0.025: 0.005: 274: 3.08:
Qc: Cc: Фол: Uoл: y= 	0.036: 0.007: 84: 1.32: : -576:	-388: : 0.050: 0.010: 83: 1.05: Y-crpc	0.074: 0.015: 81: 0.88: 0.88:	:: : 0.117: : 0.023: : 77: : 0.74: Cmax= -12:	0.194 0.039 68 0.62	:: : 0.282: : 0.056: : 30 : : 0.51 : 	0.254: 0.051: 308: 0.55: (K (x=	0.159: 0.032: 287: 0.67: 364.0;	0.097: 0.019: 281: 0.80: ~~~~~~ напр.в	0.063: 0.013: 278: 0.94: ~~~~~~ empa= 1	0.044: 0.009: 276: 1.13: ~~~~~~	0.032: 0.006: 275: 1.63: ~~~~~	0.025: 0.005: 274: 3.08:
Qc : Cc : Фол: Voл: x= Qc :	0.036: 0.007: 84: 1.32: ~~~~~ 96: -576: 0.034:	-388:: 0.050: 0.010: 83: 1.05: Y-ctpc	0.074: 0.015: 81: 0.88: 0.88: 0.88:	: 0.117: : 0.023: : 77: : 0.74: : 0.74: Cmax= : -12: :: : 0.096:	0.194 0.039 68 0.62 0.179 ;	:: : 0.282: : 0.056: : 30 : : 0.51 : цолей ПД : 364: :: : 0.179:	0.254: 0.051: 308: 0.55: 	0.159: 0.032: 287: 0.67: 364.0;	0.097: 0.019: 281: 0.80: ~~~~~~~ напр.в	0.063: 0.013: 278: 0.94: ~~~~~ erpa= 1 1116: : 0.057:	0.044: 0.009: 276: 1.13: ~~~~~ 1)	0.032: 0.006: 275: 1.63: ~~~~~	0.025: 0.005: 274: 3.08: ~~~~~
Qc : Cc : Фол: Voл: x= Qc :	0.036: 0.007: 84: 1.32: ~~~~~ 96: -576: 0.034: 0.007:	-388: 0.050: 0.010: 83: 1.05: Y-ctpc -388: 0.046: 0.009:	0.074: 0.015: 81: 0.88: 0.88: 0.88: 0.088: 0.005: 0.005:	: 0.117: : 0.023: : 77: : 0.74: : 0.74: Cmax= : -12: : 0.096: : 0.019:	0.194 0.039 68 0.62 0.179 ;	:: : 0.282: : 0.056: : 30 : : 0.51 : 	0.254: 0.051: 308: 0.55: 0.55: 552: 0.168: 0.034:	0.159: 0.032: 287: 0.67: 364.0; 740: 0.122: 0.024:	0.097: 0.019: 281: 0.80: ~~~~~ напр.в 928: 0.082: 0.016:	0.063: 0.013: 278: 0.94: ~~~~~ empa= 1 1116: : 0.057: 0.011:	0.044: 0.009: 276: 1.13: ~~~~~ 1) 1304: : 0.041: 0.008:	0.032: 0.006: 275: 1.63: ~~~~~	0.025: 0.005: 274: 3.08: 274: 0.024: 0.005:
Qc: Cc: Фол: Uon: y= X= Qc: Cc: Фол: Uon:	96: -576: 0.034: 0.007: 84: 1.32: -576: : 0.034: 0.007: 74: 1.45:	-388: 0.050: 0.010: 83: 1.05: Y-ctpc -388: 0.046: 0.046: 1.09:	0.074 0.015 81 0.88 0.88 -200 0.065 0.013 65 0.93	Cmax= -12: -0.096: -0.096: -0.096: -0.096: -0.096: -0.080:	0.194 0.039 68 0.62 0.179; 176 0.141 0.028 41	::: : 0.282:: : 0.056:: : 30 :: : 0.51 : : : 0.51 : : : 0.179:: : 0.179:: : 0.36:: : 11 ::	0.254: 0.051: 308: 0.55: (K (x=) 552: 0.168: 0.034: 335: 0.65:	0.159: 0.032: 287: 0.67: 364.0; 740: 0.122: 0.024: 312: 0.73:	0.097: 0.019: 281: 0.80: Напр.В 928: : 0.082: 0.016: 299: 0.84:	0.063: 0.013: 278: 0.94: 0.94: 1116: 0.057: 0.057: 0.011: 292: 0.98:	1304: : 0.044: 0.009: 276: 1.13: 1) 1304: : 0.041: 0.008: 288: 1.20:	1492: : 0.031: 0.006: 275: 1.63: : 0.031: 0.006: 285: 1.89:	1680: : 0.024: 0.005: 274: 3.08: : 0.024: 0.005: 283: 3.29:
Qc: Cc: Фол: Uon: y= Qc: Cc: Фол: Uon:	96: -576: 0.007: 84: 1.32: -576: : 0.034: 0.007: 74: 1.45:	-388: 0.050: 0.010: 83: 1.05: Y-crpc -388: 0.046: 0.009: 71: 1.09:	0.074 0.015 81 0.88 0.88 0.88 0.083 0.065 0.013 65 0.93	: 0.117: : 0.117: : 0.023: : 77: : 0.74: : 0.74: : -12: : -12: : 0.096: : 0.019: : 57: : 0.80:	0.194 0.039 68 0.62 0.141 0.028 41 0.70	::: : 0.282: : 0.056: : 30 : : 0.51: : 0.51: : 364: :: : 0.179: : 0.179: : 0.136:	0.254: 0.051: 308: 0.55: IK (x= 552: : 0.168: 0.034: 335: 0.65:	0.159: 0.032: 287: 0.67: 364.0; 740: : 0.122: 0.024: 312: 0.73:	0.097: 0.019: 281: 0.80: мапр.в 928: 0.082: 0.016: 299: 0.84:	0.063: 0.013: 278: 0.94: 0.94: 1116: : 0.057: 0.011: 292: 0.98:	1) 1304:: 0.008: 288: 1.20:	1492: : 0.031: 0.006: 275: 1.63: : 0.031: 0.006: 285: 1.89:	1680: : 0.024: 0.005: 274: 3.08: : 0.024: 0.005: 283: 3.29:
Qc: Cc: Фол: Uon: 	96: -576: 0.007: 84: 1.32: -576: : 0.034: 0.007: 74: 1.45:	-388: -0.050: 0.010: 83: 1.05: Y-crpc -388: -0.0466 0.009: 71: 1.09:	0.074 0.015 81 0.88 0.88 0.88 0.083 0.065 0.013 65 0.93	: 0.117: : 0.117: : 0.023: : 77: : 0.74: : 0.74: : -12: : -12: : 0.096: : 0.019: : 57: : 0.80:	0.194 0.039 68 0.62 0.141 0.028 41 0.70	::: : 0.282:: : 0.056:: : 30 :: : 0.51 : : : 0.51 : : : 0.179:: : 0.179:: : 0.36:: : 11 ::	0.254: 0.051: 308: 0.55: IK (x= 552: : 0.168: 0.034: 335: 0.65:	0.159: 0.032: 287: 0.67: 364.0; 740: : 0.122: 0.024: 312: 0.73:	0.097: 0.019: 281: 0.80: мапр.в 928: 0.082: 0.016: 299: 0.84:	0.063: 0.013: 278: 0.94: 0.94: 1116: : 0.057: 0.011: 292: 0.98:	1) 1304:: 0.008: 288: 1.20:	1492: : 0.031: 0.006: 275: 1.63: : 0.031: 0.006: 285: 1.89:	1680: : 0.024: 0.005: 274: 3.08: : 0.024: 0.005: 283: 3.29:

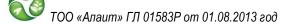

```
Qc: 0.031: 0.040: 0.053: 0.072: 0.093: 0.107: 0.103: 0.084: 0.064: 0.047: 0.036: 0.028: 0.023:
Сс: 0.006: 0.008: 0.011: 0.014: 0.019: 0.021: 0.021: 0.017: 0.013: 0.009: 0.007: 0.006: 0.005: Фоп: 65: 60: 53: 42: 27: 7: 345: 326: 313: 304: 298: 294: 291:
                                               7:
                              42 :
Uon: 1.84 : 1.22 : 1.01 : 0.89 : 0.81 : 0.77 : 0.78 : 0.84 : 0.93 : 1.08 : 1.32 : 2.44 : 3.64 :
y= -280 : Y-строка 10 Cmax= 0.068 долей ПДК (x= 364.0; напр.ветра= 5)
                                              364: 552: 740:
Qc : 0.027: 0.033: 0.042: 0.052: 0.062: 0.068: 0.067: 0.059: 0.048: 0.038: 0.031: 0.025: 0.022:
Cc : 0.005: 0.007: 0.008: 0.010: 0.012: 0.014: 0.013: 0.012: 0.010: 0.008: 0.006: 0.005: 0.004:
Фоп: 56: 51: 43: 33: 20: 5: 349: 334: 323: 314: 307: 302: 298: Uon: 2.62: 1.48: 1.16: 1.02: 0.94: 0.91: 0.92: 0.97: 1.06: 1.24: 1.86: 3.08: 4.09:
у= -468 : У-строка 11 Стах= 0.047 долей ПДК (х= 364.0; напр.ветра= 4)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.024: 0.028: 0.033: 0.039: 0.044: 0.047: 0.046: 0.042: 0.037: 0.031: 0.026: 0.023: 0.020:
Cc: 0.005: 0.006: 0.007: 0.008: 0.009: 0.009: 0.009: 0.008: 0.007: 0.006: 0.005: 0.005: 0.004:
                                           ПК ЭРА v3.0. Модель: MPK-2014
 Результаты расчета в точке максимума
         Координаты точки : X= 364.0 м, Y= 284.0 м
                                                 0.2823745 доли ПДКмр|
 Максимальная суммарная концентрация | Сs=
                                                0.0564749 мг/м3
   Достигается при опасном направлении 30 град.
                        и скорости ветра 0.51 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                 _вклады_источников
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | <0б-П>-<Ис> | --- | --- М- (Мq) -- | -- С[доли ПДК] | ---- | --- | ---- b=C/M --- | 1 | 001101 6011 | П1 | 0.3421 | 0.282375 | 100.0 | 100.0 | 0.825511694 | | В сумме = 0.282375 | 100.0 |
7. Суммарные концентрации в узлах расчетной сетки.
   ПК ЭРА v3.0. Модель: MPK-2014
               :104 Целиноградский р-н, АкМ.
:0011 Т00 "Goldenpit", месторождение Мета.
     Город
     Объект
     Вар.расч. :2
                       Расч.год: 2024-2032 (СП)
                                                        Расчет проводился 24.04.2023 18:37
     Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                 ПДКм.р для примеси 0301 = 0.2 мг/м3
         Параметры расчетного прямоугольника No 1
Координаты центра : X= 552 м; Y= 472 |
Длина и ширина : L= 2256 м; B= 1880 м |
Шаг сетки (dX=dY) : D= 188 м
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
   (Символ ^ означает наличие источника вблизи расчетного узла)
                       4
                              5 6
                                                  8
                                                        9
                                                               10
                                                                     11
                                                                            12
                                                                                   13
 1-| 0.021 0.024 0.027 0.030 0.033 0.034 0.034 0.032 0.029 0.026 0.023 0.020 0.018 |- 1
 2-| 0.024 0.028 0.033 0.039 0.044 0.047 0.047 0.043 0.037 0.031 0.026 0.023 0.020 |- 2
 3-| 0.027 0.034 0.042 0.053 0.063 0.069 0.068 0.060 0.049 0.039 0.031 0.025 0.022 |-3
     0.031 0.040 0.054 0.073 0.094 0.109 0.105 0.086 0.065 0.048 0.036 0.028 0.023 |- 4
     0.034\ 0.046\ 0.066\ 0.097\ 0.143\ 0.183\ 0.172\ 0.124\ 0.083\ 0.057\ 0.041\ 0.031\ 0.024\ |-\ 5
 6-C 0.036 0.050 0.074 0.117 0.196 0.282 0.257 0.160 0.097 0.063 0.044 0.032 0.025 C- 6
     0.036\ 0.050\ 0.074\ 0.117\ 0.194\ 0.282\ 0.254\ 0.159\ 0.097\ 0.063\ 0.044\ 0.032\ 0.025\ |-
     0.034 0.046 0.065 0.096 0.141 0.179 0.168 0.122 0.082 0.057 0.041 0.031 0.024 |- 8
 9-| 0.031 0.040 0.053 0.072 0.093 0.107 0.103 0.084 0.064 0.047 0.036 0.028 0.023 |- 9
    0.027 0.033 0.042 0.052 0.062 0.068 0.067 0.059 0.048 0.038 0.031 0.025 0.022 |-10
11-| 0.024 0.028 0.033 0.039 0.044 0.047 0.046 0.042 0.037 0.031 0.026 0.023 0.020 |-11
     -|----|---|---|---|----|----|----
                                                   8 9 10 11 12 13
       В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.2823745 долей ПДКмр = 0.0564749 мг/м3
                                               364.0 м
 Достигается в точке с координатами: Хм =
     ( Х-столбец 6, У-строка 7)
                                         YM =
```


30 град.

При опасном направлении ветра

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

: 0.51 м/с и "опасной" скорости ветра 9. Результаты расчета по границе санзоны. ПК ЭРА v3.0. Модель: MPK-2014 :104 Целиноградский р-н, АкМ. :0011 TOO "Goldenpit", месторождение Мета. :2 Расч.год: 2024-2032 (СП) Расче Объект Вар.расч. :2 Расчет проводился 24.04.2023 18:37 :0301 - Азота (IV) диоксид (Азота диоксид) (4) Примесь ПДКм.р для примеси 0301 = 0.2 мг/м3 Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001 Всего просчитано точек: 267 Фоновая концентрация не задана Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с Расшифровка_обозначений_ Qc - суммарная концентрация [доли ПДК] Сс - суммарная концентрация [мг/м.куб] Фоп- опасное направл. ветра [угл. град.] Uon- опасная скорость ветра [-Если в расчете один источник, то его вклад и код не печатаются| 469: 481: 493: 506: 518: 530: 542: 623: 636: 648: 660: 672: 683: y= -71: -87: -91 • -91 • -90. -89. -88. -85. -73. -69. -66. -64 • -61 • -57 • -53. ----:-----: ----:---:-----:-----:---:-----:-----:-Oc: 0.096: 0.096: 0.095: 0.095: 0.094: 0.094: 0.093: 0.089: 0.088: 0.087: 0.087: 0.086: 0.085: 0.085: 0.084: : 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.018: 0.018: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: Cc 102: 104: 105: 106: 108: 116: 117 : 118 : 120 : 121 : 122 100: 101: 123 0.80: 0.80: 0.80: 0.80: 0.81: 0.82: 0.82: 0.82 : 0.83 : 0.84 : 0.83 0.80: 775: 797: 719: 730: 741: 764: 786: 807: 818: 828: 838: 848: 858: V= -31: -25: -20: -7: -1: Qc: 0.083: 0.082: 0.082: 0.081: 0.080: 0.080: 0.079: 0.079: 0.078: 0.078: 0.077: 0.077: 0.076: 0.076: 0.075: : 0.017: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.015: 0.015: 0.015: 0.015: 0.015: Фоп: 126 : 127 : 128 : 129 : 130 : 131 : 132 : 134 : 135 : 136 : 137 : 138 : 139 : 140 Uon: 0.84 : 0.84 : 0.85 : 0.85 : 0.85 : 0.85 : 0.85 : 0.86 : 0.86 : 0.86 : 0.86 : 0.87 : 0.87 : 0.87 140: y= 877: 886: 895: 904: 912: 921: 929: 937: 944: 952: 959: 966: 973: 979: 985. 59: 77: 51: 68: 86: 95: 104: 114: 124: 133: 144: 154: x =43: Qc: 0.075: 0.074: 0.074: 0.074: 0.073: 0.073: 0.073: 0.072: 0.072: 0.072: 0.071: 0.071: 0.071: 0.071: 0.070: 0.070: $: 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.014; \$ 147 : 150 : 152 : 155 : 143 : 144 : 145 : 146 : 151 : 153 : 156: 158 : 157: 148 : 149 : Uоп: 0.87 : 0.88 : 0.88 : 0.88 : 0.88 : 0.88 : 0.89 : 0.89 : 0.89 : 0.89 : 0.89 : 0.89 : 0.89 : 0.90 : 0.90 : 997: 1043: y= 991: 1002: 1007: 1012: 1017: 1021: 1025: 1029: 1032: 1035: 1038: 1041: 1045: 186: 197: 208: 219: 230: 241: 253: 265: 276: 288: 300: 312: 324: ----:------:-Qc: 0.070: 0.070: 0.070: 0.069: 0.069: 0.069: 0.069: 0.069: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 164 : 165 : 166: 167 : 168 : 161 : 162 : 163 : 169 : 171 : 172 : 173 : 160: Uon: 0.90 : 0.90 : 0.90 : 0.90 : 0.90 : 0.90 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 1046: 1048: 1049: 1050: 1050: 1050: 1050: 1050: 1050: 1049: 1048: 1046: 1045: 1043: y= 421 • 431 • 444. 456. 480 • 493. 360. 372 . 385. 397 . 409. 468 • 505. 517 • ----:-----:-OC: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: 0.068: Cc: 0.014 177 : 178 : 179 : 182 : 187 : 176 : 180 : 181 : 183 : 184 : 185 : 186 : 188 : Uoп: 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 1038: 1035: 1032: 1029: 1025: 930: 926: 921: 911: 979: 934: 916: 906: 900: 894: V= 886: : 0.068: 0.068: 0.068: 0.068: 0.068: 0.067: 0.062: 0.062: 0.061: 0.061: 0.060: 0.060: 0.059: 0.059: 0.058: Cc : 0.014: 0.014: 0.014: 0.014: 0.014: 0.013: 0.012: 0.0 Uon: 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.94 : 0.94 : 0.94 : 0.95 : 0.96 : 0.96 : 0.96 : 0.97 : 0.97 : 874: 888: 881: 867: 860: 853: 845: 837: 829: 820: 812: 803: 794: 785: 775: y= -----994: 1004: 1014: 1023: 1033: 1042: 1051: 1059: 1068: 1076: 1084: 1092: 963: 974: 984: x=Oc: 0.058: 0.057: 0.057: 0.057: 0.056: 0.056: 0.056: 0.055: 0.055: 0.055: 0.055: 0.054: 0.054: 0.054: 0.054: 0.054:



Cc : 0.012: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 228 : 229 : 230 : 231 : 232 : 234 : 236 : 237 : 238 : Фоп: 227 : 228 : 229 : 230 : 231 : 232 : 232 : 233 : 234 : 235 : 236 : 237 : 238 : 239 : Uoп: 0.97 : 0.98 : 0.98 : 0.98 : 0.98 : 0.99 : 0.99 : 0.99 : 0.99 : 1.00 : 1.00 : 1.00 : 1.00 : 1.00 : 239 : 766: 756: 746: 736: 725: 715: 704: 693: 683: 671: 622: 610: 599: 588: 576: y= 1100: 1107: 1114: 1121: 1128: 1134: 1140: 1146: 1152: 1157: 1180: 1185: 1190: 1195: 1199: X= --:-Qc: 0.053: 0.053: 0.053: 0.053: 0.053: 0.053: 0.053: 0.053: 0.053: 0.052: 0.052: 0.052: 0.052: 0.052: 0.051: 0.051: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 241 : 241 : 242 : 248 : 249 : 254 : 243 : 244 : 245 : 246 : 247 : 252 : 253 : 255: 256: Uon: 1.01 : 1.01 : 1.01 : 1.01 : 1.01 : 1.02 : 1.02 : 1.02 : 1.02 : 1.02 : 1.03 : 1.03 : 1.03 : 1.03 : 1.04 : 541: 529: 517: 493: 481: 469: 457: 444: 432: 420: 408: y= 1207: 1210: 1213: 1216: 1218: 1220: 1222: 1224: 1225: 1226: 1227: 1227: 1227: 1203: ----:----:----:-----:-----:---:-----:-----:-Qc: 0.051 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 262 : 259: 260 : 260 : 261 : 263 : 264 : 265 : 266: 267 258: 266: : 1.04 1.04 1.04 : 1.03 : 1.03 : 1.03 : 1.04 : 1.04 : 1.03 : 1.03 : 1.03 : 1.03 371: 359: 346: 334: 322: 310: 298: 286: 274: 263: 251: 239: 228: 383: y= --:---:--: 1223: 1221: 1219: 1217: 1215: 1212: 1208: 1205: : 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.052: 0.052: 0.052: 0.052: 0.052: 0.053: 0.053: 0.053: Cc : 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 271: 272: 273: 273: 274: 275: 276: 277: 278: 279: 280: 280: 281: 282: 270 : Фоп: Uon: 1.03 : 1.03 : 1.04 : 1.04 : 1.03 : 1.03 : 1.03 : 1.03 : 1.03 : 1.03 : 1.03 : 1.02 : 1.02 : 1.02 : 1.01 : 205. 194 • 183. 172 • 161 • 151 • 140 • 130 • 120 • 110 • 101 • 91 • 82 . 72. 64. y= 1183: 1178: 1173: 1167: 1161: 1155: 1148: 1142: 1135: 1127: 1120: 1112: 1104: 1096: x= 0.054: 0.054: 0.055: 0.055: 0.055: 0.056: 0.056: 0.056: 0.057: 0.057: 0.058: 0.058: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.012: 0.012: 285 : 286: 287 : 284: 287 : 288 : 289 : 290 : 291: 292: 293: 294: 295: Uoπ: 1.01 : 1.01 : 1.01 : 1.00 : 1.00 : 1.00 : 0.99 : 0.99 : 0.98 : 0.99 : 0.98 : 0.98 : 0.98 : 0.97 : 0.97 : -7: 14: -14: -43: 55: 46: 38: 30: 22: 7: 0: -20: -26: -32: -38: x= 1079: 1070: 1061: 1052: 1042: 1033: 1023: 1013: 1003: 992: 982: 971: 961: 950: 939: ----: ----:-----:-----:-----:----:----: ----: Qc : 0.059: 0.059: 0.060: 0.060: 0.061: 0.061: 0.062: 0.062: 0.063: 0.064: 0.064: 0.065: 0.066: 0.066: 0.067: : 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 297: 308: 298 : 299 : 300 : 301 : 302 : 303 : 304 : 305 : 306 : 307 : 308: 309: Uoπ: 0.97 : 0.96 : 0.96 : 0.96 : 0.95 : 0.94 : 0.94 : 0.94 : 0.94 : 0.93 : 0.93 : 0.93 : 0.92 : 0.92 : 0.91 : -147: -152: -157: -161: -166: -170: -173: -177: -180: -182: -185: -187: y= 715: 704 • 681 • 670 . 658. 646. 635. 623. 611. 599. 587. 827 . 693. 574 • ----:----:-----:-Oc: 0.074: 0.078: 0.078: 0.078: 0.079: 0.079: 0.079: 0.079: 0.079: 0.079: 0.080: 0.080: 0.080: 0.081: 0.081: : 0.015: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: CC 336 : 337 338 : 339 : 340 : 333: 334: : 341: 343 : Uon: 0.88 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.85 : 0.85 : 0.85 : 0.85 : 0.85 : 0.85 : -192: -193: -194: -194: -194: -194: -192: -191: -190: -188: -186: -184: -181: -178: V= 538: 526: 501: 489: 477: 464: 452: Qc : 0.081: 0.081: 0.082: 0.082: 0.082: 0.083: 0.083: 0.084: 0.084: 0.084: 0.085: 0.085: 0.085: 0.086: 0.086: Сс: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.017: 0.01 Uon: 0.85 : 0.85 : 0.85 : 0.85 : 0.84 : 0.84 : 0.84 : 0.84 : 0.84 : 0.84 : 0.83 : 0.83 : 0.83 : 0.83 : 0.83 -164· -159· -155· -150· -145· -139· -134· -128· -175· -172· -168· -121 • -115 • -108 • 333: 321: 310: 288: 277: Qc: 0.087: 0.087: 0.088: 0.088: 0.089: 0.089: 0.090: 0.090: 0.091: 0.091: 0.092: 0.093: 0.093: 0.094: 0.095: 0.017: 0.017: 0.018: 0.018: 0.018: 0.018: 0.018: 0.018: 0.018: 0.018: 0.019: 0.019: 0.019: 0.019: 7: 21 : 22: Фоп: 5: 7: 8: 9: 10: 12: 13: 14: 15: 17: 18: 19: 21: 22: 23: Uoп: 0.83: 0.83: 0.82: 0.82: 0.82: 0.82: 0.82: 0.82: 0.82: 0.81: 0.81: 0.81: 0.81: 0.81: 0.81: 0.80: 0.80: 15: -79: -9: 33: 51: 70: 79: 89: у= -94: -86: -1: 24: 42: 60: 72: 7: x= 204: 194: 185: 99: 90: 80: 63: 54: 46: 38: 30: 22: 15: Qc: 0.095: 0.096: 0.096: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: Cc : 0.019: 0.019: 0.019: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020:

27 : 39 : 46: 26: 41 : 45 : 48: 52: Фоп: Uoπ: 0.80 : 0.80 : 0.80 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 142: 153: 110: 120: 131: 175: 186: 197: 209: 220: 100: 164: 232: -6 -13 -19 -25 -30 -41 -46 -50 -55. -58 • x= 1 • -36. -62 • -66. -69. ----:----:-----:-----:----:----:----:----:--Qc: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: 0.099: Cc : 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 69: 70: 59: 60 : 62: 63: 64 : 66: 67 : Uon: 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 268: 280: 292: 304: 316: 328: 341: 420: 432: 444: 457: -72: -80: -89: -90: -91: -91: -74: -76: -78: -81: -82: Oc: 0.099: 0.099: 0.100: 0.100: 0.099: 0.100: 0.100: 0.098: 0.097: 0.097: 0.096: 0.096: Cc: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.019: 0.019: 0.019: 0.019: 78 : 80: 81 : 82: 84: 94: 98: 85 : 96: Фоп: Uon: 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.80 : Результаты расчета в точке максимума $\,$ ПК ЭРА v3.0. Модель: MPK-2014 -82.0 м, Y= 341.0 м Координаты точки : Х= Максимальная суммарная концентрация | Cs= 0.0996472 доли ПДКмр| 0.0199294 мг/м3 Достигается при опасном направлении 85 град. и скорости ветра 0.79 м/с Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада __вклады_источников_ | Ном. | Код | Тип | Выброс | Вклад в% | Сум. % | Коэф.влияния | ---- | <06-П>-<Ис> | --- | --- | --- | 1 | 001101 6011 | П1 | 0.3421 | 0.099647 | 100.0 | 100.0 | 0.291314989 | В сумме = 0.099647 | 100.0 |Вклад в%| Сум. %| Коэф.влияния 3. Исходные параметры источников. ПК ЭРА v3.0. Модель: МРК-2014 Город :104 Целиноградский р-н, АкМ. Объект :0011 ТОО "Goldenpit", месторождение Мета. Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37 Примесь :0304 - Азот (II) оксид (Азота оксид) (6) ПДКм.р для примеси 0304 = 0.4 мг/м3 Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Признак источников "для зимы" - отрицательное значение высоты |Тип| Н | D | Wo | V1 | Т X1 Y1 X2 Y2 |Alf| F | KP |Ди| Выброс ~|Fp.|~~~|~~~|~~F/C~ <Oб~П>~<Nc>| ~~~ | ~~м~~ | ~~м~~ | ~м/с~ | ~м3/с~~ | градС | ~~~м~~~ | ~~~м~~~ ~ | ~~~M~~ ~ | ~~~M~~~ 001101 6011 П1 2.0 0.0 421 382 10 10 0 1.0 1.000 0 0.0555800 4. Расчетные параметры См, Uм, Хм ПК ЭРА v3.0. Модель: MPK-2014 :104 Целиноградский р-н, АкМ. :0011 ТОО "Goldenpit", месторождение Мета. :2 Расч.год: 2024-2032 (СП) Расче Город Объект Вар.расч. :2 Расчет проводился 24.04.2023 18:37 :ЗИМА для энергетики и ЛЕТО для остальных :0304 - Азот (II) оксид (Азота оксид) (6) ПДКм.р для примеси 0304 = 0.4 мг/м3 - Для линейных и площадных источников выброс является суммарным по всей площади, а Ст - концентрация одиночного источника, расположенного в центре симметрии, с суммарным М _Источники_ -Гм1--1 |001101 6011| 0.055580| П1 | 4.962811 | Суммарный Мq = 0.055580 г/с Сумма См по всем источникам = 4.962811 долей ПДК Средневзвешенная опасная скорость ветра = 0.50 м/с 5. Управляющие параметры расчета ПК ЭРА v3.0. Модель: MPK-2014 :104 Целиноградский р-н, АкМ. :0011 ТОО "Goldenpit", месторождение Мета. Город . Объект Расч.год: 2024-2032 (СП) Вар.расч. :2 Расчет проводился 24.04.2023 18:37 :ЗИМА для энергетики и ЛЕТО для остальных Сезон Примесь :0304 - Азот (II) оксид (Азота оксид) (6) ПДКм.р для примеси 0304 = 0.4 мг/м3 Фоновая концентрация не задана

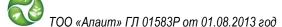
Расчет по прямоугольнику 001 : 2256х1880 с шагом 188 Расчет по границе санзоны. Покрытие РП 001 Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до $12.0 \, (\text{Ump})\,$ м/с Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с 6. Результаты расчета в виде таблицы. ПК ЭРА v3.0. Модель: MPK-2014 Город :104 Целиноградский р-н, АкМ. :0011 TOO "Goldenpit", месторождение Мета. :2 Расч.год: 2024-2032 (СП) Расче :0304 - Азот (II) оксид (Азота оксид) (6) ПДКм.р для примеси 0304 = 0.4 мг/м3 Вар.расч. :2 Расчет проводился 24.04.2023 18:37 Примесь Расчет проводился на прямоугольнике 1 с параметрами: координаты центра X=552, Y=472размеры: длина(по X) = 2256, ширина(по Y) = 1880, шаг сетки= 188 Фоновая концентрация не задана Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) ${\tt m/c}$ _Расшифровка_обозначений_ | Qc - суммарная концентрация [доли ПДК] | Сс - суммарная концентрация [мг/м.куб] Фоп- опасное направл. ветра [угл. град.] | Иоп- опасная скорость ветра [M/C -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Стах=< 0.05 ПДК, то Фол, Иол, Ви, Ки не печатаются | 1412 : Y-строка 1 Cmax= 0.022 долей ПДК (x= 364.0; напр.ветра=177) -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: Qc: 0.012: 0.014: 0.016: 0.019: 0.021: 0.022: 0.021: 0.020: 0.018: 0.015: 0.013: 0.012: 0.010: Cc: 0.005: 0.006: 0.006: 0.007: 0.008: 0.009: 0.009: 0.008: 0.007: 0.006: 0.005: 0.005: 0.004: у= 1224 : Y-строка 2 Cmax= 0.031 долей ПДК (x= 364.0; напр.ветра=176) x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.014: 0.017: 0.021: 0.025: 0.029: 0.031: 0.031: 0.028: 0.024: 0.019: 0.016: 0.013: 0.011: Cc: 0.006: 0.007: 0.008: 0.010: 0.012: 0.013: 0.012: 0.011: 0.009: 0.008: 0.006: 0.005: 0.005: y= 1036 : Y-строка 3 Cmax= 0.050 долей ПДК (x= 364.0; напр.ветра=175) -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc : 0.016: 0.021: 0.028: 0.036: 0.045: 0.050: 0.048: 0.042: 0.033: 0.025: 0.019: 0.015: 0.013: Cc: 0.007: 0.009: 0.011: 0.014: 0.018: 0.020: 0.019: 0.017: 0.013: 0.010: 0.008: 0.006: 0.005: 848 : Y-строка 4 Cmax= 0.086 долей ПДК (x= 364.0; напр.ветра=173) 740: -12: 1.76: 364: 552: 928: 1116: 1304: 1492: 1680: x = -576: -388: -200: Qc: 0.019: 0.026: 0.036: 0.053: 0.072: 0.086: 0.082: 0.064: 0.046: 0.032: 0.023: 0.017: 0.014: : 0.008: 0.010: 0.015: 0.021: 0.029: 0.034: 0.033: 0.026: 0.018: 0.013: 0.009: 0.007: 0.005: 115 : 120 : 127 : 137 : 152 : 173 : 196 : 214 : 227 : 236 : 242 : 246 : Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :0.78 : 660 : Y-строка 5 Стах= 0.165 долей ПДК (х= 364.0; напр.ветра=168) y= -12: -388: -200: 364: 552: 740: 928: 1116: 1304: 1492: 1680: 176: Qc : 0.021: 0.031: 0.047: 0.074: 0.120: 0.165: 0.152: 0.100: 0.062: 0.040: 0.026: 0.019: 0.014: Сс: 0.009: 0.012: 0.019: 0.030: 0.048: 0.066: 0.061: 0.040: 0.025: 0.016: 0.011: 0.008: 0.006: Фоп: 106: 109: 114: 123: 139: 168: 205: 229: 241: 248: 253: 255: 258: 114: 253 : UON: 12.00 :12.00 :12.00 :12.00 :12.00 :11.41 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 : y= 472 : Y-строка 6 Cmax= 0.565 долей ПДК (x= 364.0; напр.ветра=147) -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.023: 0.033: 0.054: 0.094: 0.181: 0.565: 0.323: 0.139: 0.075: 0.044: 0.029: 0.020: 0.015: Cc: 0.009: 0.013: 0.021: 0.037: 0.073: 0.226: 0.129: 0.055: 0.030: 0.018: 0.011: 0.008: 0.006: Фол: 95: 96: 98: 102: 110: 147: 236: 254: 260: 263: 264: 265: 266: Uon:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00: 284 : У-строка 7 Стах= 0.508 долей ПДК (х= 364.0; напр.ветра= 30) x= -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:

Oc: 0.023: 0.033: 0.054: 0.093: 0.179: 0.508: 0.312: 0.137: 0.074: 0.044: 0.029: 0.020: 0.015:


```
Cc : 0.009: 0.013: 0.021: 0.037: 0.072: 0.203: 0.125: 0.055: 0.030: 0.018: 0.011: 0.008: 0.006:
                               81 :
                                                                                   287 :
                                                                                                        278 :
                                                                                                                   276 :
Фоп: 84: 83: 81: 77: 68: 30: 307: 287: 281: 278: 276: 275: 274: Uon:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.
          96 : Y-строка 8 Стах= 0.160 долей ПДК (х= 364.0; напр.ветра= 11)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.021: 0.030: 0.046: 0.073: 0.117: 0.160: 0.147: 0.098: 0.061: 0.039: 0.026: 0.019: 0.014:
Cc: 0.009: 0.012: 0.019: 0.029: 0.047: 0.064: 0.059: 0.039: 0.024: 0.016: 0.011: 0.008: 0.006:
          74 :
                    71 :
                              65 :
                                                   41 :
                                        57 :
                                                              11 : 335 : 312 : 299 : 292 : 288 : 285 : 283 :
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
        -92 : Y-строка 9 Cmax= 0.084 долей ПДК (x= 364.0; напр.ветра= 7)
 x= -576 : -388: -200: -12: 176: 364:
                                                                       552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.019: 0.026: 0.036: 0.052: 0.070: 0.084: 0.080: 0.063: 0.045: 0.032: 0.023: 0.017: 0.013:
Сс: 0.008: 0.010: 0.014: 0.021: 0.028: 0.033: 0.032: 0.025: 0.018: 0.013: 0.009: 0.007: 0.005: Фоп: 65: 60: 53: 42: 27: 7: 345: 326: 313: 304: 298: 294: 291:
                                                                        345 : 326 : 313 : 304 : 298 : 294 : 291 :
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :0.78 :
 y= -280 : Y-строка 10 Cmax= 0.049 долей ПДК (x= 364.0; напр.ветра= 5)
                                                                                               928: 1116: 1304: 1492: 1680:
Oc: 0.016: 0.021: 0.027: 0.035: 0.044: 0.049: 0.047: 0.041: 0.032: 0.025: 0.019: 0.015: 0.012:
Cc: 0.007: 0.008: 0.011: 0.014: 0.018: 0.019: 0.019: 0.016: 0.013: 0.010: 0.008: 0.006: 0.005:
 y= -468 : Y-строка 11 Cmax= 0.031 долей ПДК (x= 364.0; напр.ветра= 4)
 x = -576 \cdot -388 \cdot -200 \cdot -12 \cdot 176 \cdot
                                                             364 552 740 928 1116 1304 1492 1680
                              ----:----:----:-
                    ----:-
                                                              ----:-
                                                                         ----:-
                                                                                   ----:-
                                                                                              ----:----:-
Qc: 0.014: 0.017: 0.021: 0.025: 0.029: 0.031: 0.030: 0.027: 0.023: 0.019: 0.016: 0.013: 0.011:
Cc: 0.006: 0.007: 0.008: 0.010: 0.012: 0.012: 0.012: 0.011: 0.009: 0.008: 0.006: 0.005: 0.005:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
              Координаты точки : X = 364.0 \text{ м,} Y = 364.0 \text{ м}
                                                                           472.0 м
 Максимальная суммарная концентрация | Cs= 0.5652933 доли ПДКмр|
                                                                  0.2261173 мг/м3
    Достигается при опасном направлении 147 град. и скорости ветра 1.44 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                           ВКЛАДЫ ИСТОЧНИКОВ
7. Суммарные концентрации в узлах расчетной сетки.
    ПК ЭРА v3.0. Модель: MPK-2014
       Тород :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч. :2 Расч.год: 2024-2032 (СП) Расче
Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
                                                                             Расчет проводился 24.04.2023 18:37
                       ПДКм.р для примеси 0304 = 0.4 мг/м3
                 _Параметры_расчетного_прямоугольника_No 1_
        | Координаты центра : X= 552 м; Y= 472
| Плина и ширина : L= 2256 м; B= 1880 м
         | Шаг сетки (dX=dY)
                                         : D=
                                                    188 м
       Фоновая концентрация не задана
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмр) м/с
     (Символ ^ означает наличие источника вблизи расчетного узла)
                                                                     8
                                                                             9 10
                                           5 6
                                                                                               11 12 13
                                  4
                                ---|----|----|----C----|----|
 1-| 0.012 0.014 0.016 0.019 0.021 0.022 0.021 0.020 0.018 0.015 0.013 0.012 0.010 |- 1
      0.014 0.017 0.021 0.025 0.029 0.031 0.031 0.028 0.024 0.019 0.016 0.013 0.011 |- 2
 3-| 0.016 0.021 0.028 0.036 0.045 0.050 0.048 0.042 0.033 0.025 0.019 0.015 0.013 |-3
 4-| 0.019 0.026 0.036 0.053 0.072 0.086 0.082 0.064 0.046 0.032 0.023 0.017 0.014 |- 4
 5-| 0.021 0.031 0.047 0.074 0.120 0.165 0.152 0.100 0.062 0.040 0.026 0.019 0.014 |- 5
  \texttt{6-C} \ \texttt{0.023} \ \texttt{0.033} \ \texttt{0.054} \ \texttt{0.094} \ \texttt{0.181} \ \texttt{0.565} \ \texttt{0.323} \ \texttt{0.139} \ \texttt{0.075} \ \texttt{0.044} \ \texttt{0.029} \ \texttt{0.020} \ \texttt{0.015} \ \texttt{C-} \ \texttt{6} 
 7-| 0.023 0.033 0.054 0.093 0.179 0.508 0.312 0.137 0.074 0.044 0.029 0.020 0.015 |- 7
```



```
0.021\ 0.030\ 0.046\ 0.073\ 0.117\ 0.160\ 0.147\ 0.098\ 0.061\ 0.039\ 0.026\ 0.019\ 0.014
        0.019 0.026 0.036 0.052 0.070 0.084 0.080 0.063 0.045 0.032 0.023 0.017 0.013 |- 9
        0.016 0.021 0.027 0.035 0.044 0.049 0.047 0.041 0.032 0.025 0.019 0.015 0.012 |-10
11-1 0 014 0 017 0 021 0 025 0 029 0 031 0 030 0 027 0 023 0 019 0 016 0 013 0 011 1-11
      8 9 10 11 12 13
              В целом по расчетному прямоугольнику:
 Максимальная концентрация -----> См = 0.5652933 долей ПДКмр
                                                                                      = 0.2261173 MF/M3
 Достигается в точке с координатами: Xm = 364.0 м (X-столбец 6, Y-строка 6) Ym = 472.0 м
                                                                                147 град.
 При опасном направлении ветра :
                                                                 : 1.44 м/с
    и "опасной" скорости ветра
9. Результаты расчета по границе санзоны.
     ПК ЭРА v3.0. Модель: MPK-2014
                               :104 Целиноградский р-н, АкМ.
          Город
                                :0011 TOO "Goldenpit
                                                                           ", месторождение Мета.
          Вар.расч. :2
                               :2 Расч.год: 2024-2032 (СП) Расч
:0304 - Азот (II) оксид (Азота оксид) (6)
                                                                                                             Расчет проводился 24.04.2023 18:37
          Примесь
                                 ПДКм.р для примеси 0304 = 0.4 мг/м3
          Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
          Всего просчитано точек: 267
          Фоновая концентрация не задана
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмр) м/с
                                                _Расшифровка_обозначений
                             Qc - суммарная концентрация [доли ПДК]
                          Сс - суммарная концентрация [мг/м.куб]
                             Фоп- опасное направл. ветра [ угл. град.]
                                                                                                  м/с
                          | Иоп- опасная скорость ветра [
        | -Если в расчете один источник, то его вклад и код не печатаются|
                                                                                                                                                                                 672:
              469: 481: 493:
                                                           506:
                                                                          518:
                                                                                         530:
                                                                                                        542:
                                                                                                                       623:
                                                                                                                                      636:
                                                                                                                                                  648:
                                                                                                                                                                    660:
                                                                                                                                                                                                 683:
                                                                                                                                                                                                                 695:
 \nabla =
                           -91:
                                          -90:
                                                          -89:
                                                                          -88:
                                                                                        -87:
                                                                                                       -85:
                                                                                                                       -73:
                                                                                                                                     -71:
                                                                                                                                                   -69:
                          ----:---:---:
Oc: 0.073: 0.073: 0.073: 0.072: 0.072: 0.071: 0.071: 0.067: 0.066: 0.065: 0.065: 0.064: 0.063: 0.063: 0.062:
Cc: 0.029: 0.029: 0.029: 0.029: 0.029: 0.029: 0.028: 0.028: 0.027: 0.026: 0.026: 0.026: 0.026: 0.025: 0.025: 0.025:
                          101:
                                        102:
                                                        104 : 105 : 106 :
                                                                                                     108 :
                                                                                                                    116:
                                                                                                                                   117 :
                                                                                                                                                  118 :
                                                                                                                                                                 120 :
                                                                                                                                                                                121 :
                                                                                                                                                                                               122:
Фоп:
           100:
                                                                                                                                                                                                               123 :
Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
 y=
              719. 730. 741.
                                                        753:
                                                                       764:
                                                                                      775 •
                                                                                                       786: 797: 807: 818: 828: 838:
                                                                                                                                                                                                 848 •
                                                                                                                                                                                                                 858 •
                                                                                                                                                                                                                                867 .
                                           ----:----:---:---:
                                                                                                                      -45: -41:
                                                                                       -25:
                                                                                                                                       -7:
                                                                                                                                                     -1:
                                                                                                                                                                                                   20:
                                                         -36:
                                                                        -31:
                                                                                                       -20:
                                                                                                                      -14:
                                                                                                                                                                      6:
                                                                                                                                                                                    13:
 x=
                                                                                                   ----:
Qc : 0.062: 0.061: 0.060: 0.060: 0.059: 0.059: 0.058: 0.058: 0.057: 0.057: 0.057: 0.056: 0.056: 0.055: 0.055:
Cc : 0.025: 0.024: 0.024: 0.024: 0.024: 0.024: 0.023: 0.023: 0.023: 0.023: 0.023: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.02
                                                                                                                                                                                               139 :
                          127 :
                                        128 :
                                                        129 :
                                                                       130 : 131 :
                                                                                                     132 : 134 :
                                                                                                                                   135 :
                                                                                                                                                  136 :
                                                                                                                                                                 137 : 138 :
Uoπ:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.0
                                                                                        921:
                                                                                                                                      944:
                                                                                                                                                     952:
                                                                                                                                                                                                                 979:
              877:
                          886:
                                           895:
                                                           904:
                                                                          912:
                                                                                                        929:
                                                                                                                       937:
                                                                                                                                                                    959:
                                                                                                                                                                                   966:
                                                                                                                                                                                                  973:
                                                                       77:
 x=
              43:
                           51: 59:
                                                        68:
                                                                                      86:
                                                                                                      95: 104: 114: 124: 133: 144: 154: 164: 175:
                                             ---:----:---:--
                                                                                       ----:---:-
                                                                                                                      ----:----:---:--
                              ---:-
                                                                                                                                                                   ----:----:-
                                                                                                                                                                                                 ----:-
Qc: 0.054: 0.054: 0.054: 0.053: 0.053: 0.053: 0.052: 0.052: 0.052: 0.052: 0.051: 0.051: 0.051: 0.051: 0.050:
Cc : 0.022: 0.022: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.020: 0.020: 0.020: 0.020:
                                                        146 :
                                                                       147 : 148 :
                                                                                                     149 :
                                                                                                                                                  152:
                                                                                                                                                               153 :
                                         145 :
                                                                                                                    150 : 151 :
                                                                                                                                                                                               156:
                          144:
                                                                                                                                                                               155 :
UOM:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12
991: 997: 1002: 1007: 1012: 1017: 1021: 1025: 1029: 1032: 1035: 1038: 1041: 1043: 1045:
 V=
                          197:
                                           208:
                                                                        230:
                                                                                        241:
                                                                                                     253:
                                                                                                                   265:
                                                                                                                                    276:
                                                                                                                                                  288:
                                                                                                                                                                    300:
                                                                                                                                                                                 312:
              186:
                                                          219:
                                                                                                                                                                                                 324:
                                           -----
                                                          -----
                                                                         -----
                                                                                                       -----
                                                                                                                      -----
OC: 0.050: 0.050: 0.050: 0.050: 0.050: 0.050: 0.049: 0.049: 0.049: 0.049: 0.049: 0.049: 0.049: 0.048: 0.048:
Cc: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.019: 0.019: 0.019: 0.019: 0.019:
           1046: 1048: 1049: 1050: 1050: 1050: 1050: 1050: 1050: 1049: 1048: 1046: 1045: 1043: 1041:
360: 372: 385:
                                                          397: 409:
                                                                                       421:
                                                                                                      431: 444: 456: 468:
                                                                                                                                                                  480:
                                                                                                                                                                                  493:
 x=
Qc: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048:
Cc : 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019:
y= 1038: 1035: 1032: 1029: 1025:
                                                                                                                       930:
                                                                                                                                      926:
                                                                                                                                                                                                                 900:
                                                                                                                                                                                                                                894:
                                                                                        979:
                                                                                                        934:
                                                                                                                                                     921:
                                                                                                                                                                    916:
                                                                                                                                                                                   911:
                                                                                                                                                                                                 906:
                                                          577:
                                                                         588:
                                                                                        726:
                                                                                                       863:
                                                                                                                       875:
                                                                                                                                      886:
                                                                                                                                                   898:
                                                                                                                                                                    909:
                                                                                                                                                                                   920:
                                                                                                                                                                                                                                953:
```



Qc : Cc :	0.048: 0.019:	0.048: 0.019:	0.049: 0.019:	0.049: 0.019:	0.049:	0.048:	0.044:	0.043: 0.017:	0.043: 0.017:	0.042: 0.017:	0.042: 0.017:	0.042: 0.017:	0.041: 0.017:	0.041: 0.016:	0.041: 0.016:
	888:	881:	874:	867:	860:	853:	845:	837:	829:	820:	812:	803:	794:	785:	775:
x=	963:	974:	984:	994:	1004:	1014:	1023:	1033:	1042:	1051:	1059:	1068:	1076:	1084:	1092:
Qc : Cc :	0.040: 0.016:	0.040: 0.016:	0.040: 0.016:	0.039: 0.016:	0.039:	0.039:	0.039: 0.015:	0.038:	0.037: 0.015:	0.037: 0.015:	0.037: 0.015:	0.037: 0.015:	0.037: 0.015:	0.036: 0.015:	0.036: 0.014:
	766:	756:	746:	736:	725:	715:	704:	693:	683:	671:	622:	610:	599:	588:	576:
x=						1134:									
Qc : Cc :	0.036: 0.014:	0.036: 0.014:	0.036: 0.014:	0.036: 0.014:	0.036: 0.014:	0.036:	0.036: 0.014:	0.035: 0.014:	0.034: 0.014:						
	565:	553:	541:	529:	517:	505:	493:	481:	469:	457:	444:	432:	420:	408:	395:
×=						1218:									
Qc : Cc :	0.034: 0.014:	0.034: 0.014:	0.034:	0.034: 0.014:	0.034:	0.034:	0.034: 0.014:	0.034: 0.014:	0.034: 0.014:	0.034: 0.014:	0.034: 0.014:	0.034: 0.014:	0.034: 0.014:	0.034: 0.014:	0.034: 0.014:
	383:	371:										251:			
	:	:	:	:	:	1219:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	0.035:	:	:	:	:	:	:	:	:	:
Cc :	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:	0.014:
	205:	194:	183:	172:	161:	151:	140:	130:	120:	110:	101:	91:	82:	72:	64:
						1155:									
						0.037:									
						0.015:									
	55:	46:										-26:			
x=	1079:	1070:	1061:	1052:	1042:	1033:	1023:	1013:	1003:	992:	982:	971:	961:	950:	939:
Qc : Cc :	0.041: 0.016:	0.041: 0.016:	0.042: 0.017:	0.042: 0.017:	0.043:	0.043:	0.044:	0.044:	0.045: 0.018:	0.045: 0.018:	0.046: 0.018:	0.046: 0.018:	0.047: 0.019:	0.047: 0.019:	0.048: 0.019:
	-95:	-147:	-152:	-157:	-161:	-166:	-170:	-173:	-177:	-180:	-182:	-185:	-187:	-189:	-190:
x=	827:		704:			670:			: 635:		: 611:				
Qc : Cc :	0.054: 0.022:	0.057: 0.023:	0.057: 0.023:	0.057: 0.023:	0.057: 0.023:	0.058: 0.023: 336:	0.058: 0.023:	0.058: 0.023:	0.058: 0.023:	0.058: 0.023:	0.059: 0.023:	0.059: 0.024:	0.059: 0.024:	0.059: 0.024:	0.060: 0.024:
Uon:1	2.00 :	12.00:	12.00:	12.00:	12.00 :	12.00:	12.00 :	12.00:	12.00:	12.00:	12.00:	12.00 :	12.00:	12.00:	12.00:
						-194:									
						489:									
Qc : Cc :	0.060: 0.024:	0.060: 0.024:	0.060: 0.024:	0.061: 0.024:	0.061:	0.061: 0.025:	0.062: 0.025:	0.062: 0.025:	0.062: 0.025:	0.063: 0.025:	0.063: 0.025:	0.063: 0.025:	0.064: 0.025:	0.064: 0.026:	0.065:
Uon:1	2.00 :	12.00:	12.00:	12.00:	12.00 :	353 : 12.00 :	12.00 :	12.00 :	12.00:	12.00:	12.00:	12.00:	12.00:	12.00:	
	:	:	:	:	:	-155: :	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	310:	:	:	:	:	:	:	:	:	:
Cc :	0.026:	0.026:	0.026:	0.027:	0.027:	0.067:	0.027:	0.027:	0.027:	0.028:	0.028:	0.028:	0.028:	0.029:	0.029:
Uon:1	2.00 :	12.00:	12.00:	12.00:	12.00 :	12:	12.00 :	12.00:	12.00:	12.00:	12.00:	12.00 :	12.00:	12.00:	12.00:
	-94:						15:			42:					
		:		:	:	: 80:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	0.076:	:	:	:	:	:	:	:	:	:
Сс : Фол:	0.029:	0.029: 26:	0.029: 27:	0.030: 39:	0.031:	0.030: 42: 12.00:	0.030: 44:	0.031: 45:	0.030: 46:	0.031: 48:	0.031: 49:	0.030: 51:	0.031: 52:	0.030: 53:	0.030: 55:


```
100: 110: 120: 131: 142: 153:
                                                                                       175:
                                                                                                  186: 197: 209:
                                                                                                                                   220:
                                                                                                                                              232 •
                                                                            164:
                     -6: -13: -19: -25:
                                                               -30:
                                                                           -36:
                                                                                      -41:
                                                                                               -46:
                                                                                                          -50:
                                                                                                                      -55:
                                                                                                                                  -58:
Qc: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076:
Ce : 0.031: 0.030: 0.030: 0.030: 0.030: 0.031: 0.030: 0.031: 0.031: 0.030: 0.031: 0.031: 0.031: 0.031: 0.031: 0.030:
                     57:
                                59:
                                           60:
                                                      62:
                                                                63:
                                                                            64:
                                                                                       66:
                                                                                                  67:
                                                                                                             69:
                                                                                                                        70:
                                                                                                                                   71:
                                                                                                                                              73:
          56:
Фоп:
Uoπ:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.0
 V=
          268:
                     280:
                               292:
                                           304:
                                                      316:
                                                                 328:
                                                                            341:
                                                                                       420:
                                                                                                  432:
                                                                                                             444:
                                                                                                                        457:
         -72: -74: -76: -78: -80: -81: -82: -89: -90: -91: -91: -91:
                   ----:----:----:----:-
                                                              ----:---:---:
Qc: 0.076: 0.076: 0.077: 0.077: 0.076: 0.077: 0.077: 0.075: 0.074: 0.074: 0.074: 0.073:
Cc : 0.031: 0.031: 0.031: 0.031: 0.031: 0.031: 0.031: 0.030: 0.030: 0.030: 0.029: 0.029:
                                                     82 :
                                                                                      94:
Фоп:
                     78:
                               80:
                                           81 :
                                                                84:
                                                                           85 :
                                                                                                  96:
                                                                                                             97 :
                                                                                                                        98:
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :
 Результаты расчета в точке максимума
                                                             ΠΚ ЭΡΑ v3.0.
               Координаты точки : X = -81.0 \text{ м}, Y = 328.0 \text{ м}
                                                                     0.0766689 доли ПДКмр|
 Максимальная суммарная концентрация | Cs=
                                                                     0.0306675 мг/м3
    Достигается при опасном направлении
                                                                  84 град.
                                  и скорости ветра 12.00 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                               _ВКЛАДЫ_ИСТОЧНИКОВ_
с | Вклад |Ві
    м.| Код |Тип| Выброс | Вклад |Вклад в%| С
--|<0б-П>-<Иc>|---|---М-(Мq)--|-С[доли ПДК]|------|--
                                                                       |Вклад в%| Сум. %| Коэф.влияния |
                                     0.0556| 0.076669 | 100.0 | 100.0 |
B cymme = 0.076669 100.0
    1 |001101 6011| П1|
                                                                                                       1.3794328
3. Исходные параметры источников.
    ПК ЭРА v3.0. Модель: MPK-2014
                  :104 Целиноградский р-н, АкМ.
:0011 ТОО "Goldenpit", месторождение Мета.
:ч. :2 Расч.год: 2024-2032 (СП) Расчет
       Объект
       Вар.расч. :2
                                                                                Расчет проводился 24.04.2023 18:37
       Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                        ПДКм.р для примеси 0328 = 0.15 мг/м3
        Коэффициент рельефа (КР): индивидуальный с источников
       Коэффициент оседания (F): индивидуальный с источников
Признак источников "для зимы" - отрицательное значение высоты
                           H | D | Wo | V1 | T
                                                                                             Y1
                                                                                                                          Y2
                                                                                                                               |Alf| F | KP |Ди| Выброс
                                                                                                                                                ~~~~ | ~~ | ~~~ I / C~~
2.0
001101 6011 П1
                                                                              0 0
                                                                                           421
                                                                                                        382
                                                                                                                        1.0
                                                                                                                                       1.0
                                                                                                                                               0 3.0 1.000 0 0.0586000
4. Расчетные параметры См, Им, Хм
    ПК ЭРА v3.0. Модель: MPK-2014
        Город
                     :104 Целиноградский р-н, АкМ.
                       :0011 TOO "Goldenpit", месторождение Мета.
       Объект
       Вар.расч. :2
                              Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
                       :ЗИМА для энергетики и ЛЕТО для остальных
:0328 - Углерод (Сажа, Углерод черный) (583)
       Сезон
       Примесь
                        ПДКм.р для примеси 0328 = 0.15 мг/м3
  - Для линейных и площадных источников выброс является суммарным по
      всей площади, а Ст - концентрация одиночного источника,
     расположенного в центре симметрии, с суммарным М
                                                                 _Их расчетные параметры
1 | 001101 6011| 0.058600| N1 | 41.859760 | 0.50 |
       Суммарный Mq =
                                  0.058600 r/c
       Сумма См по всем источникам =
                                                            41.859760 долей ПДК
            Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    ПК ЭРА v3.0. Модель: MPK-2014
                       :104 Целиноградский р-н, АкМ.
:0011 TOO "Goldenpit", месторождение Мета.
       Город
       Объект
       Вар.расч. :2
                                 Расч.год: 2024-2032 (СП)
                                                                                Расчет проводился 24.04.2023 18:37
                       :ЗИМА для энергетики и ЛЕТО для остальных
        Сезон
                       :0328 - Углерод (Сажа, Углерод черный) (583)
                        ПДКм.р для примеси 0328 = 0.15 мг/м3
       Фоновая концентрация не задана
       Расчет по прямоугольнику 001 : 2256x1880 с шагом 188
```


Расчет проводился 24.04.2023 18:37

Расчет по границе санзоны. Покрытие РП Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до $12.0\,\mathrm{(Ump)}$ м/с Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с 6. Результаты расчета в виде таблицы. ПК ЭРА v3.0. Модель: MPK-2014 :104 Целиноградский р-н, АкМ. Город :0011 TOO "Goldenpit", месторождение Мета. :2 Расч.год: 2024-2032 (СП) Расче Объект

Примесь :0328 - Углерод (Сажа, Углерод черный) (583) ПДКм.р для примеси 0328 = 0.15 мг/м3 Расчет проводился на прямоугольнике 1 с параметрами: координаты центра X=552, Y=472размеры: длина(по X) = 2256, ширина(по Y) = 1880, шаг сетки= 188 Фоновая концентрация не задана

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмр) м/с

Сс - суммарная концентрация [мг/м.куб] Фоп- опасное направл. ветра [угл. град.] M/C | Иоп- опасная скорость ветра [| -Если в расчете один источник, то его вклад и код не печатаются| -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются \mid

Вар.расч. :2

y= 1412 : Y-строка 1 Cmax= 0.032 долей ПДК (x= 364.0; напр.ветра=177) -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.018: 0.021: 0.025: 0.028: 0.031: 0.032: 0.032: 0.030: 0.027: 0.023: 0.020: 0.017: 0.015: Cc: 0.003: 0.003: 0.004: 0.004: 0.005: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.002:

1224 : Y-строка 2 Стах= 0.047 долей ПДК (х= 364.0; напр.ветра=176) x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.021: 0.026: 0.031: 0.038: 0.043: 0.047: 0.046: 0.041: 0.035: 0.029: 0.024: 0.020: 0.016: Cc: 0.003: 0.004: 0.005: 0.006: 0.007: 0.007: 0.007: 0.006: 0.005: 0.004: 0.004: 0.003: 0.002:

у= 1036 : У-строка 3 Стах= 0.076 долей ПДК (х= 364.0; напр.ветра=175) x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: ---:---Qc: 0.025: 0.032: 0.041: 0.053: 0.067: 0.076: 0.073: 0.062: 0.048: 0.037: 0.029: 0.023: 0.018: Cc : 0.004: 0.005: 0.006: 0.008: 0.010: 0.011: 0.011: 0.009: 0.007: 0.006: 0.004: 0.003: 0.003: Φοπ: 123 : 129 : 136 : 146 : 159 : 175 : 191 : 206 : 218 : 227 : 233 : 239 : 243 : Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00

848 : Y-строка 4 Cmax= 0.164 долей ПДК (x= 364.0; напр.ветра=173) -12: 740: 1.76: 364: 552: 928: 1116: 1304: 1492: 1680: x = -576: -388: -200: Qc: 0.029: 0.039: 0.054: 0.081: 0.123: 0.164: 0.151: 0.104: 0.069: 0.047: 0.034: 0.026: 0.020: : 0.004: 0.006: 0.008: 0.012: 0.018: 0.025: 0.023: 0.016: 0.010: 0.007: 0.005: 0.004: 0.003: 115 : 120 : 127 : 137 : 152 : 173 : 196 : 214 : 227 : 236 : 242 : 246 : Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00

660 : Y-строка 5 Стах= 0.535 долей ПДК (х= 364.0; напр.ветра=168) y= -12: -388: -200: 364: 552: 740: 928: 1116: 1304: 1492: 1680: 176: Qc: 0.032: 0.045: 0.070: 0.130: 0.338: 0.535: 0.470: 0.222: 0.099: 0.058: 0.039: 0.028: 0.022: Сс: 0.005: 0.007: 0.011: 0.019: 0.051: 0.080: 0.070: 0.033: 0.015: 0.009: 0.006: 0.004: 0.003: Фоп: 106: 109: 114: 123: 139: 168: 205: 229: 241: 248: 253: 255: 258: 114 : 253: Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00

y= 472 : Y-строка 6 Cmax= 1.878 долей ПДК (x= 364.0; напр.ветра=147) -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc : 0.034: 0.050: 0.083: 0.193: 0.612: 1.878: 1.217: 0.413: 0.130: 0.066: 0.042: 0.030: 0.023: Cc: 0.005: 0.007: 0.012: 0.029: 0.092: 0.282: 0.183: 0.062: 0.019: 0.010: 0.006: 0.005: 0.003: Фоп: 95: 96: 98: 102: 110: 147: 236: 254: 260: 263: 264: 265: 266: Uon:12.00 :12.00 :12.00 :12.00 :12.00 : 7.84 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00

284 : Y-строка 7 Cmax= 1.748 долей ПДК (x= 364.0; напр.ветра= 30) x= -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Oc: 0.034: 0.050: 0.083: 0.191: 0.600: 1.748: 1.177: 0.408: 0.129: 0.066: 0.042: 0.030: 0.023:


```
Cc : 0.005: 0.007: 0.012: 0.029: 0.090: 0.262: 0.177: 0.061: 0.019: 0.010: 0.006: 0.004: 0.003:
                                                                                                                             281 :
                                                                                                                                           278 :
Фоп: 84: 83: 81: 77: 68: 30: 307: 287: 281: 278: 276: 275: 274: Uon:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.
              96: У-строка 8 Стах= 0.510 долей ПДК (х= 364.0; напр.ветра= 11)
  y=
  x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
                                             --:---
                                                            --:----:-
                                                                                                                  ---:--
                                                                                                                                  --:-
 Qc: 0.032: 0.045: 0.070: 0.126: 0.328: 0.510: 0.449: 0.213: 0.097: 0.058: 0.039: 0.028: 0.022:
 Cc: 0.005: 0.007: 0.010: 0.019: 0.049: 0.076: 0.067: 0.032: 0.015: 0.009: 0.006: 0.004: 0.003:
              74 :
                            71 :
                                         65 :
                                                                    41 :
                                                       57 :
                                                                                   11 : 335 : 312 : 299 : 292 : 288 : 285 : 283 :
 Фоп:
 Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
            -92 : Y-строка 9 Cmax= 0.157 долей ПДК (x= 364.0; напр.ветра= 7)
  у=
  x= -576 : -388: -200:
                                                      -12: 176: 364:
                                                                                                552: 740: 928: 1116: 1304: 1492: 1680:
 -----:
 Qc: 0.029: 0.038: 0.054: 0.079: 0.119: 0.157: 0.145: 0.102: 0.068: 0.047: 0.034: 0.026: 0.020:
Сс: 0.004: 0.006: 0.008: 0.012: 0.018: 0.023: 0.022: 0.015: 0.010: 0.007: 0.005: 0.004: 0.003: Фоп: 65: 60: 53: 42: 27: 7: 345: 326: 313: 304: 298: 294: 291:
 UOn:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
 y= -280 : Y-строка 10 Cmax= 0.074 долей ПДК (x= 364.0; напр.ветра= 5)
                928: 1116: 1304: 1492: 1680:
 Oc: 0.025: 0.031: 0.041: 0.052: 0.065: 0.074: 0.071: 0.060: 0.047: 0.037: 0.029: 0.023: 0.018:
Cc: 0.004: 0.005: 0.006: 0.008: 0.010: 0.011: 0.011: 0.009: 0.007: 0.006: 0.004: 0.003: 0.003: Фол: 56: 51: 43: 33: 20: 5: 349: 334: 323: 314: 307: 302: 298:
                          51 :
                                        43 :
 Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
  у= -468 : У-строка 11 Стах= 0.046 долей ПДК (х= 364.0; напр.ветра= 4)
        -576 : -388: -200:
                  6 : -388: -200: -12: 176: 364: 552: 740: 928: 1116:
                                                                                                                                           1116: 1304: 1492: 1680:
 Qc: 0.021: 0.026: 0.031: 0.037: 0.043: 0.046: 0.045: 0.041: 0.035: 0.029: 0.024: 0.020: 0.016:
 Cc: 0.003: 0.004: 0.005: 0.006: 0.006: 0.007: 0.007: 0.006: 0.005: 0.004: 0.004: 0.003: 0.002:
                                                                               ПК ЭРА v3.0. Модель: MPK-2014
  Результаты расчета в точке максимума
                   Координаты точки : X= 364.0 м, Y= 472.0 м
                                                                                         1.8775320 доли ПДКмр|
  Максимальная суммарная концентрация | Cs=
                                                                                       0.2816298 мг/м3
      Достигается при опасном направлении 147 гра и скорости ветра 7.84 м/с
                                                                                    147 град.
 Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                                      ____ВКЛАДЫ_ИСТОЧНИКОВ_
ыброс | Вклад |Вк
 ВКЛАДЫ_ИСТОЧНИКОВ

| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф влияния | | ---- | <0б-П>-<Ис> | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- 
     7. Суммарные концентрации в узлах расчетной сетки.

ПК ЭРА v3.0. Модель: МРК-2014

Город :104 Целиноградский р-н, АкМ.

Объект :0011 ТОО "Goldenpit", месторождение Мета.

Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет в примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                                                                                                        Расчет проводился 24.04.2023 18:37
                                ПДКм.р для примеси 0328 = 0.15 мг/м3
                        | Координаты центра : X = 552 м; Y = 472 | Длина и ширина : L = 2256 м; B = 1880 м | | Шаг сетки (dX=dY) : D = 188 м
           Фоновая концентрация не задана
           Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
           Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0\,\mathrm{(Ump)} м/с
       (Символ ^ означает наличие источника вблизи расчетного узла)
                                          4 5 6 7 8 9 10 11 12 13
       1-| 0.018 0.021 0.025 0.028 0.031 0.032 0.032 0.030 0.027 0.023 0.020 0.017 0.015 |- 1
  2-| 0.021 0.026 0.031 0.038 0.043 0.047 0.046 0.041 0.035 0.029 0.024 0.020 0.016 |- 2
  3-| 0.025 0.032 0.041 0.053 0.067 0.076 0.073 0.062 0.048 0.037 0.029 0.023 0.018 |- 3
  4-| 0.029 0.039 0.054 0.081 0.123 0.164 0.151 0.104 0.069 0.047 0.034 0.026 0.020 |- 4
  5-| 0.032 0.045 0.070 0.130 0.338 0.535 0.470 0.222 0.099 0.058 0.039 0.028 0.022 |- 5
   6-C 0.034 0.050 0.083 0.193 0.612 1.878 1.217 0.413 0.130 0.066 0.042 0.030 0.023 C- 6
```



```
0.034 0.050 0.083 0.191 0.600 1.748 1.177 0.408 0.129 0.066 0.042 0.030 0.023
  8-| 0.032 0.045 0.070 0.126 0.328 0.510 0.449 0.213 0.097 0.058 0.039 0.028 0.022 |- 8
            0.029 0.038 0.054 0.079 0.119 0.157 0.145 0.102 0.068 0.047 0.034 0.026 0.020 |- 9
10-1 0 025 0 031 0 041 0 052 0 065 0 074 0 071 0 060 0 047 0 037 0 029 0 023 0 018 1-10
11-| 0.021 0.026 0.031 0.037 0.043 0.046 0.045 0.041 0.035 0.029 0.024 0.020 0.016 |-11
                                                                                                                               8
                                                                                                                                                         10
                                                                                                                                                                         11
                  В целом по расчетному прямоугольнику:
  Максимальная концентрация -----> См = 1.8775320 долей ПДКмр
                                                                                                            = 0.2816298 мг/м3
 Достигается в точке с координатами: XM = 364.0 \text{ м} ( X-столбец 6, Y-строка 6) YM = 472.0 \text{ м} При опасном направлении ветра : 147 град.
    и "опасной" скорости ветра
                                                                                    : 7.84 м/с
9. Результаты расчета по границе санзоны.
       ПК ЭРА v3.0. Модель: MPK-2014
             Город
                                      :104 Целиноградский р-н, АкМ.
:0011 TOO "Goldenpit", месторождение Мета.
             Объект
                                                        Расч.год: 2024-2032 (СП)
             Вар.расч. :2
                                                                                                                                         Расчет проводился 24.04.2023 18:37
             Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                                         ПДКм.р для примеси 0328 = 0.15 мг/м3
             Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
             Всего просчитано точек: 267
             Фоновая концентрация не задана
             Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
             Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (\text{Ump}) \, \text{m/c}
                                                            _Расшифровка_обозначений
                                | Qc - суммарная концентрация [доли ПДК]
                                Сс - суммарная концентрация [мг/м.куб]
                                    Фоп- опасное направл. ветра [ угл. град.]
                                   Uоп- опасная скорость ветра [
           | -Если в расчете один источник, то его вклад и код не печатаются|
                                                                           506:
                                                                                             518:
                                                                                                                530:
                                                                                                                                   542:
                                                                                                                                                       623:
                                                                                                                                                                         636:
                                                                                                                                                                                                                                  672:
                                                                                                                                                                                                                                                                                           707:
 y=
                                     481:
                                                        493:
                                                                                                                                                                                            648:
                                                                                                                                                                                                               660:
                                  -91: -90:
                                                                        -89:
                                                                                           -88:
                                                                                                              -87:
                                                                                                                                  -85:
                                                                                                                                                     -73:
                                                                                                                                                                       -71:
                                                                                                                                                                                        -69:
                                                                                                                                                                                                             -66:
                                                                                                                                                                                                                               -64:
                                                                                                                                                                                                                                                   -61:
                Qc: 0.126: 0.126: 0.125: 0.123: 0.122: 0.121: 0.120: 0.111: 0.109: 0.107: 0.106: 0.104: 0.103: 0.102: 0.100:
Cc : 0.019: 0.019: 0.019: 0.019: 0.018: 0.018: 0.018: 0.017: 0.016: 0.016: 0.016: 0.016: 0.015: 0.015: 0.015:
                                 101 :
                                                   102:
                                                                       104: 105: 106:
                                                                                                                               108 :
                                                                                                                                                  116 :
                                                                                                                                                                      117 :
                                                                                                                                                                                       118 :
                                                                                                                                                                                                         120 :
                                                                                                                                                                                                                              121 :
: Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
                                     730:
                                                        741:
                                                                           753:
                                                                                             764:
                                                                                                                775:
                                                                                                                                   786:
                                                                                                                                                       797:
                                                                                                                                                                        807:
                                                                                                                                                                                           818:
                                                                                                                                                                                                               828: 838:
                                                                                                                                                                                                                                                   848:
 y=
                                  -45:
                                                    -41:
                                                                        -36:
                                                                                          -31:
                                                                                                             -25:
                                                                                                                                 -20:
                                                                                                                                                     -14:
                                                                                                                                                                                                                                   13:
                                Qc: 0.099: 0.098: 0.096: 0.095: 0.094: 0.093: 0.092: 0.091: 0.090: 0.089: 0.088: 0.088: 0.087: 0.086: 0.085:
Cc: 0.015: 0.015: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013:
                                 127 :
                                                                                                                                132 :
                                                                                                                                                                                                           137 :
                                                                                                                                                                                                                                                 139:
                                                                       129:
                                                                                          130 :
                                                                                                                                                   134:
                                                                                                                                                                                                                              138 :
                                                    128:
                                                                                                            131 :
                                                                                                                                                                      135 :
                                                                                                                                                                                        136:
               126 :
                                                                                                                                                                                                                                                                    140 :
Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
 V=
                877: 886: 895: 904: 912: 921: 929:
                                                                                                                                                     937: 944: 952:
                                                                                                                                                                                                           959: 966:
                                                                                                                                                                                                                                                   973:
                                                                                                                                                                                                                                                                       979:
                                                                                                                                                                                                                                                                                          985:
                                                      ----:-
                                                                         ----:-
                                                                                                                                                                        ----:-
                                                                                                                                                                                           ----:-
                                                                          68:
                                                                                                                86:
                                                                                                                                   95:
                                                                                                                                                     104:
                                                                                                                                                                     114: 124:
Qc: 0.084: 0.084: 0.083: 0.082: 0.082: 0.081: 0.081: 0.080: 0.080: 0.079: 0.078: 0.078: 0.078: 0.077: 0.077:
Cc : 0.013: 0.013: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.01
                                                                                                                                                                     151 :
                                                                                                                                                                                                                              155 :
                                 144:
                                                    145 :
                                                                       146 :
                                                                                          147 : 148 :
                                                                                                                               149 :
                                                                                                                                                  150 :
                                                                                                                                                                                        152 :
                                                                                                                                                                                                           153:
                                                                                                                                                                                                                                                 156:
                                                                                                                                                                                                                                                                    157 :
Uoπ:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.0
                  991:
                                    997: 1002: 1007: 1012: 1017: 1021: 1025: 1029: 1032: 1035: 1038: 1041: 1043: 1045:
               186: 197: 208: 219: 230: 241: 253: 265: 276: 288: 300: 312: 324: 336: 348:
 x=
                                                        ---:-
                                                                            ---:-
                                                                                             ---:-
                                                                                                                ---:
                                                                                                                                   ---:-
                                                                                                                                                       ---:-
                                                                                                                                                                          ---:-
                                                                                                                                                                                             ---:-
                                                                                                                                                                                                               ---:
                                                                                                                                                                                                                                  ---:-
Qc: 0.077: 0.076: 0.076: 0.076: 0.075: 0.075: 0.075: 0.074: 0.074: 0.074: 0.074: 0.074: 0.074: 0.073: 0.073: 0.073:
Cc : 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.01
                                                                                                                               165 :
                                                                                                                                                  166:
                                                                                                                                                                     167 :
                                                                                                                                                                                       168 : 169 : 171 :
                                                    161 :
                                                                      162 : 163 : 164 :
                                                                                                                                                                                                                                                 172:
                                 160 :
                                                                                                                                                                                                                                                                    173:
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
               1046: 1048: 1049: 1050: 1050: 1050: 1050: 1050: 1050: 1050: 1049: 1048: 1046: 1045: 1043: 1041:
                 360.
                                  372 •
                                                     385:
                                                                       397:
                                                                                          409:
                                                                                                              421:
                                                                                                                                  431 •
                                                                                                                                                     444.
                                                                                                                                                                                         468:
                                                                                                                                                                                                               480:
                                                                                                                                                                                                                              493:
                                                                                                                                                                                                                                                   505:
              ----:-
                                   ----:-
                                                      ----:----:----:-
                                                                                                             ----:-
                                                                                                                               ----:-
                                                                                                                                                  ----:
                                                                                                                                                                                                          ----:-
                                                                                                                                                                                                                              ----:-
                                                                                                                                                                                                                                                  ----:-
                                                                                                                                                                                                                                                                   ----:-
Qc: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073:
Cc : 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011:
Фол: 175 : 176 : 177 : 178 : 179 : 180 : 181 : 182 : 183 : 184 : 185 : 186 : 187 : 188 : 189 :
```


UOM:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00 1038: 1035: 1032: 1029: 1025: 979: 934: 930: 926: 921: 916: 911: 875: 565: 577: 588: 726: 863: 886: 898: 909: 920: ____. ___. Qc: 0.073: 0.073: 0.073: 0.073: 0.074: 0.073: 0.065: 0.064: 0.064: 0.063: 0.062: 0.062: 0.061: 0.061: 0.060: Сс: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: Фоп: 190: 191: 192: 194: 195: 207: 219: 220: 221: 222: 222: 223: 224: 225: 226: UON: 12.00 : 1 888: 881: 874: 867: 860: 853: 845: 837: 829: 820: 812: 803: 794 • 785. $\nabla =$ 994: 1004: 1014: 1023: 1033: 1042: 1051: 1059: 1068: 1076: 1084: 1092: Oc: 0.060: 0.059: 0.059: 0.058: 0.058: 0.057: 0.057: 0.056: 0.056: 0.056: 0.055: 0.055: 0.055: 0.055: 0.055: 0.055: Cc: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 232 : 233 : 234 : 235 : 229: 230 : 231 : 232 : 236 : 237 : 238: 239: 228 : UON: 12.00 : 1 766. 756. 746. 736: 725: 715: 704: 693. 683. 671: 622 . 610: 599. 588 . 576 . -----1100: 1107: 1114: 1121: 1128: 1134: 1140: 1146: 1152: 1157: 1180: 1185: 1190: 1195: 1199: x =----: ----:-----: ----: --:-----:-----:---:-----:---:-Qc : 0.054: 0.054: 0.054: 0.053: 0.053: 0.053: 0.053: 0.053: 0.053: 0.053: 0.052: 0.052: 0.052: 0.052: 0.051: 0.051: Cc : 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 242: 243 : 244: 245 : 247 : 252: 253: 254: 241: 246 : 248 : 249 : Uom:12.00 565: 553: 541: 529: 517: 505: 493: 481: 469: 457: 444: 432: 420: 408: 395: 1203 • 1207 • 1210 • 1213 • 1216 • 1218 • 1220 • 1222 • 1224 • 1225 • 1226 • 1227 • 1227 • 1227 • 1227 • ----:-----:-----:-----:-----:-----:-----:-----:-----:-----:-Qc: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.050: 0.050: 0.051: 0.051: 0.051: : 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 260: 260: 261: 262: 263: 264: 265: 266: : Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 371: 359: 346: 334: 322: 310: 298: 286: 274: 263: 251: 239: 1227: 1226: 1225: 1223: 1221: 1219: 1217: 1215: 1212: 1208: 1205: 1201: 1197: 1193: 1188: .____. Oc: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.051: 0.052: 0.052: 0.052: 0.052: 0.052: 0.052: 0.053: 0.053: 0.053: Cc : 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 276 : 273 : 273 : 274 : 275 : 277 : 278 : 279 : 280 : UON: 12.00 : 1 205: 194: 183: 172: 161: 151: 140: 130: 120: 110: 91: 82: V= 1183: 1178: 1173: 1167: 1161: 1155: 1148: 1142: 1135: 1127: 1120: 1112: 1104: 1096: 1088: Qc : 0.054: 0.054: 0.054: 0.055: 0.055: 0.055: 0.055: 0.056: 0.056: 0.057: 0.057: 0.058: 0.058: 0.059: 0.059: 0.060: : 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.009: 291 : Фоп: UON: 12.00 : 1 7: -7: -14: 46. 38. 30: 22: 14: 0 • -20: -26: -32 • -38. ----: 1079: 1070: 1061: 1052: 1042: 1033: 1023: 1013: 1003: 992: 982: 971: 961: -:-------:----:----:---:-----:---:---:----:-Qc : 0.060: 0.061: 0.062: 0.063: 0.063: 0.064: 0.065: 0.066: 0.066: 0.067: 0.068: 0.069: 0.070: 0.071: 0.072: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 296: 298 : 309: 297: 299 : 300 : 301 : 302 : 303 : 304 : 305 : 306: 307: 308: 308: Uon:12.00 -152: -180: -182: -147: -157: -161: -166: -170: -173: -177: -185: -187: -189: y= -95: -190: 827 715 704 693 681 670 658 646 635 623 611 599 . 587 • x= ---:----:---:-----:---:-----:---:---:-----:---:-Qc: 0.083: 0.090: 0.090: 0.090: 0.090: 0.091: 0.091: 0.092: 0.092: 0.092: 0.093: 0.093: 0.094: 0.094: 0.095: : 0.012: 0.013: 0.013: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 338 : 334 : 336 : 337 : 339 : 340 : 341 : 343 : 331: 332: 333 : 344: 345 : : Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 -192: -193: -193: -194: -194: -194: -193: -192: -191: -190: -188: -186: -184: -181: -178: $\nabla =$ 538: 513: 501: 489: 477: 464: 452: 440: 428: Oc: 0.095: 0.096: 0.097: 0.097: 0.098: 0.098: 0.099: 0.100: 0.101: 0.101: 0.102: 0.103: 0.104: 0.105: 0.106: Сс: 0.014: 0.014: 0.014: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.016: 0.016: 0.016: Фоп: 347: 349: 350: 351: 352: 353: 354: 356: 357: 358: 359: 1: 2: 3: 4: 358 : 1 : Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00

-175: -172: -168: -164: -159: -155: -150: -145: -139: -134: -128: -121: -115: -108: -101: 333: 321: 288: 277: 266: 310: 299: 255: 244: Qc: 0.106: 0.107: 0.108: 0.109: 0.110: 0.111: 0.113: 0.114: 0.115: 0.116: 0.117: 0.119: 0.120: 0.122: 0.123: Cc : 0.016: 0.016: 0.016: 0.016: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.018: 0.018: 0.018: 0.018: 8: 9: 10: 12: 13: 14: 15: 17: 18: 19: 21 : Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 V= -94: -86: -79: -9: -1: 7: 15: 24: 33: 42: 51: 60: 70: 204: 194: 185: 99: 90: 80: 72: 63: 54: 46: 38: 30: 22: 15: -:----: ----:---:---:---:-Qc : 0.124: 0.126: 0.127: 0.134: 0.135: 0.134: 0.135: 0.135: 0.135: 0.135: 0.135: 0.135: 0.134: 0.135: 0.134: Cc : 0.019: 0.019: 0.019: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 42: 48: 27 : 25 : 26: 39: 41 : 44: 45 : 46: 49 : 51: 52: 53: Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 : у= 100: 110: 120: 131: 142: 153: 164: 175: 186: 197: 209: 220: 232: 1: -6: -13: -19: -25: -30: -36: -41: -46: -50: -55: -58: -62: -66: -69: ----:----:-----:----:----:-Qc : 0.135: 0.134: 0.134: 0.134: 0.134: 0.135: 0.135: 0.135: 0.135: 0.135: 0.135: 0.135: 0.135: 0.135: 0.135: Cc : 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 62 : 64 : 67 : 69 : 71 : 57 : 59: 60 : 63 : 66 : 70 : Uon:12.00 341: 420: 432: 444: 268: 280: 292: 304: 316: 328: 457: 469: V= -72: -74: -76: -78: -80: -81: -89: -90: -91: -91: -82: Qc: 0.135: 0.135: 0.135: 0.136: 0.135: 0.136: 0.136: 0.131: 0.130: 0.129: 0.128: 0.126: Cc: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.019: 0.019: 0.019: 0.019: 78 : 80 : 82: 84: 85: 94: 96: 97 : 81 : Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 ПК ЭРА v3.0. Модель: MPK-2014 Результаты расчета в точке максимума Координаты точки : X= -82.0 м, Y= 341.0 м 0.1357178 доли ПДКмр| Максимальная суммарная концентрация | Cs= 0.0203577 мг/м3 Достигается при опасном направлении 85 град. и скорости ветра 12.00 м/с Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада _вклады_источников_ | Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф. влияния | ---- | <06-П>-<Uc> | --- | Вклад |Вклад в%| Сум. %| Коэф.влияния | 3. Исходные параметры источников. исходные параметры источников.

ПК ЭРА v3.0. Модель: MPK-2014

Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.

Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37

Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

ПДКм.р для примеси 0330 = 0.5 мг/м3 Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Признак источников "для зимы" - отрицательное значение высоты V1 I T I |Тип| Н | D | Wo | X1 Y1 X2 Y2 |Alf| F | KP |Ди| Выброс 4. Расчетные параметры См, Uм, Хм ПК ЭРА v3.0. Модель: MPK-2014 :104 Целиноградский р-н, АкМ. :0011 ТОО "Goldenpit", месторождение Мета. Город Объект Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37 :ЗИМА для энергетики и ЛЕТО для остальных :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Примесь ПДКм.р для примеси 0330 = 0.5 мг/м3 Для линейных и площадных источников выброс является суммарным по всей площади, а Cm - концентрация одиночного источника, расположенного в центре симметрии, с суммарным М _____Их расчетные параметры Ст | Um | | Um | Xm |-п/п-|<об-п>-<ис>|-----[м]---[м/с]-----[м]---


```
1 |001101 6011|
                     0.064130| П1 |
                                     4.581001 |
                                                0.50
    Суммарный Mq =
                   0.064130 r/c
                                     4.581001 долей ПДК
    Сумма См по всем источникам =
        Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
  ПК ЭРА v3.0. Модель: MPK-2014
              :104 Целиноградский р-н, АкМ.
              :0011 ТОО "Goldenpit", месторождение Мета.
    Объект
                   Расч.год: 2024-2032 (СП)
    Вар.расч. :2
                                               Расчет проводился 24.04.2023 18:37
              :ЗИМА для энергетики и ЛЕТО для остальных
    Сезон
             :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
    Примесь
              ПДКм.р для примеси 0330 = 0.5 мг/м3
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 2256х1880 с шагом 188
    Расчет по границе санзоны. Покрытие РП 001
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмр) м/с
    Средневзвешенная опасная скорость ветра Ucb= 0.5 \text{ м/c}
6. Результаты расчета в виде таблицы.
  ПК ЭРА v3.0. Модель: MPK-2014
             :104 Целиноградский р-н, АкМ.
             :0011 ТОО "Goldenpit", месторождение Мета.
    Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37 Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
              ПДКм.р для примеси 0330 = 0.5 мг/м3
    Расчет проводился на прямоугольнике 1
    с параметрами: координаты центра X= 552, Y= 472 размеры: длина(по X)= 2256, ширина(по Y)= 1880, шаг сетки= 188
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
                     _Расшифровка_обозначений_
           | Qc - суммарная концентрация [доли ПДК]
           Сс - суммарная концентрация [мг/м.куб]
            Фоп- опасное направл. ветра [ угл. град.]
           | Иоп- опасная скорость ветра [ м/с
     -Если в расчете один источник, то его вклад и код не печатаются
    -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
y= 1412 : Y-строка 1 Cmax= 0.020 долей ПДК (x= 364.0; напр.ветра=177)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
    ----:-
                                             ----:-
                                                    ----:-
                                                          ----:----:----:-
Qc: 0.011: 0.013: 0.015: 0.017: 0.019: 0.020: 0.020: 0.018: 0.016: 0.014: 0.012: 0.011: 0.009:
Cc: 0.006: 0.006: 0.007: 0.009: 0.009: 0.010: 0.010: 0.009: 0.008: 0.007: 0.006: 0.005: 0.005:
y= 1224 : Y-строка 2 Cmax= 0.029 долей ПДК (x= 364.0; напр.ветра=176)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc : 0.013: 0.016: 0.019: 0.023: 0.027: 0.029: 0.029: 0.026: 0.022: 0.018: 0.015: 0.012: 0.010:
Cc: 0.006: 0.008: 0.010: 0.012: 0.014: 0.015: 0.014: 0.013: 0.011: 0.009: 0.007: 0.006: 0.005:
    1036 : У-строка 3 Стах= 0.046 долей ПДК (х= 364.0; напр.ветра=175)
y=
                         -12:
                                                           928: 1116: 1304: 1492: 1680:
           -388 -200 -
                                176.
                                       364:
                                             552:
                                                    740:
-----:
Qc : 0.015: 0.020: 0.026: 0.033: 0.041: 0.046: 0.045: 0.038: 0.030: 0.023: 0.018: 0.014: 0.012:
Cc: 0.008: 0.010: 0.013: 0.016: 0.021: 0.023: 0.022: 0.019: 0.015: 0.012: 0.009: 0.007: 0.006:
у= 848 : У-строка 4 Стах= 0.079 долей ПДК (х= 364.0; напр.ветра=173)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
                   ---:---
                                       ---:---
                                              ---:---
                                                    ---:--
                                ----:-
                                                           ---:-
                                                                 ----:-
Qc: 0.018: 0.024: 0.034: 0.049: 0.066: 0.079: 0.076: 0.059: 0.042: 0.029: 0.021: 0.016: 0.012:
Cc: 0.009: 0.012: 0.017: 0.024: 0.033: 0.040: 0.038: 0.030: 0.021: 0.015: 0.011: 0.008: 0.006:
           120 : 127 : 137 : 152 : 173 : 196 : 214 : 227 : 236 : 242 :
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :0.78 :
y= 660 : Y-строка 5 Cmax= 0.153 долей ПДК (x= 364.0; напр.ветра=168)
x= -576 : -388: -200: -12: 176: 364:
                                            552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.020: 0.028: 0.043: 0.069: 0.111: 0.153: 0.140: 0.093: 0.057: 0.037: 0.024: 0.017: 0.013:
Cc: 0.010: 0.014: 0.022: 0.034: 0.055: 0.076: 0.070: 0.046: 0.028: 0.018: 0.012: 0.009: 0.007:
```

Фол: 106: 109: 114: 123: 139: 168: 205: 229: 241: 248: 253: 255: 258:

UOn:12.00 :12.00 :12.00 :12.00 :12.00 :11.41 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 472 : Y-строка 6 Cmax= 0.522 долей ПДК (x= 364.0; напр.ветра=147) 364: -388: -200: -12: 176: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.021: 0.031: 0.050: 0.086: 0.168: 0.522: 0.298: 0.128: 0.069: 0.041: 0.026: 0.018: 0.014: Сс: 0.011: 0.015: 0.025: 0.043: 0.084: 0.261: 0.149: 0.064: 0.034: 0.021: 0.013: 0.009: 0.007: Фоп: 95: 96: 98: 102: 110: 147: 236: 254: 260: 263: 264: 265: 266: Uon:12.00 :12.00 :12.00 :12.00 :10.34 : 1.44 : 4.86 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 : y= 284 : Y-строка 7 Cmax= 0.469 долей ПДК (x= 364.0; напр.ветра= 30) 364: -576 : -388: -200: -12: 176: 552: 740: 928: 1116: 1304: 1492: 1680: Oc: 0.021: 0.031: 0.049: 0.086: 0.165: 0.469: 0.288: 0.127: 0.068: 0.041: 0.026: 0.018: 0.014: Сс: 0.011: 0.015: 0.025: 0.043: 0.083: 0.235: 0.144: 0.063: 0.034: 0.020: 0.013: 0.009: 0.007: Фоп: 84: 83: 81: 77: 68: 30: 307: 287: 281: 278: 276: 275: 274: Uon:12.00 :12.00 :12.00 :12.00 :10.48 : 1.93 : 5.27 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 : 96 : У-строка 8 Стах= 0.148 долей ПДК (х= 364.0; напр.ветра= 11) x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: ---:------:---·---:------:----:-----:---:-Qc: 0.020: 0.028: 0.043: 0.068: 0.108: 0.148: 0.136: 0.091: 0.056: 0.036: 0.024: 0.017: 0.013: Cc : 0.010: 0.014: 0.021: 0.034: 0.054: 0.074: 0.068: 0.045: 0.028: 0.018: 0.012: 0.009: 0.007: 71: 57: 41 : 288 : 65 : 11 : 335 : 312 : 299 : 292 : Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 y= -92 : Y-строка 9 Cmax= 0.077 долей ПДК (x= 364.0; напр.ветра= 7) x = -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: ----:----:----:------:-----:-----:-----:-----:-Qc: 0.017: 0.024: 0.033: 0.048: 0.065: 0.077: 0.074: 0.058: 0.042: 0.029: 0.021: 0.016: 0.012: Cc: 0.009: 0.012: 0.017: 0.024: 0.032: 0.039: 0.037: 0.029: 0.021: 0.015: 0.011: 0.008: 0.006: 42: 345 : 326 : 313 : Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :0.78 : y= -280 : Y-строка 10 Cmax= 0.045 долей ПДК (x= 364.0; напр.ветра= 5) x= -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.015: 0.019: 0.025: 0.032: 0.040: 0.045: 0.044: 0.038: 0.030: 0.023: 0.018: 0.014: 0.012: Cc: 0.008: 0.010: 0.013: 0.016: 0.020: 0.022: 0.022: 0.019: 0.015: 0.011: 0.009: 0.007: 0.006: y= -468 : Y-строка 11 Cmax= 0.029 долей ПДК (x= 364.0; напр.ветра= 4) x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.013: 0.016: 0.019: 0.023: 0.027: 0.029: 0.028: 0.025: 0.022: 0.018: 0.014: 0.012: 0.010: Cc: 0.006: 0.008: 0.010: 0.012: 0.013: 0.014: 0.014: 0.013: 0.011: 0.009: 0.007: 0.006: 0.005: ПК ЭРА v3.0. Модель: MPK-2014 Результаты расчета в точке максимума Координаты точки : X= 364.0 м, Y= 472.0 м Максимальная суммарная концентрация | Cs= 0.5218030 доли ПДКмр| 0.2609015 мг/м3 Достигается при опасном направлении 147 град. и скорости ветра 1.44 м/с Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада 7. Суммарные концентрации в узлах расчетной сетки. ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета. Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37 Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) ПДКм.р для примеси 0330 = 0.5 мг/м3 _Параметры_расчетного_прямоугольника_No 1_

 Координаты центра
 : X=
 552 м; Y=
 472 |

 Длина и ширина
 : L=
 2256 м; B=
 1880 м |

 Шаг сетки (dX=dY)
 : D=
 188 м |

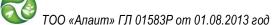
 Фоновая концентрация не задана Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с


```
(Символ ^ означает наличие источника вблизи расчетного узла)
              2
                             4 5 6
                                                                                          11
                                                                                                  12
                                                                                                           13
                                                                  8
                                                                                  10
    *--|----|----|-----|-----|
 1-| 0.011 0.013 0.015 0.017 0.019 0.020 0.020 0.018 0.016 0.014 0.012 0.011 0.009 |- 1
      0.013 0.016 0.019 0.023 0.027 0.029 0.029 0.026 0.022 0.018 0.015 0.012 0.010 |- 2
 2-1
 3-| 0.015 0.020 0.026 0.033 0.041 0.046 0.045 0.038 0.030 0.023 0.018 0.014 0.012 |- 3
      0.018\ 0.024\ 0.034\ 0.049\ 0.066\ 0.079\ 0.076\ 0.059\ 0.042\ 0.029\ 0.021\ 0.016\ 0.012\ |-480.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.089\ 0.0
      0.020 0.028 0.043 0.069 0.111 0.153 0.140 0.093 0.057 0.037 0.024 0.017 0.013 |-5
      0.021 0.031 0.050 0.086 0.168 0.522 0.298 0.128 0.069 0.041 0.026 0.018 0.014 C- 6
       0.021 0.031 0.049 0.086 0.165 0.469 0.288 0.127 0.068 0.041 0.026 0.018 0.014 |- 7
      0.020 0.028 0.043 0.068 0.108 0.148 0.136 0.091 0.056 0.036 0.024 0.017 0.013 |- 8
 8-1
      0.017 0.024 0.033 0.048 0.065 0.077 0.074 0.058 0.042 0.029 0.021 0.016 0.012 |- 9
     0.015 0.019 0.025 0.032 0.040 0.045 0.044 0.038 0.030 0.023 0.018 0.014 0.012 |-10
11-1 0.013 0.016 0.019 0.023 0.027 0.029 0.028 0.025 0.022 0.018 0.014 0.012 0.010 1-11
                    ---- | ----- | ----- | ----- | ----- | ----- | ----- | -----
                                         5 6 7 8 9 10 11 12
                     3
                             4
        1
            2
         В целом по расчетному прямоугольнику:
 Максимальная концентрация -----> См = 0.5218030 долей ПДКмр
                                                          = 0.2609015 мг/м3
 Достигается в точке с координатами: Xm = 364.0 м ( X-столбец 6, Y-строка 6) Ym = 472.0 м
 При опасном направлении ветра : и "опасной" скорости ветра :
                                                      147 град.
                                            : 1.44 м/с
9. Результаты расчета по границе санзоны.
    ПК ЭРА v3.0. Модель: MPK-2014
       Город
                    :104 Целиноградский р-н, АкМ.
                     :0011 T00 "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
:0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
       Объект
       Вар.расч. :2
      Примесь
                      ПДКм.р для примеси 0330 = 0.5 мг/м3
       Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
       Всего просчитано точек: 267
       Фоновая концентрация не задана
      Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) \dot{\text{M/c}}
                                Расшифровка обозначений
                   Qc - суммарная концентрация [доли ПДК]
                 | Сс - суммарная концентрация [мг/м.куб]
                   Фоп- опасное направл. ветра [ угл. град.]
                 | Иоп- опасная скорость ветра [ м/с
       -Если в расчете один источник, то его вклад и код не печатаются
                                                  518:
                                                            530:
          469:
                    481:
                             493:
                                        506:
                                                                      542:
                                                                                623:
                                                                                          636:
                                                                                                    648:
                                                                                                              660:
                                                                                                                         672:
                                                                                                                                   683:
                                                                                                                                             695:
 \nabla =
         -91: -91: -90:
                                      -89:
                                                -88:
                                                          -87:
                                                                     -85:
                                                                              -73:
                                                                                        -71: -69:
                                                                                                                       -64:
                                                                                                                                  -61:
                 ____-
Oc : 0.068: 0.067: 0.067: 0.066: 0.066: 0.066: 0.065: 0.062: 0.061: 0.060: 0.060: 0.059: 0.059: 0.058: 0.057:
Cc: 0.034: 0.034: 0.033: 0.033: 0.033: 0.033: 0.033: 0.031: 0.031: 0.030: 0.030: 0.030: 0.029: 0.029: 0.029:
        100:
                  101 :
                            102:
                                      104 :
                                                105 :
                                                          106:
                                                                    108:
                                                                              116:
                                                                                         117 :
                                                                                                   118 :
                                                                                                             120 :
                                                                                                                       121 :
                                                                                                                                 122:
Фоп:
                                                                                                                                           123:
UOM:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00
          719:
                                      753:
                                                 764:
                                                           775:
                                                                      786:
 y=
                   730: 741:
                                                                                797: 807:
                                                                                                    818:
                                                                                                              828:
                                                                                                                        838:
                                                                                                                                  848:
                                                                                                                                             858:
             -;----;----;----;----;----;
          -49: -45: -41: -36: -31: -25: -20: -14:
                                                                                                    -1:
                                                                                                                         13:
Qc : 0.057: 0.056: 0.056: 0.055: 0.055: 0.054: 0.054: 0.053: 0.053: 0.053: 0.052: 0.052: 0.051: 0.051: 0.051:
Cc: 0.028: 0.028: 0.028: 0.028: 0.027: 0.027: 0.027: 0.027: 0.027: 0.026: 0.026: 0.026: 0.026: 0.025: 0.025:
                                                130 :
                                                                    132 :
                                                                              134 :
                                                                                        135 :
                  127 :
                            128 :
                                      129 :
                                                          131 :
                                                                                                   136:
                                                                                                             137 :
                                                                                                                       138 :
                                                                                                                                 139:
                                                                                                                                           140:
                                                                                                                                                     141:
Фоп:
        126 :
Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
          877 •
                    886.
                             895.
                                        904 •
                                                  912 •
                                                            921 •
                                                                      929.
                                                                                937 •
                                                                                          944 •
                                                                                                    952 •
                                                                                                              959.
                                                                                                                         966:
                                                                                                                                   973.
                                                                                                                                             979.
                                                                                                                                                       985.
 y=
77:
                                       68:
                                                           86:
                                                                     95: 104: 114: 124: 133: 144:
                                                                                                                                 154 •
 x =
                               --:-
Qc: 0.050: 0.050: 0.050: 0.049: 0.049: 0.049: 0.048: 0.048: 0.048: 0.048: 0.047: 0.047: 0.047: 0.047: 0.047:
Cc: 0.025: 0.025: 0.025: 0.025: 0.025: 0.025: 0.024: 0.024: 0.024: 0.024: 0.024: 0.024: 0.024: 0.023: 0.023: 0.023:
                   997: 1002: 1007: 1012: 1017: 1021: 1025: 1029: 1032: 1035: 1038: 1041: 1043: 1045:
         991:
\nabla =
                                       219:
                                                230:
                                                           241:
                                                                     253:
                                                                                265: 276:
                                                                                                    288:
                                                                                                              300:
```

261

Qc : Cc :	0.046: 0.023:	0.046: 0.023:	0.046:	0.046: 0.023:	0.046: 0.023:	0.046: 0.023:	0.045: 0.023:	0.045: 0.023:	0.045: 0.023:	0.045: 0.023:	0.045:	0.045:	0.045:	0.045:	0.045:
															1041:
X=	360:	372:	385:	397:	409:	421:	431:	444:	456:	468:	480:	493:	505:	517:	529:
Qc : Cc :	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045:	0.045: 0.022:
			1032:												
×=	541:	553:	565:	577:	588:	726:	863:	875:	886:	898:	909:	920:	931:	942:	
Qc : Cc :	0.045: 0.022:	0.045: 0.022:	0.045:	0.045: 0.022:	0.045: 0.022:	0.044:	0.040:	0.040: 0.020:	0.040:	0.039:	0.039: 0.019:	0.038:	0.038:	0.038:	0.038:
	888:	881:	874:	867:	860:	853:	845:	837:	829:	820:	812:	803:	794:	785:	775:
x=	963:														1092:
Qc :	0.037:	0.037:	0.037:	0.036:	0.036:	0.036:	0.036:	0.035:	0.034:	0.034:	0.034:	0.034:	0.034:	0.034:	0.033:
			0.018:												0.017:
	766:														576:
×=	1100:	1107:	1114:	1121:	1128:	1134:	1140:	1146:	1152:	1157:	1180:	1185:	1190:	1195:	1199:
Qc : Cc :	0.033:	0.033: 0.017:	0.033:	0.033: 0.017:	0.033:	0.033:	0.033:	0.033:	0.033:	0.032:	0.032:	0.032:	0.032:	0.032:	0.032: 0.016:
	565:														
x=	1203:	1207:	1210:	1213:	1216:	1218:	1220:	1222:	1224:	1225:	1226:	1227:	1227:	1227:	1227:
Qc :	0.032:	0.032:	0.032:	0.031:	0.031:	0.031:	0.031:	0.031:	0.031:	0.031:	0.031:	0.031:	0.031:	0.031:	0.032:
															0.016:
	383:					322:			286:						216:
x=	1227:	1226:	1225:	1223:	1221:	1219:	1217:	1215:	1212:	1208:	1205:	1201:	1197:	1193:	1188:
Cc :	0.016:	0.016:		0.016:	0.016:	0.016:	0.016:	0.016:	0.016:	0.016:	0.016:	0.016:	0.016:	0.016:	0.033:
	205:	194:	183:		161:										
x=	1183:		1173:	1167:	1161:	1155:	1148:	1142:	1135:	1127:	1120:	1112:	1104:	1096:	1088:
Qc : Cc :	0.033: 0.017:	0.033: 0.017:	0.033: 0.017:	0.034: 0.017:	0.034: 0.017:	0.034: 0.017:	0.034: 0.017:	0.034: 0.017:	0.036: 0.018:	0.036: 0.018:	0.036: 0.018:	0.036: 0.018:	0.037:	0.037:	0.037:
	55:							0:						-38:	
x=	1079:	1070:	1061:	1052:	1042:	1033:	1023:	1013:	1003:	992:	982:	971:	961:	950:	
Qc : Cc :	0.038:	0.038: 0.019:	0.039: 0.019:	0.039: 0.019:	0.039: 0.020:	0.040: 0.020:	0.040:	0.041: 0.020:	0.041: 0.021:	0.042:	0.042:	0.043:	0.043:	0.044:	0.044:
	-95:	-147:	-152:	-157:	-161:	-166:	-170:	-173:	-177:	-180:	-182:	-185:	-187:	-189:	-190:
x=	: 827:	: 715:	: 704:	: 693:	: 681:	: 670:	: 658:	: 646:	: 635:	623:	: 611:	: 599:	587:	574:	: 562:
Qc :	0.050:	0.053:	0.053:	0.053:	0.053:	0.053:	0.053:	0.054:	0.054:	0.054:	0.054:	0.054:	0.055:	0.055:	0.055:
Фоп:	320 :	331 :	332 :	333 :	334 :	336 :	337 :	338 :	339 :	340 :	341 :	343 :	344 :	345 :	0.028:
															12.00 :
															-178:
x=	550:	538:	526:	513:	501:	489:	477:	464:	452:	440:	428:	416:	404:	392:	
Qc : Сc : Фоп: Uoп:	0.055: 0.028: 347: 12.00:	0.055: 0.028: 349: 12.00:	0.056: 0.028: 350: 12.00:	0.056: 0.028: 351: 12.00:	0.056: 0.028: 352: 12.00:	0.057: 0.028: 353: 12.00:	0.057: 0.028: 354: 12.00:	0.057: 0.029: 356: 12.00:	0.058: 0.029: 357: 12.00:	0.058: 0.029: 358: 12.00:	0.058: 0.029: 359: 12.00:	0.058: 0.029: 1: 12.00:	0.059: 0.029: 2: 12.00:	0.059: 0.030: 3: 12.00:	0.060: 0.030: 4: 12.00:
															-101:
-															:

368: 356: 344: 333: 321: 299: 288: 244: 234: Qc: 0.060: 0.060: 0.061: 0.061: 0.062: 0.062: 0.063: 0.063: 0.063: 0.064: 0.064: 0.065: 0.065: 0.066: 0.066: Cc: 0.030: 0.030: 0.030: 0.031: 0.031: 0.031: 0.031: 0.031: 0.032: 0.032: 0.032: 0.032: 0.033: 0.033: 0.033: 21 : 8: 9: 10: 12 : 13 : 14 : 15 : 17 : 18: 19: : UOm:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 42: -9: -94: -86: -79: ----:----: 9: -1: -:---: 7: 15: 24: 33: 51: 60: 79: 89: y= 99: 90: 72: Qc: 0.067: 0.068: 0.068: 0.070: 0.070: 0.070: 0.070: 0.070: 0.070: 0.070: 0.070: 0.070: 0.070: 0.070: 0.070: Cc : 0.033: 0.034: 0.034: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 25 : 27 : 39 : 41 : 42 : 44: 45: 46: 48 : 49 : 51 : 52 : 26: 53: Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 : 175: 186: 197: 209: 220: 100: 110: 120: 131: 142: 153: 164: 232: 256: y= 244: ----:-----:------:------:-----:---6: -13: -19: -25: -30: -36: -41: -46: -50: -55: -58: 1: -62: x=Qc : 0.071: 0.070: 0.070: 0.070: 0.070: 0.071: 0.070: 0.070: 0.070: 0.070: 0.070: 0.070: 0.071: 0.071: 0.070: 0.070: Cc : 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 57 : 62: 66: 67 : 71: 56: 59 : 63 : 70 : 60 : 64 : 69: 73 : Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 : 268 • 280 • 292. 304 • 316. 328 • 341 • 420 • 432 • 444 • 457 • 469. x=-72: -74: -76: -78: -80: -81: -82: -89: -90: -91: -91: -91: --:----:-----:----:----: --:---:-Qc: 0.071: 0.071: 0.071: 0.071: 0.070: 0.071: 0.071: 0.069: 0.069: 0.068: 0.068: 0.068: Cc: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.034: 0.034: 0.034: 0.034: 78 : 81 : 96: 80: 82 : 84 : 85 : 94 : 97 : Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : Х= -81.0 м, Y= Максимальная суммарная концентрация | Cs= 0.0707704 доли ПДКмр| 0.0353852 мг/м3 Достигается при опасном направлении 84 град. и скорости ветра 12.00 м/с Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада _ВКЛАДЫ_ИСТОЧНИКОВ_ с | Вклад |Вн ı.| Код |Тип| Выброс | Вклад |Вклад в%| --|<06-П>-<Ис>|---|--М-(Мq)--|-С[доли ПДК]|------|-|Вклад в%| Сум. %| Коэф.влияния | 1 |001101 6011| П1| 0.0641| 0.070770 | 100.0 | 100.0 | 1.1035463 B cymme = 0.070770 | 100.0 3. Исходные параметры источников. ПК ЭРА v3.0. Модель: MPK-2014 Город :104 Целиноградский р-н, АкМ. Побъект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
Примесь :0333 - Сероводород (Дигидросульфид) (518)
ПДКм.р для примеси 0333 = 0.008 мг/м3 Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Признак источников "для зимы" - отрицательное значение высоты |Тип| Н | D | Wo | V1 | Т X1 Y1 Х2 Y2 |Alf| F | KP |Ди| Выброс <06~N>~<Nc>|~~~|~~m~~|~m/c~|~m3/c~~|rpagC|~~~m~~|~ ~|rp.|~~~| 001101 6010 П1 0.0 426 1.0 1.0 0 1.0 1.000 0 0.0000010 2 0 545 4. Расчетные параметры См, Uм, Хм ПК ЭРА v3.0. Модель: МРК-2014 Город :104 Целиноградский р-н, АкМ. :0011 TOO "Goldenpit", месторождение Мета. :2 Расч.год: 2024-2032 (СП) Расче Вар.расч. :2 Расчет проводился 24.04.2023 18:37 Сезон :ЗИМА для энергетики и ЛЕТО для остальных :0333 - Сероводород (Дигидросульфид) (518) ПДКм.р для примеси 0333 = 0.008 мг/м3 Примесь - Для линейных и площадных источников выброс является суммарным по всей площади, а Ст - концентрация одиночного источника, расположенного в центре симметрии, с суммарным М _____Их расчетные параметры 1 | 001101 6010 | 0.00000098 | П1 | 0.004362 | 0.50 | 11.4 Суммарный Мq = 0.00000098 г/с Сумма См по всем источникам = 0.004362 долей ПДК


```
ТОО «Алаит» ГЛ 01583P от 01.08.2013 год
          Средневзвешенная опасная скорость ветра = 0.50~\text{м/c}
      Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
5. Управляющие параметры расчета
   ПК ЭРА v3.0. Модель: MPK-2014
                :104 Целиноградский р-н, АкМ.
:0011 ТОО "Goldenpit", месторождение Мета.
     Город
      объект
     Вар.расч. :2 Расч.год: 2024-2032 (СП)
                                                           Расчет проводился 24.04.2023 18:37
     Сезон
                 :ЗИМА для энергетики и ЛЕТО для остальных
                 :0333 - Сероводород (Дигидросульфид) (518)
     Примесь
                  ПДКм.р для примеси 0333 = 0.008 мг/м3
     Фоновая концентрация не задана
     Расчет по прямоугольнику 001 : 2256x1880 с шагом 188
     Расчет по границе санзоны. Покрытие РП 001
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
     Средневзвешенная опасная скорость ветра Ucb= 0.5\ \text{м/c}
6. Результаты расчета в виде таблицы.
   ПК ЭРА v3.0. Модель: MPK-2014
                :104 Целиноградский р-н, АкМ.
     Город
                 :0011 ТОО "Goldenpit", месторождение Мета.
     Объект

      Вар.расч. :2
      Расч.год: 2024-2032 (СП)
      Расчений

      Примесь :0333 - Сероводород (Дигидросульфид)
      (518)

                                                           Расчет проводился 24.04.2023 18:37
                 ПДКм.р для примеси 0333 = 0.008 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
7. Суммарные концентрации в узлах расчетной сетки.
   ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
                        Расч.год: 2024-2032 (СП)
                                                           Расчет проводился 24.04.2023 18:37
     Вар.расч. :2
              :0333 - Сероводород (Дигидросульфид) (518)
                  ПДКм.р для примеси 0333 = 0.008 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
9. Результаты расчета по границе санзоны.
   ПК ЭРА v3.0. Модель: MPK-2014
     Тород :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
Примесь :0333 - Сероводород (Дигидросульфид) (518)
ПДКм.р для примеси 0333 = 0.008 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
3. Исходные параметры источников.
   ПК ЭРА v3.0. Модель: MPK-2014
                :104 Целиноградский р-н, АкМ.
     Город
                 :0011 ТОО "Goldenpit", месторождение Мета.
     Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
                                                           Расчет проводился 24.04.2023 18:37
                  ПДКм.р для примеси 0337 = 5.0 мг/м3
      Коэффициент рельефа (КР): индивидуальный с источников
     Коэффициент оседания (F): индивидуальный с источников
        Признак источников "для зимы" - отрицательное значение высоты
            |Тип| Н | D | Wo | V1 | Т
                                                          X1 | Y1
                                                                                Х2
                                                                                          Y2
                                                                                                |Alf| F | KP |Ди| Выброс
<06~П>~<Nc>|~~~|~~м~~|~м/с~|~м3/с~~|градС|~~~м~~~|~~м~~~|~
                                                                                                ~|rp.|~~~|~~~|~~r/c~
                                                                              ~~M~~
                                                                                          ~M~~
4. Расчетные параметры См, Им, Хм
   ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
                        Расч.год: 2024-2032 (СП)
     Вар.расч. :2
                                                            Расчет проводился 24.04.2023 18:37
                 :ЗИМА для энергетики и ЛЕТО для остальных
                 :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
ПДКм.р для примеси 0337 = 5.0 мг/м3
     Примесь
  - Для линейных и площадных источников выброс является суммарным по
    всей площади, а Ст - концентрация одиночного источника,
    расположенного в центре симметрии, с суммарным {\tt M}
                                                _Их расчетные параметры_
               Источники
            Код
                                    |Тип |
                                                Cm
                                                       | Um |
                        -п/п-|<об-п>-<ис>|-
```

4.307412 | 0.50 1 |001101 6011| 0.603000| П1 | Суммарный Mq = 0.603000 r/c Сумма См по всем источникам = 4.307412 долей ПДК


```
Средневзвешенная опасная скорость ветра =
5. Управляющие параметры расчета
    ПК ЭРА v3.0. Модель: MPK-2014
                      :104 Целиноградский р-н, АкМ.
       Город
                      :0011 TOO "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расче
       Объект
       Вар.расч. :2
                                                                            Расчет проводился 24.04.2023 18:37
                       :ЗИМА для энергетики и ЛЕТО для остальных
       Сезон
                       :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
       Примесь
                        ПДКм.р для примеси 0337 = 5.0 мг/м3
       Фоновая концентрация не задана
       Расчет по прямоугольнику 001 : 2256х1880 с шагом 188
        Расчет по границе санзоны. Покрытие РП 001
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
       Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
    ПК ЭРА v3.0. Модель: MPK-2014
        Город
                      :104 Целиноградский р-н, АкМ.
                     :0011 TOO "Goldenpit", месторождение Мета.

:2 Расч.год: 2024-2032 (СП) Расчет проводился 24

:0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
       Объект
       Вар.расч. :2
                                                                            Расчет проводился 24.04.2023 18:37
       Примесь
                       ПДКм.р для примеси 0337 = 5.0 мг/м3
       Расчет проводился на прямоугольнике 1
       с параметрами: координаты центра X=552, Y=472
       размеры: длина(по X)= 2256, ширина(по Y)= 1880, шаг сетки= 188 Фоновая концентрация не задана
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (\text{Ump}) \, \text{m/c}
                                  _Расшифровка_обозначений
                  | Qc - суммарная концентрация [доли ПДК]
                  Сс - суммарная концентрация [мг/м.куб]
                     Фоп- опасное направл. ветра [ угл. град.]
                    Uоп- опасная скорость ветра [
      | -Если в расчете один источник, то его вклад и код не печатаются|
      | -Если в строке Стах=< 0.05 ПДК, то Фол, Иол, Ви, Ки не печатаются |
 у= 1412 : У-строка 1 Стах= 0.019 долей ПДК (х= 364.0; напр.ветра=177)
 x= -576 : -388: -200:
                                        -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
                                                                                     ---:-
Qc: 0.011: 0.012: 0.014: 0.016: 0.018: 0.019: 0.019: 0.017: 0.015: 0.013: 0.012: 0.010: 0.009:
Cc: 0.054: 0.060: 0.070: 0.081: 0.089: 0.094: 0.093: 0.086: 0.077: 0.066: 0.058: 0.051: 0.044:
y= 1224 : Y-строка 2 Cmax= 0.027 долей ПДК (x= 364.0; напр.ветра=176)
                                                                                            928: 1116: 1304: 1492: 1680:
Qc : 0.012: 0.015: 0.018: 0.022: 0.025: 0.027: 0.027: 0.024: 0.021: 0.017: 0.014: 0.012: 0.010:
Cc: 0.061: 0.074: 0.091: 0.110: 0.127: 0.137: 0.134: 0.121: 0.103: 0.084: 0.069: 0.058: 0.049:
       1036 : Y-строка 3 Cmax= 0.043 долей ПЛК (x= 364.0; напр. ветра=175)
                                                             364:
                                                                        552: 740: 928: 1116: 1304: 1492: 1680:
                  -388: -200: -12: 176:
       Oc: 0.014: 0.018: 0.024: 0.031: 0.039: 0.043: 0.042: 0.036: 0.028: 0.022: 0.017: 0.013: 0.011:
Cc: 0.071: 0.092: 0.120: 0.155: 0.194: 0.216: 0.210: 0.181: 0.141: 0.109: 0.083: 0.065: 0.054:
 V=
        848 : У-строка 4 Стах= 0.075 долей ПДК (х= 364.0; напр.ветра=173)
 x = -576 : -388 : -200 :
                                        -12: 176:
                                                             364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.017: 0.023: 0.032: 0.046: 0.062: 0.075: 0.071: 0.056: 0.040: 0.028: 0.020: 0.015: 0.012:
Cc: 0.083: 0.113: 0.158: 0.228: 0.312: 0.373: 0.356: 0.278: 0.199: 0.139: 0.100: 0.074: 0.059: Φοπ: 115: 120: 127: 137: 152: 173: 196: 214: 227: 236: 242: 246: 250:
Uom:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12
         660 : У-строка 5 Стах= 0.144 долей ПДК (х= 364.0; напр.ветра=168)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
                               ----:-
                                                     ---:-
                                                               ----:-
                                                                          ----:-
                                                                                     ---:-
Qc: 0.019: 0.027: 0.041: 0.065: 0.104: 0.144: 0.132: 0.087: 0.054: 0.034: 0.023: 0.016: 0.012:
Cc: 0.093: 0.133: 0.203: 0.323: 0.520: 0.718: 0.658: 0.435: 0.268: 0.172: 0.115: 0.082: 0.062:
                             114 :
                                                                                                                   253 :
                                        123 : 139 : 168 : 205 : 229 : 241 :
                                                                                                        248 :
                  109:
: Uon:12.00 :12.00 :12.00 :12.00 :12.00 :11.41 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
     472 : Y-строка 6 Cmax= 0.491 долей ПДК (x= 364.0; напр.ветра=147)
```



```
1492:
x = -576 : -388:
                  -200:
                          -12:
                                 176:
                                                     740:
Qc: 0.020: 0.029: 0.047: 0.081: 0.158: 0.491: 0.281: 0.120: 0.065: 0.039: 0.025: 0.017: 0.013:
Cc: 0.099: 0.145: 0.233: 0.407: 0.788: 2.453: 1.403: 0.601: 0.323: 0.193: 0.124: 0.087: 0.065:
                   98: 102: 110: 147: 236: 254: 260: 263: 264: 265: 266:
            96:
UOn:12.00 :12.00 :12.00 :12.00 :10.34 : 1.44 : 4.86 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
у= 284 : У-строка 7 Стах= 0.441 долей ПДК (х= 364.0; напр.ветра= 30)
           -388:
                         -12:
                               176:
                                              552:
                  -200:
                                       364:
                                                    740:
                                                           928: 1116: 1304: 1492: 1680:
Qc: 0.020: 0.029: 0.047: 0.081: 0.155: 0.441: 0.271: 0.119: 0.064: 0.039: 0.025: 0.017: 0.013:
Сс: 0.099: 0.145: 0.233: 0.404: 0.777: 2.207: 1.354: 0.596: 0.322: 0.193: 0.124: 0.087: 0.064: Фоп: 84: 83: 81: 77: 68: 30: 307: 287: 281: 278: 276: 275: 274:
                   81 :
                         77 :
            83:
UOn:12.00 :12.00 :12.00 :12.00 :10.48 : 1.93 : 5.27 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
     96: У-строка 8 Стах= 0.139 долей ПДК (х= 364.0; напр.ветра= 11)
y=
                      ): -12: 176:
-:----
                                       364: 552: 740: 928: 1116: 1304: 1492: 1680:
----:
x= -576 : -388: -200:
Qc : 0.019: 0.026: 0.040: 0.064: 0.102: 0.139: 0.127: 0.085: 0.053: 0.034: 0.023: 0.016: 0.012:
Cc : 0.093: 0.132: 0.201: 0.318: 0.509: 0.695: 0.637: 0.427: 0.264: 0.170: 0.115: 0.082: 0.062:
             71:
                          57 :
                                             335 : 312 :
Φοπ:
      74 :
                   65 :
                                41 :
                                       11 :
                                                          299 :
                                                                 292 :
                                                                        288 :
                                                                               285 :
Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
     x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: ------
                    ---:---
                                 ---:---
                                                     ---:--
Qc: 0.016: 0.022: 0.031: 0.045: 0.061: 0.073: 0.069: 0.055: 0.039: 0.027: 0.020: 0.015: 0.012:
Cc: 0.082: 0.112: 0.156: 0.224: 0.304: 0.363: 0.346: 0.273: 0.196: 0.137: 0.099: 0.074: 0.059:
                   53 :
                         42 :
                                27 :
                                             345 :
                                        7:
                                                                 304 :
                                                                        298 :
                                                   326 : 313 :
            60 :
Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :0.78 :
у= -280 : У-строка 10 Стах= 0.042 долей ПДК (х= 364.0; напр.ветра= 5)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
    Qc: 0.014: 0.018: 0.024: 0.031: 0.038: 0.042: 0.041: 0.035: 0.028: 0.021: 0.017: 0.013: 0.011:
Cc: 0.071: 0.091: 0.119: 0.153: 0.190: 0.212: 0.206: 0.177: 0.139: 0.107: 0.083: 0.065: 0.054:
у= -468 : У-строка 11 Стах= 0.027 долей ПДК (х= 364.0; напр.ветра= 4)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
                                  ---:---
Qc : 0.012: 0.015: 0.018: 0.022: 0.025: 0.027: 0.026: 0.024: 0.020: 0.017: 0.014: 0.011: 0.010:
Cc: 0.060: 0.073: 0.090: 0.109: 0.125: 0.134: 0.132: 0.119: 0.101: 0.083: 0.068: 0.057: 0.049:
                                     ПК ЭРА v3.0. Модель: MPK-2014
 Результаты расчета в точке максимума
        Координаты точки : X= 364.0 м, Y= 472.0 м
 Максимальная суммарная концентрация | Cs= 0.4906395 доли ПДКмр|
                                          2.4531977 мг/м3
  Достигается при опасном направлении 147 град. и скорости ветра 1.44 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
7. Суммарные концентрации в узлах расчетной сетки.
  ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24
Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
                                                 Расчет проводился 24.04.2023 18:37
              ПДКм.р для примеси 0337 = 5.0 мг/м3
          Координаты центра : X= 552 м; Y= 472
Длина и ширина : L= 2256 м; B= 1880 м
Шаг сетки (dX=dY) : D= 188 м
              Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 ло 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
   (Символ ^ означает наличие источника вблизи расчетного узла)
                                                   9
                                  6
                                             8
                                                      10
                                                            11
                                                                 12
   *--|----|----|----|----|----|----|
 1-| 0.011 0.012 0.014 0.016 0.018 0.019 0.019 0.017 0.015 0.013 0.012 0.010 0.009 |- 1
```


2-| 0.012 0.015 0.018 0.022 0.025 0.027 0.027 0.024 0.021 0.017 0.014 0.012 0.010 |- 2


```
3-| 0.014 0.018 0.024 0.031 0.039 0.043 0.042 0.036 0.028 0.022 0.017 0.013 0.011 |- 3
      0.017 0.023 0.032 0.046 0.062 0.075 0.071 0.056 0.040 0.028 0.020 0.015 0.012 |- 4
      0.019 0.027 0.041 0.065 0.104 0.144 0.132 0.087 0.054 0.034 0.023 0.016 0.012 |- 5
      0.020\ 0.029\ 0.047\ 0.081\ 0.158\ 0.491\ 0.281\ 0.120\ 0.065\ 0.039\ 0.025\ 0.017\ 0.013\ C-\ 6
       0.020 0.029 0.047 0.081 0.155 0.441 0.271 0.119 0.064 0.039 0.025 0.017 0.013 |-7
       0.019 0.026 0.040 0.064 0.102 0.139 0.127 0.085 0.053 0.034 0.023 0.016 0.012 |- 8
 8 -
      0.016 0.022 0.031 0.045 0.061 0.073 0.069 0.055 0.039 0.027 0.020 0.015 0.012 |- 9
10-| 0.014 0.018 0.024 0.031 0.038 0.042 0.041 0.035 0.028 0.021 0.017 0.013 0.011 |-10
11-| 0.012 0.015 0.018 0.022 0.025 0.027 0.026 0.024 0.020 0.017 0.014 0.011 0.010 |-11
                                                                    8 9
                                                                                    10
 В целом по расчетному прямоугольнику: Максимальная концентрация -----> См =
                                                                0.4906395 долей ПДКмр
                                                           = 2.4531977 мг/м3
 Достигается в точке с координатами: XM = 364.0 \text{ м} ( X-столбец 6, Y-строка 6) YM = 472.0 \text{ м}
       ( Х-столбец 6, У-строка 6)
 При опасном направлении ветра :
                                                       147 град.
  и "опасной" скорости ветра
                                             : 1.44 м/с
9. Результаты расчета по границе санзоны.
    ПК ЭРА v3.0. Модель: MPK-2014
                     :104 Целиноградский р-н, АкМ.
                     :0011 TOO "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
       Объект
       Вар.расч. :2
       Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
                       ПДКм.р для примеси 0337 = 5.0 мг/м3
       Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
       Всего просчитано точек: 267
       Фоновая концентрация не задана
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (\text{Ump}) \, \text{m/c}
                                 Расшифровка обозначений
                 | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
                    Фоп- опасное направл. ветра [ угл. град.]
                  | Иоп- опасная скорость ветра [
      | -Если в расчете один источник, то его вклад и код не печатаются|
          469:
                                                   518:
                                                              530:
                                                                                   623: 636:
 y=
                                                            -87:
          -91 •
                   -91 • -90 •
                                       -89.
                                                  -88.
                                                                       -85.
                                                                                 -73.
                                                                                           -71 •
                                                                                                     -69.
                                                                                                                -66.
                                                                                                                           -64 •
                                                                                                                                     -61.
                                                                                                                                                           -53.
        Oc: 0.064: 0.063: 0.063: 0.063: 0.062: 0.062: 0.061: 0.058: 0.057: 0.057: 0.056: 0.056: 0.055: 0.055: 0.055: 0.054:
Cc : 0.318: 0.316: 0.315: 0.313: 0.311: 0.309: 0.307: 0.291: 0.287: 0.283: 0.281: 0.278: 0.276: 0.273: 0.270:
                                       104:
                                                  105:
                                                                      108:
                                                                                           117 :
                             102:
                                                            106:
                                                                                 116 :
                                                                                                     118:
                                                                                                                120:
                                                                                                                          121:
                                                                                                                                    122:
UOM:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00
          719: 730: 741: 753: 764: 775:
                                                                        786:
                                                                                  797: 807: 818: 828: 838: 848:
 V=
                                                                                                                                                858:
                                                                                    --:---:
         -49: -45: -41: -36: -31: -25:
                                                                      -20: -14:
                                                                                             -7:
Qc : 0.053: 0.053: 0.052: 0.052: 0.052: 0.051: 0.050: 0.050: 0.050: 0.049: 0.049: 0.049: 0.048: 0.048: 0.048:
Cc : 0.267: 0.265: 0.262: 0.260: 0.258: 0.255: 0.252: 0.250: 0.249: 0.247: 0.246: 0.244: 0.242: 0.239: 0.238:
Фоп: 126 : 127 : 128 : 129 : 130 : 131 : 132 : 134 : 135 : 136 : 137 : 138 : 139 : 140 : 141 : Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :
         877 •
                   886 895
                                        904 •
                                                  912 •
                                                            921 •
                                                                       929.
                                                                                  937 •
                                                                                          944 •
                                                                                                      952 •
                                                                                                                959.
                                                                                                                            966.
                                                                                                                                     973.
                                                                                                                                                979.
 y=
 43: 51: 59: 68: 77: 86: 95: 104: 114: 124: 133: 144: 154: 164: 175:
Qc : 0.047: 0.047: 0.047: 0.046: 0.046: 0.046: 0.046: 0.045: 0.045: 0.045: 0.045: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.044: 0.04
Cc: 0.236: 0.235: 0.233: 0.232: 0.231: 0.229: 0.228: 0.226: 0.225: 0.224: 0.222: 0.222: 0.220: 0.220: 0.219:
          991:
                    997: 1002: 1007: 1012: 1017: 1021: 1025: 1029:
                                                                                                     1032: 1035: 1038:
                                                                                                                                    1041:
                                                                                                                                               1043:
 \nabla =
                   197:
                              208:
                                         219:
                                                   230:
                                                             241:
                                                                       253:
                                                                                  265:
                                                                                            276:
                                                                                                       288:
                                                                                                                 300:
                                                                                                                           312:
                  Oc: 0.044: 0.043: 0.043: 0.043: 0.043: 0.043: 0.043: 0.043: 0.043: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042:
Cc: 0.218: 0.217: 0.217: 0.216: 0.215: 0.214: 0.214: 0.213: 0.212: 0.212: 0.211: 0.211: 0.211: 0.210: 0.210: 0.210:
```


y=															1041:
x=	360:	372:	385:	397:	409:	421:	431:	444:	456:	468:	480:	493:	505:	517:	529:
Qc :	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:	0.042:
								.~~~~~							
y=				1029:				930:							
x=	541:	553:	565:	577:	588:	726:	863:	875:	886:	898:	909:	920:	931:	942:	953:
Cc :	0.210:	0.210:	0.211:	0.211:	0.211:	0.209:	0.190:	0.038:	0.186:	0.184:	0.182:	0.181:	0.179:	0.178:	
	888:														
x=	963:	974:	984:	994:	1004:	1014:	1023:	1033:	1042:	1051:	1059:	1068:	1076:	1084:	1092:
Qc : Cc :	0.035: 0.175:	0.035: 0.174:	0.034:	0.034: 0.171:	0.034:	0.034:	0.033:		0.032:	0.032:	0.032:	0.032:	0.032: 0.159:	0.032:	0.031: 0.157:
	766:					715:		693:							
x=	1100:	1107:	1114:	1121:	1128:	1134:	1140:	1146:	1152:	1157:	1180:	1185:	1190:	1195:	
Qc : Cc :	0.031: 0.156:	0.031: 0.156:	0.031: 0.156:	0.031: 0.155:	0.031: 0.155:	0.031: 0.154:	0.031:	0.031: 0.154:	0.031: 0.153:	0.031: 0.153:	0.030: 0.151:	0.030: 0.151:	0.030:	0.030:	0.030:
	565:	553:	541:	529:	517:	505:	493:	481:	469:	457:	444:	432:	420:	: 408:	395:
X=	1203:	1207:	1210:	1213:	1216:	1218:	1220:	1222:	1224:	1225:	1226:	1227:	1227:	1227:	1227:
Qc :	0.030:	0.030:	0.030:	0.030:	0.030:	0.030:	0.030:	0.030:	0.030:	0.030:	0.029:	0.029:	0.030:	0.030:	0.030:
								0.148:							
	383:														216:
x=	1227:	1226:	1225:	1223:	1221:	1219:	1217:		1212:	1208:	1205:	1201:	1197:	1193:	1188:
Qc :	0.030:	0.030:	0.030:	0.030:	0.030:	0.030:	0.030:		0.030:	0.030:	0.030:	0.031:	0.031:	0.031:	0.031:
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	~~~~~	.~~~~	. ~ ~ ~ ~ ~ ~ ~	.~~~~~
		:	:	:	:		:	:	:	:	:		:	::	:
	:	:	:	:	:	:	:	1142:	:	:	:	:	:	::	:
Ĉc :	0.156:	0.157:	0.157:	0.158:	0.159:	0.160:	0.161:		0.167:	0.169:	0.170:	0.171:	0.173:	0.174:	0.035:
	55:	46:	38:	30:	22:	14:	7:	0:	-7:	-14:	-20:	-26:	-32:	: -38:	-43:
x=	1079:	1070:	1061:	1052:	1042:	1033:	1023:	1013:	1003:	992:	982:	971:	961:	950:	
Qc :	0.035:	0.036:	0.036:	0.037:	0.037:	0.037:	0.038:	0.038:	0.039:	0.039:	0.040:	0.040:	0.040:	0.041:	0.042:
															0.208:
															-190:
X=	827:	715:	704:	693:	681:	670:	658:	646:	635:	623:	611:	599:	587:	574:	
Qc :	0.047:	0.050:	0.050:	0.050:	0.050:	0.050:	0.050:	0.050:	0.051:	0.051:	0.051:	0.051:	0.051:	0.052:	0.052:
Фоп:	320 :	331 :	332 :	333 :	334 :	336 :	337 :	338 :	339 :	340 :	341 :	343 :	344 :	345 :	346:
	:	:	:	:	:	:	:	:	:	:	:	:	:	::	-178:
	:	:	:	:	:	:	:	464:	:	:	:	:	:	::	:
Cc :	0.260:	0.260:	0.262:	0.264:	0.265:	0.266:	0.267:	0.269:	0.271:	0.272:	0.273:	0.275:	0.277:	0.279:	0.056:
Uon:	12.00:	12.00:	12.00:	12.00:	12.00:	12.00:	12.00 :		12.00:	12.00:	12.00:	12.00 :	12.00:	12.00:	4:
															-101:
		:	:	:	:	:	:		:	:	:	:	:	::	:
															0.062:
Сс : Фоп:								0.296: 14:							0.312:

# TOO «Алаит» ГЛ 01583P om 01.08.2013 год



Јоп:12.00 :1		0 00 1												
	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~		. ~ ~ ~ ~ ~ ~	~~~~~	
y = -94:	-86:	-79:	-9:	-1:	7 :	: 15:	24:	33:	42:	51	: 60:	70:	79:	: 89:
:-														
x= 204:	194:		99: :				63: ::		46:					
c : 0.063:	0.063:	0.064:	0.066:	0.066:	0.066	0.066:	0.066:	0.066	0.066:	0.066	0.066:	0.066:	0.066	: 0.066:
с: 0.314: оп: 25:					0.330:									
оп:12.00 :1														
~~~~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~		. ~ ~ ~ ~ ~ ~	~~~~~	
y= 100:	110:	120:	131:	142:	153	164:	175:	186:	197:	209	: 220:	232:	244:	: 256:
:-														
x= 1:														-69: ::
c: 0.066:														
с: 0.332: оп: 56:														: 0.331: : 76 :
оп:12.00 :1	2.00 :1	2.00:1	12.00 :	12.00:	12.00	12.00:	12.00:	12.00 :	12.00 :	12.00	:12.00 :	12.00:	12.00 :	
~~~~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
y= 268:	280:	292:	304:	316:	328	341:	420:	432:	444:	457	: 469:	-		
:- x= -72:														
x/2: :-											: -91: ::			
c : 0.066:														
с: 0.332: оп: 77:	78:				0.333						: 0.318: : 100 :			
оп:12.00 :1	2.00 :1	2.00 :1	12.00 :	12.00:	12.00	12.00:	12.00:	12.00 :	12.00 :	12.00	:12.00 :			
~~~~~~~~	~~~~~	.~~~~~		~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~	.~~~~~	. ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~	~~~~~				
Результаты	расчета	B TOUR	ce Marci	имума	пк эрг	4 v/3 0	Молель	• MPK-2	014					
						r v3.0. r= 328		· Mrn-2	.014					
	-													
Максимальна	я сумма	рная ко	онцентр	кида		).066543 ).332719								
				~~										
Достигает	ся при		-											
CORO MOROLLI	ranon. 1		скорост											
Celo MCTO4H	MKOB. I	D Tac	DINITIE 2	аказапс			50 TOO	TTOM 0 (	15% prom-	T 2				
			B:				е более	чем с	95% вкла	да				
			Выброс	КЛАДЫ_И   В	СТОЧНИ! Вклад	(ОВ  Вклад	B%  CyM	1. %  Ko	лия. фе	RNHI				
<0б-П>	- <nc> -</nc>	N	Выброс 4-(Mq)-	КЛАДЫ_И   Е - -С[до	ІСТОЧНИІ Вклад эли ПДК	(ОВ  Вклад 	в%  Сум	1. %  Ko	лив.фес и\D=d	RNH				
<0б-П> 1  001101	<Ис> - 6011	N П1	Выброс 4-(Mq)- 0.603 3 сумме	КЛАДЫ_И   E - -C[до 0  0. = 0.	ICTOЧНИ Вклад Эли ПДК] 066544 066544	(ОВ  Вклад      100.0 100.0	B%  CyM   )   100	. %   Ko	рэф.влия b=C/N	ния        595				
<Об-П> 1  001101	<Ис> - 6011	N П1	Выброс 4-(Mq)- 0.603 3 сумме	КЛАДЫ_И   E - -C[до 0  0. = 0.	ICTOЧНИ Вклад Эли ПДК] 066544 066544	(ОВ  Вклад      100.0 100.0	B%  CyM   )   100	. %   Ko	рэф.влия b=C/N	ния        595				
Ном.  Ко  <06-П> 1  001101	- <nc> -</nc>	П1	Выброс 4-(Mq)- 0.603 3 сумме	КЛАДЫ_И   E - -C[дс 0  0. = 0.	ICTOЧНИ Вклад Эли ПДК] 066544 066544	(ОВ  Вклад      100.0 100.0	B%  CyM   )   100	. %   Ko	рэф.влия b=C/N	ния        595				
(ОБ-П> 1   001101 	- <mc> - 6011  </mc>	п1   F 	Выброс M-(Mq)- 0.603 В сумме 	КЛАДЫ_И   E - -C[ДC 0  0. = 0. 	СТОЧНИВ ВКЛАД ЭЛИ ПДК О66544 066544	(ОВ  Вклад      100.0 100.0	B%  CyM   )   100	. %   Ko	рэф.влия b=C/N	ния        595				
(ОБ-П> 1   ОО1101	- <mc> - 6011  </mc>	п1  Беры истордель: М	Выброс 4- (Mq) - 0.603 3 сумме 	КЛАДЫ_И   E - -C[дс 0  0. = 0. 	СТОЧНИВ ВКЛАД ПДК О 0 6 6 5 4 4 0 6 6 5 4 4 0 6 6 5 4 4 0 6 6 5 4 4 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(ОВ  Вклад      100.0 100.0	B%  CyM	. %   Ko	рэф.влия b=C/N	ния        595				
<06-П> 1  001101 ~~~~~~ . Исходные ПК ЭРА v3	-<Ис> - 6011  	П1   F	Выброс 4- (Mq) - 0.603 3 сумме 	КЛАДЫ_И   E - -C[дс 0  0. = 0. 	СТОЧНИВ ВКЛАД ВЛИ ПДК В ОБ 6544 066544	(ОВ  Вклад      100.0 100.0	в%  Сум   )   100 ) 	. %   Kc	рэф.влия b=C/N 1103545	иния   1   95     	18:37			
(<06-П> 1  001101	ларамет .0. Мо :104 :001	П1   F   F   F   F   F   F   F   F   F	Выброс 4-(Mq)- 0.603 3 сумме 2	КЛАДЫ_И   E - -C[дс 0  0. = 0. ~~~~~ 4 ий р-н, pit", м 2024-20 654*)	СТОЧНИВ ВКЛАД ВЛИ ПДК В О66544 066544	КОВ	B%  Cym	. %   Kc	рэф.влия b=C/N 1103545	иния   1   95     	18:37			
<06-П> 1   001101	ларамет .0. Мо :104 :001	П1   F   F   F   F   F   F   F   F   F	Выброс 4-(Mq)- 0.603 3 сумме 2	КЛАДЫ_И   E - -C[дс 0  0. = 0. ~~~~~ 4 ий р-н, pit", м 2024-20 654*)	СТОЧНИВ ВКЛАД ВЛИ ПДК В О66544 066544	(ОВ  Вклад      100.0 100.0	B%  Cym	. %   Kc	рэф.влия b=C/N 1103545	иния   1   95     	18:37			
<06-П> 1  001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас	- <mc> - 6011  парамет .0. Мс :104 :001 :ч.:2 :273 пдк</mc>	П1   F П1   F П1   F П1   Г П2   Г П3   Г П4   Г П5   Г П5   Г П6   Г П6   Г П6   Г П7   Г П7   Г П7   Г П7   Г П8   Выброс  и— (мq)—  0.603  в сумме  очников  ирк—201  оградско  иградско  иградско  иградско  осин (  и приме	КЛАДЫ_И   E - -C[дс 0  0. = 0. 4 4 4 4 4 4 2024-20 654*) си 2732	СТОЧНИИ ВКЛАД ПЛИ ПДК О 066544 О 066544 О О О О О О О О О О О О О О О О О О	КОВ	B%  Cyw   )   100 ) Meta. Pacvet r.	. %   Kc	рэф.влия b=C/N 1103545	иния   1   95     	18:37				
(<06-П> 1 (001101	(Nc> - 6011  	п1   F   F   F   F   F   F   F   F   F	Выброс 4- (Мq) - 0.603 3 сумме  ОЧНИКОВ ФРЕДЕЕ СОВТЕМВНОЕ ОТОВ ОТОВ ОТОВ ОТОВ ОТОВ ОТОВ ОТОВ ОТОВ	КЛАДЫ_И   E  - -C[дс 0  0. = 0	клад пдк об 6544 об 66544 ос 66544 ос 66544 ос 66544 ос 6654	КОВ	в%  Сум 	i. %   Ко	рэф.влия b=C/N 1103545 	иния   1   95     	18:37			
(<06-П> 1 (001101	(Nc> - 6011  	п1   F   F   F   F   F   F   F   F   F	Выброс 4- (Мq) - 0.603 3 сумме  ОЧНИКОВ ФРЕДЕЕ СОВТЕМВНОЕ ОТОВ ОТОВ ОТОВ ОТОВ ОТОВ ОТОВ ОТОВ ОТОВ	КЛАДЫ_И   E  - -C[дс 0  0. = 0	клад пдк об 6544 об 66544 ос 66544 ос 66544 ос 66544 ос 6654	КОВ	в%  Сум 	i. %   Ко	рэф.влия b=C/N 1103545 	иния   1   95     	18:37			
<06-П> 1  001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз	(Ис> - 6011  	по по по по по по по по по по по по по п	Выброс  4- (Мq) 0.603 3 сумме  ОЧНИКОВ  МРК-201  ОГРОВНО  ОГРО	КЛАДЫ_И   E   C [ДС 0   0. = 0. 4 ий р-н, pit", м 2024-20 654*) си 2732 ндивиду ндивиду ндивиду зимы" -	СТОЧНИІ ВЕЛАД ПДК ВЕЛАД ПДК ВЕЛАД ПДК ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛ	КОВ   ВКЛАД   I   1 100.0 100.0 100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100	### В%   Сум    100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1	т. %   Ко   .0   0.	Ded. влия b=C/N 1103545	14.2023	Alf	F   KP		
<06-П> 1  001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз	(Nc> - 6011  	по по по по по по по по по по по по по п	Выброс  4- (Мq) 0.603 3 сумме  ОЧНИКОВ  МРК-201  ОГРОВНО  ОГРО	КЛАДЫ_И   E   C [ДС 0   0. = 0. 4 ий р-н, pit", м 2024-20 654*) си 2732 ндивиду ндивиду ндивиду зимы" -	СТОЧНИІ ВЕЛАД ПДК ВЕЛАД ПДК ВЕЛАД ПДК ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛ	КОВ	B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cy	. %   Ко 	рэф.влия b=C/N 1103545 	Y2	Alf  ~~~ rp.	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1  001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц	(Nc> - 6011  	по по по по по по по по по по по по по п	Выброс  4- (Мq) 0.603 3 сумме  ОЧНИКОВ  МРК-201  ОГРОВНО  ОГРО	КЛАДЫ_И   E   C [ДС 0   0. = 0. 4 ий р-н, pit", м 2024-20 654*) си 2732 ндивиду ндивиду зимы" -	СТОЧНИІ ВЕЛАД ПДК ВЕЛАД ПДК ВЕЛАД ПДК ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛ	КОВ   ВКЛАД   I   1 100.0 100.0 100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100	B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cy	т. %   Ко   .0   0.	рэф.влия b=C/N 1103545 	Y2	Alf  ~~~ rp.	~~~   ~~~	~   ~~   ~~	
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз  Код   06~П>~<Ис>  01101 6011	- <nc> - 6011  ларамет .0. Мс :104 :202 :273 пдк иент ре иент ос нак ист Тип  F -~~ П1 22</nc>	по по по по по по по по по по по по по п	Выброс  4- (Mq) - 0  6- 0.603  3 сумме  6- 0.603  8- 0.603  8- 0.603  8- 0.603  8- 0.603  8- 0.603  8- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.603  9- 0.	КЛАДЫ_И   E   C [ДС 0   0. = 0. 4 ий р-н, pit", м 2024-20 654*) си 2732 ндивиду ндивиду зимы" -	СТОЧНИІ ВЕЛАД ПДК ВЕЛАД ПДК ВЕЛАД ПДК ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛАД ВЕЛ	КОВ	B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cy	. %   Ко 	рэф.влия b=C/N 1103545 	Y2	Alf  ~~~ rp.	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз  Кол   06~П>~<Ис>  01101 6011	(Nc)   - 6011	по по по по по по по по по по по по по п	Выброс  4- (Мq) 0.603 3 сумме  0.603 3 сумме  0.603 3 сумме  0.603 4 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6 год 0.603 6	КЛАДЫ_И   E   C [ДС 0   0. = 0. 4 ий р-н, pit", м 2024-20 654*) си 2732 ндивиду ндивиду ндивиду зимы" -   V1 ~   ~м3/с	СТОЧНИІ ВКЛАД ПДК ВКЛАД ПДК ВКЛАД ПДК ВКЛАД ВСТОРОЗ ЗЗ (СП) СТОТЬ ВКЛАТЬНЫЙ ОТРИЦЕ ТОТЬ ВКЛАТЬНЫЙ ОТРИЦЕ ТОТЬ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ ВКЛАТЬНЫЙ	КОВ	B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cy	. %   Ко 	рэф.влия b=C/N 1103545 	Y2	Alf  ~~~ rp.	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101	- <nc> - 6011  </nc>	П1   F   F   F   F   F   F   F   F   F	Выброс  4- (Мq) 0.603 3 сумме  0.603 3 сумме  0.603 3 сумме  0.603 3 сумме  0.603 4 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.603 6 год  0.	КЛАДЫ_И   E  - -C[ДС 0  0.	СТОЧНИІ КІЛАД (ПОТОПЕТЬ (ПОТОЧНИІ КІЛАД (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТОПЕТЬ (ПОТО	КОВ   ВКЛАД   100.0 100.0 100.0 КДЕНИЕ М МГ/МЗ ( С ИСТОЧ С ИСТОЧ С ИСТОЧ С ИСТОЧ С ИСТОЧ ВТЕЛЬНОЕ	B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cym B%  Cy	. %   Ко 	рэф.влия b=C/N 1103545 	Y2	Alf  ~~~ rp.	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь  Коэффиц Коэффиц Приз  Код   06~П>~ <uc>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект</uc>	- <nc> -<nc> -     -<nc> -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -&lt;</nc></nc></nc>	по по по по по по по по по по по по по п	Выброс  4- (Мq)	КЛАДЫ_И   E   C  C  C  C  C  C  C  C  C  C  C  C  C	КСТОЧНИІ КАЛАД КАЛИ ПДКА КАЛИ ПДКА КАМ. ВЕСТОРОЗ (СП) СТОТРИЦЕ СТОРОЗ КАКМ. ВЕСТОРОЗ КАКМ. ВЕСТОРОЗ КАКМ. ВЕСТОРОЗ КАКМ.	КОВ	в%  Сум  )   1000 )  Мета. Расчет г. (ОБУВ)  ИНИКОВ В ЗНАЧЕН -   ) 4	. %   Ко   .0   0.	рэф. влия b=C/N 1103545 b=C/N 1103545	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101	(Mc> - 6011  	по по по по по по по по по по по по по п	Выброс  4- (Мq) 0.603  8- сумме  Очников МРК-201- Оградск: "Golden; 4- год: 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	КЛАДЫ_И   E   C C C C C C C C C C C C C C C C C C C	СТОЧНИЙ КЛАД ОЛИ ПДК ОЛИ ПДК ОЛИ ПДК ОЛИ ПДК ОЛИ ОЛЕ ОТ ОТ ОТ ОТ ОТ ОТ ОТ ОТ ОТ ОТ ОТ ОТ ОТ	КОВ	## Сум    1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000      1000   1000	. %   Ко   .0   0.	рэф. влия b=C/N 1103545 b=C/N 1103545	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1  001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз  Код   06~П3~<Ис>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас	(Nc> - 6011	П1   F   F   F   F   F   F   F   F   F	Выброс  4- (Мq) 0.603  3 сумме  ОЧНИКОВ  МРК-201  ОРДНИКОВ  (КР): И  (КР): И  (КР): И  (КР): И  (Ми, ХМ  МРК-201  ОРДДСКІ  ОГДДСКІ  ОГДСКІ	КЛАДЫ_И    E	СТОЧНИІ КІЛАД (КІЛАД (КІ	КОВ   ВКЛАД     100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0	B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%	. %   Ко   .0   0.	рэф. влия b=C/N 1103545 b=C/N 1103545	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь  Коэффиц Приз  Код   060-П>~<Ис>  006-П> <Ис>  001101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас Сезон	(Nc> - 6011	П1   F   F   F   F   F   F   F   F   F	Выброс  4- (Мq) 0.603  3 сумме  ОЧНИКОВ  МРК-201  ОРДНИКОВ  (КР): И  (КР): И  (КР): И  (КР): И  (Ми, ХМ  МРК-201  ОРДДСКІ  ОГДДСКІ  ОГДСКІ	КЛАДЫ_И    E	СТОЧНИІ КІЛАД (КІЛАД (КІ	КДЕНИЕ М  КДЕНИЕ М  КДЕНИЕ М  КДЕНИЕ М  КДЕНИЕ М  КДЕНИЕ М  КДЕНИЕ М  О. С	B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%	. %   Ко   .0   0.	рэф. влия b=C/N 1103545 b=C/N 1103545	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА V3 Город Объект Вар.рас Примесь  Коэффиц Приз  Код   Об~П>~ СИС>  01101 6011  . Расчетные ПК ЭРА V3 Город Объект Вар.рас Сезон	(Nc> - 6011	П1   F   F   F   F   F   F   F   F   F	Выброс  4- (Мq) 0.603  3 сумме  ОЧНИКОВ  МРК-201  ОРДНИКОВ  (КР): И  (КР): И  (КР): И  (КР): И  (Ми, ХМ  МРК-201  ОРДДСКІ  ОГДДСКІ  ОГДСКІ	КЛАДЫ_И    E	СТОЧНИІ КІЛАД (КІЛАД (КІ	КОВ   ВКЛАД     100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0	B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%   Cym B%	. %   Ко   .0   0.	рэф. влия b=C/N 1103545 b=C/N 1103545	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз  Код   06~П>~<Ис>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас Сезон Примесь	- <nc> -<nc> -     -<nc> -     -<nc> -     -<nc th=""  -<="">     -<nc th=""  -<=""  -<nc="">     -<nc th=""  -<="">     -<nc th=""  -<="">     -<nc th=""  -<="">     -<nc th=""  -<=""  -<nc="">     -<nc td=""  -<nc=""  -<nc<=""><td>пощаде</td><td>Выброс  4- (Мq) 0.603  3 сумме  ОЧНИКОВ  МРК-201- ОГРАНИКОВ  (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (</td><td>КЛАДЫ_И   </td><td>СТОЧНИІ КІЛАД ПОТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИ</td><td>КОВ   ВКЛАД                                      </td><td>B%   Cym</td><td>т. %   Ко   .0   0.</td><td>оэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103555 11</td><td>ния   1  195   1  10   1</td><td> Alf  ~~~ rp.  1</td><td>~~~   ~~~</td><td>~   ~~   ~~</td><td>~~r/c~~</td></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc></nc>	пощаде	Выброс  4- (Мq) 0.603  3 сумме  ОЧНИКОВ  МРК-201- ОГРАНИКОВ  (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (	КЛАДЫ_И	СТОЧНИІ КІЛАД ПОТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИ	КОВ   ВКЛАД	B%   Cym	т. %   Ко   .0   0.	оэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103555 11	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь  Коэффиц Приз  Код   06-П>~<Ис>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас Сезон Примесь  — Для лине всей пло	(Ис> - 6011	пощадана Ст — г	Выброс  4- (Мq) - 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	КЛАДЫ_И	СТОЧНИІ ВЕЛАД ВЕЛА ВЕЛА ВЕЛА ВЕЛА ВЕЛА ВЕЛА ВЕЛА ВЕЛА	КОВ   ВКЛАД	B%   Cym	т. %   Ко   .0   0.	оэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103555 11	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1  001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз  Код   06~П>~<Ис>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас Сезон Примесь	(Ис>   - 6011	подадата в центува и площадата в центува и площадата в центува в	Bubbooc  A-(Mq)- 0.603  B-(Mq)- 0.604  B-(Mp)- 0.604  B-(Mp)- 0.704  B-(Mp)- 0.70	КЛАДН_И    E  - -C[ДС 00 0.  = 0.  4  ий р-н, ріт", м 2024-20 654*)    V1  - -м3/с  4  ий р-н, ріт", м 2024-20  ики и Л 654*) си 2732	СТОЧНИІ КЛАД В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ПОВОТО В ВЫБРОС С СУММЕ С С СУММЕ	КОВ   ВКЛАП	## Cym  ###	т. %   Кс	рэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Приз  Код   06~П>~<Ис>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас Сезон Примесь  - Для лине всей пло располож	(Ис>   - 6011	площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада площада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада прощада проща проща проща	Выброс  4- (Мq) 0.603  3 сумме  ОЧНИКОВ  МРК-201  ОТРОВНЕННИЕ  (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И: (КР): И:	КЛАДЫ_И	СТОЧНИЙ КИЛАД ПОТИТЕТОВ В ВЫБРОС С СУММА ТО КИТЕТО ДЛЯ В ВЫБРОС ДДИНОЧНИЕ С С СУММА ТО ТО ТО ТО ТО ТО ТО ТО ТО ТО ТО ТО ТО	КОВ   ВКЛАД	##   Сум  ###   Сум  ####   1000  ####   1000  ####   1000  ####   1000  ####   1000  #####   1000  #####   1000  #####   1000  ######   1000  #################################	г. %   Ко 	рэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз  Код   06~П>~<Ис>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас Сезон Примесь Гезон Примесь Напримесь Наприм	(Ис>   - 6011	пощадна сторы и и и и и и и и и и и и и и и и и и и	Выброс  4- (Мq) - 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	КЛАДЫ_И    Е    С [ ДС [ ДС ]    С [ ДС ]    Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —      Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —   Е —	Акм.  акточний клад (пр. 10 км. пр. 10 км.	КОВ   ВКЛАД     100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0	## Cym  ###	г. %   Кс 0   0.  проводил проводил проводил проводил проводил проводил проводил проводил проводил проводил проводил проводил проводил проводил	оэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 11	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз  Код   06~П>~<Ис>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас Сезон Примесь Гезон Примесь Напримесь Наприм	(Ис>   - 6011	по про ком по по по по по по по по по по по по по	Bubbooc  4-(Mq)- 0.603  3-сумме  O'VHUKOB  MFK-201  I'TPAGCK:  Golden  4-год:  Grange  (KP): M:  Grange  Grang	КЛАДЫ_И	СТОЧНИІ КАЛАД ВІЗІ ПОКОВ ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП)	КОВ   ВКЛАП	## Cym    1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	п. %   Ко	DOMESTICS 24.0	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1  001101  . Исходные ПК ЭРА V3 Город Объект Вар.рас Примесь  Коэффиц Приз  Код   06~П>~<Ис>  01101 6011  . Расчетные ПК ЭРА V3 Город Объект Вар.рас Сезон Примесь  — Для лине всей пло располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Располож Расп	(Ис>   - 6011	по площада с с т площада с с т площада с с т площада с с т площада с с т площада с с т площада с с т площада с с т площада с с т с т с т с т с т с т с т с т с т	Выброс  4- (Мq) 0.603  3 сумме  ОЧНИКОВ  МРК-201  ОГРАНИЕ  ОГР	КЛАДН_И	СТОЧНИЙ КЛАД ОЛИ ПДК ОЛИ ПДК ОЛИ ПДК ОЛИ ПДК ОЛИ ОЛИ ОЛИ ОЛИ ОЛИ ОЛИ ОЛИ ОЛИ ОЛИ ОЛИ	КОВ   ВКЛАП	## Cym  ###  ###  ###  ###  ###  ###  ###	т. %   Кс	рэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 11	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА v3 Город Объект Вар.рас Примесь Коэффиц Коэффиц Приз  Код   06~П>~<Ис>  01101 6011  . Расчетные ПК ЭРА v3 Город Объект Вар.рас Сезон Примесь Гаримесь Гариме	(Ис>   - 6011	пощада в неитки мики мики мики мики мики мики мики	Выброс  4- (Мq) - 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	КЛАДЫ_И    Е	СТОЧНИІ КІЛАД ПО ПО ПО ПО ПО ПО ПО ПО ПО ПО ПО ПО ПО	КОВ   ВКЛАД	## Cym  ### Cym  #### Cym  ##### Cym  ###################################	т. %   Кс	рэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 11	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~
<06-П> 1   001101  . Исходные ПК ЭРА V3 Город Объект Вар.рас Примесь  Коэффиц Приз  Код   060-П>-<Ис>  01101 6011  . Расчетные ПК ЭРА V3 Город Объект Вар.рас Сезон Примесь  — Для лине всей пло располож	(Ис>   - 6011	по пры историе и по по по по по по по по по по по по по	Выброс  4- (Мq)  6- (Мq)  6- (Мq)  6- (Мq)  7- (Мq)  8- (Мq)  8- (Мq)  9- (Мрк - 201  9- (Кр): и  9- (Кр	КЛАДН_И    E  - -C[ДС  0  0.  = 0.	СТОЧНИІ КІЛАД ВІЗІ ПОВІЗІ ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП) ВІЗІ (СП)	КОВ   ВКЛАП     100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0	## Cym    1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	п. %   Ко	оэф. влия b=C/N 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 1103545 11	ния   1  195   1  10   1	Alf  ~~~ rp.  1	~~~   ~~~	~   ~~   ~~	~~r/c~~

5. Управляющие параметры расчета



ПК ЭРА v3.0. Модель: MPK-2014



```
:104 Целиноградский р-н, AкM.
:0011 TOO "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расче
          Город
          Объект
                                                                                                      Расчет проводился 24.04.2023 18:37
         Вар.расч. :2
                              :ЗИМА для энергетики и ЛЕТО для остальных
                              :2732 - Керосин (654*)
          Примесь
                               ПДКм.р для примеси 2732 = 1.2 мг/м3 (ОБУВ)
         Фоновая концентрация не задана
          Расчет по прямоугольнику 001 : 2256x1880 с шагом 188
          Расчет по границе санзоны. Покрытие РП 001
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 по 12.0 (Ump) м/с
         Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
     ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
                                          Расч.год: 2024-2032 (СП)
         Вар.расч. :2
                                                                                                     Расчет проводился 24.04.2023 18:37
                            :2732 - Керосин (654*)
                               ПДКм.р для примеси 2732 = 1.2 мг/м3 (ОБУВ)
         Расчет проводился на прямоугольнике 1
         с параметрами: координаты центра X=552, Y=472
                                      размеры: длина(по X) = 2256, ширина(по Y) = 1880, шаг сетки= 188
          Фоновая концентрация не задана
         Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
                                             Расшифровка обозначений
                           Qc - суммарная концентрация [доли ПДК]
                          Сс - суммарная концентрация [мг/м.куб]
                           Фоп- опасное направл. ветра [ угл. град.]
                                                                                          M/c
                        | Иоп- опасная скорость ветра [
        | -Если в расчете один источник, то его вклад и код не печатаются
        | -Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются |
 у= 1412 : У-строка 1 Стах= 0.015 долей ПДК (х= 364.0; напр.ветра=177)
 x= -576 : -388: -200: -12: 176:
                                                                                   364: 552: 740:
                                                                                                                            928: 1116: 1304: 1492: 1680:
Qc : 0.008: 0.010: 0.011: 0.013: 0.014: 0.015: 0.015: 0.014: 0.012: 0.011: 0.009: 0.008: 0.007:
Cc: 0.010: 0.012: 0.013: 0.015: 0.017: 0.018: 0.018: 0.016: 0.015: 0.013: 0.011: 0.010: 0.008:
         1224 : У-строка 2 Стах= 0.022 долей ПДК (х= 364.0; напр.ветра=176)
 x= -576 : -388: -200:
                                                    -12: 176: 364:
                                                                                              552: 740:
                                                                                                                         928: 1116: 1304: 1492: 1680:
Qc: 0.010: 0.012: 0.014: 0.017: 0.020: 0.022: 0.021: 0.019: 0.016: 0.013: 0.011: 0.009: 0.008:
Cc: 0.012: 0.014: 0.017: 0.021: 0.024: 0.026: 0.026: 0.023: 0.020: 0.016: 0.013: 0.011: 0.009:
  у= 1036 : У-строка 3 Стах= 0.034 долей ПДК (х= 364.0; напр.ветра=175)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Oc: 0.011: 0.015: 0.019: 0.025: 0.031: 0.034: 0.033: 0.029: 0.022: 0.017: 0.013: 0.010: 0.009:
Cc: 0.014: 0.018: 0.023: 0.029: 0.037: 0.041: 0.040: 0.034: 0.027: 0.021: 0.016: 0.012: 0.010:
          848 : Y-строка 4 Cmax= 0.059 долей ПДК (x= 364.0; напр.ветра=173)
 \nabla =
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc : 0.013: 0.018: 0.025: 0.036: 0.049: 0.059: 0.056: 0.044: 0.032: 0.022: 0.016: 0.012: 0.009:
Cc: 0.016: 0.022: 0.030: 0.043: 0.059: 0.071: 0.068: 0.053: 0.038: 0.026: 0.019: 0.014: 0.011: Фол: 115: 120: 127: 137: 152: 173: 196: 214: 227: 236: 242: 246: 250:
Uom:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12
 у=
         660 : Y-строка 5 Стах= 0.114 долей ПДК (х= 364.0; напр.ветра=168)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
                               -:----:---:----:----
Qc : 0.015: 0.021: 0.032: 0.051: 0.083: 0.114: 0.104: 0.069: 0.042: 0.027: 0.018: 0.013: 0.010:
Cc : 0.018: 0.025: 0.039: 0.061: 0.099: 0.137: 0.125: 0.083: 0.051: 0.033: 0.022: 0.016: 0.012:
                                                                                                                                       248 :
                                      114 :
Фоп: 106: 109: 114: 123: 139: 168: 205: 229: 241: 248: 253: 255: 258: Uon:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.
          472 : Y-строка 6 Cmax= 0.389 долей ПДК (x= 364.0; напр.ветра=147)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.016: 0.023: 0.037: 0.064: 0.125: 0.389: 0.223: 0.095: 0.051: 0.031: 0.020: 0.014: 0.010:
Cc: 0.019: 0.028: 0.044: 0.077: 0.150: 0.467: 0.267: 0.114: 0.062: 0.037: 0.024: 0.017: 0.012:
```





```
96:
                                                110 : 147 : 236 : 254 : 260 : 263 : 264 :
Φοπ:
                            98 : 102 :
UOn:12.00 :12.00 :12.00 :12.00 :10.34 : 1.44 : 4.86 :12.00 :12.00 :12.00 :12.00 :12.00 :
        x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
                                                                                 ---:--
                             ----:----:---
                                                            ----:----:--
                                                                                            ----:-
Qc: 0.016: 0.023: 0.037: 0.064: 0.123: 0.350: 0.215: 0.095: 0.051: 0.031: 0.020: 0.014: 0.010:
Cc: 0.019: 0.028: 0.044: 0.077: 0.148: 0.420: 0.258: 0.113: 0.061: 0.037: 0.024: 0.016: 0.012:
Фоп: 84: 83: 81: 77: 68: 30: 307: 287: 281: 278: 276: 275: 274: Uon:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.
          96 : У-строка 8 Стах= 0.110 долей ПДК (х= 364.0; напр.ветра= 11)
                  -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
 x = -576:
Qc: 0.015: 0.021: 0.032: 0.050: 0.081: 0.110: 0.101: 0.068: 0.042: 0.027: 0.018: 0.013: 0.010:
Cc: 0.018: 0.025: 0.038: 0.060: 0.097: 0.132: 0.121: 0.081: 0.050: 0.032: 0.022: 0.016: 0.012:
                                        57 :
                                                   41 :
                                                                      335 :
                                                                                312 :
                                                                                          299:
                                                                                                     292 :
                              65:
                                                             11:
                                                                                                               288 :
                                                                                                                         285 :
Φοπ:
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
 y= -92 : Y-строка 9 Cmax= 0.058 долей ПДК (x= 364.0; напр.ветра= 7)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.013: 0.018: 0.025: 0.035: 0.048: 0.058: 0.055: 0.043: 0.031: 0.022: 0.016: 0.012: 0.009:
Сс: 0.016: 0.021: 0.030: 0.043: 0.058: 0.069: 0.066: 0.052: 0.037: 0.026: 0.019: 0.014: 0.011: Фоп: 65: 60: 53: 42: 27: 7: 345: 326: 313: 304: 298: 294: 291:
                                        42 :
Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :0.78 :
      -280 : Y-строка 10 Cmax= 0.034 долей ПДК (x= 364.0; напр.ветра= 5)
 y=
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc : 0.011: 0.014: 0.019: 0.024: 0.030: 0.034: 0.033: 0.028: 0.022: 0.017: 0.013: 0.010: 0.009:
Cc: 0.013: 0.017: 0.023: 0.029: 0.036: 0.040: 0.039: 0.034: 0.026: 0.020: 0.016: 0.012: 0.010:
 y= -468 : Y-строка 11 Cmax= 0.021 долей ПДК (x= 364.0; напр.ветра= 4)
                                                          364:
     -576: -388: -200: -12: 176:
                                                                     552:
                                                                               740:
                                                                                         928: 1116: 1304: 1492: 1680:
Oc: 0.010: 0.012: 0.014: 0.017: 0.020: 0.021: 0.021: 0.019: 0.016: 0.013: 0.011: 0.009: 0.008:
Cc: 0.011: 0.014: 0.017: 0.021: 0.024: 0.026: 0.025: 0.023: 0.019: 0.016: 0.013: 0.011: 0.009:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
              Координаты точки : X= 364.0 м, Y= 472.0 м
 Максимальная суммарная концентрация | Cs= 0.3890671 доли ПДКмр|
                                                               0.4668806 мг/м3
    Достигается при опасном направлении 147 град.
                                и скорости ветра 1.44 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
    7. Суммарные концентрации в узлах расчетной сетки.
    ПК ЭРА v3.0. Модель: MPK-2014
      Тород :104 Целиноградский р-н, АкМ.

Объект :0011 ТОО "Goldenpit", месторождение Мета.

Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37

Примесь :2732 - Керосин (654*)
                      ПДКм.р для примеси 2732 = 1.2 мг/м3 (ОБУВ)
                 Координаты центра : X= 552 м; Y= 472
Длина и ширина : L= 2256 м; B= 1880 м
         | Шаг сетки (dX=dY) : D=
                                                  188 м
       Фоновая концентрация не задана
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5\ \text{до}\ 12.0\,\text{(Ump)}\ \text{м/c}
    (Символ ^ означает наличие источника вблизи расчетного узла)
                                                           7
                                                                   8
                                                                                   10
                                                                                            11
 1-| 0.008 0.010 0.011 0.013 0.014 0.015 0.015 0.014 0.012 0.011 0.009 0.008 0.007 |- 1
 2-| 0.010 0.012 0.014 0.017 0.020 0.022 0.021 0.019 0.016 0.013 0.011 0.009 0.008 |- 2
 3-| 0.011 0.015 0.019 0.025 0.031 0.034 0.033 0.029 0.022 0.017 0.013 0.010 0.009 |- 3
```



4-| 0.013 0.018 0.025 0.036 0.049 0.059 0.056 0.044 0.032 0.022 0.016 0.012 0.009



```
0.015 0.021 0.032 0.051 0.083 0.114 0.104 0.069 0.042 0.027 0.018 0.013 0.010 |- 5
   \texttt{6-C} \ \ \textbf{0.016} \ \ \textbf{0.023} \ \ \textbf{0.037} \ \ \textbf{0.064} \ \ \textbf{0.125} \ \ \textbf{0.389} \ \ \textbf{0.223} \ \ \textbf{0.095} \ \ \textbf{0.051} \ \ \textbf{0.031} \ \ \textbf{0.020} \ \ \textbf{0.014} \ \ \textbf{0.010} \ \ \textbf{C-} \ \ \textbf{6} 
             0.016 0.023 0.037 0.064 0.123 0.350 0.215 0.095 0.051 0.031 0.020 0.014 0.010 |- 7
              0.015 0.021 0.032 0.050 0.081 0.110 0.101 0.068 0.042 0.027 0.018 0.013 0.010 |- 8
  9-1
             0.013 0.018 0.025 0.035 0.048 0.058 0.055 0.043 0.031 0.022 0.016 0.012 0.009 |- 9
10-| 0.011 0.014 0.019 0.024 0.030 0.034 0.033 0.028 0.022 0.017 0.013 0.010 0.009 |-10
11-| 0.010 0.012 0.014 0.017 0.020 0.021 0.021 0.019 0.016 0.013 0.011 0.009 0.008 |-11
         11
                                                                                                                                         8 9
                                                                                                                                                                        10
                    В целом по расчетному прямоугольнику:
                                                                                                                                  0.3890671 долей ПДКмр
  Максимальная концентрация --
                                                                                                                        = 0.4668806 мг/м3
  Достигается в точке с координатами: Хм =
                                                                                                                                     364 0 M
                                                                                                                XM = 364.0 M

YM = 472.0 M
               ( Х-столбец 6, У-строка 6)
  При опасном направлении ветра :
                                                                                                                147 град.
     и "опасной" скорости ветра
                                                                                          : 1.44 м/с
9. Результаты расчета по границе санзоны.
        ПК ЭРА v3.0. Модель: MPK-2014
                                           :104 Целиноградский р-н, АкМ.
:0011 Т00 "Goldenpit", месторождение Мета.
              Город
              Объект
                                                               Расч.год: 2024-2032 (СП)
                                                                                                                                                        Расчет проводился 24.04.2023 18:37
              Вар.расч. :2
              Примесь :2732 - Керосин (654*)
                                              ПДКм.р для примеси 2732 = 1.2 мг/м3 (ОБУВ)
              Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
              Всего просчитано точек: 267
              Фоновая концентрация не задана
               Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
              Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (\text{Ump}) \, \text{m/c}
                                                                   _Расшифровка_обозначений
                                    | Qc - суммарная концентрация [доли ПДК]
                                        Сс - суммарная концентрация [мг/м.куб]
                                        Фоп- опасное направл. ветра [ угл. град.]
                                    | Иоп- опасная скорость ветра [
            | -Если в расчете один источник, то его вклад и код не печатаются|
                                                                                                                                                542:
                    469.
                                       481 •
                                                            493:
                                                                                  506:
                                                                                                       518:
                                                                                                                          530:
                                                                                                                                                                      623:
                                                                                                                                                                                           636:
                                                                                                                                                                                                                648:
                                                                                                                                                                                                                                     660:
                                                                                                                                                                                                                                                          672 •
                                                                                                                                                                                                                                                                               683.
                                                                                                                                                                                                                                                                                                    695.
-91: -91: -90: -89: -88: -87: -85: -73: -71: -69: -66: -64: -61: -57: -53:
Qc : 0.050: 0.050: 0.050: 0.050: 0.049: 0.049: 0.049: 0.046: 0.046: 0.045: 0.045: 0.044: 0.044: 0.043: 0.043:
Cc : 0.060: 0.060: 0.060: 0.059: 0.059: 0.059: 0.058: 0.055: 0.055: 0.054: 0.054: 0.053: 0.052: 0.052: 0.051:
                    719:
                                        730: 741:
                                                                                  753:
                                                                                                       764:
                                                                                                                             775:
                                                                                                                                                 786:
                                                                                                                                                                       797:
                                                                                                                                                                                       807: 818:
                                                                                                                                                                                                                                     828:
                                                                                                                                                                                                                                                         838:
                                                                                                                                                                                                                                                                              848:
                                                                                                                                                                                                                                                                                                    858:
                                                                                                                                                                                                                                                                                                                         867:
  y=
                                                               ---:-
                                                                                                                                                                                                               ----:-
Qc: 0.042: 0.042: 0.042: 0.041: 0.041: 0.040: 0.040: 0.040: 0.040: 0.039: 0.039: 0.039: 0.038: 0.038: 0.038:
Cc: 0.051: 0.050: 0.050: 0.049: 0.049: 0.049: 0.048: 0.048: 0.047: 0.047: 0.047: 0.046: 0.046: 0.046: 0.045:
  y=
                    877:
                                                              895:
                                                                                                        912:
                                                                                                                             921:
                                                                                                                                                  929:
                                                                                                                                                                       937:
                                                                                                                                                                                                                952:
                                                                                                     77:
  x=
                     43:
                                          51: 59:
                                                                                68:
                                                                                                                                86:
                                                                                                                                                95: 104: 114: 124: 133: 144:
                                                                                                                                                                                                                                                                             154:
                                                                                                                                                                                                                                                                                                    164: 175:
-----:-
                                       ----:--
                                                            ----:-----:----:----:----:----:----:-
                                                                                                                                                                 ----:---:---:----:----:----:---
                                                                                                                                                                                                                                                                             ----:
Qc: 0.037: 0.037: 0.037: 0.037: 0.037: 0.036: 0.036: 0.036: 0.036: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035: 0.035
Cc: 0.045: 0.045: 0.044: 0.044: 0.044: 0.044: 0.043: 0.043: 0.043: 0.043: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042
                                       997 1002 1007 1012 1017 1021 1025 1029 1032 1035 1038 1041 1043 1045
                    991 •
              186: 197: 208: 219: 230: 241: 253: 265: 276: 288: 300: 312: 324: 336: 348:
Qc : 0.035: 0.034: 0.034: 0.034: 0.034: 0.034: 0.034: 0.034: 0.034: 0.034: 0.034: 0.034: 0.033: 0.033: 0.033: 0.033:
Cc: 0.042: 0.041: 0.041: 0.041: 0.041: 0.041: 0.041: 0.041: 0.041: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040:
                 1046: 1048: 1049:
                                                                               1050:
                                                                                                   1050: 1050: 1050: 1050:
                                                                                                                                                                                        1050:
                                                                                                                                                                                                             1049: 1048:
                                                                                                                                                                                                                                                      1046:
                                                                                                                                                                                                                                                                            1045:
                                                                                                                                                                                                                                                                                                 1043:
  \nabla =
                                                                                                                                                 431:
                                                                                   397:
                                                                                                        409:
                                                                                                                             421:
                                                                                                                                                                       444:
                                                                                                                                                                                           456:
                                                                                                                                                                                                                468:
                                                                                                                                                                                                                                                          493:
                                                                                                                       -----;-----;-----;-----;-----;-
Oc: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033
Cc: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040
```





						700 %7	uraarri,,	1110100	701 0111	01.00.20	10 000				
у <u>—</u>				1029:											
×=	541:		: 565:			726:		875:	886:						
								:: : 0.030:							
Cc :	0.040:	0.040:	0.040:	0.040:	0.040:	0.040:	0.036	: 0.036:	0.035:	0.035:	0.035:	0.034:	0.034:	0.034:	0.034:
	888:	881:	874:	867:	860:	853:	845	: 837:	829:	820:	812:	803:	794:	785:	775:
y- x=		:	:	:	:	:		1033:	:	::	:	:	::	:	:
	:	:	:	:	:	:		::	:	::	:	:	::	:	:
Cc :	0.033:	0.033:	0.033:	0.033:	0.032:	0.032:	0.032	0.026: 0.032:	0.031:	0.031:	0.031:	0.030:	0.030:	0.030:	0.030:
~~~~															.~~~~~
	766: :					715:		: 693: ::							
x=								: 1146: ::							
Cc :	0.030:	0.030:	0.030:	0.030:	0.029:	0.029:	0.029	: 0.024: : 0.029:	0.029:	0.029:	0.029:	0.029:	0.029:	0.029:	0.028:
	565:	553:	541:	529:	517:	505:	493	: 481:	469:	: 457:	444:	432:	420:	408:	395:
								1222:							
								0.023:							
Čc :	0.028:	0.028:	0.028:	0.028:	0.028:	0.028:	0.028	: 0.028:	0.028:	0.028:	0.028:	0.028:	0.028:	0.028:	0.028:
	383:	371:	359:	346:	334:	322:	310	298:	286:	274:	263:	251:	: 239:	228:	216:
-	:	:	:	:	:	:		1215:	:	::	:	:	::	:	:
	:	:	:	:	:	:		0.024:	:	::	:	:	::	:	:
Cc :	0.028:	0.028:	0.028:	0.028:	0.028:	0.029:	0.029	: 0.024.	0.029:	0.029:	0.029:	0.029:	0.029:	0.029:	0.029:
	205:														
	:	:	:	:	:	:		::	:	::	:	:	::	:	:
	:	:	:	:	:	:		: 1142:	:	::	:	:	::	:	:
Cc :	0.030:	0.030:	0.030:	0.030:	0.030:	0.030:	0.031	: 0.026: : 0.031:	0.032:	0.032:	0.032:	0.033:	0.033:	0.033:	0.033:
~~~~			:	:	:	:		::	:	::	:	:	::	:	:
								: 1013: ::							
								: 0.030: : 0.036:							
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~		~~~~~	. ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	. ~ ~ ~ ~ ~ ~ ~		
y=								-173:							
x=	827:							646:							
Qc :	0.037:	0.039:	0.039:	0.039:	0.040:	0.040:	0.040	0.040:	0.040:	0.040:	0.040:	0.040:	0.041:	0.041:	0.041:
y=								-192:							-178:
X=	550:	538:	526:	513:	501:	489:	477	464:	452:	440:	428:	416:	404:	392:	380:
Qc :	0.041:	0.041:	0.042:	0.042:	0.042:	0.042:	0.042	0.043:	0.043:	0.043:	0.043:	0.044:	0.044:	0.044:	0.044:
								: 0.051:							
															-101:
x=	368:	356:	344:	333:	321:	310:	299	288:	277:	266:	255:	244:	234:	224:	214:
Qc :	0.045:	0.045:	0.045:	0.046:	0.046:	0.046:	0.047	0.047:	0.047:	0.048:	0.048:	0.048:	0.049:	0.049:	0.050:
								: 0.056:							
	-94:		-79:												
	204:							63:							
								0.053:							
		0.060:	0.061:	0.063:	0.063:		0.063	0.063:		0.063:	0.063:	0.063:	0.063:	0.063:	0.063:
Uon:	12.00:	12.00:	12.00:	12.00:	12.00 :	12.00 :	12.00	:12.00 :	12.00 :	:12.00 :	12.00 :	12.00:	:12.00 :	12.00:	12.00:
	100:	110:													
λ=	T00:	110:	120:	131;	142;	100:	104	. 1/3:	100;	. 19/	۷0۶:	220:	232	244	230:


```
-6: -13: -19:
                                                                        -25: -30:
                                                                                                        -36:
                                                                                                                      -41: -46: -50:
                                                                                                                                                                   -55:
                                                                                                                                                                                    -58:
                                                                                                                                                                                                   -62:
                                --:-
                                            ----:-
                                                                         ----:-
                                                                                                          ---:-
                                                                                                                         ---:-
                                                                                                                                         ---:-
                                                                                                                                                       ----:-
Qc: 0.053: 0.052: 0.052: 0.052: 0.052: 0.053: 0.052: 0.053: 0.052: 0.052: 0.053: 0.053: 0.053: 0.053: 0.053:
Cc : 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063:
                                           59:
                                                           60 :
                                                                                                                                       67 :
                                                                         62 :
                                                                                        63 :
                                                                                                        64 :
                                                                                                                       66 :
                                                                                                                                                       69:
                                                                                                                                                                      70 :
Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
            -72: -74: -76: -78: -80: -81: -82: -89: -90: -91: -91: -91:
 x=
            Qc: 0.053: 0.053: 0.053: 0.053: 0.053: 0.053: 0.053: 0.052: 0.051: 0.051: 0.051: 0.050:
Cc: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.063: 0.062: 0.062: 0.061: 0.061: 0.060:
                                            80:
                                                            81 :
                                                                           82 :
                                                                                         84 :
                                                                                                        85 :
                                                                                                                                       96:
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
 Результаты расчета в точке максимума
                                                                                    ПК ЭРА v3.0. Модель: MPK-2014
                    Координаты точки : X= -81.0 м, Y= 328.0 м
 Максимальная суммарная концентрация | Cs=
                                                                                               0.0527679 доли ПДКмр|
                                                                                             0.0633215 мг/м3
                                                                                          84 град.
     Достигается при опасном направлении
                                               и скорости ветра 12.00 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                 _ВКЛАДЫ_ИСТОЧНИКОВ
с | Вклад |В:
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | ---- | <06-П>-<Ис>|---- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --
                                                                                                 |Вклад в%| Сум. %| Коэф.влияния
     1 |001101 6011| П1| 0.1148| 0.052768 | 100.0 | 100.0 | 0.459810883
В сумме = 0.052768 100.0
3. Исходные параметры источников.
     ПК ЭРА v3.0. Модель: MPK-2014
                              :104 Целиноградский р-н, АкМ.
          Город
                           :0011 ТОО "Goldenpit", месторождение Мета.
                                              Расч.год: 2024-2032 (СП)
           Вар.расч. :2
                                                                                                              Расчет проводился 24.04.2023 18:37
          Примесь :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в
                                 пересчете на C); Растворитель РПК-265П) (10) ПДКм.р для примеси 2754 = 1.0 мг/м3
           Коэффициент рельефа (КР): индивидуальный с источников
           Коэффициент оседания (F): индивидуальный с источников
                Признак источников "для зимы" - отрицательное значение высоты
                      |Тип| Н | D | Wo | V1 | Т
                                                                                                             X1
                                                                                                                                 Y1
                                                                                                                                                                        Y2
                                                                                                                                                                                   |Alf| F | KP |Ди| Выброс
<Oб~П>~<Nc>|~~~|~~м~~|~~м~~|~м/с~|~м3/с~~|градС|~~~м~~~~|~~
                                                                                                                                                                                  ~| rp.|~~~|
                                                                                                                                                    ~M~~~
                                                                                                                                                                                           10
                                                                                                                                                                                                      0 1.0 1.000 0 0.0003480
4. Расчетные параметры См, Uм, Хм
     ПК ЭРА v3.0. Модель: МРК-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
          Вар.расч. :2
                                              Расч.год: 2024-2032 (СП)
                                                                                                               Расчет проводился 24.04.2023 18:37
                        :ЗИМА для энергетики и ЛЕТО для остальных
ь :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в
          Примесь
                                 пересчете на C); Растворитель РПК-265П) (10)
ПДКм.р для примеси 2754 = 1.0 мг/м3
    - Для линейных и площадных источников выброс является суммарным по
        всей площади, а Ст - концентрация одиночного источника,
        расположенного в центре симметрии, с суммарным М
                            |Тип |
 |-п/п-|<0б-п>-<uc>|-----[м]---
      1 |001101 6010| 0.000348| M1 | 0.012429 | 0.50 | 11.4
          Суммарный Mq =
                                            0.000348 r/c
          Сумма См по всем источникам =
                                                                                      0.012429 долей ПДК
                  Средневзвешенная опасная скорость ветра = 0.50 \text{ м/c}
           Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
5. Управляющие параметры расчета
     ПК ЭРА v3.0. Модель: МРК-2014
Город :104 Целиноградский р-н, АкМ.
                                :0011 TOO "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
          Объект
          Вар.расч. :2
                                :ЗИМА для энергетики и ЛЕТО для остальных
                               :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)
                                 ПДКм.р для примеси 2754 = 1.0 мг/м3
          Фоновая концентрация не задана
```

274


```
Расчет по прямоугольнику 001 : 2256х1880 с шагом 188
     Расчет по границе санзоны. Покрытие РП 001
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (\text{Ump})\, м/с
     Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
   ПК ЭРА v3.0. Модель: MPK-2014
     Город
                 :104 Целиноградский р-н, АкМ.
                        TOO "Goldenpit", месторождение Мета.
Расч.год: 2024-2032 (СП) Расче
                 :0011 TOO "Goldenpit
     Вар.расч. :2
                                                            Расчет проводился 24.04.2023 18:37
                 :2754 - Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в
     Примесь
                          пересчете на С); Растворитель РПК-265П) (10)
                  ПДКм.р для примеси 2754 = 1.0 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
7. Суммарные концентрации в узлах расчетной сетки.
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч. :2 Расч.год: 2024-2032 (СП) Расче
                                                            Расчет проводился 24.04.2023 18:37
                 :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10) ПДКм.р для примеси 2754 = 1.0 мг/м3
     Примесь
Расчет не проводился: См < 0.05 долей ПДК
9. Результаты расчета по границе санзоны.
   ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
                 :0011 TOO "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
     Объект
      Вар.расч. :2
                 :2754 — Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10) ПДКм.р для примеси 2754 = 1.0 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
3. Исходные параметры источников.
   ПК ЭРА v3.0. Модель: MPK-2014
                 : 104 Целиноградский р-н, АкМ.
:0011 ТОО "Goldenpit", месторождение Мета.
     Город
     Объект
     Вар.расч. :2
                         Расч.год: 2024-2032 (СП)
                                                            Расчет проводился 24.04.2023 18:37
              :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                          пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                  клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) ПДКм.р для примеси 2908 = 0.3 мг/м3
     Коэффициент рельефа (КР): индивидуальный с источников
     Коэффициент оседания (F): индивидуальный с источников
         Признак источников "для зимы" - отрицательное значение высоты
                    H | D | Wo |
                                           V1 |
                                                                                                  |Alf| F | KP |Ди| Выброс
                                                   Т
                                                            Х1
                                                                       Y1
                                                                                 Х2
                                                                                            Y2
    Код
             |Тип|
<06~U>~<NC>| ~~~ | ~
                    ~м~~|~~м~~|~м/с~|~м3/с~~|градС|~~~м~~~
                                                                               ~~M~~~~|
                                                                                            ~M~~~
                                                                                                 ~|rp.|~~~|~~~|~~|~~r/c~
                                                                                                            0 3.0 1.000 0 1.092000
                     2.0
001101 6001 П1
                                                           0.0
                                                                      507
                                                                                446
                                                                                            10
                                                                                                       10
                                                                                                           0 3.0 1.000 0 1.633000
0 3.0 1.000 0 0.0567000
001101 6002 П1
                     2.0
                                                           0.0
                                                                      501
                                                                                410
                                                                                            10
                                                                                                       10
001101 6003 П1
                     2.0
                                                           0.0
                                                                      545
                                                                                439
                                                                                            10
                                                                                                       10
001101 6004 П1
                                                                      461
                                                                                                           0 3.0 1.000 0 0.3250000
0 3.0 1.000 0 0.0197000
                     2.0
                                                           0.0
                                                                                442
                                                                                            10
                                                                                                       10
001101 6007 П1
                                                           0.0
                                                                      459
                                                                                482
                                                                                            10
                     2.0
                                                                                                       10
001101 6008 П1
                                                           0.0
                                                                                                          15 3.0 1.000 0 0.0359000
                                                                      419
001101 6009 П1
                                                                                           247
                                                                                                       55 25 3.0 1.000 0 0.7270000
                                                           0.0
                                                                                383
4. Расчетные параметры См, Uм, Хм
   ПК ЭРА v3.0. Модель: MPK-2014
                 :104 Целиноградский р-н, АкМ.
     Город
                 :0011 ТОО "Goldenpit", месторождение Мета.
      Объект
                                                             Расчет проводился 24.04.2023 18:37
                         Расч.год: 2024-2032 (СП)
     Сезон
                 :ЗИМА для энергетики и ЛЕТО для остальных
     Примесь
                 :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                          пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                  ПДКм.р для примеси 2908 = 0.3 мг/м3
```

	цади, а С	т - конце	нтраци	ков выброс ч одиночно и, с сумма	го ис	точника		рным по
~~~~~~~	.~~~~~~	~~~~~~~	~~~~~		.pnb.m .	~~~~~	~ ~ ~	~~~~~~~
	Источни	ки		q xN	асчет	ные пар	аме	тры
Номер  Ко	<u>—</u> эд I	M	Тип	Cm	1	Um	- 1	Xm
-п/п- <об-п	>- <nc> </nc>		-	-[доли ПД	[K]- -	-[м/с]-	-   -	[м]
1   001103	6001	1.09200	0  П1	0.2134	18	0.50		142.5
2   001103	6002	1.63300	0  П1	0.3191	50	0.50		142.5
3   001103	6003	0.05670	0  П1	0.0110	81	0.50		142.5
4   001103	6004	0.32500	0  П1	0.0635	17	0.50		142.5
5   001103	6007	0.01970	0  П1	0.0038	50	0.50		142.5
6   001103	6008	0.03590	0  П1	0.0070	16	0.50		142.5
7   001103	60091	0.72700	0  П1	0.1420	83	0.50	1	142.5
~~~~~~~		~~~~~~	~~~~		~~~~	~~~~~	~~~	~~~~~~



```
Суммарный Mq =
                                                       3.889300 r/c
            Сумма См по всем источникам =
                                                                                                0.760117 долей ПДК
                     Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
       ПК ЭРА v3.0. Модель: MPK-2014
                                   :104 Целиноградский р-н, AкМ.
:0011 TOO "Goldenpit", месторождение Мета.
            Город
            объект
                                                    Расч.год: 2024-2032 (СП)
            Вар.расч. :2
                                                                                                                            Расчет проводился 24.04.2023 18:37
                                    :ЗИМА для энергетики и ЛЕТО для остальных
            Сезон
            Примесь
                                    :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                                                       пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                                                      клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                                      ПДКм.р для примеси 2908 = 0.3 мг/м3
            Фоновая концентрация не задана
            Расчет по прямоугольнику 001 : 2256х1880 с шагом 188
            Расчет по границе санзоны. Покрытие РП 001
            Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмр) м/с
            Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
       ПК ЭРА v3.0. Модель: MPK-2014
                                  :104 Целиноградский р-н, АкМ.
                                   :0011 ТОО "Goldenpit", месторождение Мета.
            Вар.расч. :2
                                                  Расч.год: 2024-2032 (СП)
                                                                                                                           Расчет проводился 24.04.2023 18:37
            Примесь :2908 — Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства — глина, глинистый сланец, доменный шлак, песок,
                                                       клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                                      ПДКм.р для примеси 2908 = 0.3 мг/м3
            Расчет проводился на прямоугольнике 1
            с параметрами: координаты центра X=552, Y=472
                                               размеры: длина (по X) = 2256, ширина (по Y) = 1880, шаг сетки= 188
            Фоновая концентрация не задана
            Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (\text{Ump}) \, \text{м/c}
                             Сс - суммарная концентрация [мг/м.куб]
                                 Фоп- опасное направл. ветра [ угл. град.]
                                 Uon- опасная скорость ветра [
                                 Ви - вклад ИСТОЧНИКА в Ос [доли ПДК]
                             | Ки - код источника для верхней строки Ви
          | -Если в строке Стах=< 0.05 ПДК, то Фол, Иол, Ви, Ки не печатаются |
 у= 1412 : У-строка 1 Стах= 0.136 долей ПДК (х= 552.0; напр.ветра=182)
                                                             -12: 176:
                                                                                                                 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.074: 0.085: 0.099: 0.113: 0.126: 0.134: 0.136: 0.131: 0.120: 0.107: 0.093: 0.080: 0.069:
Cc: 0.022: 0.026: 0.030: 0.034: 0.038: 0.040: 0.041: 0.039: 0.036: 0.032: 0.028: 0.024: 0.021: Φοπ: 132: 138: 144: 152: 161: 171: 182: 193: 202: 211: 218: 224: 229:
Uoп: 2.30 : 1.48 : 1.22 : 1.10 : 1.03 : 0.98 : 0.97 : 0.99 : 1.03 : 1.10 : 1.22 : 1.52 : 2.43
Ви : 0.031: 0.036: 0.042: 0.048: 0.053: 0.057: 0.057: 0.055: 0.050: 0.045: 0.039: 0.033: 0.029:
Km : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002
Ви: 0.021: 0.025: 0.029: 0.033: 0.037: 0.040: 0.041: 0.039: 0.035: 0.031: 0.027: 0.023: 0.020:
Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6
Ви: 0.012: 0.014: 0.016: 0.018: 0.020: 0.022: 0.022: 0.022: 0.021: 0.019: 0.017: 0.015: 0.013:
Ku: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009:
  y= 1224 : Y-строка 2 Cmax= 0.185 долей ПДК (x= 552.0; напр.ветра=183)
  x= -576 : -388: -200: -12:
                                                                                                                                                        928: 1116: 1304: 1492: 1680:
Qc : 0.084: 0.101: 0.121: 0.144: 0.166: 0.182: 0.185: 0.175: 0.156: 0.134: 0.112: 0.093: 0.078:
Cc : 0.025: 0.030: 0.036: 0.043: 0.050: 0.054: 0.055: 0.053: 0.047: 0.040: 0.034: 0.028: 0.023:
                                                                                157 : 169 : 183 : 196 : 207 :
                                                                                                                                                                     217 : 224 : 230 :
             126 : 132 : 138 :
                                                               147 :
                                                                                                                                                                                                                        235 :
Фоп:
Uon: 1.55 : 1.22 : 1.06 : 0.97 : 0.90 : 0.86 : 0.85 : 0.87 : 0.91 : 0.97 : 1.07 : 1.23 : 1.70
Ви: 0.036: 0.043: 0.051: 0.061: 0.070: 0.077: 0.079: 0.074: 0.066: 0.056: 0.047: 0.039: 0.033:
Ku : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 :
ви : 0.024: 0.029: 0.036: 0.043: 0.050: 0.055: 0.056: 0.053: 0.046: 0.039: 0.032: 0.027: 0.022:
Ки: 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001
Ku: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009:
  y= 1036 : Y-строка 3 Cmax= 0.262 долей ПДК (x= 552.0; напр.ветра=184)
  x= -576: -388: -200: -12: 176: 364: 552:
                                                                                                                                      740: 928: 1116: 1304: 1492: 1680:
```


Oc •	0 095.	0 119.	0 149.	0 186.	0.226:	0 256.	0 262.	0 242.	0 207.	0 169.	0 135.	0 108.	0.088+
					0.068:								
					151:								
Uon:	1.30 :				0.81 :								1.38 :
:	:	:					:			:			:
					0.096:								
					6002 :								
Ви :	0.028:	0.035:	0.044:	0.055:	0.068:	0.079:	0.081:	0.074:	0.062:	0.049:	0.039:	0.031:	0.025:
Ки:	6001 :	6001 :	6001 :	6001:	6001 :	6001:	6001 :	6001:	6001 :	6001:	6001 :	6001 :	6001 :
					0.034:								
					6009 :								
					~~~~~~								
	0.40		1	C	0 204 -		TC /	FF0 0.		10	C)		
_		_	Ka 4	cmax=	0.384 д	олеи пд	K (X=	552.0;	напр.в	етра=18	6)		
	:												
					176:								
	:	:	:	:	:	:	:	:	:	:	:	:	:
Qc :	0.106:	0.137:	0.180:	0.239:	0.312:	0.373:	0.384:	0.340:	0.274:	0.211:	0.161:	0.124:	0.097:
Cc :	0.032:	0.041:	0.054:	0.072:	0.093:	0.112:	0.115:	0.102:	0.082:	0.063:	0.048:	0.037:	0.029:
Фоп:	111 :	115 :	121 :	129 :	142:	161 :	186 :	208 :	224 :	234 :	241 :	246:	250 :
					0.71 :								
•					:								1.20 .
D					0.134:								0 040-
					6002:								
					0.094:								
Ки :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
Ви :	0.017:	0.022:	0.028:	0.036:	0.045:	0.050:	0.048:	0.048:	0.046:	0.040:	0.032:	0.025:	0.019:
Ки:	6009 :	6009 :	6009 :	6009:	6009:	6009 :	6009 :	6009 :	6009 :	6009:	6009 :	6009 :	6009 :
					~~~~~								
	660 .	V ampa		Cm 2	0.547 д		TC /	EE2 0.		0 = 0 = 1 0	1 \		
_		_		Ciliax-	0.54/ Д	олеи пд	V (X-	332.0;	напр.в	erpa-19	Τ)		
					176:								
					:								
Qc :	0.115:	0.152:	0.208:	0.294:	0.417:	0.539:	0.547:	0.457:	0.352:	0.254:	0.183:	0.136:	0.104:
Cc :	0.034:	0.046:	0.062:	0.088:	0.125:	0.162:	0.164:	0.137:	0.105:	0.076:	0.055:	0.041:	0.031:
Φοπ:	102:	105:	109 :	115 :	126:	149 :	191 :	224 :	239 :	248 :	253 :	256 :	258 :
					0.65 :								
					:								
					0.181:								
					6002 :								
Ви :	0.033:	0.044:	0.060:	0.086:	0.124:	0.170:	0.186:	0.148:	0.102:	0.072:	0.051:	0.038:	0.029:
Ки:	6001 :	6001:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
					0.059:								
							6009 :						
					~~~~~								
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~		
y=	472 :	~~~~~ Y-стро	~~~~~	~~~~~		~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~		
y=	472:	~~~~~ Y-стро	~~~~~	cmax=	0.651 д	~~~~~ олей ПД	~~~~~~ К (x=	364.0;	напр.в	~~~~~	9)	~~~~~	~~~~~
	472 : : -576 :	Y-стро -388:	жа 6 -200:	Cmax=	0.651 д	~~~~~ олей ПД 364:	K (x=	364.0;	напр.в 928:	етра=10 1116:	9)	1492:	1680:
y= x=	472 : : -576 :	Y-стро -388:	ка 6 -200:	Cmax= -12:	0.651 д 176:	олей ПД 364:	K (x=	364.0;	напр.ве 928:	етра=10 1116:	9)	1492:	1680:
y= x=	472 : : -576 :	Y-стро -388:	ка 6 -200:	Cmax= -12:	0.651 д	олей ПД 364:	K (x=	364.0;	напр.ве 928:	етра=10 1116:	9)	1492:	1680:
y= x= 	472 : : -576 : : 0.119:	Y-стро -388: : 0.159:	-200: : 0.223:	Cmax= -12:: 0.326:	0.651 д 176:	олей ПД 364: : 0.651:	552: : 0.325:	364.0; 740: 0.545:	928:	1116: : 0.282:	9) 1304: : 0.196:	1492: : 0.143:	1680: : 0.108:
y= x= Qc: Cc:	472 : : -576 : : 0.119: 0.036:	Y-ctpo -388: : 0.159: 0.048:	-200: : 0.223: 0.067:	-12: : 0.326: 0.098:	0.651 д 176: : 0.488: 0.146:	олей ПД 364:: 0.651: 0.195:	552: : 0.325: 0.097:	364.0; 740: 0.545: 0.164:	928: : 0.416: 0.125:	erpa=10 1116: : 0.282: 0.084:	9) 1304: : 0.196: 0.059:	1492: : 0.143: 0.043:	1680: : 0.108: 0.032:
у= x= Qc : Cc : Фоп:	472 : -576 : 0.119: 0.036: 93 :	Y-ctpo -388: : 0.159: 0.048: 93:	-200: : 0.223: 0.067: 94:	Cmax= -12:: 0.326: 0.098: 96:	0.651 д 176: : 0.488: 0.146: 99:	олей ПД 364:: 0.651: 0.195: 109:	552: : 0.325: 0.097: 225:	364.0; 740: : 0.545: 0.164: 257:	928: : 0.416: 0.125: 262:	1116: : 0.282: 0.084: 265:	9) 1304: : 0.196: 0.059: 266:	1492: : 0.143: 0.043: 267:	1680: : 0.108: 0.032: 267:
у= x= Qc : Cc : Фоп:	472 : -576 : 0.119: 0.036: 93 :	Y-crpo -388:: 0.159: 0.048: 93: 0.94:	-200: : 0.223: 0.067: 94: 0.82:	Cmax= -12:: 0.326: 0.098: 96: 0.71:	176: : 0.488: 0.146: 99: 0.61:	олей ПД 364: 0.651: 0.195: 109: 0.50:	552: : 0.325: 0.097: 225: 0.50:	364.0; 740: 0.545: 0.164: 257: 0.53:	928: 0.416: 0.125: 262: 0.64:	1116: : 0.282: 0.084: 265: 0.75:	9) 1304: : 0.196: 0.059: 266: 0.86:	1492: : 0.143: 0.043: 267:	1680: : 0.108: 0.032: 267:
у= х= Qc : Cc : Фоп: Uoп:	472: : -576: 0.119: 0.036: 93: 1.09:	Y-ctpo -388:: 0.159: 0.048: 93: 0.94:	-200: : 0.223: 0.067: 94: 0.82:	Cmax= -12:: 0.326: 0.098: 96: 0.71:	0.651 д 176: : 0.488: 0.146: 99: 0.61:	олей ПД 364:: 0.651: 0.195: 109: 0.50:	K (x= 552:: 0.325: 0.097: 225: 0.50:	740: : 0.545: 0.164: 257: 0.53:	928: : 0.416: 0.125: 262: 0.64:	1116: : 0.282: 0.084: 265: 0.75:	9) 1304: : 0.196: 0.059: 266: 0.86:	1492: : 0.143: 0.043: 267: 0.99:	1680: : 0.108: 0.032: 267: 1.15:
y= Qc : Cc : Фол: Uon: : Ви :	472: -576: 0.119: 0.036: 93: 1.09:	Y-CTPO -388:: 0.159: 0.048: 93: 0.94: : 0.069:	-200: -200: 0.223: 0.067: 94: 0.82:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143:	0.651 д 176: : 0.488: 0.146: 99: 0.61: :	олей ПД 364:: 0.651: 0.195: 109: 0.50: : 0.301:	K (x= 552: 0.325: 0.097: 225: 0.50: 0.235:	740: 740: 0.545: 0.164: 257: 0.53: 0.260:	928: 928: 0.416: 0.125: 262: 0.64: 0.173:	1116: : 0.282: 0.084: 265: 0.75: :	1304: : 0.196: 0.059: 266: 0.86:	1492: : 0.143: 0.043: 267: 0.99:	1680: : 0.108: 0.032: 267: 1.15:
y= yc: Cc: Фоп: Uoп: :	472: -576: 0.119: 0.036: 93: 1.09: 0.051: 6002:	Y-CTPO -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002:	-200:: 0.223: 0.067: 94: 0.82: : 0.097: 6002:	-12: -12: 0.326: 0.098: 96: 0.71: : 0.143: 6002:	176: : 0.488: 0.146: 99: 0.61: : 0.217: 6002:	364: : 0.651: 0.195: 109: 0.50: : 0.301: 6002:	552: 552: 0.325: 0.097: 225: 0.50: 0.235: 6002:	364.0; 740: : 0.545: 0.164: 257: 0.53: : 0.260: 6002:	928: 928: 0.416: 0.125: 262: 0.64: : 0.173: 6002:	1116: : 0.282: 0.084: 265: 0.75: : 0.115: 6002:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 6002:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002:
y= yc: Cc: Фоп: Uoп: : Ви: Ки:	472 : : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034:	Y-CTPO -388: 0.159: 0.048: 93: 0.94: 0.069: 6002: 0.046:	-200: -200: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064:	Cmax= -12:: 0.326: 0.098: 96: 0.71: 0.143: 6002: 0.093:	176: : 0.488: 0.146: 99: 0.61: 0.217: 6002: 0.140:	олей ПД 364:: 0.651: 0.195: 109: 0.50: 0.301: 6002: 0.189:	552: : 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066:	364.0; 740: 0.545: 0.164: 257: 0.53: 0.260: 6002: 0.168:	928: 928: 0.416: 0.125: 262: 0.64: 0.173: 6002: 0.114:	1116: : 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 6002: 0.054:	1492: : 0.143: 0.043: 267: 0.99: 0.058: 6002: 0.039:	1680: : 0.108: 0.032: 267: 1.15: : 0.0044: 6002: 0.030:
y= 	472: -576: 0.119: 0.036: 93: 1.09: 0.051: 6002: 0.034:	Y-ctpo -388: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001:	-200: -200: -200: 0.223: 0.067: 94: 0.82: : 0.097: 6002: 0.064: 6001:	-12: -12: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093:	176: : 0.488: 0.146: 99: 0.61: 0.217: 6002: 0.140: 6001:	олей ПД 364:: 0.651: 0.195: 109: 0.50: : 0.301: 6002: 0.189:	**X**X**X**X**X**X**X**X**X**X**X**X**X	364.0; 740: : 0.545: 0.164: 257: 0.260: 6002: 0.168: 6001:	928:	тата 10 года 1116:	9) 1304: 0.196: 0.059: 266: 0.86: : 0.080: 6002: 0.054: 6001:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002: 0.039:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001:
y= Qc: Сc: Фоп: Uoп: : Ви: Ки: Ви:	472: -576:: 0.119: 0.036: 93: 1.09: 0.051: 6002: 0.034: 6001: 0.019:	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: 0.069: 6002: 0.046: 6001: 0.025:	-200: : 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034:	Cmax= -12:: 0.326: 0.098: 96: 0.71: 0.143: 6002: 0.093: 6001: 0.049:	0.651 д 176:: 0.488: 0.146: 99: 0.217: 6002: 0.140: 6001: 0.070:	олей ПД 364:: 0.651: 0.195: 109: 0.50:: 0.301: 6002: 0.189: 6001: 0.090:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014:	364.0; 740: : 0.545: 0.164: 257: 0.53: 0.260: 6002: 0.168: 6001: 0.057:	928:: 0.416: 0.125: 262: 0.64: : 0.173: 6002: 0.114: 6001: 0.087:	1116: : 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 6002: 0.054: 6001: 0.042:	1492: : 0.143: 0.043: 267: 0.09: : 0.058: 6002: 0.039: 6001: 0.030:	1680: : 0.108: 0.032: 267: 1.15: : 0.044: 6002: 0.030: 6001: 0.023:
y= y= Cc: Фоп: Uоп: : Ви: Ки: Ви: Ки:	472: -576: 0.119: 0.036: 93: 1.09: 0.051: 6002: 0.034: 6001: 0.019:	Y-crpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009:	-200: -200: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.143: 6002: 0.093: 60001: 0.049: 6009:	0.651 m 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:	олей ПД 364:: 0.651: 0.655: 109: 0.795: 109: 0.301: 6002: 0.189: 6001: 0.090:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004:	364.0; 740: : 0.545: 0.164: 257: 0.53: 0.260: 6002: 0.168: 6001: 0.057: 6009:	928: 928: 0.416: 0.125: 262: 0.64: 0.173: 6002: 0.114: 6001: 0.087: 6009:	1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 6002: 0.054: 6001: 0.042:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002: 0.039: 6001: 0.030:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:
y= y= Cc: Фоп: Uоп: : Ви: Ки: Ви: Ки:	472: -576: 0.119: 0.036: 93: 1.09: 0.051: 6002: 0.034: 6001: 0.019:	Y-crpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009:	-200: -200: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.143: 6002: 0.093: 60001: 0.049: 6009:	0.651 д 176:: 0.488: 0.146: 99: 0.217: 6002: 0.140: 6001: 0.070:	олей ПД 364:: 0.651: 0.655: 109: 0.795: 109: 0.301: 6002: 0.189: 6001: 0.090:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004:	364.0; 740: : 0.545: 0.164: 257: 0.53: 0.260: 6002: 0.168: 6001: 0.057: 6009:	928: 928: 0.416: 0.125: 262: 0.64: 0.173: 6002: 0.114: 6001: 0.087: 6009:	1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 6002: 0.054: 6001: 0.042:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002: 0.039: 6001: 0.030:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:
у= 	472: -576: 0.119: 0.036: 93: 1.09: 0.051: 6002: 0.034: 6001: 0.019: 6009:	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009:	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.71: 0.143: 6002: 0.093: 6001: 0.049:	0.651 д 176: : 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:	олей ПД 364:: 0.651: 0.195: : 0.301: 6002: 0.3001: 0.090: 60009:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6001: 0.014: 6004:	364.0; 740: 0.545: 0.164: 257: 0.53: 0.260: 6002: 0.168: 6001: 0.057: 6009:	928:: 0.416: 0.125: 262: 0.64: 0.173: 6002: 0.114: 6001: 0.087: 6009:	1116: : 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002: 0.039: 6001: 0.030:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:
у= 	472: -576: 0.119: 0.036: 93: 1.09: 0.051: 6002: 0.034: 6001: 0.019: 6009:	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009:	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.71: 0.143: 6002: 0.093: 6001: 0.049:	0.651 m 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:	олей ПД 364:: 0.651: 0.195: : 0.301: 6002: 0.3001: 0.090: 60009:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6001: 0.014: 6004:	364.0; 740: 0.545: 0.164: 257: 0.53: 0.260: 6002: 0.168: 6001: 0.057: 6009:	928:: 0.416: 0.125: 262: 0.64: 0.173: 6002: 0.114: 6001: 0.087: 6009:	1116: : 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002: 0.039: 6001: 0.030:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:
у=	472: -576: 0.119: 0.036: 93: 1.09: 0.051: 6002: 0.034: 6001: 0.019: 6009:	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 0.046: 6001: 0.025: 6009: Y-ctpo	-200:: 0.223: 0.067: 94: 0.82: : 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: Cmax=	0.651 m 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009: 0.599 m	олей ПД 364:: 0.651: 0.651: 109: 0.705: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004:	364.0; 740: 	928:: 0.416: 0.125: 262: 0.64: : 0.173: 6002: 0.114: 6001: 0.087: 6009:	1116:: 0.282: 0.084: 265: 0.75: : 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 6002: 0.054: 6001: 0.042: 6009:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002: 0.039: 6001: 0.030: 6009:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:
у=	472: -576: 0.119: 0.036: 93: 1.09: 0.051: 6002: 0.034: 6001: 0.019: 6009:	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 0.046: 6001: 0.025: 6009: Y-ctpo	-200:: 0.223: 0.067: 94: 0.82: : 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: Cmax=	0.651 д 176: : 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:	олей ПД 364:: 0.651: 0.651: 109: 0.705: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004:	364.0; 740: 	928:: 0.416: 0.125: 262: 0.64: : 0.173: 6002: 0.114: 6001: 0.087: 6009:	1116:: 0.282: 0.084: 265: 0.75: : 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 6002: 0.054: 6001: 0.042: 6009:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002: 0.039: 6001: 0.030: 6009:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-ctpo	-200: -200: -200: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:	0.651 m 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009: 0.599 m	олей ПД 364:: 0.651: 0.195: 109: 0.50: 0.301: 6002: 0.189: 6001: 0.090: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004: K (x=	364.0; 740: 0.545: 257: 0.53 : 0.260: 6002: 0.168: 6001: 0.057: 6009: 552.0;	928:	empa=10 1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: : 0.086: 0.086: 0.054: 6001: 0.042: 6009:	1492: : 0.143: 0.043: 267: 0.99: : 0.058: 6002: 0.039: 6001: 0.030:	1680: : 0.108: 0.032: 267: 1.15: : 0.044: 6002: 0.030: 6001: 0.023: 6009:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-ctpo	-200: -0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: Cmax= -12:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009 д	олей ПД 364:: 0.651: 0.195: 109: 0.50: 0.301: 6002: 0.090: 60009: олей ПД	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: K (x=	364.0; 740:	928:	1116: : 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009: erpa=34	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009:	1492: : 0.143: 0.043: 267: 0.099: 0.058: 6002: 0.039: 6001: 0.030: 6009:	1680: : 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-ctpo -388:	-200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200:	Cmax= -12:: 0.326: 0.098: 96: 0.71: 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313:	0.651 д. 176:: 0.488: 0.146: 99: 0.61 : : 0.217: 6002: 0.140: 0.070: 6009:: 0.599 д.	олей ПД 364:: 0.651: 0.195: : 0.301: 6002: 0.306: 0.090: 6009: олей ПД	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6001: 0.014: 6004: K (x= 552:: 0.599:	364.0; 740: 0.545: 0.164: 257: 0.53: 0.260: 6002: 0.168: 6001: 0.057: 6009: 552.0; 740:	928: 928: 0.416: 0.125: 262: 0.64: 0.173: 6002: 0.114: 6001: 0.087: 6009: 4009:	1116: : 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009: erpa=34	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009:: 0.193:	1492: : 0.143: 0.043: 267: 0.099: 0.058: 6002: 0.039: 6001: 0.030: 6009:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : -576 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-ctpo -388: 0.157: 0.047:	-200:: 0.223: 0.067: 94: 0.82: : 0.097: 6002: 0.064: 6001: 0.034: 6009:: xa 7	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.094:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 0.070: 6009: 0.599 д 176: 0.456: 0.137:	олей ПД 364:: 0.651: 0.195: 109: 0.50: : 0.301: 6002: 0.090: 6009: олей ПД	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: K (x= 552: 0.599: 0.180:	364.0; 740: 0.545: 0.164: 257: 0.260: 6002: 0.168: 6001: 0.057: 6009: 740: 0.537: 0.161:	928: 0.416: 0.125: 262: 0.64: 0.173: 6002: 0.174: 6001: 0.087: 6009: 4009:	1116:: 0.282: 0.084: 265: 0.75: 0.0115: 6002: 0.077: 6001: 0.061: 6009:: 0.075: 0.075: 0.075: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.077: 0.082:	9) 1304:: 0.196: 0.059: 266: 0.080: 6002: 0.054: 6001: 0.042: 6009:: 0.1304:	1492: 	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6609 : -576 : 0.118: 0.018:	Y-crpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-crpo -388:: 0.157: 0.047: 81:	Ra 6 -200:: 0.223: 0.067: 94: : 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: Cmax= -12:: 0.313: 0.094: 75:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009 д	олей ПД 364:: 0.651: 0.651: 0.195: : 0.301: 6002: 0.189: 6001: 0.090: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004: K (x= 552:: 0.599: 0.599: 0.180: 340:	364.0; 740: 0.545: 0.545: 0.53: : 0.260: 0.168: 6001: 0.057: 6009: 552.0; 740: 0.537: 0.537: 0.537: 0.537:	928:	empa=10 1116:: 0.282: 0.084: 265: 0.75: : 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 0.86: : 0.080: 0.054: 6001: 0.042: 6009: 0)	1492:: 0.143: 267: 0.99: : 0.058: 6002: 0.039: 6001: 0.030: 6009:: 0.141: 0.042: 278:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : -576 : 0.118: 0.035: 83 : 1.09 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-ctpo -388:: 0.157: 0.047: 81: 0.94:	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: -12:: 0.313: 0.094: 75: 0.72:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:: 0.456: 0.137: 68: 0.61:	олей ПД 364:: 0.651: 0.195: 109: 0.50: 0.301: 6002: 0.189: 6001: 0.090: 6009: олей ПД 364:: 0.583: 0.175: 46: 0.51:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: K (x= 552:: 0.599: 0.180: 340: 0.50:	364.0; 740:	928:	1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009:: 0.193: 0.058: 280: 0.87:	1492:: 0.143: 0.043: 267 : 0.99 : 0.058: 6002 : 0.039: 6001 : 0.030: 6009 :	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : -576 : 0.118: 0.035: 83 : 1.09 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-ctpo -388: 0.157: 0.047: 81: 0.94:	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009: 0.218: 0.065: 79: 0.83:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: Cmax= -12:: 0.313: 0.094: 75: 0.72:	0.651 д. 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 0.070: 6009:: 0.599 д. 176:: 0.456: 0.137: 68: 0.61: :	олей ПД 364:: 0.651: 0.195: 109: 0.50: 0.301: 6002: 0.090: 6009: 0.090: 0.583: 0.175: 46: 0.51:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: XK (x= 552:: 0.599: 0.180: 340: 0.50: :	364.0; 740:	928:	1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.061: 6009: empa=34 1116: 0.275: 0.082: 283: 0.76: :	9) 1304:: 0.196: 0.059: 266: 0.86: 0.080: 6002: 0.054: 6001: 0.042: 6009:: 0.193: 0.058: 280: 0.87: :	1492:: 0.143: 0.043: 267: 0.99: 0.058: 6002: 0.039: 6001: 0.030: 6009:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16:
у=	472 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: 0.069: 6002: 0.046: 6001: 0.025: 6009: -388: 0.157: 0.047: 81: 0.94: 0.068:	-200: -23: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009: -200: -218: 0.065: 79: 0.83: 0.095:	Cmax= -12:: 0.326: 0.098: 96: 0.71: 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.094: 75: 0.72: 0.139:	0.651 д. 176:: 0.488: 0.146: 99: 0.61: 0.217: 6002: 0.140: 0.070: 6009:: 0.456: 0.137: 68: 0.61: 0.209:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.390: 6009:: 0.583: 0.175: 46: 0.51: 0.295:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6001: 0.014: 6004:: 0.599: 0.180: 340: 0.50: 0.316:	364.0; 740: 0.545: 0.164: 257: 0.53: 0.260: 6001: 0.057: 6009: 552.0; 740: 0.537: 0.161: 301: 0.56: 0.245:	928: 0.416: 0.125: 262: 0.64: 0.173: 6002: 0.114: 6001: 0.087: 6009: 4 апр. В в в в в в в в в в в в в в в в в в в	1116:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009:: 0.193: 0.058: 280: 0.87: 0.079:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.118: 0.035: 83 : 1.09 : 0.051: 6002 :	Y-crpo -388: -0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-crpo -388: -3	Ra 6 -200:: 0.223: 0.067: 94: : 0.82: : 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.313: 0.094: 75: 0.72: : 0.139: 6002:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009 д 176:: 0.456: 0.137: 68: 0.61: : 0.209: 0.209:	олей ПД 364:: 0.651: 0.651: 109: 0.705: 0.705: 0.706: 0.706: 0.706: 46: 0.706:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004: XK (x= 552:: 0.599: 0.180: 0.180: : 0.316: 0.316:	364.0; 740: 0.545: 0.545: 0.50: 0.60: 0.260: 0.168: 6001: 0.057: 6009: 552.0; 740: 0.537: 0.537: 0.56: 0.265: 0.265: 0.265: 0.265:	928:	empa=10 1116:: 0.282: 0.084: 265: 0.75: : 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 0.054: 6001: 0.042: 6009: 0.042: 6009: 0.058: 280: 0.058: 280: 0.079:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.118: 0.035: 83 : 1.09 : 0.051: 6002 :	Y-crpo -388: -0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-crpo -388: -3	Ra 6 -200:: 0.223: 0.067: 94: : 0.82: : 0.097: 6002: 0.064: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.313: 0.094: 75: 0.72: : 0.139: 6002:	0.651 д. 176:: 0.488: 0.146: 99: 0.61: 0.217: 6002: 0.140: 0.070: 6009:: 0.456: 0.137: 68: 0.61: 0.209:	олей ПД 364:: 0.651: 0.651: 109: 0.705: 0.705: 0.706: 0.706: 0.706: 46: 0.706:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004: XK (x= 552:: 0.599: 0.180: 0.180: : 0.316: 0.316:	364.0; 740: 0.545: 0.545: 0.50: 0.60: 0.260: 0.168: 6001: 0.057: 6009: 552.0; 740: 0.537: 0.537: 0.56: 0.265: 0.265: 0.265: 0.265:	928:	empa=10 1116:: 0.282: 0.084: 265: 0.75: : 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: 0.86: : 0.080: 0.054: 6001: 0.042: 6009: 0.042: 6009: 0.058: 280: 0.058: 280: 0.079:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : -576 : -576 : 0.118: 0.035: 83 : 1.09 : 0.051: 6002 : 0.033:	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-ctpo -388:: 0.157: 0.047: 81: 0.94: : 0.068: 6002: 0.045:	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6002: 0.095:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.093: 6001: 0.049: 6009:: 0.313: 0.094: 75:: 0.72: : 0.139: 6002: 0.089:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009 д 176:: 0.456: 0.137: 68: 0.61: : 0.209: 6002: 0.130:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:: 0.583: 0.175: 46: 0.51: : 0.295: 6002: 0.180:	K (x= 552:: 0.325: 0.097: 225: 0.50: .: 0.235: 6002: 0.066: 6001: 0.014: 6004: XK (x= 552:: 0.599: 0.180: 340: .: 0.50: .: 0.316: 6002: 0.198:	364.0; 740:	928: 0.416: 0.125: 262: 0.64: : 0.173: 6002: 0.114: 6001: 0.087: 6009: 0.120: 288: 0.399: 0.120: 288: 0.65: : 0.167: 6002: 0.109:	1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009:: 0.275: 0.082: 283: 0.76: : 0.112: 6002: 0.075:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009:: 0.193: 0.058: 280: 280: 0.87: : 0.079: 6002: 0.053:	1492:: 0.143: 0.043: 267 : 0.99 : 0.058: 6002 : 0.039: 6001 : 0.030: 6009 : 0.141: 0.042: 278 : 0.99 : 0.058: 6002 : 0.039:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 0.042: 0.09:
у=	472 :	Y-crpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-crpo -388:: 0.157: 0.047: 81: 0.94: : 0.068: 6002: 0.045: 6001:	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6002: 0.062: 6001:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: Cmax= -12:: 0.313: 0.094: 75: 0.72: : 0.139: 6002: 0.089:	0.651 д. 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009: 70: 0.456: 0.137: 68: 0.61: : 0.209: 6002: 0.130: 6001:	олей ПД 364:: 0.651: 0.195: 109: 0.50: 0.301: 6002: 0.189: 6001: 0.090: 6009: олей ПД 364:: 0.583: 0.175: 46: 0.51: 0.295: 6002: 0.180:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: 552:: 0.599: 0.180: 340: 0.50: : 0.316: 6002: 0.198: 6001:	364.0; 740:	928:	1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009:: 0.275: 0.275: 0.283: 0.76: 0.76: 0.775: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009: : 0.193: 0.058: 280: 0.87: : 0.079: 6002: 0.053: 6001:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.0041: 0.023: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: : 0.044: 6002: 0.029: 6001:
у=	472 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: -388: 0.157: 0.047: 81: 0.94: 0.068: 6002: 0.045: 6001: 0.025:	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.034: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6002: 0.095: 6001: 0.034:	Cmax= -12:: 0.326: 0.098: 96: 0.71: 0.143: 6002: 0.049: 6009:: 0.313: 0.094: 75: 0.72: 0.139: 6002: 0.089: 6001: 0.047:	0.651 д. 176:: 0.488: 0.146: 99: 0.61 : 0.217: 6002: 0.140: 0.070: 6009:: 0.456: 0.137: 68: 0.61: 0.209: 6001: 0.209: 6001: 0.0061: 0.0061:	олей ПД 364:: 0.651: 0.195: 109: 0.50: 0.301: 6002: 0.090: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6001: 0.014: 6004:: 0.599: 0.180: 340: 0.50: 0.316: 6002: 0.316: 6002: 0.198: 6001: 0.051:	364.0; 740:	928:	1116:	9) 1304:: 0.196: 0.059: 266: 0.86: 0.080: 6002: 0.054: 6001: 0.042: 6009:: 0.193: 0.058: 280: 0.079: 6002: 0.079: 6002: 0.079: 6001: 0.042:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: : 0.044: 6002: 0.044: 6002: 0.029: 6001: 0.022:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.035: 83 : 1.09 : 0.051: 6002 : 0.033: 6001 : 0.035:	Y-crpo -388: -0.159: 0.048: 93: 0.094: : 0.069: 0.046: 6001: 0.025: 6009: -388:	-200: -203: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009: 0.218: 0.065: 79: 0.218: 0.065: 6002: 0.065: 6002: 0.065: 6002: 0.062: 6001: 0.095: 6002: 0.095: 6002: 0.095: 6002: 0.095: 6002: 0.095:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.72: : 0.139: 0.72: : 0.139: 0.72: 0.089: 6001: 0.089: 6001: 0.047:	0.651 m 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:: 0.456: 0.137: 68: 0.61: 0.209: 6002: 0.130: 6001: 0.009:	олей ПД 364:: 0.651: 0.651: 109: 0.195: 0.301: 6002: 0.189: 6001: 0.090: 6009: 0.50: 46: 0.51: 0.295: 6002: 0.180: 6001: 0.050:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004: 552:: 0.599: 0.180: 0.180: 0.180: 0.180: 0.180: 0.198: 6002: 0.098: 6001: 0.001: 6004:	364.0; 740: 740: 0.545: 0.565: 0.260: 0.260: 0.057: 6009: 740: 0.537: 0.537: 0.537: 0.56: 0.245: 6002: 0.158: 6001: 0.075: 6009:	928:	######################################	9) 1304: 0.196: 0.059: 266: 0.86: 0.080: 0.054: 6001: 0.042: 6009: 0.193: 0.058: 280: 0.058: 0.079: 6002: 0.053: 6001: 0.053: 6009:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.022: 6009:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.035: 83 : 1.09 : 0.051: 6002 : 0.033: 6001 : 0.035:	Y-crpo -388: -0.159: 0.048: 93: 0.094: : 0.069: 0.046: 6001: 0.025: 6009: -388:	-200: -203: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009: 0.218: 0.065: 79: 0.218: 0.065: 6002: 0.065: 6002: 0.065: 6002: 0.062: 6001: 0.095: 6002: 0.095: 6002: 0.095: 6002: 0.095: 6002: 0.095:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.72: : 0.139: 0.72: : 0.139: 0.72: 0.089: 6001: 0.089: 6001: 0.047:	0.651 д. 176:: 0.488: 0.146: 99: 0.61 : 0.217: 6002: 0.140: 0.070: 6009:: 0.456: 0.137: 68: 0.61: 0.209: 6001: 0.209: 6001: 0.0061: 0.0061:	олей ПД 364:: 0.651: 0.651: 109: 0.195: 0.301: 6002: 0.189: 6001: 0.090: 6009: 0.50: 46: 0.51: 0.295: 6002: 0.180: 6001: 0.050:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004: 552:: 0.599: 0.180: 0.180: 0.180: 0.180: 0.180: 0.198: 6002: 0.098: 6001: 0.001: 6004:	364.0; 740: 740: 0.545: 0.565: 0.260: 0.260: 0.057: 6009: 740: 0.537: 0.537: 0.537: 0.56: 0.245: 6002: 0.158: 6001: 0.075: 6009:	928:	######################################	9) 1304: 0.196: 0.059: 266: 0.86: 0.080: 0.054: 6001: 0.042: 6009: 0.193: 0.058: 280: 0.058: 0.079: 6002: 0.053: 6001: 0.053: 6009:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.022: 6009:
у=	472 :	Y-crpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-crpo -388:: 0.157: 0.047: 81: 0.94: : 0.068: 6002: 0.045: 6001: 0.025: 6000:	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6002: 0.095: 6000: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: -12:: 0.313: 0.094: 75: 0.72: : 0.139: 6002: 0.089: 6001: 0.047: 6009:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009: 76: 0.456: 0.137: 68: 0.61: : 0.209: 6002: 0.140: 6000: 0.456: 0.130: 6000: 0.61: 0.61: 0.61: 0.61:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009: олей ПД 364:: 0.583: 0.175: 46: 0.51: 0.295: 6002: 0.180: 6001: 0.052: 6000:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: 552:: 0.599: 0.180: 340: 0.50: 0.316: 6002: 0.198: 6001: 0.051: 6004:	364.0; 740:	928:	1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009:: 0.275: 0.082: 283: 0.76: : 0.112: 6002: 0.075: 6001: 0.060: 6009:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009: 0.193: 0.058: 280: 0.87: : 0.079: 66002: 0.053: 60001: 0.042: 6009:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.022: 6009:
у=	472 :	Y-crpo -388:: 0.159: 0.048: 93: 0.94: 0.069: 6001: 0.025: 6009: Y-crpo -388: 0.94: 0.068: 6002: 0.046: 0.025: 6009: Y-crpo	-200:: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6002: 0.095: 6000: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: -12:: 0.313: 0.094: 75: 0.72: : 0.139: 6002: 0.089: 6001: 0.047: 6009:	0.651 m 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:: 0.456: 0.137: 68: 0.61: 0.209: 6002: 0.130: 6001: 0.009:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009: олей ПД 364:: 0.583: 0.175: 46: 0.51: 0.295: 6002: 0.180: 6001: 0.052: 6000:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: 552:: 0.599: 0.180: 340: 0.50: 0.316: 6002: 0.198: 6001: 0.051: 6004:	364.0; 740:	928:	1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009:: 0.275: 0.082: 283: 0.76: : 0.112: 6002: 0.075: 6001: 0.060: 6009:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009: 0.193: 0.058: 280: 0.87: : 0.079: 66002: 0.053: 60001: 0.042: 6009:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.022: 6009:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.035: 83 : 1.09 : 0.051: 6002 : 0.033: 6001 : 0.051: 6002 : 0.033: 6001 : 0.09 :	Y-ctpo -388: -0.159: 0.048: 93: 0.094: : 0.069: 0.046: 6001: 0.025: 6009: Y-ctpo -388: -1: 0.047: 81: 0.047: 81: 0.047: 6002: 0.045: 60001: 0.025: 60001: 0.025: 60001: 0.045:	Ra 6 -200:: 0.223: 0.067: 94: 0.82: : 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.218: 0.065: 6002: 0.065: 6002: 0.062: 6001: 0.095: 6002: 0.095:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.098: 6001: 0.049: 6009:: 0.313: 0.989: 6002: 0.089: 6001: 0.089: 60001: 0.087: 6009:	0.651 m 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:: 0.456: 0.137: 68: 0.61: 0.209: 6002: 0.130: 60001: 0.209: 60001: 0.456:	олей ПД 364:: 0.651: 0.651: 109: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004:	364.0; 740:	928:	empa=10 1116:: 0.282: 0.084: 265: 0.75: : 0.115: 6002: 0.077: 6001: 0.061: 6009:	9) 1304:: 0.196: 0.059: 266: 0.080: 0.080: 0.054: 6001: 0.042: 6009:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.022: 6009:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.035: 83 : 1.09 : 0.051: 6002 : 0.035: 6001 : 0.019: 6002 : 0.035: 6001 : 0.019: 6009 :	Y-ctpo -388: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: -388: 0.157: 0.047: 81: 0.94: : 0.068: 6002: 0.045: 6001: 0.025: 6001: 0.025:	Ra 6 -200:: 0.223: 0.067: 94: : 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: : 0.095: 6002: 0.046: 6001: 0.034: 6001: 0.0405: 79: 0.83:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.094: 75: 0.72: 0.139: 6002: 0.089: 6001: 0.089: 6001: 0.047: 6009: Cmax=	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6609:: 0.456: 0.137: 68: 0.61: : 0.209: 6002: 0.130: 6001: 0.0064: 6009: 0.130: 6009:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:	K (x= 552:: 0.325: 0.097: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004:: 0.599: 0.599: 0.180: 0.10: 0.180: 0.198: 6001: 0.0198: 6002: 0.198: 6004: Condent of the condent of t	364.0; 740: 0.545: 0.545: 257: 0.53: 0.260: 6002: 0.168: 6001: 0.057: 6009: 552.0; 740: 0.537: 0.537: 0.56: 0.245: 6001: 0.075: 6002: 0.158: 6001: 552.0;	928:	empa=10 1116:: 0.282: 0.084: 265: 0.75: 0.115: 6002: 0.077: 6001: 0.061: 6009: 200: 0.275: 0.275: 0.275: 0.082: 283: 0.76: 0.112: 6002: 0.075: 6001: 0.060: 6009: 0.112: 6002: 0.075: 6001: 0.060: 6009: 0.112: 1116:	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009: 0.193: 0.058: 280: 0.079: 6002: 0.053: 6001: 0.079: 6002: 0.053: 6001: 0.042:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.029: 6001: 0.029: 6009:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.051: 6002 : -576 : -576 : -576 : -576 : -576 :	Y-CTPO -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: -388:: 0.157: 0.047: 81: 0.94: : 0.068: 6002: 0.045: 6000: -388: Y-CTPO	-200:: 0.223: 0.067: 94: : 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6002: 0.095: 6002: 0.095: 6002: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.094: 75: 0.72: 0.139: 6002: 0.089: 6001: 0.047: 6009: Cmax= -12:: Cmax=	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:: 0.456: 0.137: 68: 0.61: : 0.209: 6802: 0.130: 6001: 0.064: 6002: 0.130: 0.064: 6009:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:: 0.583: 0.175: 46: 0.51: 0.295: 6002: 0.180: 6001: 0.052: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: 552:: 0.599: 0.180: 340: 0.50: 0.316: 6002: 0.198: 6001: 0.051: 6004: K (x=	364.0; 740:	928:	### ##################################	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009: 280: 0.87: : 0.079: 6002: 0.053: 6001: 0.042: 6009: 3)	1492:: 0.143: 0.043: 267 : 0.99 : 0.058: 6002 : 0.039: 6001 : 0.030: 6009 : 278 : 0.041: 0.042: 278 : 0.058: 6002 : 0.039: 6001 : 0.030: 6009 :	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.029: 6001: 0.022: 6009:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.051: 6002 : -576 : -576 : -576 : -576 : -576 :	Y-CTPO -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: -388:: 0.157: 0.047: 81: 0.94: : 0.068: 6002: 0.045: 6000: -388: Y-CTPO	-200:: 0.223: 0.067: 94: : 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6002: 0.095: 6002: 0.095: 6002: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.094: 75: 0.72: 0.139: 6002: 0.089: 6001: 0.047: 6009: Cmax= -12:: Cmax=	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6609:: 0.456: 0.137: 68: 0.61: : 0.209: 6002: 0.130: 6001: 0.0064: 6009: 0.130: 6009:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:: 0.583: 0.175: 46: 0.51: 0.295: 6002: 0.180: 6001: 0.052: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: 552:: 0.599: 0.180: 340: 0.50: 0.316: 6002: 0.198: 6001: 0.051: 6004: K (x=	364.0; 740:	928:	### ##################################	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009: 280: 0.87: : 0.079: 6002: 0.053: 6001: 0.042: 6009: 3)	1492:: 0.143: 0.043: 267 : 0.99 : 0.058: 6002 : 0.039: 6001 : 0.030: 6009 : 278 : 0.041: 0.042: 278 : 0.058: 6002 : 0.039: 6001 : 0.030: 6009 :	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.029: 6001: 0.022: 6009:
у=	472 :	Y-crpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-crpo -388: 0.068: 6002: 0.045: 6001: 0.025: 6009:	-200: -23: 0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009: -200:: 0.218: 0.065: 79: 0.095: 6002: 0.095: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: Cmax= -12:: 0.313: 0.094: 75: 0.72: : 0.139: 60002: 0.089: 6001: 0.047: 6009: Cmax= -12:: 0.267:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:: 0.456: 0.137: 68: 0.61: : 0.209: 6802: 0.130: 6001: 0.064: 6002: 0.130: 0.064: 6009:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:: 0.583: 0.175: 46: 0.51: : 0.295: 6002: 0.180: 6001: 0.052: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004:: 0.599: 0.180: 340: 0.50: 0.50: 0.198: 6002: 0.198: 6001: 0.051: 6004: K (x= 552: 0.473:	364.0; 740:	928:	### Time	9) 1304:: 0.196: 0.059: 266 : 0.080: 6002 : 0.042: 6001 : 0.042: 6009 : 0.179: 6002 : 0.058: 280 : 0.079: 6002 : 0.053: 6001 : 0.042: 6009 :	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.0044: 6002: 0.030: 277: 1.16: 0.044: 6002: 0.022: 6001: 0.022: 6009:: 0.107: 0.032: 277: 1.16: 0.107: 0.032:: 0.107: 0.032:: 0.107: 0.032:: 0.107: 0.0020: 6001: 0.0020: 6001: 0.0020: 6001: 0.0020: 6001: 0.0020: 6001: 0.0020: 6001: 0.0020:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.035: 0.051: 6002 : 0.033: 6001 : 0.051: 6002 : 0.033: 6001 : 0.019: 6009 :	Y-ctpo -388: -0.159: 0.048: 93: 0.094: 0.069: 0.046: 6001: 0.025: 6009: -388:: 0.047: 81: 0.047: 81: 0.047: 81: 0.047: -388:: 0.045: 6000: 0.025: 6000: 0.045: 6001: 0.025: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045:	Ra 6 -200:: 0.223: 0.067: 94: 0.82: : 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.083: 0.095: 6002: 0.062: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.139: 6002: 0.139: 6001: 0.047: 6009: Cmax= -12:: 0.089: 6001: 0.047: 6009: 0.080:	0.651 m 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6009:: 0.456: 0.137: 68: 0.61: : 0.209: 6002: 0.130: 6001: 0.209: 6002: 0.130: 6001: 0.209: 0.473 m	олей ПД 364:: 0.651: 0.651: 109: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004:	364.0; 740: 740: 0.545: 0.545: 0.164: 257: 0.260: 0.260: 0.168: 6001: 0.057: 6009: 552.0; 740: 0.537: 0.161: 301: 0.56: 0.245: 6002: 0.158: 6001: 0.075: 6009:	928:	######################################	9) 1304:: 0.196: 0.059: 266: 0.080: 0.080: 0.054: 6001: 0.042: 6009:: 0.058: 280: 0.079: 6002: 0.053: 6009: 3) 1304:: 0.042: 6009:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.022: 6009:: 1680:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.031:
у=	472 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.035: 83 : 1.09 : 0.051: 6002 : 0.0305: 83 : 0.011: 0.019: 6009 : 0.035: 6001 : 0.019: 6009 : 0.035: 73 :	Y-ctpo -388: -0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009: -388: 0.157: 0.047: 81: 0.94: : 0.068: 6001: 0.025: 6001: 0.025: 6001: 0.045: 6001: 0.045: 6001: 0.045: 0.045: 6001: 0.045: 0.045: 0.045: 0.045:	Ra 6 -200:: 0.223: 0.067: 94: : 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: : 0.095: 6002: 0.044: 6001: 0.034: 6001: 0.045: 0.058: 0.058: 0.058:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009:: 0.313: 0.094: 75: 0.72: 0.139: 6002: 0.089: 6001: 0.047: 6002: Cmax= -12:: 0.139: 6002: 0.047: 6002: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009: 0.047: 6009:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6609:: 0.456: 0.137: 68: 0.61: : 0.209: 6002: 0.130: 68: 0.130: 6001: 0.064: 6009: 0.130: 6001: 0.064: 6009: 0.130: 6009: 0.130: 6009: 0.30: 0.30: 0.473 д	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009: 109: 0.090: 6009: 0.090: 0.175: 100: 0.295: 6002: 0.180: 6001: 0.295: 6002: 0.180: 6001: 0.052: 6009: 0.052: 0.180: 6009: 0.052: 0.180: 6009: 0.180: 6009: 0.180: 6009: 0.180: 6009: 0.295: 0.295: 6009: 0.295: 0.295: 6009: 0.295: 0.295: 6009: 0.295: 0.29	K (x= 552:: 0.325: 0.097: 0.50: : 0.235: 6002: 0.066: 6001: 0.014: 6004:: 0.599: 0.599: 0.50: : 0.316: 6002: 0.180: 0.198: 6001: 0.0198: 6001: 0.050: 0.198: 6004: 0.051: 6004: 0.051: 0.051: 6004: 0.051: 0.053:	364.0; 740: 0.545: 257: 0.53: 0.260: 6002: 0.168: 6001: 0.057: 6009: 740: 0.537: 0.260: 0.161: 301: 0.56: 0.245: 6002: 0.158: 6001: 0.075: 6009: 0.416: 0.075: 325:	928:	### ### #### #########################	9) 1304:: 0.196: 266: : 0.86: 0.86: 0.054: 6001: 0.042: 6009: 0.193: 0.058: 280: 0.079: 6002: 0.053: 6001: 0.042: 0.053: 6001: 0.079: 6002: 0.079: 6002: 0.079: 6002: 0.079: 6002: 0.079: 6002: 0.079: 6002: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 280: 0.079: 0.079: 280: 0.079: 280: 0.079: 0.0	1492:	1680:: 0.108: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.029: 6001: 0.029: 6009:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.051: 6002 : 0.035: 83 : 1.09 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 : -576 :	Y-ctpo -388:: 0.159: 0.048: 93: 0.94: : 0.069: 6002: 0.046: 6001: 0.025: 6009:	-200: -0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6602: 0.062: 6001: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.093: 6001: 0.049: 6009:: 0.313: 0.094: 75:: 0.72: 0.139: 6002: 0.047: 6009:: 0.094: 75:: 0.089: 6001: 0.047: 6009:: 0.089: 6001: 0.047: 6009:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6609:: 0.456: 0.137: 68: 0.61: : 0.209: 6602: 0.130: 68002: 0.130: 6001: 0.064: 6009:: 0.361: 0.108: 46: 0.66:	олей ПД 364:: 0.651: 0.195: 109: 0.301: 6002: 0.189: 6001: 0.090: 6009:: 0.583: 0.175: 46: 0.51: 0.295: 6002: 0.180: 6001: 0.052: 6009:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: K (x= 552:: 0.599: 0.180: 340: 0.50: 0.316: 6002: 0.198: 6001: 0.051: 6004: K (x= 552:: 0.473: 0.142: 353: 0.58:	364.0; 740:	928:	### Time	9) 1304:: 0.196: 0.059: 266: : 0.080: 6002: 0.054: 6001: 0.042: 6009:: 0.193: 0.058: 280: 0.87: : 0.079: 6002: 0.053: 6001: 0.042: 6009:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.029: 6001: 0.029: 6001: 0.029: 6009:
у=	472 : -576 : -576 : 0.119: 0.036: 93 : 1.09 : 0.051: 6002 : 0.034: 6001 : 0.019: 6009 : -576 : 0.118: 0.051: 6002 : 0.033: 6001 : 0.019: 6009 :	Y-crpo -388: -0.159: 0.048: 93: 0.94: 0.069: 6002: 0.046: 6001: 0.025: 6009: Y-crpo -388:: 0.047: 81: 0.94: 0.068: 6002: 0.045: 6001: 0.025: 6009: Y-crpo -388:: 0.044: 70: 0.94: 70: 0.97: :	-200: -0.223: 0.067: 94: 0.82: 0.097: 6002: 0.064: 6001: 0.034: 6009:: 0.218: 0.065: 79: 0.83: 0.095: 6002: 0.095: 6000: 0.034: 6009:	Cmax= -12:: 0.326: 0.098: 96:: 0.71: : 0.143: 6002: 0.093: 6001: 0.049: 6009: -12:: 0.313: 0.094: 75: 0.72: : 0.139: 6002: 0.089: 6001: 0.047: 6009: Cmax= -12:: 0.139: 67: 0.139: 6001: 0.047: 6009:	0.651 д 176:: 0.488: 0.146: 99: 0.61: : 0.217: 6002: 0.140: 6001: 0.070: 6609:: 0.456: 0.137: 68: 0.61: : 0.209: 6002: 0.130: 68: 0.130: 6001: 0.064: 6009: 0.130: 6001: 0.064: 6009: 0.130: 6009: 0.130: 6009: 0.30: 0.30: 0.473 д	олей ПД 364:	K (x= 552:: 0.325: 0.097: 225: 0.50: 0.235: 6002: 0.066: 6001: 0.014: 6004: 552:: 0.599: 0.180: 340: 0.50: 0.50: 0.316: 6002: 0.198: 6001: 0.051: 6004: K (x= 552: 0.599: 0.340: 0.50: 0.50: 0.340: 0.50:	364.0; 740:	928:	### Time	9) 1304:: 0.196: 0.059: 266: : 0.86: 0.86: 0.080: 6002: 0.054: 6001: 0.042: 6009: 0.193: 0.053: 280: 0.079: 6002: 0.053: 6001: 0.042: 6009:	1492:	1680:: 0.108: 0.032: 267: 1.15: 0.044: 6002: 0.030: 6001: 0.023: 6009:: 0.107: 0.032: 277: 1.16: 0.044: 6002: 0.029: 6001: 0.029: 6001: 0.022: 6009:


```
6002 : 6002 : 6002 : 6002 : 6002 :
                                                                                                                                       6002 : 6002 : 6002 : 6002 : 6002 : 6002
                                                                                                                                                                                                                                                                                      6002 : 6002 :
Ви : 0.031: 0.041: 0.055: 0.075: 0.102: 0.130: 0.138: 0.118: 0.089: 0.065: 0.047: 0.036: 0.028:
Ки : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 :
         : 0.018: 0.024: 0.032: 0.041: 0.054: 0.060: 0.064: 0.068: 0.064: 0.051: 0.038: 0.028: 0.021:
         : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 :
                  -92 : Y-строка 9 Cmax= 0.325 долей ПДК (x= 552.0; напр.ветра=356)
   V=
                                                                                                                      176:
                                                                                                                                                                      552:
Qc : 0.101: 0.128: 0.165: 0.212: 0.267: 0.312: 0.325: 0.297: 0.246: 0.194: 0.151: 0.118: 0.094:
Cc: 0.030: 0.038: 0.049: 0.064: 0.080: 0.094: 0.097: 0.089: 0.074: 0.058: 0.045: 0.035: 0.028: Фоп: 65: 60: 54: 46: 33: 16: 356: 336: 321: 311: 303: 298: 294: Uon: 1.21: 1.03: 0.91: 0.82: 0.75: 0.70: 0.68: 0.71: 0.77: 0.85: 0.96: 1.09: 1.30:
                0.044 \colon 0.056 \colon 0.073 \colon 0.095 \colon 0.120 \colon 0.142 \colon 0.146 \colon 0.131 \colon 0.106 \colon 0.081 \colon 0.063 \colon 0.049 \colon 0.039 \colon 0.049                6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002
Ки
Ви: 0.028: 0.036: 0.046: 0.059: 0.075: 0.087: 0.091: 0.082: 0.067: 0.053: 0.041: 0.032: 0.026:
Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6
               0.017: 0.021: 0.027: 0.035: 0.042: 0.049: 0.054: 0.053: 0.048: 0.040: 0.032: 0.025: 0.019:
Ви :
                6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6
                -280 : Y-строка 10 Cmax= 0.224 долей ПДК (x= 552.0; напр.ветра=357)
   \nabla =
             -576 : -388: -200:
                                                                                           -12:
                                                                                                                      176:
                                                                                                                                              364:
                                                                                                                                                                      552:
                                                                                                                                                                                              740:
                                                                                                                                                                                                                      928: 1116: 1304: 1492: 1680:
Qc: 0.090: 0.110: 0.135: 0.165: 0.195: 0.218: 0.224: 0.211: 0.185: 0.154: 0.126: 0.102: 0.084:
Сс: 0.027: 0.033: 0.041: 0.050: 0.059: 0.065: 0.067: 0.063: 0.055: 0.046: 0.038: 0.031: 0.025: Фоп: 57: 52: 46: 37: 26: 12: 357: 342: 330: 320: 312: 306: 301:
Uon: 1.31 : 1.12 : 0.99 : 0.90 : 0.84 : 0.80 : 0.79 : 0.81 : 0.86 : 0.93 : 1.04 : 1.19 : 1.53
ви : 0.039: 0.048: 0.059: 0.073: 0.087: 0.097: 0.099: 0.092: 0.079: 0.065: 0.053: 0.043: 0.035:
                6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002
ви: 0.025: 0.031: 0.038: 0.046: 0.054: 0.060: 0.062: 0.058: 0.050: 0.042: 0.034: 0.028: 0.023:
Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6
Ви: 0.015: 0.018: 0.023: 0.028: 0.033: 0.037: 0.040: 0.039: 0.036: 0.031: 0.026: 0.021: 0.017:
Ku : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 :
   y= -468 : Y-строка 11 Cmax= 0.161 долей ПДК (x= 552.0; напр.ветра=358)
                                                                                             -12:
                                                                                                                      176:
                                                                                                                                               364:
                                                                                                                                                                      552:
                                                                                                                                                                                              740:
                                                                                                                                                                                                                                        1116: 1304: 1492: 1680:
Qc: 0.079: 0.093: 0.110: 0.128: 0.146: 0.158: 0.161: 0.154: 0.140: 0.122: 0.104: 0.088: 0.075:
Cc : 0.024: 0.028: 0.033: 0.039: 0.044: 0.047: 0.048: 0.046: 0.042: 0.037: 0.031: 0.026: 0.022:
                                                                                                                    21 :
Фоп:
                       51:
                                             46:
                                                                      39:
                                                                                              31 :
                                                                                                                                            10 : 358 : 346 : 335 : 326 :
                                                                                                                                                                                                                                                                319 : 312 : 307 :
Uon: 1.71 : 1.26 : 1.10 : 1.01 : 0.94 : 0.91 : 0.90 : 0.92 : 0.96 : 1.04 : 1.15 : 1.39 : 2.14
Ви: 0.034: 0.040: 0.048: 0.056: 0.064: 0.069: 0.070: 0.067: 0.060: 0.052: 0.044: 0.037: 0.031:
         : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002
Ки
Ви: 0.022: 0.026: 0.031: 0.036: 0.040: 0.043: 0.044: 0.042: 0.038: 0.033: 0.028: 0.024: 0.021:
Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6
Ku: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009:
   Результаты расчета в точке максимума
                                                                                                                                     ПК ЭРА v3.0. Модель: MPK-2014
                                                                                                                   364.0 м, Y=
                                                                                                                                                                        472.0 м
                                 Координаты точки : X=
   Максимальная суммарная концентрация | Сs=
                                                                                                                                                        0.6506129 доли ПДКмр|
                                                                                                                                                        0.1951839 мг/м3
         Достигается при опасном направлении 109 град.
                                                                           и скорости ветра 0.50 м/с
Всего источников: 7. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                                                    __ВКЛАДЫ_ИСТОЧНИКОВ_
ос | Вклад |Вк
                                                                                    Выброс
                                                                                                                                                           |Вклад в%| Сум. %| Коэф.влияния
 |----|<Об-П>-<Ис>|----| b=C/M --
                                                                                                                                                                      46.2 | 46.2 | 0.184079289
         1 |001101 6002| Π1|
                                                                                    1.6330| 0.300601|
                                                                                           1.0920|
                                                                                                                            0.189330
         2 |001101 6001| П1|
                                                                                                                                                                      29.1
                                                                                                                                                                                                    75.3 | 0.173379421
         3 |001101 6009| П1|
                                                                                           0.72701
                                                                                                                            0.089950
                                                                                                                                                                     13.8
                                                                                                                                                                                                  89.1 | 0.123727284
          4 |001101 6004| П1|
                                                                                          0.3250|
                                                                                                                             0.058230
                                                                                                                                                                         9.0
                                                                                                                                                                                          | 98.1 | 0.179169610
                                                                                  в сумме =
                                                                                                                            0.638112
                                                                                                                                                                      98.1
                        Суммарный вклад остальных =
                                                                                                                            0.012501
7. Суммарные концентрации в узлах расчетной сетки.
          ПК ЭРА v3.0. Модель: MPK-2014
                                                   :104 Целиноградский р-н, АкМ.
                                                   :0011 ТОО "Goldenpit", месторождение Мета.
                 Вар.расч. :2
                                                                        Расч.год: 2024-2032 (СП)
                                                                                                                                                                             Расчет проводился 24.04.2023 18:37
                                                   :2908 - Пыль неорганическая, содержащая двускись кремния в %: 70-20 (шамот, цемент,
                Примесь
                                                                             пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                                                                              клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                                                     ПДКм.р для примеси 2908 = 0.3 мг/м3
                                        _Параметры_расчетного_прямоугольника_No 1_
                              Координаты центра : X=
Длина и ширина : L=
                                                                                                                     552 M; Y= 47
2256 M; B= 1880 M
                                                                                                                                                                                       472
                              Шаг сетки (dX=dY)
                                                                                              : D=
```

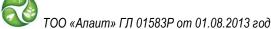


```
Фоновая концентрация не задана
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
    (Символ ^ означает наличие источника вблизи расчетного узла)
                                         5
                                                   6
                                                                  8 9 10 11 12 13
                                 4
                                                         --C----|----|-
 1-| 0.074 0.085 0.099 0.113 0.126 0.134 0.136 0.131 0.120 0.107 0.093 0.080 0.069 |- 1
 2-1
       0.084 0.101 0.121 0.144 0.166 0.182 0.185 0.175 0.156 0.134 0.112 0.093 0.078 |- 2
 3-| 0.095 0.119 0.149 0.186 0.226 0.256 0.262 0.242 0.207 0.169 0.135 0.108 0.088 |- 3
      0.106 0.137 0.180 0.239 0.312 0.373 0.384 0.340 0.274 0.211 0.161 0.124 0.097 |- 4
      0.115 0.152 0.208 0.294 0.417 0.539 0.547 0.457 0.352 0.254 0.183 0.136 0.104 |- 5
 6-C 0.119 0.159 0.223 0.326 0.488 0.651 0.325 0.545 0.416 0.282 0.196 0.143 0.108 C- 6
      0.118 0.157 0.218 0.313 0.456 0.583 0.599 0.537 0.399 0.275 0.193 0.141 0.107 |- 7
       0.111 0.145 0.195 0.267 0.361 0.449 0.473 0.416 0.324 0.239 0.176 0.132 0.102 |- 8
      0.101 0.128 0.165 0.212 0.267 0.312 0.325 0.297 0.246 0.194 0.151 0.118 0.094 |- 9
10-| 0.090 0.110 0.135 0.165 0.195 0.218 0.224 0.211 0.185 0.154 0.126 0.102 0.084 |-10
11-| 0.079 0.093 0.110 0.128 0.146 0.158 0.161 0.154 0.140 0.122 0.104 0.088 0.075 |-11
                                                                 8 9 10
                                                                                          11
          В целом по расчетному прямоугольнику:
                                                               0.6506129 долей ПДКмр
 Максимальная концентрация ----> См =
                                                         = 0.1951839 мг/м3
 Достигается в точке с координатами: Xm = 364.0 м ( X-столбец 6, Y-строка 6) Ym = 472.0 м
       ( Х-столбец 6, У-строка 6)
 При опасном направлении ветра :
                                                      109 град.
   и "опасной" скорости ветра : 0.50 м/с
9. Результаты расчета по границе санзоны.
    ПК ЭРА v3.0. Модель: MPK-2014
                    :104 Целиноградский р-н, АкМ.
       Город
                    :0011 TOO "Goldenpit", месторождение Мета.
       Вар.расч. :2
                              Расч.год: 2024-2032 (СП)
                                                                         Расчет проводился 24.04.2023 18:37
                    :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
       Примесь
                                клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                      ПДКм.р для примеси 2908 = 0.3 мг/м3
       Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
       Всего просчитано точек: 267
       Фоновая концентрация не задана
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмр) м/с
                                _Расшифровка_обозначений
                 | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
                    Фоп- опасное направл. ветра [ угл. град.]
                                                                M/C
                   Uon- опасная скорость ветра [
                   Ви - вклад ИСТОЧНИКА в Ос [доли ПДК]
                 | Ки - код источника для верхней строки Ви
                                                           530:
                                                                      542:
          469 481 .
                            493.
                                        506:
                                                 518:
                                                                               623:
                                                                                        636:
                                                                                                   648 •
                                                                                                              660.
                                                                                                                        672 •
                                                                                                                                  683.
                                                                                                                                             695.
·
 x = -91: -91: -90: -89: -88: -87: -85: -73: -71: -69: -66: -64: -61: -57: -53:
                   Qc: 0.276: 0.276: 0.276: 0.275: 0.275: 0.274: 0.274: 0.269: 0.268: 0.266: 0.265: 0.264: 0.263: 0.262: 0.261:
Cc : 0.083: 0.083: 0.083: 0.083: 0.083: 0.082: 0.082: 0.081: 0.080: 0.080: 0.080: 0.079: 0.079: 0.079: 0.078:
                             97 :
         95 :
                   96:
                                      98: 99: 100: 102: 109: 110: 111: 113: 114: 115:
                                                                                                                                          116 :
Uon: 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.77 : 0.77 : 0.77 : 0.77 : 0.77 : 0.78 : 0.78 : 0.78
Ви : 0.121: 0.120: 0.120: 0.120: 0.119: 0.119: 0.119: 0.116: 0.115: 0.115: 0.115: 0.114: 0.113: 0.113: 0.112:
Ku: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
    : 0.079: 0.079: 0.079: 0.079: 0.079: 0.079: 0.079: 0.078: 0.078: 0.078: 0.077: 0.077: 0.077: 0.077: 0.076:
    : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 :
Ви: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.041: 0.042: 0.041: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.040: 0.039: 0.039: Ки: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 600
                              741:
                                                  764:
                                                            775:
                                                                      786:
                                                                                          807:
                                                                                                    818:
                                                                                                              828:
          719:
                                                                                 797:
                                                                                                                        838:
                                                                                                                                  848:
                                                                                                                                            858:
 y=
                                                                                                                                                       867:
 x= -49: -45: -41: -36: -31: -25: -20: -14: -7: -1: 6: 13: 20: 27:
```

Qc : 0.260: 0.259: 0.258: 0.257: 0.256: 0.256: 0.254: 0.254: 0.254: 0.253: 0.252: 0.252: 0.251: 0.250: 0.250: Cc : 0.078: 0.078: 0.077: 0.077: 0.077: 0.077: 0.076: 0.076: 0.076: 0.076: 0.076: 0.075: 0.075: 0.075: 0.075:

				121 : 0.78 :											
: Ви :	0.112:	0.111:	0.111:	0.110:	0.110:	0.109:	0.109:	0.109:	0.109:	0.108:	: 0.108:	0.108:	0.107:	0.107:	: 0.107:
				6002 : 0.076:											
				6001 : 0.039:											
Ки:	6009 :	6009 :	6009 :	6009:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	68: :	:	:	:	:	:	:	:	:	:		:
				0.248:											
				137 : 0.78 :											
: Ви :	0.106:			0.106:											: 0.105:
				6002 : 0.074:											
Ки:	6001 :	6001 :	6001 :	6001 : 0.037:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
Ки:	6009 :	6009 :	6009 :	6009:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
				1007:											
	:	:	:	219:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Cc :	0.074:	0.074:	0.074:	0.246: 0.074:	0.074:	0.074:	0.074:	0.074:	0.074:	0.074:	0.075:	0.075:	0.075:	0.075:	0.075:
	0.78 :	0.78 :	0.78:	153 : 0.78 :	0.78:	0.78:	0.78:	0.78 :	0.78:	0.77 :	0.77 :	0.77 :	0.77 :	0.77 :	0.77 :
		0.105:	0.105:	0.105:	0.106:	0.106:	0.106:	0.106:	0.106:	0.106:	0.106:	0.106:	0.106:	0.106:	0.107:
				6002 : 0.075:											
Ки:	6001 :	6001 :	6001 :	6001 : 0.037:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
Ки:	6009 :	6009 :	6009 :	6009:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
				1050:											
y- x=	:	:	:	397:	:	:	:	:	:	:	:	:	:		:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Cc :	0.075:	0.075:	0.075:	0.252:	0.076:	0.076:	0.076:	0.077:	0.077:	0.077:	0.077:	0.077:	0.078:	0.078:	0.078:
				170 : 0.76 :	0.76 :	0.76 :	0.76 :	0.76 :	0.76 :	0.76 :	0.76 :	0.75 :	0.75 :		
: Ви :	0.107:			0.108:		0.109:									: 0.112:
				6002 : 0.078:											
Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
				0.036: 6009:											
				~~~~~											
-	:	:	:	1029:	:	:	:	:	:	:		:	:	:	:
×=				577: :										942:	
				0.265:											
				186 : 0.74 :											
:	:	:	:		:	:	:	:	:	:	:	:	:	:	:
Ки:	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :
				0.082: 6001:											
				0.039: 6009:											
				~~~~~											
	888:			867:		853:								785:	
x=	963:	974:	984:	994:	1004:	1014:	1023:	1033:	1042:	1051:	1059:	1068:	1076:	1084:	1092:
Qc :	0.247:	0.246:	0.245:	0.245:	0.243:	0.242:	0.242:	0.241:	0.240:	0.240:	0.239:	0.238:	0.238:	0.237:	0.237:
Фоп:	223 :	224 :	226 :	0.073: 227:	228 :	229 :	230 :	231 :	232 :	233 :	234 :	235 :	236 :	237 :	238 :
Uon:				0.76:		0.76:									
Ви :	0.104:	0.104:	0.104:	0.103: 6002:	0.102:	0.102:	0.102:	0.101:	0.101:	0.100:	0.100:	0.099:	0.099:	0.099:	0.099:
				0.072:											

Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
						0.043: 6009:									
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
	766:					715:									
x=						1134:									
Qc :	0.236:	0.236:	0.236:	0.235:	0.235:	0.235: 0.070:	0.235:	0.235:	0.234:	0.234:	0.233:	0.232:	0.232:	0.231:	0.231:
Фоп:	239 :	240 :	241 :	242 :	243 :	244 :	245 :	246 :	247 :	248 :	253 :	254 :	255 :	256 :	257 :
:	:	:	:	:	:		:	:	:	:	:	:	:	:	:
Ки:	6002 :	6002 :	6002 :	6002 :	6002 :	0.097: 6002:	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :
						0.067: 6001 :									
						0.047: 6009:									
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
	565:					505:		481:							
x=	1203:	1207:	1210:	1213:	1216:	1218:	1220:	1222:	1224:	1225:	1226:	1227:	1227:	1227:	1227:
Qc :	0.230:	0.230:	0.229:	0.229:	0.229:	0.229: 0.069:	0.229:	0.228:	0.228:	0.228:	0.228:	0.228:	0.228:	0.228:	0.228:
Фоп:	258 :	259 :	260 :	261 :	262 :	263 : 0.81 :	264 :	265 :	266:	267 :	268 :	269 :	270 :	271 :	272 :
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Ки:	6002 :	6002 :	6002 :	6002 :	6002 :	0.093: 6002:	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :
Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	0.063: 6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
Ки:	6009 :	6009 :	6009 :	6009 :	6009 :	0.049: 6009:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
						~~~~~									
		:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	1219:	:	:	:	:	:	:	:	:	:
						0.228:									
						278 : 0.81 :									
: Ви :	0.093:					0.093:						0.094:		0.094:	0.095:
						6002 : 0.062:									
Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
Ки:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
	205:			172:		151:									64:
 A=	:	:	:	:	:	1155:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	0.235:	:	:	:	:	:	:	:	:	:
Cc :	0.070:	0.070:	0.070:	0.070:	0.070:	0.070:	0.071:	0.071:	0.071:	0.071:	0.072:	0.072:	0.072:	0.072:	0.073:
Uon:	0.81 :	0.80 :	0.80 :	0.80 :	0.80 :	293 : 0.80 :	0.80 :	0.80 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.78 :
	0.095:	0.095:	0.096:	0.096:	0.096:	0.097:	0.097:	0.097:	0.098:	0.098:	0.099:	0.099:	0.100:	0.100:	
						6002 : 0.064:									
						6001 : 0.050:									
						6009 :									
	55:	46:	38:	30:	22:	14:	7:	0:	-7:	-14:	-20:	-26:	-32:	-38:	-43:
						1033:									
						0.249:									
Cc :	0.073:	0.073:	0.074:	0.074:	0.074:	0.075: 308:	0.075:	0.075:	0.076:	0.076:	0.077:	0.077:	0.078:	0.078:	0.079:
	0.78 :	0.78 :	0.78 :	0.78 :	0.77 :	0.77 :	0.77 :	0.77 :	0.77 :	0.76 :	0.76 :	0.76 :	0.76 :	0.76 :	0.75 :
Ви :	0.101:	0.102:	0.103:	0.103:	0.104:	0.105:	0.105:	0.106:	0.107:	0.107:	0.108:	0.109:	0.109:	0.110:	0.111:
Ви :	0.066:	0.066:	0.067:	0.067:	0.067:	6002 : 0.068:	0.068:	0.068:	0.069:	0.069:	0.070:	0.070:	0.071:	0.071:	0.072:
Ви :	0.051:	0.051:	0.051:	0.051:	0.051:	6001 : 0.051:	0.051:	0.051:	0.051:	0.052:	0.052:	0.052:	0.052:	0.052:	0.052:
						6009:									
	-95:	-147:	-152:	-157:	-161:	-166:	-170:	-173:	-177:	-180:	-182:	-185:	-187:	-189:	-190:






x=	827:	715:	704:	693:	681:	670:	658:	646:	635:	623:	611:	599:	587:	574:	562:
Qc : Cc : Φοπ:	0.274: 0.082: 329:	0.273: 0.082: 341:	0.272: 0.082: 342:	0.271: 0.081: 343:	0.271: 0.081: 344:	0.270: 0.081: 345:	0.269: 0.081: 346:	0.269: 0.081: 348: 0.74:	0.268: 0.080: 349:	0.268: 0.080: 350:	0.268: 0.080: 351:	0.267: 0.080: 352:	0.267: 0.080: 353:	0.266: 0.080: 355:	0.266: 0.080: 356:
Ки : Ви : Ки : Ви :	6002 : 0.075: 6001 : 0.052:	0.119: 6002: 0.075: 6001: 0.050:	6002 : 0.075: 6001 : 0.049:	0.119: 6002 : 0.075: 6001 : 0.049:	0.119: 6002: 0.075: 6001: 0.048:	0.119: 6002 : 0.075: 6001 : 0.048:	0.119: 6002 : 0.074: 6001 : 0.047:	: 0.118: 6002: 0.074: 6001: 0.048: 6009:	0.118: 6002: 0.074: 6001: 0.048:	0.118: 6002: 0.074: 6001: 0.047:	0.119: 6002 : 0.074: 6001 : 0.047:	0.118: 6002: 0.074: 6001: 0.047:	0.119: 6002: 0.074: 6001: 0.046:	0.118: 6002: 0.074: 6001: 0.047:	0.118: 6002: 0.074: 6001: 0.047:
								~~~~~							
								-192: :							
x=								464:							
Cc :	0.080:	0.080:		0.080:	0.080:	0.079:	0.080:	0.265: 0.080: 5:	0.080:	0.080:	0.080:	0.080:	0.080:	0.080:	0.080:
			0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	
			0.118:	0.118:	0.118:	0.118:	0.118:	0.118:	0.118:	0.119:	0.119:	0.119:	0.119:	0.119:	
								6002 : 0.073:							
								6001 : 0.045:							
Ки:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
	:	:	:	:	:	:	:	-145: :	:	:	:	:	:	:	:
	368: :							288:							
								0.269: 0.081:							
Фоп:	14 :	15 :	16:	17 :	18 :	20 :	21 :	22 :	23 :	24:	25 :	27 :	28 :	29 :	30 :
:	:	:	:	:	:	:	:	0.74 :	:	:	:	:	:	:	:
								0.121: 6002:							
Ви :	0.074:	0.074:	0.074:	0.074:	0.075:	0.074:	0.074:	0.075:	0.075:	0.075:	0.075:	0.075:	0.075:	0.076:	0.076:
								6001 : 0.044:							
Ки:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
	-94: :							24:	33:						
x=			185:			80:		63:	54: :		38:				7: :
Cc :	0.082:	0.082:	0.083:	0.083:	0.083:	0.083:	0.083:	0.275:	0.083:	0.082:	0.082:	0.082:	0.082:	0.082:	0.082:
Фоп: Uoп:		0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	0.74 :	49 : 0.74 :	0.74 :	0.74 :	0.75 :	0.75 :	0.75 :	56 : 0.75 :	
: Ви :	0.124:	0.124:		0.125:				0.124:							: 0.123:
								6002 : 0.077:							
Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
								0.044: 6009:							
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	.~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
								175: :						244:	
x=								-41:							
Qc :	0.274:	0.274:	0.273:	0.273:	0.274:	0.274:	0.274:	0.274:	0.274:	0.274:	0.274:	0.275:	0.275:	0.275:	0.275:
Фоп:	58 :	59 :	60 :	61 :	63 :	64 :	65 :	0.082:	67 :	68 :	70 :	71 :	72 :	73 :	74 :
:	:	:	:	:	:	:	:	0.75 :	:	:	:	:	:	:	:
								0.122: 6002:							
Ви :	0.077:	0.077:	0.077:	0.077:	0.077:	0.077:	0.077:	0.077:	0.077:	0.078:	0.077:	0.077:	0.078:	0.078:	0.078:
								6001 : 0.042:							6001 : 0.042:
Ки:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	
	268:							420:							
	:	:	:	:	:	:	:	:	:	:	:	:			
		:	:	:	:	:	:	-89: :	:	:	:	:			
	0.083:	0.083:	0.083:	0.083:	0.083:	0.083:	0.084:	0.278: 0.084: 90:	0.083:	0.083:	0.083:	0.083:			
	, , .	, , .	, , ,	,,,	٠.	· ·	٠ ـ ـ ٠	٠.	J	J2 .	,,,	,,,			



```
Uon: 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76 : 0.76
Bu: 0.122: 0.122: 0.123: 0.123: 0.122: 0.123: 0.123: 0.123: 0.123: 0.122: 0.122: 0.121: 0.121: 0.121: 0.121: Ku: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6
ви: 0.078: 0.078: 0.078: 0.079: 0.079: 0.079: 0.080: 0.080: 0.080: 0.080: 0.080: 0.079:
     : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 :
Ви: 0.042: 0.043: 0.043: 0.043: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.042: 0.04
  Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                                                                                                        341.0 м
                    Координаты точки : X = -82.0 \text{ м, } Y =
  Максимальная суммарная концентрация | Cs= 0.2787223 доли ПДКмр|
                                                                                             0.0836167 мг/м3
      Достигается при опасном направлении 82 град и скорости ветра 0.76 м/с
                                                                                        82 град.
Всего источников: 7. В таблице заказано вкладчиков не более чем с 95% вклада
         |Вклад в%| Сум. %| Коэф.влияния
      1 |001101 6002| П1|
                                                  1.6330| 0.122616 |
                                                                                                                          44.0 | 0.075086415
                                                                                                      28.6 | 72.5 | 0.072872072
15.2 | 87.7 | 0.058135662
      2 |001101 6001| M1|
                                                        1.0920|
                                                                             0.079576 |
                                                     0.7270|
                                                                             0.042265 L
      3 1001101 60091 П11
                                                       0.3250|
                                                                             0.025950 |
                                                                                                         9.3 | 97.0 | 0.079846330
      4 |001101 6004| П1|
                                                    В сумме =
                                                                             0.270407
                                                                                                      97.0
               Суммарный вклад остальных =
3. Исходные параметры источников.
      ПК ЭРА v3.0. Модель: MPK-2014
                              :104 Целиноградский р-н, АкМ.
:0011 TOO "Goldenpit", месторождение Мета.
          Город
          Вар.расч. :2
                                            Расч.год: 2024-2032 (СП)
                                                                                                        Расчет проводился 24.04.2023 18:37
                               :2909 - Пыль неорганическая, содержащая двускись кремния в %: менее 20 (доломит, пыль
                                               цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
                                вращающихся печей, боксит) (495*)
ПДКм.р для примеси 2909 = 0.5 мг/м3
          Коэффициент рельефа (КР): индивидуальный с источников
          Коэффициент оседания (F): индивидуальный с источников Признак источников "для зимы" - отрицательное значение высоты
                                                                            V1 |
                                                                                                                                                                    Y2
                                                                                                                                                                               |Alf| F | KP |Ди| Выброс
                                                 D | Wo |
                                                                                           Т
<Oб~П>~<Vc>| ~~~ | ~~м~~ | ~~м~~ | ~м/с~ | ~м3/с~~ | градС | ~~~м~~~ | ~~~м~~~~ |
                                                                                                                                                              ~~~M~~~~| rp. | ~~~|
001101 6006 П1
 2.0
 0.0
 498
 504
 1.0
 10 0 3.0 1.000 0 0.0152000
4. Расчетные параметры {\tt Cm,Um,Xm}
 ПК ЭРА v3.0. Модель: MPK-2014
 :104 Целиноградский р-н, АкМ.
 Город
 :0011 ТОО "Goldenpit", месторождение Мета.
 Объект
 Вар.расч. :2
 Расч.год: 2024-2032 (СП)
 Расчет проводился 24.04.2023 18:37
 :ЗИМА для энергетики и ЛЕТО для остальных
 Сезон
 :2909 - Пыль неорганическая, содержащая двускись кремния в %: менее 20 (доломит, пыль
 Примесь
 цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
 вращающихся печей, боксит) (495*)
 ПДКм.р для примеси 2909 = 0.5 мг/м3
 - Для линейных и площадных источников выброс является суммарным по
 всей площади, а Cm - концентрация одиночного источника,
 расположенного в центре симметрии, с суммарным {\tt M}
 _____Их расчетные параметры
 Источники
 М Тип
 Cm
 Um |
 Код
 1 |001101 6006|
 0.015200| N1 | 3.257347 | 0.50
 Суммарный Мq =
 0.015200 r/c
 Сумма См по всем источникам =
 3.257347 долей ПДК
 Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
 Город
 :104 Целиноградский р-н, АкМ.
 :0011 TOO "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расче
 Объект
 Вар.расч. :2
 Расчет проводился 24.04.2023 18:37
 :ЗИМА для энергетики и ЛЕТО для остальных
 Примесь
 :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
 цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
 вращающихся печей, боксит) (495*)
ПДКм.р для примеси 2909 = 0.5 мг/м3
 Фоновая концентрация не задана
 Расчет по прямоугольнику 001 : 2256х1880 с шагом 188
 Расчет по границе санзоны. Покрытие РП 001
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
```



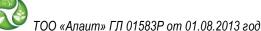


Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) м/с Средневзвешенная опасная скорость ветра Uсв= 0.5 м/с

6. Результаты расчета в виде таблицы.

ПК ЭРА v3.0. Модель: MPK-2014 :104 Целиноградский р-н, АкМ. Город :0011 TOO "Goldenpit", месторождение Мета. :2 Расч.год: 2024-2032 (СП) Расче Объект Вар.расч. :2 Расчет проводился 24.04.2023 18:37 :2909 - Пыль неорганическая, содержащая двускись кремния в %: менее 20 (доломит, пыль Примесь цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся  $\bar{\text{печей}}$ , боксит) (495*) ПДКм.р для примеси 2909 = 0.5 мг/м3 Расчет проводился на прямоугольнике 1 с параметрами: координаты центра X=552, Y=472размеры: длина(по X)= 2256, ширина(по Y)= 1880, шаг сетки= 188 Фоновая концентрация не задана Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмр) м/с Сс - суммарная концентрация [мг/м.куб] Фоп- опасное направл. ветра [ угл. град.] M/C | Иоп- опасная скорость ветра [ | -Если в расчете один источник, то его вклад и код не печатаются -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются  $\mid$ y= 1412 : Y-строка 1 Cmax= 0.003 долей ПДК (x= 552.0; напр.ветра=183) -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.001: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.001: Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 1224 : Y-строка 2 Cmax= 0.005 долей ПДК (x= 552.0; напр.ветра=184) -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: ----:------:--Qc: 0.002: 0.002: 0.003: 0.003: 0.004: 0.005: 0.005: 0.004: 0.004: 0.003: 0.002: 0.002: 0.001: Cc: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: y= 1036 : У-строка 3 Стах= 0.009 долей ПДК (х= 552.0; напр.ветра=186) x= -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.002: 0.003: 0.003: 0.005: 0.007: 0.009: 0.009: 0.007: 0.005: 0.004: 0.003: 0.002: 0.002: Cc: 0.001: 0.001: 0.002: 0.002: 0.003: 0.004: 0.005: 0.004: 0.003: 0.002: 0.001: 0.001: 0.001: 848 : У-строка 4 Стах= 0.029 долей ПДК (х= 552.0; напр.ветра=189) V =-12: -388: -200: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc: 0.002: 0.003: 0.004: 0.007: 0.013: 0.027: 0.029: 0.018: 0.009: 0.005: 0.003: 0.002: 0.002: Cc: 0.001: 0.001: 0.002: 0.003: 0.006: 0.013: 0.015: 0.009: 0.004: 0.003: 0.002: 0.001: 0.001: 660 : У-строка 5 Стах= 0.090 долей ПДК (х= 552.0; напр.ветра=199) x = -576 : -388 : -200 :-12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: ----:----:------:------:-----:-----:-----:-Qc: 0.002: 0.003: 0.005: 0.009: 0.028: 0.068: 0.090: 0.041: 0.014: 0.006: 0.004: 0.003: 0.002: Cc: 0.001: 0.002: 0.002: 0.005: 0.014: 0.034: 0.045: 0.020: 0.007: 0.003: 0.002: 0.001: 0.001: 199 : 237 : 250 : 256 : 259: 103: 107 : 116 : 139 : 100: UOn:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 472 : Y-строка 6 Cmax= 0.278 долей ПДК (x= 552.0; напр.ветра=300)  $\nabla =$ x= -576 : -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: -----Qc: 0.002: 0.003: 0.005: 0.010: 0.033: 0.111: 0.278: 0.053: 0.016: 0.007: 0.004: 0.003: 0.002: Cc: 0.001: 0.002: 0.003: 0.005: 0.017: 0.056: 0.139: 0.026: 0.008: 0.003: 0.002: 0.001: 0.001: 77 : 277 : 88: 86: 84 : 300 : 273 : Uon:12.00 :12.00 :12.00 :12.00 :12.00 :10.96 : 2.29 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 284 : Y-строка 7 Стах= 0.059 долей ПДК (х= 552.0; напр.ветра=346)  $\nabla =$ -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680: Qc : 0.002: 0.003: 0.005: 0.008: 0.023: 0.049: 0.059: 0.033: 0.012: 0.006: 0.004: 0.003: 0.002: Cc : 0.001: 0.002: 0.002: 0.004: 0.011: 0.024: 0.030: 0.016: 0.006: 0.003: 0.002: 0.001: 0.001: 76: 73: 67 : 31 : 312 : 297 : 290: 78 : 56: 346: 285 : 282: Фоп: UON: 12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00






```
96: Y-строка 8 Стах= 0.019 долей ПДК (х= 552.0; напр.ветра=352)
 88: -200: -12: 176: 364: 552: 740: 928: 1116:
--:----:
 -576 : -388: -200:
 1116: 1304: 1492: 1680:
Qc: 0.002: 0.003: 0.004: 0.006: 0.010: 0.017: 0.019: 0.012: 0.007: 0.005: 0.003: 0.002: 0.002:
Cc: 0.001: 0.001: 0.002: 0.003: 0.005: 0.008: 0.009: 0.006: 0.004: 0.002: 0.002: 0.001: 0.001:
 -92 : Y-строка 9 Cmax= 0.007 долей ПДК (x= 552.0; напр.ветра=355)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.002: 0.002: 0.003: 0.004: 0.006: 0.007: 0.007: 0.006: 0.005: 0.004: 0.003: 0.002: 0.002:
Cc: 0.001: 0.001: 0.002: 0.002: 0.003: 0.003: 0.004: 0.003: 0.002: 0.002: 0.001: 0.001: 0.001:
у= -280 : У-строка 10 Стах= 0.004 долей ПДК (х= 552.0; напр.ветра=356)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.002: 0.002: 0.002: 0.003: 0.004: 0.004: 0.004: 0.004: 0.003: 0.003: 0.003: 0.002: 0.002: 0.001:
Cc: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001:
y= -468 : Y-строка 11 Cmax= 0.003 долей ПДК (x= 552.0; напр.ветра=357)
 -388:
 -200:
 -12:
 552:
 1116: 1304: 1492: 1680:
Oc: 0.001: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Результаты расчета в точке максимума \, ПК ЭРА v3.0. Модель: MPK-2014
 Координаты точки : X= 552.0 м, Y= 472.0 м
Максимальная суммарная концентрация | Cs= 0.2779509 доли ПДКмр|
 0.1389755 мг/м3
 Достигается при опасном направлении 300 град. и скорости ветра 2.29 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
 ВКЛАДЫ_ИСТОЧНИКОВ
С | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 Код
 1 |001101 6006| П1| 0.0152| 0.277951 | 100.0 | 100.0 | 18.2862434
В сумме = 0.277951 100.0
7. Суммарные концентрации в узлах расчетной сетки.
 ПК ЭРА v3.0. Модель: MPK-2014

 Город
 :104 Целиноградский р-н, АкМ.

 Объект
 :0011 ТОО "Goldenpit", месторождение Мета.

 Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37 Примесь :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
 цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
 вращающихся печей, боксит) (495*)
 ПДКм.р для примеси 2909 = 0.5 мг/м3
 Фоновая концентрация не задана
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
 (Символ ^ означает наличие источника вблизи расчетного узла)
 7
 3
 4
 .5
 6
 8
 9
 10
 11
 12 13
 - I ----- I -----C----
1-| 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 |- 1
 0.002 0.002 0.003 0.003 0.004 0.005 0.005 0.004 0.004 0.003 0.002 0.002 0.001 |- 2
3-1 0.002 0.003 0.003 0.005 0.007 0.009 0.009 0.007 0.005 0.004 0.003 0.002 0.002 1- 3
4-| 0.002 0.003 0.004 0.007 0.013 0.027 0.029 0.018 0.009 0.005 0.003 0.002 0.002 |- 4
 0.002 0.003 0.005 0.009 0.028 0.068 0.090 0.041 0.014 0.006 0.004 0.003 0.002 |- 5
 \texttt{6-C} \ \ \texttt{0.002} \ \ \texttt{0.003} \ \ \texttt{0.005} \ \ \texttt{0.010} \ \ \texttt{0.033} \ \ \texttt{0.111} \ \ \texttt{0.278} \ \ \texttt{0.053} \ \ \texttt{0.016} \ \ \texttt{0.007} \ \ \texttt{0.004} \ \ \texttt{0.003} \ \ \texttt{0.002} \ \ \texttt{C-6}
 0.002 0.003 0.005 0.008 0.023 0.049 0.059 0.033 0.012 0.006 0.004 0.003 0.002 |-7
 0.002 0.003 0.004 0.006 0.010 0.017 0.019 0.012 0.007 0.005 0.003 0.002 0.002 |- 8
9-| 0.002 0.002 0.003 0.004 0.006 0.007 0.007 0.006 0.005 0.004 0.003 0.002 0.002 |- 9
10-| 0.002 0.002 0.002 0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.002 0.002 0.001 |-10
```

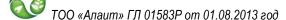




```
11-| 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001
 4 5 6 7
 8 9 10 11 12
 В целом по расчетному прямоугольнику:
 0.2779509 долей ПДКмр
 Максимальная концентрация -----> См =
 = 0.1389755 мг/м3
 Достигается в точке с координатами: XM = 552.0 \text{ м} (X-столбец 7, Y-строка 6) YM = 472.0 \text{ м}
 (Х-столбец 7, У-строка 6)
 При опасном направлении ветра
 300 град.
 и "опасной" скорости ветра
 2.29 м/с
9. Результаты расчета по границе санзоны.
 ПК ЭРА v3.0. Модель: MPK-2014
 :104 Целиноградский р-н, АкМ.
 Город
 :0011 ТОО "Goldenpit", месторождение Мета.
 Вар.расч. :2
 Расч.год: 2024-2032 (СП)
 Расчет проводился 24.04.2023 18:37
 :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
 Примесь
 цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
 вращающихся печей, боксит) (495*) ПДКм.р для примеси 2909 = 0.5~\mathrm{Mp/m3}
 Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
 Всего просчитано точек: 267
 Фоновая концентрация не задана
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 _Расшифровка_обозначений
 | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
 Фоп- опасное направл. ветра [угл. град.]
 Uon- опасная скорость ветра [
 -Если в расчете один источник, то его вклад и код не печатаются
 y=
 518:
 530:
 542:
 707:
 -91 •
 -91 •
 -90.
 -89.
 -88.
 -87.
 -85.
 -73.
 -71 •
 -69.
 -66.
 -64.
 -61 •
 -57 •
 -53.
 x=
 .____;___;___;___;___;__
 ----:--
 ----:----:--
 ----:-
 ----:----:-
 ---:--
 ----:-
 ----:-
Qc: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.008: 0.008: 0.007: 0.007: 0.007: 0.007: 0.007:
Cc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
 y=
 719.
 730:
 741:
 753:
 764:
 775:
 786:
 797:
 807:
 818:
 828:
 838:
 848 •
 858:
 867.
 -1:
 -41:
 -45:
 -36:
 -31: -25:
 -20:
 -14:
 13:
 20:
 x =
Qc: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007:
 : 0.004: 0
 877:
 895:
 904:
 912:
 921:
 929:
 937:
 944:
 952:
 959:
 966:
 973:
 886:
 y=
 77:
 95:
 104:
 114:
 124:
 133:
 144:
 154:
Oc: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008:
Cc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
 997:
 991:
 1002: 1007: 1012: 1017: 1021: 1025: 1029:
 1032: 1035:
 1038:
 1041: 1043:
 x=
 186: 197:
 208:
 219: 230:
 241: 253: 265:
 276:
 288:
 300:
 312:
 324:
 336:
 ----:-
 ----:-
 ----:-
 ----:-
 ----:-
 ----:-
 ----:-
 ---:-
 ---:-
Qc: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008:
Cc : 0.004: 0.00
 V=
 1046: 1048: 1049: 1050: 1050: 1050: 1050: 1050: 1050: 1049: 1048: 1046: 1045: 1043: 1041:
 493:
Qc : 0.008: 0.008: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009:
Cc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.005: 0.005:
 1038: 1035:
 1032:
 1029:
 1025:
 930:
 926:
 921:
 y=
 553.
 565:
 577:
 588:
 726:
 863:
 875:
 886:
 898:
 909:
 920:
 931 •
 ----:
 Qc: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.010: 0.008: 0.008: 0.008: 0.008: 0.007: 0.007: 0.007: 0.007:
Cc: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
 888:
 881:
 874.
 867:
 860:
 853:
 845:
 837:
 829:
 820:
 812:
 803:
 794 •
 785:
 775:
 y=

 ----:-
 994: 1004: 1014: 1023: 1033: 1042: 1051: 1059: 1068: 1076: 1084: 1092:
 963: 974: 984:
 x=
Qc: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006:
```





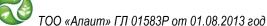

			0.003:												
	766:						704:								
	:	:	1114:	:	:	:	:	:	:	:	:	:	:	:	:
Qc :	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:
			0.003:												
λ=	565:		541:												
x=	1203:	1207:	1210:	1213:	1216:	1218:	1220:	1222:	1224:	1225:	1226:	1227:	1227:	1227:	1227:
Qc : Cc :	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005: 0.002:
	383:	371:	359:	346:	334:	322:	310:	298:	286:	274:	263:	251:	239:	228:	216:
			1225:												
Qc : Cc :	0.005:	0.005:	0.002:	0.005:	0.005:	0.005:	0.005:	0.005: 0.002:	0.005:	0.005:	0.005: 0.002:	0.005: 0.002:	0.005: 0.002:	0.005: 0.002:	0.005: 0.002:
	205:		183:												
x=  y=	:		1173:	:	:	:	:	:	:	:	:	:	:	:	:
 Qc :	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:
			. ~ ~ ~ ~ ~ ~ ~												
		:	:	:	:	:	:	:		:	:	:			
	:	:	1061:	:	:	:	:	:	:	:	:	:	:		:
Cc :	0.002:	0.002:	0.005:	0.002:	0.002:	0.002:	0.002:	0.002:	0.002:	0.002:	0.002:	0.003:	0.003:	0.003:	0.003:
			-152:												
×=	827:	715:	704:	693:	681:	670:	658:	646:	635:	623:	611:	599:	587:	574:	562:
Qc : Cc :	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005: 0.003:
	-192:	-193:	-193:	-194:	-194:	-194:	-193:	-192:	-191:	-190:	-188:	-186:	-184:	-181:	-178:
$\times =$	550:	538:		513:	501:	489:	477:	464:	452:	440:	428:	416:	404:	392:	380:
Qc : Cc :	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:
			-168:												
			:	:	:	:	:		:	:		:	:	:	:
	:	:	0.005:	:	:	:	:	:	:	:	:	:	:	:	:
			0.003:												
			-79:												
X=	204:	194:		99:	90:	80:	72:	63:	54:	46:	38:	30:	22:	15:	7:
Qc : Cc :	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.006: 0.003:	0.006:	0.006: 0.003:	0.006: 0.003:	0.006: 0.003:	0.006: 0.003:	0.006: 0.003:	0.006: 0.003:
	100:							175:							
		:	-13:	:	:	:	:		:	:	:	:	:	:	:
 Qc :	0.006:	0.006	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.006:	0.007:	0.007:	0.007:	0.007:
	268:		292:									469:		~~~~~	~~~~~
x=	-72:	-74:		-78:	-80:	-81:	-82:	-89:	-90:	-91:	-91:	-91:			
Qc :	0.007:	0.007:	0.007:	0.007:	0.007:	0.007:	0.007:	0.007:	0.007:	0.007:	0.007:	0.007:			
~~~~	~~~~~	~~~~~	.~~~~~		~~~~~	~~~~~	~~~~~	~~~~~~	~~~~~	~~~~~	~~~~~	~~~~~			



```
ПК ЭРА v3.0. Модель: MPK-2014
 Результаты расчета в точке максимума
 Координаты точки : Х=
 726.0 м, Y=
 979.0 м
 Максимальная суммарная концентрация | Cs=
 0.0095052 доли ПДКмр|
 0.0047526 мг/м3
 Достигается при опасном направлении 206 град.
 и скорости ветра 12.00 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
 ВКЛАДЫ ИСТОЧНИКОВ

ОС | Вклад | Вклад в% | Сум. % | Коэф.влияния
3. Исходные параметры источников.
 ПК ЭРА V3.0. МОДЕЛЬ: MPK-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет
 Расчет проводился 24.04.2023 18:37
 Группа суммации :__30=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 0333 Сероводород (Дигидросульфид) (518)
 Коэффициент рельефа (КР): индивидуальный с источников
 Коэффициент оседания (F): индивидуальный с источников
 Признак источников "для зимы" - отрицательное значение высоты
 V1
 Т
 Y1
 Х2
 Y2
 |Тип|
 D
 Wo |
 Х1
 |Alf| F | KP |Ди| Выброс
<06~П>~<Vic>| ~~~| ~~м~~| ~м/с~| ~м3/с~~| градС| ~~~м~~~| ~~~м~~~~| ~~~м~~~~| гр. | ~~~| ~~~| ~~~| ~~г/с~~
 ----- Примесь 0330-----
001101 6011 П1 2.0
 0.0
 421
 382
 10 0 1.0 1.000 0 0.0641300
 ----- Примесь 0333-----
 2.0
001101 6010 П1
 0.0
 426
 545
 10
 10 0 1.0 1.000 0 0.0000010
4. Расчетные параметры {\rm Cm}, {\rm Um}, {\rm Xm}
 ПК ЭРА v3.0. Модель: МРК-2014
Город :104 Целиноградский р-н, АкМ.
 Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч.:2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
 Сезон :ЗИМА для энергетики и ЛЕТО для остальных
 Группа суммации :__30=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 0333 Сероводород (Дигидросульфид) (518)
 - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная | концентрация См = Cм1/ПДК1 +...+ Смn/ПДКn |
 Для линейных и площадных источников выброс является суммарным по
 всей площади, а Ст - концентрация одиночного источника,
 расположенного в центре симметрии, с суммарным М
Источники
 _|____Их расчетные параметры_
1 |001101 6011| 0.128260| N1 | 4.581001 | 0.50 | 11.4
2 |001101 6010| 0.000122| N1 | 0.004361 | 0.50 | 11.4
 0.128382 (сумма Мq/ПДК по всем примесям)
 Суммарный Мq =
 Сумма См по всем источникам = 4.585362 долей ПДК
 Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета ПК ЭРА v3.0. Модель: MPK-2014
 Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
 Сезон :ЗИМА для энергетики и ЛЕТО для остальных
 Группа суммации :__30=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 0333 Сероводород (Дигидросульфид) (518)
 Фоновая концентрация не задана
 Расчет по прямоугольнику 001 : 2256x1880 с шагом 188
 Расчет по границе санзоны. Покрытие РП 001
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (\text{Ump})\, м/с
 Средневзвешенная опасная скорость ветра Ucb= 0.5 \text{ м/c}
6. Результаты расчета в виде таблицы.
 ПК ЭРА v3.0. Модель: MPK-2014
 :104 Целиноградский р-н, АкМ.
:0011 TOO "Goldenpit", месторождение Мета.
4. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
 Объект
 Вар.расч. :2
 Группа суммации :__30=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 0333 Сероводород (Дигидросульфид) (518)
```






```
Расчет проводился на прямоугольнике 1
 с параметрами: координаты центра X= 552, Y= 472
 размеры: длина (по X) = 2256, ширина (по Y) = 1880, шаг сетки= 188
 Фоновая концентрация не задана
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) \rm m/c
 _Расшифровка_обозначений_
 | Qc - суммарная концентрация [доли ПДК]
 Фоп- опасное направл. ветра [угл. град.]
 Uon- опасная скорость ветра [
 м/с
 Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
 | Ки - код источника для верхней строки Ви
 -При расчете по группе суммации концентр. в мг/м3 не печатается
 -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются \mid
 у= 1412 : У-строка 1 Стах= 0.020 долей ПДК (х= 364.0; напр.ветра=177)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.011: 0.013: 0.015: 0.017: 0.019: 0.020: 0.020: 0.018: 0.016: 0.014: 0.012: 0.011: 0.009:
 1224 : Y-строка 2 Cmax= 0.029 долей ПДК (x= 364.0; напр.ветра=176)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Oc: 0.013: 0.016: 0.019: 0.023: 0.027: 0.029: 0.029: 0.026: 0.022: 0.018: 0.015: 0.012: 0.010:
 y= 1036 : Y-строка 3 Cmax= 0.046 долей ПДК (x= 364.0; напр.ветра=175)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.015: 0.020: 0.026: 0.033: 0.041: 0.046: 0.045: 0.039: 0.030: 0.023: 0.018: 0.014: 0.012:
 848 : У-строка 4 Стах= 0.079 долей ПДК (х= 364.0; напр.ветра=173)
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc : 0.018: 0.024: 0.034: 0.049: 0.066: 0.079: 0.076: 0.059: 0.042: 0.030: 0.021: 0.016: 0.012:
 115 : 120 : 127 : 137 : 152 : 173 : 196 : 214 : 227 : 236 : 242 : 246 : 250 :
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :0.78
Ви: 0.018: 0.024: 0.034: 0.049: 0.066: 0.079: 0.076: 0.059: 0.042: 0.029: 0.021: 0.016: 0.012:
Ku: 6011: 60
 у= 660 : У-строка 5 Стах= 0.153 долей ПДК (х= 364.0; напр.ветра=168)
 x= -576 : -388: -200: -12: 176:
 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.020: 0.028: 0.043: 0.069: 0.111: 0.153: 0.140: 0.093: 0.057: 0.037: 0.024: 0.017: 0.013:
 106: 109: 114: 123: 139: 168: 205: 229: 241: 248: 253: 255: 258:
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :11.41 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
Ви: 0.020: 0.028: 0.043: 0.069: 0.111: 0.153: 0.140: 0.093: 0.057: 0.037: 0.024: 0.017: 0.013:
Ku: 6011: 60
 y= 472 : Y-строка 6 Cmax= 0.522 долей ПДК (x= 364.0; напр.ветра=147)
 -576 : -388: -200:
 -12: 176:
 364:
 552:
 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.021: 0.031: 0.050: 0.086: 0.168: 0.522: 0.298: 0.128: 0.069: 0.041: 0.026: 0.018: 0.014:
 96: 98: 102: 110: 147: 236: 254: 260: 263: 264: 265: 266:
Uon:12.00 :12.00 :12.00 :12.00 :10.34 : 1.44 : 4.86 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
Ви: 0.021: 0.031: 0.050: 0.086: 0.168: 0.522: 0.298: 0.128: 0.069: 0.041: 0.026: 0.018: 0.014:
Ки: 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011
 y= 284 : Y-строка 7 Cmax= 0.469 долей ПДК (x= 364.0; напр.ветра= 30)
 -576 : -388: -200:
 -12:
 176:
 364:
 552:
 740:
 928: 1116: 1304: 1492: 1680:
Qc : 0.021: 0.031: 0.049: 0.086: 0.165: 0.469: 0.288: 0.127: 0.068: 0.041: 0.026: 0.018: 0.014:
Фоп: 84: 83: 81: 77: 68: 30: 307: 287: 281: 278: 276: 275: 274
Uon:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00
Ви: 0.021: 0.031: 0.049: 0.086: 0.165: 0.469: 0.288: 0.127: 0.068: 0.041: 0.026: 0.018: 0.014:
Ки : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 :
 y= 96: Y-строка 8 Cmax= 0.148 долей ПДК (x= 364.0; напр.ветра= 11)
 -576 : -388: -200:
 -12: 176:
 364:
 552: 740: 928: 1116: 1304: 1492: 1680:
```





```
Qc: 0.020: 0.028: 0.043: 0.068: 0.108: 0.148: 0.136: 0.091: 0.056: 0.036: 0.024: 0.017: 0.013: Фол: 74: 71: 65: 57: 41: 11: 335: 312: 299: 292: 288: 285: 283:
 41 :
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
Ви: 0.020: 0.028: 0.043: 0.068: 0.108: 0.148: 0.136: 0.091: 0.056: 0.036: 0.024: 0.017: 0.013:
Ки : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 :
 -92 : Y-строка 9 Cmax= 0.077 долей ПДК (x= 364.0; напр.ветра= 7)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
 ----:--:---:---:--
Qc: 0.017: 0.024: 0.033: 0.048: 0.065: 0.077: 0.074: 0.058: 0.042: 0.029: 0.021: 0.016: 0.012:
 65:
 60 : 53 :
 42 : 27 :
 7: 345: 326: 313: 304: 298: 294: 291:
Фоп:
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :0.78 :
Ви: 0.017: 0.024: 0.033: 0.048: 0.065: 0.077: 0.074: 0.058: 0.042: 0.029: 0.021: 0.016: 0.012:
Ки : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 :
 -280 : Y-строка 10 Cmax= 0.045 долей ПДК (x= 364.0; напр.ветра= 5)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.015: 0.019: 0.025: 0.033: 0.040: 0.045: 0.044: 0.038: 0.030: 0.023: 0.018: 0.014: 0.012:
 y= -468 : Y-строка 11 Cmax= 0.029 долей ПДК (x= 364.0; напр.ветра= 4)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Oc : 0.013: 0.016: 0.019: 0.023: 0.027: 0.029: 0.028: 0.025: 0.022: 0.018: 0.014: 0.012: 0.010:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
 Координаты точки : X= 364.0 м, Y= 472.0 м
Максимальная суммарная концентрация | Cs= 0.5218030 доли ПДКмр|
 Достигается при опасном направлении 147 град. и скорости ветра 1.44 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
 _ВКЛАДЫ_ИСТОЧНИКОВ_
с | Вклад |Вк
|Вклад в%| Сум. %| Коэф.влияния
 Остальные источники не влияют на данную точку.
7. Суммарные концентрации в узлах расчетной сетки.
 ПК ЭРА v3.0. Модель: MPK-2014
 :104 Целиноградский р-н, АкМ.
 :0011 TOO "Goldenpit", месторождение Мета.
4. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
 Объект
 Вар.расч. :2
 Группа суммации :__30=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 0333 Сероводород (Дигидросульфид) (518)
 _Параметры_расчетного_прямоугольника_No 1_
 Координаты центра : X= 552 м; Y= 472
Длина и ширина : L= 2256 м; B= 1880 м
 Шаг сетки (dX=dY)
 : D=
 188 м
 Фоновая концентрация не задана
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
 (Символ ^ означает наличие источника вблизи расчетного узла)
 7
 4
 5
 6
 8
 9
 10
 11
 12 13
 - I ----- I -----C----
 1-| 0.011 0.013 0.015 0.017 0.019 0.020 0.020 0.018 0.016 0.014 0.012 0.011 0.009 |- 1
 0.013 0.016 0.019 0.023 0.027 0.029 0.029 0.026 0.022 0.018 0.015 0.012 0.010 |- 2
 3-| 0.015 0.020 0.026 0.033 0.041 0.046 0.045 0.039 0.030 0.023 0.018 0.014 0.012 |- 3
 4-| 0.018 0.024 0.034 0.049 0.066 0.079 0.076 0.059 0.042 0.030 0.021 0.016 0.012 |- 4
 0.020 0.028 0.043 0.069 0.111 0.153 0.140 0.093 0.057 0.037 0.024 0.017 0.013 |- 5
 \texttt{6-C} \ \ \textbf{0.021} \ \ \textbf{0.031} \ \ \textbf{0.050} \ \ \textbf{0.086} \ \ \textbf{0.168} \ \ \textbf{0.522} \ \ \textbf{0.298} \ \ \textbf{0.128} \ \ \textbf{0.069} \ \ \textbf{0.041} \ \ \textbf{0.026} \ \ \textbf{0.018} \ \ \textbf{0.014} \ \ \textbf{C-6}
 7-| 0.021 0.031 0.049 0.086 0.165 0.469 0.288 0.127 0.068 0.041 0.026 0.018 0.014 |- 7
 0.020 0.028 0.043 0.068 0.108 0.148 0.136 0.091 0.056 0.036 0.024 0.017 0.013 |- 8
 9-| 0.017 0.024 0.033 0.048 0.065 0.077 0.074 0.058 0.042 0.029 0.021 0.016 0.012 |- 9
10-| 0.015 0.019 0.025 0.033 0.040 0.045 0.044 0.038 0.030 0.023 0.018 0.014 0.012 |-10
```





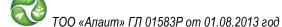
```
11-| 0.013 0.016 0.019 0.023 0.027 0.029 0.028 0.025 0.022 0.018 0.014 0.012 0.010
 В целом по расчетному прямоугольнику:
 Безразмерная макс. концентрация ---> c_{\text{NM}} - c_{\text
 Безразмерная макс. концентрация ---> См = 0.5218030
 и "опасной" скорости ветра
9. Результаты расчета по границе санзоны.
 ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
 :0011 ТОО "Goldenpit", месторождение Мета.
 Объект
 Расч.год: 2024-2032 (СП)
 Расчет проводился 24.04.2023 18:37
 Вар.расч. :2
 Группа суммации :__30=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 0333 Сероводород (Дигидросульфид) (518)
 Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
 Всего просчитано точек:
 Фоновая концентрация не задана
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмр) м/с
 _Расшифровка_обозначений_
 | Qc - суммарная концентрация [доли ПДК]
 Фоп- опасное направл. ветра [угл. град.]
 Uon- опасная скорость ветра [M/C Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
 | Ки - код источника для верхней строки Ви
 -При расчете по группе суммации концентр. в мг/м3 не печатается|
 469: 481:
 506:
 518:
 530:
 542:
 623:
 636:
 y=
 -90:
 -89: -88:
 -87:
 -85: -73: -71: -69:
Qc: 0.068: 0.067: 0.066: 0.066: 0.066: 0.066: 0.065: 0.062: 0.061: 0.060: 0.060: 0.059: 0.059: 0.058: 0.057: Φοπ: 100: 101: 102: 104: 105: 106: 108: 116: 117: 118: 120: 121: 122: 123: 124:
Uom:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00
Ви : 0.068: 0.067: 0.067: 0.066: 0.066: 0.066: 0.065: 0.062: 0.061: 0.060: 0.060: 0.059: 0.059: 0.058: 0.057:
Ки : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 :
 y=
 741:
 753:
 764:
 775:
 786:
 797:
 807:
 818:
 828:
 838:
 -49: -45: -41: -36: -31: -25: -20: -14: -7: -1: 6:
 13:
 Qc : 0.057: 0.056: 0.056: 0.055: 0.055: 0.054: 0.054: 0.053: 0.053: 0.053: 0.052: 0.052: 0.051: 0.051: 0.051:
 129 :
 135 :
 127 :
 130 :
 132 :
 134 :
 136 :
 137 :
 138 :
 126:
 128:
 131 :
 139 :
 140 :
UOM:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00:12.00
Ви : 0.057: 0.056: 0.056: 0.055: 0.055: 0.054: 0.054: 0.053: 0.053: 0.053: 0.052: 0.052: 0.051: 0.051: 0.051:
Ки : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 :
 у=
 921:
 895:
 912:
 929:
 944:
 952:
 86.
 95: 104: 114: 124: 133: 144: 154: 164: 175:
 Oc: 0.050: 0.050: 0.050: 0.049: 0.049: 0.049: 0.048: 0.048: 0.048: 0.048: 0.047: 0.047: 0.047: 0.047: 0.047: 0.047:
 991 •
 997: 1002: 1007: 1012: 1017: 1021: 1025: 1029:
 1032: 1035: 1038: 1041: 1043: 1045:
 186: 197: 208: 219: 230: 241: 253: 265: 276: 288: 300: 312: 324: 336: 348:
Qc: 0.046: 0.046: 0.046: 0.046: 0.046: 0.046: 0.046: 0.046: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045:
 1046. 1048. 1049. 1050. 1050. 1050. 1050. 1050. 1050. 1050. 1049. 1048. 1046. 1045. 1043. 1041.
 360: 372: 385: 397: 409: 421: 431: 444: 456: 468: 480: 493: 505: 517: 529:
Oc: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.045:
 916:
 1038: 1035: 1032: 1029: 1025: 979:
 934:
 930: 926:
 911 •
 541: 553: 565: 577: 588: 726: 863: 875: 886: 898: 909: 920: 931:
Qc : 0.045: 0.045: 0.045: 0.045: 0.045: 0.045: 0.044: 0.040: 0.040: 0.040: 0.039: 0.039: 0.038: 0.038: 0.038: 0.038:
 888: 881: 874: 867: 860: 853: 845: 837: 829: 820:
```





						700 ***7	UTCICITI"	777 0700	701 0111	01.00.20	10 000				
X=	963:	974:	984:	994:	1004:	1014:	1023:	: 1033:	1042:	1051:	1059:	1068:	1076:	1084:	: 1092:
								:: : 0.035:							
								. 0.055.							
	766.	756	746:	: 736:	725	715:	704:	: 693:	683:	671:	622:	610:	599:	F00-	: 576:
	766: :							: 693: ::							
x=								: 1146:							
								:: : 0.033:							
	565:	553:	541:	: 529:	: 517:	505:	493:	: 481:	469:	457:	444:	432:	420:	: 408:	: 395:
								::							
x=								1222:							
								:: : 0.031:							
~~~~		~~~~~							. ~ ~ ~ ~ ~ ~ ~		. ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~	.~~~~~		
	383:	371:	: 359:	346:	: 334:	322:	310:	298:	286:	274:	263:	251:	239:	: 228:	216:
								::							
X=								1215: ::							
								0.032:							
~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~	~~~~~	. ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	.~~~~~	~~~~~	.~~~~~
	205:	194:	: 183:	172:	161:	151:	140:	: 130:	120:	110:	101:	91:	82:	72:	: 64:
4	:	:	::		::	::	:	::	:	:	:	:	:	:	:
X=								1142:							
								0.034:							
~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~	~~~~~	. ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	.~~~~~	~~~~~	.~~~~~
	55:	46:	: 38:	: 30:	22:	14:	7 :	: 0:	-7:	-14:	-20:	-26:	-32:	: -38:	-43:
	:	:	::	::	::	::	:	::	:	:	:	:	::	:	:
x=								1013: ::							
								0.041:							
~~~~		~~~~~							.~~~~~		. ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~	.~~~~~		.~~~~~
y=	-95:	-147:	-152	-157:	-161	-166:	-170:	-173:	-177:	-180:	-182:	-185:	-187:	-189:	-190:
								::							
×=	827:							: 646: ::							
Qc :								0.054:							
								: 338 : :12.00 :							
:	:	12.00 .		: ::				: ::							: :
															0.055:
								: 6011 : 							
	-192:	-193:	-193	: -194: ·	-194:		-193:	: -192: ·	-191:		-188:	-186:	-184:	: -181: ·	-178:
×=	550:	538:	526	513:	501:				•	•	428:	416:	404:	392:	380:
															0.060:
								356 :							4:
Uon:1															:12.00 :
: Ви :	0.055:		. 0.056					: 0.057:							: 0.060:
ки:	6011 :	6011 :	: 6011 :	: 6011 :	: 6011 :	6011 :	6011 :	: 6011 :	6011 :	6011 :	6011 :	6011 :	6011 :	6011 :	: 6011 :
~~~~		~~~~~		. ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~	~~~~~	. ~ ~ ~ ~ ~ ~	~~~~~	.~~~~	.~~~~~		~~~~~
															-101:
															214.
×=															214:
Qc :	0.060:	0.060:	0.061	0.061	0.062	0.062	0.063	0.063:	0.063:	0.064:	0.064:	0.065:	0.065:	0.066:	0.066:
Фоп: Поп:1															: 23 : :12.00 :
:	:	:	: :	: :	: :	: :	: :	: :	:	:	:	:	: :	:	: :
															0.066:
															: 6011 :
	-94:		-79:					24:							89: ::
x=	204:	194:	: 185:	99:	90:	80:	72:	63:	54:	46:	38:	30:	22:	15:	7:
															:
Qc : Фоп:															: 0.070: : 55:
	12.00 :	12.00 :	:12.00	:12.00 :	:12.00	12.00 :	12.00 :	:12.00 :	12.00:	12.00:	12.00 :	12.00 :	12.00 :	:12.00 :	:12.00 :
: Br# :	0 067:		: . 0 068:			. 0 070		: :		. 0 070:					: 0.070:
															6011 :
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	.~~~~~	~~~~~	.~~~~~
	100:	110:	120:	: 131:	: 142:	153:	164:	: 175:	186:	197:	209:	220:	232:	244:	256:
	:	:	::	::	::	::	:	::	:	:	:	:	:	::	::
x=	1:	-6:	-13:	-19:	-25	-30:	-36:	-41:	-46:	-50:	-55:	-58:	-62:	-66:	-69:




```
Qc: 0.071: 0.070: 0.070: 0.070: 0.070: 0.071: 0.070: 0.070: 0.070: 0.070: 0.070: 0.071: 0.071: 0.070: 0.070:
 70 :
 59:
 67 :
 62:
 64:
 60 :
 63 :
 66:
 69 :
 73 :
Uon:12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :12.00 :
Ви : 0.071: 0.070: 0.070: 0.070: 0.070: 0.070: 0.071: 0.070: 0.070: 0.070: 0.070: 0.070: 0.071: 0.071: 0.070: 0.070:
Ки : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 : 6011 :
 268: 280: 292: 304: 316: 328:
 341: 420: 432: 444:
 -72: -74: -76: -78: -80: -81: -82: -89: -90: -91: -91: -91:
 x=
 Qc: 0.071: 0.071: 0.071: 0.071: 0.070: 0.071: 0.071: 0.069: 0.069: 0.068: 0.068: 0.068:
 77 :
 78 : 80 :
 81 : 82 : 84 : 85 : 94 :
 96 : 97 :
 98: 100:
UON:12.00:12
Км : 6011 : 601
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
 Координаты точки : Х=
 -81.0 м, Y= 328.0 м
 Максимальная суммарная концентрация | Cs= 0.0707710 доли ПДКмр|
 Достигается при опасном направлении
 84 град.
 и скорости ветра 12.00 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
 __ВКЛАДЫ_ИСТОЧНИКОВ_
ос | Вклад |Вк
 3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
 Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
Группа суммации : 31=0301 Азота (IV) диоксид (Азота диоксид) (4)
 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 Коэффициент рельефа (КР): индивидуальный с источников
 Коэффициент оседания (F): индивидуальный с источников
Признак источников "для зимы" - отрицательное значение высоты
Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс <0б~П>~<Nc>|~~~|~~м~~|~~м~~|~м/с~|~м/с~|~м/с~~|градС|~~~м~~~~|~~~м~~~~|~~~м~~~~|гр.|~~~|гр.|~~~|~~~|~~~|с~~~|~~~
 ----- Примесь 0301-----
001101 6011 П1 2.0
 10 0 1.0 1.000 0 0.3420600
 0.0
 421
 382
 1.0
 ----- Примесь 0330-----
001101 6011 Π1 2.0
 0.0 421
 382
 10
 10 0 1.0 1.000 0 0.0641300
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
Вар.расч. :2 Расч.год: 2024-2032 (СП) Расчет
 Расчет проводился 24.04.2023 18:37
 Сезон :ЗИМА для энергетики и ЛЕТО для остальных
 Группа суммации :__31=0301 Азота (IV) диоксид (Азота диоксид) (4)
 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная
 концентрация CM = CM1/\Pi ДК1 + ... + CMn/\Pi ДКn
 Для линейных и площадных источников выброс является суммарным по
 всей плошади, а Cm - концентрация одиночного источника,
 расположенного в центре симметрии, с суммарным М
 1 |001101 6011| 1.838560| M1 | 0.304799 | 0.50 | 114.0
 Суммарный Mq = 1.838560 (сумма Mq/\PiДК по всем примесям)
 Сумма См по всем источникам =
 0.304799 долей ПДК
 Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014

 Город
 :104 Целиноградский р-н, АкМ.

 Объект
 :0011 ТОО "Goldenpit", месторождение Мета.

 Вар.расч.
 :2
 Расч.год: 2024-2032 (СП)
 Расчет проводился 24.04.2023 18:37

 Вар.расч. :2
 :ЗИМА для энергетики и ЛЕТО для остальных
```





```
Группа суммации :__31=0301 Азота (IV) диоксид (Азота диоксид) (4)
 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 Фоновая концентрация не задана
 Расчет по прямоугольнику 001 : 2256х1880 с шагом 188
 Расчет по границе санзоны. Покрытие РП 001
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
 ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
 :0011 ТОО "Goldenpit", месторождение Мета.
 Объект
 Расч.год: 2024-2032 (СП)
 Вар.расч. :2
 Расчет проводился 24.04.2023 18:37
 Группа суммации :__31=0301 Азота (IV) диоксид (Азота диоксид) (4)
 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
 (516)
 Расчет проводился на прямоугольнике 1
 с параметрами: координаты центра X= 552,
 Y= 472
 размеры: длина(по X)= 2256, ширина(по Y)= 1880, шаг сетки= 188
 Фоновая концентрация не задана
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Расшифровка_обозначений
 | Qc - суммарная концентрация [доли ПДК]
 Фоп- опасное направл. ветра [угл. град.]
 | Иоп- опасная скорость ветра [
 M/C
 -При расчете по группе суммации концентр. в мг/м3 не печатается
 -Если в расчете один источник, то его вклад и код не печатаются
 -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
у= 1412 : У-строка 1 Стах= 0.037 долей ПДК (х= 364.0; напр.ветра=177)
x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Oc: 0.023: 0.026: 0.029: 0.032: 0.035: 0.037: 0.036: 0.034: 0.031: 0.028: 0.025: 0.022: 0.020:
 1224 : У-строка 2 Стах= 0.051 долей ПДК (х= 364.0; напр.ветра=176)
x= -576 : -388: -200:
 364: 552:
 740:
 -12: 176:
 928: 1116: 1304: 1492: 1680:
 ---:-
Qc: 0.026: 0.030: 0.036: 0.042: 0.048: 0.051: 0.050: 0.046: 0.040: 0.034: 0.028: 0.024: 0.021:
 153 : 164 : 176 : 189 : 201 : 211 : 220 :
 136 : 144 :
 226 :
 232 :
Uon: 3.38 : 2.41 : 1.47 : 1.22 : 1.12 : 1.07 : 1.09 : 1.14 : 1.30 : 1.72 : 2.79 : 3.72 : 4.60 :
 1036 : Y-строка 3 Cmax= 0.075 долей ПДК (x= 364.0; напр.ветра=175)
V =
 -12:
 -388:
 -200:
 176:
 364:
 552:
 740:
 928: 1116: 1304: 1492: 1680:
Qc: 0.029: 0.036: 0.046: 0.057: 0.068: 0.075: 0.073: 0.064: 0.052: 0.042: 0.033: 0.027: 0.023:
Фоп: 123 : 129 : 136 : 146 : 159 : 175 : 191 : 206 : 218 : 227 : 233 : 239 : 243 :
Uoп: 2.60 : 1.46 : 1.14 : 1.01 : 0.93 : 0.90 : 0.91 : 0.96 : 1.06 : 1.23 : 1.79 : 3.03 : 4.04 :
 848 : У-строка 4 Стах= 0.118 долей ПДК (х= 364.0; напр.ветра=173)
x= -576: -388: -200: -12: 176: 364: 552:
 740: 928: 1116: 1304: 1492: 1680:
 ---:----:---
 ----:-
Qc : 0.033: 0.043: 0.058: 0.078: 0.101: 0.118: 0.113: 0.092: 0.070: 0.052: 0.039: 0.030: 0.025:
 127 :
 137 :
 196 :
 214 :
 227 :
 152 : 173 :
 236 :
 242 :
 120 :
Uon: 1.82 : 1.21 : 1.01 : 0.88 : 0.80 : 0.76 : 0.77 : 0.82 : 0.93 : 1.07 : 1.31 : 2.38 : 3.63 :
 660 : У-строка 5 Стах= 0.197 долей ПДК (х= 364.0; напр.ветра=168)
\nabla =
x= -576 : -388: -200:
 -12: 176:
 364:
 552: 740:
 928: 1116: 1304: 1492: 1680:
Oc: 0.037: 0.050: 0.071: 0.105: 0.154: 0.197: 0.184: 0.133: 0.089: 0.061: 0.044: 0.033: 0.026:
Фоп: 106 : 109 : 114 :
 123 : 139 : 168 : 205 : 229 : 241 : 248 : 253 : 255 : 258 :
Uon: 1.43 : 1.09 : 0.92 : 0.79 : 0.69 : 0.63 : 0.65 : 0.73 : 0.84 : 0.98 : 1.19 : 1.84 : 3.25 :
у= 472 : Y-строка 6 Cmax= 0.303 долей ПДК (x= 364.0; напр.ветра=147)
x= -576 : -388: -200:
 -12:
 176:
 364:
 552:
 740:
 928: 1116: 1304: 1492:
Qc : 0.039: 0.054: 0.080: 0.126: 0.210: 0.303: 0.276: 0.172: 0.105: 0.068: 0.047: 0.034: 0.027:
 110 :
 147 :
Фоп: 95: 96: 98: 102: 110: 147: 236: 254: 260: 263: 264: 265: 266: Uon: 1.32: 1.05: 0.88: 0.74: 0.62: 0.50: 0.56: 0.66: 0.79: 0.94: 1.13: 1.63: 3.11:
```

284 : Y-строка 7 Стах= 0.304 долей ПДК (х= 364.0; напр.ветра= 30)





```
x = -576 : -388 : -200 :
 -12:
 176:
 364:
 552:
 740:
 928: 1116: 1304: 1492:
Qc: 0.039: 0.054: 0.079: 0.126: 0.208: 0.304: 0.273: 0.171: 0.104: 0.068: 0.047: 0.034: 0.027:
 81 :
 30 : 308 : 287 : 281 : 278 : 276 : 275 : 274 :
 77 :
 68 :
Uon: 1.32 : 1.05 : 0.88 : 0.74 : 0.62 : 0.51 : 0.55 : 0.67 : 0.80 : 0.94 : 1.13 : 1.63 : 3.08
 96: У-строка 8 Стах= 0.192 долей ПДК (х= 364.0; напр.ветра= 11)
 V=
 -12:
 -200:
 176:
 364:
 552:
 740:
 928:
 1116: 1304:
 -388:
Qc : 0.036: 0.049: 0.070: 0.103: 0.151: 0.192: 0.180: 0.131: 0.089: 0.061: 0.044: 0.033: 0.026:
 312 : 299 :
Фоп: 74: 71: 65: 57: 41: 11: 335: 312: 299: 292: 288: 285: 283: Uon: 1.45: 1.09: 0.93: 0.80: 0.70: 0.64: 0.65: 0.73: 0.84: 0.98: 1.20: 1.89: 3.29:
 -92 : Y-строка 9 Cmax= 0.115 долей ПДК (x= 364.0; напр.ветра= 7)
 V=
 x= -576: -388: -200: -12: 176: 364: 552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.033: 0.043: 0.057: 0.077: 0.100: 0.115: 0.111: 0.091: 0.069: 0.051: 0.039: 0.030: 0.025:
 53:
 42 :
 27 :
 345 : 326 :
 313 :
 304 : 298 :
 294 :
Uon: 1.84 : 1.22 : 1.01 : 0.89 : 0.81 : 0.77 : 0.78 : 0.84 : 0.93 : 1.08 : 1.32 : 2.44 : 3.64 :
 -280 : Y-строка 10 Cmax= 0.073 долей ПДК (x= 364.0; напр.ветра= 5)
 x = -576 : -388 : -200 :
 -12: 176: 364: 552:
 740: 928: 1116: 1304: 1492: 1680:
Oc: 0.029: 0.036: 0.045: 0.056: 0.067: 0.073: 0.072: 0.063: 0.052: 0.041: 0.033: 0.027: 0.023:
 51: 43:
 33 : 20 :
 5: 349: 334: 323: 314: 307: 302: 298:
Фоп:
 56:
Uon: 2.62 : 1.48 : 1.16 : 1.02 : 0.94 : 0.91 : 0.92 : 0.97 : 1.06 : 1.24 : 1.86 : 3.08 : 4.09 :
 у= -468 : Y-строка 11 Cmax= 0.050 долей ПДК (x= 364.0; напр.ветра= 4)
 -576 : -388: -200:
 -12: 176:
 364:
 552:
 928: 1116: 1304: 1492: 1680:
Oc: 0.026: 0.030: 0.036: 0.042: 0.047: 0.050: 0.049: 0.045: 0.039: 0.033: 0.028: 0.024: 0.021:
 ПК ЭРА v3.0. Модель: MPK-2014
 Результаты расчета в точке максимума
 Координаты точки : X= 364.0 м, Y= 284.0 м
 Максимальная суммарная концентрация | Cs= 0.3035506 доли ПДКмр|
                                                            ~~~~~~
    Достигается при опасном направлении
                                                                  30 град.
                                   и скорости ветра 0.51 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                               __ВКЛАДЫ_ИСТОЧНИКОВ_
ос | Вклад |Вн
| Ном. | Код | Тип | Выброс | Вклад В% | Сум. % | Коэф.влияния | | | ---- | <06-П>-<Ис> | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
   7. Суммарные концентрации в узлах расчетной сетки.
    ПК ЭРА v3.0. Модель: MPK-2014
                      :104 Целиноградский р-н, АкМ.
:0011 ТОО "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37
        Город
       Объект
       Вар.расч. :2
       Группа суммации : __31=0301 Азота (IV) диоксид (Азота диоксид) (4)
                                          0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                  (516)
             ______Параметры_расчетного_прямоугольника_No 1_
Координаты центра : X= 552 м; Y=
                                           : L=
                                                       2256 м; в= 1880 м
              Длина и ширина
              Шаг сетки (dX=dY) : D=
                                                        188 м
       Фоновая концентрация не задана
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
     (Символ ^ означает наличие источника вблизи расчетного узла)
                                                      6
                                                                                    9
                                             5
                                                                         8
                                                                                          10
                                                                                                    11
                                                                                                             12
                                                                                                                       13
                                              -|----C---
 1-| 0.023 0.026 0.029 0.032 0.035 0.037 0.036 0.034 0.031 0.028 0.025 0.022 0.020 |- 1
 2-| 0.026 0.030 0.036 0.042 0.048 0.051 0.050 0.046 0.040 0.034 0.028 0.024 0.021 |- 2
 3-| 0.029 0.036 0.046 0.057 0.068 0.075 0.073 0.064 0.052 0.042 0.033 0.027 0.023 |-3
 4-| 0.033 0.043 0.058 0.078 0.101 0.118 0.113 0.092 0.070 0.052 0.039 0.030 0.025 |- 4
       0.037\ 0.050\ 0.071\ 0.105\ 0.154\ 0.197\ 0.184\ 0.133\ 0.089\ 0.061\ 0.044\ 0.033\ 0.026\ |-
  \texttt{6-C} \ \ \textbf{0.039} \ \ \textbf{0.054} \ \ \textbf{0.080} \ \ \textbf{0.126} \ \ \textbf{0.210} \ \ \textbf{0.303} \ \ \textbf{0.276} \ \ \textbf{0.172} \ \ \textbf{0.105} \ \ \textbf{0.068} \ \ \textbf{0.047} \ \ \textbf{0.034} \ \ \textbf{0.027} \ \ \textbf{C-} \ \ \textbf{6} 
 7-| 0.039 0.054 0.079 0.126 0.208 0.304 0.273 0.171 0.104 0.068 0.047 0.034 0.027 |- 7
```





```
8-| 0.036 0.049 0.070 0.103 0.151 0.192 0.180 0.131 0.089 0.061 0.044 0.033 0.026
9-| 0.033 0.043 0.057 0.077 0.100 0.115 0.111 0.091 0.069 0.051 0.039 0.030 0.025 |- 9
10-| 0.029 0.036 0.045 0.056 0.067 0.073 0.072 0.063 0.052 0.041 0.033 0.027 0.023 |-10
11-| 0.026 0.030 0.036 0.042 0.047 0.050 0.049 0.045 0.039 0.033 0.028 0.024 0.021 |-11
                            5 6 7 8 9
                      4
                                                       10
                                                            11
      В целом по расчетному прямоугольнику:
Безразмерная макс. концентрация ---> См = 0.3035506
Достигается в точке с координатами: Xm = 364.0 м ( X-столбец 6, Y-строка 7) Ym = 284.0 м
                                    30 град.
При опасном направлении ветра :
 и "опасной" скорости ветра
                            : 0.51 м/с
9. Результаты расчета по границе санзоны.
  ПК ЭРА v3.0. Модель: MPK-2014
             :104 Целиноградский р-н, АкМ.
    подоп
    Объект
              :0011 TOO "Goldenpit", месторождение Мета.
    Вар.расч. :2
                    Расч.год: 2024-2032 (СП)
                                                 Расчет проводился 24.04.2023 18:37
    Группа суммации :__31=0301 Азота (IV) диоксид (Азота диоксид) (4)
                         0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                              (516)
    Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
    Всего просчитано точек: 267
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
                     _Расшифровка_обозначений_
           | Qc - суммарная концентрация [доли ПДК]
           | Фоп- опасное направл. ветра [ угл. град.]
           | Иоп- опасная скорость ветра [
                                            M/C
     -При расчете по группе суммации концентр. в мг/м3 не печатается|
     -Если в расчете один источник, то его вклад и код не печатаются|
                    493:
                          506:
                                 518:
                                        530:
                                              542:
                                                     623:
                         -89: -88:
                                       -87: -85: -73: -71: -69:
      -91: -91: -90:
                  ____.............
                                                    ____.
Qc: 0.103: 0.103: 0.102: 0.102: 0.101: 0.101: 0.100: 0.096: 0.095: 0.094: 0.093: 0.092: 0.092: 0.091: 0.090:
Фоп: 100: 101: 102: 104: 105: 106: 108: 116: 117: 118: 120: 121: 122: 123: 124: 

Uоп: 0.80: 0.80: 0.80: 0.80: 0.80: 0.80: 0.80: 0.81: 0.82: 0.82: 0.82: 0.83: 0.84: 0.83: 0.84: 0.84:
      719. 730.
                   741 •
                          753:
                                764 •
                                      775 •
                                              786.
                                                     797: 807: 818: 828: 838:
                                                                                      848 .
                                                                                             858 •
                                                                                                    867 .
                   ----:--
                                                     ----:----:----:---:---:-
                                       -25:
                                                             -7:
                                                                   -1:
                                                                                        20:
            -45:
                   -41:
                          -36:
                                -31:
                                              -20:
                                                     -14:
                                                                          6:
                                                                                 13:
x =
      -49:
Qc: 0.089: 0.089: 0.088: 0.087: 0.087: 0.086: 0.085: 0.085: 0.084: 0.084: 0.083: 0.083: 0.082: 0.081: 0.081:
           127 :
                  128 : 129 : 130 : 131 : 132 :
                                                    134 : 135 : 136 : 137 : 138 : 139 :
     126 :
                                                                                            140:
Uon: 0.84 : 0.84 : 0.85 : 0.85 : 0.85 : 0.85 : 0.85 : 0.86 : 0.86 : 0.86 : 0.86 : 0.87 : 0.87 : 0.87 : 0.87
у=
                                        921:
                                                     937:
      877:
                    895:
                          904:
                                 912:
                                               929:
                                                            944:
                                                                   952:
                                                                          959:
                                                                                       973:
                    59.
                         68 •
                                77•
                                         86.
                                              95.
                                                     104 114
                                                                  124 133 .
                                                                               144 •
                                                                                      154 •
     Oc: 0.080: 0.080: 0.080: 0.079: 0.079: 0.078: 0.078: 0.078: 0.077: 0.077: 0.077: 0.076: 0.076: 0.076: 0.075:
     143 :
            144:
                  145 :
                         146:
                                147 :
                                      148 :
                                             149 :
                                                    150:
                                                           151 :
                                                                  152:
                                                                        153:
                                                                               155 :
                                                                                      156:
                                                                                             157:
Uon: 0.87 : 0.88 : 0.88 : 0.88 : 0.88 : 0.88 : 0.89 : 0.89 : 0.89 : 0.89 : 0.89 : 0.89 : 0.89 : 0.89 : 0.90 : 0.90 :
      991: 997: 1002: 1007: 1012: 1017: 1021: 1025: 1029: 1032: 1035: 1038: 1041: 1043: 1045:
y=
                                      241: 253: 265: 276:
Qc : 0.075: 0.075: 0.075: 0.075: 0.074: 0.074: 0.074: 0.074: 0.074: 0.074: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073:
     159:
                  161 :
                         162 :
                                163:
                                                    166 :
                                                           167 :
                                                                  168 :
                                                                        169 :
                                                                               171 :
                                                                                      172 :
                                                                                             173 :
            160:
                                      164 : 165 :
Uon: 0.90 : 0.90 : 0.90 : 0.90 : 0.90 : 0.90 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91
     1046: 1048: 1049: 1050: 1050: 1050: 1050: 1050: 1050: 1049: 1048: 1046:
                                                                                      1045:
                                                                                             1043: 1041:
x=
      360:
           372: 385:
                         397:
                                409:
                                       421:
                                              431: 444:
                                                           456: 468:
                                                                        480:
                                                                               493:
                                                                                      505:
                                                                                              517: 529:
                                                                          ---:-
                    ---:-
                                 ---:-
                                                     ---:-
                                                                  ----:-
                                                                                ---:-
Qc: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073:
     175 :
            176 :
                  177 :
                         178 :
                                179 : 180 : 181 :
                                                   182 :
                                                          183 :
                                                                 184 :
                                                                        185 : 186 : 187 :
Uon: 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91
    1038: 1035: 1032: 1029: 1025:
                                                     930:
                                                                                              900:
                                                                                                    894:
                                       979:
                                              934:
                                                            926:
                                                                   921:
                                                                         916:
                                                                                911:
                                                                                      906:
y=
                          577: 588:
                                       726:
                                              863:
                                                     875:
                                                          886:
                                                                  898:
                                                                         909:
                                                                                920:
                                                                                                    953:
```





Qc: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.073: 0.072: 0.067: 0.066: 0.066: 0.065: 0.065: 0.064: 0.064: 0.063: 0.063: Φοπ: 190: 191: 192: 194: 195: 207: 219: 220: 221: 222: 222: 223: 224: 225: 226: Фоп: 190 : 191 : 192 : 194 : 195 : 207 : 219 : 220 : 221 : 222 : 222 : 224 : 225 : 226 : 200 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 : 0.91 775. 888 . 881 • 874 • 867 . 860. 853. 845. 837 • 829. 820 . 812 . 803. 794 . 785 . y= ---:-974: 994: 1004: 1014: 1023: 1033: 1042: 1051: 1059: 1068: 1076: 1084: 1092: 963: 984: x =: 0.062: 0.062: 0.061: 0.061: 0.061: 0.060: 0.060: 0.060: 0.059: 0.059: 0.059: 0.058: 0.058: 0.058: 0.058: 233 : 237 : 228 : 229 : 230 : 231 : 232 : 232 : 234 : 235 : 236 : 238 : 239 : 240 : Uon: 0.97 : 0.98 : 0.98 : 0.98 : 0.98 : 0.99 : 0.99 : 0.99 : 0.99 : 1.00 : 1.00 : 1.00 : 1.00 : 1.00 : 1.01 : 756: 746: 736: 725: 715: 704: 693: 683: 671: 622: 610: 599: 588: у= 1100: 1107: 1121: 1128: 1134: 1140: 1146: 1152: 1157: 1180: 1185: 1190: 1195: 1114: Qc: 0.057: 0.057: 0.057: 0.057: 0.057: 0.057: 0.057: 0.057: 0.057: 0.056: 0.056: 0.056: 0.056: 0.055: 0.055: 0.055: 241: 242: 243: 244: 245 : 246: 247: 248: 249: 252: 253: Фоп: 1.01: 1.01: 1.01:1.01:1.02:1.02:1.02: 1.02 : 1.02 : 1.03 : 1.03 : 1.03 529: 517: 505: 457: V= 565: 553: 541: 493: 481: 469: 444: 432: 420: 408: 1203: 1207: 1210: 1213: 1216: 1218: 1220: 1222: 1224: 1225: 1226: 1227: 1227: 1227: 1227: Qc : 0.055: 0.055: 0.055: 0.055: 0.055: 0.055: 0.055: 0.055: 0.055: 0.054: 0.054: 0.054: 0.054: 0.055: 0.055: 0.055: 264 : 258: 259: 260 : 260 : 261 : 262 : 263: 265 : 266: 266: 267: Uoπ: 1.04 : 1.04 : 1.04 : 1.04 : 1.03 : 1.03 : 1.03 : 1.04 : 1.04 : 1.03 : 1.03 : 1.03 : 1.03 : 1.03 : 1.03 : 1.03 y= 383: 371: 359: 346: 334: 322: 310: 298: 286: 274: 263: 251: 239: 228: 216: 1227 1226 1225 1223 1221 1219 1217 1215 1212 1208 1205 1201 1197 1197 1198 x =----: Qc: 0.055: 0.055: 0.055: 0.055: 0.055: 0.055: 0.055: 0.055: 0.056: 0.056: 0.056: 0.056: 0.056: 0.057: 0.057: 273 : 276 : 277 : 278 : 272 : 273 : 274 : 275 : 279 : 280 : 280 : 281 : : 1.03 1.04: 1.04: 1.03: 1.03: 1.03: 1.03: 1.03: 1.03: 1.02: 1.02: 1.02: 1.02 205: 183: 172: 161: 151: 140: 130: 120: 110: 101: 91: 82 • 64 • 194: y= 1178: 1173: 1167: 1161: 1155: 1148: 1142: 1135: 1127: 1120: 1112: 1104: : 0.057: 0.058: 0.058: 0.058: 0.058: 0.059: 0.059: 0.059: 0.060: 0.060: 0.061: 0.061: 0.062: 0.062: 0.062: Фоп: 283: 284: 285 : 286: 287 : 287 : 288 : 289: 290: 291: 292: 293 : 294: 295: 296: Uon: 1.01 : 1.01 : 1.01 : 1.00 : 1.00 : 1.00 : 0.99 : 0.99 : 0.98 : 0.99 : 0.98 : 0.98 : 0.98 : 0.97 : 0.97 : -32: 46: 38: 30: 22: 14: 7: 0: -7: -14: -20: -26: -38. -43. y= 1079: 1070: 1061: 1052: 1042: 1033: 1023: 1013: 1003: 992: 982: 971: 961: 950: 939: Qc : 0.063: 0.064: 0.064: 0.065: 0.065: 0.066: 0.067: 0.067: 0.068: 0.069: 0.069: 0.069: 0.071: 0.071: 0.072: 299: 300: 301: 302: 303: 304 : 305 : 306: 307: Uon: 0.97 : 0.96 : 0.96 : 0.96 : 0.95 : 0.94 : 0.94 : 0.94 : 0.94 : 0.93 : 0.93 : 0.93 : 0.92 : 0.92 : 0.91 : -95: -147: -152: -157: -161: -166: -170: -173: -177: -180: -182: -185: -187: -189: -190: V= 681: 670: 623: 599: 715: 704: 693: 658: 646: 635: 611: 587: Oc : 0.080: 0.084: 0.084: 0.084: 0.084: 0.084: 0.085: 0.085: 0.085: 0.085: 0.086: 0.086: 0.086: 0.087: 0.087: 337 : 338 : 339: Фоп: 320 : 331 : 332 : 333 : 334 : 336 : 340 : 341 : 343 : 344 : 345 : 346: Uoπ: 0.88 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.86 : 0.85 : 0.85 : 0.85 : 0.85 : 0.85 : 0.85 -192: -193: -193: -194: -194: -194: -193: -192: -191: -190: -188: -186: -184: -181: -178: y= 477: 526: 501: 452: x= 550: 538: 513: 489: 464: 440: 428 . 416: 404 • 392. 380 • : 0.087: 0.087: 0.088: 0.088: 0.089: 0.089: 0.089: 0.090: 0.090: 0.091: 0.091: 0.091: 0.092: 0.092: 0.093: 352 : 353 : 356 : 358 : 351 : 354 : 357 : 359 : 349 : 350 : ΤΙΟΠ· 0 85 · 0 85 · 0 85 · 0 85 · 0 84 · 0 84 · 0 84 · 0 84 · 0 84 · 0 84 · 0 83 · 0 83 · 0 83 · 0 84 · 0 83 · -172: -168: -164: -159: -155: -150: -145: -139: -134: -128: -121: -115: -108: y= 356. 333. 321 • 310 • 299. 288 . 277 • 266. 255. 244. 234 . 344. ----:-----:-Qc: 0.093: 0.094: 0.094: 0.095: 0.096: 0.096: 0.097: 0.097: 0.098: 0.098: 0.099: 0.100: 0.100: 0.101: 0.102: 15 : 7 : 8: 9: 10: 12: 13: 14: 17: 18: 19: 21: Фоп: ∪оп: 0.83 : 0.83 : 0.82 : 0.82 : 0.82 : 0.82 : 0.82 : 0.82 : 0.81 : 0.81 : 0.81 : 0.81 : 0.81 : 0.80 -79: 7: 15: 70: 79: -94: -9: -1: 24: 33: 42: 51: 60: 89: y= -86: 80: 72: 63:





Qc : 0.102: 0.103: 0.104: 0.107: 0.107: 0.106: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.106: 27 : Фоп: 25 : 26 : 27 : 39 : 41 : 42 : 44 : 45 : 46 : 48 : 49 : 51 : 52 : 53 : 55 : Uоп: 0.80 : 0.80 : 0.80 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 100: 110: 120: 131: 142: 153: 164: 175: 186: 197: 209: 220: 232: y= -6: -13: -19: -25: -30: -36: -41: -46: -50: -55: -58: -62: x =Qc: 0.107: 0.107: 0.106: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 59: 60 : 62: 63: 64: 67 : 69: 70: Uon: 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 268: 280: 304: 316: 328: 457: y= -72: -81: -82: -89: -91: -91: -74 • -76: -78: -80: -90. -91 • Qc: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.107: 0.105: 0.105: 0.104: 0.104: 0.103: 97 : 77 : 78: 80: 81: 82: 84: 85 : 94 : 96: 98: 100: Uon: 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.79 : 0.80 : 0.80 : Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014 -82.0 м, Y= 341.0 м Координаты точки : X= Максимальная суммарная концентрация | Cs= 0.1071200 доли ПДКмр| 85 град. Достигается при опасном направлении и скорости ветра 0.79 м/с Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада _ВКЛАДЫ_ИСТОЧНИКОВ_ с | Вклад |Ві м.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэ ---|<Об-П>-<Ис>|---|--М-(Мq)--|-С[доли ПДК]|------|----|----|Вклад в%| Сум. %| Коэф.влияния 1.8386| 0.107120 | 100.0 | 100.0 | 0.058263000 B cymme = 0.107120 100.0 1 |001101 6011| П1| 3. Исходные параметры источников. ПК ЭРА v3.0. Модель: MPK-2014 :104 Целиноградский р-н, АкМ. :0011 TOO "Goldenpit", месторождение Мета. сч. :2 Расч.год: 2024-2032 (СП) Расче Объект Вар.расч. :2 Расчет проводился 24.04.2023 18:37 Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Признак источников "для зимы" - отрицательное значение высоты Wo | |Alf| F | KP |Ди| Выброс <06~П>~<Nc>| ~~~ | ~~м~~ | ~~м~~ | ~м/с~ | ~м3/с~~ | градС | ~~~м~~~ | ~~~м~~ ----- Примесь 2908-----0 3.0 1.000 0 1.092000 0 3.0 1.000 0 1.633000 001101 6001 П1 50.0 0.0 507 446 10 001101 6002 П1 501 50.0 0.0 410 10 10 001101 6003 П1 0 3.0 1.000 0 0.0567000 50.0 0.0 545 439 10 0 3.0 1.000 0 0.3250000 001101 6004 П1 461 001101 6007 П1 0 3.0 1.000 0 0.0197000 50.0 0.0 459 482 10 10 50.0 001101 6008 Π1 0 0 419 444 9 97 15 3.0 1.000 0 0.0359000 001101 6009 П1 50.0 55 25 3.0 1.000 0 0.7270000 0.0 604 383 247 ----- Примесь 2909-----001101 6006 П1 2.0 0.0 10 0 3.0 1.000 0 0.0152000 4. Расчетные параметры См, Uм, Хм ПК ЭРА v3.0. Модель: MPK-2014 :104 Целиноградский р-н, АкМ. :0011 TOO "Goldenpit", месторождение Мета. :2 Расч.год: 2024-2032 (СП) Расчет проводился 24.04.2023 18:37 Город Объект Вар.расч. :2 :ЗИМА для энергетики и ЛЕТО для остальных Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная концентрация См = См1/ПДК1 +...+ Смп/ПДКп Для линейных и площадных источников выброс является суммарным по всей площади, а Ст - концентрация одиночного источника, расположенного в центре симметрии, с суммарным М ...... _Их расчетные параметры |Номер| Кол Тип І Cm | Um |

298

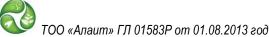




```
-п/п-|<об-п>-<ис>|-----
                                                                              -[м/c]--
                                                                                                -[м]
                                   2.184000| П1 |
      1 1001101 60011
                                                            0.128051
0.191490
                                                                                 0.50
                                                                                                142.5
      2 | 001101 6002|
                                   3.2660001 П1 |
                                                                                                142.5
                                                                                 0.50
      3 |001101 6003|
                                   0.113400| П1 |
                                                             0.006649
                                                                                                142.5
                                                                                 0.50
      4 |001101 6004|
                                   0.650000| П1 |
                                                             0.038110
                                                                                 0.50
                                                                                                142.5
         |001101 6007|
                                   0.039400| П1
                                                             0.002310
                                                                                 0.50
                                                                                                142.5
      6 | 001101 6008 |
                                   0.071800| П1 |
                                                             0 004210
                                                                                 0.50
                                                                                                142 5
      7 | 001101 6009 |
                                  1.454000| N1 |
                                                             0.085250
                                                                                 0.50
                                                                                                142.5
                                  0.030400| П1 |
      8 | 001101 6006 |
                                                            3.257347 |
                                                                                0.50
        Суммарный Мд =
                                  7.809000 (сумма Мq/ПДК по всем примесям)
       Сумма См по всем источникам =
                                                            3.713417 долей ПДК
                      ______
             Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    ПК ЭРА v3.0. Модель: MPK-2014
Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
                                 Расч.год: 2024-2032 (СП)
       Вар.расч. :2
                                                                               Расчет проводился 24.04.2023 18:37
                       :ЗИМА для энергетики и ЛЕТО для остальных
        Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,
                                                цемент, пыль цементного производства - глина, глинистый сланец,
                                                доменный шлак, песок, клинкер, зола, кремнезем, зола углей
                                                 казахстанских месторождений) (494)
                                         2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20
                                                 (доломит, пыль цементного производства - известняк, мел, огарки,
                                                 сырьевая смесь, пыль вращающихся печей, боксит) (495*)
       Фоновая концентрация не задана
       Расчет по прямоугольнику 001 : 2256х1880 с шагом 188
        Расчет по границе санзоны. Покрытие РП 001
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмр) м/с
       Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
6. Результаты расчета в виде таблицы.
    ПК ЭРА v3.0. Модель: MPK-2014
                      : 104 Целиноградский р-н, АкМ.
:0011 ТОО "Goldenpit", месторождение Мета.
:2 Расч.год: 2024-2032 (СП) Расче
       Объект
       Вар.расч. :2
                                                                              Расчет проводился 24.04.2023 18:37
       Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,
                                                цемент, пыль цементного производства - глина, глинистый сланец,
                                                доменный шлак, песок, клинкер, зола, кремнезем, зола углей
                                                 казахстанских месторождений) (494)
                                         2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20
                                                 (доломит, пыль цементного производства - известняк, мел, огарки,
                                                сырьевая смесь, пыль вращающихся печей, боксит) (495*)
       Расчет проводился на прямоугольнике 1
       с параметрами: координаты центра X= 552, Y= 472 размеры: длина(по X)= 2256, ширина(по Y)= 1880, шаг сетки= 188
       Фоновая концентрация не задана
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
                                  _Расшифровка_обозначений
                  | Qc - суммарная концентрация [доли ПДК]
                     Фоп- опасное направл. ветра [ угл. град.]
                     Uon- опасная скорость ветра [
                     Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                     Ки - код источника для верхней строки Ви
      | -При расчете по группе суммации концентр. в мг/м3 не печатается|
      | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
 V=
       1412 : У-строка 1 Стах= 0.083 долей ПДК (х= 552.0; напр.ветра=182)
                                                                          552:
                                                                                      740:
 x= -576 : -388: -200:
                                         -12:
                                                    176:
                                                                364:
                                                                                                928:
                                                                                                        1116: 1304: 1492: 1680:
Qc: 0.045: 0.052: 0.060: 0.069: 0.076: 0.082: 0.083: 0.080: 0.073: 0.065: 0.056: 0.048: 0.042:
                                                                        182 :
                                                                                  193 :
                  138 :
                             144 :
                                        152 :
                                                  161 :
                                                            171 :
                                                                                            203 :
                                                                                                        211 :
                                                                                                                  218 :
                                                                                                                              224 :
Uon: 2.46 : 1.55 : 1.24 : 1.12 : 1.04 : 1.00 : 0.98 : 1.00 : 1.04 : 1.12 : 1.26 : 1.59 : 2.55
Ви: 0.019: 0.022: 0.025: 0.029: 0.032: 0.034: 0.034: 0.033: 0.030: 0.027: 0.023: 0.020: 0.017:
Ku: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002
       0.013: 0.015: 0.017: 0.020: 0.022: 0.024: 0.024: 0.023: 0.021: 0.019: 0.016: 0.014: 0.012:
    : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001
Ви: 0.007: 0.008: 0.010: 0.011: 0.012: 0.013: 0.013: 0.013: 0.012: 0.011: 0.010: 0.009: 0.008: Ки: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 60
       1224 : У-строка 2 Стах= 0.113 долей ПДК (х= 552.0; напр.ветра=183)
                                        -12: 176: 364:
 x= -576 : -388: -200:
                                                                        552: 740: 928: 1116: 1304: 1492: 1680:
Qc: 0.051: 0.061: 0.074: 0.088: 0.101: 0.111: 0.113: 0.107: 0.095: 0.081: 0.068: 0.057: 0.047:
```

Фол: 126: 132: 138: 147: 157: 169: 183: 196: 207: 217: 224: 230: 235:






Uon:	1.64 :	1.23 :	1.08 :	0.98:	0.92 :	0.87 :	0.86:	0.88 :	0.92 :	0.98:	1.09 :	1.26 :	1.80 :
: Ви :	0.021:	0.026:	0.031:	0.037:									0.020:
				6002:									
				0.026: 6001:									
				0.014:									
				~~~~~									
			ка 3	Cmax=	0.161 д	олей ПД	K (x=	552.0;	напр.в	етра=18	4)		
$\times =$		-388:		-12:									
				0.114:									
				140:									
				0.88:									
				0.048:									
Ви :	0.017:	0.021:	0.026:	0.033:	0.041:	0.047:	0.049:	0.044:	0.037:	0.030:	0.023:	0.019:	0.015:
				6001 : 0.017:									
Ки:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
~~~~	. ~ ~ ~ ~ ~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
	848:		ка 4	Cmax=	0.237 д	олей ПД	K (x=	552.0;	напр.в	етра=18	6)		
				-12:									
Qc :	0.065:	0.083:	0.110:	0.146:	0.191:	0.230:	0.237:	0.209:	0.167:	0.129:	0.098:	0.075:	0.059:
				129 : 0.80 :									
				0.061:									0 024:
				6002:									
				0.043:									
				0.022:									
				6009:									
	660 •	Y-cmno	ъа 5	Cmax=	Λ 351 π	олей ПП	K (y=	552 0.	напр в	этра=19	2)		
	:											1400	1.000
				-12: :									
				0.179: 114:									
			0.85 :	0.75 :	0.65 :	0.57:	0.56:	0.59:	0.66:	0.77 :	0.88:	1.01 :	
: Ви :	0.030:			0.076:			0.154:						0.026:
				6002:									
				0.052: 6001:									
Ви :	0.011:	0.014:	0.019:	0.026:	0.035:	0.041:	0.027:	0.030:	0.038:	0.031:	0.023:	0.017:	0.013:
Ки:	6009 :	6009 :	6009 :	6009:	6009 :	6009:	6009 :	6009 : ~~~~~~	6009 : ~~~~~	6009 :	6009 :	6009:	6009:
-		~	ка 6	Cmax=	0.397 д	олей ПД	K (x=	364.0;	напр.в	етра=10	8)		
x=		-388:		-12:									
				0.199:									
				95 : 0.72 :									
: Ви :	0 031:		0 058:	0.085:		0 177:			104:				0 027:
Ки:	6002:	6002 :	6002 :	6002 :	6002 :	6002 :	6006 :	6002 :	6002 :	6002:	6002:	6002:	6002 :
Ви : Ки ·	0.020:	0.027:	0.038:	0.057:	0.085:	0.116:	:	0.101:	0.068:	0.046:	0.032:	0.024:	0.018:
Ви :	0.012:	0.015:	0.021:	0.057: 6001 : 0.029: 6009 :	0.041:	0.053:	:	0.034:	0.052:	0.036:	0.025:	0.018:	0.014:
Ки :	6009 :	6009 :	6009 :	6009:	6009 :	6009 :	:	6009 :	6009 :	6009 :	6009 :	6009 :	6009:
	284 :	У-стро	ка 7	Cmax=	0.373 д	олей ПД	K (x=	552.0;	напр.в	етра=34	0)		
	:			-12:								1492:	1680:
				0.191:									
Фоп:	83 :	81 :	79 :	75 : 0.71 :	68 :	46:	340 :	301 :	289 :	283 :	280 :	278 :	277 :
:	:	:	:	:	:	:	:	:	:	:	:	:	:
				0.083: 6002:									
				0.054:									
				6001 : 0.028:									
Ки:	6009 :	6009 :	6009 :	6009:	6009 :	6009 :	6004 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
				Cmax=									





:												
x= -576 :												
Qc: 0.067:												
Фол: 73 : Uoл: 1.14 :												
: :												
ви: 0.029: Ки: 6002:												
Ви : 0.019:												
Ки : 6001 : Ви : 0.011:												
Ки: 6009:												
	-		~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~			~~~~~	
y= -92 :		ка 9	Cmax=	0.198 д	олей ПД	K (x=	552.0;	напр.в	етра=35	6)		
x= -576 :	-388:											
Qc: 0.061:												
Фол: 65:												
Uoп: 1.22 :												
ви : 0.026:	0.034:	0.044:	0.057:	0.072:	0.085:	0.088:	0.078:	0.063:	0.049:	0.038:	0.029:	0.023:
Ки : 6002 : Ви : 0.017:												
ки: 6001:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
Ви : 0.010: Ки : 6009 :												
~~~~~~~												
y= -280 :	_	ока 10	Cmax=	0.136 д	олей ПД	K (x=	552.0;	напр.в	етра=35	7)		
x = -576:	-388:											
Qc: 0.054:												
Фоп: 57 :	52 :	46:	37 :	26:	12 :	357 :	342 :	330 :	320 :	312 :	306 :	301 :
Uoп: 1.38 :	1.13:					0.80 :						1.58 :
Ви : 0.023:	0.029:	0.036:	0.044:	0.052:	0.058:	0.059:	0.055:	0.047:	0.039:	0.032:	0.026:	0.021:
Ки : 6002 : Ви : 0.015:												
Ки : 6001 :												
Ви : 0.009: Ки : 6009 :												
~~~~~~												
y= -468 :	Ү-стро	жа 11	Cmax=	0.098 д	олей ПД	K (x=	552.0;	напр.в	етра=35	8)		
:	_							_	_		1492:	1680:
x= -576:	-388:	-200: :	-12:	176:	364:	552:	740:	928:	1116:	1304:	:	:
x= -576: : Qc: 0.048:	-388: : 0.056:	-200: : 0.067:	-12: : 0.078:	176: : 0.088:	364: : 0.096:	552: : 0.098:	740: : 0.094:	928: : 0.085:	1116: : 0.074:	1304: : 0.063:	0.053:	0.045:
x= -576 : 	-388: : 0.056: 45: 1.30:	-200: : 0.067: 39: 1.12:	-12: : 0.078: 31: 1.01:	176: : 0.088: 21: 0.95:	364: : 0.096: 10: 0.92:	552: : 0.098: 358: 0.91:	740: : 0.094: 346: 0.93:	928: : 0.085: 335: 0.97:	1116: : 0.074: 326: 1.05:	1304: : 0.063: 319: 1.16:	0.053: 312: 1.39:	0.045: 307: 2.26:
x= -576: 	-388: : 0.056: 45: 1.30:	-200: : 0.067: 39: 1.12:	-12: : 0.078: 31: 1.01:	176: : 0.088: 21: 0.95:	364: : 0.096: 10: 0.92:	552: : 0.098: 358: 0.91:	740: : 0.094: 346: 0.93:	928: : 0.085: 335: 0.97:	1116: : 0.074: 326: 1.05:	1304: : 0.063: 319: 1.16:	0.053: 312: 1.39:	0.045: 307: 2.26:
x= -576 : Qc : 0.048: Φοπ: 51 : Uoπ: 1.80 : : Βμ : 0.021: Κμ : 6002 :	-388: : 0.056: 45: 1.30: : 0.024: 6002:	-200: : 0.067: 39: 1.12: : 0.029: 6002:	-12: : 0.078: 31: 1.01: : 0.034: 6002:	176: : 0.088: 21: 0.95: : 0.038: 6002:	364: : 0.096: 10: 0.92: : 0.042: 6002:	552: : 0.098: 358: 0.91: : 0.042: 6002:	740: : 0.094: 346: 0.93: : 0.040: 6002:	928: : 0.085: 335: 0.97: : 0.036: 6002:	1116: : 0.074: 326: 1.05: : 0.031: 6002:	1304: 0.063: 319: 1.16: 0.026: 6002:	0.053: 312: 1.39: 0.022: 6002:	0.045: 307: 2.26: : 0.019: 6002:
x= -576: Qc: 0.048: Фол: 51: Uon: 1.80: : Bu: 0.021: Ku: 6002: Bu: 0.013:	-388: : 0.056: 45: 1.30: : 0.024: 6002: 0.016:	-200: : 0.067: 39: 1.12: : 0.029: 6002: 0.018:	-12: : 0.078: 31: 1.01: : 0.034: 6002: 0.021:	176: : 0.088: 21: 0.95: : 0.038: 6002: 0.024:	364: : 0.096: 10: 0.92: : 0.042: 6002: 0.026:	552: : 0.098: 358: 0.91: : 0.042: 6002: 0.027:	740: : 0.094: 346: 0.93: : 0.040: 6002: 0.025:	928: : 0.085: 335: 0.97: : 0.036: 6002: 0.023:	1116: : 0.074: 326: 1.05: : 0.031: 6002: 0.020:	1304: 0.063: 319: 1.16: 0.026: 6002: 0.017:	0.053: 312: 1.39: 0.022: 6002: 0.014:	0.045: 307: 2.26: : 0.019: 6002: 0.012:
x= -576 : Qc : 0.048: Φοπ: 51 : Uoπ: 1.80 : : Βμ : 0.021: Κμ : 6002 :	-388: : 0.056: 45: 1.30: : 0.024: 6002: 0.016: 6001:	-200: : 0.067: 39: 1.12: : 0.029: 6002: 0.018: 6001:	-12: : 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001:	176: : 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001:	364: : 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001:	552: : 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001:	740: : 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001:	928: : 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001:	1116: : 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001:	1304: : 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001:
x= -576: Qc: 0.048: Фоп: 51: Uon: 1.80: : Ви: 0.021: Ки: 6002: Ви: 0.013: Ки: 6001: Ви: 0.008: Ки: 6009:	-388: : 0.056: 45: 1.30: 0.024: 6002: 0.016: 6001: 0.009:	-200: : 0.067: 39: 1.12: 0.029: 6002: 0.018: 6001: 0.011: 6009:	-12: : 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001: 0.013: 6009:	176: : 0.088: 21: 0.95: 0.038: 6002: 0.024: 6001: 0.015: 6009:	364: : 0.096: 10: 0.92: 0.042: 6002: 0.026: 6001: 0.017: 6009:	552: : 0.098: 358: 0.91: 0.042: 6002: 0.027: 6001: 0.018: 6009:	740: : 0.094: 346: 0.93: 0.040: 6002: 0.025: 6001: 0.017: 6009:	928: : 0.085: 335: 0.97: 0.036: 6002: 0.023: 6001: 0.016: 6009:	1116: : 0.074: 326: 1.05: 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: 0.026: 6002: 0.017: 6001: 0.013:	0.053: 312: 1.39: : 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576: Qc: 0.048: Фоп: 51: Uon: 1.80: : Ви: 0.021: Ки: 6002: Ви: 0.013: Ки: 6001: Ви: 0.008: Ки: 6009:	-388: : 0.056: 45: 1.30: : 0.024: 6002: 0.016: 6001: 0.009:	-200: : 0.067: 39: 1.12: : 0.029: 0.018: 6001: 0.011: 6009:	-12: 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001: 0.013:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364: : 0.096: 10: 0.92: 0.042: 6002: 0.026: 6001: 0.017: 6009:	552: : 0.098: 358: 0.91: 0.042: 6002: 0.027: 6001: 0.018: 6009:	740: : 0.094: 346: 0.93: 0.040: 6002: 0.025: 6001: 0.017: 6009:	928: : 0.085: 335: 0.97: 0.036: 6002: 0.023: 6001: 0.016: 6009:	1116: : 0.074: 326: 1.05: 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: 0.026: 6002: 0.017: 6001: 0.013:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388:: 0.056: 45: 1.30: 0.024: 6002: 0.016: 6001: 0.009: 6009:	-200: : 0.067: 39: 1.12: : 0.029: 0.018: 6001: 0.011: 6009:	-12: : 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001: 0.013:	176:: 0.088: 21: 0.95: 0.038: 6002: 0.024: 6001: 0.015: 6009:	364: : 0.096: 10 : 0.92 : 0.042: 6002 : 0.026: 6001 : 0.017: 6009 :	552: : 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740: : 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001: 0.017: 6009:	928: : 0.085: 335: 0.97: 0.036: 6002: 0.023: 6001: 0.016: 6009:	1116: : 0.074: 326: 1.05: 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: 0.026: 6002: 0.017: 6001: 0.013:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388: : 0.056: 45: 1.30: : 0.024: 6002: 0.016: 6001: 0.009: 6009:	-200:: 0.067: 39: 1.12: : 0.029: 6002: 0.018: 6001: 0.011: 6009:	-12: : 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001: 0.013: 6009: 	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740: : 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001: 0.017: 6009:	928: : 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009:	1116: : 0.074: 326: 1.05: 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: 0.026: 6002: 0.017: 6001: 0.013:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388:: 0.056: 45: 1.30: 0.024: 6002: 0.016: 6001: 0.009:	-200:: 0.067: 39: 1.12: 0.029: 6002: 0.018: 6001: 0.011: 6009:	-12: : 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009: 472	740: : 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001: 0.017: 6009:	928: : 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009:	1116: : 0.074: 326: 1.05: 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: 0.026: 6002: 0.017: 6001: 0.013:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:  Qc: 0.048: Фол: 51: Uon: 1.80: : Ви: 0.021: Ки: 6002: Ви: 0.013: Ки: 6001: Ви: 0.008: Ки: 6009:  Результать К	-388:	-200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200: -200:	-12:: 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:	928:	1116:: 0.074: 326: 1.05: 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388:: 0.056: 45: 1.30: 0.024: 6002: 0.016: 6001: 0.009: 6009:	-200:: 0.067: 39: 1.12: 0.029: 6002: 0.018: 6001: 0.011: 6009:  ав точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в в точка в точка в точка в в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка в точка	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:  же макс и: X= онцентр м напр	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009: имума 364. ация	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:  ПК ЭРА 0 м, Y	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:: 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001: 0.017: 6009:	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009:	1116:: 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388:: 0.056: 45: 1.30: 0.024: 6002: 0.016: 6001: 0.009: 6009:	-200:: 0.067: 39: 1.12: 0.029: 6002: 0.018: 6001: 0.011: 6009: 1.12 точк марная к	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009: ×  же макс и: X=  онцентр м напр скорост блице з Выброс	176:: 0.088: 21: 0.95: 0.038: 6002: 0.024: 6001: 0.015: 6009: имума 364. ащия   ащия   авлении и ветра аказано КЛАДНИ   В	364:: 0.096: 10:: 0.92:: : 0.042:: 6002:: 0.026:: 6001:: 0.017:: 6009:	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:: 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001: 0.017: 6009: Модель .0 м	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009:	1116:: 0.074: 326: 1.05: 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388:	-200:	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:  ПК ЭРА 0 м, Y  СS= 0  ВКЛАДЧ СТОЧНИК КЛАД ЛИ ПДК] 177112	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009:	11116:: 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388:	-200:: 0.067: 39: 1.12: : 0.029: 6002: 0.018: 6001: 0.011: 6009:  **Tuni	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009: имума 364. ация   авлении авлении   ветра аказано КЛАДЫ_И   в	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:  ПК ЭРА 0 м, Y  СS= 0  ВКЛАДЧ СТОЧНИК КЛАД 177112 116493	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:: 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001: 0.017: 6009: Модель .0 м  более в%  Сум   44   74	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009: : MPK-2	11116:: 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001: 0.014: 6009: 0.014:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388:: 0.056: 45: 1.30: : 0.024: 6002: 0.016: 60001: 0.009: 60009: 1 расчет Соордина Ная сумм Ников:  СОД    >- <nc> </nc>	-200:: 0.067: 39: 1.12: : 0.029: 6002: 0.018: 6001: 0.011: 6009: 4 B TOUR MARCHO M 8. B TOUR TUIL TUIL TUIL TUIL TUIL TUIL TUIL TUIL	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:  же макс и: X= онцентр м напр скорост блице з Выброс М- (Мд) - 3.266 2.184 1.454	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009: имума 364. ация   авлении и ветра аказано КЛАДЫ И	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:  ПК ЭРА 0 м, Y  СS= 0 ВКЛАДИ СТОЧНИК КЛАД ЛИ ПДК] 177112 116493 053443	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:: 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001: 0.017: 6009: Модель .0 м  5 доли  более  В%   Сум   444   744	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009: : MPK-2	1116:: 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388:	-200: -200:	-12:: 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009: : MPK-2	1116:: 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
х= -576:	-388:: 0.056: 45: 1.30: 0.024: 6002: 0.016: 6001: 0.009: Соордина ная сумм ников: Сордина ная сумм ников: Сордина ная сумм ников: Сордина ная сумм ников:	-200: -200: -200: 0.067: 39: 1.12: : 0.029: 6002: 0.018: 6001: 0.011: 6009:  20: 20: 20: 20: 20: 20: 20: 20: 20: 2	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:  ПК ЭРА 0 м, Y  СS= 0  ВКЛАДЧ СТОЧНИК КЛАД ЛЛ ПДК] 177112 116493 035116 3382164 014443	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009: : MPK-2	1116:: 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304: : 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: : 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
x= -576:	-388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388:	-200:	-12:: 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:  миума 364.  ащия   ащия   аказано КЛАДНи и Ветра аказано КЛАДНи и 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:  ПК ЭРА 0 м, Y  СS= 0  ВКЛАДЧ СТОЧНИК КЛАД ЛЛ ПДК] 177112 116493 035116 3382164 014443	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009: : MPK-2	1116:: 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: : 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
х= -576:	-388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388:	-200:	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009: 7009: 108 0.50 ВКЛАДЧ СТОЧНИК КЛАД ЛИ ПДК] 177112 116493 053443 035116 382164 014443 THOЙ CE	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009: : MPK-2	1116:: 0.074: 326: 1.05: : 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: : 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
х= -576:	-388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388:	-200: -200: -200: 0.067: 39: 1.12: 0.029: 6002: 0.018: 6001: 0.011: 6009: 20: 20: 20: 20: 20: 20: 20: 20: 20: 20	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009:  ТК ЭРА 0 м, Y  СS= 0  ВКЛАДЧ СТОЧНИК КЛАД ЛИ ПДК] 177112 116493 053443 035116 382164 014443  THOЙ Се  АКМ. есторож	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:: 0.094: 346: 0.93: : 0.040: 6002: 0.025: 6001: 0.017: 6009:  Модель .0 м  5 доли  более  В%   Сум	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009:	11116:: 0.074: 326: 1.05: 0.031: 6002: 0.020: 6001: 0.014: 6009:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009:
х= -576:	-388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388:	-200:	-12:: 0.078: 31: 0.078: 31: 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6009:	740:	928:	1116:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
х= -576:	-388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388:	-200:	-12:: 0.078: 31: 1.01: : 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:: 0.096: 10: 0.92: : 0.042: 6002: 0.026: 6001: 0.017: 6009: ПК ЭРА 0 м, У СS= 0 108 0.50 ВКЛАДЧ СТОЧНИК КЛАД 177112 116493 053443 035116 382164 014443 THOЙ Се AKM. есторож 32 (СП) органичи пыль ц	552:: 0.098: 358: 0.91: : 0.042: 6002: 0.027: 6001: 0.018: 6609:	740:	928:: 0.085: 335: 0.97: : 0.036: 6002: 0.023: 6001: 0.016: 6009:	1116:	1304:: 0.063: 319: 1.16: : 0.026: 6002: 0.017: 6001: 0.013: 6009:	: 0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:
х= -576:	-388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388: -388:	-200:	-12:: 0.078: 31: 1.01: 0.034: 6002: 0.021: 6001: 0.013: 6009:	176:: 0.088: 21: 0.95: : 0.038: 6002: 0.024: 6001: 0.015: 6009:	364:	552:	740:	928:	11116:	да  ния    63   33   44   21   1   4.2023 ремния на, гли езем, з	0.053: 312: 1.39: 0.022: 6002: 0.014: 6001: 0.011: 6009:	0.045: 307: 2.26: : 0.019: 6002: 0.012: 6001: 0.009: 6009:





(доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

```
Параметры расчетного прямоугольника No 1 _______ 1472
              Координаты центра : X=
Длина и ширина : L=
                                                            552 м; Y=
                                             : L= ´
                                                          2256 м; в= 1880 м
             Шаг сетки (dX=dY) : D=
                                                         188 M
        Фоновая концентрация не задана
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
        Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмр) м/с
     (Символ ^ означает наличие источника вблизи расчетного узла)
                                               5
                                                            6
                                                                              8
                                                                                                10
                                                                                                          11
                     ----|----|----|----|----
 1-| 0.045 0.052 0.060 0.069 0.076 0.082 0.083 0.080 0.073 0.065 0.056 0.048 0.042 |- 1
       0.051 0.061 0.074 0.088 0.101 0.111 0.113 0.107 0.095 0.081 0.068 0.057 0.047 |- 2
 2-1
       0.058 0.072 0.091 0.114 0.138 0.157 0.161 0.148 0.126 0.103 0.082 0.066 0.053 |- 3
       0.065\ 0.083\ 0.110\ 0.146\ 0.191\ 0.230\ 0.237\ 0.209\ 0.167\ 0.129\ 0.098\ 0.075\ 0.059\ |-480\ 0.088\ 0.088\ 0.088\ 0.089\ |-480\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 0.088\ 
        0.070 0.092 0.127 0.179 0.256 0.338 0.351 0.282 0.215 0.155 0.111 0.083 0.063 |- 5
       0.072\ 0.097\ 0.136\ 0.199\ 0.299\ 0.397\ 0.278\ 0.334\ 0.253\ 0.171\ 0.119\ 0.087\ 0.066\ C-\ 6
        0.071 0.095 0.132 0.191 0.278 0.358 0.373 0.329 0.243 0.167 0.117 0.086 0.065 |- 7
        0.067 0.088 0.118 0.162 0.220 0.274 0.289 0.254 0.197 0.145 0.106 0.080 0.062 |- 8
 8-1
      0.061 0.078 0.100 0.129 0.162 0.190 0.198 0.181 0.150 0.118 0.092 0.071 0.057 |- 9
      0.054 0.067 0.082 0.100 0.119 0.133 0.136 0.128 0.112 0.093 0.076 0.062 0.051 |-10
11-| 0.048 0.056 0.067 0.078 0.088 0.096 0.098 0.094 0.085 0.074 0.063 0.053 0.045 |-11
                                                                              8 9
                                                                                               10
           В целом по расчетному прямоугольнику:
 Везразмерная макс. концентрация ---> См = 0.3966075
Доститается в точке с координатами: Xм = 364.0 м
( X-столбец 6, Y-строка 6) Yм = 472.0 м
 При опасном направлении ветра :
                                                   : 0.50 м/с
   и "опасной" скорости ветра
9. Результаты расчета по границе санзоны.
    ПК ЭРА v3.0. Модель: MPK-2014
        Город :104 Целиноградский р-н, АкМ.
Объект :0011 ТОО "Goldenpit", месторождение Мета.
        Вар.расч. :2 Расч.год: 2024-2032 (СП)
                                                                                    Расчет проводился 24.04.2023 18:37
        Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,
                                                     цемент, пыль цементного производства - глина, глинистый сланец,
                                                     доменный шлак, песок, клинкер, зола, кремнезем, зола углей
                                                      казахстанских месторождений) (494)
                                             2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20
                                                      (доломит, пыль цементного производства - известняк, мел, огарки,
                                                     сырьевая смесь, пыль вращающихся печей, боксит) (495*)
        Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
        Всего просчитано точек: 267
        Фоновая концентрация не задана
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
        Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
                                     _Расшифровка_обозначений_
                    | Qc - суммарная концентрация [доли ПДК]
                      Фоп- опасное направл. ветра [ угл. град.]
                      Ви - вклад ИСТОЧНИКА в Ос [доли ПДК]
                    | Ки - код источника для верхней строки Ви
       | -При расчете по группе суммации концентр. в мг/м3 не печатается|
                                              506:
                                                          518: 530:
                                                                                 542:
                                                                                             623: 636: 648:
                                ----:
```

y= 469: 481: 493: 506: 518: 530: 542: 623: 636: 648: 660: 672: 683: 695: 707:

x= -91: -91: -90: -89: -88: -87: -85: -73: -71: -69: -66: -64: -61: -57: -53:

Qc: 0.168: 0.168: 0.168: 0.168: 0.168: 0.167: 0.167: 0.164: 0.163: 0.162: 0.162: 0.161: 0.160: 0.160: 0.159:
Φοπ: 94: 96: 97: 98: 99: 100: 101: 109: 110: 111: 112: 113: 115: 116: 117:

Uoπ: 0.76: 0.76: 0.76: 0.76: 0.76: 0.76: 0.76: 0.77: 0.77: 0.77: 0.77: 0.78: 0.78: 0.78: 0.78:

Βω: 0.072: 0.072: 0.072: 0.072: 0.072: 0.072: 0.071: 0.071: 0.070: 0.069: 0.069: 0.068: 0.068: 0.068: 0.068: 0.067:

Κω: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 600

302





~~~~	~~~~~	~~~~~	.~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
			741:					797:			828:				
			: -41:												
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
			0.158: 120:												
Uon:	0.78:		0.78:												
ви :	0.067:		0.066:												0.064:
			6002 : 0.046:												
Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
			0.023: 6009:												
			. ~ ~ ~ ~ ~ ~ ~												
	877:	886:	895:	904:	912:	921:	929:	937:	944:	952:	959:	966:	973:	979:	985:
			: 59:												
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
			0.152: 136:												
		0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	0.79 :	
: Ви :	0.064:		0.064:												0.063:
			6002 : 0.045:												
Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
			0.022: 6009:												
			.~~~~~												
			1002:												
			208:												
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
			0.151: 152:												
Uon:	0.78:		0.78:								0.78 :				0.77 :
		0.063:	0.063:	0.063:	0.063:	0.063:	0.063:	0.063:	0.063:	0.064:	0.064:	0.064:	0.064:	0.064:	0.064:
			6002 : 0.045:												
Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :
			0.022: 6009:												
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
			1049:												
			385:											517:	
			0.154:												
Фоп:	166 :	167 :	169 :	170 :	171 :	172 :	173 :	174 :	175 :	176 :	177 :	178 :	179 :	180 :	182 :
Uon:	0.77 :	0.77 :	0.77 :												0.76 :
		0.064:	0.065:	0.065:	0.065:	0.065:	0.065:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.067:	0.067:
			6002 : 0.046:												
			6001 : 0.022:												
Ки:	6009:	6009 :	6009 :	6009:	6009:	6009 :	6009 :	6009 :	6009 :	6009:	6009:	6009 :	6009:	6009:	6009 :
~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
-			1032:												
$\times =$	541:	553:	565:	577:	588:	726:	863:	875:	886:	898:	909:	920:	931:	942:	953:
			0.162:												
Фоп:	183 :	184 :	185 :	186 :	187 :	201 :	214 :	215 :	216 :	217 :	218 :	219 :	220 :	221 :	222 :
Uon:	0.75 :		0.75 :												0.76 :
		0.068:	0.068:	0.068:	0.068:	0.070:	0.066:	0.066:	0.065:	0.065:	0.065:	0.064:			
			6002 : 0.049:												
			6001:												
Ки:	6009 :	6009 :	0.023: 6009:	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :	6009 :
~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
			874:												
×=			984:												
			0.150:												
Фоп:	223 :	225 :	226 :	227 :	228 :	229 :	230 :	231 :	232 :	233 :	234 :	235 :	236 :	237 :	238 :
Uon:	0.76 :		0.76:					0.77 :				0.77 :			0.78 :
Ви :			0.062:												





Ku.	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 •	6002 :
															0.041:
															6001 :
															0.027:
															6009:
λ=		756:				715:					622:				576:
×=				1121:	•				-	•		-		•	-
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
~ -															0.140:
															257 : 0.81 :
:	0.70 :					:									
															0.057:
				6002:											
															0.038: 6001 :
Ви :	0.027:	0.028:	0.028:	0.028:	0.028:	0.028:	0.028:	0.028:	0.029:	0.029:	0.029:	0.029:	0.029:	0.029:	0.029:
				6009:											
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	. ~ ~ ~ ~ ~ ~	~~~~~
y=	565:	553:	541:	529:	517:	505:	493:	481:	469:	457:	444:	432:	420:	408:	395:
															:
X=															1227:
															0.138:
Фоп:	258 :	259 :	260 :	261 :	262 :	263 :	264 :	265 :	266 :	267 :	268 :	269 :	270 :	271 :	272 :
Uon:															0.82:
: Ви :	0.056:									0.056:				0.056:	0.056:
															6002 :
															0.037:
				6001:											0.030:
				6009:											
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~		. ~ ~ ~ ~ ~ ~ ~	
	383:	371•	359:	346:	331.	322:	310:	298:	286:	274:	263:	251:	239:	228:	216:
															:
$\times =$															1188:
															0.140:
				276 :											
				0.82 :											
:	:					:									
															0.057: 6002:
															0.038:
															6001 :
															0.030: 6009:
															~~~~~
		194:		172:											64:
x=	1183:	1178:	1173:	1167:	1161:	1155:	1148:	1142:	1135:	1127:	1120:	1112:	1104:	1096:	1088:
															0.147:
															302 :
															0.79 :
:	. 057.														0.001.
															0.061: 6002:
Ви :	0.038:	0.038:	0.038:	0.038:	0.038:	0.038:	0.038:	0.038:	0.038:	0.039:	0.039:	0.039:	0.039:	0.039:	0.039:
															6001 :
															0.030: 6009:
															~~~~~
	55: :										-20:			-38:	-43: :
x=				1052:	1042:	1033:	1023:	1013:	1003:	992:	982:	971:	961:	950:	939:
					·										:
<u> </u>	:	:						11 153 •	U.154:	U.154:		U.156:	U.15/:	U.158:	
	0.148:	0.148:	0.149:	0.150:	0.150:				312 •	313 •	314 •	315 •	316 •	317 •	318 •
Фоп:	0.148: 303:	0.148: 304:	0.149: 305:	0.150: 306:	0.150: 307:	308 :	309 :	310 :							318 : 0.76 :
Фоп: Uoп: :	0.148: 303: 0.79:	: 0.148: 304: 0.78:	0.149: 305 : 0.78 :	0.150: 306: 0.78:	0.150: 307 : 0.78 :	308 : 0.78 :	309 : 0.78 :	310 : 0.77 :	0.77 :	0.77 :	0.77 :	0.76 :	0.76 :	0.76 :	0.76 :
Фоп: Uoп: : Ви:	0.148: 303: 0.79:	0.148: 304: 0.78: 0.061:	0.149: 305 : 0.78 : 0.062:	0.150: 306: 0.78: :	0.150: 307: 0.78: :	308 : 0.78 : : 0.063:	309 : 0.78 : 0.063:	310 : 0.77 : : 0.064:	0.77 : 0.064:	0.77 : : 0.064:	0.77 : : 0.065:	0.76 : 0.065:	0.76 : 0.066:	0.76 : 0.066:	0.76 : : 0.067:
Фоп: Uоп: : Ви: Ки:	0.148: 303: 0.79: 0.061: 6002:	0.148: 304: 0.78: 	0.149: 305 : 0.78 : 0.062: 6002 :	0.150: 306: 0.78: : 0.062: 6002:	0.150: 307: 0.78: : 0.062: 6002:	308 : 0.78 : : 0.063: 6002 :	309 : 0.78 : 0.063: 6002 :	310 : 0.77 : : 0.064: 6002 :	0.77 : 0.064: 6002 :	0.77 : 0.064: 6002 :	0.77 : 0.065: 6002 :	0.76 : 0.065: 6002 :	0.76 : 0.066: 6002 :	0.76 : 0.066: 6002 :	0.76 : : 0.067: 6002 :
Фоп: Uoп: : Ви: Ки: Ви:	0.148: 303: 0.79: 0.061: 6002: 0.040:	0.148: 304: 0.78: 0.061: 6002: 0.040:	0.149: 305: 0.78: : 0.062: 6002: 0.040:	0.150: 306: 0.78: : 0.062: 6002: 0.040:	0.150: 307: 0.78: : 0.062: 6002: 0.040:	308 : 0.78 : : 0.063: 6002 : 0.041:	309 : 0.78 : 0.063: 6002 : 0.041:	310 : 0.77 : : 0.064: 6002 : 0.041:	0.77 : 0.064: 6002 : 0.041:	0.77 : 0.064: 6002 : 0.042:	0.77 : 0.065: 6002 : 0.042:	0.76 : 0.065: 6002 : 0.042:	0.76 : 0.066: 6002 : 0.042:	0.76 : 0.066: 6002 : 0.043:	0.76 : : 0.067:
Фоп: Uoп: : Ви : Ки : Ви : Ки : Ви :	0.148: 303: 0.79: 0.061: 6002: 0.040: 6001: 0.030:	0.148: 304: 0.78: 0.061: 6002: 0.040: 6001: 0.030:	0.149: 305: 0.78: : 0.062: 6002: 0.040: 6001: 0.030:	0.150: 306: 0.78: : 0.062: 6002: 0.040: 6001: 0.031:	0.150: 307: 0.78: : 0.062: 6002: 0.040: 6001: 0.031:	308 : 0.78 : 0.063: 6002 : 0.041: 6001 : 0.030:	309: 0.78: : 0.063: 6002: 0.041: 6001: 0.030:	310 : 0.77 : : 0.064: 6002 : 0.041: 6001 : 0.031:	0.77 : 0.064: 6002 : 0.041: 6001 : 0.031:	0.77 : 0.064: 6002 : 0.042: 6001 : 0.031:	0.77 : 0.065: 6002 : 0.042: 6001 : 0.031:	0.76 : 0.065: 6002 : 0.042: 6001 : 0.031:	0.76 : 0.066: 6002 : 0.042: 6001 : 0.031:	0.76 : 0.066: 6002 : 0.043: 6001 : 0.031:	0.76: : 0.067: 6002: 0.043: 6001: 0.031:
Фоп: Uoп: : Ви: Ки: Ви: Ки: Ви: Ки:	0.148: 303: 0.79: 0.061: 6002: 0.040: 6001: 0.030: 6009:	0.148: 304: 0.78: 0.061: 6002: 0.040: 6001: 0.030: 6009:	0.149: 305: 0.78: : 0.062: 6002: 0.040: 6001: 0.030: 6009:	0.150: 306: 0.78: : 0.062: 6002: 0.040: 6001: 0.031: 6009:	0.150: 307: 0.78: : 0.062: 6002: 0.040: 6001: 0.031: 6009:	308: 0.78: : 0.063: 6002: 0.041: 6001: 0.030: 6009:	309: 0.78: : 0.063: 6002: 0.041: 6001: 0.030: 6009:	310 : 0.77 : : 0.064: 6002 : 0.041: 6001 : 0.031: 6009 :	0.77 : 0.064: 6002 : 0.041: 6001 : 0.031: 6009 :	0.77 : 0.064: 6002 : 0.042: 6001 : 0.031: 6009 :	0.77 : 0.065: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76 : 0.065: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76 : 0.066: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76: 0.066: 6002: 0.043: 6001: 0.031: 6009:	0.76: 0.067: 6002: 0.043: 6001: 0.031: 6009:
Фоп: Uoп: : Ви: Ки: Ви: Ки: Ви: Ки:	0.148: 303: 0.79: : 0.061: 6002: 0.040: 6001: 0.030: 6009:	0.148: 304: 0.78: : 0.061: 6002: 0.040: 6001: 0.030: 6009:	0.149: 305: 0.78: : 0.062: 6002: 0.040: 6001: 0.030: 6009:	0.150: 306: 0.78: : 0.062: 6002: 0.040: 6001: 0.031: 6009:	0.150: 307: 0.78: : 0.062: 6002: 0.040: 6001: 0.031: 6009:	308 : 0.78 : : 0.063: 6002 : 0.041: 6001 : 0.030: 6009 :	309 : 0.78 : 0.063: 6002 : 0.041: 6001 : 0.030: 6009 :	310 : 0.77 : : 0.064: 6002 : 0.041: 6001 : 0.031: 6009 :	0.77 : 0.064: 6002 : 0.041: 6001 : 0.031: 6009 :	0.77 : 0.064: 6002 : 0.042: 6001 : 0.031: 6009 :	0.77 : 0.065: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76: 0.065: 6002: 0.042: 6001: 0.031: 6009:	0.76 : 0.066: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76 : 0.066: 6002 : 0.043: 6001 : 0.031: 6009 :	0.76: 0.067: 6002: 0.043: 6001: 0.031: 6009:
Фоп: Uoп: Ви: Ки: Ви: Ки: Ви: Ки: Ки:	0.148: 303: 0.79: 0.061: 6002: 0.040: 6001: 0.030: 6009:	0.148: 304: 0.78: 0.061: 6002: 0.040: 6001: 0.030: 6009:	0.149: 305: 0.78: : 0.062: 6002: 0.040: 6001: 0.030: 6009:	0.150: 306: 0.78: : 0.062: 6002: 0.040: 6001: 0.031: 6009: -157:	0.150: 307: 0.78: : 0.062: 6002: 0.040: 6001: 0.031: 6009: 	308 : 0.78 : : 0.063: 6002 : 0.041: 6001 : 0.030: 6009 : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	309: 0.78: : 0.063: 6002: 0.041: 6001: 0.030: 6009: ~~~~~	310 : 0.77 : : 0.064: 6002 : 0.041: 6001 : 6009 : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.77 : 0.064: 6002 : 0.041: 6001 : 0.031: 6009 :	0.77 : 0.064: 6002 : 0.042: 6001 : 0.031: 6009 : ~~~~~~	0.77 : 0.065: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76 : 0.065: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76 : 0.066: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76 : 0.066: 6002 : 0.043: 6001 : 0.031: 6009 :	0.76: 0.067: 6002: 0.043: 6001: 0.031: 6009:
Фоп: Uoп: Ви: Ки: Ви: Ки: Ви: Ки: Ки:	0.148: 303: 0.79: 0.061: 6002: 0.040: 6001: 0.030: 6009:	0.148: 304: 0.78: : 0.061: 6002: 0.040: 6001: 0.030: 6009:	0.149: 305: 0.78: : 0.062: 6002: 0.040: 6001: 0.030: 6009: 	0.150: 306: 0.78: : 0.062: 6002: 0.040: 6001: 0.031: 6009: -157:	0.150: 307: 0.78: : 0.062: 6002: 6001: 0.031: 6009: 	308 : 0.78 : : 0.063: 6002 : 0.041: 6001 : 0.030: 6009 :	309 : 0.78 : : 0.063: 6002 : 0.041: 6001 : 0.030: 6009 :	310 : 0.77 : : 0.064: 6002 : 0.041: 6001 : 0.031: 6009 :	0.77: 0.064: 6002: 0.041: 6001: 0.031: 6009:	0.77 : 0.064: 6002 : 0.042: 6001 : 0.031: 6009 :	0.77 : 0.065: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76 : 0.065: 6002 : 0.042: 6001 : 0.031: 6009 : ~~~~~~	0.76 : 0.066: 6002 : 0.042: 6001 : 0.031: 6009 :	0.76 : 0.066: 6002 : 0.043: 6001 : 0.031: 6009 :	0.76: 0.067: 6002: 0.043: 6001: 0.031: 6009:





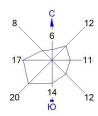
Фоп:	329 :	341 :	342 :	343 : 0.74 :	344 : 0.74 :	345 : 0.74 :	346 : 0.74 :	348 : 0.74 :	349 : 0.74 :	350 : 0.74 :	351 :	352 : 0.75 :	353 : 0.75 :	354 :	0.162: 356: 0.75:
Ки : Ви : Ви : Ки :	6002 : 0.045: 6001 : 0.031: 6009 :	6002 : 0.045: 6001 : 0.030: 6009 :	0.072: 6002: 0.045: 6001: 0.030: 6009:	0.072: 6002: 0.045: 6001: 0.029: 6009:	0.072: 6002: 0.045: 6001: 0.029: 6009:	0.071: 6002: 0.045: 6001: 0.029: 6009:	0.071: 6002: 0.045: 6001: 0.028: 6009:	0.071: 6002: 0.045: 6001: 0.029: 6009:	0.071: 6002: 0.044: 6001: 0.029: 6009:	0.071: 6002: 0.044: 6001: 0.028: 6009:	0.071: 6002: 0.044: 6001: 0.028: 6009:	0.071: 6002: 0.044: 6001: 0.028: 6009:	6002 : 0.044: 6001 : 0.028: 6009 :	6002 : 0.044: 6001 : 0.027: 6009 :	0.044: 6001 : 0.028:
			-193:												
	:	:	: 526:	:	:	:	:	:	:	:	:	:	:	:	:
															0.162:
Uon:	0.75 :	0.75 :	359 : 0.75 :	0.75 :	0.75 :	0.75 :	0.75 :	0.75 :	0.75 :	0.75 :	0.75 :	0.75 :	0.75 :	0.75 :	
			0.071: 6002:												0.072: 6002:
															0.044: 6001:
Ви :	0.028:	0.028:		0.027:	0.027:	0.027:	0.027:	0.027:	0.027:	0.027:	0.027:	0.027:	0.026:	0.027:	0.027:
			~~~~~												
			-168:												
			344:												
Фоп:	14:	15 :	0.162: 16: 0.75:	17 :	18 :	20 :	21 :	22 :	23 :	24 :	25 :	26 :	28 :	29 :	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	0.74:
Ки :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :	6002 :
Ки:	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	6001 :	
			0.026: 6009:												0.026: 6009 :
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
	:	:	-79: :	:	:	7: :									89: :
x=	204 •	194:	105.	0.0	0.0			C 2	E / •	16.	38:	2.0	0.0		7.
	:	:	:	:	:		:	:	:	:	:	:		:	:
Qc : Фоп:	0.166: 31:	0.167: 32:	0.167: 33:	0.168: 44:	0.168: 45:	0.168: 46:	0.168: 47:	0.168: 49:	0.167: 50:	0.167: 51:	0.167: 52:	0.167: 53:	0.167: 54:	0.167: 56:	0.166: 57:
Qc : Фоп: Uoп:	: 0.166: 31: 0.74:	0.167: 32: 0.74:	: 0.167: 33: 0.74:	0.168: 44: 0.74:	0.168: 45: 0.74:	0.168: 46: 0.74:	0.168: 47: 0.74:	0.168: 49: 0.74:	0.167: 50: 0.75:	0.167: 51: 0.75:	0.167: 52: 0.75:	0.167: 53: 0.75:	0.167: 54: 0.75:	0.167: 56: 0.75:	0.166: 57: 0.75:
Qc : Фоп: Uoп: : Ви : Ки :	0.166: 31: 0.74: 0.074: 6002:	0.167: 32: 0.74: 0.074: 6002:	0.167: 33: 0.74: : 0.075: 6002:	0.168: 44: 0.74: 0.075: 6002:	0.168: 45: 0.74: 0.075: 6002:	0.168: 46: 0.74: 0.074: 6002:	0.168: 47: 0.74: 0.074: 6002:	0.168: 49: 0.74: 0.074: 6002:	0.167: 50: 0.75: 0.074: 6002:	0.167: 51: 0.75: : 0.074: 6002:	0.167: 52: 0.75: : 0.074: 6002:	0.167: 53: 0.75: 0.074: 6002:	0.167: 54: 0.75: 0.074: 6002:	0.167: 56: 0.75: 0.074: 6002:	0.166: 57: 0.75: : 0.074: 6002:
Qc : Фоп: Иоп: Ви : Ки : Ви : Ки :	0.166: 31: 0.74: : 0.074: 6002: 0.046: 6001:	0.167: 32: 0.74: : 0.074: 6002: 0.046: 6001:	0.167: 33: 0.74: : 0.075: 6002: 0.046: 6001:	0.168: 44: 0.74: : 0.075: 6002: 0.046: 6001:	0.168: 45: 0.74: : 0.075: 6002: 0.046: 6001:	0.168: 46: 0.74: : 0.074: 6002: 0.046: 6001:	0.168: 47: 0.74: : 0.074: 6002: 0.046: 6001:	0.168: 49: 0.74: : 0.074: 6002: 0.046: 6001:	0.167: 50: 0.75: 0.074: 6002: 0.046: 6001:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001:	0.167: 54 : 0.75 : 0.074: 6002 : 0.046: 6001 :	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001:
Qc : Фоп: Uoп: : Ви : Ки : Ви : Ки :	0.166: 31: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 32: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 33: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 44: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 45: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 46: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.168: 47: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.168: 49: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 50: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009:
Qc : Фоп: Uoп: : Ви : Ки : Ви : Ки :	0.166: 31: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 32: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 33: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 44: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 45: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 46: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.168: 47: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.168: 49: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 50: 0.75: 0.074: 6002: 0.046: 0.026: 6009:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 52: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009:
Qc : Фоп: Uоп: Ви : Ки : Ви : Ки : Ки : Ти : Ти : Ти : Ти : Ти : Т	0.166: 31: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 32: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 33: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 44: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 45: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 46: 0.74: 0.074: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.168: 47 : 0.74 : : 0.074 : 6002 : 0.046: 6001 : 0.026: 6009 :	0.168: 49: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 50: 0.75: 0.75: 0.075: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 51: 0.75: : 0.075: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 52: 0.75: : 0.075: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 53: 0.75:  0.075:  0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 54: 0.75:  0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 56: 0.75:  0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: :
Qc : Фоп: Uoп: Ви : Ки : Ви : Ки : Ки : Ти : Ти : Ти : Ти : Ти : Т	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: :	0.167: 32: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: 110:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009: : -13:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009: :	0.168: 45: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009: 142: -25:	0.168: 46: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.168: 47: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : -36:	0.168: 49: 0.74: : 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 50: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 51: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: -50:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: 209:: -55:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~
Qc:  Don:  Uon:  Bu:  Ku:  Bu:  Ku:  X=  Qc:  Don:	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : 1: 0.167: 58:	0.167: 32: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: -13:: 0.166: 60:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009: : -19: 0.166: 61:	0.168: 45: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009: : -25: 0.166: 63:	0.168: 46: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : -30: 0.167: 64:	0.168: 47: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : -36: 0.167: 65:	0.168: 49: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: 775: -41: -66:	0.167: 50: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: -46:: 0.167: 67:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: -50: 0.167: 68:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: -55:: 0.167: 69:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: -58:: 0.167: 71:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: -62:: 0.167: 72:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: -66:: 0.167:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69:: 0.168: 74:
Qc:  pon: Uon:  Ku: Bu: Ku: Bu: Ku:  y= Qc: pon: Uon: :	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: 	0.167: 32: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:6:6:: 0.167: 59: 0.75: :	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6009: 	0.168: 45: 0.74: 0.075: 6002: 0.046: 6009: 	0.168: 46: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : 0.167: 64: 0.75:	0.168: 47: 0.74: 6002: 0.046: 6001: 0.026: 6009: : 0.167: 65: 0.76:	0.168: 49: 0.74: 6002: 0.046: 6001: 0.026: 6009: 775: : 0.167: 66: 0.76:	0.167: 50: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 67: 0.76:	0.167: 51: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 68: 0.76:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: 209:: 0.167: 69: 0.76:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009: 220: -58: -58: 0.167: 71: 0.76:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009: 232: -62: -62: 0.167: 72: 0.76: :	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.168: 74: 0.76:
Qc : Фоп: Uoп: Bu : Bu : Bu : Ku : Bu : Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constan	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 1: 0.167: 58: 0.75: 0.074:	0.167: 32: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: 0.166: 60: 0.75: 0.075:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 45: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009: 	0.168: 46: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: 	0.168: 47: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: 	0.168: 49: 0.74: 6002: 0.046: 6001: 0.026: 6009: 175:1: 0.167: 66: 0.76: 0.073: 6002:	0.167: 50: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 51: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: 197:: 0.167: 68: 0.76: 0.076:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: -58:: 0.167: 71: 0.76: 0.076:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009: 232:: 0.167: 72: 0.76: 0.076:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009::: 0.167: 73: 0.76: 0.076:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69:: 0.168: 74: 0.76: : 0.073: 6002:
Qc : Фоп: Uoп:  Ки : Ви : Ки : Ви :  Ки :   y=  Qc : Фоп: Uoп: Ви : Ки : Ви : Ки :	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 100:: 1:: 0.167: 58: 0.75: 0.074: 6002: 0.046: 6000:	0.167: 32: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 59: 0.75: 0.073: 6002: 0.046: 6001:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.26:: -13:: 0.166: 600: 0.75: 0.073: 6002: 0.046: 6001:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:  131:: 0.166: 61: 0.75: 0.073: 6002: 0.046: 6001:	0.168: 45: 0.74: 0.075: 6002: 0.046: 6001: -25: -25: 0.166: 63: 0.75: 0.073: 6002: 0.073: 6002: 0.046: 63: 0.075:	0.168: 46: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : -30: : 0.167: 64: 0.75: 0.073: 66002: 0.073: 66002:	0.168: 47: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : 0.167: 65: 0.76: 0.073: 6002: 0.073: 60002:	0.168: 49: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: -41:: 0.167: 66: 0.76: 0.073: 66002: 0.046: 60001:	0.167: 50: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: -46:: 0.167: 67: 0.76: 0.073: 6002: 0.046: 6001:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: -50:: 0.167: 68: 0.76: 0.073: 6002: 0.047: 6001:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: -55:: 0.167: 69: 0.76: 0.073: 6002: 0.047: 6001:	: 0.167: 53: 0.75: : 0.074: 6002: 0.046: 6001: 0.025: 6009:: -58:: 0.167: 71: 0.76: 0.073: 6002: 0.046: 6001:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 72: 0.76: 0.073: 6002: 0.047: 6001:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 73: 0.76: 0.073: 6002: 0.047: 6001:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6009:
Qc : Фоп: Uoп: Bu : Bu : Ru : Bu : Vo : Vo : Vo : Vo : Vo : Vo : Vo : Vo	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:  100: 0.167: 58: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 32: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:  110:6: 0.167: 59: 0.075: 0.073: 6002: 0.046: 6001: 0.026: 6009:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: 0.166: 60: 0.75: 0.073: 6002: 0.046: 6001: 0.026:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:	0.168: 45: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009: 	0.168: 46: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: 	0.168: 47: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : 0.167: 65: 0.76: 0.073: 6002: 0.046: 6001: 0.046: 6001:	0.167: 66: 0.76: 0.167: 66: 0.76: 0.046: 6009: 0.026: 6009: 0.026: 0.046: 60: 0.066: 0.066: 0.066: 0.076: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.167: 50: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6009: 0.026: 6009: -55: 0.167: 69: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 53: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 71: 0.76: 0.073: 6002: 0.046: 6001: 0.026: 6009:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009: 232:: 0.167: 72: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:
Qc : Фоп: Uoп: Ки : Ви : Ки : Ви : Ки : Фоп: Ви : Ки : Ви : Ки : Ви : Ки : Ви : Ки :	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 58: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 32: 0.74: 0.074: 6002: 0.046: 6009: 110:: -6:: 0.167: 59: 0.075: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: -13:: 0.166: 60: 0.75: : 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:  131:: -19: 0.166: 61: 0.75: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.168: 45: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 6009:: -25:: 0.166: 63: 0.75: : 0.073: 6002: 0.046: 6001: 0.026: 6000:	153: -30: -30: -30: -30: -30: -30: -30: -3	0.168: 47: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: : -36: : 0.167: 65: 0.76: : 0.073: 6002: 0.046: 6002: 0.046: 6002: 0.046: 6002: 0.046:	0.168: 49: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: -41: : 66: 0.76: 0.073: 6602: 0.073: 6602: 0.073: 6002:	0.167: 50: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: -46:: 0.167: 67: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: -50: 0.167: 68: 0.76: 0.073: 68002: 0.047: 6001: 0.025: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: -55:: 69: 0.76: : 0.073: 6002: 0.047: 6001: 0.025: 6009:		: 0.167: 54: 0.75: : 0.074: 6002: 0.046: 6001: 0.025: 6009:: -62:: 0.167: 72: 0.76: : 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6009:: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025:
Qc : Фоп: Uon: : Ви : : Ки : Ви : : Ки : Ви : : Ки : Ви : Ки : Ви : Ки : Ви : Ки : Ви : Ки : Ви : Ки : Ви : Ки : Ви : Ки : Солотором   У=	0.166: 31: 0.74: 6002: 0.046: 6009: 100:: 0.167: 58: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 32: 0.74: 6002: 0.074: 6002: 0.046: 6009: 110:6: 0.167: 59: 0.073: 6002: 0.046: 6001: 0.026: 6009:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: 0.166: 60: 0.75: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:  131:19: 0.166: 61: 0.75: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.168: 45: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009: 	0.168: 46: 0.74: 0.074: 6002: 0.046: 6009: 	0.168: 47: 0.74: 0.074: 6002: 0.046: 6009: 0.026: 6009: 0.167: 65: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 0.046:	0.168: 49: 0.74: 0.074: 6002: 0.026: 6009: 775: -41: 0.167: 66: 0.76: 0.073: 6002: 0.046: 6001: 0.046:	0.167: 50: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 67: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.167: 51: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 68: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 69: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 53: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 71: 0.76: 0.073: 6002: 0.046: 6001: 0.026: 6009:	0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:
QC:  Φoπ:  Uoπ:  Eu:  Ku:  Bu:  Ku:   y=   Uoπ:  Bu:  Bu:  Ku:  Bu:  Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Companies and Com	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 58: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.046: 6001: 0.026: 6009:	0.167: 32: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 59: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: -13:: 0.166: 0.75: 0.073: 6002: 0.046: 6001: 0.025: 6009::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 61: 0.75: 0.046: 61: 0.75: 0.046: 6002: 0.046: 6002: 0.046: 6002: 0.046: 6002: 0.046: 6001: 0.025: 6009:	0.168: 45: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 63: 0.75: : 0.166: 0.075: : 0.046: 63: 0.75: : 0.046: 6001: 0.026: 6009:	0.168: 46: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:  -30: 0.167: 0.073: 64: 0.075: 0.046: 6001: 0.026: 6009:	0.168: 47: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009: -36: 0.167: 65: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.168: 49: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: -41: 0.167: 0.167: 0.073: 66: 0.076: 0.046: 6001: 0.025: 6009:	0.167: 50: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: -46:: 0.167: 0.76: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078: 0.078:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: -50: 0.167: 68: 0.76: : 0.073: 6802: 0.047: 6801: 0.025: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: -555: -55: 0.167: 69: 0.073: 6002: 0.047: 6001: 0.025: 6009:		: 0.167: 54: 0.75: : 0.074: 6002: 0.046: 6001: 0.025: 6009:: -62:: 0.167: 72: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:
Qc : Фоп: Uoп: Bu : Ru : Ru : Ru : V= V= V= V= V= V= V= V= V= V= V= V= V= V=	0.166: 31: 0.74: 6002: 0.046: 6009: 0.026: 6009: 0.167: 58: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 0.046: 6009: 0.074: 6002: 0.046: 6009:	0.167: 32: 0.74: 6002: 0.074: 6002: 0.046: 6009: 110:6: 0.167: 59: 0.073: 6002: 0.046: 6009:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: 0.166: 60: 0.75: 0.073: 6002: 0.046: 6001: 0.025: 6009:: 0.169: 0.025: 6009:	0.166: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: 0.166: 61: 0.75: 0.046: 6001: 0.025: 6009:: 0.046: 6009:	0.168: 45: 0.74: 0.075: 6002: 0.046: 6009: 142:: 0.166: 63: 0.75: 0.073: 6002: 0.046: 6001: 0.026: 6009:	0.168: 46: 0.74: 6002: 0.046: 6009: 153: -30: 0.167: 64: 0.75: 0.046: 6001: 0.026: 6009:	0.168: 47: 0.74: 6002: 0.046: 6009: 0.026: 6009: 0.167: 65: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.168: 49: 0.74: 6002: 0.074: 6009: 175:: 0.167: 66: 0.076: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.167: 50: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009: 0.167: 67: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.167: 51: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 68: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:: 0.167:: 0.167:: 0.167:: 0.073:: 0.09:: 0.169:: 0.169:: 0.169:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6009: 209: -55: 0.167: 69: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 53: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 71: 0.76: 0.073: 6002: 0.046: 6001: 0.026: 6009:: 0.168: 94:		0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:
QC:  Φoπ:  Uoπ:  Eu:  Ku:  Bu:  Ku:  Fu:  QC:  Φoπ:  Uoπ:  Eu:  Fu:  Fu:  Fu:  Fu:  Fu:  Fu:  Fu		0.167: 32: 0.74: 0.074: 6002: 0.046: 6009:: 0.167: 59: 0.075: 0.075: 0.075: 0.075: 0.075: 0.075: 0.075: 0.076: 0.076: 0.076: 0.076: 0.076: 0.076:		0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 61: 0.75: 0.166: 0.75: 0.046: 61: 0.075: 0.046: 6001: 0.025: 6009: -78: -78:	0.168: 45: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 63: 0.75: : 0.166: 0.073: 6002: 0.046: 601: 0.026: 6009:	0.168: 46: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.168: 47: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.168: 49: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 66: 0.76: 0.046: 6001: 0.025: 6009:	0.167: 50: 0.75: 0.76: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 0.76: 0.076: 0.046: 6001: 0.025: 6009:: 0.046: 6001: 0.025: 6009:: 0.076: 0.076: 0.076:	0.167: 51: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 68: 0.76: 0.047: 68: 0.047: 6001: 0.025: 6009:: 0.167: 0.025: 0.047: 6001: 0.025: 0.047: 6001: 0.025: 0.047: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6009:: 0.167: 59: 0.046: 6001: 0.026: 6009:: 0.167: 69: 0.047: 6001: 0.025: 6009:: 0.167:: 0.169: 93: 0.76: :		: 0.167: 54: 0.75: : 0.074: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 72: 0.76: 0.073: 6002: 0.047: 6001: 0.025:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:
QC: Фол: Uon: Bu: Ku: Bu: Ku: P= QC: Bu: Ku: Bu: Ku: Bu: Con: Uon: V= V= V= V= V= V= V= V= V= V= V= V= V=	0.166: 31: 0.74: 0.074: 6002: 0.046: 6009: 100:: 0.167: 58: 0.75: 0.074: 6002: 0.046: 6001: 0.026:: 0.167: 58: 0.775: 0.074: 6002: 0.046: 6001: 0.026: 0.046: 6001: 0.026:	0.167: 32: 0.74: 6002: 0.074: 6009: 110:6:6:74: 0.046: 6009: 280:74: 0.168: 76: 0.76: 0.76: 0.76: 0.76: 0.76: 0.76: 0.76: 0.76:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6009: 120:: 0.166: 60: 0.75: 0.073: 6002: 0.046: 6001: 0.025: 6009:: 0.166: 6001: 0.025: 6009:: 0.074: 6002: 0.046: 6001: 0.025: 6009:	0.168: 44 : 0.74 : 0.075: 6002 : 0.046: 6601 : 0.026: 6009 :  131:: 0.166: 61 : 0.75 : 0.046: 6001 : 0.025: 6009 :  304:: -78: 0.169: 0.76 : 0.778: 0.169:	0.168: 45: 0.74: 0.075: 6002: 0.046: 6009: 142:: 0.166: 63: 0.75: 0.073: 6002: 0.046: 6001: 0.026:: 0.166: 0.073: 6002: 0.076: 0.076: 0.076: 0.076:	0.168: 46: 0.74: 6002: 0.046: 6009: 153: -30: -30: 0.167: 64: 0.075: 0.046: 60001: 0.026: 60009: 328: -81: 0.169: 0.169:	0.168: 47: 0.74: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 65: 0.073: 6002: 0.046: 6001: 0.025: 6009:: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.168: 49: 0.74: 6002: 0.074: 6009: 775:: 0.167: 66: 0.073: 6002: 0.046: 6001: 0.025: 6009::: 0.167: 6001: 0.073: 6002: 0.073: 6002: 0.073: 6002: 0.073: 6002: 0.073: 6002: 0.073: 6002: 0.073: 6002: 0.073: 6002:	0.167: 50: 0.75: 0.75: 0.074: 6002: 0.046: 6009: -46:: 0.167: 67: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 6009:: 0.046: 6001: 0.025: 6009:: 0.073: 6002: 0.046: 6001: 0.025: 6009:	0.167: 51: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 68: 0.76: 0.073: 6802: 0.047: 6001: 0.025: 6009:: 0.167: 6001: 0.025: 6009:: 0.167: 6001: 0.025: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 69: 0.073: 6002: 0.047: 6001: 0.025: 6009:: 0.167: 93: 0.167: -91:: 0.169: 0.072: 6002:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 71: 0.76: 0.073: 6002: 0.046: 6001: 0.026: 6009:: 0.168: 94: 0.76: 0.073:	: 0.167: 54: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 72: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:
QC:  Φoπ:  EM:  EM:  EM:  EM:  EM:  EM:  EM:  E	0.166: 31: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 58: 0.75: 0.046: 6001: 0.026: 6009:: 0.167: 58: 0.75: 0.76: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.168: 75: 0.76: 0.073: 6002: 0.047: 6001:	0.167: 32: 0.74: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 59: 0.075: 0.075: 0.075: 0.025: 6001: 0.025: 6009:74: 0.168: 76: 0.76: 0.073: 6002: 0.073: 6002: 0.073: 6001:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: 0.166: 0.75: 0.046: 600: 0.025: 6002: 0.046: 6001: 0.025: 6009:: 0.169: 78: 0.76: 0.074: 6002: 0.047: 6001:	0.168: 44: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: 0.166: 0.75: 0.046: 61: 0.075: 0.046: 6001: 0.025: 6009:: 0.046: 6009:: 0.074: 6002: 0.074: 6001:	0.168: 45: 0.74: : 0.075: 6002: 0.046: 6001: 0.026: 63: 0.75: 0.166: 0.026: 63: 0.75: 0.046: 63: 0.75: 0.046: 6001: 0.026: 6009:	0.168: 46: 0.74: 0.074: 6002: 0.046: 6009: 0.167: 64: 0.75: 0.046: 6001: 0.026: 6009: 328:: 0.169: 81: 0.76: 0.074: 6002: 0.074: 6000:	0.168: 47: 0.74: 6002: 0.074: 6009: 0.026: 6009: 164:: 0.167: 65: 0.76: 0.046: 6001: 0.025: 6009: 341:: 0.170: 82: 0.76: 0.774: 6002: 0.074: 6001: 0.074: 6001:	0.168: 49: 0.74: 6002: 0.046: 6009: 175:: 0.167: 66: 0.076: 0.046: 6001: 0.025: 6609: 0.046: 6001: 0.025: 6009:	0.167: 50: 0.75: 0.75: 0.074: 6002: 0.046: 6009: 0.026: 6009:	0.167: 51: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6009: 0.026: 6009: -55: 0.167: 69: 0.076: 0.047: 6001: 0.025: 6009: -91: -91: 0.169: 93: 0.76: 0.072: 6002: 0.047: 6001: 0.025:		: 0.167: 54: 0.75: : 0.074: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 72: 0.76: 0.047: 6001: 0.025:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:
QC: Фол: Uon: Bu: Ku: Bu: Ku: Bu: V= V= V= V= V= V= V= V= V= V= V= V= V=	0.166: 31: 0.74: 6002: 0.046: 6009: 100:: 0.167: 58: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.046: 6001: 0.026: 6007:: 0.046: 6001: 0.026: 6009:: 0.047: 6002: 0.047: 60001: 0.025: 6009:	0.167: 32: 0.74: 6002: 0.074: 6009: 110:6:6: 0.167: 59: 0.073: 6002: 0.046: 6001: 0.025: 6009: -74:74: 0.168: 76: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 33: 0.74: 0.075: 6002: 0.046: 6001: 0.026: 6009:: 0.166: 60: 0.075: 0.046: 6001: 0.025: 6009:: 0.166: 6001: 0.025: 6009:: 0.169: 78: 0.76: 0.074: 6002: 0.074: 6002: 0.074:	0.168: 44 : 0.74 : 0.075: 6002 : 0.046: 6009 :  131:: 0.166: 61 : 0.75 : 0.046: 6001 : 0.025: 6009 :  304:: 0.169: 0.046: 6001 : 0.025: 6009 :	0.168: 45: 0.74: 0.075: 6002: 0.046: 6009: 142:: 0.166: 63: 0.75: 0.046: 6001: 0.026: 6009: 316:: 0.046: 6001: 0.026: 6007:: 0.046: 6007:: 0.046: 6009:	0.168: 46: 0.74: 6002: 0.074: 6009:	0.168: 47: 0.74: 6002: 0.046: 6001: 0.026: 6009: 164:: 0.167: 65: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 6009:: 0.170: 82: 0.76: 0.76: 0.76: 0.76: 0.046: 0.025: 6009:	0.168: 49: 0.74: 6002: 0.046: 6009: 775:: 0.167: 66: 0.073: 6002: 0.046: 6001: 0.025: 6009:: 0.073: 6001: 0.025: 6009:	0.167: 50: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 67: 0.76: 0.073: 6002: 0.046: 6001: 0.025: 6009:: 0.167: 6001: 0.025: 6009:	0.167: 51: 0.75: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 68: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:: 0.167: 6001: 0.025: 6009:	0.167: 52: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:: 0.167: 69: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:: 0.167: 69: 0.073: 6001: 0.025: 6009:	0.167: 53: 0.75: 0.074: 6002: 0.046: 6001: 0.025: 6009: 220:: 0.167: 71: 0.76: 0.073: 6002: 0.046: 6001: 0.026: 6009:: 0.168: 94: 0.76: 0.072: 6002: 0.048: 6001: 0.025: 6009:	: 0.167: 54: 0.75: 0.075: 0.046: 6001: 0.025: 6009:: 0.167: 72: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:	0.167: 56: 0.75: 0.074: 6002: 0.046: 6001: 0.026: 6009:	0.166: 57: 0.75: : 0.074: 6002: 0.046: 6001: 0.026: 6009: ~~~~~~~  256:: -69: 0.168: 74: 0.76: 0.073: 6002: 0.047: 6001: 0.025: 6009:

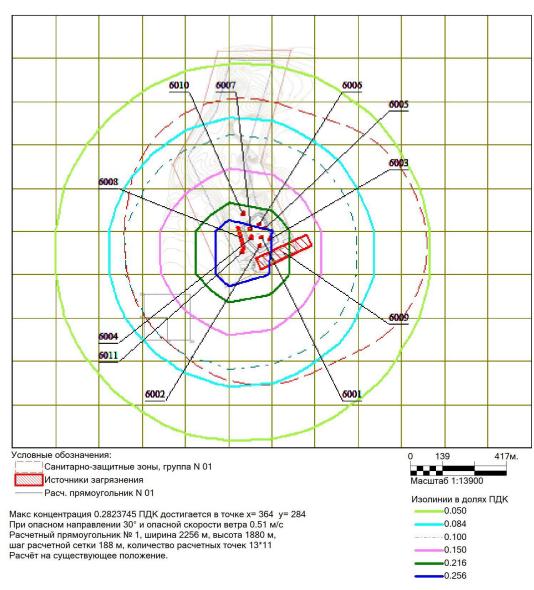




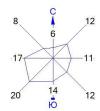
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= -82.0 м, Y= 341.0 м

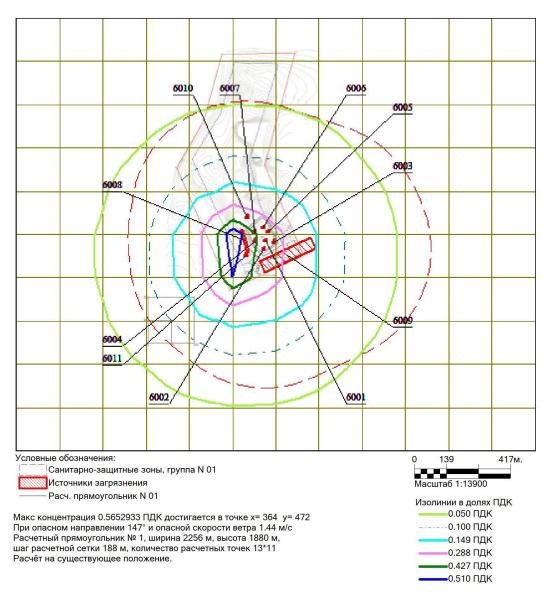
Максимальная суммарная концентрация | Cs= 0.1697459 доли ПДКмр|


Достигается при опасном направлении 82 град. и скорости ветра 0.76 м/с Всего источников: 8. В таблице заказано вкладчиков не более чем с 95% вклада ВКЛАДЫ_ИСТОЧНИКОВ

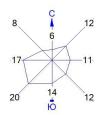

			БІЛІАДІ	a_ncroamin	OB		
Hom.	.  Код	Тип	Выброс	Вклад	Вклад в	%  Сум. %	коэф.влияния
	- <0б-П>-<Ис>	>	-M- (Mq)   -C	[доли ПДК]		-	b=C/M
1	001101 6002	2  П1	3.2660	0.073570	43.3	43.3	0.022525921
2	001101 6001	Ц П1	2.1840	0.047746	28.1	71.5	0.021861626
3	001101 6009	Э  П1	1.4540	0.025359	14.9	86.4	0.017440699
4	001101 6004	1  П1	0.6500	0.015570	9.2	95.6	0.023953900
1			В сумме =	0.162244	95.6		1
1	Суммарный	вклад с	стальных =	0.007502	4.4		1
~~~~		. ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~~

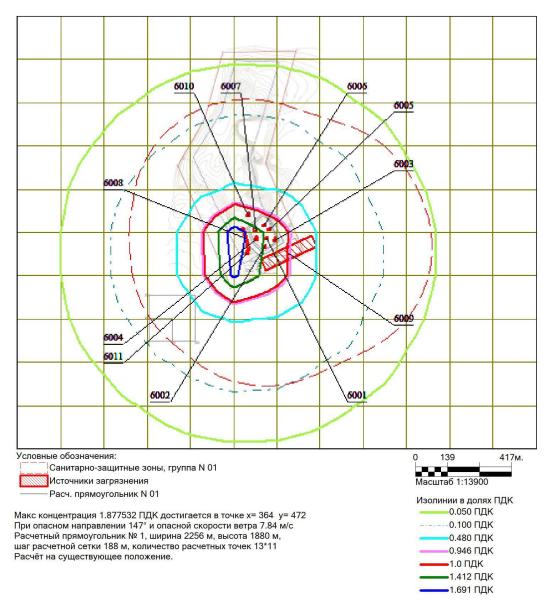

ПК ЭРА v3.0, Модель: MPK-2014


0301 Азота (IV) диоксид (Азота диоксид) (4)



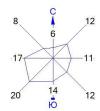
ПК ЭРА v3.0, Модель: MPK-2014 0304 Азот (II) оксид (Азота оксид) (6)





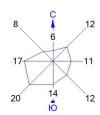
ПК ЭРА v3.0, Модель: MPK-2014

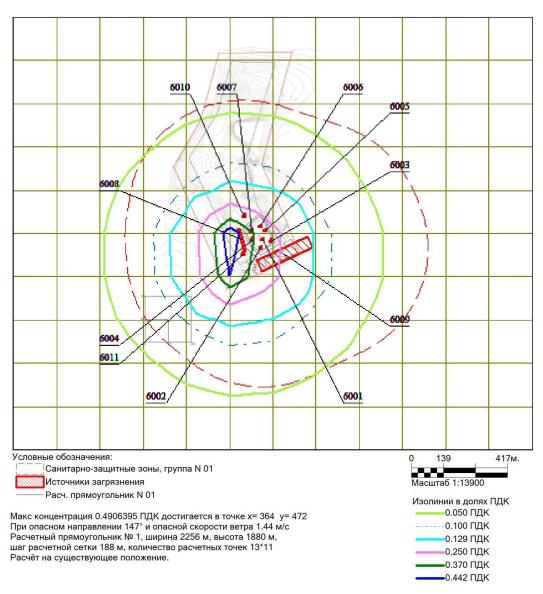
0328 Углерод (Сажа, Углерод черный) (583)



ПК ЭРА v3.0, Модель: MPK-2014

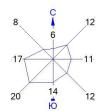
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

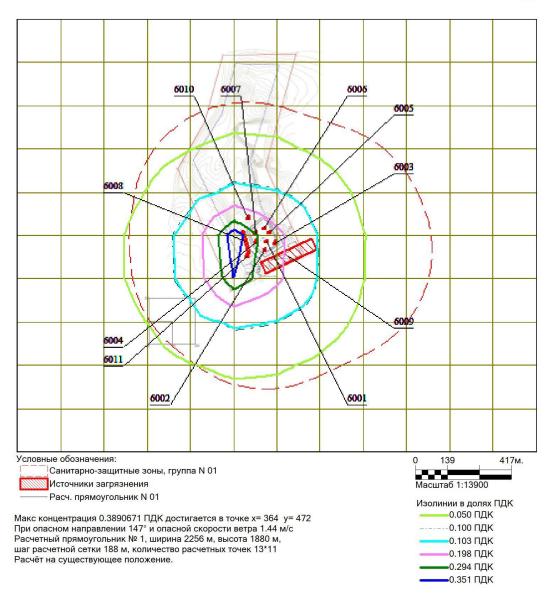




ПК ЭРА v3.0, Модель: MPK-2014

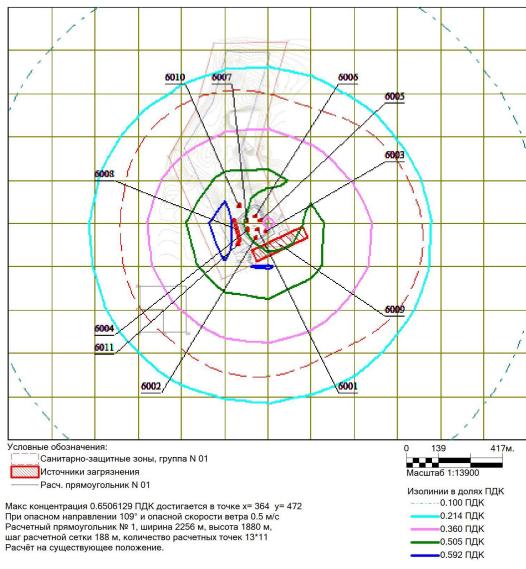
0337 Углерод оксид (Окись углерода, Угарный газ) (584)





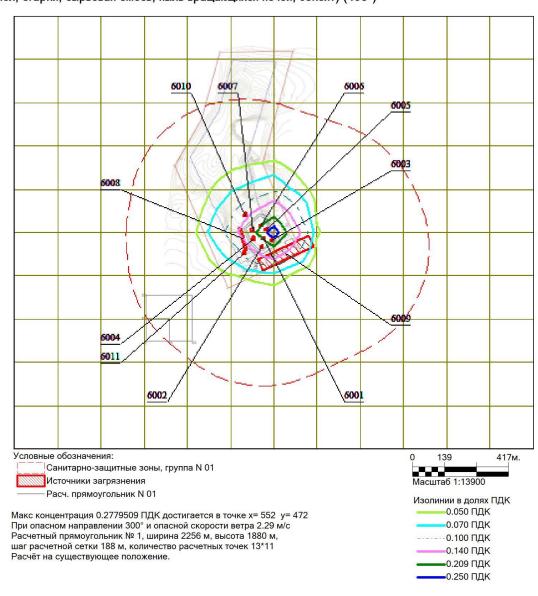
ПК ЭРА v3.0, Модель: MPK-2014

2732 Керосин (654*)

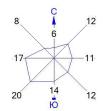


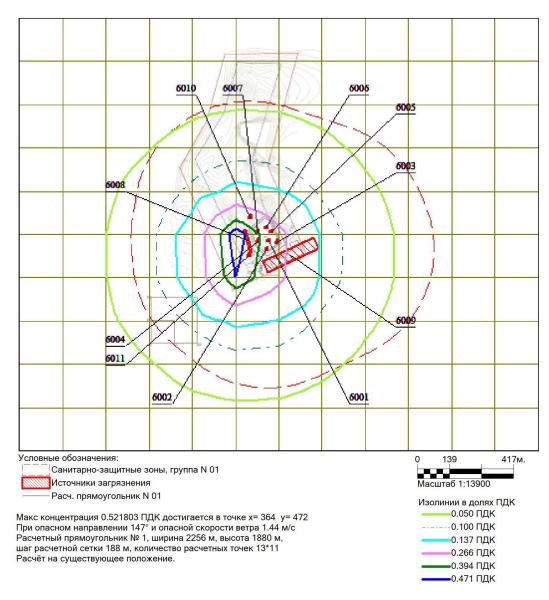
ПК ЭРА v3.0, Модель: MPK-2014

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементню производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений)



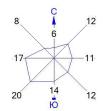
ПК ЭРА v3.0, Модель: MPK-2014

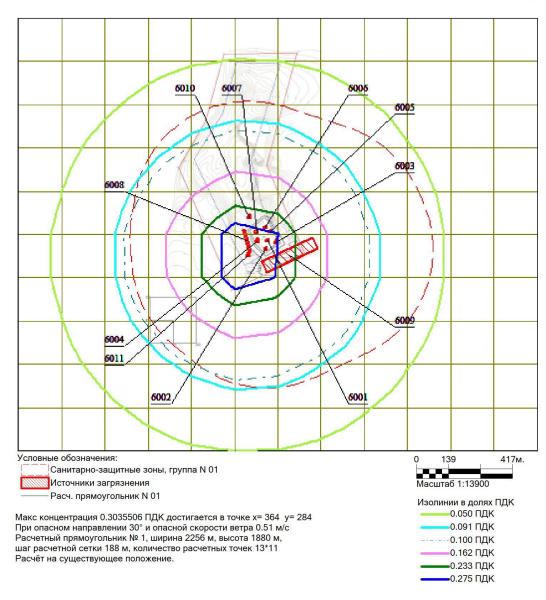

2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементног@производстваизвестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)



ПК ЭРА v3.0, Модель: MPK-2014

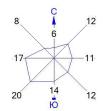
__30 0330+0333

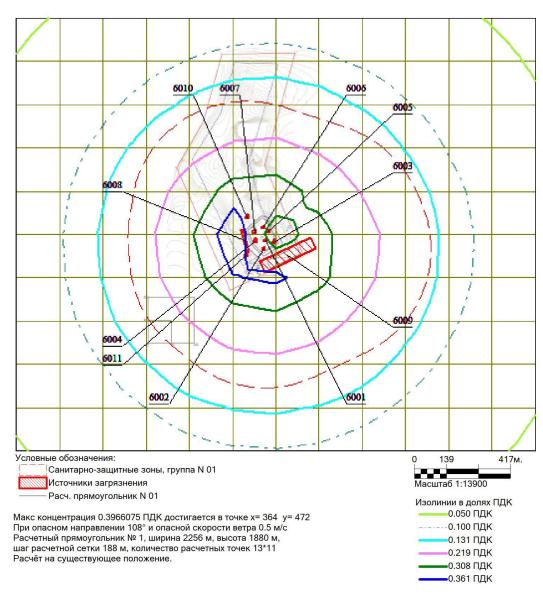




ПК ЭРА v3.0, Модель: MPK-2014

__31 0301+0330





ПК ЭРА v3.0, Модель: MPK-2014

__ПЛ 2908+2909

Приложение	3
приложение	J

Копия государственной лицензии ТОО «Алаит» №01583 Р от 01.08.2013 года на выполнение работ и оказание услуг в области охраны окружающей среды

1 - 1 13012285

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

01.08.2013 года 01583Р

Выдана Товарищество с ограниченной ответственностью "Алаит"

Республика Казакстан, Акмолинская область, Кокшетау Г.А., г.Кокшетау, ИСМАИЛОВА,

дом № 16., 2., БИН: 100540015046

(полное наименование, местонахождение, реквизиты БИН юридического лица /

полностью фамилия, имя, отчество, реквизиты ИИН физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом

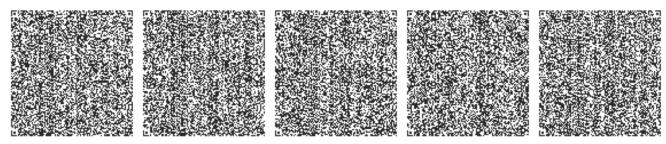
Республики Казахстан «О лицензировании»)

Вид лицензии генеральная

Особые условия действия лицензии

(в соответствии со статьей 9-1 Закона Республики Казахстан «О лицензировании»)

Лицензиар Министерство охраны окружающей среды Республики Казахстан.


Комитет экологического регулирования и контроля

(полное наименование лицензиара)

Руководитель ТАУТЕЕВ АУЕСБЕК ЗПАШЕВИЧ

(уполномоченное лицо) (фамилия и инициалы руководителя (уполномоченного лица) лицензиара)

Место выдачи г. Астана

Берілген құжат «Электрондық құрғат және алектрондық анфурмық колттеба турелы» 2003 жылғы 7 кантаралғы Қазанстан Республикасы Зақының 7 байының 1 тарылына сейсек көте псылматағы құрқыла тек Дентей дентемі тарылы тұрқы 7 шылы 7 9% ш. 7 шылы 2006 жылғы дерумене 2 кантаралый құрдының тұрқының дерумене 2

13012285

Страница 1 из 1

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ **ЛИЦЕНЗИИ**

Номер лицензии

01583P

Дата выдачи лицензии

01.08.2013

Подвид(ы) лицензируемого вида деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О лицензировании»)

- Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

Производственная база

(местонахождение)

Лицензиат

Товарищество с ограниченной ответственностью "Алаит"

Республика Казахстан, Акмолинская область, Кокшетау Г.А., г.Кокшетау,

ИСМАИЛОВА, дом № 16., 2., БИН: 100540015046

(полное наименование, местонахождение, реквизиты БИН юридического лица / полностью фамилия,

имя, отчество, реквизиты ИИН физического лица)

Лицензиар

Комитет экологического регулирования и контроля . Министерство охраны

окружающей среды Республики Казахстан.

(полное наименование лицензиара)

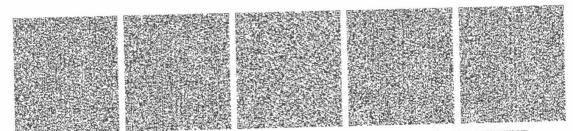
ТАУТЕЕВ АУЕСБЕК ЗПАШЕВИЧ

Руководитель (уполномоченное лицо) фамилия и инициалы руководителя (уполномоченного лица) лицензиара

Номер приложения к

01583P 001

лицензии


Дата выдачи приложения к лицензии

01.08.2013

Срок действия лицензии

Место выдачи

г.Астана

П	'n	TT	T#	^	9 T/	Λ		**	^	1
	m	и	J	()	ж	e	н	и	e.	4

Копия письма №3Т-2022-02570548 от 28.10.2022 г. выданным РГУ «Акмолинская территориальная инспекция лесного хозяйства и животного мира PK»

ҚР ЭГТРМ орман шаруашылығы және жануарлар дүниесі комитетінің Ақмола облыстые орман шаруашылығы және жануарлар дүниесі аумақтық инспекциясы РММ

Қазақстан Республикасы 010000, Ақмола облысы, Громовой 21

Республиканское государственное учреждение "Акмолинская областная территориальная инспекция лесного хозяйства и животного мира Комитета лесного хозяйства и животного мира Министерства экологии, геологии и природных ресурсов Республики Казахстан

Республика Казахстан 010000, Акмолинская область, Громовой 21

28.10.2022 Nº3T-2022-02570548

Товарищество с ограниченной ответственностью "GOLDENPIT"

На №3Т-2022-02570548 от 26 октября 2022 года

Акмолинская областная территориальная инспекция лесного хозяйства и животного мира на Ваше обращение № 6 от 21.10.2022 года сообщает, что согласно представленных Вами материалов испрашиваемый участок не располагается на землях государственного лесного фонда и особо охраняемых природных территорий, в связи с чем информация о наличии или отсутствии древесных растении, занесенных в Красную книгу РК, не может быть выдана. Дикие животные, занесенные в Красную книгу Республики Казахстан, на указанном участке отсутствуют. Ответ на ваш запрос делается на языке обращения в соответствии со ст. 11 Закона Республики Казахстан «О языках в Республики Казахстан». В соответствии с п.3 ст.91 Административного процедурно-процессуального Кодекса Республики Казахстан от 29 июня 2020 года № 350-VI в случае несогласия с ответом, вы имеете право на обжалование принятого административного акта в административном (досудебном) порядке в вышестоящем административном органе, должностному лицу.

Жауалқа шағымдану немесе талап қою үшін QR кодты сканерлеңіз немесе төмендегі сілтеме бойынша өтініз:

https://l2.app.link/eotinish_blank

Чтобы обжаловать ответ или подать иск, отсканируйте QR-код или переходите по ссылке выше:

Руководитель

ДЮСЕНОВ ЛАШЫНТАЙ ЖАСҚАЙРАТОВИЧ

Исполнитель:

АУБАКИРОВА АЙНА ХАЛИЛЬЕВНА

тел.: 7017785560

Осы құжат «Электрондық құжат және электрондық цифрлық қолтаңба туралы» Қазақстан Республикасының 2003 жылғы 7 қаңтардағы N 370-II Заңы 7 бабының 1 тармағына сөйкес қағаз тасығыштағы құжатпен бірдей.

Данный документ согласно пункту 1 статьи 7 ЗРК от 7 января 2003 года N370-II «Об электронном документе и электронной цифровой подписи» равнозначен документу на бумажном носителе.

Жауапқа шағымдану немесе талап қою үшін QR кодты сканерленіз немесе төмендегі сілтеме бойынша өтіңіз:

https://l2.app.link/eotinish_blank

Чтобы обжаловать ответ или подать иск, отсканируйте QR-код или переходите по ссылке выше:

					_
 bи	T TT 4	AT/	OTI	111	. 5
		7/1		и с	7 - 2

Копия письма №26-14-03/1843 от 22.12.2022 г. выданным АО «Национальная геологическая служба»

№ 26-14-03/1843 or 22.12.2022

TOO «GOLDENPIT»

На исх. запрос №5 от 21.10.2022 г.

АО «Национальная геологическая служба» (далее — Общество), рассмотрев ваше обращение касательно предоставления информации о наличии, либо отсутствии месторождений подземных вод, сообщает следующее.

Месторождения подземных вод, в пределах указанных <u>Вами</u> координат, на территории Акмолинской области, состоящие государственном учете по состоянию на 01.01.2022 г. отсутствуют.

Вместе с тем, сообщаем, что Общество оказывает услуги по геологической информации, формированию предоставлению геологической информации, предоставлению информации о запасах полезных ископаемых, справок о наличии/отсутствии подземных вод, информации по изученности территорий, определению свободности территорий, сопровождению программы управления государственным фондом недр и другие, а также выпускает справочные и картографические материалы (справочники по месторождениям, картографические материалы, аналитические обзоры, атласы, периодические издания, информационные и геологические карты и другое). Также информируем Bac. официальном сайте АО «Национальная геологическая служба» в разделе Информационные ресурсы функционируют - Интерактивная действующих объектов недропользования и участков недр, включенных в Программу управления государственным фондом недр и Электронная картотека геологических отчетов.

И.о председателя Правления АО «Национальная геологическая служба»

Ж. Карибаев

Исп. Ибрав И.К. тел.: 57-93-47

Согласовано

22.12.2022 17:58 Кабулов Рустам Самарханович

Подписано

22.12.2022 18:56 Карибаев Жанат Каирбекович

ТОО «Алаит» ГЛ 01583P от 01.08.2013 год

Данный электронный документ DOC24 ID KZXIVKZ202210001308FD65D53 подписан с использованием электронной цифровой подписи и отправлен посредством информационной системы «Казахстанский центр обмена электронными документами» Doculite.kz.

Для проверки электронного документа перейдите по ссылке: https://doculite.kz/landing?verify=KZXIVKZ202210001308FD65D53

Тип документа	Исходящий документ		
Номер и дата документа	Ne 26-14-03/1843 or 22.12.2022 r.		
Организация/отпра витель	ГУ "РЦГИ "КАЗГЕОИНФОРМ""		
Получатель (-н)	другие		
Электронные	Подписано: Время подписи: 22.12.2022 17:58		
цифровые подписи документа	АКЦИОНЕРНОЕ ОБЩЕСТВО "НАЦИОНАЛЬНАЯ ГЕОЛОГИЧЕСКАЯ СЛУЖБА" Подписано: КАРИБАЕВ ЖАНАТ MIIUGwYJHck7z0hMn Время подписи: 22.12.2022 18:56		

Данный документ согласно пункту 1 статьи 7 3PK от 7 января 2003 года N370-II «Об электронном документе и электронной цифровой подписи», удостоверенный посредством электронной цифровой подписи лица, имеющего полномочия на его подписание, равнозначен подписанному документу на бумажном носителе.

Т	пиложение	
•	пипожение	ิก

Копия письма №3Т-2022-02570691 от 02.11.2022 г. выданным ГУ «Управление ветеринарии Акмолинской области»

"Ақмола облысы ветеринария басқармасы" мемлекеттік мекемесі

Государственное учреждение "Управление ветеринарии Акмолинской области"

Республика Казахстан 010000, г.Кокшетау, Абая 89

02.11.2022 №3T-2022-02570691

Товарищество с ограниченной ответственностью "GOLDENPIT"

На №3Т-2022-02570691 от 26 октября 2022 года

3T-2022-02570691 «GOLDENPLIT» ЖШС директоры Д. Ағабековқа Ақмола облысының ветеринария басқармасы, Сіздің жылғы № 19 2022 жылғы 8 қазандағы өтінішіңізді қарастырып, келесіні хабарлайды. Жиналған ақпарат деректері бойынша Ақмола облысы Целиноград ауданы «Goldenplit» ЖШС- ның «Мета» әктас өңдіру кен орнының аумағында сібір жарасы (мал қорымы) белгілі (анықталған) мал қорымдары тіркелмеген. Сіз ұсынған «Мета» кен орнының әктас өндіретін бұрыштық нүктелерінің географиялық координаттарының шекарасынан шықпауға кеңес береміз. Қазақстан Республикасының 2020 жылғы 29 маусымдағы № 350-VI Әкімшілік рәсімдікпроцестік кодексінің 91-бабындағы 3-тармағына сәйкес, жауаппен келіспеген жағдайда, сіздің қабылданған әкімшілік актіге әкімшілік тәртіппен (сотқа дейінгі) жоғары тұрған әкімшілік органға, лауазымды адамға шағымдануға құқыңыз бар. Басшының м.а. А. Сыздықов Орынд.: К. Шонашева Тел.: 50-43-99 Управление ветеринарии Акмолинской области, рассмотрев Ваше обращение № 8 от 21 октября 2022 года сообщает следующее. По данным собранной информации, на территории месторождения по добыче известняка «Мета» TOO «GOLDENPLIT» Целиноградского района Акмолинской области известных (установленных) захоронений сибирской язвы (скотомогильника) не зарегистрировано. Рекомендуем не выходить за границы представленных Вами географических координат угловых точек по добыче известняка месторождения «Мета». В соответствии с пунктом 3 статьи 91 Административного процедурно-процессуального Кодекса Республики Казахстан от 29 июня 2020 года № 350-VI в случае несогласия с ответом. Вы имеете право на обжалование принятого административного акта в административном (досудебном) порядке в вышестоящем административном органе, должностному лицу.

Жауапқа шағымдану немесе талап қою үшін QR кодты сканерлеңіз немесе төмендегі сілтеме бойынша өтіңіз:

https://i2.app.link/eotinish_blank

Руководитель

ЖУНУСОВ ТАЛГАТ ТОКБАЕВИЧ

Исполнитель:

ШОНАШЕВА КЕНЖЕТАЙ СЕРЕКПЕКОВНА

тел.: 87712491793

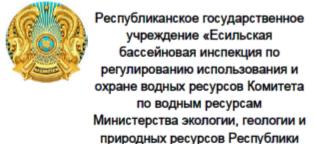
Осы құжат «Электрондық құжат және электрондық цифрлық қолтаңба туралы» Қазақстан Республикасының 2003 жылғы 7 қаңтардағы N 370-II Заңы 7 бабының 1 тармағына сәйкес қағаз тасығыштағы құжатпен бірдей.

Данный документ согласно пункту 1 статьи 7 ЗРК от 7 января 2003 года N370-II «Об электронном документе и электронной цифровой подписи» равнозначен документу на бумажном носителе.

Жауапқа шағымдану немесе талап қою үшін QR кодты сканерлеңіз немесе төмендегі сілтеме бойынша өтіңіз:

https://i2.app.link/eotinish_blank

					_
Пp	И.П	жо	ен	ие	7


Копия письма №3Т-2022-02570583 от 11.11.2022 г. выданным РГУ «Есильская бассейновая инспекция по регулирования использования и охране водных ресурсов КВР МЭГиПР РК»

"Қазақстан Республикасы Экология, геология және табиғи ресурстар министрлігі Су ресурстары комитетінің Су ресурстарын пайдалануды реттеу және қорғау жәніндегі Есіл бассейндік инспекциясы" республикалық мемлекеттік мекемесі

Қазақстан Республикасы 010000, Сарыарқа ауданы, Сәкен Сейфуллин көшесі 29

Республика Казахстан 010000, район Сарыарка, улица Сәкен Сейфуллин 29

Казахстан»

11.11.2022 №3T-2022-02570583

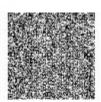
Товарищество с ограниченной ответственностью "GOLDENPIT"

На №3Т-2022-02570583 от 26 октября 2022 года

» TOO «GOLDENPIT» РГУ «Есильская бассейновая инспекция по регулированию использования и охране водных ресурсов КВР МЭГПР РК» рассмотрев Ваше обращение за №3Т-2022-02570583 от 26.10.2022 года, сообщает следующее. № угловых точек Географические координаты участка Широта Долгота 1 51°27'16.4 " 71°44'10.0 " 2 51°27'16.6 " 71°44'26.5 " 3 51°27'00.8 " 71°44'19.6 " 4 51°26`48.2 " 71°44`28.3 " 5 51°26`43.3 " 71°44`11.8 " 6 51°27`00.5 " 71°43`59.8 " 7 51°27`07.1 " 71°44'05.9 " Согласно предоставленных географических координат, ближайшим водным объектом к земельному участку является река Селеты, которая находится на расстоянии свыше 1500 метров. В соответствии с постановлением акимата Акмолинской области от 26 января 2009 года № А-1/19, ширина водоохранной зоны реки Селеты составляет – 500 м, ширина водоохранной полосы 35-100 м. Таким образом, месторождение «Мета» расположенная в Целиноградском районе Акмолинской области находится за пределами водоохранной зоны и полосы реки Селеты. Согласно пункта 2 статьи 120 Водного кодекса, в контурах месторождений и участков подземных вод, которые используются или могут быть использованы для питьевого водоснабжения, запрещаются проведение операций по недропользованию, размещение захоронений радиоактивных и химических отходов, свалок, кладбищ, скотомогильников (биотермических ям) и других объектов, влияющих на состояние подземных вод. В связи с чем, для определения наличия подземных вод питьевого качества на территории месторождения, Вам необходимо обратиться в уполномоченные органы по изучению недр. Согласно ст.91 Административного процедурно-процессуального кодекса РК при несогласии с принятым решением участник административной процедуры вправе обжаловать административный акт, административное действие (бездействие), не связанное с принятием административного акта, в административном (досудебном) порядке. Руководитель С. Бекетаев исп. Илюбаева А.Т. тел. 8 (7172)322180

Жауапқа шағымдану немесе талап қою үшін QR кодты сканерлеңіз немесе төмендегі сілтеме бойынша өтіңіз:


https://i2.app.link/eotinish_blank


Руководитель

Исполнитель:

ИЛЮБАЕВА АЛИЯ ТАШЕТОВНА

тел.: 7014894940

Осы құжат «Электрондық құжат және электрондық цифрлық қолтаңба туралы» Қазақстан Республикасының 2003 жылғы 7 қаңтардағы N 370-II Заңы 7 бабының 1 тармағына сәйкес қағаз тасығыштағы құжатпен бірдей.

Данный документ согласно пункту 1 статьи 7 ЗРК от 7 января 2003 года N370-II «Об электронном документе и электронной цифровой подписи» равнозначен документу на бумажном носителе.

Жауапқа шағымдану немесе талап қою үшін QR кодты сканерлеңіз немесе төмендегі сілтеме бойынша өтіңіз:

https://i2.app.link/eotinish_blank

Пn		A NT	· ATT	110	Q
HD	ил	ОЖ	ен	ие	a

Копия письма №01-26/227 от 07.11.2022 г. выданным КГУ «Центр по охране и использованию историко-культурного наследия» Управления культуры Акмолинской области

АКМОЛА ОБЛЫСЫ МӘДЕНИЕТ БАСҚАРМАСЫНЫҢ «ТАРИХИ – **МӘДЕНИ МҰРАНЫ ҚОРҒАУ** және пайдалану ОРТАЛЫҒЫ» КОММУНАЛДЫҚ **МЕМЛЕКЕТТІК МЕКЕМЕСІ**

коммунальное государственное УЧРЕЖДЕНИЕ «ЦЕНТР ПО ОХРАНЕ И ИСПОЛЬЗОВАНИЮ ИСТОРИКО-КУЛЬТУРНОГО НАСЛЕДИЯ» УПРАВЛЕНИЯ КУЛЬТУРЫ АКМОЛИНСКОЙ ОБЛАСТИ

> 020000, г. Кокшетау, улица Баймуканова, 23 Тел: 8 (7162) 51-27-75 E-mail: gunasledie@mail.kz

020000, Көкшетау қаласы, Баймұқанов көшесі, 23 Телефон 8 (7162) 51-27-75, E-mail: gunasledie@mail.kz gapenere № 01-26/224 2022 M

Сіздің 21.10.2022 ж. № 9 шығ.өтінішіңізге

2022 жылғы 7 қарашадағы территория бойынша тарихи-мәдени мұра объектісінің бар-жоғын анықтауға арналған № 84 акті

Осы актіні Ақмола облысы мәдениет басқармасының «Тарихи - мәдени мұраны қорғау және пайдалану орталығы» КММ директоры Ж. К. Укеев және маман С. М. Иманғалиев Ақмола облысы Целиноград ауданында орналасқан "Мета"кен орнында әктас өндіру бойынша "Goldenpit" ЖШС аумағын зерттеу қорытындысы бойынша жасады:

"Мета" кен орнының географиялық координаттары

Бұрыштық	Бұрыштық нүктелердің координаттары		Жер қойнауы
нүктелер	Солтүстік ендік	Шығыс бойлығы	учаскесінің ауданы, га
1	52°27'16,4"	71°44'10,0"	
2	52°27'16,6"	71°44'26,5"	
3	52°27'00,8"	71°44'19,6"	33,8
4	52°26'48,2"	71°44'28,3"	
5	52°26'43,3"	71°44'11,8"	
6	52°27'00,5"	71°43'59,8"	
7	52°27'07,1"	71°44'05,9"	

2022 жылғы 21 қазандағы № 9 өтінішіңізге аумақтарды шаруашылық игеру алдында Археологиялық сараптама жүргізу қажет екенін хабарлаймыз, өйткені Софиевка ауылынан солтүстікке қарай 7 км жерде, өзен арнасының бойында археология ескерткіштері - Софиевка - ІІІ елді мекені орналасқан. асыратын ұйыммен сараптаманы жүзеге археологиялық археологиялық және іздестіру жұмыстарын жүргізуге шарт (бұдан әрі шарт) жасасу қажет.

00231

данада жасалады, белгіленген тәртіппен

Тарихи-мәдени сараптама мүдделі жеке және заңды тұлғалардың (бұдан әрі - тапсырыс беруші) бастамасы бойынша жүргізіледі. Заңның 36-бабының 2-тармағына сәйкес "Тарихи-мәдени сараптаманы тарихи-мәдени мұра объектілерін қорғау және пайдалану саласындағы қызметті жүзеге асыратын, тарих және мәдениет ескерткіштерінде ғылыми-реставрациялау жұмыстарын және (немесе) археологиялық жұмыстарды жүзеге асыру жөніндегі қызметке лицензиясы бар жеке және заңды тұлғалар, сондай-ақ ғылыми және мәдени мұра субъектілерін аккредиттеу арқылы жүргізеді. (немесе) Қазақстан Республикасының Ғылым туралы заңнамасына сәйкес ғылыми-техникалық қызмет саласындағы уәкілетті орган (бұдан әрі - сарапшы) ұсынатын болады.

Географиялық координаттарға сәйкес аумақта тарихи-мәдени мұра объектілері табылған жағдайда, Қазақстан Республикасының 2019 жылғы 26 желтоқсандағы № 288-VI "Тарихи-мәдени мұра объектілерін қорғау және пайдалану туралы" Заңына (бұдан әрі-Заң) және Мәдениет және спорт министрінің 2020 жылғы 21 сәуірдегі № 99 бұйрығымен бекітілген тарихи-мәдени сараптама жүргізу Қағидаларына сәйкес осы ескерткіштерді қорғау аймақтары мен реттелетін құрылыс салу аймақтарын анықтау мақсатында жобалау-іздестіру жұмыстарын жүргізу қажеттігі туралы хабарлаймыз.

Тарихи-мәдени маңызы бар ескерткіштерді жоғалту қаупі анықталған жағдайда, ескерткішті толық зерделеу үшін археологиялық ғылыми-зерттеу жұмыстарын жүргізу қажет. Бұл жұмыстар тарихи-мәдени мұраны зерделеу мен сақтау саласындағы қызметті жүзеге асыратын және археологиялық жұмыстар жүргізу құқығына лицензиясы бар ұйыммен жасалған шарт негізінде жүзеге асырылады.

Бұдан әрі, «Тарихи-мәдени мұра объектілерін қорғау және пайдалану туралы» Қазақстан Республикасы Заңының 30-бабына сәйкес, тарихи, ғылыми, көркемдік және өзге де мәдени құндылығы бар тарихи-мәдени мұра объектілері табылған жағдайда, жеке және заңды тұлғалар бұдан әрі жұмыс жүргізуді тоқтата тұруға міндетті және бұл туралы Ақмола облысының уәкілетті органына және жергілікті атқарушы органдарына 3 (үш) жұмыс күн ішінде хабарлау қажет.

Қазақстан Республикасының 2020 жылғы 29 маусымдағы №350-VI Әкімшілік рәсімдік-процестік Кодексінің 91-бабындағы 3-тармағына сәйкес,жауаппен келіспеген жағдайда, сіздің қабылданған әкімшілік актіге әкімшілік тәртіппен (сотқа дейінгі) жоғары тұрған әкімшілік органға, лауазымды адамға шағымдануға құқыңыз бар.

Директор

Ж. Укеев

Маман

C. Clief

С.Иманғалиев

AKT № 84

Исследования территории на предмет наличия объектов историкокультурного наследия от 07 ноября 2022 года

Настоящий акт составлен Укеевым Ж.К.- директором и Имангалиевым С.М. - специалистом КГУ «Центр по охране и использованию историко-культурного наследия» управления культуры Акмолинской области по итогам исследования территории ТОО «GOLDENPIT», по добычи известняка на месторождении «Мета», расположенном в Целиноградском районе Акмолинской области:

Географические координаты месторождения «Мета»

Угловые точки	Координаты у	Координаты угловых точек	
	Северная широта	Восточная долгота	участка недр,га
1	52°27'16,4"	71°44'10,0"	
2	52°27'16,6"	71°44'26,5"	
3	52°27'00,8"	71°44'19,6"	33,8
4	52°26'48,2"	71°44'28,3"	
5	52°26'43,3"	71°44'11,8"	
6	52°27'00,5"	71°43'59,8"	5 *
7	52°27'07,1"	71°44'05,9"	

На Ваше обращение № 9 от 21 октября 2022 года сообщаем Вам, что перед хозяйственным освоением территорий необходимо проведение археологической экспертизы, так как, севернее в 7 км. от села Софиевка, вдоль русла реки находятся памятники археологии - поселение Софиевка- III. Для этого Вам необходимо заключить договор (далее - договор) на проведение археологических и изыскательских работ с организацией, осуществляющей археологическую экспертизу.

Историко-культурная экспертиза проводится по инициативе заинтересованных физических и юридических лиц (далее - заказчик). В соответствии с п.2 ст.36 Закона «Историко-культурную экспертизу проводят физические и юридические лица, осуществляющие деятельность в сфере охраны и использования объектов историко-культурного наследия, имеющие лицензию на деятельность по осуществлению научно-реставрационных работ на памятниках истории и культуры и (или) археологических работ, а также аккредитацию субъекта научной и (или) научно-технической деятельности в соответствии с законодательством Республики Казахстан о науке (далее - эксперти).

В случае обнаружения объектов историко-культурного наследия на территории согласно географическим координатам, уведомляем Вас, о необходимости проведения проектно-изыскательских работ с целью

Приложение 9

Копия горного отвода

«QAZAQSTAN RESPÝBLIKASY EKOLOGIA, GEOLOGIA JÁNE TABIĞI RESÝRSTAR MINISTRLİĞİ GEOLOGIA KOMITETİNİN «SOLTÚSTİKQAZJERQOINAÝY» SOLTÚSTİK QAZAQSTAN ÓNİRARALYQ GEOLOGIA DEPARTAMENTİ» RESPÝBLIKALYQ MEMLEKETTİK MEKEMESİ

РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «СЕВЕРО-КАЗАХСТАНСКИЙ МЕЖРЕГИОНАЛЬНЫЙ ДЕПАРТАМЕНТ ГЕОЛОГИИ КОМИТЕТА ГЕОЛОГИИ МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН «СЕВКАЗНЕДРА»

020000, Aqmola oblysy, Kókshetaý qalasy, Qanysh Sátbaev kóshesi, 1B úi tel: 8 (7162) 25-66-85, faks: 8(7162) 25-50-06 e-mail: kgkokshetau@ecogeo.gov.kz

No 28-12-05/1456 20d/ as, 24, 41 020000, Акмолинская область, г.Кокшетау, ул. Каныша Сатпаева, д.1Б Тел.:7162) 25-66-85, факс: 8 (7162) 25-50-06 e-mail: kgkokshetau@ecogeo.gov.kz

«GOLDENPIT» ЖШС

2021 жылғы15 қарашадағы №5 хатқа

«Солтүстікқазжерқойнауы» ӨД, 2009 жылғы 23 шілдедегі №599 келісімшартына 2021 жылғы 8 қарашадағы №1697 толықтыру негізінде берілген, Ақмола облысы Целиноград ауданында орналасқан Мета кен орнында шөгінді жыныстарды (әктас) барлауға арналған 2021 жылғы 22 қарашадағы тіркеу №744 тау-кендік бөлуді жібереді.

Косымша: 1 п.

Басшының м.а.

А.Дюсенова

орынд.: А.Сафурин Тел.: 25-66-85

001744

МД «Севказнедра» направляет горный отвод рег. №744 от 22 ноября 2021 года на добычу осадочных пород (известняк) на месторождении Мета, в Целиноградском районе Акмолинской области, выданный на основании дополнения №1697 от 8 ноября 2021 года к контракту №599 от 23 июля 2009 года.

Приложение: на 1 л.

Қосымша жер қойнауын пайдалануға арналған 2009 ж. 23.07.№599 келісімшартқа шөгінді жыныстар (эктас) (пайдалы қазба түрі)

өндіру

(жер қойнауын пайдалану түрі)

2021 жылғы 22 қарашадағы тіркеу № 744

«СОЛТҮСТІКҚАЗЖЕРҚОЙНАУЫ» СОЛТҮСТІК ҚАЗАҚСТАН ӨҢІРАРАЛЫҚ ГЕОЛОГИЯ ДЕПАРТАМЕНТІ

ТАУ-КЕНДІК БӨЛУ

2021 жылғы 08 қарашадағы №1697 келісімшартқа толықтыру негізінде (тікелей келіссөздер хаттамасы, құзыретті органның шешімі, келісімшартқа толықтыру) Мета кен орнында шөгінді жыныстарды (әктас) өндіруге арналған (жер қойнауы учаскесінің(блоктардың) атауы)

жер қойнауын пайдалану бойынша операцияларды жүзеге асыру үшін «GOLDENPIT» ЖШС-не берілді.

(жер қойнауын пайдаланушы)

Тау-кендік бөлу <u>Акмола облысы Целиноград ауданында</u> орналасқан Тау-кендік бөлудің шегі №1-ден №7-ге дейінгі бұрыштық нүктелермен белгіленген

Бұрыштық	Бұрыштық нүктелердің координаттары		
нүктелер	Солтүстік ендік	Шығыс бойлық	
1	51° 27' 16,4"	71° 44' 10,0"	
2	51° 27' 16,6"	71° 44' 26,5"	
3	51° 27' 00,8"	71° 44' 19,6"	
4	51° 26' 48,2"	71° 44' 28,3"	
5	51° 26' 43,3"	71° 44' 11,8"	
6	51° 27' 00,5"	71° 43' 59,8"	
7	51° 27' 07,1"	71° 44' 05,9"	

Тау-кендік бөлудің ауданы — 0,338 (нөл бүтін үш жүз отыз сегіз мыңдық) км² Игеру терендігі — горизонтқа дейін +161 м 2021 ж.17 наурыздағы №730 тау-кендік бөлуі жарамсыз болып есептелсін.

Басшынын м.а.

Дестор А.Дюсенова

Көкшетау қ. 2021 жыл, қараша