ТОО «Разведка и добыча QazaqGaz»

ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ К РАБОЧЕМУ ПРОЕКТУ:

«Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)»

Директор **Держен** Главный инженер проекта

ОРТАЛЫК С инженерный ресенов А.Л. ЦЕНТР

мангис Масаев А.А.

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	10
АННОТАЦИЯ	14
1. ИНФОРМАЦИЯ ОБ ОБЪЕКТЕ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	16
1.1 ОПИСАНИЕ ПРЕДПОЛАГАЕМОГО МЕСТА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	16
2. ОПИСАНИЕ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРЕДПОЛАГАЕМОЙЗАТРАГИВАЕМОЙТЕРРИТОРИИНАМОМЕНТСОСТАВЛЕНИЯ ОТЧЕТА	HA 21
2.1 КЛИМАТИЧЕСКАЯ ХАРАКТЕРИСТИКА РАЙОНА	21
2.2 АТМОСФЕРНЫЙ ВОЗДУХ СОВРЕМЕННОЕ СОСТОЯНИЕ АТМОСФЕРНОГО ВОЗДУХА	24
2.3. ПОВЕРХНОСТНЫЕ ВОДЫ	24
2.3.1. ПОВЕРХНОСТНЫЕ ВОДЫ	24
2.3.2. ПОДЗЕМНЫЕ ВОДЫ	24
2.4. ГЕОМОРФОЛОГИЯ И РЕЛЬЕФ. СОВРЕМЕННЫЕ ФИЗИКО-ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ И ЯВЛЕНИЯ.	25
2.5. ХАРАКТЕРИСТИКА ПОЧВЕННОГО ПОКРОВА.	
2.6. РАСТИТЕЛЬНЫЙ МИР	33
2.7. ЖИВОТНЫЙ МИР	34
2.8 ОЦЕНКА СОВРЕМЕННОЙ РАДИОЭКОЛОГИЧЕСКОЙ СИТУАЦИИ	36
2.9 ОСОБО ОХРАНЯЕМЫЕ ПРИРОДНЫЕ ТЕРРИТОРИИ	37
3 ОПИСАНИЕ ИЗМЕНЕНИЙ ОКРУЖАЮЩЕЙ СРЕДЫ, КОТОРЫЕ МОГУТ ПРОИЗОЙТИ В СЛУ ОТКАЗА ОТ НАЧАЛА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
4 ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ ИСПОЛЬЗОВАНИЯ ЗЕМЕЛЬ В Х СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	КИН
5 ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	НИЯ 42
5.1 ГЕНЕРАЛЬНЫЙ ПЛАН	42
5.2. АВТОМОБИЛЬНЫЕ ДОРОГИ	46
5.3. ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ	50
5.2 АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЕ РЕШЕНИЯ	70
6 ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНОЛОГИЙ	88
7 ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕГ СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛНЕНИЯ СТРОИТЕЛЬНЫХ РАБОТ	
8. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ЭМИССИ ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ ВРЕДНЫХ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СО СТРОИТЕЛЬСТВОМ И ЭКСПЛУАТАЦИЕЙ ОБЪЕК ДЛЯ ОСУЩЕСТВЛЕНИЯ РАССМАТРИВАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ВОЗДЕЙСТВИЕ ВОДЫ, АТМОСФЕРНЫЙ ВОЗДУХ, ПОЧВЫ, НЕДРА, А ТАКЖЕ ВИБРАЦИИ, ШУМОГОЛЕКТРОМАГНИТНЫЕ, ТЕПЛОВЫЕ И РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ	НА СТОВ Е НА ВЫЕ,
8.1 ХАРАКТЕРИСТИКА ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА	91
8.1.1 ХАРАКТЕРИСТИКА АВАРИЙНЫХ ВЫБРОСОВ	95
8.1.3 РАСЧЕТ И АНАЛИЗ ПРИЗЕМНЫХ КОНЦЕНТРАЦИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ	
8.1.4 АНАЛИЗ РЕЗУЛЬТАТОВ РАСЧЕТОВ ВЫБРОСОВ	110
8.1.5 ОБОСНОВАНИЕ РАЗМЕРА САНИТАРНО-ЗАЩИТНОЙ ЗОНЫ	110
8.1.7 МЕРОПРИЯТИЯ ПО УМЕНЬШЕНИЮ ВЫБРОСОВ В АТМОСФЕРУ	111

8.1.8 МЕРОПРИЯТИЯ НА ПЕРИОД НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ (НМ	У)112
8.2. ОХРАНА ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХ ВОД	114
8.2.1 РАСЧЕТ НОРМ ВОДОПОТРЕБЛЕНИЯ	
8.2.2 МЕРОПРИЯТИЯ ПО ОХРАНЕ И РАЦИОНАЛЬНОМУ ИСПОЛЬЗОВАНИЮ ВОДНЫХ РЕСУРСОВ	3114
8.3. ОХРАНА ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ, ЖИВОТНОГО МИРА, РАСТИТЕЛЬНОСТИ	115
8.3.1 ОСНОВНЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПОЧВЕННО-РАСТИТЕЛЬНЫЙ ПОКРОВ	115
8.4. ВОЗДЕЙСТВИЕ ФИЗИЧЕСКИХ ФАКТОРОВ	117
8.4.1 ШУМ, ВИБРАЦИЯ	117
8.4.2 ВОЗДЕЙСТВИЕ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ	118
8.4.3 РАДИАЦИОННОЕ ВОЗДЕЙСТВИЕ	119
9. ИНФОРМАЦИЮ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ОТХОДО КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, В ТОМ ЧИСЛЕ ОТХОДОВ, ОБРАЗУЕМЫХ РЕЗУЛЬТАТЕ ОСУЩЕСТВЛЕНИЯ ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИ СООРУЖЕНИЙ, ОБОРУДОВАНИЯ.	В В ИЙ, 121
9.1 ОТХОДЫ	121
9.2 РАСЧЕТ НОРМ ОБРАЗОВАНИЯ ОТХОДОВ ПРИ СТРОИТЕЛЬСТВЕ	122
9.3 РАСЧЕТ НОРМ ОБРАЗОВАНИЯ ОТХОДОВ ПРИ ЭКСПЛУАТАЦИИ	124
9.3 ЛИМИТЫ НАКОПЛЕНИЯ ОТХОДОВ	125
9.5 КОНТРОЛЬ ЗА БЕЗОПАСНЫМ ОБРАЩЕНИЕМ С ОТХОДАМИ	126
9.6 УПРАВЛЕНИЕ ОТХОДАМИ	127
9.7 СБОР, НАКОПЛЕНИЕ И РЕКОМЕНДУЕМЫЕ СПОСОБЫ ПЕРЕРАБОТКИ/УТИЛИЗАЦИИ ИЛИ УДАЛЕНИЯ ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ	130
9.8 ТРЕБОВАНИЯ К ТРАНСПОРТИРОВКЕ ОТХОДОВ	133
10. ОПИСАНИЕ ЗАТРАГИВАЕМОЙ ТЕРРИТОРИИ С УКАЗАНИЕМ ЧИСЛЕННОСТИ ЕЕ НАСЕЛЕНИ УЧАСТКОВ, НА КОТОРЫХ МОГУТ БЫТЬ ОБНАРУЖЕНЫ ВЫБРОСЫ, СБРОСЫ И ИНІ НЕГАТИВНЫЕ ВОЗДЕЙСТВИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, УЧЕТОМ ИХ ХАРАКТЕРИСТИК И СПОСОБНОСТИ ПЕРЕНОСА В ОКРУЖАЮЩУЮ СРЕДУ, УЧАСТКОВ ИЗВЛЕЧЕНИЯ ПРИРОДНЫХ РЕСУРСОВ И ЗАХОРОНЕНИЯ ОТХОДОВ	ЫЕ , С ЦУ;
11. ОПИСАНИЕ ВОЗМОЖНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ УЧЕТОМ ЕЕ ОСОБЕННОСТЕЙ И ВОЗМОЖНОГО ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕД ВКЛЮЧАЯ ВАРИАНТ, ВЫБРАННЫЙ ИНИЦИАТОРОМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ Д ПРИМЕНЕНИЯ, ОБОСНОВАНИЕ ЕГО ВЫБОРА, ОПИСАНИЕ ДРУГИХ ВОЗМОЖНІ РАЦИОНАЛЬНЫХ ВАРИАНТОВ, В ТОМ ЧИСЛЕ РАЦИОНАЛЬНОГО ВАРИАНТА, НАИБОЛ БЛАГОПРИЯТНОГО С ТОЧКИ ЗРЕНИЯ ОХРАНЫ ЖИЗНИ И (ИЛИ)ЗДОРОВЬЯ ЛЮДІ ОКРУЖАЮЩЕЙ СРЕДЫ	ЦУ, ЛЯ ЫХ ЕЕ ЕЙ, 135
12. ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪЕКТАХ, КОТОР МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМ НАМЕЧАЕМ ДЕЯТЕЛЬНОСТИ	ОЙ
13. ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ (ПРЯМЫХ И КОСВЕННЬ КУМУЛЯТИВНЫХ, ТРАНСГРАНИЧНЫХ, КРАТКОСРОЧНЫХ И ДОЛГОСРОЧНЬ ПОЛОЖИТЕЛЬНЫХ И ОТРИЦАТЕЛЬНЫХ) НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	IX,
13.1. ОПРЕДЕЛЕНИЕ ФАКТОРОВ ВОЗДЕЙСТВИЯ	140
13.2. ВИДЫ ВОЗДЕЙСТВИЙ	140
13.3 МЕТОДИКА ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ ПРИРОДНУЮ СРЕДУ	142
13.4 ИНТЕГРАЛЬНАЯ ОЦЕНКА НА ОКРУЖАЮЩУЮ СРЕДУ	144
13.5 ОПЕНКА ВОЗЛЕЙСТВИЯ ОБЪЕКТА НА СОПИАЛЬНО-ЭКОНОМИЧЕСКУЮ СРЕЛУ	145

14. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛ ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ	ЕЙ 147
14.1 ЭМИССИИ В АТМОСФЕРУ	
14.2. ЭМИССИИ В ВОДНЫЕ ОБЪЕКТЫ	
14.3.ФИЗИЧЕСКИЕ ВОЗДЕЙСТВИЯ	
14.4. ВЫБОР ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ	
15. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНІ ПРИРОДНЫХ ЯВЛЕНИЙ, ХАРАКТЕРНЫХ СООТВЕТСТВЕННО ДЛЯ НАМЕЧАЕМ ДЕЯТЕЛЬНОСТИ И ПРЕДПОЛАГАЕМОГО МЕСТА ЕЕ ОСУЩЕСТВЛЕНИЯ, ОПИСАН ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВРЕДНЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДСВЯЗАННЫХ С РИСКАМИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ УЧЕТОМ ВОЗМОЖНОСТИ ПРОВЕДЕНИЯ МЕРОПРИЯТИЙ ПО ИХ ПРЕДОТВРАЩЕНИЮ ЛИКВИДАЦИИ	ЮЙ IИЕ ДУ, I, С И 149
15.1 ВЕРОЯТНОСТЬ ВОЗНИКНОВЕНИЯ АВАРИЙ	
15.2 ВЕРОЯТНОСТЬ ВОЗНИКНОВЕНИЯ НЕБЛАГОПРИЯТНЫХ ПОСЛЕДСТВИЙ	150
15.3 МЕРОПРИЯТИЯ ПО ПРЕДОТВРАЩЕНИЮ АВАРИЙНЫХ СИТУАЦИЙ	151
15.4 ПЛАНЫ ЛИКВИДАЦИИ АВАРИЙ	152
15.5 МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ЭКОЛОГИЧЕСКОГО РИСКА	153
15.6 МЕРОПРИЯТИЯ ПО УМЕНЬШЕНИЮ ПОСЛЕДСТВИЙ ВОЗМОЖНЫХ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ	154
15.7 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ	154
15.8 АНАЛИЗ ВОЗМОЖНЫХ АВАРИЙНЫХ СИТУАЦИЙ	155
15.9 ПЕРЕЧЕНЬ РАЗРАБОТАННЫХ МЕР ПО УМЕНЬШЕНИЮ РИСКА АВАРИЙ, ИНЦИДЕНТОВ	155
16. ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ ДЛЯ ПЕРИОДА ЭКСПЛУАТАЦИИ ОБЪЕКТА МЕР ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ ВЫЯВЛЕННЫХ СУЩЕСТВЕННІ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, В ТОМ ЧИС ПРЕДЛАГАЕМЫХ МЕРОПРИЯТИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ, А ТАКЖЕ ПРИ НАЛИЧ НЕОПРЕДЕЛЕННОСТИ В ОЦЕНКЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ ПРЕДПОЛАГАЕМЫХ МЕР ПО МОНИТОРИНГУ ВОЗДЕЙСТВИЙ	ЫХ СЛЕ ИИ -
СРЕДЫ	158
16.1.1. ОПЕРАЦИОННЫЙ МОНИТОРИНГ	158
16.1.2. МОНИТОРИНГ ЭМИССИЙ	158
16.2. МОНИТОРИНГ ВОЗДЕЙСТВИЙ	158
17. МЕРЫ ПО СОХРАНЕНИЮ И КОМПЕНСАЦИИ ПОТЕРИ БИОРАЗНООБРАЗИЯ	161
18. ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ ОБОСНОВАНИЕ НЕОБХОДИМОСТИ ВЫПОЛНЕНИЯ ОПЕРАЦИЙ, ВЛЕКУЩИХ ТАК ВОЗДЕЙСТВИЯ, В ТОМ ЧИСЛЕ СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПОТЕРЬ ОТ НЕОБРАТИМ ВОЗДЕЙСТВИЙ И ВЫГОДЫ ОТ ОПЕРАЦИЙ, ВЫЗЫВАЮЩИХ ЭТИ ПОТЕРИ, В ЭКОЛОГИЧЕСКО КУЛЬТУРНОМ, ЭКОНОМИЧЕСКОМ И СОЦИАЛЬНОМ КОНТЕКСТАХ	:ИЕ ЫХ ЭМ,
19. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА, ТРЕБОВАНИЯ ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДСТАВЛЕНИЯ ОТЧЕТОВ О ПОСЛЕПРОЕКТНОМ АНАЛИ УПОЛНОМОЧЕННОМУ ОРГАНУ	13E
20. СПОСОБЫ И МЕРЫ ВОССТАНОВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА СЛУЧАИ ПРЕКРАЩЕН НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ОПРЕДЕЛЕННЫЕ НА НАЧАЛЬНОЙ СТАДИИ ОСУЩЕСТВЛЕНИЯ	EE
21. СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ ЗАКОНОДАТЕЛЬНЫЕ РАМ ЭКОЛОГИЧЕСКОЙ ОЦЕНКИ	КИ 168
23. КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ	170

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	187
ПРИЛОЖЕНИЯ	188
2 Расчеты выбросов ЗВ в атмосферу	Ошибка! Закладка не определена.
2.1 Расчеты выбросов ЗВ в атмосферу на период строительства	Ошибка! Закладка не определена.
2.2 Расчеты выбросов ЗВ в атмосферу на период эксплуатации	
2. Расчеты приземных концентрации.	Ошибка! Закладка не определена.
2.1 Ситуационные карты-схемы изолиний рассчитанных максималь веществ при эксплуатации объекта	
СПИСОК ТАБЛИЦ	
Таблица 1 Средняя месячная и годовая относительная влажность воздуха	a (%)21
Таблица 2 Климатическая характеристики района проведения работ	22
Таблица 3 Физико-химические свойства скважинного флюида:	50
Таблица 4 Усредненный компонентный состав газа скважин	50
Таблица 3 Технологические характеристик БДР	56
Таблица 6 Протяженность проектируемых газопроводов-шлейфов от скв	ажин к ПСГ57
Таблица 7 – Перечень загрязняющих веществ, выделяемых в атмосферны	ый воздух на период СМР от
стационарных источников	
Таблица 9 - Перечень загрязняющих веществ, выбрасываемых в атмосфе	
Таблица 10 – Расчет расхода воды на хоз- бытовые нужды	114
Таблица 11 – Расход воды на производственные нужды	
Таблица 12 – Лимиты накопления отходов, установленные при строитель	
Таблица 13 – Лимиты накопления отходов, установленные при эксплуата	
Таблица 14 - Факторы воздействия на компоненты окружающей среды и	
снижению	
Таблица 15 - Шкала масштабов воздействия и градация экологических по	
Таблица 16 - Интегральная оценка воздействия на природную среду при	
СПИСОК РИСУНКОВ	
Рисунок 1- Обзорная карта расположения объекта	
Рисунок 2- Геологический отвод и Картограмма	
Рисунок 3- Карта-схема расположения месторождения с указанием грани ближайших селитебных зон	
Олижаиших селитеоных зон Рисунок 5- Ситуационная карта расположения участка	

АННОТАЦИЯ

Настоящий отчет о возможных воздействиях на окружающую среду (далее Отчет) выполнен с целью получения информации о влиянии на окружающую природную среду при реализации рабочего проекта «Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)».

ТОО «Инженерный центр», имеющий лицензию на выполнение работ и оказание услуг в области охраны окружающей среды за N 01032P от 13 июля 2007 г.

Заказчик отчета о возможных воздействий:

TOO «Разведка и добыча QazaqGaz»,

РК, 010000, г. Астана, р/н "Есиль", ул., Алихан Бокейхан, здание №12

Тел: 8 7172798466,

amangeldy_gas@epqg.kz.

Основанием для разработки документа являются экологический кодекс РК от 2 января 2021 года и «Инструкция по организации и проведению экологической оценки», утвержденной приказом № 280 от 30.07.2021г. Министра экологии, геологии и природных ресурсов Республики Казахстан.

При выполнении Отчета о возможных воздействиях на окружающую среду определены потенциально возможные изменения в компонентах окружающей среды при реализации намечаемой деятельности.

Оценка воздействия на окружающую среду – процесс выявления, изучения, описания и оценки на основе соответствующих исследований возможных существенных воздействий на окружающую среду при реализации намечаемой деятельности, включающий в себя стадии, предусмотренные статьей 67 Кодекса. Также содержание отчета о воздейсвии соответсвует п.4 ст.72 и составлен с учетом содержания заключения об определении сферы охвата оценки воздействия на окружающую среду.

Организация экологической оценки включает организацию процесса выявления, изучения, описания и оценки возможных прямых и косвенных существенных воздействий (далее — существенные воздействия) реализации намечаемой и осуществляемой деятельности или разрабатываемого Документа на окружающую среду.

Для организации процесса выявления возможных существенных воздействий намечаемой деятельности на окружающую среду в ходе оценки воздействия на окружающую среду инициатор намечаемой деятельности подает в уполномоченный орган в области охраны окружающей среды заявление о намечаемой деятельности.

Техническими решениями рабочего проекта «Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)», предусматривается обустройство месторождения Барханное.

По результатам Заявления о намечаемой деятельности ТОО «Разведка и добыча QazaqGaz» было получено Заключение об определении сферы охвата оценки воздействия на окружающую среду № KZ88VWF00154065 от 16.04.2024г. согласно которого, оценка воздействия на окружающую среду является обязательной.

На этапе отчета «О возможных воздействиях» приведена характеристика природной среды в районе деятельности предприятия, рассмотрены основные

направления хозяйственного использования территории и определены принципиальные позиции согласно, статьи 72 ЭК РК.

При выполнении отчета «О возможных воздействиях» определены потенциально возможные изменения в компонентах окружающей и социально-экономической среды при реализации намечаемой деятельности. Также определены качественные и количественные параметры намечаемой деятельности.

Согласно Приложению 2 к Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI 3PK, данный объект относится к 1-ой категории.

1. ИНФОРМАЦИЯ ОБ ОБЪЕКТЕ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

1.1 Описание предполагаемого места намечаемой деятельности

Недропользователем месторождения Барханная является ТОО «Разведка и добыча QazaqGaz», который имеет контракт №5205-УВС от 06 апреля 2023 года, на добычу углеводородов на месторождении Барханная расположенной в Жамбылской области РК. Месторождение Барханная расположена в пределах блоков XXXIV – 49 -С (частично), F (частично), 50-А (частично), D (частично). Площадь участка недр составляет – 39,72 кв.км.

Срок действия до 2048 года включительно.

Месторождение Барханная в административном отношении расположено в пределах Мойынкумского района Жамбылской области (лист XXXIV-49, 50) Республики Казахстан. Областной центр, город Тараз, находится в 240 км к югу от площади работ (рис.2.1).

В орографическом отношении территория расположена на юго-западной окраине пустыни Мойынкум, занимающей междуречье рек Шу и Таласа и представляет собой равнинную местность, постепенно воздымающуюся в сторону горной системы Тянь-Шаня. Поверхность песков Мойынкум имеет сложный грядово-бугристый рельеф. Относительные превышения песчаных гряд, простирающихся в северо-западном направлении, достигают 20-60 м. Абсолютные отметки рельефа в районе изменяются от плюс 320 м до 360 м, в районе г.Тараз они увеличиваются до плюс 600 м.

По природно-климатическим условиям район работ относится к зоне среднеазиатских пустынь с резко континентальным климатом: с сухим жарким летом; с холодной, малоснежной зимой. Максимальная температура летом достигает плюс 400С - 450С с минимальной температурой зимой минус 400С. Направление ветров, в основном, северо-восточное.

Гидрографическая сеть представлена реками Аса, Талас (на юге) и Чу (на севере), берущими свое начало в горах Киргизского Алатау. Источниками водоснабжения являются также колодцы с пресной водой (уровень воды в которых находится на глубине 10-20 м от устья) и артезианские скважины. Водоносные горизонты палеогена залегают на глубине 60220 м и содержат воду с минерализацией 3-5 г/л. Дебиты воды высокие (до 45 м³/сут). Сейсмичность района (СНИП РК 2.04- 01-2001) 6 баллов. Среднегодовое количество осадков не превышает 80-100 мм, наибольшее количество осадков приходится на ноябрь-март месяцы.

Передвижение в условиях барханных песков возможно с помощью гусеничного и вездеходного автотранспорта. Шоссейная дорога с асфальтовым покрытием, связывающая областной центр г.Тараз с районным центром п.Акколь и населенными пунктами Оик и Уланбель проходит на востоке площади.

Основные промышленные центры области г.Тараз и г.Каратау связаны железной дорогой.

Ближайшие населенные пункты расположены вдоль поймы реки Талас (Оик, Амангельды).

Координаты проектируемых скв. Б-6 (44°31'4,18" С.ш, $70^{\circ}57'30,80$ " В.д.), Б-7 (44°30' 55,45"С.ш., $70^{\circ}58'$ 5,43"В.д.), Б-8 (44°31'19,22"с.ш, $70^{\circ}58'$ 18,83"В.д.)

Координаты горного отвода:

1. 44о30'30,96"СШ, 70о55'39,2"ВД;

- 2. 44032'36,63"СШ, 70055'59,63"ВД;
- 3. 44о31'40,35"СШ, 71о03'27,57"ВД;
- 4. 44о29'29,99"СШ, 71о02'58,47"ВД.

Обзорная карта района работ представлена на рисунке 1. Горный отвод и Картограмма представлены на рисунке 2.

Карта-схема расположения месторождения с указанием ближайших селитебных зон представлена на рисунке 3.

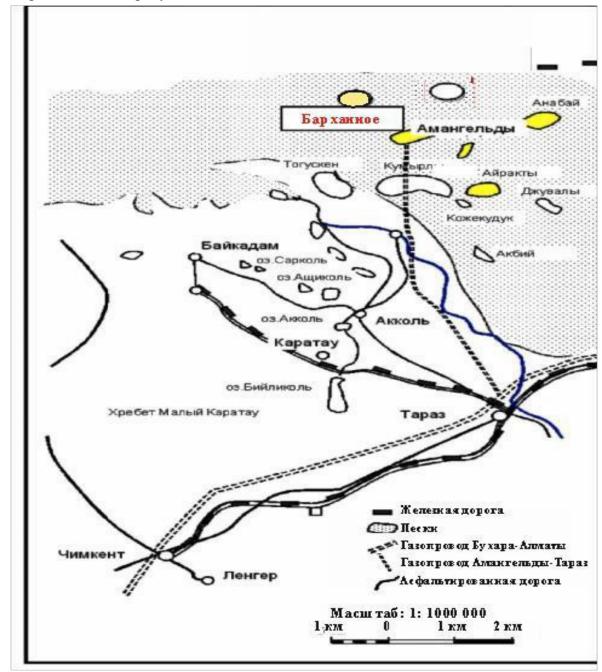


Рисунок 1- Обзорная карта расположения объекта

Приложение № ______ к Контракту № 611 от 12.12.2000 г. на право недропользования углеводороды (вид полезного ископаемого) Добыча (вид недропользования) От 17 января 2023г. Рег. № 536-Д-УВ

РГУ «КОМИТЕТ ГЕОЛОГИИ МИНИСТЕРСТВА ИНДУСТРИИ И ИНФРАСТРУКТУРНОГО РАЗВИТИЯ РЕСПУБЛИКИ КАЗАХСТАН»

УЧАСТОК НЕДР (ГОРНЫЙ ОТВОД)

Предоставлен Товариществу с ограниченной ответственностью «Разведка и добыча QazaqGaz» для осуществления операций по недропользованию на месторождении Барханная в пределах блоков XXXIV-49-С(частично), F(частично), 50-А(частично), D(частично) на основании решения экспертной комиссии Компетентного органа Министерства энергетики РК (протокол от 11.01.2023 № 1/19 МЭ РК).

Участок недр расположен в Жамбылской области.

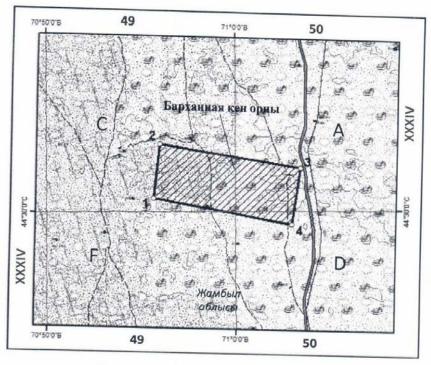
Границы участка недр показаны на картограмме и обозначены угловыми точками с № 1 по № 4.

	Координаты угловых точек					
Угловые точки	Северная широта	Восточная долгота				
1	44° 30' 30,96"	70° 55' 39,2"				
2	44° 32' 36,63"	70° 55' 59,63"				
3	44° 31' 40,35"	71° 03' 27,57"				
4	44° 29' 29,99"	71° 02' 58,47"				

Площадь участка недр составляет – 39,72 (тридцать девять целых семьсот семьдесят два сотых) кв. км.

Глубина отработки - минус 2600 м.

Заместитель председателя


Туткышбаев

г. Астана, январь, 2023 г.

Жер қойнауын пайдалануға арналған
№ келісімшартының
№ косымша
көмірсутек
(пайдалы қазба түрі)
өндіру
(жер қойнауын пайдалану түрі)
2023 ж. 1 каңтардағы. Тіркеу № 3 6 - КС

Барханная кен орнын өндіруге арналған жер қойнауы учаскесінің XXXIV-49-С(ішінара), F(ішінара), 50-А(ішінара), D(ішінара) блогы шегінде орналасу қартограммасы

Масштаб 1: 200 000

Шартты белгілер Барханная кен орнын өндіруге арналған жер қойнауы учаскесінің пішіні — қапталған автожолдар (тас жол) — дала жолдары — металл немесе темірбетон тіректері ЭБЖ жеке құрылыстар негізгі горизонтальдар құмдар деңес және жоталы торлы және жоталы құмдар

Астана қ, 2023 ж, қаңтар

Рисунок 2- Геологический отвод и Картограмма

Рисунок 3- Карта-схема расположения месторождения с указанием границ санитарно-защитной зоны и ближайших селитебных зон

2. ОПИСАНИЕ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА ПРЕДПОЛАГАЕМОЙЗАТРАГИВАЕМОЙТЕРРИТОРИИНАМОМЕНТСОСТАВЛЕНИ Я ОТЧЕТА

2.1 Климатическая характеристика района

Климат Жамбылской области интересен своим географическим положением в центральной части Евразийского материка, удаленностью от океанов и морей, близостью пустыни и крупных горных массивов. Климатической особенностью района являются условия турбулентного обмена, препятствующие развитию застойных явлений, что обуславливается невысокой динамикой атмосферы южного региона.

Особенностями климата расположения является жаркое солнечное лето и умеренная малоснежная зима, а также резкое колебание температуры воздуха и сильными ветрами, обусловленными географическим положением территории.

Зимний период по своей суровости не соответствует географической широте, потому что холодный арктический воздух проникает на юг и вызывает сильные кратковременные морозы, достигающие минус 42° С. При этом температура воздуха в зимний период может подниматься до $+18^{\circ}$ С, так как район находится под воздействием областей высокого давления, что способствует установлению безоблачной морозной погоды с резко выраженными инверсиями температур

Температурный режим

Характерной особенностью температурного большая режима является продолжительность тёплого периода. Самый холодный месяц – январь; самый жаркий – июль. Преобладающее направление ветра: в зимнее время – юго-восточное (повторяемость 34% со скоростью до 6 м/сек.), в летнее время – северного и юго-восточного направлений (повторяемость 24% со скоростью 3,6-5,8 м/сек. соответственно). Самые сильные ветры наблюдаются в весенний период. Согласно картам климатического районирования город Тараз по климатическим условиям относится к категории II В. Средняя суточная температура самого жаркого месяца – июля составляет +23°C, абсолютный максимум может составлять +40°C. Самый холодный месяц январь. Средняя температура января -6- 8°C, средний минимум - -12°C. Расчетная температура воздуха самой холодной пятидневки -30°C, самых холодных суток -23°С.

Таблица 1 Средняя месячная и годовая относительная влажность воздуха (%)

Станция	Месяцы, год												
Уюк	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
	80	78	72	56	47	37	32	33	38	53	74	81	57

Устойчивый снежный покров образуется в первой декаде ноября и держится порядка 80-100 дней. Неустойчивость снежного покрова — одна из наиболее типичных черт климата области. Основной причиной неустойчивости является температурный режим зим.

Часто повышение температуры воздуха выше 0° С приводит к интенсивному таянию снега, освобождению от него поверхности почвы. На равнине наибольший снежный покров приурочен к пониженным участкам рельефа –овражно-балочной сети, западинам, ложбинам.

Переход среднесуточной температуры выше 6°С и начало весеннего периода наблюдается в первой декаде марта, а выше 10°С во второй декаде апреля.

Средняя температура наружного воздуха наиболее холодного месяца -5°C, наиболее жаркого 31,9°C.

Количество осадков за год составляет 500-600 мм.

Режим ветра носит материковый характер. Преобладают ветры северо-западного направления, со средней скоростью 1-4 м/сек. Сильные ветры наиболее часты в теплый период года - с апреля по август. Наряду с этим в районах с изрезанным рельефом местности отмечаются различные по характеру проявления местные ветры – горно-долинные, бризы, фены и т.д. Повторяемость направлений ветра, штилей, скорость ветра по направлениям представлены в таблице 2.

Таблица 2 Климатическая характеристики района проведения работ

Наименование характеристики раиона проведения	Величина
Коэффициент, зависящий от стратификации атмосферы,	200
Коэффициент рельефа местности,	1,0
Средняя максимальная температура наружного наиболее жаркого месяца года, град.С	40
Средняя максимальная температура наружного наиболее холодного месяца года, град.С	-23,0
Средняя роза ветров	
С	5,0
СВ	17,0
В	32,0
ЮВ	6,0
Ю	3,0
ЮЗ	7,0
3	19,0
C3	11,0
Среднегодовая скорость ветра, м/с	12,7
Скорость ветра (по средним многолетним данным) повторяемость превышения, которой составляет 5 %, м/с	5,0

Значение коэффициента температурной стратификации A, соответствующее неблагоприятным метеорологическим условиям, при которых концентрация вредных веществ в атмосферном воздухе максимальна, принимается равным 200.

По данным Казгидромет в районе расположения ТОО «Разведка и добыча QazaqGaz» стационарного поста наблюдения фоновых концентраций не имеется, и поэтому в расчете рассеивания не учитывались.

Ветровой режим. Для изучаемого района, как и для всей области, характерны частые ветры восточного и западного направления. Наибольшую повторяемость за год имеют ветры восточного направления. Годовая скорость ветра в районе исследований 2,8 м/с. В теплый период сильные ветры вызывают пыльные бури, а в холодный – метели.

Атмосферные осадки. Засушливость – одна из отличительных черт климата района. Осадков выпадает мало, и они распределяются по сезонам года крайне неравномерно: 60 % всех осадков приходится на зимне-весенний период. Осадки летнего периода не имеют существенного значения, как для увлажнения почвы, так и для развития культурных растений.

Исследованиями, направленными на изучение роли отдельных метеорологических элементов и их различных сочетаний в формировании уровня загрязнения атмосферы, а также причин, обусловливающих накопление примесей в атмосфере или приводящих к ее очищению, было выявлено, что наибольшее влияние на рассеивание примесей в атмосфере оказывает ветровой режим и стратификация атмосферы, в том числе инверсии температуры.

При выбросах от низких и неорганизованных источников скопление примесей в приземном слое атмосферы образуется в период слабых ветров (0 -1м/сек) и наличии инверсий температуры, затрудняющей вертикальный воздухообмен. Инверсии температуры в сочетании с различными скоростями ветра могут усиливать накопление примесей или создавать условия для их рассеивания. Большую опасность представляют застои воздуха – сочетание приземных инверсий температуры и слабых ветров (0-1м/сек), приводящих к повышению содержания примесей в атмосфере.

На формирование уровня загрязнения воздуха значительное влияние оказывают также туманы, солнечная радиация, осадки.

Важным фактором в данном районе является малое количество осадков, что в условиях жаркого лета, при сохранении длительных периодов без осадков, формирует высокий фон естественной запыленности.

В сильно запыленном воздухе, при отсутствии осадков, длительное время могут сохраняться высокие концентрации примесей.

В целом климатические условия района создают благоприятные условия для рассеивания загрязняющих воздух веществ.

2.2 Атмосферный воздух Современное состояние атмосферного воздуха.

В современной концепции охраны окружающей среды особое место занимает состояние воздушного бассейна. Любое антропогенное влияние может привести к недопустимым уровням загрязнения компонентов природной среды, снижению биоразнообразия фауны и флоры, деградации почвенно-растительного покрова, изменению мест обитания животного мира, исчезновению и сокращению популяций, а главное – угрозе здоровью населения. Основными принципами охраны атмосферного воздуха согласно «Экологический кодекс» являются:

- охрана жизни и здоровья человека, настоящего и будущих поколений;
- недопущения необратимых последствий загрязнения атмосферного воздуха для окружающей среды.

Критериями качества состояния воздушного бассейна являются значения предельно допустимых концентраций (ПДК) загрязняющих веществ в воздухе населенных мест, принятых в Казахстане. Исследуемый участок работ находится на значительном расстоянии от селитебных зон. Источники загрязнения, расположенные за пределами площади работ, никакого ощутимого влияния на эту территорию не оказывают.

2.3. Поверхностные воды

Географически месторождение расположено в юго-западной части песков Мойынкум, которые в рассматриваемом районе занимают междуречье Шу и Таласа, с югозапада к ним примыкает предгорная равнина Малого Каратау, являющегося ветвью Большого Каратау.

Поверхностные водные источники на территории отсутствуют.

2.3.1. Поверхностные воды

На территории месторождения недропользователя постоянные водотоки и водоемы отсутствуют.

Имеются только небольшие овраги и промоины временных водотоков.

В районе месторождений выделяются следующие водоносные горизонты:

- золовые четвертичные отложения.
- четвертичные делювиально-пролювиальные отложения.
- верхнеплиоценовые отложения.
- воды спорадического распространения эоценовых отложений.
- комплекс верхнетурон-сенонских отложения.
- комплекс нерасчлененных альбсеноманских отложений.

В районе месторождения поверхностных источников воды нет. Питание водоносных горизонтов осуществляется за счет атмосферных осадков, выпадающих на площади их распространения и прилегающих к ним территорий. Для большинства водоносных горизонтов рассматриваемая территория является одновременно и областью питания, и зоной разгрузки.

2.3.2. Подземные воды

В пределах территории месторождения можно выделить 6 основных водоносных горизонтов: водоносный горизонт среднеэоценовых отложений; неогеновый водоносный горизонт; средневерхнекаменноугольный - нижнепермский водоносный горизонт;

верхнепермский водоносный горизонт; средневизейский водоносный горизонт; нижневизейкий водоносный горизонт.

Водоносные горизонты палеогена залегают на глубине 60220 м и содержат воду с минерализацией 3-5 г/л. Дебиты воды высокие (до 45 м 3 /сут).

На месторождении Барханная водоносные горизонты установлены в отложениях нижнего визе и палеогена, представленных соответственно песчаниками и песками.

В палеогеновых водоносных горизонтах вода слабоминерализованная в пределах 1,7-3,8 г/л, сульфатно-натриевого типа. (скв.№Б-1).

На отдельных участках характеризующихся выклиниванием коллекторов, вода характеризуется хлоркальциевым типом. (скв.№Б-2, №Б-3).

Для определения физико-химических свойств пластовых вод продуктивных горизонтов было отобрано 2 пробы воды из скважины Б-1.

Нижневизейский водоносный горизонт представлен слабыми и крепкими хлоркальциевыми рассолами с минерализацией 157 до 216 г/л при плотности 1,12 г/см³.

Средневизейский водоносный горизонт представлен прослоями мелкообломопористых и трещиноватых известняков в средней части глинисто- карбонатной толщи визейского яруса.

Нижневизейский горизонт представлен слоями песчаников, перекрыт пачкой переслаивающихся аргиллитов, ангидритов и известняков, и содержит залежи газа на месторождениях Амангельды, Айракты, Жаркум, Малдыбай и Анабай. Пористые песчаники на площади месторождений, в пределах Мойынкумской впадины и смежных с ней районов развиты локально.

2.4. Геоморфология и рельеф. Современные физико-геологические процессы и явления.

Территория исследований в тектоническом отношении относится к Муюнкумской впадине Чу- Сарысуйской депрессии.

В строении разреза участка работ, расположенного в Мойынкумском прогибе ЧуСарысуйской впадины, участвуют три резко отличных друг от друга структурных этажа: нижний — складчатый фундамент, средний — квазиплатформенный, верхний — платформенный (Рис.4).

Фундамент слагают метаморфические породы протерозоя и интенсивно дислоцированные и интрузированные толщи пород нижнего палеозоя.

Средний структурный этаж по отношению к нижнему является наложенным и сложен образованиями девона, карбона и перми.

Верхний структурный этаж сложен полого залегающими верхнемеловыми, палеогеновыми, неогеновыми и четвертичными отложениями с мезозойской корой выветривания в основании.

Самой нижней частью разреза, вскрытой пробуренными на месторождении глубоки-ми скважинами, являются девонские отложения.

На исследуемом участке работ и ближайших структурах Мойынкумской впадины (прогиба) нижнепалеозойские отложения бурением не вскрыты. По аналогии с соседними геоструктурными зонами, на исследуемой площади прогнозируется развитие отложений среднего, нижнего девона и силура.

Нижний-средний девон - D1+2

В северо-восточных обрамлениях впадины развиты отложения нижнего-среднего девона, представленные эффузивно-осадочными отложениями - туфопесчаниками, туфобрекчиями и эффузивными породами кислого и среднего состава. Толщина их не превышает 1500м и сокращается до нуля в юго-западном направлении.

Судя по данным сейсморазведки 3Д (2021г), в доверхнедевонской толще простирается отражающий горизонт D2, который, по мнению авторов отчета, приурочен к подошве среднедевонских отложений.

Следовательно, вскрытые на забое скважины Б-1, №Б-5 породы квазиплатформенного фундамента имеют возраст- среднедевонский.

В разрезе скважины №Б-1 эти отложения выделены в интервале 3323-3377 м (-29783027 м, забой). Вскрытая их толщина- 49 м. Породы представлены кварцевыми фосфоритами.

В скважине №Б-5 породы квазиплатформенного фундамента выявлены в интервале 3075-3205 м (- 2721,2 - 2850,2 м, забой). Вскрытая толщина пород -77 м.

Керн из интервала 3199-3204 м представлен магматической интрузивной породой розовато- серого цвета.

Выше залегают отложения от верхнего девона до кайнозойских включительно, которые выделены путем корреляции каротажных диаграмм скважин месторождения Барханная с месторождением Амангельды.

Верхний отдел - D3 Фаменския ярус - D3fm

Отложения фаменского яруса вскрыты многими скважинами, пробуренными на сводах структур Мойынкумского прогиба. Они представлены красноцветными терригенными породами песчаниками и гравелитами с малотолщинными прослоями (5-6 см) аргиллитов и конгломератов с плохой сортировкой материала. Сейсмическими работами 2Д в толще исследуемой территории выделен отражающий горизонт D2-3, характеризующий строение поверхности в нерасчлененной толще средне- верхнедевонских отложений.

В районе площади Западный Султанкудук скважиной № R-1 в интервале глубин 37424500 (- 3417,5-4174,8) м выявлены отложения верхнего палеозоя, которые по данным полинологического анализа определены как верхнедевонские.

На месторождении Барханная в скв.№№Б-1 фаменские отложения вскрыты в интервале 3188-3323 м (- 2843 – 2978 м), несогласно залегающие на породах нижележащего комплекса. Породы в нижней части представлены песчаниками полимиктовыми, гидротермально измененными, с обломками кварца, плагиоклаза, кальцита. Вверх по разрезу они переходят в песчаники и аргиллиты. Песчаники- серые, буроватокоричневые, средне-мелкозернистые, кварцево-полевошпатовые, массивные, окремненные, на сульфатно-железистом цементе с многочисленными включениями ангидрита. Аргиллиты - коричневые, массивные, с пятнами восстановленного цемента, трещиноватые. Трещины - разноориентированные, выполнены желтым и белым кальцитом. Размеры трещин - от нитевидных до 5,0 мм. Толщина комплекса пород- 135 м.

Одновозрастные отложения в скважине №Б-5 выделены в интервале 3075-3128 (2721,2-2774,2) м.

Относительно скважины Б-1, их толщина значительно сокращена и составляет 53 м.

Фаменско-нижнетурнейские отложения в скважине №Б-1 выделены в интервале 3163-3188 м (- 2818-2843 м). Они согласно залегают на подстилающих отложениях и

представлены каменной солью с включением красноцветных алевритов и аргиллитов. Толщина их -25 м.

В разрезе скважины №Б-5 описываемые отложения имеют не значительную толщинудо 2,0 м. Каменноугольная система - С Нижний отдел - С₁ Турнейский ярус - С₁t

Нижнетурнейские (C₁t1) отложения со стратиграфическим несогласием перекрывают отложения верхнего девона. В основании яруса залегает базальная пачка гра-веллитов и песчаников с включением хорошо окатанной гальки.

В скважине № №Б-1 породы нижнего турне выделены в интервале 2945-3188 (-2597-2843) м, они представлены переслаивающимися аргиллитами коричневыми, буры-ми, массивными, окремненными песчаниками и алевролитами. Песчаники - коричневые, мелкозернистые, сульфатизированные. Алевролиты-слюдистые, с включениями ангидритов.

В скважине №Б-5 нижнетурнейские отложения выделены в интервале 2831-3048 (-2477,2-2694,2) м. Керн из интервала 2845-3070 м представлен перекристаллизованным песчаником и алевролитом буровато-коричневого и кирпично-красного цвета, с редкими включениями глинистого материала, с характерной направленной слоистостью, местами карбонатизированные, с включениями по трещинам прожилков кальцита и крупного обломочного материала.

Перекристаллизованный песчаник - коричневато-бурого цвета, состоит из мета-морфизированного кварцита розоватого, беловато-розового цвета, прочный, твердый, плотный. Цемент кремнистый, участками переходящий в глинисто-кремнистый, по ти-пу цементации- закрытый поровый, аморфный, микрокристаллический. Также встреча-ются редкие прослойки карбонатного песчаника светло-серого цвета, с грубокрупной зернистой структурой; карбонаты представлены кальцитом.

В данном интервале отложений в незначительном количестве обнаружены ком-плексы спор следующего состава: Archaezonotriletes upensis Kedo, Arch. devonicus Jusch. var. punctatus Kedo, Hymenozonotriletes aff. hyalinus Naum, Stenozonotriletes aff. conformis Kedo, Retusotriletes minor, свидетельствующие о нижнекаменноугольном возрасте пород.

Толщина пород в скв.№№Б-1 составляет 221 м, в скв.№№Б-5-217 м.

Верхнетурнейские отложения (C₁t2) выделены во всех скважинах, пробуренных на площади Барханная. Полностью верхнетурнейские отложения вскрыли скважины №Б-1, №Б-5, забои скважин

№№Б-2, №Б-3, №Б-4 находятся в середине толщи. Вскрытая тол-щина пород в этих скважинах составляет, соответственно, 72, 47 ,20 м. В скважине №Б-5 верхнетурнейские отложения выделены в интервале 2560-2831 (-2206,2-2477,2) м, в сква-жине №Б-1-в интервале 2638-2942 (-2293-2597) м. Толщина их равна 271-304 м.

Литологический породы сложены песчаниками, аргиллитами, алевролитами. Песчаники бурые, мелкозернистые, кварцево-полевошпатовые, окремненные, плотные, на известковом цементе. Аргиллиты-коричневые, окремненные.

Визейский ярус - С1 v

Визейские отложения также вскрыты всеми скважинами, пробуренными на площади Барханная.

На турнейских отложениях они залегают согласно.

Нижневизейский подъярус - С1V1

Кровля отложений данного подъяруса залегает на глубине от 2430 (скв.№ №Б-5) до 2582 м(скв.№ №Б-2), породы сложены терригенными разностями серой и тёмно - серой окраски. Основание подъяруса представлено тёмно - серыми аргиллитами, темно-серыми, крепкими, монолитными, прослоями песчаников серых, среднезернистых, крепкосцементированных на глинистом цементе. Вверх по разрезу они сменяются светло-серыми, мелкозернистыми, плотными, местами трещиноватыми. песчаниками Размеры трещин равны 1-2 мм. Имеются прослои аргиллитов темно-серых, крепких, монолитных. Аргиллиты углистые, черные, плотные, с линзами и прослоями каменного угля и песчаников серых, кварцевополевошпатовых, мелко-среднезернистых, окремненных, с редкой фауной пелеципод. В верхних частях разреза пласты песчаников перекрываются аргиллитами черными, плотными, слабоокремненными с прослоями темносерых, скрытокристаллических, весьма плотных известняков (толщиной до 10-15 см) с обилием фауны.

Керн из интервала 2480-2557,50 м в скважине №№Б-5 представлен терригенными породами - песчаниками, алевролитами, аргиллитами с тонкими прослойками углефицированного детрита и редкими включениями карбонатных обломков и органических остатков, представленных ракушняком.

Песчаники серого, светло-серого цвета, средне-мелкозернистые, преимущественно, кварцево- полевошпатовые, косослоистые, горизонтально слоистые, редко пятнистые, с частыми прослойками алевролита темно-серого цвета, глинисто-углистого материала. Породы участками карбонатизированы, с включениями органических остатков. Цемент - глинисто - карбонатный.

Аргиллиты темно-серого цвета, слабой твердости, плотные, сильно трещиноватые, с обильными включениями сульфидов железа (зерен пирита) по трещинам, участками углефицированные, пелитовой структуры, горизонтально слоистые.

Алевролиты серого, темно-серого цвета, микрозернистые, тонкозернистые, слоистые, на глинистом, местами – на карбонатном цементе, с тонкими прослойками глинисто-углистого материала.

Выявлены скопления остатков спор следующих комплексов:

L. pusilla Ibr., L. curtata Lub., Densoisporites variabilis (Waltz.) Byvsh., D. dentatus (Waltz.) Tet., D. commutatus (Waltz.) Schwar., Vallatisporites pusillites (Kedo) Dolby et Neves emend Byv., V. ciliaris (Lub.) Sul., V. novus (Byvsh.) Byv., V. verrucosus Hacq., V. ciliaris (Lub.) Sul., Lycospora verruculifer Lub., Densoisporites commutatus (Waltz.) Schwar., D. dentatus (Waltz.) Tet., D. subcrenatus (Waltz.) Pot. et Kr., Crassispora ignorata (Lub.) Oshurk., Grandispora microspinosa (Byvsh.) Byv., Cingulizonates sp., Angulisporites punctulosus Lub., Cirratriradites radialis (Yuschko) Byv., Schulzospora sp.

Толщина нижневизейских отложений варьирует от 111 (скв.4) до 136 (скв.2) м. Средневизейский подъярус - C_1v2

Кровля отложений среднего визе на площади Барханная залегает на глубинах от 2288 м (скв.№№Б-5) до 2436 м (скв.№№Б-2).

Описываемые породы в скважинах № Б-1, №Б-4 в нижней части разрезов представлены переслаиванием аргиллитов, ангидритов и известняков. Аргиллиты черные, плот-ные, слабоокремненные, известковистые, с желваками белых ангидритов размером до 1 см. Алевролиты темно-серые, окремненные с желваками ангидритов. Редко встречаются

трещины вдоль оси керна. Верхняя часть разреза представлена, в основном, известняками серыми, темносерыми до черных, плотными скрытокристалличеческими, окремненными, с мелкими гнездообразными включениями белого ангидрита и аргиллитов. Отмечены прослои доломитов серых, плотных, окремненных, с фауной, местами трещиноватых. Аргиллиты черные, сильноокремненные, трещиноватые.

В скв.№№Б-5 керн отобран из интервала 2395-2480 м, соответствующего нижнесредневизейским подъярусам. Породы сложены слоями алевролитов, аргиллитов и известняков.

Известняки темно-серые, серые, участками заглинизированные, органогеннообломочные, доломитистые, микро-скрытокристаллические, микротрещиноватые, заполненные углефицированным материалом, часто прослеживаются прослойки глинистой и карбонатной пород, с вкраплениями ангидрита и кальцита. В карбонатных породах отмечены органогенные остатки, представленные мелкими раковинами фораминифер, остракод, члениками криноидей, морских лилий.

Микрофаунистический анализ выявил следующие виды фораминифер: Planoarchaediscus cf. spirillinoides (Raus), Glomodiscus cf. rigens (Con. et Lys.), Uralodiscus cf.

elongatus (Conil. et Lys), Uralodiscus aff. kasachstanicus Marfenkova, Archaediscus aff. karreri Brady.

Аргиллиты темно-серого цвета, слабой твердости, плотные, сильно трещиноватые, пла- стинчатые, местами углефицированные, алевро-пелитовой структуры. В заглинизированных участках были выявлены скопления остатков спор и пыльцы следующих комплексов:

Споры: Cyclogranisporites sp., Dictyotriletes sp., Densoisporites crassipterus (Waltz.), Convolutispora sp.

Пыльца: Schulzospora primigenia Dyb. et Jach., Potonieisporites sp.

Толщина пород средневизейского подъяруса составляет 133 м (скв.№№Б-4) -147 м (скв.№Б-1).

Верхненевизейский подъярус – С1 v3

Кровля отложений верхнего визе на площади Барханная залегает на глубинах от 2186м (скв.№№Б-5) до 2317 м (скв №Б-2).

Верхневизейский подъярус сложен, преимущественно, карбонатно-терригенными отложениями – известняками, доломитами, мергелями с прослоями чёрных аргиллитов и серых алевролитов. Известняки тёмно-серые, глинистые, часто органогенные, с фауной брахиопод, мшанок. Повсеместно встречаются желваки ангидрита и тонко рассеянный пирит в серых и плотных аргиллитах.

В разрезе присутствуют маломощные прослои песчаников мелкозернистых кварцполевошпатовых и прослои ангидритов толщиной до 2,0 м. Породыокремнелые.

В скважине №Б-5 порода из интервала 2245-2255 м, преимущественно, карбонатная, с редкими прослоями глин и вкраплениями сульфатизированных обломков.

Известняк органогенно-обломочный, глинистый, доломитизированный, микроскрытокристаллический, темно-серого, коричневато-серого, светло-серого цвета, микротрещинноватый, с тонкими прослойками аргиллита, вкраплений ангидрита. Трещинки, залеченные глинистым материалом, разнонаправленные, редко встречаются стилолитовые швы и углефицированный детрит.

Доломит глинистый, оолитовый, скрытокристаллический, коричневато-серого цвета, предположительно, водорослевый, с тонкими прослойками глинисто-углистого материала, редких включений ангидрита.

Наблюдается неравномерное, обильное содержание фаунистических органических остатков и члеников водорослей: мелких раковин моллюсков, иглокожих, фораминифер, остракод, брахиопод, члеников криноидей, морских лилий.

Выявлены следующие виды фораминифер: Archaediscus krestovnikovi Raus, Earlandia vulgaris (Raus. et Reitl.), Paraarchaediscus stilus (Grozd. et Leb.), соответствующие верхневизейскому возрасту.

Аргиллит алевритистый, песчанистый, участками карбонатизированный темносерого цвета, слабой, средней твердости, плотный, сильно трещиноватый, алевропелитовой структуры. Трещины по напластованию имеют включения углефицированного детрита.

Выявлены скопления остатков споры и пыльцы, относящихся к следующим комплексам:

Споры: Endosporites micromanifestus Haeq., Endosporites notabilis (Naum. Et Byvsch.) Tet., Waltzispora sp., Densoisporites irregularis (Andr.) Tet., Crassispora trychera

Nev. et Ioann., Lycospora pusilla (Ibr.) Som., Punctatisporites parvivermiculatus Playf., Hymenozonotriletes radialis Jusch. et Byvsch., Microreticulatisporites sp., Punctatisporites pormivermiculatus Playf., Schulzospora vetusta Dyb. et Jach., D. variabilis (Waltz.) Tet., Lycospora pusilla (Ibr.) Som., Lyc. labulata Stapl.

Пыльца: Schulzospora sp., Potonieisporites sp. Schulzospora vetusta Dyb. et Jach., Sch. minima Tet., Florinites sp.

Толщина пород верхнего визея составляет 102 (скв.№№Б-5) - 119 м (скв.№№Б-2). Серпуховский ярус — С₁s Кровля отложений данного яруса прослежена на глубине 1945 (скв.№№Б-5) -2025 (скв.№№Б-2) м.

Породы представлены переслаиванием известняков серых, темно-серых, окремненных, плотных, с аргиллитами темно-серыми. В верхней части разреза имеются прослои алевролитов и ангидритов в виде желваков.

В скважине №Б-5 порода из интервала 2035-2165 м сложена терригенно-карбонатными разностями: аргиллитами, известняками, доломитами, сульфатизированными породами с песчанистыми зернами.

Известняки глинистые, темно-серого, серого, коричневато-серого цвета, микроскрытокристаллические, хорошо сцементированные, микротрещинноватые, органогеннообломочные, участками доломитизированные, также встречаются включения кристаллов ангидрита белого цвета.

Органогенные остатки распределены неравномерно, представлены остатками раковин и иглокожих, фораминифер, остракод, брахиопод, гастропод. Выявлены фораминиферы Palaeonubecularia cf. uniserialis Reitl., Archaediscus incertus Grozd. et Leb., которые относятся к нижнекаменноугольному периоду, серпуховскому ярусу.

Доломиты серовато-коричневые, известковистые, хорошо сцементированные, скрытокристаллические, тонкослоистые, микротрещиноватые, присутствуют редкие включения углефицированных растительных остатков.

Аргиллиты темно-серого цвета, слабой твердости, средней плотности, сильно трещиноватые, пластинчатые, местами углефицированные, алевро-пелитовой структуры.

В заглинизированных участках были выявлены скопления остатков споры и пыльцы следующих комплексов: Valatisporites sp., Potonieisporites cf. novicus Bhard., Hymenozonotriletes sp., Lycospora sp., Densoisporites sp., Lycospora pusilla (Ibr.) Som., Crassispora kosankei Tet., Microreticulatisporites tripartites Lavein, Florinites visendus (Ibr.) S., относящихся к нижнекаменноугольному периоду, серпуховскому ярусу.

Толщина пород серпуховского яруса составляет 241(скв.№Б-5) - 292м (скв.№Б-2). Нижний-средний отделы – C_1 -2 Таскудукская свита

Кровля отложений свиты находится на глубине1874 (скв.№Б-5) -1993 (скв.№Б-2) м.

Нижняя часть разреза представлена темно-серыми аргиллитами с прослоями ангидритов. Реже встречаются прослои глинистых известняков.

Верхняя часть, преимущественно, терригенная, в разрезе встречаются прослои серых мелкозернистых песчаников кварцполевошптовых зеленовато-серых, бурых, до коричневых.

Породы окремненные. Толщина их равна 28-71 м. Средний и верхний отделы – С2-3

Нерасчлененные породы среднего – верхнего визе залегают на нижележащих отложениях со скрытым несогласием на глубинах от 992 (скв.№Б- 2) до 1068 (скв.№Б-3, №Б-4) м. Они представлены красноцветными терригенными разностями в виде переслаивающихся песчаников, алевролитов, аргиллитов, гравелитов. Песчаники и алевролиты полимиктовые, сцементированные глинисто- карбонатным и железисто-кремнистым цементом.

Порода из интервала 1445-1460 м в скв.№Б-5 представлена ожелезненными пестроцветными, кирпично-красными терригенными отложениями аргиллитами, алевролитами, песчаниками, гравелитистыми обломками с вторичной карбонатизацией.

Аргиллиты кирпично-красного цвета, ожелезненные, слабой твердости, средней плотности, местами слабокарбонатные. Также присутствуют редкие пятнистые включения глинистого материала, зеленоватого цвета, хлоритизированные, с обломками кварца.

Алевролиты кирпично-красного, коричневатого цвета, кварцевые, кремнистые, микрозернистые, тонкослоистые на глинисто-карбонатном цементе.

Песчаники буровато-коричневого цвета, структура средне-мелкозернистой фракции, на глинисто- карбонатном цементе контактового типа.

Гравелитовые обломки – слабоокатанные, представлены кварцитами с глинистыми про- слойками.

Литологические особенности пород свидетельствуют о их формировании в условиях коры выветривания, когда происходят процессы ожелезнения минералов с последующими окислением и дегидратацией. Выделены следующие составы комплекса спор:

Leiotriletes subintortus Isch., Vittatina vittifer Lub., Calamospora sp., Monosaccites, Scabrosisporites scabratus Tet., Torispora secnuris Balme., Gardenosporites aff. pinnatus Krus., Limitisporites rectus Lesch., Striatohaplopinites improcerus Krus., Lycospora sp., L. granulata

Kos., Vittatina vittifer Lub., Azonaletes sp. Potonieisporites sp., Cordaitina aff. uralensis Dibn., Cyclogranisporites sp., предположительно, относящиеся к отложениям верхне каменно-угольного периода.

Толщина средневерхнекаменноугольных отложений равна 912 (скв.№Б-3)-1874 (скв.№Б5) м. Пермская система – Р Нижний отдел – Р1

Отложения соленосной толщи (P1c) согласно залегают на подсолевых отложениях, на площади Барханная и залегают на глубине 575-600м.

Толща в нижней части разреза представлена каменной солью с примесью терригенного материала — аргиллита и песчаника на галитовом цементе с включением каменной соли в виде гнезд и линз. Выше отложения представлены переслаиванием галита крупнокристаллического с алевритом.

Толщина пород соленосной толщи составляет 392-468 м. Верхний отдел – P2 Надсолевая толща

Отложения надсолевой толщи вскрыты всеми скважинами, залегают на соленосной толще с резким угловым несогласием и размывом, представлены красноцветными окремнёнными алевролитами и аргиллитами. В основании разреза преобладают мелкозернистые песчаники. Для нижней части разреза характерны многочисленные включения мелких кристаллов ангидрита, а для верхней – гнёзда и тонкие прослои белого волокнистого гипса.

Толщина надсолевых отложений в пределах площади исследования составляет 242269 м. Мезозойская и Кайнозойская группы – MZ-KZ

Рыхлый осадочный чехол мезозой – кайнозоя перекрывают отложения палеозоя с резким угловым несогласием, граница фиксируется корой выветривания толщиной 0,2-4 м.

В пределах Мойынкумского прогиба весь комплекс отложений состоит из коры выветривания, на которой последовательно залегают отложения саксаульской (верхний эоцен), асказансорской (верхний олигоцен) свит, неогеновые и четвертичные. Представлены отложения песками, песчаниками, глинами, суглинками пестрой окраски. Толщина пород составляет 320-358 м.

2.5. Характеристика почвенного покрова.

Согласно почвенно-географического районирования рассматриваемая территория находится в Чу-Мойынкумской провинции бугристо-грядовых песков, такыровидных и серо-бурых почв. Основным зональным типом почв на данной территории являются бурые почвы, они представлены подтипом серо-бурых почв.

Территория подзоны серо-бурых почв включает в себя ландшафты равнин преимущественно аллювиально-аккумулятивного происхождения. Зональные серо-бурые почвы встречаются здесь островными массивами, занимая более древние по возрасту и более высокие по уровню поверхности аридно-денудационных плато, мелкосопочные возвышенности и делювиально-пролювиальные шлейфы, подгорные покатости гор юга и юго-востока Казахстана.

Район развития рассматриваемых почв сложен элювиальными, элювиальноделювиальными, делювиально-пролювиальными и древнеаллювиальными отложениями, различающимися по возрасту, механическому и минералогическому составу. Общей особенностью почвообразующих пород этих почв является их карбонатность и присутствие гипса, причем содержание карбонатов с глубиной часто уменьшается, а гипса возрастает.

По механическому составу они представлены, в основном, среднесуглинистыми и легкосуглинистыми пылеватыми разновидностями; значительно меньше - легкими почвами (супесчаными и песчаными), приуроченными обычно к окраинам песчаных массивов.

Наряду с серо-бурыми почвами здесь широко распространены такыровидные, такыры и пустынные песчаные почвы.

Такыровидные почвы широко распространены в подзоне серо-бурых почв, где встречаются довольно крупными массивами на аллювиальных равнинах. Это бывшие пойменные аллювиально- луговые почвы, сильно опустыненные в результате изменения гидрологического режима реки. Эти почвы занимают плоские пониженные элементы рельефа, включая сухие русла, котловины выдувания, террасы и другие элементы рельефа, сложенные преимущественно легкими (песчаными, супесчаными) пылевато-песчаными, реже суглинистыми отложениями.

Почвенный покров рассматриваемого района в естественном состоянии представляет малопродуктивные пастбищные угодья.

Своеобразие растительности Мойынкумов как отдельной подпровинции определяется тремя основными особенностями массива: положением песков в Центральной части Туранских пустынь; большим перепадом высот (от 110 до 700 м), с чем связана хорошо выраженная террасовидность поверхности; выклиниванием транзитных грунтовых вод в чуротном районе песков.

В Мойынкумах представлены восемь наиболее широко распространенных конассоциаций, приуроченных к различным элементам рельефа, - саксауловая, жузгуновая, кустарниковая, терескеновая, белоземельнополынная, изеневая, сорнополынная, злаковая.

Одними из продуктивных и имеющих разностороннее значение являются саксауловые редколесья из черного и белого саксаула. Растительность такой пустыни как Мойынкумы представляет большую ценность, так как она значительно продуктивнее, чем глинистые или щебнистые пустыни и используется как пастбища. Сочетание кормов, растущих в разные сезоны, позволяет использовать песчаные пастбища круглый год.

В Мойынкумах имеются редкие и эндемичные виды, требующие охраны: эфедра окаймленная, астрагал илийский и коротконогий, ферула илийская, ферула гладкая, хондрилла Кузнецова, эремостахис колесовидный и др.

Состояние растительного покрова на территории месторождения Барханная достаточно удовлетворительное и стабильное.

2.6. Растительный мир

Согласно современной схеме ботанико-географического районирования данный регион относится к северным пустыням и входит в состав Сахаро Гобийской пустынной Иранотуранской подобласти, Северо-туранской провинции, северотуранской подпровинции. В районе месторождения преобладают пустынные растительные сообщества с включением полукустарничков и кустарничков. Они занимает основные площади растительности и объединяет сообщества полыни, многолетней солянки и ксерофитных кустарников (саксаул). Господствующими пустынными формациями являются туранскополынные боялычники, занимающие большие площади. Биюргуновая ведущей. ландшафтная формация также является Биюргунники эродированным склонам плато с выходами глин, к солонцам на равнинах низкого гипсометрического уровня. На супесчаных серо-бурых почвах по останцам и равнинам распространены чисто белоземельнополынные и кеурековобелоземельнополынные типы сообществ. Исследованная территория газовых месторождений занимает обширную территорию в междуречье Чу-Талас и представлена песчано-пустынным массивом Мойынкум, своеобразие растительности которого определяется положением песков в центральной части Туранских пустынь, большим перепадом высот 180-420м.

Растительный покров сформирован в жестких природных условиях широтной пустынной зоны. Определяющими факторами являются засушливость климата, большие амплитуды колебания температур, резкий недостаток влаги, бедность почв в сочетании с широким распространением почвообразующих пород. На исследованной территории месторождения преобладают следующие жизненные формы: псаммофильные кустарники, ксерофильные и галофитные полукустарники (полыни и солянки), многолетние коротковегетирующие и однолетние травы (эфемеры и эфемероиды), реже – длительно вегетирующие многолетники. Ландшафтными растениями, участвующими в сложении наиболее широко распространенных сообществ, являются элементы песчаной саванны – жузгуны, саксаул персидский (белый), песчаная акация, представитель северотуранской флоры – полынь белоземельная; саксаул безлистный (черный) – представитель реликтовой саванновой средиземноморской флоры.

По предварительным данным на территории месторождения, редкие и охраняемые виды расстении, занесенные в Красную Книгу РК отсутствуют.

2.7. Животный мир

В районе расположения объекта животный мир представлен довольно большим количеством видов, как оседлых, так и широко мигрирующих. На этой территории сходятся фауны сопредельных территорий, поэтому их представители придают животному миру региона смешанный характер. Учитывая это обстоятельство, дать обзор беспозвоночных, обитающих непосредственно на территории месторождения невозможно. Более полно осветить видовой состав, место обитания и экологическое значение групп позвоночных животных, обитающих в непосредственной близости от контрактной территории, невозможно без описания обитателей сопредельных территорий. Фауна этих районов довольно тесно связана между собой, особенно авифауна.

Наиболее многочисленными животными, обитающими в регионе, являются птицы (161 вид), млекопитающие (34 вида) и пресмыкающиеся (21 вид).

Млекопитающие

В пустынной зоне региона обитает 34 вида млекопитающих. Из насекомоядных — это ушастый еж, малая белозубка, пегий путорак. Летучие мыши — нетопырь-карлик, поздний кожан, пустынный кожан, двухцветный кожан, усатая ночница. Псовые — шакал, лисица, корсак, волк. Куньи — ласка, горностай, степной хорек, барсук, занесенная в Красную Книгу перевязка (Vormela peregusna). Из кошачьих — пятнистая или степная кошка. Копытные - кабан, джейран (Gazella subgutturosa), занесенный в Красную Книгу. В регион в зимний период заходят мигрирующие сайгаки. Из грызунов обычны тонкопалый и желтый суслик, тушканчики — малый, большой, Северцова, Лихтенштейна, мохноногий. Обитают серый хомячок, полевая и домовая мыши. В богатых растительностью водоемах водится ондатра и водяная полевка. Из зайцеобразных — заяц-толай. Из песчанковых - тамариксовая или гребенщиковая, краснохвостая, полуденная и большая песчанки.

Ёж живет в основном оседло, ведет ночной и сумеречный образ жизни, зимой залегает в спячку.

Всеяден, но основу питания составляют насекомые.

Малая белозубка также ведет оседлый образ жизни, в пищу употребляет почти все виды беспозвоночных, которые удастся обнаружить.

Пегому путораку, как почти всем землеройкам, характерна сумеречная и ночная активность, основу питания составляют жуки и их личинки. Тяготеем к песчаному грунту.

Зимоспящий вид. Является носителем некоторых заболеваний человека. Усатая ночница также зимоспящая. Питается насекомыми. Поздний, пустынный и двухцветный кожаны зимой также впадают в спячку.

Основу их питания составляют насекомые. Могут участвовать в распространении опасных для человека заболеваний. Имеют экологическое и научное значение.

Видовой состав птиц разнообразен. В различные сезоны здесь встречается более 220 видов. Часть из них гнездится в различных биотопах региона, есть виды оседлые, есть зимующие, однако большинство из них – пролетные (более 50%).

Видовое разнообразие охватывает большинство семейств птиц. Это и поганковые, пеликановые, баклановые, цаплевые, ибисовые, аистовые, утиные, ястребиные, соколиные, фазановые, журавлиные, дрофиные, пастушковые. Представители отрядов ржанкообразных, голубеобразных, совообразных, козодоеобразных, воробьиных. Среди них отмечены виды, занесенные в Красную Книгу РК, такие как кудрявый (Pelecanus crispus) и розовый пеликаны (Pelecanus onocrotalus), черноголовый хохотун (Larus ichthyaetus), дрофа (Otis tarda), стрепет (Otis tetrax), дрофа-красотка или джек (Chlamiydotis undulata), лебедь-кликун (Cygnus cygnus), колпица (Platalea leucorodia), белоглазая чернеть (Aythya nyroca), савка (Охуига leucocephala), серый журавль (Grus grus), красавка (Anthropoides virgo), чернобрюхий рябок (Pterocles orientalis), белобрюхий рябок (Pterocles alchata), саджа (Syrrhaptes paradoxus), бурый голубь (Columba eversmanni), филин (Bubo bubo), степной орел (Aquila rapax), беркут (Aquila chrysaetus), могильник (Aquila heliaca), орлан-белохвост (Haliaeetus albicilla), змееяд (Circaetus gallicus), балобан (Falco cherrug), сапсан (Falco peregrinus), шахин (Falco pelegrinoides).

Земноводные и пресмыкающиеся

Земноводные в исследуемом регионе активны с апреля по ноябрь и представлены двумя видами амфибий: лягушка озерная (Rana ridibunda) и жаба зеленая (Bufo viridis). Если озерная лягушка ведет водный образ жизни и активна днем, то зеленая жаба активна преимущественно в сумерки и ночью, населяет более засушливую полупустынную и пустынную зону. Оба вида используют для икрометания временные водоемы. Амфибии являются регуляторами численности вредных беспозвоночных, составляющих основу их питания. Значительная часть озерных лягушек ежегодно заготавливается в больших количествах с целью зооторговли.

Пресмыкающиеся также активны с апреля по ноябрь и представлены 8 семействами и 21 видом, постоянно населяющим данный регион. Среднеазиатская черепаха, ночные и дневные виды ящериц — гекконы, геккончик пискливый, ящурки, всего 13 видов. Змеи представлены 7 видами — восточный удавчик, водяной уж, полозы - поперечнополосчатый, узорчатый и разноцветный, стрела-змея, и единственная ядовитая змея в регионе — щитомордник обыкновенный. Все пресмыкающиеся являются неотъемлемой частью экосистем и играют большую роль в трофических связях.

Ихтиофауна

В бассейне р. Шу обитает 23 вида рыб, из которых 2 занесены в Красную Книгу Республики Казахстан. Это туркестанский усач (Barbus caito conocephalus) – 2 категория, и чуйская остролучка (Capoetobrata kuschakewitschi orientalis) – 1 категория. Оба вида

находятся на грани исчезновения, численность и состояние популяции в настоящее время неизвестно, находки спорадичны и недостоверны.

Фоновые виды, такие как плотва, язь лещ, сазан, сом и др. являются объектами рыбной ловли. Другие непромысловые виды рыб — гольян обыкновенный, красноперка, амурский чебачок, пескарь, китайский лжепескарь, тибетский и серый голец и др. — играют значительную роль в биоценозе водоемов как фито- и зоофаги.

Таким образом, анализ фаунистической характеристики региона показывает, что животный мир региона несколько беднее по сравнению с другими регионами Казахстана.

Тем не менее, в районе месторождения животный мир представлен 161 видом птиц, 34 видами млекопитающих и 21 видом пресмыкающихся.

2.8 Оценка современной радиоэкологической ситуации

Естественная радиоактивность - доза излучения, создаваемая космическим излучением и излучением природных радионуклидов, естественно распределенных в литосфере, водной среде, воздушном пространстве, других элементах биосферы, пищевых продуктах, организме человека.

Природный радиационный фон территории в основном зависит от высоты местности над уровнем моря и наличия выхода на поверхность земли коренных скальных пород.

Основные нормативно-технические документы по обеспечению радиационной безопасности персонала и населения:

- Закон Республики Казахстан «О радиационной безопасности населения»;
- Санитарные правила «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» № ҚР ДСМ-275/2020 от 15 декабря 2020 года
- «Гигиенические нормативы к обеспечению радиационной безопасности» № № ҚР ДСМ-71.
- Санитарные правила "Санитарно-эпидемиологические требования к технологическим и сопутствующим объектам и сооружениям, осуществляющим нефтяные операции" № ҚР ДСМ -13 от 11 февраля 2022 года.

Требования по обеспечению радиационной безопасности населения распространяются на регулируемые природные источники излучения: изотопы радона и продукты их распада в воздухе помещений, гамма-излучение природных радионуклидов, содержащихся в строительных изделиях, природные радионуклиды в питьевой воде, удобрениях и полезных ископаемых.

Контроль за содержанием природных радионуклидов в строительных материалах и изделиях осуществляет организация-производитель. Значения удельной активности природных радионуклидов и класс опасности должны указываться в сопроводительной документации (паспорте) на каждую партию материалов и изделий.

Радиационная безопасность населения от воздействия ионизирующих излучений, обусловленных загрязнением окружающей среды радиоактивными веществами, обеспечивается, в первую очередь, выполнением требований санитарного законодательства, которое регламентирует условия размещения потенциальных источников загрязнения окружающей среды, контролем за удалением и обезвреживанием радиоактивных отходов, за содержанием радиоактивных веществ в атмосферном воздухе, почве, воде, пищевых продуктах, а также за поступлением радионуклидов в организм человека, животных и т.д.

2.9 Особо охраняемые природные территории

Согласно закону Республики Казахстан от 7 июля 2006 года № 175-III «Об особо охраняемых

природных территориях», особо охраняемые природные территории и находящиеся на них объекты окружающей среды, имеющие особую экологическую, научную и культурную ценность, являются национальным достоянием Республики Казахстан.

Памятники истории и культуры

В пределах Жамбылской области, согласно Постановлению Правительства Республики Казахстан от 10.10.2007 года № 1074, расположены следующие особо охраняемые природные территории республиканского значения:

- Государственный природный заказник «Урочище Бериккара» (комплексный);
- Государственный природный заказник «Урочище Каракунуз» (ботанический);
- Жусандалинская государственная заповедная зона;
- Андасайский государственный природный заказник (зоологический).

На территории месторождений в настоящее время памятников материальной культуры, являющихся объектами охраны, не зарегистрировано.

2.10. Современные социально-экономические условия жизни местного населения, характеристика его трудовой деятельности

Промышленность. За январь 2024 года объем промышленного производства составил 62,1 млрд. тенге, ИФО - 90,1%.

Рост наблюдается в горнодобывающей промышленности и разработке карьеров на 23,2% (6,2 млрд. тенге), водоснабжении, сборе, переработке и удалении отходов, ликвидации загрязнений - на 1,6% (0,5 млрд. тенге).

Вместе с тем, сокращены объемы обрабатывающей промышленности на 21,4% (40,1 млрд. тенге), услуг и работ в снабжении электроэнергией, газом, паром, горячей водой и кондиционированным воздухом на 5,4% (15,3 млрд. тенге).

В 2024 году планируется реализация 5 промышленно-инновационных проектов на сумму 34,9 млрд. тенге, где планируется создать 426 новых рабочих мест (ТОО «Shagala Mining» — строительство предприятия по кучному выщелачиванию медных руд в Мойынкумском районе, стоимостью - 29568 млн. тенге, мощностью — 9072 тн/год, с созданием 200 рабочих мест (Мойынкумский район); ТОО «Kazchemtrading» — строительство цементного завода, стоимостью - 4500 млн. тенге, мощностью - 400 тыс. тн/год, с созданием 167 новых рабочих мест (Сарысуский район); ТОО «ІМС Group» — переработка сафлора, стоимостью - 120 млн. тенге, мощностью — 360 тн/год, с созданием 8 новых рабочих мест (Жуалынский район); ИП «Genesis» — производство томатного сока, строительство теплицы для выращивания овощей, производство зеленого корма на гидропонике, стоимостью — 220 млн. тенге, мощностью — помидоры - 250 тонн, огурцов — 375 тонн, томатный сок — 35000 литров, зеленый корм — 250 тонн в год, с созданием 18

новых рабочих мест (Жуалынский район); ТОО «Satellie GS» – строительство зовода по добыче и обогащение золотосодержащей руды месторождения Мынарал, стоимостью – 500 млн. тенге, мощностью - 30 тыс. тонн концентрата золотосодержащий руды в год, с созданием 33 новых рабочих мест (Мойынкумский район)).

Сельское хозяйство. Объем валовой продукции сельского хозяйства составил 14,7 млрд. тенге или 102,2% к январю 2023 года, в том числе растениеводство - 0,1 млрд. тенге (И Φ O - 100,0%), животноводство - 14,5 млрд. тенге (И Φ O - 102,2%).

На поддержку агропромышленного комплекса в 2024 году выделено с ОБ - 19,8 млрд. тенге субсидий. На 1 февраля 2024 года средства не освоены.

В растениеводстве посеяно под урожай на 2024 год 161,6 тыс. га озимых, что составляет 100% от предусмотренного планом.

В животноводстве во всех категориях хозяйств произведено мяса (в живом весе) 4,0 тыс. тонн или 104,9%, молока - 3,8 тыс. тонн (100,5%), яиц - 5,4 млн. шт. (102,7%).

Численность КРС составила 244,9 тыс. голов (103,6%), овец - 2 030,2 тыс. голов (108,0%), лошадей - 91,1 тыс. голов (105,6%), птиц - 1 139,5 тыс. голов (99,2%).

Малое и среднее предпринимательство. За январь-сентябрь 2023 года объем выпуска продукции субъектами малого и среднего бизнеса составил 864,9 млрд.тенге (103,6%), численность занятых - 170,0 тыс.человек (118,5%).

Количество действующих субъектов МСБ на 1 февраля 2024 года составило 107,4 тыс. единиц. Доля действующих субъектов МСБ в общем объеме зарегистрированных составляет 90,6%.

Оборот **розничной торговли** в январе 2024 года составил 34,8 млрд. тенге и увеличился на 1,3% к январю 2023 года, **оптовый товарооборот** составил 19,4 млрд. тенге и снизился на 7,7%.

За январь-декабрь 2023 года по данным Комитета государственных доходов Министерства финансов РК внешнеторговый оборот составил 446,0 млн. долларов США или 103,9% к январю-декабрю 2022 года, в том числе экспорт товаров - 83,5 млн. долларов США (50,5%), импорт - 362,5 млн. долларов США (137,3%). Сальдо внешнеторгового оборота сложилось отрицательным (279,0 млн. долларов США).

Транспорт. Услуги транспорта в январе 2024 года составили 44,0 млрд. тенге (131,0%). Перевозка грузов всеми видами транспорта составила 3,6 млн. тонн (104,8%), грузооборот - 3,4 млрд. ткм (105,1%), перевозка пассажиров - 5,1 млн.

чел. (114,9%), пассажирооборот - 0,2 млрд. пкм (119,8%).

Уровень инфляции в январе 2024 года к декабрю 2023 года составил 0.8%. Цены на продовольственные товары выросли на 1.0%, на непродовольственные товары - на 0.5%, платные услуги - на 0.8%.

Уровень инфляции по области сложился на уровне среднереспубликанского показателя (РК - 0,8%).

Занятость и социальная защита. Общий охват активными мерами занятости составил 8202 человек. Трудоустроены на свободные вакансии 1770 человек. Охвачены социальными рабочими местами 216 человек, молодежной практикой - 198, оплачиваемыми общественными работами - 4486.

Создано 7489 новых рабочих мест, из них постоянные - 2201. Трудоустроено 6631 человек из 13343 зарегистрированных.

Среднемесячная заработная плата одного работника составила 287585 тенге, что выше соответствующего периода 2022 года в номинальном выражении на 18,1% (4 квартал 2023 г).

Среднедушевые номинальные денежные доходы населения составили 123482 тенге и выросли по сравнению с соответствующим периодом 2022 года на 18,2% (3 квартал 2023 г).

За январь 2024 года социальная поддержка оказана 5,8 тыс. гражданам на 14,8 млн. тенге (в т.ч. выплачено жилищных пособий - 14,1 млн. тенге, пособий детям-инвалидам, обучающимся на дому - 0,7 млн. тенге).

Здравоохранение. На 2024 год на финансирование системы здравоохранения выделено 15,6 млрд. тенге, освоено за отчетный период -235,4 млн. тенге.

На обеспечение гарантированного объема бесплатной медицинской помощи выделено - 3,8 млрд. тенге, на укрепление материально-технической базы объектов здравоохранения выделено - 5,6 млрд. тенге.

На развитие объектов здравоохранения предусмотрено 3661,8 млн. тенге (в т.ч. средства РБ - 3023,0 млн.тенге, МБ - 638,8 млн.тенге).

На выделенные средства предусмотрено строительство 7 объектов здравоохранения (строительство ВА - 1, МП - 2, ФАП - 1), строительство поликлиники в с. Масанчи, поликлиники на 200 посещений в смену в с. Сортобе Кордайского района, реконструкция здания центральной районной больницы Меркенского района).

За январь 2024 года наблюдается рост заболеваемости туберкулезом, психическими расстройствами, сахарным диабетом и болезнями системы кровообращения. Вместе с тем, снизился уровень заболеваемости злокачественными новообразованиями, наркологическими заболеваниями и сифилисом.

Материнская смертность не зарегистрирована.

3 ОПИСАНИЕ ИЗМЕНЕНИЙ ОКРУЖАЮЩЕЙ СРЕДЫ, КОТОРЫЕ МОГУТ ПРОИЗОЙТИ В СЛУЧАЕ ОТКАЗА ОТ НАЧАЛА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Состояние окружающей среды не подвергнется значительному изменению, так как проектируемые объекты расположены на территории действующего месторождения. На территории существует разветвленная сеть автомобильных дорог и различных инженерных коммуникаций.

В случае отказа от начала намечаемой деятельности изменений в окружающей среде не произойдет, не ожидается роста трудовых ресурсов и условий развития региона.

Оценка влияния на окружающую среду в период проведения строительных работ классифицируется как воздействие «низкой значимости», то есть при таком уровне воздействия последствия испытываются, но величина воздействия достаточна низка и находится в пределах установленных нормативов.

В данной работе выполнена качественная и количественная оценка воздействия на окружающую среду:

- 1. Воздействие на атмосферный воздух оценивается как допустимое выбросы газов от работающей техники не постоянны по времени, месту, рассредоточены по территории участка работ. Жилая зона значительно удалена от участков проведения работ.
 - 2. Воздействие на подземные воды со стороны их загрязнения не происходит.
 - 3. Воздействие на поверхностные воды, со стороны их загрязнения, не происходит.
- 4. Воздействие на почвы в пределах работ оценивается как допустимое. Соблюдение проектных и технологических решений приведет рассматриваемую территорию в первоначальный вид.
- 5. Воздействие на биологическую систему оценивается как допустимое. Оно не приведет к изменению существующего видового состава растительного и животного мира.
- 6. Воздействие на социально-экономические аспекты оценено как позитивнозначительное, как для экономики РК и местной экономики, так и для трудоустройства населения.

Таким образом, проведение проектных работ существенно не нарушит существующего экологического равновесия, воздействие на все компоненты окружающей среды будет допустимым. В случае отказа от намечаемой деятельности будут происходить естественные природные процессы в экосистеме рассматриваемой территории, без участия антропогенных факторов.

4 ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ ИСПОЛЬЗОВАНИЯ ЗЕМЕЛЬ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Проектируемый объект расположен на территории действующего предприятия, которое имеет спланированные площади. Организация рельефа сводится к интеграции проектируемой площадки в существующие планировочные решения.

Основные показатели по генеральному плану

№	Наименование	Единицы измерения	Количество	
1	Площадь проектируемой территории (в пределах отвода земли)	га	1	
2	Площадь проектируемой территории (в пределах ограждения)	га	0,0128	
3	Площадь застройки	га	0,0114	
4	Площадь территории свободной от застройки	га	0,9886	
5	Плотность застройки	%	0,89	
6	Ограждение территории из сетчатых панелей по металлическим столбам h=2.2м	П.М.	43	
7	Ворота	ШТ.	1	
8	Калитки	ШТ.	2	
9	Ограждение площадки КТП из сетчатых панелей по металлическим столбам h=2.2м	П.М.	18	

5 ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Настоящий проект «Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)» выполнен на основании:

- договора № 861427/2023/1 от 11.08.2023 г. между компанией ТОО «Разведка и добыча QazaqGaz» и Консорциумом в составе ТОО «Инженерный центр» и ТОО «ПИНАМ Групп»;
- задания на разработку проекта, выданного компанией ТОО «Разведка и добыча QazaqGaz»;
- исходных данных, представленных Заказчиком.

5.1 Генеральный план

Планировочные решения

Настоящим проектом предусматривается:

- Обустройство 2-х газодобывающих скважин Б-5 и Б-6;
- Прокладка шлейфа от скважин Б-5, Б-6 до манифольда ПСГ.
- Реконструкция проезда к существующей скважине Б-5;
- Строительство подъездной дороги к проектируемой скважине Б-6 и площадка ПСГ;
- Пункта Сбора Газа (ПСГ);
- Газопровод ПСГ «Барханное- УКПГ Амангельды».
- Строительство ВЛ.

Объем проектирования, а так же увязка проектных решений с существующим положением и ранее выполненными проектами, представлены на чертеже «Ситуационный план».

Планировочные решения по генеральному плану площадок и подъездных автодорог приняты с учетом технического задания.

Планировочные решения по генеральному плану приняты с учетом генерального плана обустройства месторождения Анабай, технологических схем, расположения существующих и проектируемых инженерных сетей, обеспечения рациональных производственных, транспортных и инженерных связей на месторождении.

Промысловая автодорога к площадке скважины запроектирована для обслуживания промышленных этапов бурения на площадке, обеспечивая транспортную связь между существующими дорогами и проектируемыми площадками.

Генеральный план площадок разработан с учетом технологии производства, а также в соответствии с нормами пожаробезопасности.

При этом в основу заложены следующие требования:

- расположение сооружений, а также транспортных путей на территории площадок принято согласно технологического задания, требуемым разрывам по нормам пожаро- и взрывобезопасности и с учетом розы ветров, санитарным требованиям, грузооборота и прогрессивных видов транспорта;
 - обеспечение благоприятных и безопасных условий труда, а также обеспечение

рациональных производственных, транспортных и инженерных связей на площадках.

– соблюдение минимальных безопасных расстояний размещений объектов обустройства согласно Приложения 1 к Правилам обеспечения промышленной безопасности для опасных производственных объектов нефтяной и газовой отраслей промышленности.

Площадки скважин

Плановое положение площадок определяется по центру. Координаты устья скважин вынесены на чертежах «Разбивочный план», общая схема расположение проектируемой скважины отражена на чертеже «Ситуационный план».

Площадки запроектированы прямоугольной формы, с внутренними размерами в плане 100х100 метров.

Основными путями сообщения являются запроектированные подъездные дороги.

Схема генерального плана и транспорта разработана в соответствии с учетом санитарно-гигиенических и противопожарных требований, рельефа местности.

На каждой площадке скважины устанавливаются однотипные площадки и сооружения:

- Приустьевой приямок;
- Рабочая площадка;
- Свеча продувочная;
- Площадка под ремонтный агрегат;
- Фундамент под ремонтный агрегат;
- Щит пожарный;
- Якоря для растяжек 4 шт.;
- Площадка блока дозирования метанола БДР;
- Площадка КТП.

За пределами ограждения устья скважины на расстоянии устанавливается площадка КТП в отдельно стоящем ограждении высотой 2.2 м. Для прохода в ограждении установлена калитка КМ1а по серии 3.017-1-1, выпуск 0.

Свеча продувочная расположена за пределами ограждения скважины на расстоянии 45.0 м от устья скважины.

Генеральный план разработан с учетом местоположения участка и создания оптимальных условий для организации производственного процесса.

Ограждение устья скважины размерами в плане 8х16 м выполнено из решетчатых металлических разборных панелей высотой 2.2 м по металлическим стойкам общей протяженностью 128 м. Для обслуживания скважины на въезде установлены ворота шириной 4.8 м по серии 3.017-1-1, вып.0. Для прохода персонала в ограждении установлена калитка КМ1а.

Основные показатели по генеральному плану на 1 скважину:

- площадь проектируемой территории (в пределах отвода земли) $1.0 \, \Gamma a$;
- площадь застройки 0.0114 Га; плотность застройки 0.89;
- ограждение территории устья скважины из сетчатых разборных панелей по металлическим столбам H=2.2 m-43 п.м.

На площадках газодобывающих скважин принято типовое размещение сооружений, оборудования, инженерных сетей, коммуникаций. Благоустройство территории скважин включает устройство ограждения на скважинах.

Озеленение скважин не предусмотрено в связи с засушливым климатом, малым количеством осадков и дальностью возки воды для полива зеленых насаждений.

Площадки запроектированы в насыпи и выемки. Возведение насыпи предусматривается из вытесненного, или привозного грунта с близлежащих карьеров.

Проектом не предусмотрено снятие почвенно-растительного слоя согласно отчета геологических изысканий.

Площадки скважин запроектированы в проектных отметках, согласно организации рельефа.

Минимальный требуемый коэффициент уплотнения насыпи - 0.95.

Основные показатели по генеральному плану

№	Наименование	Единицы измерения	Количество
1	Площадь проектируемой территории (в пределах отвода земли)	га	1
2	Площадь проектируемой территории (в пределах ограждения)	га	0,0128
3	Площадь застройки	га	0,0114
4	Площадь территории свободной от застройки	га	0,9886
5	Плотность застройки	%	0,89
6	Ограждение территории из сетчатых панелей по металлическим столбам h=2.2м	п.м.	43
7	Ворота	шт.	1
8	Калитки	шт.	2
9	Ограждение площадки КТП из сетчатых панелей по металлическим столбам h=2.2м	П.М.	18

Пункт сбора газа

Планировочные решения по генеральному плану приняты с учетом генерального плана обустройства месторождения Барханное, технологических схем, расположения существующих и проектируемых инженерных сетей, обеспечения рациональных производственных, транспортных и инженерных связей на месторождении.

Расположение площадок и сооружений на проектируемом объекте определялось исходя из технологической схемы производства и наиболее рационального их размещения в соответствии с требованиями СП РК 3.01-103-2011, СП РК 3.03-122-2013 и с учетом:

- санитарных норм и норм пожаро- и взрывобезопасности;
- вида транспорта, минимизации транспортных маршрутов и величин грузопотоков;
- обеспечения удобных, безопасных и здоровых условий труда работающих;
- рационального размещения инженерных сетей с обеспечением нормальных условий их ремонта и эксплуатации.

Поверхность площадок ПСГ покрыта полупустынной растительностью. Рельеф на площадке относительно сложный, с перепадом высот от минимальной отметки 292,38 до

максимальной отметки 297,40 метра.

Площадка ПСГ запроектирована квадратная в плане размерами 100.0 м х 115.5 метров.

На территории площадки ПСГ в ограждении запроектированы следующие здания и сооружения:

- Площадка входного манифольда;
- Площадки блоков сепарации 1 и 2;
- Площадка блока дозирования реагента;
- Площадка подогревателей газа и конденсата;
- Площадка блока насосов конденсата;
- Площадка резервуарного парка конденсата;
- Площадка блока насосов отгрузки конденсата;
- Площадка стояка налива конденсата;
- Площадка факельного сепаратора;
- Площадка факельной установки;
- Площадки дренажных емкостей.

Генеральный план разработан с учетом местоположения участка и создания оптимальных условий для организации производственного процесса.

Проектируемые здания и сооружения на территории площадки размещены таким образом, чтобы обеспечить целесообразную компоновку технической инфраструктуры (трубопроводы, кабели), функциональные связи.

<u>Газопровод ПСГ «Барханное- УКПГ Амангельды»</u>

Планировочные решения по генеральному плану приняты с учетом генерального плана обустройства месторождения Барханное, технологических схем, расположения существующих и проектируемых инженерных сетей, обеспечения рациональных производственных, транспортных и инженерных связей на месторождении.

Генеральный план площадки камеры запуска и приема СОД, площадок крановых узлов КУ-8 и КУ-9 разработан с учетом технологии производства, а также в соответствии с нормативными документами.

Настоящим проектом предусматривается строительство газопровода от ПСГ м/р Барханное до газопровода УКПГ Амангельды.

В состав строительства входят следующие сооружения:

- Газопровод (линейная часть);
- Площадка камеры запуска и приема СОД;
- Площадка крановых узлов КУ-8, КУ-9;
- Площадка расширительной камеры (ловушка) с конденсатосборником;
- Свеча продувочная С-1, 2, 3, 4.
- Площадка дренажной емкости ДЕ-1.

Площадки линейного крана для газопровода КУ-8, КУ-9 расположены на трассе газопровода.

Площадка кранового узла КУ-8 расположена на выходе газопровода с будущего пункта сбора газа месторождения Барханное ПК1+12,00.

Площадка кранового узла КУ-9 расположена на ПК307+00,00 трассы с установкой продувочной свечи.

Площадки камеры запуска и приема СОД запроектированы размерами в плане 42.0 м х 32.0 м в ограждении высотой 2.2 м. Для обслуживания площадки в ограждении установлены ворота. На расстоянии 25 м от площадки запроектирована свеча продувная.

Основные показатели по генеральному плану:

- площадь территории -0.1344 га;
- площадь застройки -0.0063 га;
- плотность застройки -5,2%;

Ограждение запроектировано высотой 2.2 м, в ограждении установлена ворота для обслуживания площадки.

Организация рельефа

Проектом предусматривается вертикальная планировка территории скважин.

Задачей и целью организации рельефа является:

- Создание проектного рельефа на требуемой территории, обеспечивающего удобное и безопасное размещение оборудования, путем проектирования допустимых продольных уклонов;
 - Организация стока поверхностных (атмосферных) вод.

Решения вертикальной планировки на участках, представленных на плане, обеспечивает единую целостность планируемой территории. Вертикальная планировка, выполнена методом проектных отметок с указанием проектных отметок в ключевых точках и указанием направления и величины уклонов.

Водоотвод поверхностных стоков принят открытым.

Поверхностям площадок приданы нормативные уклоны в пониженное место рельефа.

Принципиальные решения по вертикальной планировке и отводу поверхностных вод с планируемой территории представлены на чертежах планов организации рельефа.

Инженерные сети

Инженерные сети запроектированы с учетом взаимной увязки их с проектируемыми технологическими площадками, сооружениями в плане и в продольном профиле с соблюдением санитарных и противопожарных норм, правил безопасности и эксплуатации сетей.

Технологические трубопроводы на площадках скважин запроектированы надземно, частично подземно.

5.2. Автомобильные дороги

<u> Нормы проектирования</u>

№ П/П	Наименование	Ед. изм.	ПоСН 3.03-22- 2013 По СП 3.03-122-2013	Табл. и пункт СП, и СН	Принято в проекте
1	Категория дороги	-	IV-B	Табл.11	IV-B
2	Расчетная скорость	Км/ч	30	Табл. 23	30
3	Число полос движения	-	1	Табл. 30	1
4	Ширина проезжей части	M	4,5	Табл. 30	4,5

5	Ширина обочины	M	1,0	Табл. 30	1,0
6	Поперечный уклон проезжей части и обочин	‰	50	п. 7.2.4	50
7	Поперечный уклон земляного полотна	‰	30	-	30
8	Тип дорожной одежды		низший	табл.38	низший

План и продольный профиль

В рамках данного проекта рассматривается реконструкция существующего проезда к СКВ Б-5, к которому выполнены примыкания проектируемый подъезд к скважине Б-6, а так же строительство подъезда к проектируемый площадке ПСГ.

К площадкам запроектированы подъездные автодороги по кратчайшему расстоянию с учетом особенностей рельефа. Подъезды и проезды обеспечивают перевозку вспомогательных и хозяйственных грузов, проезд пожарных, ремонтных и аварийных машин и отнесены к служебным автомобильным дорогам по СН РК 3.03.22-2013 «Промышленный транспорт», СП РК 3.03-101-2013 «Автомобильные дороги».

В рамках реконструкции существующего проезда проектом предусмотрено выравнивание трассы, формирование целостного земляного полотна и возведение слоя основания из ПГС. Ранее в ходе бурения СКВ Б-5 была отсыпана грунтовая насыпь.

Общая протяженность подъездов и проезда: 9048,47 м.

Автомобильные дороги запроектированы с учётом их функционального назначения и характера застройки в соответствии с действующими требованиями СН РК 3.03-22-2013, СП РК 3.03-122-2013 «Промышленный транспорт».

Проектируемые дороги запроектированы по нормам межплощадочных дорог IV-в категории.

Расчетные скорости движения специализированных автотранспортных средств, следует принимать в соответствии с технологическими требованиями данного производства и рельефа местности 30 км/ч.

Поперечный профиль проезжей части дорог запроектирован с открытым водоотводом на участках насыпи.

Автодорога принята в насыпи и выемки, двускатный профиль, со следующими основными параметрами поперечного профиля:

- Число полос движения 1;
- Ширина проезжей части 4,5 м;
- Ширина обочин 1,0м;
- Поперечный уклон проезжей части 30 ‰;
- Поперечный уклон обочин 50 ‰.

Поперечный профиль принят с обочинами. Конструкция дорожной одежды представлена на чертеже.

Продольный профиль запроектирован в насыпи и выемке.

Земляное полотно

Земляное полотно запроектировано в насыпи и выемки.

Таким образом в проекте представлено два типа конструкции земляного полотна:

Тип 1 – принимается на участках с полузаросшей и заросшей поверхностью при

условиях максимального сохранения растительности и естественного рельефа прилегающей местности;

■ Тип 2 – принимается в случае необходимости использовать грунт выемки для возведения насыпи

Типы дорожной конструкции представлены на чертеже.

Для устройства насыпи будет использоваться грунт выемки, или привозной грунт из ближайших карьеров.

Поперечный профиль земляного полотна принят двускатный с поперечным уклоном – 30 ‰.

Уплотнение предусмотрено катками на пневмоколесном ходу весом 25 т, толщиной уплотняемого слоя 30 см за 6 проходов по одному следу. Коэффициент уплотнения земляного полотна принят 0,95 в соответствии со СН РК 3.03-01-2013. Уплотнение грунтов следует производить при влажности, близкой к оптимальной.

Руководящая рабочая отметка подъездных дорог к площадкам скважин и ПСГ принята из условий снегонезаносимости 0.15+0.4=0.55 м, где 0.15 – снеговой покров с 5% вероятностью и песконезаносимости, а также с учетом планировочных отметок площадок проектируемых скважин.

Дорожная одежда

Конструирование и расчет дорожной одежды произведен, исходя из наличия дорожностроительных материалов, интенсивности движения и инженерно-геологических условий в соответствии с СП РК 3.03-122-2013 «Промышленный транспорт», СП РК 3.03-101-2013* «Автомобильные дороги», СП РК 3.03-104-2014 «Проектирование дорожных одежд нежесткого типа».

В качестве расчетной нагрузки принята нормативная статистическая нагрузка на одиночную ось расчетного автомобиля равная 100 кH (A1).

Дорожная одежда принята низшего типа из щебёночно – гравийно-песчаной смеси С2 по СТ РК 1549-2006 (табл.1) серповидного профиля толщиной по оси 0.24 м и шириной 6.50 м.

Поперечный уклон проезжей части и обочин приняты равными 50 ‰ в соответствии с CH PK 3.03-22-2013, п.7.2.4.

Пересечения и примыкания

Пересечения и примыкания разработаны в соответствии с требованиями СП РК 3.03-122-2013 и применительно к типовым материалам для проектирования серии 503-0-51.89** ПО4-96 «Пересечения и примыкания автомобильных дорог в одном уровне».

В проекте примыкания дорог приняты в одном уровне под углом 90° или близким к нему в соответствии с СП РК 3.03-122-2013 п.7.4.2. Радиусы кривых по оси дорог в плане приняты более 15.0 м согласно табл.37 СП РК 3.03-122-2013.

Конструкция дорожной одежды на примыканиях подъездов к площадке ПСГ и к скважинам принята по типу основной дороги.

Видимость на примыканиях обеспечена.

Расчетную скорость движения автотранспорта в пределах пересечений и примыканий

следует уменьшать до 20 км/час.

Искусственные сооружения

Искусственные сооружения в данном проекте не предусмотрены, так как:

- геологическое строение вдоль трассы проектируемой дороги представлено
 песками, которые обладают большой способностью к аккумуляции дождевых и талых вод;
 - территория является потенциально не подтопляемой;
 - тип местности по характеру и степени уплотнения I.

Водоотвод вдоль дороги от земляного полотна обеспечивается планировкой прилегающей территории.

Обустройство дорог. Организация и безопасность движения

Проектные решения по обустройству дороги направлены на организацию безопасного движения транспортных средств, и выполняются с соблюдением требований СТ РК 1412-2017 «Технические средства регулирования дорожного движения. Правила применения».

Дорожный знак принят по СТ РК 1125-2002 « Технические средства организации дорожного движения. Знаки дорожные. Общие технические условия», I-го типоразмера.

Установка знаков предусматривается на присыпных бермах представлена запрещающей, предупреждающей и информационно-указательной группами.

При выезде на трассу установить знак 3.24 «Ограничение скорости» на присыпной берме.

Предусмотренные мероприятия по обустройству и обеспечению безопасности движения на проектируемой дороге полностью отвечают требованиям безопасности движения транспортных потоков. Местоположение дорожных знаков и сигнальных столбиков представлены на соответствующих чертежах.

Технико-экономические показатели строительства автомобильных дорог

№ № П.П.	Наименование показателя	Ед. изм.	Значение	Примечание
1	2	3	4	5
1	Строительная длина.	M	9048,47	
2	Категории дороги.		IV-B	
3	Число полос движения.	шт.	1	
4	Ширина земляного полотна.	M	6,5	
5	Ширина проезжей части.	M	4,5	
6	Тип дорожной одежды.		низший	
7	Вид покрытия.		Щебеночно- гравийно-песчаной смеси С2, по СТ РК 1549-2006	

Содержание покрытия

Для обеспечения надлежащих транспортно-эксплуатационных качеств дороги необходимо проводить систематические работы по содержанию гравийных покрытий. С этой целью в весенний, летний и осенний периоды осуществляют выравнивание покрытия, устраняют отдельные ямы, колеи и просадки, очищают от «катуна», грязи, производят уход за пучинистыми участками (весной) и в сухой период обеспыливание. В зимний период проводят снегоуборку и борьбу с зимней скользкостью.

Выравнивание гравийного покрытия производят путем профилирования или

ремонтного профилирования с добавлением небольшого количества материала. Профилирование преследует цель улучшения ровности покрытия (после дождей, в весенний и осенний периоды) и равномерного распределения гравийного материала по поверхности.

Первое профилирование проводят ранней весной (после таяния снега), в результате чего улучшается поверхностный водоотвод, ускоряется просыхание покрытия, ликвидируются колеи глубиной до 2—4 см и выравнивается поперечный профиль.

Второе профилирование производят в конце весеннего (влажного) периода для ликвидации вновь образовавшихся деформаций и окончательного выравнивания покрытия.

В летний период профилирование производят по мере надобности после дождей при увлажненном покрытии.

Осенью профилирование производят с таким расчетом, чтобы гравийное покрытие при эксплуатации зимой было ровное, без колей и поперечных волн.

Профилирование выполняют автогрейдерами или грейдерами за один-два прохода по одному месту.

Количество профилировок за сезон зависит от интенсивности движения, погодных условий и состояния покрытия. Выполнять работы по профилированию на сухом покрытии не рекомендуется.

5.3. Технологические решения

Исходные денные для технологических расчетов

Рабочий проект «Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП) разработан на основании:

- Задание на проектирование;
- Материалы инженерных изысканий;
- Исходные данные, представленные Заказчиком.

Физико-химические свойства и состав скважинного флюида представлены в таблицах 3 и 4 соответственно.

Таблица 3 Физико-химические свойства скважинного флюида:

№ П/П	Показатель	Единица измерения	Значения
1	Плотность газа при с.у.	$\kappa\Gamma/M^3$	0,763
2	Плотность конденсата	кг/м ³	740
3	Устьевое давление	МПа	19,1
4	Коэффициент сжимаемости	б/р	0,868
5	Потенциальное содержание конденсата в пластовом газе	Γ/M^3	До 17

Таблица 4 Усредненный компонентный состав газа скважин

	1 word 1 to be described to will be the state of the stat			
№ П/П	Компоненты	СОДЕРЖАНИЕ КОМПОНЕНТА, % ОБЪЕМНЫЕ		
1	2	3		
1.	Метан	88,08		
2.	Этан	4,10		
3.	Пропан	0,59		
4.	Бутан	0,12		
5.	Изобутан	0,08		

Отчет о возможных воздействиях

№ П/П	Компоненты	СОДЕРЖАНИЕ КОМПОНЕНТА, % ОБЪЕМНЫЕ
6.	Пентан+	0,17
7.	Сероводород	-
8.	Гелий	0,18
9.	Аргон	0,033
10.	Углекислый газ	0,59
11.	Азот	6,23

Проектные производственные показатели

№ П/П	Показатели	Ед. изм.	Значение
1	Количество обустраиваемых скважин	шт.	2
2	Средний суточный дебит обустраиваемых скважин	тыс. м ³ /сут.	50
3	Давление в шлейфах	МПа	7,5
5	Суточная проектная производительность ПСГ	тыс. м ³ /сут.	150
6	Максимальная пропускная способность ПГС	тыс. м ³ /сут.	250

Объем проектирования

В данном проекте предусмотрено три раздела:

- 01 Система сбора газа;
- 02 Пункта Сбора Газа (ПСГ);
- 03 Газопровод ПСГ «Барханное- УКПГ Амангельды».
- 01 Система сбора газа. Данным разделом проекта предусматривается:
 - Обустройство 2-х новых площадок газодобывающих скважин Б-5, Б-6;
 - Прокладка шлейфа от скважин Б-5, Б-6 до манифольда ПСГ.
- 02 Пункта Сбора Газа (ПСГ). Данным разделом проекта предусматривается:
 - Площадка входного манифольда;
 - Площадка сепарации-1. C-1, C-4;
 - Площадка блока сепарации-2. C-2, C-3
 - Площадка блока дозирования реагентов БР-1;
 - Площадка подогревателя П-1;
 - Площадка насосов конденсатов H-1A/Б;
 - Площадка резервуарного парка конденсата E-1A/Б;
 - Площадка насосов конденсатов отгрузки H-2A/Б;
 - Площадка стояка налива СН-1;
 - Площадка дренажных емкостей ДЕ-2/3;
 - Площадка факельного сепаратора ФС-1 и дренажной емкости ДЕ-1;
 - Площадка блока редуцирования топливного газа;
 - Площадка факельной установки Ф-1.
- 03 Газопровод ПСГ «Барханное- УКПГ Амангельды». Данным разделом проекта предусматривается:
 - Газопровод (линейная часть);
 - Площадка камеры запуска и приема СОД;

- Площадка крановых узлов КУ-8, КУ-9;
- Площадка расширительной камеры (ловушка) с конденсатосборником;
- Свеча продувочная C-1, 2, 3.
- Площадка дренажной емкости ДЕ-1.

Основные технологические решения

Продукция газодобывающих скважин трубопроводным транспортом будет поставляться на Пункт Сбора Газа. ПСГ предназначен для сбора, замера количества газа, поступающего со скважин, с последующей сепарацией от примесей и газового конденсата. На начальном этапе обустраивается 2 скважины; в конечном итоге планируется подключить дополнительно 4 скважины.

Далее газ по трубопроводу Ду 200 под давлением до 7,5 МПа подается в «УКПГ Амангельды».

Описание технологической схемы системы сбора газа

Принципиальная технологическая схема добычи газа на скважине и последующего его транспорта показана на листе 2_861427_2023_1-01-ССГ.

В основу системы сбора заложена лучевая схема внутрипромыслового сбора газа и его транспорта на ПСГ.

Природный газ с 2-х газодобывающих скважин с рабочим давлением до 7,5 МПа с температурой 30 °C по газопроводам-шлейфам диаметром 89х6 поступает на приемный манифольд ПСГ. Ожидаемый объем транспортируемого газа с каждой скважины 50 000 м³/сутки.

На устье скважины для предотвращения образования гидратов в газопровод при помощи установки дозирования реагента впрыскивается метанол.

Технологическая схема Пункта сбора газа (ПСГ)

Принципиальная технологическая схема ПСГ представлена на чертеже 861427_2023_1-02-ТХ лист 2.

Пластовый флюид скважин Б-5 и Б-6 поступает в эксплуатационный манифольд Ду150, рассчитанный на 6 подключений.

Эксплуатационный манифольд оснащен приборами измерений давления и температуры по месту и с передачей данных в операторную.

Для отбора и последующего замера продукции скважин на тестовом сепараторе C-4 на той же площадке предусмотрен тестовый манифольд Ду80.

В случае аварийных ситуаций предусмотрено аварийное перекрытие задвижек ЭЗ-1 и ЭЗ-2 на выходе с манифольдов.

Для выборочного замера дебета продукции скважин предусмотрен 3-х фазный тестовый сепаратор С-4, газ на который подается с тестового манифольда. Опорожнение сепаратора осуществляется путем управления электроприводными задвижками КР-2, 3 автоматически, по сигналам уровнемера, и дистанционно из операторной.

Данные по расходам газа, конденсата и пластовой воды передаются в операторную. В C-4 предусмотрен контроль давления и температуры.

Пластовый флюид (газ с газовым конденсатом) с эксплуатационного манифольда

поступает на сепаратор 1-й ступени сепарации С-1, предназначенный для отделения жидкой фазы от газа. Рабочее давление сепарации 7,5 МПа.

Сепаратор С-1 оснащен системами поддержания рабочего давления, уровня конденсата, контроля давления и температуры. Все параметры контролируются по месту и из операторной. Тип сепаратора – центробежный вихревой, что позволит надежно обеспечить непопадаение капельной жидкости в межпромысловый газопровод. Сепаратор защищен предклапанами от превышения давления.

Газ, очищенный от жидкости, поступает в межпромысловый трубопровод Ду 150 и направляется в газопровод «Барханное- УКПГ Амангельды» Ду200. На выходе из ПСГ установлена отсечная задвижка системы противоаварийной защиты ЭЗ-3. Предусмотрен учет количества газа с передачей данных в операторную и регистрацией.

Жидкость, отводимая с 1-й ступени сепарации, объединившись конденсатом, поступающим из тестового сепаратора, направляется в поточный электроподогреватель П-1, где нагревается до температуры 50 °C. Контроль температуры до и после нагревателя ведется по месту и из операторной. Состояние подогревателя отображается в операторной.

Смесь конденсата, воды и газа, разогретая для лучшего разделения и получения стабильного конденсата при нормальных условиях, поступает в блок 2-й ступени сепарации в 3-х фазный сепаратор С-2. Рабочее давление сепарации 0,9 МПа. Флюид разделяется на три потока: газа, конденсат и пластовую воду. Газ поступает в систему топливного газа, где полностью потребляется на собственные нужды. Конденсат направляется на концевую ступень сепарации С-3 для стабилизации. Пластовая вода отводится в отдельную дренажную систему пластовой воды в ДЕ-2.

Сепаратор C-2 оснащен системами поддержания рабочего давления, уровня конденсата и пластовой воды, контроля давления и температуры. Все параметры контролируются по месту и из операторной. Сепаратор защищен предклапанами от превышения давления.

Нестабильный конденсат поступает в концевую ступень сепарации С-3 для стабилизации. Сепарация ведется под давлением близким к атмосферному (0-0,005 МПа) и температуре 45...50 °C. Работа в режиме более высоких давлений и температур запрещена для предотвращения выделения газа в резервуарах Е1А, Б. Конденсат откачивается в резервуары хранения Е-1А, Б насосами Н-1А, Б по уровню конденсата в сепараторе.

Сепаратор С-3 оснащен системами поддержания рабочего давления, уровня конденсата и пластовой воды, контроля давления и температуры. Сепаратор защищен предохранительными клапанами от превышения давления.

Насосы H-1A, Б работают периодически и включаются-отключаются автоматически по уровню конденсата в C-3. Предусмотрен местный и дистанционный контроль давления и состояния насосов с передачей данных в операторную.

Резервуары Е-1А, Б предназначены для временного хранения конденсата с последующей его отгрузкой в автотранспорт для дальнейшей транспортировки. Резервуарный парк запроектирован согласно нормам проектирования складов нефтепродуктов. Объем каждого резервуара составляет 100м³. Общий объем хранения

 200 m^3 .

Резервуары Е-1А, Б оснащены приборами контроля температуры и давления по месту и с передачей данных в операторную. Для предотвращения превышения давления резервуары оборудованы дыхательными клапанами. На входе и выходе в резервуарный парк на линиях конденсата установлены противоаварийные задвижки ЭЗ-4, и ЭЗ-5 с возможностью дистанционного управления и автоматического при сигнале «авария».

Работа резервуаров должны быть регламентирована: один резервуар работает режиме приема с технологической установки конденсата, второй в это время находится в режиме отгрузки конденсата в автоцистерны. В целях безопасности совмещать эти операции на одном резервуаре запрещается. При переключении резервуара из режима приема в режим отгрузки следует выдерживать временной интервал не менее 2-х часов.

Конденсат из резервуаров E-1A, Б подается насосами отгрузки конденсата H-2A, Б на стояк налива CH-1, посредством которого конденсат отгружается в автоцистерну.

Предусмотрен местный контроль давления на нагнетании насосов.

Линия подачи конденсата на стояк налива оснащена противоаварийной задвижкой Э3-6.

Стояк налива оснащен системой отключения по уровню в автоцистерне.

Предусмотрен учет количества отгружаемого конденсата с передачей данных в операторную и регистрацией.

Для аварийного сжигания газа на ПСГ предусмотрена факельная система. Диаметр факельного коллектора Ду=200 мм. Факельный коллектор оснащен системой подачи продувочного газа. На факельном коллекторе устанавливается факельный сепаратор ФС-1 для сбора жидкости из коллектора. Жидкость из ФС-1 самотеком отводится в дренажную емкость ДЕ-1, откуда откачивается в С-3 либо дренажную систему конденсата.

Факельная установка оснащена системами контроля пламени горелок и автоматического розжига с выводом данных в операторную.

На факельном коллекторе предусмотрен контроль количества сжигаемого газа.

Газ для собственных нужд (продувочный газ, газ на горелки) отбирается из системы газа 2-й ступени сепарации с системой редуцирования его до 0,3 МПа.

На ПСГ предусмотрены 2 системы дренажа: сбор углеводородных дренажей (конденсат) (емкость ДЕ-3) и сбор пластовой воды (емкость ДЕ-2) с возможностью откачки дренажей автотранспортом.

Сброс дренажей следует проводить только после декомпрессии технологического оборудования во избежание попадания свободного газа в систему дренирования.

<u>Технологическая схема промыслового газопровода ПСГ «Барханное- УКПГ</u> <u>Амангельды»</u>

Принципиальная технологическая схема представлена на чертеже 861427-2023-1-03-ТХ лист 2.

Газ от ПСГ «Барханное» направляется на «УКПГ Амангельды» по трубопроводу $\varnothing 219 \times 7$ мм с температурой T=20/50°C и под давлением до 7,5 МПа.

При необходимости очистки газопровода, в начале трассы, на ПСГ, предусмотрена

установка камеры запуска средств очистки и диагностики КЗ-1.

Для отделения и сбора конденсата из потока газа проектом предусмотрена площадка расширительной камеры (ловушка) с конденсатосборником на ПК 64+00,00.

В конце трассы, перед УКПГ, устанавливается камера приема средств очистки и диагностики КП-1.

Дренаж с КП-1 отводится в дренажную емкость.

Для аварийного дистанционного отключения газопровода проектом предусмотрены площадки линейных крановых узлов КУ-8 на ПК1+12,00 и КУ-9 на ПК307+00,00 трассы с установкой продувочной свечи.

Система сбора газа

Размер спланированной площадки скважины — 100x100 метра. На каждой площадке скважины устанавливаются однотипные площадки и сооружения:

- Приустьевой приямок размером 2600x2600x1400 мм (внутр.) с ограждением размером 8x16 м;
 - Площадка под ремонтный агрегат;
 - Якоря оттяжек ремонтного агрегата;
 - Площадка блока автоматизированной подачи реагента.

Расположение площадок определялось исходя из технологической схемы производства и рационального распределения территории, с учетом:

- санитарных норм и норм пожарной и взрывопожарной безопасности;
- рационального размещения подземных и надземных инженерных сетей, обеспечивающих нормальные условия их эксплуатации и ремонта.

К технологическим площадкам предусматриваются подъезды для специализированных автотранспортных средств.

На устье скважины установлена фонтанная марки AФK6-65x35. Фонтанная арматура предназначена для регулирования режима эксплуатации, контроля давления и температуры рабочей среды.

В обустройство устья скважины входит подключение газопроводов-шлейфов к устью скважины, установка запорной арматуры и весь необходимый комплекс вспомогательного оборудования, приборы контроля давления и температуры транспортируемой среды.

В состав оборудования площадки скважины входит свеча продувочная. Свеча предназначена для сброса газа с устьевого оборудования в атмосферу при продувке трубопровода. Диаметр ствола свечи Ду 80, высота свечи 5 метров. Трубопроводы на площадке скважины выполняются из стальных бесшовных горячедеформированных труб (ГОСТ 8732-78), от устья скважины до клапана-отсекателя Ø76x8, после клапана-отсекателя - Ø76x6.

Материал труб - сталь 20.

Газопровод на площадке скважины оборудуется запорным устройством, которое обеспечивает автоматическое перекрытие потока газа из скважины в аварийной ситуации (понижение или повышение давления газа).

В качестве запорного устройства предусматривается клапан-отсекатель К302 Ду 65 Ру

32.0 МПа.

Для осуществления первичных, текущих и специальных испытаний, а также, опытной эксплуатации скважин с целью получения комплексных исходных данных, используемых при подсчете запасов газа и конденсата на линии сброса газа на свечу, предусмотрены запорная арматура и фланцевое соединение Ду65 Ру21 МПа для подключения специальных передвижных испытательных установок, оснащённых передвижным факелом.

Блок дозирования реагента типа БДР-4/1/40 предназначен для подачи метанола на устье скважины с целью предупреждения гидратообразования в газопроводе-шлейфе. БДР размещен на отдельной площадке, примыкающей к площадке устья скважины.

Оборудование поставляется в блочно-комплектном исполнении. В состав блока входят:

- технологическое оборудование;
- система отопления;
- вентиляция;
- электрооборудование и освещение;
- приборы и средства автоматизации.

Внутри блока установлен датчик контроля загазованности. Подача метанола от БДР к технологическим трубопроводам на устье скважины осуществляется трубопроводом Ø 18х3 мм с установкой необходимой запорной арматуры.

Прокладка трубопровода метанола к устью скважины надземная на опорах на высоте не менее 0,350 м.

Таблица 5 Технологические характеристик БДР

Tuotingu e Texnotioin iee		
	Блок дозирования реагента	
1	2	3
Тип, марка	-	БДР-4/1/40
Объем технологической емкости	M ³	4,0
Производительность насоса	л/ч	40,0
дозатора	JI/ 4	40,0
Рабочее давление на выходе с БДР	МПа	25
Максимальная потребляемая	кВт	10,0
мощность	KD1	10,0
Габаритные размеры	207	5500x2560x2040
(длина*высота*ширина)	MM	3300x2300x2040
Macca	КГ	4500
Количество	шт.	2

Газопроводы-шлейфы

Ситуационный план расположения газопроводов-шлейфов представлен на листе 3_861427_2023_1-01-ССГ. Газопроводы выполнены из стальных бесшовных горячедеформированных труб Ø89x6 по ГОСТ 8732-78* и предназначены для транспортировки газа от 2-х проектируемых газодобывающих скважин к ПСГ.

Глубина заложения подземных газопроводов 1,4 метра до верхней образующей трубопровода. Рабочее давление в трубопроводах до 7,5 МПа.

Разработку траншеи вести одноковшовым экскаватором. При подходе к манифольдной станции - разработку траншеи вести вручную.

При пересечении с промысловыми автодорогами проектируемые газопроводы-шлейфы будут проложены в защитном футляре Ø 325x12 мм. На одном из концов футляра

предусмотреть вытяжную свечу. Высота свечи от уровня земли не менее 5 метров. Типовой узел прохода газопровода под дорогой представлен на листе 861427 2023 1-01-ССГ.

Промысловые трубопроводы-шлейфы в зависимости от диаметра, рабочего давления и характера транспортируемой среды классифицированы (согласно ВСН 51-2.38-85) как как трубопроводы I класса, 1 группы, II категории. В местах пересечения проектируемых трубопроводов с автомобильными дорогами участки газопроводов по обе стороны от дороги длиной по 25 м каждый от подошвы насыпи отнесены к I категории:

Согласно ВСН 005-88 промысловые трубопроводы подлежат испытанию на прочность: Рисп. = 1,1Рраб., и на герметичность: Рисп=Рраб.

Контроль качества сварных соединений газопроводов проводить согласно ВСН 005-88 в объеме 100% физическим методом.

Антикоррозионное покрытие подземных стальных трубопроводов «усиленное» по 9.602-2016. На подземных участках газопроводов предусмотрена электрохимзащита.

Для обеспечения электрической изоляции защищаемой части трубопроводов предусмотрена установка трубопроводное изолирующее соединение (ТИС) на надземной части трубопровода.

По трассе газопроводов-шлейфов предусмотрена установка опознавательных знаков на расстоянии не более 1 км друг от друга, на углах поворота в горизонтальной плоскости, а также предупреждающих знаков при пересечении автомобильных дорог.

Конструкция опознавательных знаков представлена на листе $12_861427_2023_1-01-$ ССГ.

Таблица 6 Протяженность проектируемых газопроводов-шлейфов от скважин к ПСГ

№ П/П	№ СКВАЖИНЫ	Протяженность трубопроводов, м	Место подключения
1	2	3	4
1	Б-5	540	Входный манифольд ПСГ
2	Б-6	935	Входный манифольд ПСГ

Пункт сбора газа (ПСГ)

План расположения оборудования и технологических трубопроводов представлен на чертеже 861427 2023 1-02-TX лист 3.

Расположение технологических площадок и размещение на них сооружений определялось исходя из технологической схемы производства и рационального распределения территории, с учетом:

- санитарных норм и норм пожаро-взрывобезопасности;
- рационального размещения подземных и надземных инженерных сетей, обеспечения нормальных условий их ремонта и эксплуатации;
- подъезда для специализированных автотранспортных средств, обслуживающих установки, а также для подъезда пожарных и аварийных автомобилей.

Характеристики технологического оборудования представлены в таблице 4.6.

Входной манифольд

Входной манифольд предназначен для подключения шлейфов, транспортирующих продукцию добывающих скважин к технологическому оборудованию.

Эксплуатационный манифольд состоит из производственного коллектора ø159x6 с запорной арматурой для подключения шлейфов от скважин и снабжен контрольно-измерительными приборами. Тестовый манифольд состоит из коллектора газа ø76x5, соединенного с тестовым сепаратором. Размещение трубопроводов надземное на опорах.

Антикоррозионная защита манифольда, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021.

Площадка сепарации-1. С-1, С-4

В состав площадка сепарации-1 входит следующее технологическое оборудование:

- Сепаратор центробежный вихревой C-1;
- Сепаратор тестовый С-4.

Площадка сепарации предназначена для размещения сепараторов поз. С-1, С- 4 с площадками обслуживания и обвязкой технологическими трубопроводами с установленной запорной арматурой и приборами контроля технологических параметров. Размещение трубопроводов надземное на опорах.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Площадка блока дозирования реагентов БР-1

Для предотвращения гидратообразования предусмотрен блок реагентов с возможностью подачи метанола при необходимости. Точки ввода метанола предусмотрены на всех участках, где возможно образование гидратов.

Оборудование поставляется в блочно-комплектном исполнении. В состав блока входят:

- технологическое оборудование;
- система отопления;
- вентиляция;
- электрооборудование и освещение;
- приборы и средства автоматизации.

Внутри блока установлен датчик контроля загазованности.

Площадка подогревателя П-1

Площадка подогревателя конденсата предназначена для размещения подогревателя поз. П-1 с обвязкой технологическими трубопроводами. Размещение трубопроводов надземное на опорах.

Электроподогреватель Π -1 предназначен для нагрева конденсата, поступающего с C-1 и C-4, на вторую ступень сепарации, до 50° C для лучше разделения на газ, конденсат и воду.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Площадка насосов конденсатов Н-1А/Б;

В состав площадки насосов конденсата входит следующее технологическое оборудование:

- Насосы конденсата Н-1А, Б.

Площадка насосов конденсата предназначена для размещения насосов поз. H-1A, Б с обвязкой технологическими трубопроводами. Размещение трубопроводов надземное на опорах.

На линии всаса насосы снабжены запорной арматурой. На линии нагнетания установлен обратный клапан и далее запорная арматура. Насосы снабжены приборами контроля технологических параметров.

Дренаж с трубной обвязки насосов производится по трубопроводу Ду 50 мм в дренажный коллектор далее ДЕ-3.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Площадка резервуарного парка конденсата Е-1А/Б

Резервуарный парк предназначен для приема и хранения стабильного конденсата. В состав парка входят:

Резервуар горизонтальный стальной Е-1A, Б с объемом 100 м³.

Резервуар горизонтальный стальной для приема и хранения оборудован:

- приемо-раздаточными патрубками и коренными задвижками с ручным приводом;
- дыхательными клапанами;
- приборами для измерения уровня хранимой жидкости и автоматической сигнализацией верхнего и нижнего предельных уровней.

По периметру парка предусмотрено замкнутое земляное обвалование, рассчитанное на гидростатическое давление разлившейся жидкости одной наибольшей по объему ёмкости.

Дренаж с емкостей производится по трубопроводу Ду 80 мм в дренажный емкость поз. ДЕ-3.

Обвязочные трубопроводы выполнены в надземном исполнении на несгораемых опорах. Предусмотрены площадки обслуживания и переходные мостики.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Площадка насосов конденсатов отгрузки Н-2А/Б

В состав площадки насосов отгрузки конденсата входит следующее технологическое оборудование:

- Насосы конденсата Н-2А, Б.

Площадка насосов отгрузки конденсата предназначена для размещения насосов поз. Н-2A, Б с обвязкой технологическими трубопроводами. Размещение трубопроводов надземное на опорах.

Насосные агрегаты H-2A, Б предназначены для откачки стабильного конденсата с резервуаров хранения конденсата E-1A, Б и подачи его на стояк налива в автоцистерны СН-1. Насосы работают периодически и включаются-отключаются автоматически по уровню конденсата в E-1A, Б. Предусмотрен местный контроль давления.

На линии всаса насосы снабжены запорной арматурой. На линии нагнетания

установлен обратный клапан и далее запорная арматура. Насосы снабжены приборами контроля технологических параметров.

Дренаж с трубной обвязки насосов производится по трубопроводу Ду 50 мм в дренажный коллектор далее ДЕ-3.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Площадка стояка налива СН-1;

Стояк наливной предназначен для герметизированного верхнего налива стабильного конденсата в автоцистерну. Стояк налива оснащен системой отключения по уровню в автоцистерне и системой отвода паров конденсата.

Предусмотрен учет количества отгружаемого конденсата с передачей данных в операторную и регистрацией.

Обвязочные трубопроводы выполнены в надземном исполнении на несгораемых опорах. Предусмотрены площадки обслуживания.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Площадка факельного сепаратора ФС-1 и дренажной емкости ДЕ-1

Сепаратор факельный предназначен для выделения капельной жидкости, содержащейся в сбрасываемом с предохранительных клапанов в аварийных случаях.

Конденсат, отделившийся в факельной сепараторе поз. ФС-1, собирается в емкости сбора конденсата поз. ДЕ-1, откуда периодически, по мере накопления, полупогружным насосом откачивается на линию входа в поз. С-3.

Дренажная емкость ДЕ-1 предназначена для приема конденсата, уловленного в факельном сепараторе. Емкость оборудована полупогружным насосом в комплекте.

Оборудование обвязано технологическими трубопроводами, снабженными запорной арматурой и приборами контроля технологических параметров.

Обвязочные трубопроводы выполнены в надземном исполнении на несгораемых опорах. Предусмотрены площадки обслуживания.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Π лощадка факельной установки Φ -1

Факельная установка Ф-1 предназначена для сжигания газа, сбрасываемого с предохранительных клапанов при возникновении аварийной ситуации.

Территория вокруг факела ограждена земляным валом высотой 0,7 м и радиусом 15 м и забором высотой 1,6 м в радиусе не менее 30 м, в соответствии с нормами безопасности. Высота факельного ствола Ду250 – 17 м., диаметр оголовка –200 мм.

На линии подачи газа предусматривается установка огнепреградителя. Розжиг газа – дистанционный, автоматический, осуществляется за счет подачи на запальную горелку

топливного газа.

Площадка блока редуцирования топливного газа

Блок редуцирования, предназначенный для поддержания заданного давления топливного газа на пилотные горелки факела поз. Ф-1.

Площадка дренажных емкостей ДЕ-2/3

Дренажная емкость ДЕ-2 предназначена для приема пластовой воды, выделяемой на тесовом сепараторе и сепараторе второй ступени С-4, 2. Емкость оборудована полупогружным насосом марки HB-E-50/50 в комплекте.

Дренажная емкость ДЕ-3 предназначена для приема дренажа с технологического оборудования и трубопроводов при их ремонте или при аварии на ПСГ. Емкость оборудована полупогружным насосом марки HB-E-50/50 в комплекте.

Емкости снабжены системой контроля по уровню жидкости. Предусмотрена аварийная откачка автотранспортом. Разогрев стоков предусматривается от передвижной паропроизводящей установки.

Антикоррозионная защита дренажной емкости «весьма усиленная» битумно-резиновая по ГОСТ 9.602-2005.

Таблица 4.5

Входно	й манифольд	
Обозначение на технологической схеме	-	-
Тип или марка оборудования	-	
Диаметр	MM	150
Давление расчетное	МПа	10,0
Рабочая температура	°C	0÷+30
Сепаратор цент	робежный вихревой	
Обозначение на технологической схеме	-	C-1
Тип или марка оборудования	-	-
Диаметр внутренний	MM	1000
Давление расчетное	МПа	11
Производительность, макс,	тыс. м ³ /сут	10200
Объем номинальный	M ³	3,9
Macca	КГ	7800
Количество	шт.	1
Сепарато	р трехфазный	
Обозначение на технологической схеме	-	C-2
Тип или марка оборудования	-	-
Диаметр внутренний	MM	1000
Давление расчетное	МПа	1,6
Производительность по жидкости, не менее	м ³ /ч	2
Объем номинальный	M ³	4
Macca	КГ	4510

Отчет о возможных воздействиях

Количество	ШТ.	1
Сепаратој	р двухфазный	
Обозначение на технологической схеме	-	C-3
Тип или марка оборудования	-	
Диаметр внутренний	MM	1400
Давление расчетное	МПа	1
Производительность по жидкости, не менее	м3/ч	1
Объем номинальный	M ³	3,5
Macca	КГ	2750
Количество	шт.	1
Сепарат	ор тестовый	
Обозначение на технологической схеме	-	C-4
Тип или марка оборудования	-	
Диаметр внутренний	MM	610
Давление расчетное	МПа	14,5
Производительность по газу, не менее	м ³ /ч	2 500
Объем номинальный	M ³	0,8
Macca	КГ	1856
Количество	шт.	1
Агрегат электрона	сосный центробежный	
Позиция оборудования	-	Н-1А/Б
Тип или марка оборудования	-	-
Производительность	м ³ /час	2
Напор	M	50
Мощность эл. двигателя	кВт	4,0
Macca	КГ	360
Количество	шт.	2
Агрегат электрона	сосный центробежный	
Позиция оборудования	-	Н-2А/Б
Тип или марка оборудования	-	-
Производительность	м ³ /час	40
Напор	M	50
Мощность эл. двигателя	кВт	15,0
Macca	КГ	360
Количество	шт.	2
Агрегат электронас	сосный полупогружной	
Позиция оборудования	-	НП-1, 2, 3
Тип или марка оборудования	-	-
Производительность	м ³ /час	8
Напор	M	50
Мощность эл. двигателя	кВт	18,5

Отчет о возможных воздействиях

Macca	КГ	835
Количество	шт.	3
Факельный	і сепаратор	
Обозначение на технологической схеме	-	ФС-1
Тип или марка оборудования	-	-
Объем	\mathbf{M}^3	4
Давление расчетное (Ррасч.)	МПа	0,07
Macca	КГ	2200
Количество	шт.	1
Блок дозирования х	имических реагентов	
Позиция оборудования	-	БР-1
Тип или марка оборудования	-	-
Объем технологической емкости	\mathbf{M}^3	6
Давление расчетное	МПа	10
Потребляемая мощность	кВт	20
Подача дозировочного насоса	л/час	40
Macca	КГ	4700
Количество	шт.	1
Электроподогрен	ватель конденсата	
Позиция оборудования	-	П-1
Тип или марка оборудования	-	-
Производительность по нагреваемому продукту	M^3/H	5
Расчетное давление (Ррасч.)	МПа	10
Температура продукта на выходе	°C	≤+50
Потребляемая мощность	кВт	30
Macca	КГ	450
Количество	шт.	1
Резервуар горизон	тальный стальной	
Позиция оборудования	-	Е-1А/Б
Тип или марка оборудования	-	РГС-100
Объем (V)	м ³	100
Macca	КГ	4560
Количество	шт.	2
Емкость подземная горизо	нтальная дренажная	
Позиция оборудования		ДЕ-1, 2, 3
Тип или марка оборудования	_	-
Объем аппарата	м ³	8
Расчетное давление (Ррасч.)	МПа	0,1
Масса	КГ	2800
Количество	IIIT.	3

Стояк наливной						
Позиция оборудования	-	CH-1				
Тип или марка оборудования	-	-				
Производительность	м ³ /ч	50				
Расчетное давление	МПа	1,0				
Диаметр	MM	100				
Macca	КГ	255				
Количество	шт.	1				
Факельная установка						
Позиция оборудования	-	ФС-1				
Тип или марка оборудования	-	-				
Производительность	тыс. нм ³ /сут	400				
Расход топливного газа на дежурную горелку(тах)	нм ³ /час	1,25				
Диаметр ствола	MM	200				
Высота	M	15				
Macca	КГ	-				
Количество	шт.	1				

<u>Газопровод ПСГ «Барханное- УКПГ Амангельды»</u>

Выбор трассы газопровода и размещение технологического оборудования определялись исходя из принципиальной схемы газопровода и на основании материалов инженерных изысканий с учетом рационального распределения территории.

Характеристики технологического оборудования представлены в таблице 4.7.

Газопровод (линейная часть)

Промысловый газопровод Ду 200 проложен от ПСГ «Барханное» до УКПГ «Амангельды» с протяженностью 30,8 км. Давление при подходе к манифольду существующего УКПГ «Амангельды» - до 7,5 МПа.

Прокладка газопровода-отвода производится подземно на глубине не менее 1,4 м до верхней образующей трубы.

Категорийность промыслового газопровода, согласно ВСН 51-3-85 - II класс, I группа, III категория с участками:

- I категории участки между охранными кранами ПСГ, УКПГ;
- II категории 20 м по обе стороны от пересекаемой коммуникации;
- II категории 25 м по обе стороны каждый от подошвы насыпи, пересекаемой автодороги.

Промысловый газопровод Ø219x7 с заводской 2-х слойной изоляцией и подземные линии Ø57x4 на свечу сброса газа запроектирована из стальных бесшовных горячедеформированных труб по ГОСТ 8732-78.

Антикоррозионная изоляция подземного стального промыслового трубопровода Ø219x7 - заводская 2-х слойная.

Антикоррозионное защитное покрытие подземных стальных трубопроводов Ø57х4 и

футляров, "весьма усиленного" типа ленточное полимерно-битумное, по ГОСТ 9.602-2005.

Пересечение газопроводом промысловых дорог выполняется с заключением его в защитный футляр с установкой свечи.

Монтаж стального промыслового трубопровода вести на сварке электродами ГОСТ 9467-75*, с зачисткой сварных швов. Сварные швы по ГОСТ 16037-80*. Монтажные сварные стыки трубопровода подлежат контролю физическими методами согласно ВСН 005-88:

– трубопроводы II и III категории - в объеме 100% физическим методом, из них радиографическим методом 25%.

Промысловый стальной газопровод до ввода в эксплуатацию подлежит очистке полости, испытанию на прочность и проверке на герметичность. Очистка полости трубопровода выполняется промывкой, совмещенной с удалением жидкости после гидроиспытания трубопровода. На прочность и герметичность трубопровод испытывают одновременно гидравлическим способом.

На подземных участках газопровода и защитных футлярах предусмотрена электрохимическая защита.

Для обеспечения электрической изоляции защищаемой части трубопроводов предусмотрена установка трубопроводных изолирующих соединений (ТИС). Трубопроводное изолирующее соединение (ТИС) Ду200, Ру10,0 МПа установлены в начале трассы и в конце. Также предусмотрено установка ТИС на ПК 154+00,00.

Пересечения газопроводов с естественными и искусственными преградами, а также существующими трубопроводами и другими инженерными коммуникациями представлена в таблице 4.5.

Таблица 4.5

№ п/п	ПЕРЕСЕЧЕНИЯ	ПИКЕТ
1	Ось автодороги «Акколь-Ойык-Уланбель»	ПК77+00.00
2	ЛЭП 110кВ 3пр.	ПК188+61.62
3	ЛЭП 110кВ 3пр.	ПК198+59.16
4	ЛЭП 110кВ 3пр.	ПК231+91.51
5	Газопровод Ø114 гл1.2м	ПК305+02.23
6	Кабель связи подземный	ПК305+13.37
7	Газопровод Ø114 гл1.2м	ПК305+22.62
8	Ось автодороги	ПК306+43.25
9	ЛЭП 10кВ 3пр.	ПК306+59.15

Пересечение газопровода с автомобильной дорогой «Акколь-Ойык-Уланбель» выполнен под углом 90°. Пересечение газопровода через автодорогу «Акколь-Ойык-

Уланбель» произведен методом горизонтально- наклонного бурения (ГНБ). При пересечении с автодорогой «Акколь-Ойык-Уланбель» подземный газопровод проложить в защитном футляре Ø426x12 мм. Длина защитного футляра при прокладке газопровода через автомобильную дорогу составляет от оси земляного полотна 20 м. На одном из концов футляра предусмотреть вытяжную свечу на расстоянии по горизонтали не менее 50 метров от подошвы земляного полотна дороги. Высота свечи от уровня земли 5 метров. Типовой узел прохода газопровода под автодорогой представлен на чертеже (см. лист 74).

При взаимном пересечении газопровода с существующим промысловым трубопроводом, расстояние между ними в свету принять 0,35 м. Пересечения трубопроводов между собой с линиями электропередач высокого напряжения следует предусматривать под углом не менее 60°.

По трассе трубопровода предусмотрена установка опознавательных знаков с надписью: "Газопровод" на углах поворота трассы в горизонтальной плоскости. Знаки должны содержать информацию о местоположении оси трубопровода, километре и пикете трассы, а также номер телефона эксплуатирующей организации.

При производстве работ необходимо соблюдать требования СН РК 1.03-05-2011 и СП РК 1.03-106-2012 «Охрана труда и техника безопасности в строительстве».

Площадка камеры запуска и приема СОД

Камера запуска СОД КЗ-1 предназначена для установки на трубопроводе и служит для периодического запуска средств очистки и диагностики при прохождении газа по газопромысловому трубопроводу.

Камера приема СОД КП-1 предназначена для установки на трубопроводе и служит для периодического приема средств очистки и диагностики при прохождении газа по газопромысловому трубопроводу.

Очистка трубопровода осуществляется с целью удаления отложений и для обеспечения полной пропускной способности. Оборудование снабжено системой контроля по давлению и прохождению очистного устройства.

Обвязочные трубопроводы выполнены в надземном исполнении с установленной запорной арматурой и приборами контроля технологических параметров. Размещение трубопроводов надземное на опорах.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Площадка крановых узлов КУ-8, КУ-9

Площадки крановых узлов КУ-8, КУ-9 предназначены для отсекания участка трубопровода при аварии или ремонтных работах.

Запорная арматура линейной части промыслового трубопровода имеет привод и устройства системы управления, обеспечивающие возможность местного и дистанционного управления. В качестве линейной запорной арматуры используется арматура, предназначенная для безколодезной установки. С крановых узлов предусмотрены линии сброса продувочного газа на свечу.

Обвязочные трубопроводы выполнены в надземном исполнении на несгораемых опорах.

Антикоррозионная защита, надземных участков трубопроводов и арматуры от атмосферной коррозии масляно-битумными лакокрасочными материалами в 2 слоя по грунту ГФ-021. Трубопроводы тепловой изоляции не подлежит.

Площадка расширительной камеры (ловушка) с конденсатосборником

Для сбора влаги и газового конденсата образующегося при транспортировке газа в низкой точке рельефа на пикете ПК 64+00,00, проектом предусмотрена установка расширительной камеры (ловушка) с конденсатосборником.

Конденсатосборник снабжен системой контроля по уровню жидкости, продувка и слив конденсата осуществляется обслуживающим персоналом по мере его заполнения.

Антикоррозионная защита конденсатосборника «весьма усиленная» битумно-резиновая по ГОСТ 9.602-2005.

Свеча продувочная С-1, 2, 3, 4

Свеча продувочная предназначена для опорожнения участков газопровода между запорной арматурой.

Высота свечи 5 м от поверхности земли. Диаметр свечи 57 мм.

Площадка дренажной емкости ДЕ-1

Дренажная емкость ДЕ-1 предназначена для приема дренажа с технологического оборудования КП-1.

Емкости снабжены системой контроля по уровню жидкости. Предусмотрена аварийная откачка автотранспортом. Разогрев стоков предусматривается от передвижной паропроизводящей установки.

Антикоррозионная защита дренажной емкости «весьма усиленная» битумно-резиновая по ГОСТ 9.602-2005.

Камера запуска/приема	средств очистки и диагностики			
Обозначение на технологической схеме	-	КЗ-1, КП-1		
Тип или марка оборудования	-	-		
Давление расчетное	МПа	8,0		
Давление рабочее	МПа	4,5		
Проход условный	MM	200		
Macca	КГ	950		
Количество	ШТ.	2		
Расширительн	ная камера (ловушка)			
Позиция оборудования	-	PK-1		
Тип или марка оборудования	-	-		
Диаметр корпуса	Ду, мм	400		
Длина	L, mm	7000		
Расчетное давление (Ррасч.)	МПа	8		
Количество	шт.	1		

Конде	енсатосборник	
Позиция оборудования	-	KC-1
Тип или марка оборудования	-	-
Объем аппарата	M ³	3
Расчетное давление (Ррасч.)	МПа	8
Количество	IIIT.	1
Свеча	продувочная	
Позиция оборудования	-	KC-1
Тип или марка оборудования	-	-
Диаметр условный	MM	50
Расчетное давление (Ррасч.)	МПа	8
Высота, м	M	5
Количество	шт.	4
Емкость подземная	горизонтальная дренажная	
Позиция оборудования	-	ДЕ-1
Тип или марка оборудования	-	-
Объем аппарата	M ³	3
Расчетное давление (Ррасч.)	МПа	0,1
Macca	КГ	2800
Количество	шт.	1

Технологические трубопроводы

Трубопроводы являются технологическими и классифицируются по «Инструкция по безопасности при эксплуатации технологических трубопроводов»

- Категории трубопроводов согласно СН 527-80:
- газопроводы І категория, группы Б (а);
- трубопроводы конденсата I категория, группы Б (б);
- трубопроводы пластовой воды ІІ категория, группы В;
- дренажные трубопроводы III категория, группа Б (б);
- трубопроводы метанола І категория, группа А(б).

Прокладка технологических трубопроводов по проектируемым площадкам и межплощадочных трубопроводов осуществляется надземно на опорах высотой не менее 0,350 мм до низа труб с уклоном не менее i=0,002 и подземно на глубине не менее 0,8 м от поверхности земли до верха трубы с уклоном не менее i=0,002.

Все трубопроводы для жидкостей в низших точках должны иметь спускные пробки или краны для спуска остатков жидкости, а в верхних точках – для выпуска воздуха.

До ввода в эксплуатацию стального участка проектируемой нагнетательной линии необходимо подвергнуть их очистке полости, гидравлическому или пневматическому испытанию на прочность и проверке на герметичность:

- при Рраб до 0,5 MПа включительно 1,5 Рраб. но не менее 0,2 МПа; п
- ри Рраб свыше 0,5 МПа − 1,25 Рраб., но не менее 0,8 МПа.

Давление проверки на герметичность:

Рисп = Рраб. Продолжительность испытания не менее 24 часов.

Испытательное давление в трубопроводе выдерживают в течение 10 минут (испытание на прочность), после чего его снижают до рабочего давления, при котором производят тщательный осмотр сварных швов (испытание на плотность). По окончании осмотра давление вновь повышают до испытательного и выдерживают еще 5 минут, после чего снова снижают до рабочего и вторично тщательно осматривают трубопровод.

Продолжительность испытания на плотность определяется временем осмотра трубопровода и проверки герметичности разъемных соединений.

Объём контроля сварных стыков радиографическим методом составляет:

- Для I категории 20% от общего числа сварных соединений;
- Для II категории 10% от общего числа сварных соединений;
- Для III категории 2% от общего числа сварных соединений;

Проектом предусматривается антикоррозионное покрытие надземного трубопровода и арматуры:

- грунт ГФ-021 (глифталевый), цвет «серый» по ГОСТ 25129-2022;
- эмаль ПФ-115 (пентафталевая) 2 слоя, цвет «Светло-серый» RAL 7035 по ГОСТ 6465-76.

Антикоррозионное защитное покрытие подземных трубопроводов «усиленного» типа трехслойное полимерное, по ГОСТ 9.602-2005.

Режим работы и расчет численности обслуживающего персонала

В целях создания условий, обеспечивающих наибольшую производительность труда, предусмотрены следующие мероприятия:

- основные процессы протекают непрерывно, автоматизированы и управляются из операторной;
 - применено блочное и блочно-комплектное оборудование;
- для нормального обслуживания оборудования и наблюдения за показаниями приборов КИПиА принята соответствующая освещенность рабочих мест, площадок и операторной;
- запорная арматура и контрольно-измерительные приборы размещены в доступных местах.

Режим работы, в соответствии с ВНТП 3-85, составляет 365 рабочих дней в году по вахтовому методу в две смены, продолжительность смены 12 часов, продолжительность вахты 14 суток.

Расчет численности производственного персонала произведен на основании «Типовых нормативов численности рабочих нефтегазодобывающих управлений нефтяной промышленности» и «Типовой структуры и нормативов численности руководителей, специалистов и служащих нефтегазодобывающих управлений нефтяной промышленности», а так же СН РК «Нормы технологического проектирование дизельных электростанций (ДЭС)».

№ п/п	должность	нормативная численность	обслужи	нество вающего онала 2 смена	Всего
1	Оператор технологической установки	2	1	1	2
2	Слесарь по ремонту и обслуживанию оборудования	1	1	1	1
3	Обслуживание наливного устройства	1	1	-	1
4	Электромонтер по обслуживанию подстанции	2	1	1	2
5	Электромонтер по ремонту и обслуживанию оборудования	3	3	-	3
6	Мастер по обслуживанию приборов КИПиА	Находятся на УКПГ			
	Итого в смену:				9
	Всего по вахтам:				9×2=18

С учётом коэффициента подмены $K_{\text{под}} = 1,17$ и коэффициента невыходов на работу $K_{\text{нев}} = 1,16$ списочная численность рабочих составит 18x1,17x1,16 = 24 чел.

5.2 Архитектурно-строительные решения

Система сбора газа

В состав 01-Системы сбора газа планируется строительство сооружении для обустройства двух газодобывающих скважин Б-5, Б-6 архитектурно-строительным разделом предусмотрены следующие технологические площадки:

- Рабочие площадки и приустьевые приямки;
- Площадки и фундаменты под ремонтный агрегат;
- Площадка блока автоматизированной подачи реагента.
- Свеча продувочная;
- Площадка КТП;
- Свеча вытяжная.

Рабочая площадка и приустьевые приямки

Рабочая площадка для скважин Б-5 и Б-6 запроектированы с габаритными размерами в плане– 4.5 х 6.0м, площадь застройки -27м2.

Покрытие площадки из щебня фракции толщиной 150мм.

Площадка по периметру ограждается съемными металлическими сетчатыми панелями. Высота ограждения 2.2м. Ограждение состоит из сетчатых панелей по металлическим столбам высотой 2 м, по серии 3.017-1 выпуск 2 «Ограждения площадок и участков предприятий, зданий и сооружений». Оградительные панели крепятся на стойки. Стойки выполнены из труб по ГОСТ 10704-91 замоноличенные в грунт, бетоном кл. С12/15 высотой 800мм.

В ограждении для доступа ремонтного агрегата предусматриваются ворота, также для

прохода на площадку обслуживающего персонала предусматривается отдельная калитка по серии 3.017-1 выпуск 5, ворота крепятся на стойки. Стойки выполнены из труб по ГОСТ 10704-91, замоноличенные в фундамент, бетон кл. C12/15 высотой 900мм.

Приустьевой приямок для скважин запроектирован размерами 2.5x2.5x1,5(h)м, выполняется из монолитного железобетона. Бетон класса C12/15, армируется сеткой по ГОСТ 23279-2012, арматура класса A400.

Приямок перекрывается металлическим просечно - вытяжным листом по ТУ 36.26.11-5-89.

Над приустьевым приямком предусмотрена металлическая площадка обслуживания. Металлические конструкций приняты по серии 1.450.3-7.94, ограждение площадки и лестниц высотой 1250мм принято из прокатного профиля ГОСТ 8509-93. Стойки площадки обслуживания крепятся на фундаменты с помощью анкерных болтов типа 5 по ГОСТ 24379.1-2012.

Опоры под трубопроводы приняты из металлического проката на бетонных фундаментах. Бетон класса C12/15. Сталь C245 по ГОСТ 27772-2021.

Бетонные конструкции на сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Все боковые поверхности бетонных и железобетонных конструкций, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани фундамента на 100мм.

Площадки и фундаменты под ремонтный агрегат

Площадка и фундамент под ремонтный агрегат запроектированы размерами:

- площадка -3.0-14,05м;
- фундамент -1.5х4,0м.

площадь застройки - 48,15м2.

Площадка и фундамент запроектирован из сборных железобетонных плит по ГОСТ 21924.0-84.

Плиты укладываются на выравнивающий слой бетона толщиной 30мм, бетон класса В7,5.

Фундаменты под растяжки ремонтного агрегата запроектированы из монолитного бетона. Бетон класса C16/20.

Под сборными бетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 100мм, с выводом за грани плит на 100мм.

Блок дозирования реагента БДР

Блок дозирования реагента типа БДР-4/1/40 в плане имеет прямоугольную форму, с габаритными размерами в осях 2.04х5.48м. Площадь застройки -21м2.

Блок устанавливается на площадку, запроектированную из сборных железобетонных

плит марки 1П30.18 по ГОСТ 21924.0-84.

Опоры под трубопроводы приняты из металлического проката на бетонных фундаментах. Бетон класса C12/15. Сталь C245 по ГОСТ 27772-2021.

Под железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 100мм, с выводом за грани плит на 100мм.

Свеча продувочная

Проектом предусмотрена площадка свечи предназначенная для сброса газа с устьевого оборудования в атмосферу при продувке трубопровода. Диаметр ствола свечи Ду 80, высотой 5 м.

Площадка в плане имеет прямоугольную форму, с габаритными размерами в осях 3,0х2,5м. Площадь застройки -9.24м2.

Покрытие площадки из щебня толщиной 150мм.

Фундамент под стойку свечи запроектирован из монолитного железобетона высотой 1,25м. Бетона класса С15/20, армированная сеткой по ГОСТ 23279-2012, класс арматуры А400.Стойка свечи принята из металлических профилей, стойка устанавливается на стальную плиту с помощью анкерных болтов типа 1.1 М24 по ГОСТ 24379.1-2012.

Опоры под трубопроводы приняты из металлического проката на бетонных фундаментах. Бетон марки C12/15.

Металлические конструкции из стали С245 по ГОСТ 27772-2021.

Бетонные конструкции на сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Все боковые поверхности бетонных и железобетонных конструкций, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани фундамента на 100мм.

Площадка КТП

Комплектная трансформаторная подстанция устанавливается на площадке с размерами в плане 1.4x1,7м. Площадь застройки – 20,0м2.

Площадка по периметру, ограждается металлическим сетчатым ограждением. Высота ограждения 2.28м. Ограждение состоит из сетчатых панелей по металлическим столбам высотой 2,06 м, по серии 3.017-1 выпуск 2 «Ограждения площадок и участков предприятий, зданий и сооружений». Оградительные панели крепятся на стойки. Стойки выполнены из труб по ГОСТ 10704-91 замоноличенные в грунт, бетоном кл. С12/15 высотой 800мм.

Для входа на площадку обслуживающего персонала предусмотрена отдельная калитка высотой 1,8м по серии 3.017-1 выпуск 5.

КТПН полной заводской готовности, устанавливается на фундаментные блоки ФБС по ГОСТ 13579-2018.

Под проектируемыми бетонными конструкциями принято, подготовка из щебня,

пропитанного битумом до полного насыщения толщиной 100мм.

Вертикальная гидроизоляция боковых поверхности конструкций, соприкасающиеся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Прожекторная мачта

Для освещения площадки в ночное время запроектированы отдельно стоящие прожекторные мачты по серии 3.407.1-143 с молниеприемником высотой 2,5м.

Расположение и количество представлено на чертеже в разделе «Генеральный план».

Прожекторная мачта принята марки ПЖ-16,6.

Для размещения приборов освещения и крепления активного молниеприемника на отметке 18.11 м предусмотрена металлическая площадка с ограждением.

Для обслуживания оборудования и подъема на площадку предусмотрена вертикальная лестница-стремянка с ограждением.

Прожекторная мачта устанавливается в фундамент стаканного типа из монолитного железобетона. Бетон марки В15, арматура кл. АШ. В основании фундамента выполняется подготовка из щебня, пропитанного битумом, толщиной 100мм. Под фундаментами выполнить подушку из послойно уплотненной песчано-гравийной смеси общей толщиной 600мм.

Вокруг ствола прожекторной мачты предусмотрена бетонная отмостка шириной 2.0м.

Свеча вытяжная

На пересечении с промысловыми автодорогами проектируемого газопровода проложенных в защитном футляре, где в конце футляра предусмотрена площадка вытяжной свечи. Площадка в плане с габаритными размерами в осях 2,0х2,0м. Площадь застройки - 5.3м2.

Покрытие площадки из щебня толщиной 150мм.

Фундамент под стойку свечи запроектирован из монолитного железобетона высотой 1,25м. Бетона класса С15/20, армированная сеткой по ГОСТ 23279-2012, класс арматуры А400.Стойка свечи принята из металлических профилей, стойка устанавливается на стальную плиту с помощью анкерных болтов типа 1.1 М24 по ГОСТ 24379.1-2012.

Металлические конструкций из стали С245 по ГОСТ 27772-2021.

Бетонные конструкции на сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Все боковые поверхности бетонных и железобетонных конструкций, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Под железобетонным фундаментом устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани фундамента на 100мм.

Пункт сбора газа (ПСГ)

В состав 02-Пункт сбора газа (ПСГ) архитектурно-строительным разделом предусмотрены следующие технологические площадки:

- Площадка входного манифольда;
- Площадка блока дозирования реагента;
- Площадка резервуаров конденсата Е-1А/Б;
- Площадки дренажных емкостей ДЕ-2/3.
- Площадка факельного сепаратора ФС-1 и дренажной емкости ДЕ-1;
- Площадка блока насосов отгрузки Н-2А/Б;
- Площадка блока насосов конденсата Н-1А/Б;
- Площадка подогревателя П-1;
- Площадка стояка налива СН-1;
- Площадка факельной установки Ф-1;
- Площадка баллонов СУГ. Панель розжига и контроля;
- Площадки блоков сепарации 1 и 2.

Площадка входного манифольда

Площадка с габаритными размерами в осях 7,0х11,0м, площадь застройки – 77,0м2.

Покрытие площадки запроектировано из монолитного железобетона, толщиной - 150мм. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Опоры под трубопроводы приняты из металлического проката по бетонным и железобетонным фундаментам. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Для сбора стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ТУ 36.2611-5-89. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Для обслуживания технологических оборудовании проектом предусмотрена металлическая площадка обслуживания, принятая из металлических конструкций по серии 1.450.3-7.94, ограждение принято из прокатного профиля ГОСТ 8509-93.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкций, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора

битума в керосине.

Площадка блока дозирования реагента

Площадка с габаритными размерами в осях 5,0х7,0м, площадь застройки – 35,0м2.

Покрытие площадки запроектировано из монолитного железобетона, толщиной - 150мм. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Под блок дозирования реагента запроектирована монолитная железобетонная плита высотой 350мм. Бетон класса C12/15, армированная сеткой по ГОСТ 23279-2012, класс арматуры A400.

Для сбора стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ТУ 36.2611-5-89. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

На площадке под технологические трубопроводы запроектированы стальные опоры. Опоры приняты из металлического проката по бетонным фундаментам. Бетон класса C12/15. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка резервуаров конденсата Е-1А/Б

Площадка с габаритными размерами в осях 14,2х16,2м, площадь застройки – 236,2м2.

Площадка ограждается подпорными стенами, железобетонная конструкция запроектирована из монолитного железобетона, толщиной -200мм. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012, класс арматуры A400.

Под горизонтальную емкость на площадке запроектированы фундаменты. Фундамент принят из монолитного железобетона. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012. Крепление оборудования принято с помощью анкерных болтов типа 1.2 М30 по ГОСТ 24379.1-2012.

Для обслуживания технологических оборудовании проектом предусмотрена металлическая площадка обслуживания и переходные мостики через трубопроводы, принятые из металлических конструкций по серии 1.450.3-7.94, ограждение площадок и лестниц высотой 1250мм, принято из прокатного профиля ГОСТ 8509-93.

Опоры под трубопроводы приняты из металлического проката по бетонным фундаментам. Бетон класса C12/15. Металлоконструкция из стали C245 по ГОСТ 27772-

2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадки дренажных емкостей ДЕ-2/3

Площадка дренажной емкости прямоугольная в плане, с габаритными размерами в осях 6,0х9,0м. Площадь застройки – 58,6 м2.

Дренажная емкость заглубленная, находится ниже уровня земли.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Для сбора возможных стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ТУ 36.2611-5-89. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Емкость устанавливается на фундаменты. Фундаменты запроектированы бетонные кл. C12/15 с закладными деталями, армированная сеткой по ГОСТ 23279-2012, класс арматуры A400.Высота фундамента 700мм.

Опоры под трубопроводы приняты из металлического проката на бетонных фундаментах. Бетон марки C12/15, металлоконструкция из стали C245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка факельного сепаратора ФС-1 и дренажной емкости ДЕ-1

Площадка факельного сепаратора и дренажной емкости прямоугольная в плане, с габаритными размерами в осях 4,5х11,3м. Площадь застройки – 55,7 м2.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Под горизонтальную емкость на площадке запроектированы фундаменты. Фундамент принят из монолитного железобетона. Бетон класса C16/20, армированный сеткой по ГОСТ 23279-2012. Крепление оборудования принято с помощью анкерных болтов типа 1.1 М20 по ГОСТ 24379.1-2012.

Дренажная емкость заглубленная, находится ниже уровня земли. Емкость устанавливается на фундаменты. Фундаменты запроектированы бетонные кл. C12/15 с закладными деталями, армированная сеткой по ГОСТ 23279-2012, класс арматуры A400.Высота фундамента 700мм.

Для обслуживания оборудовании дренажной емкости проектом предусмотрен технологический колодец с габаритными размерами 1.8х3.4х1.25 (h)м, толщина стенок 150мм. Колодец принят из монолитного железобетона. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012, класс арматуры A400. Покрытие колодца из съемного стального листа по ГОСТ 19903-2015.

Для сбора возможных стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ТУ 36.2611-5-89. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

На площадке запроектированы стальные опоры под трубопроводы. Опоры приняты из металлического проката на бетонных фундаментах. Бетон марки C12/15, металлоконструкция из стали C245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка блока насосов отгрузки Н-2А/Б

Площадка блока насосов отгрузки прямоугольная в плане, с габаритными размерами в осях 5,0х5,5м. Площадь застройки – 30,7 м2.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Для сбора возможных стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ГОСТ 8706-78. Бетон класса С12/15, армированный сеткой по ГОСТ 23279-2012. Фундамент под насос принят из монолитного железобетона высотой 0,6м. Бетон класса С12/15, армированный сеткой по ГОСТ 23279-2012, класс арматуры А400. Крепление технологического оборудования насоса производится с помощью анкерных болтов типа 1.1

по ГОСТ 24379.1-2012. Для предотвращения передачи динамических нагрузок с фундамента на площадку предусмотрен деформационный шов.

На площадке запроектированы стальные опоры под трубопроводы. Опоры приняты из металлического проката на бетонных фундаментах. Бетон марки C12/15,

Над площадкой запроектирован стальной навес из металлических профилей. Навес устанавливается на стойки. Стойка принята из квадратных труб по ГОСТ 30245-2012 установленная с помощью анкерных болтов типа 1.1 М20 на железобетонный фундамент. Фундамент принят из бетона класса С12/15, армированный сеткой по ГОСТ 23279-2012. Металлоконструкция принято из стали С245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка блока насосов конденсата Н-1А/Б

Площадка блока насосов отгрузки прямоугольная в плане, с габаритными размерами в осях 4,5х5,0м. Площадь застройки – 25,4 м2.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Для сбора возможных стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ГОСТ 8706-78. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012.

Фундамент под насос принят из монолитного железобетона высотой 0,6м. Бетон класса С12/15, армированный сеткой по ГОСТ 23279-2012, класс арматуры А400. Крепление технологического оборудования насоса производится с помощью анкерных болтов типа 1.1 по ГОСТ 24379.1-2012. Для предотвращения передачи динамических нагрузок с фундамента на площадку предусмотрен деформационный шов.

На площадке запроектированы стальные опоры под трубопроводы. Опоры приняты из металлического проката на бетонных фундаментах. Бетон принят класса C12/15.

Над площадкой запроектирован стальной навес из металлических профилей. Навес устанавливается на стойки. Стойка принята из квадратных труб по ГОСТ 30245-2012 установленная с помощью анкерных болтов типа 1.1 М20 на железобетонный фундамент. Фундамент принят из бетона класса С12/15, армированный сеткой по ГОСТ 23279-2012. Металлоконструкция из стали С245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка подогревателя П-1

Площадка подогревателя прямоугольная в плане, с габаритными размерами в осях 2,5x5,0м. Площадь застройки — 12,5 м2.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Для сбора стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ГОСТ 8706-78. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012.

На площадке запроектированы стальные опоры под трубопроводы. Опоры приняты из металлического проката на бетонных фундаментах. Бетон принят класса C12/15.

Металлоконструкция из стали С245 по ГОСТ 27772-2021.

Оборудование подогревателя газа устанавливается на бетонный фундамент с закладной деталью. Бетон класса C12/15.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка с<u>тояка налива СН-1</u>

Площадка налива прямоугольная в плане, с габаритными размерами в осях 3,0х9,0м. Площадь застройки -30,7 м2.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Для сбора стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ГОСТ 8706-78. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012.

Под стояк наливной проектом предусмотрен монолитный железобетонный фундамент. Фундамент принят из бетона класса C16/20, армированный стержнями класса A400 по ГОСТ 34028-2016. Крепление основания оборудования принято с помощью анкерных болтов типа 1.2 M20 по ГОСТ 24379.1-2012.

Для обслуживания верхнего налива в автоцистерну предусмотрена металлическая площадка обслуживания. Площадка обслуживания принята по серии 1.450.3-7.94, ограждение площадки и лестницы высотой 1250мм принято из прокатного профиля ГОСТ 8509-93.

На площадке запроектированы стальные опоры под трубопроводы. Опоры приняты из металлического проката на бетонных фундаментах. Бетон принят класса C12/15.

Металлоконструкция из стали С245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка факельной установки Ф-1

Территория факела имеет грунтовое обвалование высотой 0.70м. Диаметр обвалования по наружной грани составляет 35.2м. Площадь застройки – 2827,4м2.

Фундаменты под факел и под растяжки запроектированы из монолитного железобетона. Бетон класса C16/20, армированная стержнями класса A400.

Через обвалование проектом предусмотрены монолитные железобетонные переходы с металлическими перилами.

Опоры под трубопроводы приняты из металлического проката по железобетонным фундаментам. Бетон класса C12/15, армированы сеткой по ГОСТ 23279-2012.

Площадка факела ограждается ограждается металлическим сетчатым ограждением. Высота ограждения 2.0м. Радиус ограждения 30,0м. Ограждение состоит из сетчатых панелей по металлическим столбам высотой 1.6 м, по серии 3.017-1 выпуск 2 «Ограждения площадок и участков предприятий, зданий и сооружений». Оградительные панели крепятся на стойки. Стойки выполнены из труб по ГОСТ 10704-91 замоноличенные в грунт, бетоном кл. С12/15 высотой 800мм. металлическим сетчатым ограждением.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка баллонов СУГ. Панель розжига и контроля

Площадка баллонов СУГ(пропан) и панели розжига в плане имеет прямоугольную форму, с габаритными размерами в осях $2.0 \times 3.0 \text{м}$. Площадь застройки -6.0 m2.

Покрытие площадки запроектировано из сборных железобетонных плит марки 2П30-18 по ГОСТ 21924.0-84.

Под площадкой устраиваются подготовка из щебня, пропитанного битумом, толщиной 50мм.

Вокруг площадки запроектирована отмостка шириной 1,0м из монолитного бетона класса С10/12,5. толщиной 50мм.

Опоры под трубопроводы приняты из металлического проката.

Крепление шкафа баллонов СУГ и опор к плитам осуществляется анкерными болтами по ГОСТ 24379.1-2012.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под сборными железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм, с выводом за грани конструкций на 100мм.

Площадки блоков сепарации 1 и 2

Площадка с габаритными размерами в осях 8,0х14,0м, площадь застройки – 118,7м2.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Для сбора стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ГОСТ 8706-78. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012.

Под горизонтальную емкость на площадке запроектирована железобетонная плита. Плита принята из монолитного железобетона. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012. Крепление оборудования принято с помощью анкерных болтов типа 1.2 М30 по ГОСТ 24379.1-2012.

Для обслуживания технологических оборудовании проектом предусмотрена металлическая площадка обслуживания и переходной мостик через трубопроводы, принятые из металлических конструкций по серии 1.450.3-7.94, ограждение площадок и лестниц высотой 1250мм, принято из прокатного профиля ГОСТ 8509-93.

Опоры под трубопроводы приняты из металлического проката по бетонным фундаментам. Бетон класса C12/15. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Ограждение площадки ПСГ

Проектом предусмотрено металлическое ограждение территории ПСГ.

Ограждение состоит из сетчатых панелей по металлическим столбам высотой 2 м, по серии 3.017-1 выпуск 2 «Ограждения площадок и участков предприятий, зданий и сооружений». Оградительные панели крепятся на стойки. Стойки выполнены из квадратных труб по ГОСТ 30245-2012 замоноличенные в грунт, бетоном кл. C12/15 высотой 450 мм.

В ограждении для проезда транспорта предусматриваются ворота, также для прохода пешеходов предусматриваются отдельные калитки по серии 3.017-1 выпуск 5, ворота крепятся на стойки. Стойки выполнены из квадратных труб по ГОСТу 30245-2003, замоноличеные в грунт, бетоном C12/15 высотой 0,750мм.

Под проектируемыми бетонными конструкциями принято, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм.

Вертикальная гидроизоляция боковых поверхности конструкций, соприкасающиеся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Межплощадочные опоры и кабельные эстакады

На территории ПСГ запроектированы опоры под трубопроводы и опоры для кабельных лотков. Опоры между площадками и кабельная эстакада приняты металлические из прокатных профилей. Сталь марки C245 по ГОСТ 27772-2021.

Фундаменты под опоры трубопроводов и кабельную эстакаду приняты из монолитного железобетона класса C12/15, армированы сеткой ГОСТ 23279-2012. Под фундаментами опор устраивается подготовка из щебня, пропитанного битумом толщиной 50мм и 100мм.

Переходные мостики через трубопроводы приняты металлические по серии 1.450.3-7.94, ограждение высотой 1.2м.

Газопровод ПСГ «Барханное- УКПГ Амангельды»

В состав 03- Газопровод ПСГ «Барханное- УКПГ Амангельды» архитектурностроительным разделом предусмотрены следующие технологические площадки:

- Площадка камеры запуска и приема СОД;
- Площадка крановых узлов КУ-8, КУ-9;
- Площадка продувочной свечи С-1, 2, 3, 4.
- Площадка расширительной камеры (ловушка) с конденсатосборником;
- Свеча продувочная С-1, 2, 3, 4.
- Площадка дренажной емкости ДЕ-1.
- Газопровод (линейная часть). Свеча вытяжная. Фундамент под опознавательный знак.

Площадка камеры запуска и приема СОД

Площадка камеры запуска скребка и приема СОД с габаритными размерами в осях

4,5х11,0м, площадь застройки – 54,24м2.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Для сбора стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ГОСТ 8706-78. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012.

Фундаменты под оборудование запроектированы из монолитного железобетона. Фундамент принят из бетона класса C20/25, армированный сеткой по ГОСТ 23279-2012. Крепление основания оборудования принято с помощью анкерных болтов типа 5 М24 по ГОСТ 24379.1-2012.

Опоры под трубопроводы приняты из металлического проката по железобетонным фундаментам. Бетон марки C12/15, армированными стержнями класса A400 по ГОСТ 34028-2016. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка крановых узлов КУ-8, КУ-9

Площадки крановых узлов КУ-8, КУ-9 предназначены для отсекания участка трубопровода при аварии или ремонтных работах.

Площадки с размерами в плане в осях 6.0х7,0м. Площадь застройки – 42,0м2.

Площадка по периметру, ограждается металлическим сетчатым ограждением. Высота ограждения 2.4м. Ограждение состоит из сетчатых панелей по металлическим столбам высотой 2,06 м, по серии 3.017-1 выпуск 2 «Ограждения площадок и участков предприятий, зданий и сооружений». Оградительные панели крепятся на стойки. Стойки выполнены из труб по ГОСТ 10704-91 замоноличенные в грунт, бетоном кл. С12/15 высотой 600мм.

Для входа на площадку обслуживающего персонала предусмотрена отдельная калитка высотой 1,8м по серии 3.017-1 выпуск 5.

Технологическое оборудование полузаглубленное ниже уровня земли, устанавливается на плитный фундамент. Фундамент принят из бетона класса C16/20, армированный сеткой по ГОСТ 23279-2012.

Опоры под трубопроводы приняты из металлического проката по бетонным фундаментам. Бетон класса C12/15. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Под проектируемыми бетонными и железобетонными конструкциями принято,

подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Вертикальная гидроизоляция боковых поверхности конструкций, соприкасающиеся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка продувочной свечи С-1, 2, 3, 4

Площадка продувочной свечи, прямоугольная в плане с размерами в осях 2,0x2,0м. Площадь застройки -4,0 м2.

Фундамент свечи запроектирован столбчатый из монолитного железобетона. Бетон класса C12/15, армированная стержнями класса A400.

Опоры под трубопроводы приняты из металлического проката по бетонным фундаментам. Бетон класса C12/15. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Под проектируемыми бетонными и железобетонными конструкциями принято, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Вертикальная гидроизоляция боковых поверхности конструкций, соприкасающиеся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка расширительной камеры (ловушка) с конденсатосборником

Оборудование заглубленная, находится ниже уровня земли.

Конденсатосборник устанавливается на фундаменты. Фундаменты запроектированы бетонные кл. C12/15 с закладными деталями, армированая сеткой по ГОСТ 23279-2012, класс арматуры A400.Высота фундамента 500мм.

Для обслуживания оборудовании конденсатосборника проектом предусмотрен технологический колодец с габаритными размерами 2.0x2.0x1.3 (h)м, толщина стенок 150мм. Колодец принят из монолитного железобетона. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012, класс арматуры A400. Покрытие колодца из съемного стального листа по ГОСТ 19903-2015.

Металлоконструкция из стали С245 по ГОСТ 27772-2021.

Материал железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Площадка дренажной емкости ДЕ-1

Площадка дренажной емкости прямоугольная в плане, с габаритными размерами в осях 3.0x4.5м. Площадь застройки — 15.8 м2.

Дренажная емкость заглубленная, находится ниже уровня земли.

Покрытие площадки запроектированы из монолитного железобетона. Бетон класса C12/15, армирование сеткой по ГОСТ 23279-2012, класс арматуры A400.

Площадка ограждается сборными бордюрными камнями по ГОСТ 6665-91, высота бордюра 150мм.

Для сбора возможных стоков на площадке предусмотрен монолитный железобетонный приямок, который перекрывается металлическим просечно-вытяжным листом по ТУ 36.2611-5-89. Бетон класса C12/15, армированный сеткой по ГОСТ 23279-2012. Металлоконструкция из стали C245 по ГОСТ 27772-2021.

Емкость устанавливается на фундаменты. Фундаменты запроектированы бетонные кл. C12/15 с закладными деталями, армированая сеткой по ГОСТ 23279-2012, класс арматуры A400.Высота фундамента 700мм.

Опоры под трубопроводы приняты из металлического проката на бетонных фундаментах. Бетон марки C12/15, металлоконструкция из стали C245 по ГОСТ 27772-2021.

Материал бетонных и железобетонных конструкций бетон сульфатостойком портландцементе, марка по водонепроницаемости W4, марка по морозостойкости F150.

Под бетонными и железобетонными конструкциями устраивается, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм и 100мм, с выводом за грани конструкций на 100мм.

Все боковые поверхности бетонных и железобетонных конструкции, соприкасающийся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Ограждение

Проектом предусмотрено металлическое ограждение участка УКПГ.

Ограждение состоит из сетчатых панелей по металлическим столбам высотой 2.4 м, по серии 3.017-1 выпуск 2 «Ограждения площадок и участков предприятий, зданий и сооружений». Оградительные панели крепятся на стойки. Стойки выполнены из квадратных труб по ГОСТ 30245-2003 замоноличенные в грунт, бетоном кл. С12/15 высотой 600 мм.

В ограждении для проезда транспорта предусматриваются ворота, также для прохода пешеходов предусматриваются отдельные калитки по серии 3.017-1 выпуск 5, ворота крепятся на стойки. Стойки выполнены из квадратных труб по ГОСТу 30245-2003, замоноличеные в грунт, бетоном C12/15 высотой 0,750мм.

Под проектируемыми бетонными конструкциями принято, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 50мм.

Вертикальная гидроизоляция боковых поверхности конструкций, соприкасающиеся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Межплощадочные опоры

На территории УКПГ запроектированы опоры под трубопроводы. Опоры между площадками приняты металлические из прокатных профилей. Сталь марки C245 по ГОСТ 27772-2021.

Фундаменты под опоры трубопроводов и кабельную эстакаду приняты из монолитного железобетона класса C12/15, армированы стержнями класса A400 по ГОСТ 34028-2016. Под фундаментами опор устраивается подготовка из щебня, пропитанного битумом толщиной 50мм и 100мм.

Вертикальная гидроизоляция боковых поверхности конструкций, соприкасающиеся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

<u>Газопровод (линейная часть). Свеча вытяжная. Фундамент под опознавательный знак.</u>

Промысловый газопровод Ду 200 проложен от ПСГ «Барханное» до УКПГ «Амангельды» с протяженностью 30,8 км. На участке пересечении дороги проектируемого газопровода расположена площадка вытяжной свечи и опознавательные знаки.

Площадка продувочной свечи, прямоугольная в плане с размерами в осях 2,0x2,0м. Площадь застройки -4,0 м2.

Фундамент свечи запроектирован из монолитного железобетона. Бетон класса C12/15, армированный стержнями класса A400.

Стойка для крепления проектируемого трубопровода принята из металлического проката. Металлоконструкция из стали С245 по ГОСТ 27772-2021. Установка стойки на фундамент принято с помощью анкерных болтов типа 1.1 М24 по ГОСТ 24379.1-2012.

Фундаменты под опознавательные знаки запроектированы из монолитного бетона кл. C12/15, высотой 600мм.

Под железобетонным фундаментом принято, подготовка из щебня, пропитанного битумом до полного насыщения толщиной 100мм, с выводом за грани конструкций на 100мм.

Вертикальная гидроизоляция боковых поверхности конструкций, соприкасающиеся с грунтом, обмазать горячим битумом БН-70/30 за два раза по грунтовке из 40% раствора битума в керосине.

Специальные защитные мероприятия

Бетон для строительных конструкций принят на сульфатостойком портландцементе ввиду сульфатной агрессии грунтов по отношению к бетонам нормальной плотности.

Марка бетона по водонепроницаемости W4, по морозостойкости не менее F150

Под бетонные и железобетонные конструкции предусмотрена подготовка из щебня толщ. 50 и 100 мм, фракции 15-20 мм, пропитанного горячим битумом до полного насыщения.

Вертикальная гидроизоляция: боковые поверхности конструкции, соприкасающиеся с грунтом, обмазать горячим битумом БН 30/70 по ГОСТ 6617-76, за 2 раза, по грунтовке из 40% раствора битума в керосине.

Обратную засыпку пазух фундаментов выполнить местным непросадочным грунтом второй категории по разработке, слоями по 200 мм с уплотнением.

Антикоррозионная защита металлических конструкций: все металлические конструкции подвергаются покраске. Слой эмали ПФ-115 ГОСТ 6465-76* наносится по

грунтовке ГФ 021 ГОСТ 25129-2020. Общая толщина защитного слоя 55 мкм, в соответствии со СП РК 2.01-101-2013.

В рабочем проекте предусмотрены мероприятия, исключающие затопление территории: вертикальная планировка территории, устройство отмосток, устройство железобетонных площадок с последующим сбросом стоков в дренажную систему.

Обратную засыпку пазух фундаментов выполнить местным непросадочным грунтом второй категории по разработке, слоями по 200 мм с уплотнением.

6 ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНОЛОГИЙ

Согласно ст. 113 ЭК РК под наилучшими доступными техниками понимается наиболее эффективная и передовая стадия развития видов деятельности и методов их осуществления, которая свидетельствует об их практической пригодности для того, чтобы служить основой установления технологических нормативов и иных экологических условий, направленных на предотвращение или, если это практически неосуществимо, минимизацию негативного антропогенного воздействия на окружающую среду. При этом:

- ✓ под техниками понимаются как используемые технологии, так и способы, методы, процессы, практики, подходы и решения, применяемые к проектированию, строительству, обслуживанию, эксплуатации, управлению и выводу из эксплуатации объекта;
- ✓ техники считаются доступными, если уровень их развития позволяет внедрить такие техники в соответствующем секторе производства на экономически и технически возможных условиях, принимая во внимание затраты и выгоды, вне зависимости от того, применяются ли или производятся ли такие техники в Республике Казахстан, и лишь в той мере, в какой они обоснованно доступны для оператора объекта;
- ✓ под наилучшими понимаются те доступные техники, которые наиболее действенны в достижении высокого общего уровня охраны окружающей среды как единого целого.

Применение наилучших доступных техник направлено на комплексное предотвращение загрязнения окружающей среды, минимизацию и контроль негативного антропогенного воздействия на окружающую среду.

Наилучшие доступные техники определяются на основании сочетания следующих критериев:

- 1) использование малоотходной технологии;
- 2) использование менее опасных веществ;
- 3) способствование восстановлению и рециклингу веществ, образующихся и используемых в технологическом процессе, а также отходов, насколько это применимо;
- 4) сопоставимость процессов, устройств и операционных методов, успешно испытанных на промышленном уровне;
 - 5) технологические прорывы и изменения в научных знаниях;
 - 6) природа, влияние и объемы соответствующих эмиссий в окружающую среду;
 - 7) даты ввода в эксплуатацию для новых и действующих объектов;
- 8) продолжительность сроков, необходимых для внедрения наилучшей доступной техники;
- 9) уровень потребления и свойства сырья и ресурсов (включая воду), используемых в процессах, и энергоэффективность;
- 10) необходимость предотвращения или сокращения до минимума общего уровня негативного воздействия эмиссий на окружающую среду и рисков для окружающей среды;
- 11) необходимость предотвращения аварий и сведения до минимума негативных последствий для окружающей среды;
 - 12) информация, опубликованная международными организациями;

13) промышленное внедрение на двух и более объектах в Республике Казахстан или за ее пределами.

В качестве наилучшей доступной техники не могут быть определены технологические процессы, технические, управленческие и организационные способы, методы, подходы и практики, при применении которых предотвращение или сокращение негативного воздействия на один или несколько компонентов природной среды достигается за счет увеличения негативного воздействия на другие компоненты природной среды.

7 ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛНЕНИЯ СТРОИТЕЛЬНЫХ РАБОТ.

Постутилизация объекта - комплекс работ по демонтажу и сносу капитального строения (здания, сооружения, комплекса) после прекращения его эксплуатации.

По завершению строительства объекта демонтажу подлежат все временные сооружения, возведенные на период осуществления строительных работ.

Производится уборка всех загрязнений территории, оставшихся при демонтаже временных сооружений, планировка территорий, засыпка эрозионных форм и термокарстовых просадок грунтом с аналогичными физико-химическими свойствами, восстановление системы естественного или организованного водоотвода, восстановление плодородного слоя почвы, срезка грунтов на участках, поврежденных горюче-смазочными материалами.

На постутилизационный период на месторождении разработан проект ликвидации последствий недропользование месторождении Барханная.

8. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ ВРЕДНЫХ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СТРОИТЕЛЬСТВОМ ЭКСПЛУАТАЦИЕЙ ОБЪЕКТОВ И ОСУЩЕСТВЛЕНИЯ **РАССМАТРИВАЕМОЙ** деятельности, ВКЛЮЧАЯ ВОЗДЕЙСТВИЕ НА ВОДЫ, АТМОСФЕРНЫЙ ВОЗДУХ, ПОЧВЫ, НЕДРА, А ТАКЖЕ ШУМОВЫЕ, ЭЛЕКТРОМАГНИТНЫЕ, ТЕПЛОВЫЕ ВИБРАЦИИ, РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ

8.1 Характеристика источников загрязнения атмосферного воздуха

При проектируемых видах работ, в рамках рабочего проекта «Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)» источниками выбросов загрязняющих веществ в атмосферный воздух являются:

- строительные работы (этап строительства);
- на период эксплуатации.

Характеристика источников загрязнения атмосферного воздуха на этапе строительства проектируемых сооружений (предварительная)

Источниками загрязнения атмосферного воздуха при строительстве объекта в рамках рабочего проекта на этапе проведения строительных работ являются: строительные машины, механизмы и различные вспомогательные работы.

Сроки строительства будут уточняться контрактными условиями с подрядными строительными организациями. Расчетные сроки строительства составляют 14 месяцев.

Загрязнение атмосферного воздуха ожидается при проведении следующих технологических процессов:

- 1. Работа машин и механизмов.
- 2. Битумная обработка.
- 3. Сварочные и лакокрасочные работы.

Строительные работы сопровождаются выбросами следующих загрязняющих веществ:

- пыли неорганической при работе строительных машин;
- в результате работы компрессора, сварочного агрегата, ДЭС в атмосферу выделяются продукты сгорания топлива;
- при сварочных работах в атмосферный воздух поступают диоксид железа, соединения марганца и др;
- битумная обработка сопровождается выбросами предельных углеводородов С12-С19;
- при работе автотранспорта, механизмов и спецтехники происходит неполное сгорание автомобильного топлива и выделение в атмосферу продуктов сгорания топлива.

Основными прямыми и косвенными техногенными факторами воздействий на этапе строительства будут работы связанные со строительством объектов, передвижение техники и т.д.

Продолжительность строительства объектов согласно проектных решений составит 14 месяцев. В период строительства количество персонала предположительно составит – 118 человек.

Основными прямыми и косвенными техногенными факторами воздействий на этапе строительства будут работы связанные со строительством объектов, передвижение техники и т.д.

Всего на период проведения **строительных работ** выявлено **16 источников выбросов** загрязняющих веществ в атмосферу, из которых 3 источников – организованных, 11 являются **неорганизованными**.

На этапе строительства источникам выбросов присвоены четырехразрядные номера: для организованных источников с 0101, для неорганизованных начиная с 7101.

- Источник №0101 Сварочный агрегат,
- Источник №0102 Компрессор;
- Источник №0103 Котел битумный;
- Источник №7101 Пылевыделение при перемещении пород бульдозером;
- Источник №7102 Пылевыделение от работы экскаватора;
- Источник №7103 Расчет выбросов пыли от работы катка;
- Источник №7104 Пылевыделение при погрузочно-разгрузочных работах;
- Источник №6105 Пылевыделение при транспортировке грунта автосамосвалами;
- Источник №6106 Расчет выбросов от сварочного агрегата;
- Источник №6107 Расчет выбросов от лакокрасочных работ;
- Источник №6108 Расчет выбросов от битумной обработки;
- Источник №6109 бурильно-крановая машина (ямобур);
- Источник №6110 шлифовальные работы;
- Источник №6111 ДВС техники.

Количество загрязняющих веществ, выбрасываемых в атмосферу от стационарных источников при строительстве проектируемого объекта, составит 6,6132 г/сек или 64,5897 т/период.

В атмосферу будут выбрасываться вещества 15 наименований.

Перечень и характеристика загрязняющих веществ, выброс которых в атмосферу вероятен при СМР от стационарных источников, представлен в таблице ниже.

Выбросы загрязняющих веществ от ДВС автотранспорта и спецтехники представлены в таблице.

Выбросы от автотранспорта не нормируются.

Таблица 7 – Перечень загрязняющих веществ, выделяемых в атмосферный воздух на период СМР от стационарных источников

Выброс Выброс Код ПДКм.р, ПДКс.с., обув. Наименование Класс вещества с вещества с 3B мг/м3 $M\Gamma/M3$ $M\Gamma/M3$ учетом загрязняющего вещества опасности учетом очистки, очистки, г/с т/год, (М) 3 4 5 6 0,00416 0,0094 Железо (II, III) оксиды 0123 0,04 3 Марганец и его соединения 0.01 0.001 2 0,00048 0,0011 Азота (IV) диоксид 0301 0,2 0,04 2 0,19684 0,1213 0304 Азот (II) оксид 0,4 3 0,03199 0,06 0,0197 Углерод (Сажа, Углерод 0.15 0.05 3 0328 черный) 0,01662 0,0106 0330 Сера диоксид 0,125 3 0,03133 0,0168 0337 Углерод оксид 3 5 4 0.18221 0.1076 0616 Ксилол 0.2 3 1,26689 0,2109 Бенз/а/пирен (3,4-Бензпирен) 0.000001 1 0.0000003

Отчет о возможных воздействиях

1325	Формальдегид	0,035	0,003	2	0,00354	0,0021
2752	Уайт-спирит				0,3115032	0,0422
2754	Углеводороды предельные C12-C19	1		4	0,31521	0,0595
2902	Взвешенные вещества	0,5	0,15	3	0,00600	0,0033
2930	Пыль абразивная				0,00400	0,0022
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,3	0,1	3	4,24244	63,9830
	ВСЕГО:				6,6132	64,5897

Характеристика источников загрязнения атмосферного воздуха на этапе эксплуатации проектируемых сооружений

В период эксплуатации основными источниками выделения загрязняющих веществ в атмосферный воздух являются: продувочные свечи, факельная уставновка, дренажные емкости, дизельный генератор и пр.

Всего на период проведения **строительных работ** выявлено **51 источников выбросов** загрязняющих веществ в атмосферу, из которых 13 источников – организованных, 38 являются **неорганизованными**.

На этапе строительства источникам выбросов присвоены четырехразрядные номера: для организованных источников с 0001, для неорганизованных начиная с 6001.

- Источник №0001 Свеча продувочная на скважине Б-5,
- Источник №0002 Свеча продувочная на скважине Б-6;
- Источник №0003 Свеча продувочная на газопроводе;
- Источник №0004 Свеча продувочная на газопроводе;
- Источник №0005 Свеча продувочная на газопроводе;
- Источник №0006 Дренажная емкость;
- Источник №0007 Дренажная емкость;
- Источник №0008 Дренажная емкость;
- Источник №0009 Емкость конденсата;
- Источник №0010 Емкость конденсата;
- Источник №0011 Факельная установка;
- Источник №0012 ДЭС (резервный);
- Источник №0013 ППУ;
- Источник №6001 Площадка устья скважины Б-5;
- Источник №6002 Площадка устья скважины Б-6;
- Источник №6003 БР-1;
- Источник №6004 БР-1;
- Источник №6005 БР-1;
- Источник №6006 Площадка манифольда;
- Источник №6007 Площадка сепаратора;
- Источник №6008 Площадка дренажной емкости;
- Источник №6009 Межплощадочные трубопроводы;
- Источник №6010 Площадка кранового узла КУ-8;
- Источник №6011 Площадка кранового узла КУ-9;
- Источник №6012 Точка подключения к манифольду;

- Источник №6013 Точка врезки в газопровод;
- Источник №6014 Площадка блока реагента;
- Источник №6015 Площадка блока реагента;
- Источник №6016 Площадка ГСП;
- Источник №6017 Площадка емкостей конденсата;
- Источник №6018 Площадка стояка налива конденсата;
- Источник №6019 Площадка узла учета газа;
- Источник №6020 Площадка емкости конденсата 100 м3;
- Источник №6021 Площадка дренажной емкости;
- Источник №6022 Площадка факела;
- Источник №6023 Площадка сепараторов;
- Источник №6024 Площадка компрессорных агрегатов для закачки;
- Источник №6025 Площадка трубопроводов;
- Источник №6026 –Площадка ЗУ;
- Источник №6027 Площадка печей подогрева;
- Источник №6028 Сепаратор 0,8м³;
- Источник №6029– Двухфазный сепаратор V-2;
- Источник №6030 Трехфазный вертикальный сепаратор;
- Источник №6031 Факельный сепаратор;
- Источник №6032 Стояк налива конденсата в автоцистерны;
- Источник №6033 Откачка из дренажной емкости в автоцистерны;
- Источник №6034 Насос для откачки;
- Источник №6035 Насос для откачки;
- Источник №6036 Камера приема и запуска скребка;
- Источник №6037 Конденсатосборник;
- Источник №6038 Площадка конденсатосборника.

Количество загрязняющих веществ, выбрасываемых в атмосферу при эксплуатации проектируемого объекта, составит **29,549532** г/сек или **24,977969** т/год.

В атмосферу будет выбрасываться вещество 12 наименований.

Перечень загрязняющих веществ (ЗВ), выбрасываемых в атмосферу при эксплуатации запроектированных сооружений с указанием класса опасности, максимально-разовой и среднесуточной предельно-допустимых концентраций (ПДК) загрязняющих веществ в атмосферном воздухе по классификации Минздрава, представлен в таблице.

Таблица 8 - Перечень загрязняющих веществ, выбрасываемых в атмосферу при эксплуатации

Код ЗВ	Наименование загрязняющего	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности	Выброс вещества с учетом	Выброс вещества с учетом	Значение М/ЭНК
	вещества						очистки, г/с	очистки, т/год, (М)	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,461513	3,227585	80,689625
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,07413	0,4984	8,30666667
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,034676	0,330239	6,60478

	ВСЕГО:					29,549532	24,977969	125,008248
	пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)							
2754	Алканы C12-19 /в	1			4	0,1611	1,0803	1,0803
1325	Формальдегид (Метаналь) (609)	0,05	0,01		2	0,00667	0,045013	4,5013
1052	Метанол (Метиловый спирт) (338)	1	0,5		3	0,00403	0,091705	0,18341
0703	Бенз/а/пирен (3,4- Бензпирен) (54)		0,000001		1	0,00000067	0,000005	5
0416	Смесь углеводородов предельных C6-C10 (1503*)			30		0,051277	2,2997726	0,07665909
0415	Смесь углеводородов предельных C1-C5 (1502*)			50		28,092768	11,934891	0,23869782
0410	Метан (727*)			50		0,001059	0,0333395	0,00066679
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		4	0,533508	4,597029	1,532343
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,5	0,05		3	0,1288	0,83969	16,7938

8.1.1 Характеристика аварийных выбросов

Аварийные ситуации могут возникнуть в ряде случаев, например, таких как, нарушение механической целостности оборудования, при возгорании протечек горючих жидкостей.

Возможными причинами возникновения аварийных ситуаций при эксплуатации объектов могут быть:

- нарушение технологического режима, правил техники безопасности и ошибочные действия персонала при проведении профилактического ремонта;
 - прекращение подачи электроэнергии;
- коррозионные повреждения (наружные, возникающие вследствие естественного старения покрытия или некачественного нанесения изоляции);
- заводской брак труб и запорной арматуры (наличие дефектов в металле труб, некачественная заводская сварка трубных швов, ненадежность уплотнительных элементов) и др.

Все технологическое оборудование, средства контроля, управления и сигнализации будут эксплуатироваться в соответствии с их паспортными данными, техническими характеристиками и утвержденными инструкциями по эксплуатации.

Основными принятыми в проекте мероприятиями, направленными на предотвращение выделения вредных, взрывопожарных веществ и обеспечения безопасных условий труда являются:

- размещение вредных и взрывоопасных производств на открытых площадках;
- полная герметизация технологического процесса;
- выбор оборудования и трубопроводов из условия максимально возможных параметров технологического процесса;

- обеспечение прочности и герметичности технологических аппаратов и трубопроводов (контроль сварных стыков и гидравлическое испытание);
- система противоаварийной и противопожарной защиты, предохранительных и сигнальных устройств по предупреждению опасных и аварийных ситуаций;
- применение методов неразрушающего контроля и антикоррозионной защиты оборудования, трубопроводов, металлических конструкций.

Размещение запорной арматуры на технологическом оборудовании обеспечивает удобное и безопасное обслуживание. Защита предусматривается установкой предохранительных клапанов, отсечной и запорной арматуры, средств автоматического контроля, измерения и регулирования технологических параметров.

Вероятность возникновения крупномасштабной аварии исключается мероприятиями по локализации (ликвидации) аварий, проводимыми эксплуатирующей организацией, а также техническими решениями, способствующими реализации мероприятий повышения безопасных условий труда и предотвращению аварийных ситуаций.

В рамках данного проекта аварийные и залповые выбросы отсутствуют.

8.1.2 Обоснование данных о выбросах вредных веществ

Качественно-количественные характеристики выделяющихся загрязняющих веществ определены расчетным методом, на основании действующих нормативных материалов и технических характеристик применяемого оборудования.

Результаты расчетов по источнику приведены в Приложении 2.

Перечень методик расчета представлен в разделе «Список использованной литературы».

Параметры выбросов загрязняющих веществ приняты в соответствии с данными рабочего проекта и занесены в таблицы.

-	можных воздеи · Параметры вы		грязняю	щих веществ в	атмосф	еру на п	ериод сті	роительс	ства															
Прои 3- Це водст х во	Источники вы загрязняющих	деления	Число часов работ ы в год	Наименование источника выброса вредных веществ	Число источ - ников выбро са	Номе р источ -ника выбро са	Высота источн ика выброс а, м	Диаме тр устья трубы , м	Г газовозд	Іараметрь .смеси на очника вы	выходе	точ. /1кс лине (исто а /це плоц	схе ист, онца йног о чник ентра цадн	ик дли шир площ	оого нца источн га /	Наименова ние газоочистн ых установок и мероприят ий по сокращени	Вещества, по котор.произ вод. газоочистка / к-т обесп. газоо-й %	Средняя эксплуат.сте пень очистки/ макс.степ. очистки%	Код вещест ва	Наименован ие вещества	Выброс	сы загрязн веществ	яющих	Год дост и- жен ия ПДВ
	Наименовани е	Количес тво							скорос ть, м/с	объем на 1 трубу, м3/с	темпе ра- тура, оС	X1	Y1	X2	Y2	ю выбросов					г/с	мг/м3	т/год	
1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
001	сварочный агрегат	1	146,9	Труба	1	1101	2	0,1	37,14	0,2916 98	451	854	678 0	10			**	20	0301	Азот (IV) оксид (Азота диоксид)	0,137333 333 0,022316 667	470,80 7 76,506	0,060640 32 0,009854 052	2024
																			0328	оксид) Углерод (Сажа)	0,011666 667	39,996	0,005288	2024
																			0330		0,018333	62,85	0,007932	2024
																			0337		0,12	411,38 5	0,052884	2024
																				Бенз/а/пире н (3,4- Бензпирен)	2,16667E -07	0,0007	9,6954E- 08	
																			1325	ид	0,0025	8,571	68	2024
																			2754	Алканы С12-19 (Растворите ль РПК- 265П) /в пересчете на углерод/	0,06	205,69	0,026442	2024
001	Дизельный компрессор	1	350	Труба	1	1102	2	0,1	15,46	0,1214 26	450	854 2	678 2						0301		0,057222 222	471,25 1	0,0602	2024
																			0304		0,009298 611	76,578	0,009782	2024
																			0328	Углерод (Сажа)	0,004861 111	40,033	0,00525	
																			0330	диоксид (Ангидрид сернистый)	0,007638 889	62,91	0,007875	
																				Углерод оксид	0,05	3	0,0525	
																				Бенз/а/пире н (3,4- Бензпирен)	9,02778E -08	0,0007	9,625E- 08	
																			1325	Формальдег	0,001041	8,579	0,00105	2024

Отчет о в	возможных воздей	ствиях																					
																			ид	667			
																		2754	Алканы	0,025	205,88	0,02625	2024
																			C12-19		7		
																			(Растворите ль РПК-				
																			ль РПК- 265П) /в				
																			пересчете				
																			на углерод/				
001	Котел	1	51,1	Труба	1	1103	2	0,1	12,15	0,0954	450	855	678					0301	Азот (IV)	0,002285	246,26	0,000420	2024
	битумный									26		0	0						оксид	471	4	435	
																			(Азота				
																		0204	диоксид)	0.000271	20.026	C 02207E	2024
																		0304	Азот (II) оксид	0,000371 389	39,926	6,83207E -05	
																			(Азота	307		-03	
																			оксид)				
																		0328		8,83344E	24,102	0,000016	2024
																			(Сажа)	-05		25	
																		0330	Cepa	0,005353	564,83	0,000984	2024
																			диоксид	268	5	787	
																			(Ангидрид сернистый)				
																	 	0337		0,012205	1313,0	0,002245	2024
																			оксид	451	58	315	
001	перемещение	1	5292,5		1	7101	2				30	855	678	2	2			2908	Пыль	3,046592		58,04672	2024
	грунта			нный выброс								1	1						неорганичес	474		64	
	бульдозером																		кая: 70-20%				
																			двуокиси кремния				
001	Разработка	1	3950	Неорганизова	1	7102	2				30	855	678	2	2			2908	Пыль	0,048266		0,686354	2024
001	грунта	•	0,00	нный выброс	-	,102	_				20	2	2	_	_			_, 00	неорганичес	861		76	
	экскаватором			•															кая: 70-20%				
																			двуокиси				
001	37	1	2020		1	7102	2				20	0.5.5	670	2				2000	кремния	0.000100		0.001551	2024
001	Уплотнение грунта катком	1	3920	Неорганизова нный выброс	1	7103	2				30	855 3	678 1	2	2			2908	Пыль	0,000109 958		0,001551 732	2024
	трунта катком			нный выорос								3	1						неорганичес кая: 70-20%	758		132	
																			двуокиси				
																			кремния				
001	Разгрузка	1		Неорганизова	1	7104	2				30	855	678	2	2			2908	Пыль	0,933333		4,067287	2024
	пылящих		0	нный выброс								4	5						неорганичес	333		467	
	материалов																		кая: 70-20% двуокиси				
																			кремния				
001	автосамосвал	1	2723,6	Неорганизова	1	7105	2				30	855	678	2	2			2908	Пыль	0,114137		1,119122	2024
	(транспортир		3	нный выброс								1	0						неорганичес	111		136	
	овка)																		кая: 70-20%				
																			двуокиси				
001	Сварочные	1	630	Неорганизова	1	7106	2				30	854	678	2	2			0123	кремния диЖелезо	0,004158		0,009431	2024
001	работы	1	030	нный выброс	1	/100	2				30	0.54	5	2				0123	триоксид	333		0,009431	2024
	риссты			ппын выорос								1							(Железа	333		1	
																			оксид) /в				
																			пересчете				
																		01.10	на железо/	0.000400		0.001000	2021
																		0143	Марганец и	0,000480 556		0,001089	2024
																			его соединения	330		9	
																			/в пересчете				
																			на марганца				
																			(IV) оксид/				
001	Покрасочные	1	562,5	Неорганизова	1	7107	2				30	855	678	2	2			0616	Ксилол	1,266891		0,210937	2024
	работы			нный выброс								0	5						(смесь	892		5	
																			изомеров о-, м-, п-)				
																		2752	м-, п- <i>)</i> Уайт-	0,311503		0,042187	2024
																		2132	спирит	19		5	
L .	l l		1	1						1		·				I	1		p-11-1				

Отиет о	DODMOWHLIV	возлействиях
OTAGEO	возможных	возлеиствиях

001	Битумная обработка	1	8,252	Неорганизова нный выброс	1	7108	2		30	854	678 0	2	2		2754	Алканы С12-19 (Растворите ль РПК- 265П) /в пересчете на углерод/	0,230206 819	0,006838	2024
001	Ямобур	1	172	Неорганизова нный выброс	1	7109	2		30	854 1	678 5	2	2		2908	Пыль неорганичес кая: 70-20% двуокиси кремния	0,1	0,06192	
001	Шлифовальна я машина	1	152	Неорганизова нный выброс	1	7110	2		30	854 2	678 5	2	2		2902 2930	Взвешенны е вещества Пыль абразивная (Корунд белый; Монокорун д)	0,006	0,003283 2 0,002188 8	
001	ДВС техники	1	25236, 13	Неорганизова нный источник	1	7111	2		30	854	678 2	2	2		0301	(Сажа, Углерод черный)	0,695778	7,562761 2,744177	
															0330 0337 0703 2732 2704	диоксид Углерод оксид Бенз/а/пире н Керосин	0,315889 2,628333 0,000005 0,468500 0,053333	3,556510 25,15330 3 0,000059 5,297287 0,374784	2024
																малосернис тый)			

Таблица 10. Параметры выбросов загрязняющих веществ в атмосферу на период эксплуатации

Прои 3- водст во	Цех	Источник выд загрязняющих		Числ о часов рабо ты в году	Наименова ние источника выброса вредных веществ	Номер источн ика выброс ов на карте- схеме	Высота источн ика выброс ов, м	Диаме тр устья трубы , м	газовозд выход максим	Гараметры душной см е из трубь мально раз нагрузке	иеси на и при	точ.ис ког лине источ /цен площа	инаты искарте-схе т, /1-го нца йного чника чтра вдного чника	2- кон лине исто а / дл шир	го нца йног о чник пина, рина цадно о	Наименова ние газоочистн ых установок, тип и мероприят ия по сокращени	Вещество, по которому производи тся газоочист ка	Коэффи -циент обеспеч ен- ности газо- очистко й, %	Среднеэксп луа- тационная степень очистки/ максимальн ая степень очистки, %	Код вещест ва	Наименова ние вещества	Выброс	сы загрязня вещества	ющего	Год дост и- жен ия НДВ
		Наименование	Количест во, шт.						Скорос ть, м/с	Объем смеси, м3/с	Темп е- рату ра смес и, оС	X1	Y1	X2	Y2	ю выбросов		., , ,	<i>-</i>			г/с	мг/нм3	т/год	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
001		Свеча продувочная на скважине Б-5	1	3.33	труба свечи	0001	5	0,05	0,23	0,00045	30	6633 05	49437 57							0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,56894 7	1398291 ,96	0,00682	2025

O	_		возлействия
Отчет	0	возможных	возлеиствия

001	Свеча продувочная на скважине Б-6	1	3.33	труба свечи	0002	5	0,05	0,23	0,00045	30	6633 05	49437 57				0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,56894 7	1398291 ,96	0,00682 7	2025
001	Свеча продувочная на газопроводе	1	1.67	труба	0003	5	0,05	0,23	0,00045	30	6633 05	49437 57				0415	Смесь углеводоро дов предельных С1-С5 (1502*)	6,4063	1574466 1,2	0,00769	2025
001	Свеча продувочная на газопроводе	1	1.67	труба	0004	5	0,05	0,23	0,00045	30	6633 08	49437 57				0415	Смесь углеводоро дов предельных С1-С5 (1502*)	6,4063	1574466 1,2	0,00769	2025
001	Свеча продувочная на газопроводе	1	1.67	труба	0005	5	0,05	0,23	0,00045 16	30	6633 05	49437 57				0415	Смесь углеводоро дов предельных С1-С5 (1502*)	6,4063	1574466 1,2	0,00769	2025
001	Дренажная емкость	1	8760	дых.клапа н	0006	3	0,1	0,02	0,0001	30	6633 05	49437 57				0415	Смесь углеводоро дов предельных C1-C5 (1502*)	0,00116	12941,3 19	0,03678	3 2025
001	Дренажная емкость	1	8760	дых.клапа н	0007	3	0,1	0,02	0,0001	30	6633 05	49437 57				0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00116	12941,3 19	0,03678	3 2025
001	Дренажная емкость	1	8760	дых.клапа н	0008	3	0,1	0,02	0,0001	30	6633 05	49437 57				0415	Смесь углеводоро дов предельных С1-С5	0,00116	12941,3 19	0,03678	3 2025
001	Емкость конденсата	1	8760	дых.клапа н	0009	3	0,1	0,02	0,0001	30	6633 05	49437 57				0415	(1502*) Смесь углеводоро дов предельных С1-С5	3,7166	4125017 5,8	0,2456	2025
001	Емкость конденсата	1	8760	дых.клапа н	0010	3	0,1	0,02	0,00015	30	6633 05	49437 57				0415	(1502*) Смесь углеводоро дов предельных С1-С5 (1502*)	3,7166	2625727	0,2456	5 2025
001	Факельная установка	1	8760	Труба факела	0011	15	0,15	0,2	0,00353	1450	6633 05	49437 57				0301	Азота (IV) диоксид (Азота диоксид) (4)	0,00508	9076,93 7	0,16029	
																0328	Углерод (Сажа, Углерод черный) (583)	0,00423	7564,41 2	0,13357 9	
																0337	Углерод оксид (Окись углерода, Угарный	0,04235	75640,5 48	1,33578 9	

Отчет	возможных воздей	іствиях														
												газ) (584)				
											0410	Метан (727*)	0,00105	1891,10	0,03333	2025
001	ДЭС (резервный)	1	4380 труба	0012 5	0,4	3,28	41 40	0 6633			0301		0,4267	2565,61 3	95 2,8808	2025
	d i											(Азота диоксид)				
											0304	оксид	0,0693	416,679	0,4681	2025
											0328	(Азота оксид) (6) Углерод	0,0278	167,153	0,1801	2025
											0328	(Сажа, Углерод черный) (583)	0,0278	107,133	0,1801	2023
											0330		0,0667	401,046	0,4501	2025
											0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,3444	2070,76 9		
											0703	Бенз/а/пире н (3,4- Бензпирен) (54)	6,7E-07	0,004	0,00000	2025
											1325	Формальде гид (Метаналь) (609)	0,00667	40,105	0,04501	
											2754		0,1611	968,644	1,0803	2025
												предельные C12-C19 (в пересчете на C); Растворите ль РПК-				
001	ППУ	1	8760 труба	0013 5	0,05	3,05 0,000	98 40	0 6633	49437 57		0301	265П) (10) Азота (IV) диоксид (Азота диоксид) (4)	0,02973	12238,1 22	0,18649	2025
											0304		0,00483	1988,23 2	0,0303	2025
											0328	оксид) (6)	0,00264	1086,73	0,01656	2025

Отчет о	возможных воздейс	твиях															
												0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0621	25562,9 79	0,38959	2025
												0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,14675	88	0,92054	
001	Площадка устья скважины Б-5	1	8760	ЗРА и ФС	6001	2	30 6	6633 05	49437 57	100	100	0415	Смесь углеводоро дов предельных C1-C5 (1502*)	0,00514		0,16217	
001	Площадка устья скважины Б-6	1	8760	ЗРА и ФС	6002	2	30	6633 05	49437 57	100	100	0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00514		0,16217 6	
001	БДР	1	8760	ЗРА и ФС	6003	2	30 6	6633 05	49437 57	100	100	1052	Метанол (Метиловы й спирт) (338)	0,00079		0,01311	2025
001	БДР	1	8760	ЗРА и ФС	6004	2	30 6	6633 05	49437 57	100	100	1052	Метанол (Метиловы й спирт) (338)	0,00079		0,01311	2025
001	БДР	1	8760	ЗРА и ФС	6005	2	30 6	6633 05	49437 57	100	100	1052	Метанол (Метиловы й спирт) (338)	0,00079		0,01311	2025
001	Площадка манифольда	1	8760	ЗРА и ФС	6006	2	30 6	6633 05	49437 57	100	100	0415	Смесь углеводоро дов предельных C1-C5 (1502*)	0,00575		0,18156 7	
001	Площадка сепаратора	1	8760	ЗРА и ФС	6007	2	30 6	6633 05	49437 57	100	100	0415		0,00440		0,13885 7	2025
												0416	Смесь углеводоро дов предельных C6-C10 (1503*)	0,00035		0,01125 4	2025
001	Площадка дренажной емкости	1	8760	ЗРА и ФС	6008	2	30	6633 05	49437 57	100	100	0415		0,00268		0,08460	
												0416	Смесь углеводоро дов предельных C6-C10 (1503*)	0,00035		0,01125	2025

001	Межплощадочн ые трубопроводы	1	8760	ЗРА и ФС	6009	2	30	6641 56	49291 49	100 10	00	0415	Смесь углеводоро дов	0,00268	0,08460	2025
													предельных C1-C5 (1502*)			
												0416	Смесь углеводоро дов предельных С6-С10 (1503*)	0,00071	0,02250	2025
001	Площадка кранового узла	1	8760	ЗРА и ФС	6010	2	30	6641 56	49291 49	100 10	00	0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00344	0,10849	2025
001	Площадка кранового узла	1	8760	ЗРА и ФС	6011	2	30	6641 56	49291 49	100 10	00	0415	Смесь углеводоро дов предельных C1-C5 (1502*)	0,00344	0,10849	2025
001	Точка подключения к манифольду	1	8760	ЗРА и ФС	6012	2	30	6641 56	49291 49	100 10	00	0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00172	0,05424	2025
001	Точка врезки в газопровод	1	8760	ЗРА и ФС	6013	2	30	6641 56	49291 49	100 10	00	0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00172	0,05424	2025
001	Площадка блока реагента	1	8760	ЗРА и ФС	6014	2	30	6633 05	49437 57	100 10	00	1052	Метанол (Метиловы й спирт) (338)	0,00099	0,03142	2025
001	Площадка блока реагента	1	8760	ЗРА и ФС	6015	2	30	6633 05	49437 57	100 10	00	1052	Метанол (Метиловы й спирт) (338)	0,00066	0,02095	2025
001	Площадка ГСП	1	8760	ЗРА и ФС	6016	2	30	6633 05	57	100 100	00	0415	Смесь углеводоро дов предельных C1-C5 (1502*)	0,05262	1,65940	
001	Площадка емкостей конденсата	1	8760	неорг. источник	6017	2	30	6633 05	49437 57	8 1	6		Смесь углеводоро дов предельных С1-С5 (1502*)	0,00318	0,10046	
												0416	Смесь углеводоро дов предельных С6-С10 (1503*)	0,00212	0,06704	2025
001	Площадка	1	8760	неорг.	6018	2	30	6633	49437	8 1	.6	0415	Смесь	0,00796	0,25115	2025

30 6633 49437 05 57

8 16

0415 Смесь

дов

углеводоро

предельных C1-C5 (1502*) 0,00796

6018

8760 неорг.

источник

конденсата

стояка налива

2

\sim			•
()TUET	n	BUSMUATHEIA	воздействиях

1 1	ы пожи <i>вых воздене</i>		1	1	<u> </u>	1 1	I I	1	1 1		1		1	1	I I	<u> </u>	0.416	La	1 0 00521	1016	7.60	2025
																	0416	Смесь углеводоро дов предельных	0,00531 46	0,167	760 1	2025
																		C6-C10 (1503*)				
001	Площадка узла учета газа	1	8760	неорг. источник	6019	2				30	6633 05	49437 57	8	16			0415	Смесь углеводоро дов предельных	0,02377	0,749	973	2025
																	0.416	C1-C5 (1502*)	0.01202	0.40	120	2025
																	0416	Смесь углеводоро дов предельных С6-С10 (1503*)	0,01282	0,404	6	2025
001	Площадка емкости	1	8760	неорг. источник	6020	2				30	6633 05	49437 57	8	16			0415	Смесь углеводоро	0,00244	0,077	722	2025
	конденсата 100 м3			источник							03	31						дов предельных С1-С5			3	
																	0416	(1502*)	0,00000	0,000	200	2025
																	0410	углеводоро дов	01	0,000	3	2023
																		предельных C6-C10 (1503*)				
001	Площадка дренажной емкости	1	8760	неорг. источник	6021	2				30	6633 05	49437 57	8	16			0415	Смесь углеводоро дов	0,00371	0,117	715	2025
						предельных C1-C5 (1502*)																
																	0416	Смесь углеводоро	0,00000	0,000	5	2025
																		дов предельных С6-С10				
001	Площадка	1	8760	неорг.	6022	2				30	6633	49437	8	16			0415	(1503*) Смесь	0,00627	0,197	789	2025
	факела			источник							05	5						углеводоро дов	5		8	
																		предельных C1-C5 (1502*)				
001	Площадка сепараторов	1	8760	неорг. источник	6023	2				30	6633 05	49437 57	8	16			0415	Смесь углеводоро	0,03265 8	1,029	990	2025
																		дов предельных C1-C5 (1502*)				
001	Площадка компрессорных	1	8760	неорг. источник	6024	2				30	6641 56	49437 57	8	16			0415	Смесь углеводоро	0,00702 9	0,221	165 7	2025
	агрегатов для закачки												7				дов предельных С1-С5					
																	0416	(1502*) Смесь	0,00106	0,033	335 36	2025
																		углеводоро дов предельных	3		30	
												10.55						C6-C10 (1503*)	0.65.111		-0-	
001	Площадка трубопроводов	1	8760	неорг. источник	6025	2				30	6633 05	49291 49	8	16			0415	Смесь углеводоро дов	0,02430 2	0,766	5	2025

\sim			•
()TUET	n	BUSMUATHEIA	воздействиях

															предельных C1-C5 (1502*)				
001	Площадка ЗУ	1	8760	неорг. источник	6026	2		30	6633 05	49437 57	8	16		0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00777	0,24	1510 8	2025
001	Площадка печей подогрева	1	8760	неорг. источник	6027	2		30	6633 05	49437 57	8	16		0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00930	0,29	9345 1	2025
001	Сепаратор 0,8м3	1	8760	неорг. источник	6028	2		30	6633 05	49437 57	8	16		0415	Смесь углеводоро дов предельных C1-C5 (1502*)	0,01318	0,41	2	2025
														0416	Смесь углеводоро дов предельных С6-С10 (1503*)	0,00487 7	0,15	4	2025
001	Двухфазный сепаратор V-2	1	8760	неорг. источник	6029	2		30	6633	49437 57	8	16		0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,02200		5	
														0416	Смесь углеводоро дов предельных С6-С10 (1503*)	0,00813		6	
001	Трехфазный вертикальный сепаратор	1	8760	неорг. источник	6030	2		30	6633	49437 57	8	16		0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00819	0,25	6	2025
														0416	Смесь углеводоро дов предельных С6-С10 (1503*)	0,00303	0,09	9558 1	2025
001	Факельный сепаратор	1	8760	неорг. источник	6031	2		30	6633 05	49437 57	8	16		0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00079	0,02	2501 7	2025
														0416	Смесь углеводоро дов предельных С6-С10 (1503*)	0,00000	0,00	0000	2025
001	Стояк налива конденсата в автоцистерны	1	8760	неорг. источник	6032	2		30	6633 05	49437 57	8	16		0415	Смесь углеводоро дов предельных С1-С5 (1502*)	0,00123	1,92	2945	2025

\sim			•
()TUET	n	BUSMURHEIX	воздействиях

	зможных воздеис	ЛВИИХ													0416	Смесь	0,00045	0.	,71303	2025
																углеводоро дов				
																предельных C6-C10 (1503*)				
001	Откачка из дренажной	1	8760	неорг. источник	6033	2		30	6633 05	49437 57	8	16			0415	Смесь углеводоро	0,00123	0,	,00682	2025
	емкости в автоцистерны															дов предельных С1-С5				
															0416	(1502*) Смесь	0,00045	0	0,00252	2025
															0.10	углеводоро дов	0,000.0		,00202	
																предельных С6-С10				
001	Насос для откачки	1	8760	неорг. источник	6034	2		30	6633 05	49437 57	8	16			0415	(1503*) Смесь углеводоро	0,00805	0.),25411	2025
	o iku ikii			nero min					0.5	3,						дов предельных				
																C1-C5 (1502*)				
															0416	Смесь углеводоро	0,00297	0,	,09391	2025
																дов предельных С6-С10				
001	Насос для	1	8760	неорг.	6035	2		30	6633	49437	8	16			0415	(1503*)	0,00805	0.),25411	2025
	откачки			источник					05	57						углеводоро дов	8			ļ
																предельных C1-C5 (1502*)				
															0416	Смесь углеводоро	0,00297	0,	,09391	2025
																дов предельных				l
			0.5.10		1021					10.125					0.11.5	C6-C10 (1503*)			45005	2025
001	Камера приема и запуска скребка	1	8760	неорг. источник	6036	2		30	6633 05	49437 57	8	16			0415	Смесь углеводоро дов	0,01520	0,),47937 4	2025
	скреска															предельных С1-С5				
															0416	(1502*) Смесь	0,00562	0,	,17301	2025
																углеводоро дов	2			1
																предельных C6-C10 (1503*)				
001	Конденсатосбо рник	1	8760	неорг. источник	6037	2		30	6633 05	49437 57	8	16			0415	Смесь углеводоро	0,00042		0,0133	2025
																дов предельных				1
001	Площадка	1	8760	наопе	6038	2		30	6633	49437	0	16			0415	С1-С5 (1502*) Смесь	0,00371	0),11715	2025
001	конденсатосбор ника	1	8700	неорг. источник	0036	2		30	05	57	0	10			0413	углеводоро дов	5		7	2023
														предельных С1-С5						
															0416	(1502*) Смесь	0,00000	0,	0,00000	2025
																углеводоро дов	02		5	<u> </u>

Отчет	0 воз	вможных воздей	ствиях								
										предельных C6-C10 (1503*)	

Отчет о возможных воздеиствиях				
«Обустройство месторождения Барханное (С	истема сбора газа и Пун	кт сбора газа) и строите	льство газопровода Барх	анное-Амангельлы

8.1.3 Расчет и анализ приземных концентраций загрязняющих веществ

В соответствии с нормами проектирования, в Казахстане для оценки влияния выбросов загрязняющих веществ на качество атмосферного воздуха используется математическое моделирование.

Расчет содержания вредных веществ в атмосферном воздухе проводится в соответствии с требованиями «Методики определения нормативов эмиссий в окружающую среду» Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.

Загрязнение приземного слоя воздуха, создаваемого выбросами промышленных объектов, зависит от объемов и условий выбросов загрязняющих веществ в атмосферу, природно-климатических условий и особенностей циркуляции атмосферы.

Для определения воздействия проектируемого объекта на окружающую среду произведен расчет полей приземной концентрации загрязнения. Исходными данными для расчета полей приземной концентрации являются полученные выше величины объемов выбросов вредных веществ.

Прогнозирование загрязнение атмосферы проводилось по программному комплексу УПРЗА «ЭРА», версия 3.0. Разработчик фирма ООО «Логос Плюс», Новосибирск.

Расчет рассеивания произведен на период эксплуатации.

Расчет выполнен для источников выделения загрязняющих веществ для температуры наружного воздуха самого холодного месяца, так как печи подогреватели в основном работают в зимнее время.

Значение коэффициента А, зависящего от стратификации атмосферы и соответствующего неблагоприятным метеорологическим условиям, принято в расчетах равным 200.

Поправка на рельеф к значениям концентраций загрязняющих веществ не вводилась.

Расчет рассеивания приземных концентраций загрязняющих веществ был проведен на площадке, принятой высотой $7400 \, \text{м}$, шириной $4400 \, \text{м}$, шагом сетки через $200 \, \text{м}$ по оси X и по оси Y.

Размер расчетного прямоугольника и шаг расчетной сетки выбран с учетом взаимного расположения оборудования – источников выбросов.

Расчеты уровня загрязнения атмосферы выполнены по всем организованным и неорганизованным источникам с учетом всех выделяющихся загрязняющих веществ.

Расчет рассеивания на период эксплуатации проведен с учетом фоновых концентраций.

Результаты расчета рассеивания максимальных приземных концентраций по всем загрязняющим веществам и группам суммаций, с указанием количества принятых к расчету источников загрязнения атмосферы (ИЗА), представлены в таблице ниже.

Анализ проведенных расчетов загрязнения атмосферы от источников показал, что приземные концентрации по всем веществам не превышает 1 ПДК.

Результаты расчетов рассеивания загрязняющих веществ в атмосфере в виде карт-схем изолиний расчетных концентраций по загрязняющим веществам приведены в Приложении 3.

8.1.4 Анализ результатов расчетов выбросов

Согласно проведенным расчетам, общее количество загрязняющих веществ, выделяемых в атмосферу за период строительства центробежного воздушного компрессора, составит:

На этапе проведения строительных работ:

• от стационарных источников при строительстве проектируемого объект – **6,6132** г/сек или **64,5897** т/период.

При эксплуатации:

• 29,549532 г/сек или 24,977969 м/год

Результаты проведенных расчетов показали, что на период строительства проектируемых сооружений общее количество источников выбросов составит 16 единиц.

На период эксплуатации проектируемых сооружений выявлено 51 источник выбросов, из них 13 организованных источников выбросов и 38 неорганизованных.

8.1.5 Обоснование размера санитарно-защитной зоны

Территория СЗЗ предназначена для обеспечения снижения уровня воздействия до требуемых нормативов по всем факторам воздействия за ее пределами, для создания санитарно — защитного барьера между территорией предприятия и территорией жилой застройки, для организации дополнительных условий, обеспечивающих экранирование, ассимиляцию и фильтрацию загрязнений атмосферного воздуха, и повышенную комфортность микроклимата.

Критерием для определения размера C33 является соответствие на ее внешней границе и за ее пределами концентрации загрязняющих веществ для атмосферного воздуха населенных мест ПДК и/или ПДУ физического воздействия на атмосферный воздух.

Воздействие на местное население отсутствует.

Работы по строительно-монтажным работам не классифицируются, санитарнозащитная зона на период строительства не устанавливается.

Согласно Санитарных правил "Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека", утвержденных приказом и.о. Министра здравоохранения РК от 11. 01.2022 № ҚР ДСМ-2, для месторождения Барханное установлена общая санитарно-защитная зона — 1000 м.

Согласно Приложению 2 к Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI 3PK, данный проект относится к 1-ой категории.

Согласно п.50 Параграфа 2 СП «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» (Утверждены приказом и. о. Министра здравоохранения РК от 11.01.2022 года №КР ДСМ-2), СЗЗ для объектов I классов опасности максимальное озеленение предусматривает — не менее 40% площади, с обязательной организацией полосы древесно-кустарниковых насаждений со стороны жилой застройки.

При невозможности выполнения указанного удельного веса озеленения площади СЗЗ (при плотной застройке объектами, а также при расположении объекта на удалении от населенных пунктов, в пустынной и полупустынной местности), допускается озеленение свободных от застройки территорий и территории ближайших населенных пунктов, по согласованию с местными исполнительными органами, с обязательным обоснованием в

проекте C33. При выборе газоустойчивого посадочного материала и проведении мероприятий по озеленению учитываются природно-климатические условия района расположения предприятия.

8.1.7 Мероприятия по уменьшению выбросов в атмосферу

Сокращение объемов выбросов и снижение их приземных концентраций обеспечивается комплексом планировочных технологических мероприятий. И уменьшение Планировочные мероприятия, влияющие на выбросов воздействия районы, предусматривают благоприятное расположение предприятия на жилые предприятия по отношению к селитебной территории.

Основным техническим мероприятием на предприятии является использование различного типа пылегазоочистного оборудования (ПГОУ) для улавливания загрязняющих веществ в производственных цехах и на оборудовании.

К мероприятиям по уменьшению выбросов в атмосферу относятся:

- Контроль за точным соблюдением технологии производств работ;
- строгое соблюдение всех технологических параметров;
- осуществление постоянного контроля герметичности оборудования;
- осуществление постоянного контроля за ходом технологического процесса;
- Рассредоточение во времени работ механизмов, не задействованных в едином непрерывном технологическом процессе;
- Проведение мониторинговых наблюдений за состоянием атмосферного воздуха и применение необходимых мер при наличии увеличивающихся концентраций загрязняющих веществ.
 - организация движения транспорта;
- исправное техническое состояние используемой строительной техники и транспорта;
 - разработка технологического регламента на период НМУ;
 - обучение персонала реагированию на аварийные ситуации;
 - соблюдение норм и правил противопожарной безопасности;
- сокращение сроков хранения пылящих инертных материалов, хранения в строго отведенных местах и укрытие их пленкой;
- разгрузка инертных материалов рано утром, когда влажность воздуха повышается;
 - хранение производственных отходов в строго определенных местах;
 - запрещение стихийного сжигания отходов;
- использование современного оборудования с минимальными выбросами в атмосферу;
- автоматизация технологических процессов обеспечивающая стабильность работы всего оборудования с контролем и аварийной сигнализацией при нарушении заданного режима, что позволит обслуживающему персоналу предотвратить возникновение аварийных ситуаций;
 - обеспечение прочности и герметичности оборудования;
- своевременное проведение планово-предупредительных ремонтов и профилактики технологического оборудования;

К планировочным мероприятиям, влияющим на уменьшение воздействия выбросов предприятия на окружающую среду, относится благоустройство территории (в том числе озеленение санитарно – защитной зоны).

Эти меры в сочетании с хорошей организацией производственного процесса и контроля позволят обеспечить минимальное воздействие на атмосферный воздух в районе проведения работ.

Специализированные мероприятия по снижению выбросов на период строительства и эксплуатации в проекте не предусмотрены.

8.1.8 Мероприятия на период неблагоприятных метеорологических условий (HMУ)

Уровень загрязнения приземных слоев атмосферы во многом зависит от метеорологических условий. В некоторых случаях метеорологические условия способствуют накоплению загрязняющих веществ в районе расположения объекта, т.е. концентрации примесей могут резко возрасти. Для предупреждения возникновения высокого уровня загрязнения осуществляются регулирование и кратковременное сокращение выбросов загрязняющих веществ.

Неблагоприятными метеорологическими условиями при проектируемых работах могут быть:

- -штиль,
- -температурная инверсия.

Регулирование выбросов осуществляется с учетом прогноза НМУ на основе предупреждений со стороны Казгидромета о возможном опасном росте в воздухе концентраций примесей вредных химических веществ из-за формирования неблагоприятных метеоусловий.

Прогноз наступления НМУ и регулирование выбросов являются составной частью комплекса мероприятий по обеспечению чистоты воздушного бассейна.

Исходя из специфики работ, в период НМУ предусмотрены три режима работы:

Первый – носит организационно-технический характер и не приводит к снижению производительности.

Второй – предусматривает сокращение выбросов ЗВ на 20–40 % за счет сокращения производительности производства:

- -усиление контроля за всеми технологическими процессами;
- -ограничение движения и использования транспорта на территории предприятия согласно ранее разработанных схем маршрутов;
 - -проверку автотранспорта на содержание загрязняющих веществ в выхлопных газах.
 - -сокращение объемов погрузочно-разгрузочных работ.

Третий – предусматривает сокращение выбросов вредных веществ на 40-60 %:

- -ограничение на 60 % работ, связанных с перемещением грунта на площадке, остановка работы автотранспорта и механизмов;
 - -прекращение погрузочно-разгрузочных работ;
 - -ограничение строительных работ вплоть до полной остановки.
- -запрещение погрузочно-разгрузочных работ, отгрузки сыпучего сырья, являющихся источниками загрязнения;

-остановку	пусков	ых рабо	т на	аппаратах	И	технол	огических	линиях,
сопровождающихся	выброса	ми в атмос	феру;					
-запрещение	выезда	на линии	автотр	оанспортных	средств	в с не	отрегулир	ованными
двигателями.								

8.2. Охрана поверхностных и подземных вод

8.2.1 Расчет норм водопотребления

Целью проектного решения является «Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)».

Разделом проекта предусматривается водоснабжение строительной площадки и водоснабжение при эксплуатации.

Для питьевых нужд используется привозная бутилированная питьевая вода.

Норма водопотребления на одного человека в день принята по СНиП РК 4.01-02-2001 «Водоснабжение. Наружные сети и сооружения» и составляет 2 л/день, норма расхода воды на хозяйственно-бытовые нужды – 25 л/сут.

Всего работающих при строительстве-118 человек, Количество смен -1,

Продолжительность строительства – 14 мес;

На период эксплуатации количество работающих – 24 чел.

Расходы воды приведен в таблице ниже.

Таблица 11 – Расчет расхода воды на хоз- бытовые нужды

			Норма водопо-	Водопо	требление	Водоо	тведение
Потребители	Ед, изм	К-во	требления, л/сут	м3/сут	м3/период	м3/сут	м3/период
При строительстве (питьевые)	чел,	118	2	0,236	100,772	0,236	100,772
При эксплуатации (питьевые)	чел,	24	2	0,048	17,52	0,048	17,52
При эксплуатации (х/бытовые нужды)	чел,	24	25	0,6	219	0,6	219
Итого:	-	-	-	0,884	337,292	0,884	337,292

Таблица 12 – Расход воды на производственные нужды

Наименование потребителей	Единица	Наименова	Расход воды
_	измерения	ние работ	м³/период
Строительство трубопровода	Диаметр	опрессовка	975,119
	219,0 мм		
Пылеподавление	Площадь	Полив	3159
		водой	
Заполнение систем печей			70

Хозбытовая канализация. Стоки направляются в существующую сеть канализации.

8.2.2 Мероприятия по охране и рациональному использованию водных ресурсов

Проектные решения обеспечивают ряд мероприятий по охране и рациональному использованию водных ресурсов; на всех этапах технологического процесса проектными решениями обеспечивается контроль за количеством и качеством потребляемой воды. сбора производственных и бытовых сточных вод и своевременный вывоз стоков специализированным организациям для утилизации.

При соблюдении технологии строительства и эксплуатации запроектированных сооружений влияние на поверхностные и подземные воды оказываться не будет.

Проектными решениями сброс каких-либо сточных вод на рельеф или в поверхностные водные источники не предусматривается.

При соблюдении технологии строительства и эксплуатации запроектированных сооружений влияние на поверхностные и подземные воды оказываться не будет. Проектные решения предусматривают ряд мероприятий по охране и рациональному использованию водных ресурсов, которые до минимума снизят отрицательное воздействие производства на поверхностные и подземные воды:

при строительстве:

- использование существующих дорог;
- ограничение площадей занимаемых строительной техникой;
- хранение стройматериалов на специальной оборудованной площадке;
- обустройство мест локального сбора и хранения отходов.

при эксплуатации:

- контроль качества и количества воды;
- площадки для временного хранения отходов выполнены из монолитного железобетона;
- под основания бетонных конструкций выполняется подготовка из щебня, пропитанного битумом до полного насыщения;
- гидроизоляция фундаментов горячим битумом;
- материал монолитных бетонных конструкций принят на сульфатостойком портландцементе.

При соблюдении технологического режима эксплуатации сооружений, просачивание загрязненных вод практически исключено, т.е. отрицательное воздействие на подземные воды и водопроницаемые отложения сарматского яруса исключаются.

Уровень воздействия на окружающую среду при эксплуатации проектируемых объектов можно оценить как допустимый

8.3. Охрана подстилающей поверхности, животного мира, растительности

8.3.1 Основные факторы, влияющие на почвенно-растительный покров

Проблема сохранения почвенного покрова при строительстве объекта имеет особое значение, так как почвы обладают крайне низкой естественной буферностью по отношению к антропогенному воздействию и низкой самоочищающей способностью.

Для эффективной охраны почв от возможного загрязнения и нарушения должны выполняться комплекс мероприятий, направленные на предупреждение, снижение или исключение различных видов воздействия на подстилающую поверхность, а также решения, обеспечивающие инженерно-экологическую безопасность в районе работ.

Наиболее важными требованиями являются минимизация природопользования и снижение объемов отходов. Согласно этой концепции, при проведении строительства будут отведены минимально возможные площади земель, использовано ограниченное количество воды и других природных ресурсов, уменьшен объем отходов в окружающую среду.

В целях охраны земель собственники земельных участков и землепользователи обязаны проводить мероприятия по:

1) защите земель от водной и ветровой эрозий, селей, оползней, подтопления, затопления, заболачивания, вторичного засоления, иссушения, уплотнения, загрязнения радиоактивными и химическими веществами, захламления, биогенного загрязнения, а также других негативных воздействий;

- 2) защите земель от заражения карантинными объектами, чужеродными видами и особо опасными вредными организмами, их распространения, зарастания сорняками, кустарником и мелколесьем, а также от иных видов ухудшения состояния земель;
 - 3) ликвидации последствий загрязнения, в том числе биогенного, и захламления;
 - 4) сохранению достигнутого уровня мелиорации;
- 5) рекультивации нарушенных земель, восстановлению плодородия почв, своевременному вовлечению земель в оборот.

Проведение проектных работ не вызовет нарушение почвенно-растительного покрова в связи с работой автомобильного транспорта и спецтехники. В целом, весь участок проектируемых работ будет подвержен определенному механическому воздействию.

В целях предупреждения нарушения растительного покрова в процессе проектируемых работ необходимо осуществление следующих мероприятий:

- раздельный сбор отходов в специальных контейнерах;
- захоронение отходов производства и потребления на специально оборудованных полигонах;
- пропаганда охраны растительного мира;
- запрет на вырубку кустарников и разведение костров.

Для минимизации воздействия проектируемых работ на животный мир предприятием разработаны и выполняются природоохранные мероприятия, направленные на сохранение видового многообразия животных, охрану среды их обитания, условий размножения и путей миграции животных, сохранения целостности естественных сообществ.

Природоохранные мероприятия включают следующие положения:

- пропаганда охраны животного мира;
- ограничения техногенной деятельности вблизи участков с большим биологическим разнообразием;
 - маркировка и ограждение опасных участков;
- создание ограждений для предотвращения попадания животных на производственные объекты;
 - запрет на охоту в районе контрактной территории;
 - разработка оптимальных маршрутов движения автотранспорта;

Техническая рекультивация включает:

Проектом предполагается технический этап рекультивации, который включает уборку территории от мусора после проведения строительных работ.

Проведение биологической рекультивации проектом не предусматривается.

На предприятии намечен также ряд мероприятий, направленных на обеспечение инженерно-экологической безопасности объектов и предупреждения аварийных ситуаций:

- визуальный и приборный контроль швов стыковочных и иных соединений трубопроводов;
 - защита трубопроводов от коррозии;
 - оперативная ликвидация загрязнений технологических площадок;
- планово-предупредительные ремонтные работы и обследование состояния оборудования.
- В процессе эксплуатации проектируемых объектов загрязнение почвенно-растительного покрова возможно в случае попадания отходов в почву.

Для уменьшения воздействия на почвы в процессе эксплуатации производится следующий комплекс мероприятий:

- площадки для приема отходов предусмотрены из монолитного бетона;
- бетон для бетонных и ж/бетонных конструкций принят на сульфатостойком портландцементе;
- под бетонными и железобетонными конструкциями предусматривается подготовка из щебня, пропитанного битумом до полного насыщения;
- все боковые поверхности бетонных конструкций, соприкасающиеся с грунтом, обмазываются горячим битумом за два раза;
 - антикоррозийная защита металлических конструкций.

Соблюдение регламента работ, осуществление ряда дополнительных технологических решений с целью увеличения надежности работы оборудования и проведения природоохранных мероприятий сведут к минимуму воздействие проектируемых работ на почвенно-растительный покров. С учетом всех предусмотренных технических решений и специальных мероприятий воздействие проектируемой деятельности не окажет значительного влияния на подстилающую поверхность, животный и растительный мир.

Площадка установки выполнена с бетонным покрытием, недопускающим попадания в грунт аварийных протечек от оборудования. Организация рельефа площадки выполнена с отведением дождевых и талых вод, а также аварийных протечек в существующую дренажную систему предприятия

Временное хранение отходов предусмотрено на существующих оборудованных площадках предприятия.

Проектируемый объект расположен на территории действующего предприятия, которое имеет спланированные площади. Организация рельефа сводится к интеграции проектируемой площадки в существующие планировочные решения.

8.4. Воздействие физических факторов

8.4.1 Шум, вибрация

Одной из форм вредного физического воздействия на окружающую природную среду является шумовое воздействие. Под шумом понимается беспорядочное сочетание звуков различной частоты и интенсивности. Шумы по характеру спектра делятся на широкополосные с равномерным и непрерывным распределением звуковой энергии по всему спектру и тональный, если в звуковом спектре имеются легко различимые дискретные тона.

По величине частот (f) шумы делятся, %:

- ▶ на низкочастотные, если f<400 Гц;</p>
- ▶ на среднечастотные, если 500<f<1000 Гц;</p>
- ▶ на высокочастотные, если f> 1000 Гц.

От различного рода шума в настоящее время страдают многие жители городов, поселков, в том числе временных, находящихся вблизи промышленных объектов и на осваиваемых территориях. Для многих людей шум является причиной нервных расстройств, нарушения сна, головных болей, повышения кровяного давления, нарушения и потери слуха. Заболевание слухового аппарата может наступить при непрерывном шуме свыше 100 дБ. Поэтому оценка воздействия звукового давления на персонал, работающий на промышленных площадках и в быту, имеют важное экологическое и медико-профилактическое значение.

Источниками шума и вибрации являются дизельные двигатели, электромоторы, печи, насосы.

Производственный шум. Нормативные документы устанавливают определенные требования к методам измерений и расчетов интенсивности шума в местах нахождения людей, допустимую интенсивность фактора и зависимость интенсивности от продолжительности воздействия шума. В соответствии с нормами для рабочих мест в производственных помещениях считается допустимой шумовая нагрузка 80дБ. При производственных работах на открытой территории шумовые нагрузки будут зависеть от ряда факторов, включающих и выше названные.

Уровень шума на открытых рабочих площадках будет зависеть от расстояния до работающего агрегата, а также от того, где находится само работающее оборудование – в помещении или вне его, от наличия ограждения, положения места измерения относительно направленного источника шума, метеорологических и других условий.

Технологическое оборудование, предполагаемое к использованию, включает двигатели внутреннего сгорания, как основной источник производимого шума. Силовой агрегат включает дизельный двигатель по мощности сравнимый с двигателями устанавливаемыми на грузовых дизельных автомобилях — 160 кВт и создающий шум до 90 дБ(A).

Шумовое воздействие автомранспорта. Внешний шум автомобилей принято измерять в соответствии с ГОСТ 19358-85. Допустимые уровни внешнего шума автомобилей, действующие в настоящее время, применительно к условиям строительных работ, составляют: грузовые автомобили с полезной массой свыше 3,5 т создают уровень звука – 89 дБ(A); грузовые –дизельные автомобили с двигателем мощностью 162 кВт и выше – 91 дБ(A).

Допустимый уровень звука на рабочих местах водителей и обслуживающего персонала тракторов самоходных шасси, прицепных и навесных сельскохозяйственных машин, строительно-дорожных и других аналогичных машин составляет 80 дБ(A).

Борьбу с шумом и вибрацией проводят путем своевременного профилактического ремонта оборудования, подтягивания ослабевших соединений, своевременной смазки вращающихся частей. Общий метод борьбы с вибрацией тяжелых машин – устройство под ними фундаментов, виброизолированных от пола и соседних конструкций.

Для индивидуальной защиты от шума проектом предусмотрено применение противошумных вкладышей, перекрывающих наружный слуховой проход; защитных касок с полшлемниками.

8.4.2 Воздействие электромагнитных полей

Интенсивность ЭМП на рабочих местах и местах возможного пребывания персонала, обслуживающего установки, генерирующие электромагнитную энергию, не должна превышать предельно допустимых уровней:

- > по электрической составляющей в диапазоне:
 - $3 M\Gamma_{II} 50 B/M;$
 - 3-30 МГц 20 В/м;
 - 30-50 МГц 10 В/м;
 - 50-300 МГц 5 В/м.
- по магнитной составляющей в диапазоне частот:
 - − 60 кГц-1,5 МГц 5 А/м;
 - 30 МГц-50 МГц -0,3 А/м.

Плотность потока энергии ЭМП в диапазоне частот 300 МГц-300 ГГц (СВЧ) следует устанавливать исходя из допустимого значения энергетической нагрузки на организм человека и времени пребывания в зоне облучения. Во всех случаях она не должна превышать $10 \, \mathrm{Bt/m2}$ ($1000 \, \mathrm{mkBt/cm2}$), а при наличии рентгеновского излучения или высокой температуры (выше $28 \, ^{\circ}\mathrm{C}$) – $1 \, \mathrm{Bt/m2}$ ($1000 \, \mathrm{mkBt/cm2}$),

Максимально допустимая напряженность электрического поля в диапазоне СЧ не должна превышать 500 В/м, в диапазоне ВЧ – 200 В/м.

Наиболее эффективной мерой защиты от воздействия ВЧ электромагнитных полей является использование дистанционного управления радиопередатчиками. При отсутствии дистанционного управления следует рационально размещать передатчики и элементы фидерных линий в специально предназначенных помещениях.

Защита от облучения электромагнитными полями обеспечивается проведением конструктивных и организационных защитных мероприятий, которые разрабатываются на основании расчетов и прогнозирования интенсивности ЭМП. Конструктивная защита обеспечивается рациональным размещением антенн радиопередающих устройств и радиолокационных станций и применением защитных экранов.

Для защиты населения от возможного вредного воздействия электромагнитных полей от линий электропередач (ЛЭП) – использование метода защиты расстоянием, т.е. создание санитарно-защитной зоны, размеры которой обеспечивают предельно допустимый уровень напряженности поля в населенных местах. Наибольшее шумовое воздействие будет отмечаться на рабочих площадках (местах). Применение современного оборудования для всех технологических процессов, применяемые меры по минимизации воздействия шума и практическое отсутствие мощных источников электромагнитного излучения позволяют говорить о том, что на рабочих местах не будут превышаться установленные нормы. В связи с этим, сверхнормативное воздействие данных физических факторов на людей и другие живые организмы вблизи за пределами СЗЗ не ожидается.

8.4.3 Радиационное воздействие

Основными принципами обеспечения радиационной безопасности являются:

- принцип нормирования не превышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;
- принцип обоснования запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением;
- принцип оптимизации поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения;
- принцип аварийной оптимизации форма, масштаб и длительность принятия мер в чрезвычайных (аварийных) ситуациях должны быть оптимизированы так, чтобы реальная польза уменьшения вреда здоровью человека была максимально больше ущерба, связанного с ущербом от осуществления вмешательства.

Радиационная безопасность обеспечивается:

- проведением комплекса мер правового, организационного, инженерно - технического, санитарно - гигиенического, профилактического, воспитательного, общеобразовательного и информационного характера;

- реализацией государственными органами Республики Казахстан, общественными объединениями, физическими и юридическими лицами мероприятий по соблюдению норм и правил в области радиационной безопасности;
 - осуществлением радиационного мониторинга на всей территории;
- осуществлением государственных программ ограничения облучения населения от источников ионизирующего излучения;
- реализацией программ качественного обеспечения радиационной безопасности на всех уровнях осуществления практической деятельности с источниками ионизирующего излучения.
- В связи с вышеизложенным, предусмотрены мероприятий по радиационной безопасности населения и работающего персонала при эксплуатации предприятия заключающиеся в провидение ежегодного радиационного мониторинга.
- В случае установления факта радиационного заражения, сменный мастер немедленно оповещает об этом свое непосредственное руководство и сообщает в соответствующую службу для информирования Госсаннадзора. О факте радиационного загрязнения на месторождении оповещаются местные органы власти, Госсаннадзор, органы внутренних дел, техническая инспекция труда, территориальный штаб ЧС.

При обнаружении радиоактивного загрязнения свыше установленных гигиенических норм, персонал переходит на режим работы в соответствии с «Планом мероприятий по радиационной безопасности»:

- дальнейшее проведение работ возможно лишь после официального разрешения СЭС;
- вокруг загрязненной территории обозначить санитарно-защитную и наблюдательную зоны, размеры которых зависят от степени радиоактивности поступающих веществ, дозы внешнего излучения, распространения радиоактивных выбросов в атмосферу, которые устанавливаются СЭС.

Ликвидация последствий радиоактивного заражения, сбор, временное размещение и захоронение твердых и жидких радиоактивных отходов осуществляются в соответствии с инструкциями.

При работе с источниками ионизирующих излучений работающий персонал должен быть обеспечен спецодеждой и средствами индивидуальной защиты. Ответственность за готовность к применению средств индивидуальной защиты несет технический руководитель организации, за правильность их использования непосредственно на месте проведения работ — исполнитель работ.

Обеспечение радиационной безопасности при обращении с производственными отходами организаций нефтегазовой отрасли с повышенным содержанием природных радионуклидов осуществляется в соответствии с нормативными документами. Если по результатам первичного обследования не обнаружено повышенное облучение работников, а эффективная удельная активность природных радионуклидов в производственных отходах не превышает 1,5 кБк/кг, то дальнейший радиационный контроль не обязателен.

Радиационное воздействие в период строительства и эксплуатации не ожидается.

9. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ В РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, В ТОМ ЧИСЛЕ ОТХОДОВ, ОБРАЗУЕМЫХ В РЕЗУЛЬТАТЕ ОСУЩЕСТВЛЕНИЯ ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ.

9.1 Отходы.

Реализация любой деятельности неизбежно будет сопровождаться образованием, накоплением, удалением и утилизацией твердых и жидких промышленных отходов производства и потребления. Отходы, которые будут образовываться в ходе строительства и эксплуатации объектов:

- Промышленные отходы. Образуются при выполнении производственных операций, эксплуатации автотранспортных средств, строительной техники и оборудования.
- Коммунальные отходы. Образуются при жизнедеятельности обслуживающего персонала, задействованного при производстве работ.

Согласно Классификатору отходов (утвержденный Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314) каждому виду отходов присваивается специальный классификационный код. Кодировка отходов учитывает область образования, способ складирования (захоронения), способ утилизации или регенерации, потенциально опасные составные элементы, вид опасности, отрасль экономики, на объектах которой образуются отходы.

В соответствии с п. 4 ст. 338 ЭК РК виды отходов относятся к опасным или неопасным в соответствии с классификатором отходов с учетом требований настоящего Кодекса.

Отдельные виды отходов в классификаторе отходов могут быть определены одновременно как опасные и неопасные с присвоением различных кодов («зеркальные» виды отходов) в зависимости от уровней концентрации содержащихся в них опасных веществ или степени влияния опасных характеристик вида отходов на жизнь и (или) здоровье людей и окружающую среду.

Номенклатура, уровень опасности, перечень видов опасных составляющих отходов, кодов и характеристик опасных отходов, и т.д. определяется согласно Экологическому кодексу по Классификатору отходов, утверждаемый уполномоченным органом по охране окружающей среды.

- В процессе строительства и эксплуатации проектируемого объекта будут образовываться следующие твердые и жидкие отходы:
 - Строительные отходы отходы образующиеся в результате строительства объекта. Собираются в контейнеры и вывозятся на договорной основе.
 - Обтирочный материал, в том числе промасленная ветошь образуются при мелком ремонте спецтехники и оборудования.
 - *Металлолом (лом черных металлов)*. Лом чёрных металлов образуется при различных строительных работах, техническом обслуживании, демонтаже, замене изношенных деталей и оборудования.
 - Твердо-бытовые отходы образуются при обеспечении жизнедеятельности обслуживающего персонала и включают в себя отходы столовой, бытовой мусор, канцелярский и упаковочный мусор, ветошь и т.д. Твердые бытовые отходы, образующиеся в результате жизнедеятельности обслуживающего персонала, собираются в металлические

контейнеры для ТБО и передаются на утилизацию в стороннюю организацию на договорной основе.

- Отходы тары ЛКМ образуются в процессе покрасочных работ. Отходы тары складируются в контейнеры и вывозятся на захоронение на договорной основе.
- Огарки сварочных электродов образуются в процессе проведения сварочных работ. Токсичные компоненты цветные металлы. Огарки складируются в контейнеры и по мере накопления вывозятся подрядной организацией на договорной основе.

Согласно подпункта 6) пункта 2 статьи 319, статьи 326 Кодекса твердо-бытовые отходы необходимо сортировать по морфологическому составу, а также учесть приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 2 декабря 2021 года № 482 «Об утверждении Требований к раздельному сбору отходов, в том числе к видам или группам (совокупности видов) отходов, подлежащих обязательному раздельному сбору с учетом технической, экономической и экологической целесообразности».

9.2 Расчет норм образования отходов при строительстве Отходы ЛКМ (пустая тара от ЛКМ) - класс опасности III-й.

Количество использованной тары ЛКМ определяется по формуле:

 $N = \sum Mi * n + \sum Mki * \alpha i$,

где: N - количество тары, т/год;

Мі – масса і-го вида тары, тонн/год;

n – число видов тары;

Mki – масса краски в i-той таре;

αі - содержание остатков краски в в і-той таре в долях от Mki (0,02).

N = 0.5625*0.02+56.5*0.01 = 0.5763 T

Огарки сварочных электродов - расчет образования огарков сварочных электродов выполнен в соответствии с приложением 16 к приказу № 100 от 18. 04. 2008 г. «Методика разработки проектов нормативов размещения отходов производства и потребления». Класс опасности IV.

Расчет образования огарков сварочных электродов производится по формуле:

 $N = M \times Q$, т/год,

где:

N – количество огарков сварочных электродов;

М - расход электродов 6,3 т/год;

Q - остаток электродов - 0,015 т/т;

 $N = 0.63x \ 0.015 = 0.09450 \ \text{т/год}.$

Металлолом – (инертные отходы, остающиеся при строительстве – металлическая стружка, куски металла, арматура и т.д.)- твердые, не пожароопасные, IV класс опасности, в кол-ве 4.5 тонны.

Строительные отходы - (отходы, образующиеся при проведении строительных работ – обломки железобетонных изделий, и демонтаже площадок насосов и др.) – твердые, не пожароопасные, IV класс опасности. Ориентировочно образование 7,5 тонны строительного мусора (количество строительных отходов принимается по факту образования при окончании строительно-монтажных работ и благоустройстве территории).

Обтирочный материал, в том числе промасленная ветошь образуются при мелком ремонте спецтехники и оборудования – пожароопасные.

Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 г, № 100-п, Методика разработки проектов нормативов предельного размещения отходов производства и потребления.

Норма образования отхода определяется по формуле:

N = Mo + M + W, т/год, где:

где Мо – поступающее количество ветоши, 0,03 т;

М – норматив содержания в ветоши масел, М=0,12*Мо;

W – нормативное содержание в ветоши влаги, W=0,15*Mo,

M = 0.12*0.03 = 0.0036 T,

W = 0.15*0.03 = 0.0045 T,

N = 0.03 + 0.0036 + 0.0045 = 0.0381 T.

Отход не подлежит дальнейшему использованию.

Твердые бытовые отходы – отходы, образующиеся в результате жизнедеятельности персонала (пищевые отходы, бытовой мусор, упаковочные материалы, ветошь и др.) – твердые, не токсичные, не растворимые воде, образуются в период строительства, собираются в металлические контейнеры с последующей утилизацией для размещения на полигонах бытовых отходов согласно договорных отношений. Неопасные.

Согласно приложения 16 к приказу № 100 от 18. 04. 2008 г. «Методика разработки проектов нормативов размещения отходов производства и потребления», объем образования твердо-бытовых отходов определяется по следующей формуле:

O3 = P * M * Ртбо, где:

P - норма накопления отходов на одного человека в год, м3/год*чел. -0.3;

М - численность персонала при строительстве, принимаем по проекту – 118 человек;

Ртбо- удельный вес твердо-бытовых отходов, т/м3 - 0,25.

$$Q3 = 0.3 * 118* 0.25 = 8.85$$
 т/год.

С учетом времени строительства 14 мес. объем образования отходов будет 10,325 т/период.

Количество отходов, образующиеся при строительстве, принято ориентировочно и будет корректироваться заказчиком по фактическому образованию.

9.3 Расчет норм образования отходов при эксплуатации Расчет норм образования отходов при эксплуатации

Тара использованная (пластико	вая) <u>, т</u>		
Условные обозначения и расче	гные формулы		
n	количество б закупке, шт	бочек/канистр	планируемых к
m	масса бочки/мешка, т		
M = n * m	количество отхода, т		
	n, mt	m, T	М, т
пластиковые бочки/канистры	1975	0.013	25,675

Обтирочный материал, в том числе промасленная ветошь образуются при мелком ремонте спецтехники и оборудования – пожароопасные.

Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 г, № 100-п, Методика разработки проектов нормативов предельного размещения отходов производства и потребления.

Норма образования отхода определяется по формуле:

$$N = Mo + M + W$$
, т/год, где:

где Мо – поступающее количество ветоши, 0,4 т;

М – норматив содержания в ветоши масел, М=0,12*Мо;

W – нормативное содержание в ветоши влаги, W=0,15*Mo,

$$M = 0.12*0.4 = 0.048 \text{ T},$$

$$W = 0.15*0.4 = 0.06 \text{ T}$$

$$N = 0.4 + 0.048 + 0.06 = 0.508 \text{ T}.$$

Отход не подлежит дальнейшему использованию.

Отработанное масло от работы дизель-генератора.

Количество отработанных масел при работе дизель-генераторов определяется по формуле:

$$N = N_M * 0.25$$

где: N - количество отработанного моторного масла, тонн;

Nм – количество израсходованного моторного масла, необходимое для работы дизель-генератора, согласно технического проекта, тонн

10,0

Твердые бытовые отходы — отходы, образующиеся в результате жизнедеятельности персонала (пищевые отходы, бытовой мусор, упаковочные материалы, ветошь и др.) — твердые, не токсичные, не растворимые воде, образуются в период строительства, собираются в металлические контейнеры с последующей утилизацией для размещения на полигонах бытовых отходов согласно договорных отношений. Неопасные.

Согласно приложения 16 к приказу № 100 от 18. 04. 2008 г. «Методика разработки проектов нормативов размещения отходов производства и потребления», объем образования твердо-бытовых отходов определяется по следующей формуле:

$$Q3 = P * M * Ртбо, где:$$

P - норма накопления отходов на одного человека в год, м3/год*чел. -0.3;

М - численность персонала – 24 человека;

Ртбо- удельный вес твердо-бытовых отходов, т/м3 - 0,25.

$$Q3 = 0.3 *24* 0,25 = 1,8$$
 т/год.

9.3 Лимиты накопления отходов

Лимиты накопления отходов, установленные при строительстве и эксплуатации проектируемого объекта представлены в таблицах ниже.

Утилизация строительно-монтажных отходов будет обязанностью строительной организацией, выбранной на тендерной основе.

Согласно требованиям Экологического Кодекса РК, отходы производства могут временно храниться на территории предприятия не более 6 месяцев, а ТБО не более 3-х дней.

Таблица 13 – Лимиты накопления отходов, установленные при строительстве

Наименование отходов	Объем накопленных отходов на существующее положение,	Лимит накопления, тонн/год
	тонн/год	
1	2	3
Всего		23,0339
в т. ч. отходов производства		12,7089
отходов потребления		10,325
	Опасные отходы	
Тара от ЛКМ		0,5763
Промасленная ветошь		0,0381
	Не опасные отходы	
Огарки сварочных электродов		0,0945
Строительные отходы		7,5
Металлолом		4,5
Твердо-бытовые отходы		10,325

Таблица 14 – Лимиты накопления отходов, установленные при эксплуатации

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год
1	2	3
Всего		37,983

в т. ч. Отходов производства		36,183
отходов потребления	-	1,8
	Опасные отходы	
Тара из под хим.реагентов		25,675
Промасленная ветошь		0,508
Отработанное масло		10,0
Не опасные отходы		
ТБО		1,8

9.5 Контроль за безопасным обращением с отходами

Основными факторами, определяющими периодичность контроля и выбор точек замеров загрязняющих веществ, являются:

- опасные свойства (взрыво- и пожароопасность, агрегатное состояние);
- физико-химические свойства отходов (растворимость в воде, летучесть, реакционная способность;
 - способ хранения отходов.

Отходы производства и потребления, образующиеся в процессе эксплуатации предприятия, должны находиться в специально отведенных местах временного хранения (в плотно закрытых контейнерах), необходимо следить за тем, чтобы по мере накопления, отходы вывозились подрядной организацией с территории предприятия для последующей утилизации/переработки.

Для отходов, обладающих опасными физико-химическими свойствами, предусмотрен контроль за безопасным обращением отходов на территории предприятия.

- В целях предупреждения нарушения растительно-почвенного покрова при эксплуатации предприятия намечается выполнение следующих мероприятий:
- движение наземных видов транспорта осуществляется только по имеющимся и отведенным дорогам;
 - сокращение объемов земляных работ по срезке, выравниванию рельефа;
 - проведение на заключительном этапе строительства технической рекультивации.

Для предотвращения загрязнения окружающей среды твердыми отходами в соответствии с нормативными требованиями в Республике Казахстан запланированы следующие мероприятия:

- инвентаризация, сбор промотходов с их сортировкой по токсичности в специальных емкостях и на специально оборудованных площадках;
 - контроль за выполнением запланированных мероприятий.
- •В целях снижения негативного влияния производственной деятельности на ландшафты, предусмотрены следующие меры:
 - подземный способ прокладки трубопроводов;
- объекты обустройства предприятия и вдоль трассовые технологические сооружения запроектированы на ограниченных в плане участках;

По охране растительного и животного мира предусмотрены следующие мероприятия:

- •ограничение техногенной деятельности вблизи участков с большим биологическим разнообразием;
 - маркировка и ограждение опасных участков;

- создание ограждений для предотвращения попадания животных на производственные объекты;
 - принятие административных мер для пресечения браконьерства;
 - организация и проведение мониторинговых работ;
 - запрет неорганизованных проездов на территории.

Проектными решениями, в соответствии с существующими нормативными требованиями и природоохранным законодательством, предусмотрены необходимые технологические решения и комплекс организационных мероприятий, которые позволят снизить до минимума негативное воздействие на природную среду.

Уровень воздействия на окружающую среду при эксплуатации проектируемых объектов можно оценить как допустимый.

9.6 Управление отходами

Для удовлетворения требований Республики Казахстан по недопущению загрязнения окружающей среды, должна проводиться политика управления отходами.

Проведение политики управления отходами позволит минимизировать риск для здоровья и безопасности работников и природной среды. Составной частью этой политики является система управления отходами, контролирующая безопасное размещение различных типов отходов.

Оператор объекта должен заключать договора, согласно пункта 1 статьи 336 Кодекса с субъектами предпринимательства для выполнения работ (оказания услуг) по переработке, обезвреживанию, утилизации и (или) уничтожению опасных отходов имеющих лицензию на выполнение работ и оказание услуг в области охраны окружающей среды.

Существующая на предприятии схема управления отходами на предприятии должна включать в себя следующие этапы технологического цикла отходов согласно требованиям ЭК РК:

Владельцы отмодов - Статья 318. 1. Под владельцем отмодов понимается образователь отмодов или любое лицо, в чьем законном владении находятся отмоды. 2. Образователем отмодов признается любое лицо, в процессе осуществления деятельности которого образуются отмоды (первичный образователь отмодов), или любое лицо, осуществляющее обработку, смешивание или иные операции, приводящие к изменению свойств таких отмодов или их состава (вторичный образователь отмодов).

Накопление отходов - статья 320. пункт 1. Под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных в пункте 2 настоящей статьи, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления. 2. Места накопления отходов предназначены для: 1) временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению; 2) временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или

удалению; 3) временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление.

Для вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники срок временного складирования в процессе их сбора не должен превышать шесть месяцев;

- 4) временного складирования отходов горнодобывающих и горноперерабатывающих производств, в том числе отходов металлургического и химико-металлургического производств, на месте их образования на срок не более двенадцати месяцев до даты их направления на восстановление или удаление.
- 3. Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).
- 4. Запрещается накопление отходов с превышением сроков, указанных в пункте 2 настоящей статьи, и (или) с превышением установленных лимитов накопления отходов (для объектов I и II категорий) или объемов накопления отходов, указанных в декларации о воздействии на окружающую среду (для объектов III категории).

Сбор отходов — статья 321. 1. Под сбором отходов понимается деятельность по организованному приему отходов от физических и юридических лиц специализированными организациями в целях дальнейшего направления таких отходов на восстановление или удаление. Под накоплением отходов в процессе сбора понимается хранение отходов в специально оборудованных в соответствии с требованиями законодательства Республики Казахстан местах, в которых отходы, вывезенные с места их образования, выгружаются в целях их подготовки к дальнейшей транспортировке на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению. 2. Лица, осуществляющие операции по сбору отходов, обязаны обеспечить раздельный сбор отходов в соответствии с требованиями настоящего Кодекса. 3. Требования к раздельному сбору отходов, в том числе к видам или группам (совокупности видов) отходов, подлежащих обязательному раздельному сбору, определяются уполномоченным органом в области охраны окружающей среды в соответствии с требованиями настоящего Кодекса и с учетом технической, экономической и экологической целесообразности. 5. Запрещается смешивание отходов, подвергнутых раздельному сбору, на всех дальнейших этапах управления отходами.

Транспортировка отмодов - статья 321. 1. Под транспортировкой отмодов понимается деятельность, связанная с перемещением отмодов с помощью специализированных транспортных средств между местами их образования, накопления в процессе сбора, сортировки, обработки, восстановления и (или) удаления.

Восстановление отходов - Статья 323. Восстановлением отходов признается любая операция, направленная на сокращение объемов отходов, главным назначением которой является использование отходов для выполнения какой-либо полезной функции в целях замещения других материалов, которые в противном случае были бы использованы для выполнения указанной функции, включая вспомогательные операции по подготовке данных отходов для выполнения такой функции, осуществляемые на конкретном производственном объекте или в определенном секторе экономики. К операциям по восстановлению отходов относятся: 1) подготовка отходов к повторному использованию;2) переработка отходов; 3) утилизация отходов.

Удаление отходов - Статья 325. 1. Удалением отходов признается любая, не являющаяся восстановлением операция по захоронению или уничтожению отходов, включая вспомогательные операции по подготовке отходов к захоронению или уничтожению (в том числе по их сортировке, обработке, обезвреживанию). 2. Захоронение отходов - складирование отходов в местах, специально установленных для их безопасного хранения в течение неограниченного срока, без намерения их изъятия. 3. Уничтожение отходов - способ удаления отходов путем термических, химических или биологических процессов, в результате применения которого существенно снижаются объем и (или) масса и изменяются физическое состояние и химический состав отходов, но который не имеет в качестве своей главной цели производство продукции или извлечение энергии.

Вспомогательные операции при управлении отходоми - Статья 326. 1. К вспомогательным операциям относятся сортировка и обработка отходов. 2. Под сортировкой отходов понимаются операции по разделению отходов по их видам и (или) фракциям либо разбору отходов по их компонентам, осуществляемые отдельно или при накоплении отходов до их сбора, в процессе сбора и (или) на объектах, где отходы подвергаются операциям по восстановлению или удалению. 3. Под обработкой отходов понимаются операции, в процессе которых отходы подвергаются физическим, термическим, химическим или биологическим воздействиям, изменяющим характеристики отходов, в целях облегчения дальнейшего управления ими и которые осуществляются отдельно или при накоплении отходов до их сбора, в процессе сбора и (или) на объектах, где отходы подвергаются операциям по восстановлению или удалению. Под обезвреживанием отходов понимается механическая, физико-химическая или биологическая обработка отходов для уменьшения или устранения их опасных свойств.

Паспорт опасных отходов - Статья 343. 1. Паспорт опасных отходов составляется и утверждается физическими и юридическими лицами, в процессе деятельности которых образуются опасные отходы. 2. Паспорт опасных отходов должен включать следующие обязательные разделы:

- 1) наименование опасных отходов и их код в соответствии классификатором отходов;
- 2) реквизиты образователя отходов: индивидуальный идентификационный номер для физического лица и бизнес-идентификационный номер для юридического лица, его место нахождения;
 - 3) место нахождения объекта, на котором образуются опасные отходы;
- 4) происхождение отходов: наименование технологического процесса, в результате которого образовались отходы, или процесса, в результате которого товар (продукция) утратил (утратила) свои потребительские свойства, с наименованием исходного товара (продукции);
 - 5) перечень опасных свойств отходов;
 - 6) химический состав отходов и описание опасных свойств их компонентов;
 - 7) рекомендуемые способы управления отходами;
 - 8) необходимые меры предосторожности при управлении отходами;
- 9) требования к транспортировке отходов и проведению погрузочно-разгрузочных работ;
- 10) меры по предупреждению и ликвидации чрезвычайных ситуаций природного и техногенного характера и их последствий, связанных с опасными отходами, в том числе во время транспортировки и проведения погрузочно-разгрузочных работ;

- 11) дополнительную информацию (иную информацию, которую сообщает образователь отходов).
- 3. Форма паспорта опасных отходов утверждается уполномоченным органом в области охраны окружающей среды, заполняется отдельно на каждый вид опасных отходов и представляется в порядке, определяемом статьей 384 ЭК, в течение трех месяцев с момента образования отходов.

Программа управления отходами - статья 335. 1. Операторы объектов I и (или) II категорий, а также лица, осуществляющие операции по сортировке, обработке, в том числе по обезвреживанию, восстановлению и (или) удалению отходов, обязаны разрабатывать программу управления отходами в соответствии с правилами, утвержденными уполномоченным органом в области охраны окружающей среды.

Программа управления отходами разрабатывается согласно Приказа и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 9 августа 2021 года № 318 Об утверждении Правил разработки программы управления отходами.

9.7 Сбор, накопление и рекомендуемые способы переработки/утилизации или удаления отходов производства и потребления

Система управления отходами на предприятии имеет положительные тенденции и отвечает существующим требованиям нормативных документов, действующих в Республике Казахстан.

Составной частью политики Компании является система управления отходами, контролирующая безопасное обращение с различными видами отходов.

Наличие на предприятии организованной системы управления отходами сводит к минимуму возможность возникновения угрозы негативного воздействия и позволяет минимизировать риск для здоровья и безопасности работников и природной среды отходов производства и потребления на всех этапах жизненного цикла отхода, за счет наличие в ней следующих аспектов:

- учета, инвентаризация, паспортизации образующихся отходов;
- раздельного сбора и накопления отходов (согласно пп.1 п2 ст.320 ЭК в течении 6 месяцев с момента начала накопления на месте их образования);
 - частичной сортировки отходов;
 - наличия специально оборудованных площадок для сбора отходов;
- привлечения к транспортировке и удалению отходов специализированных организаций;
 - наличия планирования, контроля и мониторинга в системе управления отходами;
 - анализа и отчетности.

Производственный контроль обращения с отходами предусматривает ведение учета объема, состава, режима образования, накопления и своевременной отгрузки отходов производства и потребления. Контролировать сроки заполнения требуемых отчетов и форм внутрипроизводственной, государственной статистической отчетности, а также форм отчетов, направляемых в территориальные природоохранные органы.

Транспортировка твердых отходов на площадку должна производиться на специально оборудованном автотранспорте.

Основными технологическими операциями в процессе очистки являются:

- прием и временное хранение отходов на площадке отходов;

Возможности сокращения объемов отходов ограничены, так как они в основном зависят от производственной деятельности. Для уменьшения объемов отходов предусматриваются все необходимые меры. Отходы, которые могут быть переработаны или повторно использованы, сокращают объемы, предназначенные для захоронения на полигонах.

Bce образующиеся отходы складируются на специально подготовленных бетонированных площадках, в местах образования отходов. Накапливаются отходы в металлических контейнерах, в емкостях различных объемов. Все отходы производства и потребления опасного и неопасного вида накапливаются раздельно. По мере накопления все образующиеся потребления отходы производства И передаются сторонним специализированным организациям на переработку/утилизацию или удаление согласно заключенным договорам.

Отходы, которые не подлежат переработке своевременно вывозятся и передаются на утилизацию/переработку специализированным сторонним организациям согласно заключенных договоров.

Транспортировка твердых отходов должна производиться на специально оборудованном автотранспорте.

Представленные в отчете меры основываются на принципе иерархии мер по предотвращению образования отходов и управлению образовавшимися отходами в порядке убывания их предпочтительности в интересах охраны окружающей среды и обеспечения устойчивого развития Республики Казахстан, который включает в себя:

- предотвращение образования отходов посредством:
- выбора оптимальных вариантов материально-технического снабжения, рациональная закупка материалов (покупка только того, что действительно необходимо);
- рационального использования сырья и материалов, используемых в производстве (использование материла до конца (краска, растворители, хим.реагенты и т.д.);
- рационального закупа материалов в таких количествах, которые реально используются на протяжении определенного промежутка времени, в течение которого они не будут переведены в разряд отходов (использование правила «первым пришло-первым уйдет» для сведения к минимуму порчи материальных запасов);
- закупа материалов, используемых в производстве, в бестарном виде или в контейнерах многоразового использования для снижения отходов в виде упаковочного материала или пустых контейнеров;
 - совершенствования производственных процессов;
- повторного использования материалов или изделий, которые являются продуктами многократного использования в их первоначальной форме либо их передачи физическим и юридическим лицам, заинтересованным в их использовании;
- применения мер предосторожности и проведение ежедневных профилактических работ для исключения утечек и проливов, жидкого сырья и топлива;
 - постоянного повышение профессионального уровня персонала;
 - подготовка отходов к повторному использованию посредством;
- сортировки отходов с учётом его происхождения и пригодности к переработке или вторичному использованию;
 - раздельного сбора и предотвращения смешивания различных видов отходов;

- уменьшения содержания вредных веществ в материалах или продукции;
- выбора оптимального подрядчика в соответствии с п. 3 ст. 339 ЭК РК;
 - переработка отходов;
- раздельный сбор и предотвращения смешивания различных видов отходов;
- выбор оптимального подрядчика в соответствии с п. 3 ст. 339 ЭК РК;
 - утилизация отходов;
- выбор оптимального подрядчика в соответствии с п. 3 ст. 339 ЭК РК;
 - удаление отходов.
- выбор оптимального подрядчика в соответствии с п. 3 ст. 339 ЭК РК.

9.8 Требования к транспортировке отходов

Транспортировка отходов производится согласно заключенным договорам со специализированными организациями с использованием специализированного крытого грузового автотранспорта в соответствии с правилами перевозки грузов и с соблюдением требований п. 2 ст. 345 ЭК РК:

Транспортировка опасных отходов допускается при следующих условиях:

- 1) наличие соответствующих упаковки и маркировки опасных отходов для целей транспортировки;
- 2) наличие специально оборудованных и снабженных специальными знаками транспортных средств;
- 3) наличие паспорта опасных отходов и документации для транспортировки и передачи опасных отходов с указанием количества транспортируемых опасных отходов, цели и места назначения их транспортировки;
- 4) соблюдение требований безопасности при транспортировке опасных отходов, а также к выполнению погрузочно-разгрузочным работ.

Порядок упаковки и маркировки опасных отходов для целей транспортировки устанавливается законодательством Республики Казахстан о транспорте.

Порядок транспортировки опасных отходов на транспортных средствах, требования к выполнению погрузочно-разгрузочных работ и другие требования по обеспечению экологической и санитарно-эпидемиологической безопасности определяются нормами и правилами, утверждаемыми уполномоченным государственным органом в области транспорта и коммуникаций и согласованными с уполномоченным органом в области охраны окружающей среды и государственным органом в области санитарно-эпидемиологического благополучия населения.

С момента погрузки опасных отходов на транспортное средство, приемки их физическим или юридическим лицом, осуществляющим транспортировку опасных отходов, и до выгрузки их в установленном месте из транспортного средства ответственность за безопасное обращение с такими отходами несет транспортная организация или лицо, которым принадлежит такое транспортное средство.

10. ОПИСАНИЕ ЗАТРАГИВАЕМОЙ ТЕРРИТОРИИ С УКАЗАНИЕМ ЧИСЛЕННОСТИ ЕЕ НАСЕЛЕНИЯ, УЧАСТКОВ, НА КОТОРЫХ МОГУТ БЫТЬ ОБНАРУЖЕНЫ ВЫБРОСЫ, СБРОСЫ И ИНЫЕ НЕГАТИВНЫЕ ВОЗДЕЙСТВИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, С УЧЕТОМ ИХ ХАРАКТЕРИСТИК И СПОСОБНОСТИ ПЕРЕНОСА В ОКРУЖАЮЩУЮ СРЕДУ; УЧАСТКОВ ИЗВЛЕЧЕНИЯ ПРИРОДНЫХ РЕСУРСОВ И ЗАХОРОНЕНИЯ ОТХОДОВ

Проектируемый объект расположен на территории действующего предприятия, которое имеет спланированные площади. Организация рельефа сводится к интеграции проектируемой площадки в существующие планировочные решения.

Проведенный расчет рассеивания выбросов ЗВ в атмосферный воздух показал, что концентрация веществ в приземном слое не превышает допустимых значений ПДК.

Сбросы в подземные и поверхностные источники на предприятии исключены, соответственно влияние на качество воды близлежащей территории не оказывает.

11. ОПИСАНИЕ возможных ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ **ДЕЯТЕЛЬНОСТИ** С УЧЕТОМ ОСОБЕННОСТЕЙ $\mathbf{E}\mathbf{E}$ воздействия на возможного ОКРУЖАЮЩУЮ СРЕДУ, ВКЛЮЧАЯ ВАРИАНТ, ВЫБРАННЫЙ ИНИЦИАТОРОМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ДЛЯ применения, ОБОСНОВАНИЕ ΕΓΟ выбора, ОПИСАНИЕ ВОЗМОЖНЫХ РАЦИОНАЛЬНЫХ ВАРИАНТОВ, В ТОМ ЧИСЛЕ РАЦИОНАЛЬНОГО ВАРИАНТА, НАИБОЛЕЕ БЛАГОПРИЯТНОГО С ТОЧКИ ЗРЕНИЯ ОХРАНЫ ЖИЗНИ И (ИЛИ)ЗДОРОВЬЯ ЛЮДЕЙ, ОКРУЖАЮЩЕЙ СРЕДЫ

Выбранный вариант осуществления намечаемой деятельности с учетом ее особенностей и возможного воздействия на окружающую среду является самым рациональным вариантом, поскольку в применимые технологические решения соответствуют научным передовым технологиям с наименьшим возможным воздействием на окружающую среду среди аналогичных технологий.

Применяемое в проекте оборудование отвечает современным технологическим и экологическим требованиям.

12. ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪЕКТАХ, КОТОРЫЕ МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Жизнь и (или) здоровье людей, условия их проживания и деятельности

Одной из основных стратегий сферы здравоохранения остается сохранение и укрепление здоровья населения на основе формирования здорового образа жизни, повышения доступности и качества медицинской помощи, раннего выявления и своевременного лечения заболеваний, являющихся основными причинами смертности, а также развития кадрового потенциала.

Проектом предусмотрен подрядный способ проведения строительных работ. В связи этим будут организованы рабочие места на период строительства.

Таким образом, влияние работ на социально-экономические аспекты оценено как положительное, как для экономики РК, так и для трудоустройства местного населения.

Планируемые работы не приведут к значительному загрязнению окружающей природной среды, что не скажется негативно на здоровье населения. Будут предусмотрены все необходимые меры для обеспечения нормальных санитарно-гигиенических условий работы и отдыха персонала, его медицинского обслуживания. Все работники пройдут необходимую вакцинацию и инструктаж по соблюдению правил личной гигиены, с учетом региональных особенностей, поэтому повышение эпидемиологического риска в районе работ маловероятно.

Привлечение местных трудовых ресурсов снижает вероятность заболеваний среди рабочих, адаптированных к местным климатическим условиям, а также уменьшает риск привнесения инфекционных заболеваний из других регионов.

Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)

Растительный покров и животный мир по видовому составу беден и характерен для зоны пустынь и полупустынь. Растительностью покрыто до 50% территории, это преимущественно серополынные разности, голофиты и керуек. В предгорьях Каратау присутствуют мелко кустарниковые – джизгун.

Ведущую роль среди животного населения играют членистоногие, пресмыкающиеся, рептилии, млекопитающие и птицы.

Засушливость климата определяет бедность территории поверхностными водами, растительность разреженная, характерная для пустынь северного типа. Всхолмленность рельефа, сильная засоленность почв, наличие большой сети каменистости с обедненной растительностью, резко континентальный суровый климат, все это является причиной обедненности батрахо- и герпетофауны исследуемого района. Особенно условия обитания усугубляются в бесснежные зимы.

Строительство и эксплуатация проектируемых объектов производится на территории действующего предприятия, которое имеет спланированные площади, организация рельефа сводится к интеграции проектируемой площадки в существующие планировочные решения, ввиду чего специальные меры по защите флоры и фауны не требуются. Осуществление намечаемой деятельности предусматривается с выполнением мероприятий общего характера по сохранению биоразнообразия и среды обитания и условий размножения объектов животного мира:

- перемещение спецтехники и транспорта ограничить специально отведенными дорогами;
- воспитание (информационная кампания) для персонала и населения в духе гуманного и бережного отношения к растениям и животным;
- регулярное техническое обслуживание производственного оборудования и его эксплуатация в соответствии со стандартами изготовителей;

При проведении строительных работ по модернизации объекта необходимо соблюдать требования п. 8 ст. 257 Экологического кодекса РК от 02.01.2021 г. и ст. 17 Закона РК от 09.07.2004 г. №593 «Об охране, воспроизводстве и использовании животного мира» и должны предусматриваться и осуществляться мероприятия по сохранению среды обитания и условий размножения объектов животного мира, путей миграции и мест концентрации животных, а также обеспечиваться неприкосновенность участков, представляющих особую ценность в качестве среды обитания диких животных.

Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации)

Антропогенные нагрузки на почву изменяют свойства почв, выводят их из сельскохозяйственного оборота и впоследствии почвы становятся вторичными источниками загрязнения для сопредельных сред. Существенным фактором воздействия на почвы является изъятие земель во временное и постоянное пользование.

Почвы являются достаточно консервативной средой, собирающей в себя многочисленные загрязнители и теряющей от этого свои свойства. По сравнению с водой и воздухом почвы - самая малоподвижная среда, миграция загрязняющих веществ в которой происходит относительно медленно. Кроме того при техногенном загрязнении почв вместе с пылью из воздуха в почву оседают аэрозоли и газообразные вещества выделяемые в процессе производства.

В соответствии с п.4 ст.140 Земельного Кодекса РК, собственники земельных участков и землепользователи обязаны проводить мероприятия, направленные на снятие, сохранение и использование плодородного слоя почвы при проведении работ, связанных с нарушением земель.

Проектируемый объект расположен на территории действующего предприятия, которое имеет спланированные площади. Организация рельефа сводится к интеграции проектируемой площадки в существующие планировочные решения.

Воды (в том числе гидроморфологические изменения, количество и качество вод)

Территория не имеет естественных водных объектов, поэтому проведение работ на этой площади не будет оказывать на них влияния.

Воздействия от этого вида хозяйственной деятельности может быть оценено с позиции рационального водопотребления и водоотведения, возможного загрязнения существующих на ограниченном участке техногенных вод, временных водотоков и водосборной площади в случае аварийной ситуации.

Потенциальное воздействие планируемых работ может оказываться на геологическую среду в отношении развития неблагоприятных экзогенных геологических процессов, которые в результате проведения полевых могут быть усилены или спровоцированы и на подземные воды первого от поверхности водоносного горизонта.

Основными источниками потенциального воздействия на геологическую среду и подземные воды при проведении работ, строительных работ будут являться транспорт и спецтехника.

Одним из потенциальных источников воздействия на подземные воды (их загрязнения) могут быть утечки топлива и масел в местах скопления и заправки спецтехники и автотранспорта в период работ.

Атмосферный воздух (в том числе риски нарушения экологических нормативов его качества, целевых показателей качества, а при их отсутствии – ориентировочно безопасных уровней воздействия на него)

Воздействие на атмосферный воздух оценивается как допустимое, на границе санитарно-защитной зоны и жилого массива превышений долей ПДК не ожидается.

Намечаемой деятельностью не будут затронуты высоко значимые, высокочувствительные и средне значимые экосистемы.

Радиационный гамма фон

При реализации проекта изменения в радиационном фоне не планируются.

Сопротивляемость к изменению климата экологических и социальноэкономических систем

Наблюдаемые последствия изменения климата, независимо от их причин, выводят вопрос чувствительности природных и социально-экономических систем на первый план.

Модели потребления производства с эффективным использованием ресурсов должны защищать, беречь, восстанавливать и поддерживать экосистемы, водные ресурсы, естественные зоны обитания и биологическое разнообразие, тем самым уменьшая воздействие на окружающую среду.

Создание устойчивого к климатическим изменениям предприятия вносит свой вклад в снижение уязвимости от бедствий (усиленных изменением климата) и повышает готовность к реагированию и восстановлению.

Сочетание опасных природных событий с незащищенностью, уязвимостью и неподготовленностью населения приводит к катастрофам. Любой анализ жизнестойкости изучает то, как люди, места и организации могут пострадать от опасностей, связанных с изменением климата, т.е. определяет их чувствительность к этим изменениям. Степень чувствительности определяется сочетанием экологических и социально-экономических аспектов, включая оценку природных ресурсов, демографические тенденции и уровень бедности.

Меры по адаптации - это такие меры, которые предлагают поправки в экологической, социальной и экономической системах для реагирования на существующие или будущие климатические явления и на их воздействие или последствия. Могут быть изменения в процессах, практиках и структурах для снижения потенциального ущерба или для создания новых возможностей, связанных с изменением климата.

- рекомендации по созданию устойчивости (адаптации) к климату включают следующее:
- продвигать практические исследования в области рисков, связанных с последствиями изменения климата и другими опасностями
- поощрять и поддерживать оценку уязвимости к изменению климата на местах составить карту опасностей (в том числе тех, которые могут появиться по прошествии времени)

- планировать предприятия, регулировать землепользование и предоставлять жизненно важную инфраструктуру, с учётом информации о рисках и поддержки жизнестойкости
- в первую очередь осуществлять меры по укреплению жизнестойкости уязвимых и социально отчуждённых слоев населения
 - продвигать восстановление экосистем и естественных защитных зон
- обеспечивать местное планирование, защищающее экосистемы и предотвращающее «псевдоадаптацию».

Любые меры по адаптации к изменению климата должны стремиться к улучшению жизнестойкости системы. Они должны поддерживать и повышать присущую системе жизнестойкость на основе природных решений и целостного подхода. Стратегии адаптации к климату должны учитывать то, как эти меры скажутся на предприятии.

Качество окружающей среды содержит данные, которые могут помочь в понимании того, каким образом меняющийся климат может повлиять на биопотенциал региона и свойства окружающей среды, например, качество воздуха, воды и почвы. Вместе с данными по устойчивости к климатическим изменениям, данная категория оценивает чувствительность конкретных экосистем и их способность к адаптации. При помощи этих данных измеряется текущее воздействие на систему, сообщая информацию по реальным стрессам, с которымисталкиваются территории, занятые предприятиями.

Данные по устойчивости к изменениям климата оценивают связи в системе, ее способность смягчать последствия изменения климата и адаптироваться к ним.

При этом отказ от реализации намечаемой деятельности не приведет к значительному улучшению экологических характеристик окружающей среды, но может привести к отказу от социально важных для региона и в целом для Казахстана видов деятельности.

Материальные активы, объекты историко-культурного наследия (в том числе архитектурные и археологические), ландшафты

Историко-культурное наследие, как важнейшее свидетельство исторической судьбы каждого народа, как основа и непременное условие его настоящего и будущего развития, как составная часть всей человеческой цивилизации, требует постоянной защиты от всех опасностей.

Обеспечение этого в РК является гражданским долгом.

Следует отметить, что ответственность за сохранность памятников предусмотрена действующим законодательством РК. Нарушения законодательства по охране памятников истории и культуры влекут за собой установленную материальную, административную и уголовную ответственность.

Реализация данного проекта предусматривается вдали от охраняемых объектов и не затрагивает памятников, культурных ландшафтов, состоящих на учете в органах охраны памятников Комитета культуры РК, имеющих архитектурно-художественную ценность и представляющих научный интерес в изучении народного зодчества Казахстана.

13. ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ (ПРЯМЫХ И КОСВЕННЫХ, КУМУЛЯТИВНЫХ, ТРАНСГРАНИЧНЫХ, КРАТКОСРОЧНЫХ И ДОЛГОСРОЧНЫХ, ПОЛОЖИТЕЛЬНЫХ И ОТРИЦАТЕЛЬНЫХ) НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

При разработке проекта были соблюдены основные принципы разработки Отчета о возможных воздействиях, а именно:

- учет экологической ситуации на территории, оказывающейся в зоне влияния хозяйственной деятельности;
 - информативность при проведении разработки Отчета о возможных воздействиях;
- понимание целостного характера проводимых процедур, выполнение их с учетом взаимосвязи возникающих экологических последствий с социальными, экологическими и экономическими факторами.

Объем и полнота содержания представленных материалов отвечают требованиям статьи 72 Экологического Кодекса РК от 02.01.2021 г. №400-VI 3PK.

13.1. Определение факторов воздействия

Современный общественный менталитет сформировал представления о том, что одним из важнейших моментов воздействия на окружающую среду является его минимальность, не ведущая к значимому ухудшению существующего положения ни для одного элемента экосистемы и сохранение существующего биоразнообразия.

В связи с этим, при характеристике воздействия на окружающую среду основное внимание уделяется негативным последствиям, для оценки которых разработан ряд количественных характеристик, отражающих эти изменения.

Как показывает практика, наиболее приемлемым для решения задач оценки воздействия на природную среду представляется использование трех основных показателей: пространственного и временного масштабов воздействия и его величины (интенсивности).

Существует ряд опробированых методик, основанных на бальной системе оценок.

Отличительной их особенностью является дробность параметров оценки и количественные величины, характеризующие ту или иную категорию параметров.

Основными производственными операциями в которых будут оказывать определенные негативные воздействия на окружающую среду – это выделение загрязняющих веществ.

Кроме основных производственных операций будут оказывать воздействие и сопутствующие структуры, такие как, системы энергообеспечения, теплоснабжение объектов, автотранспортные услуги.

В целом состояние окружающей среды при эксплуатации проектируемых объектов зависит от масштабов и интенсивности воздействия на нее. Таким образом, в настоящем Отчете о возможных воздействиях дается оценка воздействия при реализации проектных решении, при которых выявляются факторы воздействия, влияющие на изменения компонентов окружающей среды.

13.2. Виды воздействий

Воздействия на окружающую среду могут быть разделены на технологически обусловленные и не обусловленные.

Технологически обусловленные - это воздействия, объективно возникающие вследствие производства работ, протекания технологических процессов и формирования техногенных потоков веществ.

Технологически не обусловленные воздействия связаны с различного рода отступлениями от проектных решений и экологически неграмотным поведением персонала, в процессе производственной деятельности в штатных ситуациях, а также при авариях.

Факторы воздействия на компоненты окружающей среды и основные природоохранные мероприятия обобщены в таблице.

Таблица 15 - Факторы воздействия на компоненты окружающей среды и основные мероприятия по их снижению

Компоненты	Факторы воздействия на	Мероприятия по снижению отрицательного
окружающей среды	окружающую среду	техногенного воздействия на окружающую среду
Атмосфера	Выбросы загрязняющих	Профилактика и контроль оборудования.
	веществ	Выполнение всех проектных природоохранных
	Работа оборудования.	решений.
	Шумовые воздействия	Контроль за состоянием атмосферного воздуха.
Водные ресурсы	Фильтрационные утечки	Осмотр технического состояния канализационной
	загрязняющих веществ в	системы.
	подземные воды через	Контроль за техническим состоянием транспортных
	почвенный покров	средств.
Ландшафты	Возникновение	Очистка территории от мусора, металлолома и
	техногенных форм рельефа.	излишнего оборудования.
Почвенно-	Нарушение и загрязнение	Инвентаризация, сбор отходов в специально
растительный	почвенно-растительного	оборудованных местах, своевременный вывоз отходов.
покров	слоя.	Противопожарные мероприятия.
	Уничтожение травяного	Визуальное наблюдение за состоянием растительности
	покрова.	на территории производственных объектов.
Животный мир	Шум от работающих	Соблюдение норм шумового воздействия.
	механизмов.	

Любая хозяйственная деятельность может иметь последствиями изменение социальных условий региона как в сторону увеличения благ и выгод местного населения в сфере экономики, просвещения, здравоохранения, так и в сторону ухудшения социальной и экологической ситуации в результате непредвиденных последствий.

В целом, антропогенные воздействия на окружающую среду могут быть как положительные, так и отрицательные. Однако, оценить положительные моменты воздействия на исторически сложившиеся экосистемы чрезвычайно сложно, так как единого мнения общества, какие аспекты изменений относить к положительным, а какие к отрицательным, в настоящее время нет. Кроме того, положительность изменений практически всегда оценивается с точки зрения сиюминутной выгоды для какой-либо социальной группы или общества без учета долговременных последствий и общей эволюции экосистемы.

В современной методологии Отчета о возможных воздействиях принято выделять следующие виды воздействий, оценка которых проводится автономно, и результаты этой оценки являются основой для определения значимости воздействий:

- прямые воздействия;
- кумулятивные воздействия;
- трансграничные воздействия.

К прямым воздействиям относятся воздействия, оказываемые непосредственно во время проведения тех или иных видов работ или технологических операций. Результатом прямого воздействия является изменение компонентов окружающей среды (например, увеличение приземных концентраций при выбросах в атмосферу и т.п.). Оценка масштабов, продолжительности и интенсивности прямого воздействия в целом не вызывает каких-либо негативных сложностей, т.к. достаточно подробно регламентирована многочисленными инструкциями и методическими указаниями.

Прямое воздействие оценивается по пространственным и временным параметрам и по его интенсивности, вытекающим из принятых технических решений. Методы определения прямого воздействия детально изложены ниже.

Кумулятивное воздействие представляет собой комбинированное воздействие прошлых и настоящих видов деятельности и деятельности, которую можно обоснованно предсказать на будущее. Эти виды деятельности могут осуществляться во времени и пространстве и могут быть аддитивными или интерактивными/синергичными (например, снижение численности популяции животных, обусловленное комбинированным воздействием выбросов, загрязнением почв и растительности). При попытках идентифицировать кумулятивные воздействия важно принимать во внимание как пространственные, так и временные аспекты, а также идентифицировать другие виды деятельности, которые происходят, или могут происходить на том же самом участке или в пределах той же самой территории.

Оценка кумулятивных воздействий состоит из 2-х этапов:

- идентификация возможных кумулятивных воздействий (скрининг кумулятивных воздействий);
- оценка кумулятивного воздействия на компоненты природной среды.

Трансграничным воздействием называется воздействие, оказываемое объектами хозяйственной и иной деятельности одного государства на экологическое состояние территории другого государства. Оценка данного вида воздействий включает следующие этапы:

- Скрининг. Из матриц интегральной оценки воздействий, для рутинных и аварийных ситуаций, используя пространственный масштаб воздействия, выбираются компоненты природной среды зоны, воздействия на которые выходят за границы государства;
- Определение площади воздействия. Из общей площади воздействия вычленяются площади, расположенные на территории других государств;
- Определение времени воздействия. Для рутинных операций, время воздействия будет постоянным (например, на период эксплуатации). Необходимо определить период времени, в течение которого будет проявляться воздействие на территории соседнего государства (например, повышенные концентрации 3В в атмосферном воздухе на территории соседнего государства будут отмечаться не на всем протяжении аварии и ликвидации ее последствий);
- Оценка интенсивности воздействия на каждый выбранный элемент природной среды. По величине оценка интенсивности может не совпадать с баллом интенсивности воздействия по всей площади воздействия;
- Оценка комплексного (интегрального) воздействия на тот или иной элемент природной среды при трансграничном воздействии или комплексная (интегральная) оценка воздействия источника на все компоненты природной среды соседних государств.

13.3 Методика оценки воздействия на окружающую природную среду

Современный общественный менталитет сформировал представления о том, что одним из важнейших моментов воздействия на окружающую среду является его минимальность, не ведущая к значимому ухудшению существующего положения ни для одного элемента экосистемы и сохранение существующего биоразнообразия.

В связи с этим, при характеристике воздействия на окружающую среду основное внимание уделяется негативным последствиям, для оценки которых разработан ряд количественных характеристик, отражающих эти изменения.

Как показывает практика, наиболее приемлемым для решения задач оценки воздействия на природную среду представляется использование трех основных показателей: пространственного и временного масштабов воздействия и его величины (интенсивности).

Существует ряд опробированых методик, основанных на бальной системе оценок. Отличительной их особенностью является дробность параметров оценки и количественные величины, характеризующие ту или иную категорию параметров. В данной работе использовано пять уровней оценки

В таблице представлены количественные характеристики критериев оценки, которые были приняты при разработке данного проекта ОВОС.

Пространственный параметр воздействия определяется на основе анализа технологических решений, математического моделирования процессов распространения загрязнения в окружающей среде или на основе экспертных оценок.

Приведенное в таблице разделение пространственных масштабов опирается на характерные размеры площади воздействия, которые известны из практики. В таблице также приведена количественная оценка пространственных параметров воздействия в условных баллах (рейтинг относительного воздействия)

Временной параметр воздействия на отдельные компоненты природной среды определяется на основе технического анализа, аналитических или экспертных оценок и выражается в пяти категориях.

Величина (интенсивность) воздействия также оценивается в баллах.

Таким образом, оценка воздействия по различным показателям (пространственный и временной масштаб, степень воздействия) рассматривается как можно более независимо. Только при этом условии можно получить объективное представление об экологической значимости того или иного вида воздействия, так как даже наиболее радикальные воздействия, если они кратковременны или имеют локальный характер, могут быть экологически приемлемы.

Для определения значимости (интегральной оценки) воздействия деятельности предприятия на отдельный элемент окружающей среды выполняется комплексирование полученных для данного компонента окружающей среды показателей воздействия. Комплексный балл воздействия определяется путем перемножения баллов показателей воздействия по площади, по времени и интенсивности. Значимость воздействия определяется по пяти градациям.

Результаты комплексной оценки воздействия на окружающую среду в штатном режиме работ представляются в табличной форме в порядке их планирования. Для каждого вида работ определяются основные технологические процессы. Для каждого процесса определяются источники и факторы воздействия. С учетом природоохранных мер по уменьшению воздействия определяются последствия на ту или иную природную среду и этим воздействиям дается интегральная оценка. В результате получается матрица, в которой в горизонтальных графах дается перечень природных сред, а по вертикали – перечень операций и соответствующие им источники и факторы воздействия. На пересечении этих граф выставляется показатель интегральной оценки (т.е. чрезвычайный, высокий, средний, низкий, незначительный). Клетки закрашиваются разными цветами в зависимости от уровня комплексной оценки воздействия. Такая «картинка» дает наглядное представление о воздействиях на компоненты окружающей среды.

Таблица 16 - Шкала масштабов воздействия и градация экологических последствий

Масштаб воздействия (рейтинг	
относительного воздействия и	Показатели воздействия и ранжирование потенциальных

нарушения)	нарушений		
Пространственный масштаб воздействия			
Локальный (1)	Площадь воздействия до 1 км ² для площадных объектов или в границах		
, ,	зоны отчуждения для линейных, но на удалении до 100 м от линейного		
	объекта		
Ограниченный (2)	Площадь воздействия до 10 км ² для площадных объектов или на		
• , ,	удалении 1 км от линейного объекта		
Местный (3)	Площадь воздействия в пределах 10-100 км ² для площадных объектов		
	или 1-10 км от линейного объекта		
Региональный (4)	Площадь воздействия более 100 км ² для площадных объектов или более		
	10 км от линейного объекта		
Временной масштаб воздействия			
Кратковременный (1)	Длительность воздействия до 6 месяцев		
Средней продолжительности (2)	От 6 месяцев до 1 года		
Продолжительный (3)	От 1 года до 3-х лет		
Многолетний (4)	От 3-х лет и более		
Интенсивность воздействия (обратим	ость изменения)		
Незначительная (1)	Изменения среды не выходят за существующие пределы природной		
	изменчивости		
Слабая (2)	Изменения среды превышают пределы природной изменчивости, но		
	среда полностью самовосстанавливается		
Умеренная (3)	Изменения среды превышают пределы природной изменчивости,		
	приводят к нарушению отдельных компонентов природной среды.		
	Природная среда сохраняет способность к самовосстановлению		
	поврежденных элементов		
Сильная (4)	Изменения среды приводят к значительным нарушениям компонентов		
	природной среды и/или экосистемы. Отдельные компоненты природной		
	среды теряют способность к самовосстановлению (это утверждение не		
	относится к атмосферному воздуху).		
Интегральная оценка воздействия (с	уммарная значимость воздействия)		
Воздействие низкой значимости	последствия испытываются, но величина воздействия достаточно низка		
(1-8)	(при смягчении или без смягчения), а также находится в пределах		
	допустимых стандартов или рецепторы имеют низкую чувствительность		
	/ ценность		
воздействие средней значимости (9-	может иметь широкий диапазон, начиная от порогового значения, ниже		
27)	которого воздействие является низким, до уровня, почти нарушающего		
	узаконенный предел. По мере возможности необходимо показывать		
	факт снижения воздействия средней значимости		
воздействие высокой значимости	имеет место, когда превышены допустимые пределы интенсивности		
(28-64)	нагрузки на компонент природной среды или когда отмечаются		
	воздействия большого масштаба, особенно в отношении ценных /		
	чувствительных ресурсов		

13.4 Интегральная оценка на окружающую среду

Комплексная оценка воздействия всех операций, позволяет сделать вывод о том, какая природная среда оказывается под наибольшим влиянием со стороны факторов воздействия.

В таблицу сведены все основные операции, связанные с деятельностью предприятия и факторы воздействия, приведена оценка комплексного воздействия на перечисленные компоненты окружающей среды, подвергающиеся воздействию.

В целом, положительных интегральных воздействий на компоненты природной среды от проектируемого объекта не отмечается, а отрицательное воздействие не выходит за пределы среднего уровня.

Анализ покомпонентного и интегрального воздействия на окружающую среду позволяет сделать вывод о том, что строительство и эксплуатация проектируемого объекта при условии соблюдения технических решений (штатная ситуация) не оказывает значимого негативного воздействия на окружающую среду. В то же время, оказывается небольшое положительное воздействие на социально-экономическую сферу.

Таблица 17 - Интегральная оценка воздействия на природную среду при реализации проекта

КОМПОНЕНТ	ПОКАЗАТЕЛИ ВОЗДЕЙСТВИЯ		ИНТЕГРАЛЬНАЯ	
ОКРУЖАЮЩЕЙ СРЕДЫ	ИНТЕНСИВНОСТЬ	ПРОСТРАНСТВЕННЫЙ МАСШТАБ	ВРЕМЕННЫЙ МАСШТАБ	ОЦЕНКА ВОЗДЕЙСТВИЯ
Атмосферный воздух	Слабое (2)	ограниченный (2)	продолжительный (3)	Средняя (12)
Подземные воды	Слабое (2)	локальное (1)	продолжительный (3)	Низкая (6)
Почва	Слабое (2)	ограниченный (2)	продолжительный (3)	Средняя (12)
Растительность	Слабое (2)	ограниченный (2)	продолжительный (3)	Средняя (12)
Животный мир	Слабое (2)	ограниченный (2)	продолжительный (3)	Средняя (12)
Недра	незначительная (1)	локальное (1)	кратковременный (1)	Низкая (1)
Физическое воздействие	Слабое (2)	ограниченный (2)	продолжительный (3)	Средняя (12)

13.5 Оценка воздействия объекта на социально-экономическую среду

Основным показателем состояния изменений социально-экономической среды может считаться уровень жизни населения, который состоит из набора признаков, отражающих реально выражаемые в количественном отношении показатели и вытекающие из них экономические последствия.

Основные компоненты социально-экономической среды, которые будут подвергаться тем или иным воздействиям представлены в таблице.

Компоненты	Характеристика воздействия на	Мероприятия по снижению
социально-	социально- экономическую	отрицательного техногенного
экономической	среды	воздействия на социально-
среды		экономическую среду
Трудовая занятость	Дополнительные рабочие места	Положительное воздействие
Доходы и уровень жизни	Увеличение доходов населения,	Положительное воздействие
населения	увеличение покупательской	
	способности, повышение уровня и	
	качества жизни, развитие	
	инфраструктуры	
Здоровье населения	Профессиональные заболевания	Соблюдение правил техники
		безопасности и охраны труда
Демографическая ситуация	Приток молодежи	Положительное воздействие
Образование и научно-	Потребность в	Положительное воздействие
техническаясфера	Квалифицированных	
	специалистах, улучшение	
	качества знаний	
Рекреационные ресурсы	-	
Памятники истории и культуры	«Случайные археологические	Положительное воздействие
	находки»	
Экономическое развитие	Инвестиционная	Положительное воздействие
территории	привлекательность региона,	
	экономический и промышленный	
	потенциал региона, поступление	
	налоговых поступлений в	
	местный бюджет	
Наземный транспорт	Дополнительные средства из	Положительное воздействие
	местного бюджета для	
	финансирования ремонта и	
	строительства дорог	
Землепользование	Изъятие во временное	Оптимизация размещения

Отчет о возможных воздействиях

	пользование и частную	площадок и прочих объектов.
	собственность земель	Рекультивация земель.
	сельскохозяйственного	
	назначения	
Сельское хозяйство	Изъятие во временное	Оптимизация размещения
	пользование и частную	площадок и прочих объектов.
	собственность земель	Рекультивация земель.
	сельскохозяйственного	
	назначения	
Внешнеэкономическая	Экономический и промышленный	Положительное воздействие
деятельность	потенциал региона,	
	инвестиционная	
	привлекательность региона	

Производственная деятельность в рамках реализации проекта будет осуществляться в пределах Жамбылской области и может повлечь за собой изменение социальных условий региона как в сторону улучшения благ и увеличения выгод местного населения в сферах экономики, просвещения, здравоохранения и других, так и сторону ухудшения социальной и экологической ситуации в результате непредвиденных неблагоприятных последствий аварийных ситуаций. Однако вероятность возникновения аварийных ситуаций незначительна.

В целом, проектируемые работы согласно интегральной оценки внесут среднее отрицательное воздействие по некоторым компонентам, и от средних до высоких положительных изменений в социально- экономическую сферу региона в зависимости от компонента.

14. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ

14.1 Эмиссии в атмосферу

При проектируемых видах работ, в рамках рабочего проекта ««Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)» источниками выбросов загрязняющих веществ в атмосферный воздух являются:

- строительные работы (этап строительства);
- на период эксплуатации.

Основными прямыми и косвенными техногенными факторами воздействий на этапе строительства будут работы связанные со строительством объектов, передвижение техники и т.д.

Всего на период проведения **строительных работ** выявлено **16 источников выбросов** загрязняющих веществ в атмосферу, из которых 3 источников – организованных, 11 являются **неорганизованными**.

На этапе строительства источникам выбросов присвоены четырехразрядные номера: для организованных источников с 0101, для неорганизованных начиная с 7101.

Количество загрязняющих веществ, выбрасываемых в атмосферу от стационарных источников при строительстве проектируемого объекта, составит 6,6132 г/сек или 64,5897 т/период.

В атмосферу будут выбрасываться вещества 15 наименований.

В период эксплуатации основными источниками выделения загрязняющих веществ в атмосферный воздух являются: продувочные свечи, факельная уставновка, дренажные емкости, дизельный генератор и пр.

Всего на период проведения строительных работ выявлено 51 источников выбросов загрязняющих веществ в атмосферу, из которых 13 источников – организованных, 38 являются неорганизованными.

Количество загрязняющих веществ, выбрасываемых в атмосферу при эксплуатации проектируемого объекта, составит **29,549532** г/сек или **24,977969** т/год.

В атмосферу будет выбрасываться вещество 12 наименований.

Анализ проведенных расчетов загрязнения атмосферы от источников показал, что приземные концентрации по всем веществам не превышает 1 ПДК.

14.2. Эмиссии в водные объекты

При реализации намечаемой деятельности установление нормативов сбросов загрязняющих веществ не предусматривается.

14.3. Физические воздействия

В процессе строительства и эксплуатации неизбежно воздействие физических факторов, которые могут оказать влияние на здоровье населения и персонала. Источниками возможного шумового, вибрационного воздействия на окружающую среду в процессе строительства и эксплуатации является технологическое оборудование.

Физические факторы и их воздействие должны отвечать требованиям «Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека», утвержденных риказ Министра здравоохранения Республики Казахстан от 16 февраля 2022 года № ҚР ДСМ-15.

В период строительства и эксплуатации на рассматриваемом не будут размещаться источники, способные оказать недопустимое электромагнитное воздействие, а также способные создать аномальное магнитное поле.

В период строительства и эксплуатации объекта основными источниками шумового воздействия являются автотранспорт, другие машины и механизмы, технологическое оборудование.

Уровень шума на открытых рабочих площадках будет зависеть от расстояния до работающего агрегата, а также от того, где непосредственно находится работающее оборудование – в помещении или вне его, от наличия ограждения, положения места измерения относительно направленного источника шума, метеорологических и других условий.

Вибрацию вызывают неуравновешенные силовые воздействия, возникающие при работе различных машин и механизмов. В зависимости от источника возникновения выделяют три

категории вибрации:

- транспортная;
- транспортно-технологическая;
- технологическая.

Минимизация вибрации в источнике производится на этапе проектирования и в период эксплуатации. При выборе машин и оборудования, следует отдавать предпочтение кинематическим и технологическим схемам, которые исключают или максимально снижают динамику процессов, вызываемых ударами, резкими ускорениями и т.д. Кроме того, для снижения вибрации необходимо устранение резонансных режимов работы оборудования, то есть выбор режима работы при тщательном учете собственных частот машин и механизмов.

На участке строительства и эксплуатации не будут размещаться источники, способные оказать недопустимое электромагнитное, тепловое и радиационное воздействия, а также способные создать аномальное магнитное поле.

14.4. Выбор операций по управлению отходами.

Все образующиеся отходы складируются на специально подготовленных бетонированных площадках в производственных цехах, в местах образования отходов. Накапливаются отходы в металлических контейнерах, в емкостях различных объемов. Все отходы производства и потребления опасного и неопасного вида накапливаются раздельно. По мере накопления все образующиеся отходы производства и потребления передаются сторонним специализированным организациям на переработку/утилизацию или удаление согласно заключенным договорам.

15. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ **АВАРИЙ** ОПАСНЫХ ПРИРОДНЫХ явлений. ХАРАКТЕРНЫХ НАМЕЧАЕМОЙ **COOTBETCTBEHHO** ЛЛЯ **ДЕЯТЕЛЬНОСТИ** ПРЕДПОЛАГАЕМОГО МЕСТА ЕЕ ОСУЩЕСТВЛЕНИЯ, ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВРЕДНЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ \mathbf{C} РИСКАМИ **ВОЗНИКНОВЕНИЯ АВАРИЙ** И ОПАСНЫХ явлений, **ВОЗМОЖНОСТИ** ПРОВЕДЕНИЯ ПРИРОДНЫХ \mathbf{C} **УЧЕТОМ** МЕРОПРИЯТИЙ ПО ИХ ПРЕДОТВРАЩЕНИЮ И ЛИКВИДАЦИИ

15.1 Вероятность возникновения аварий

Применение любых технических средств защиты на производстве не исключает возможности аварий. Возникновение осложнений и аварийных ситуаций может привести как к прямому, так и к косвенному воздействию на человека и окружающую природную среду.

С учетом вероятности возникновения аварийных ситуаций одним из эффективных методов минимизации ущерба от потенциальных аварий является готовность к ним - разработка вариантов возможного развития событий при аварии и методов реагирования на них.

Для отработанных привычных видов деятельности, отличающихся сравнительно невысокой сложностью и непродолжительностью деятельности, при оценке экологического риска может быть использован количественный подход.

Проведение проектных работ: подвоз оборудования, монтаж оборудования, сварочные работы, демонтаж оборудования, - является хорошо отработанным, с изученной технологией видом деятельности, высококачественным оборудованием и высококвалифицированным персоналом. Исходя из общеотраслевых статистических данных, общая вероятность возникновения аварийных ситуаций составляет 0,02 процента.

В процессе проведения проектных работ могут возникнуть следующие осложнения процесса:

- нарушение герметичности оборудования;
- нарушение норм и правил производства работ;
- угроза возникновения пожара на объектах предприятия.
- проливы жидких и пастообразных отходов при их транспортировке.
- физический износ, механические повреждения или температурная деформация оборудования и систем трубопроводов.

Аварии, которые могут вызвать чрезвычайные ситуации:

- нарушение технологического режима, правил техники безопасности, ошибочные действия персонала при проведении профилактического ремонта.
- разгерметизация технологического оборудования и трубопроводов, загрязнение окружающей среды;
- разгерметизация технологического оборудования и трубопроводов, при появлении источника инициирования воспламенение истекшего продукта, тепловое воздействие на окружающие объекты и людей, загрязнение атмосферы продуктами горения;
- разгерметизация технологического оборудования и трубопроводов с образованием облака газо-воздушной смеси, при появлении источника инициирования взрыв, воздействие взрывной ударной волны на окружающие объекты и людей.

15.2 Вероятность возникновения неблагоприятных последствий

При возникновении аварийных ситуаций реальную опасность для окружающей среды, объектов и людей, попавших в зону возможных воздействий, представляют случаи загорания истекшего продукта, взрыв облака топливно-воздушной смеси, тепловое воздействие.

К основным решениям по обеспечению безопасной работы относятся:

- компоновка основного и вспомогательного оборудования, обеспечивающая возможность свободного прохода людей при его обслуживании или эвакуации;
- расположение арматуры на оборудовании в местах, удобных для управления, технического обслуживания и ремонта;
- оснащение оборудования и трубопроводной арматуры стационарными площадками обслуживания, лестницами, мостиками, колодцами и пр. в необходимом количестве, а зданий и помещений выходами и проемами;
 - применение высоконадежных средств сигнализации, блокировок, защит;
- обеспечение защитными устройствами и системами, автоматическим управлением и регулированием, а также иными техническими средствами, предупреждающими возникновение и развитие аварийных ситуаций;
 - обеспечение надежного электроснабжения оборудования;
- взрывозащищенное исполнение электроприводов и электродвигателей отсечной арматуры и насосов;
 - заземление и молниезащита оборудования.

Организационно-технические решения, направленные на предотвращение, локализацию, ликвидацию возможных аварий и обеспечение безопасности работников предприятия и местного населения при возможных аварийных ситуациях:

- создание аварийно-спасательной службы предприятия с соответствующим материально-техническим обеспечением;
- материально-техническое обеспечение спасательных и неотложных аварийновосстановительных работ;
- определен порядок эвакуации из аварийной зоны и места сбора работников предприятия и местного населения; предусмотрены:
- охраняемый периметр территории предприятия, оборудованный контрольно-пропускным пунктом, что гарантирует как от злоумышленного, так и непреднамеренного вмешательства посторонних лиц в работу установок объекта;
- автономная (на случай ЧС) система аварийной связи и оповещения, для оперативного информирования работников и населения о возможной опасности;
- обеспечение всех работников средствами защиты органов дыхания от вредных выбросов.

Вопросы, связанные с возможностью возгорания объектов, проработаны и предусмотрены необходимые средства ликвидации пожаров. Порядок предотвращения возникновения аварий, связанных с возможностью взрывов и возгорания на производственных объектах, объектах инфраструктуры и вспомогательных сооружениях, решен в каждом конкретном случае.

Основными мероприятиями, направленными на предотвращение выбросов в атмосферу и сбросов вредных веществ в окружающую среду являются:

- Размещение оборудования с соблюдением требований правил пожарной безопасности (ППБ) и других нормативных документов РК, а так же удобства монтажа и безопасного обслуживания.
 - Обеспечение прочности и герметичности оборудования.
 - Контроль эффективности работы систем пожарной сигнализации.
- Высокая квалификация и соблюдение требований охраны труда и техники безопасности обслуживающим персоналом.
- Обвалование резервуаров с пожароопасными веществами и создание под ними площадок каре с непроницаемым экраном.
 - Периодический визуальный осмотр емкостей для хранения.
- Разработка плана действий по предупреждению и ликвидации аварии на объекте.
 - Подготовка обслуживающего персонала к действиям в аварийной ситуации.
- Подготовка системы управления к функционированию и ликвидации аварии; своевременной диагностирование состояния оборудования.

ТОО «Разведка и добыча QazaqGaz» в полной мере осознает свою ответственность, связанную с экологической безопасностью всех планируемых работ на предприятии и планирует взаимодействие с органами надзора и инспекциями, отвечающими за инженерноэкологическую безопасность, здоровье населения и персонала.

15.3 Мероприятия по предотвращению аварийных ситуаций

Предотвращение чрезвычайных ситуаций и их последствий обеспечивается за счет реализации мероприятий, направленных на снижение риска возникновения чрезвычайной ситуации и его локализацию.

Мероприятия по снижению последствий ЧС проводятся по следующим направлениям:

- рациональное расположение оборудования на технологических площадках;
- герметизация технологического процесса;
- обеспечение безопасности производства;
- обеспечение надежного электроснабжения;
- обеспечение защиты от пожаров;
- обеспечение защиты обслуживающего персонала;
- обеспечение охраны объектов от несанкционированного доступа и террористических актов.

Решения по защите от пожаров

При выборе средств и способов противопожарной защиты площадок были рассмотрены следующие основные факторы:

- взрывоопасность веществ и материалов, обращающихся в технологическом процессе;
 - категории производств по взрывопожарной и пожарной опасности;
 - возможность и пути распространения пожара на защищаемом производстве;
- характеристика строительных конструкций по пределам огнестойкости, путям распространения, созданию горючей нагрузки;
 - наличие систем противопожарной защиты на существующем объекте.

На основании требований нормативно-технических документов Республики Казахстан предусматриваются следующие системы, средства и способы тушения:

использование передвижной пожарной техники (водяное охлаждение и пенотушение), первичные средства пожаротушения, пожарный инвентарь.

15.4 Планы ликвидации аварий

План ликвидации аварий — это документ, определяющий меры и действия, необходимые для спасения людей и ликвидации аварий в начальной стадии их возникновения. Каждая его позиция действует с момента извещения о происшедшей аварии до полного вывода всех людей в безопасные места и началаорганизации работ по ликвидации последствий аварии. Предусмотренные планом материальные и технически средства для осуществления мероприятий по спасению людей и ликвидации аварий должны быть в наличии, в исправном состоянии и в необходимом количестве.

ПЛА составляется под руководством технического руководителя производственного объекта, согласовывается с руководителем аварийной спасательной службы, обслуживающей данный опасный производственный объект, и утверждается руководителем организации.

ПЛА включает в себя оперативную часть, распределение обязанностей между персоналом, участвующим в ликвидации аварий, и порядок его действия, а также список должностных лиц и учреждений, которые немедленно извещаются об авариях.

- В целях обеспечения готовности к действиям по локализации и ликвидации последствий аварий организации, имеющие опасные производственные объекты, обязаны:
- 1) планировать и осуществлять мероприятия по локализации и ликвидации последствий аварий на опасных производственных объектах;
- 2) привлекать к профилактическим работам по предупреждению аварий на опасных производственных объектах, локализации и ликвидации их последствий военизированные аварийно-спасательные службы и формирования;
- 3) иметь резервы материальных и финансовых ресурсов для локализации и ликвидации последствий аварий;
- 4) обучать работников методам защиты и действиям в случае аварии на опасных производственных объектах;
- 5) создавать системы наблюдения, оповещения, связи и поддержки действий в случае аварии на опасных производственных объектах и обеспечивать их устойчивое функционирование.

Приостановление работ в случае возникновения непосредственной угрозы жизни работников, выведение людей в безопасное место и осуществлениемероприятий, необходимых для выявления опасности При всех возможных авариях по причинам, указанным ниже, обслуживающий персонал немедленно извещает диспетчера, принимает меры по тушению пожара, локализации аварии или чрезвычайной ситуации.

Диспетчер оповещает руководителей предприятия. Затем оповещает командиров добровольных спасательных и противопожарных команд, по согласованию с руководителем по ликвидации последствий аварии оповещает ППЧ.

Для тушения пожара используется резервуар с водой, мотопомпа. Перечень разработанных мер по уменьшению риска аварий, инцидентов- обучение и проверка знаний персонала безопасных приемов работы;

- ежегодное изучение персоналом, действий по предупреждению и ликвидации возможных аварий;

- периодическое проведение, в соответствии с утвержденным графиком предприятия, проверок состояния безопасности объектов лицами технического надзора;
- периодическое обучение и инструктаж рабочих и ИТР правилам пользования первичными средствами пожаротушения, и средствами индивидуальной защиты;
 - соблюдение правил промышленной безопасности;
 - соблюдение проектных решений;
 - проведение учебных тревог и противоаварийных тренировок;
 - планово-предупредительные, капитальные ремонты оборудования;
 - ежемесячный контроль исправности средств пожаротушения;
 - обеспечение СИЗ;
 - постоянный контроль за проектным ведением работ.

Планы ликвидации последствий инцидентов, аварий, природных стихийных бедствий, предотвращения и минимизации дальнейших негативных последствий для окружающей среды, жизни, здоровья и деятельности человека разрабатываются отдельным документом и согласуются в государственных органах.

15.5 Мероприятия по снижению экологического риска

Оценка риска аварии необходима постоянно, так как ее возникновение зависит не только от проектных параметров, но и от текущей ситуации, сочетание управленческих решений, параметров процесса, состояния оборудования и степени подготовленности персонала, внешних условий. Предупреждение аварии возможно при постоянном контроле за процессом и прогнозировании риска.

Важную роль в обеспечении безопасности рабочего персонала и местного населения и охраны окружающей природной среды во время проведения работ играет система правил, нормативов, инструкций и стандартов, соблюдение которых обязательно руководителями и всеми сотрудниками компании и подрядчиков. При проведении работ необходимо уделять внимание монтажу, проверке и техническому обслуживанию всех видов оборудования, требуемых в соответствии с правилами техники безопасности и охраны труда, обучение персонала и проведение практических занятий.

На ликвидацию аварий затрачивается много времени и средств. Значительно легче предупредить аварию, чем ее ликвидировать. Поэтому при производстве планируемых работ необходимо уделять первоочередное внимание предупреждению аварий, а именно проводить:

- систематический контроль за состоянием оборудования;
- планово-предупредительные ремонты оборудования;
- соблюдение правил техники безопасности;
- предусмотрены мероприятия по обеспечению пожарной, промышленной, санитарно-гигиенической и экологической безопасности
- химические реагенты должны храниться в герметичной таре на площадках и специальных складах;
 - проведение рекультивации нарушенных земель;
- обеспечение движения транспортных средств в соответствии с разработанной транспортной схемой.

Существует три основных направления мер по обеспечению экологической безопасности проведения работ:

- первое принятие технически грамотных и экономически целесообразных проектных решений;
 - второе качественное проведение строительно-монтажных работ;
 - третье проведение природоохранных и противоаварийных мероприятий

15.6 Мероприятия по уменьшению последствий возможных чрезвычайных ситуаций

Предотвращение чрезвычайных ситуаций и их последствий обеспечивается за счет реализации заложенных в проекте мероприятий, направленных на снижение риска возникновения чрезвычайной ситуации и его локализацию.

Мероприятия по снижению последствий ЧС, заложенные в проект, проводятся по следующим направлениям:

- рациональное расположение оборудования на технологических площадках;
- герметизация технологического процесса;
- обеспечение безопасности производства;
- обеспечение надежного электроснабжения;
- обеспечение защиты от пожаров;
- обеспечение защиты обслуживающего персонала;
- поддержание в исправном состоянии электрооборудования, средств молниезащиты, защиты от статистического электричества;
- обеспечение охраны объектов от несанкционированного доступа и террористических актов.

15.7 Безопасность жизнедеятельности

Техногенная чрезвычайная ситуация – состояние, при котором в результате возникновения источника техногенной чрезвычайной ситуации на объекте, определенной территории нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносится ущерб имуществу населения, хозяйствующему субъекту и окружающей среде.

Обеспечение безопасности является задачей не только предотвращения отравления выбросами вредных веществ населения близлежащих населенных пунктов и персонала, снижения до минимума вредного воздействия выбросов на окружающую природную среду региона в целом, но и минимизации экономических потерь, связанных с ликвидацией последствий чрезвычайной ситуации.

Основные принципы и способы обеспечения безопасности населения в чрезвычайных ситуациях

К основным мероприятиям по обеспечению безопасности населения в чрезвычайных ситуациях относятся следующие:

- прогнозирование и оценка возможности последствий чрезвычайных ситуаций;
- разработка мероприятий, направленных на предотвращение или снижение вероятности возникновения таких ситуаций, а также на уменьшение их последствий;
- обучение населения действиям в чрезвычайных ситуациях и разработка эффективных способов его зашиты.

15.8 Анализ возможных аварийных ситуаций

Под аварией понимают существенные отклонения от нормативно-проектных или допустимых эксплуатационных условий производственно-хозяйственной деятельности по причинам, связанным с действиями человека или техническими средствами, а также в результате любых природных явлений (наводнение, землетрясение, оползни, ураганы и другие стихийные бедствия).

Возникающие на производстве аварии и риск их возникновения могут быть определены разными методами. Один из самых распространенных — построение дерева ошибок, т.е. логической структуры, описывающей причинно-следственную связь при взаимодействии основного технологического оборудования, человека и условий окружающей среды — всех элементов, способных вызвать и вызывающие отказы на производстве.

Причины отказов могут происходить по причине:

- природно-климатических условий, температуры окружающей среды;
- низкой квалификации обслуживающего персонала;
- нарушения трудовой и производственной дисциплины;

Степень риска производства зависит как от природных, так и техногенных факторов. Естественные факторы, представляющие угрозу проектируемым работам, характеризуются очень низкими вероятностями. При возникновении данных факторов строительные работы прекращаются.

Наибольшее число аварий возникает по субъективным причинам, т,е, по вине исполнителя трудового процесса. Поэтому при разработке мер профилактики и борьбы с авариями следует особо обращать внимание на строгое соблюдение требований и положений, излагаемых в производственных инструкциях.

Таким образом, при строгом соблюдении проектных решений и правил техники безопасности, применении современных технологий и трудовой дисциплины, при строительно-монтажных работах, позволяет судить о низкой степени возникновения аварийных ситуаций.

Оценки вероятного возникновения аварийной ситуации позволяют прогнозировать негативное воздействие аварий на компоненты окружающей среды. Такое воздействие может быть оказано на:

- атмосферный воздух;
- почвенно-растительные ресурсы;

15.9 Перечень разработанных мер по уменьшению риска аварий, инцидентов

Перечень разработанных мер по уменьшению риска аварий, инцидентов включает:

- обучение и проверка знаний персонала безопасных приемов работы;
- ежегодное изучение персоналом, действий по предупреждению и ликвидации возможных аварий;
- периодическое проведение, в соответствии с утвержденным графиком предприятия, проверок состояния безопасности объектов лицами технического надзора;
- периодическое обучение и инструктаж рабочих и ИТР правилам пользования первичными средствами пожаротушения, и средствами индивидуальной защиты;
 - соблюдение правил промышленной безопасности;
 - соблюдение проектных решений;
 - проведение учебных тревог и противоаварийных тренировок;
 - планово-предупредительные, капитальные ремонты оборудования;

Отчет о возможных воздействиях

- ежемесячный контроль исправности средств пожаротушения;
- обеспечение СИЗ;
- постоянный контроль за проектным ведением работ.

16. ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ ДЛЯ ПЕРИОДА ЭКСПЛУАТАЦИИ ОБЪЕКТА МЕР ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ ВЫЯВЛЕННЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, В ТОМ ЧИСЛЕ ПРЕДЛАГАЕМЫХ МЕРОПРИЯТИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ, А ТАКЖЕ ПРИ НАЛИЧИИ НЕОПРЕДЕЛЕННОСТИ В ОЦЕНКЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ – ПРЕДПОЛАГАЕМЫХ МЕР ПО МОНИТОРИНГУ ВОЗДЕЙСТВИЙ

Мероприятия по смягчению воздействий - это система действий, используемая для управления воздействиями - снижения потенциальных отрицательных воздействий или усиления положительных воздействий в интересах как затрагиваемого проектом населения, так и региона, области, республики в целом.

Во всех случаях, когда выявлены значительные неблагоприятные воздействия, основная цель заключается в поиске мер по их снижению. Для тех случаев, когда подобрать подходящие мероприятия не представляется возможным, ниже излагаются варианты мероприятий, направленных на компенсации негативных последствий.

Кроме того, в соответствующих случаях рекомендованы стимулирующие мероприятия.

Стимулирующие мероприятия не следует рассматривать в качестве альтернативы смягчающим или компенсирующим мероприятиям — это мероприятия, выделенные в связи с их способностью обеспечить проекту определенные дополнительные преимущества после того, как реализованы все смягчающие и компенсирующие мероприятия.

По атмосферному воздуху

- проведение технического осмотра и профилактических работ технологического оборудования, механизмов и автотранспорта;
 - соблюдение нормативов допустимых выбросов.

По поверхностным и подземным водам

- организация системы сбора и хранения отходов производства;
- контроль герметичности всех емкостей, во избежание утечек сточных вод.

По недрам и почвам

- должны приниматься меры, исключающие загрязнение плодородного слоя почвы, строительным мусором, нефтепродуктами и другими веществами, ухудшающими плодородие почв;

По охране растительного и животного мира:

В соответствии с характером прогнозируемого воздействия на растительный покров и животный мир при строительстве объектовпредусматриваются специальные организационно-профилактические мероприятия:

- уменьшение или предотвращение механического нарушения почвенно-растительного покрова, путем обязательного соблюдения границ при проведении строительно-монтажных работ и организацией контроля за использованием земельных ресурсов;
- исключение проливов ГСМ, своевременная их ликвидация; санитарная очистка территории строительства.

По отходам производства

- своевременная организация системы сбора, транспортировки и утилизации отходов.

По физическим воздействиям.

- содержание оборудования в надлежащем порядке, своевременное проведение технического осмотра и ремонта;
 - строгое выполнение персоналом существующих на предприятии инструкций;
 - обязательное соблюдение правил техники безопасности.

16.1. Программа работ по организации мониторинга за состоянием природной среды

В соответствии со статьями 182, 186 Экологического Кодекса РК от от 02.01,2021г. N0400-VI, природопользователи обязаны осуществлять производственный экологический контроль.

Производственный мониторинг за состоянием природной среды будет осуществляеться согласно утвержденной программы производственного экологического контроля, разработанной для месторождения Барханное.

В рамках осуществления производственного мониторинга выполняются операционный мониторинг, мониторинг эмиссий в окружающую среду и мониторинг воздействия.

16.1.1. Операционный мониторинг

Операционный мониторинг (мониторинг производственного процесса) включает в себя наблюдение за параметрами технологического процесса.

Непрерывный визуальный контроль за работой оборудования осуществляется обслуживающим персоналом.

16.1.2. Мониторинг эмиссий

Мониторинг эмиссий включает в себя мониторинг эмиссий выбросов загрязняющих веществ, сбросов загрязняющих веществ и мониторинг отходов производства и потребления.

Мониторинг эмиссий выбросов загрязняющих веществ

На источниках контроль за соблюдением нормативов ПДВ и их влиянием на окружающую среду будет осуществляться согласно утвержденной программы производственного экологического контроля.

Контроль на источниках выбросов может проводиться двумя методами:

- ✓ Расчетным методом (с использованием действующих в РК методик по расчету выбросов);
- ✓ Прямыми замерами концентраций загрязняющих веществ в атмосферном воздухе на источниках выбросов и на границе санитарно-защитной зоны.

Мониторинг эмиссий сбросов загрязняющих веществ

При технологическом процессе переработки отходов сброс сточных вод отсутствует.

Мониторинг отходов производства и потребления

Период строительства

Отходы, образованные в процессе ведения строительно-монтажных работ будут направлены на временное накопление в контейнерах или площадках, расположенных в специально отведенных местах с последующей передачей специализированной организации.

Мониторинг существующих отходов производства и потребления будет осуществляться согласно утвержденной программы производственного экологического контроля.

16.2. Мониторинг воздействий

Проведение мониторинга воздействия включается в программу производственного экологического контроля в тех случаях, когда это необходимо для отслеживания соблюдения требований экологического законодательства Республики Казахстан и нормативов качества окружающей среды либо определено в комплексном экологическом разрешении.

Мониторинг атмосферного воздуха на границе СЗЗ

Мониторинг за состоянием атмосферного воздуха на границе СЗЗ будет осуществляться согласно утвержденной программы производственного экологического контроля.

Мониторинг поверхностных и подземных вод

Производственный мониторинг состояния систем водопотребления и водоотведения предусматривает осуществление наблюдений за источниками воздействия на водные ресурсы рассматриваемого района, а также их рационального использования. Результаты мониторинга позволят своевременно выявить и провести оценку происходящих изменений окружающей среды при осуществлении производственной деятельности.

Исходя из видов используемых и образующихся сточных вод, при проведении планируемых работ, мониторинг состояния систем водопотребления и водоотведения включает:

- ✓ операционный мониторинг наблюдения за объемами забираемой и используемой предприятием свежей воды и их соответствия установленным лимитам, наблюдения за работой и эффективностью очистных сооружений сточных вод;
- ✓ мониторинг эмиссий наблюдения за объемами сбрасываемых сточных вод и их соответствием установленным лимитам.

На территории месторождения Барханное планируется только операционный мониторинг, а именно учет потребляемой воды.

Мониторинг почвенного покрова на границе СЗЗ

Мониторинг воздействия за состоянием почв и растительность выделяется в общей системе производственного экологического мониторинга окружающей среды на уровне подсистемы и включает в себя в соответствии с порядком ведения мониторинга:

- ведение периодического мониторинга, обеспечивающего организацией стационарных экологических площадок (СЭП), с установленной периодичностью, слежение за изменением состояния почв и растительности;
- ведение оперативного мониторинга аварийных, других нештатных ситуаций, вызывающих негативные изменения почвенно-растительного покрова. А также на рекультивированных участках по мере выявления таких участков.

Операционный мониторинг. Проведение операционного мониторинга диктуется необходимостью постоянного визуального контроля за состоянием нарушенности и загрязненности почвенно-растительного покрова с целью выявления аварийных участков разливов ГСМ, механических нарушений в местах проведения строительных. Выявление таких мест обеспечивается специалистами по охране окружающей среды на основании анализа планов проведения работ, журналов регистрации отказов на предприятии путем визуальных наблюдений.

На выявленных участках, где обнаружены загрязнение и механические нарушения необходимо проведение мероприятий по их очистке и рекультивации. После ликвидации нарушений в границах зоны их влияние разрабатывается схема последующего мониторинга, выбираются репрезентативные площадки для проведения наблюдений за состоянием загрязнения и нарушенности почв. Такие площадки переходят в разряд постоянно действующей сети мониторинга в качестве дополнительных точек наблюдений. В дальнейшем наблюдения на них проводятся по схеме производственного мониторинга на СЭП, в которую могут быть включены дополнительные параметры, определенные

спецификой нарушений и загрязнения. Данные наблюдения проводятся на протяжении всего цикла реабилитации территории.

Проведение мониторинговых наблюдений за состоянием почвенного покрова проводиться на предприятии согласно утверженной программы производственного экологического контроля.

Мониторинг флоры и фауны.

Мониторинг растительного покрова и мониторинг почв, как два взаимосвязанных комплекса природной среды проводятся одновременно на стационарных экологических площадках.

Мониторинг растительности должен производиться в комплексе с изучением почвенного покрова. Это даст возможность более детально определить направление процессов природной и антропогенной динамики растительности и выявить негативные тенденции.

Для снижения хоть и незначительного, но негативного влияния на флору и фауну в районе объекта представляется целесообразным разработать и выполнять ряд мероприятий, позволяющих уменьшить негативные воздействия, сопутствующие запланированным работам:

- максимальное уменьшение площадей нарушенного почвенно-растительного слоя;
- ограничение доступа животных к местам сбора производственных и бытовых отходов;
- поддержание в чистоте территорий промплощадок объектов и прилегающих площадей;
 - сведение к минимуму передвижения транспортных средств ночью;
 - передвижение транспортных средств только по дорогам;
 - максимально возможное снижения загрязнения почв химическими веществами;
 - исключение случаев браконьерства;
 - проведение просветительской работы экологического содержания.

С целью сохранения биоресурсов и своевременного выявления неблагоприятных последствий воздействия на экосистемы рекомендуется проведение периодического мониторинга растительности и животного мира на территории участка.

17. МЕРЫ ПО СОХРАНЕНИЮ И КОМПЕНСАЦИИ ПОТЕРИ БИОРАЗНООБРАЗИЯ

Во всех случаях, когда выявлены значительные неблагоприятные воздействия, основная цель заключается в поиске мер по их снижению. Для тех случаев, когда подобрать подходящие мероприятия не представляется возможным, ниже излагаются варианты мероприятий, направленных на компенсации негативных последствий.

Кроме того, в соответствующих случаях рекомендованы стимулирующие мероприятия.

Стимулирующие мероприятия не следует рассматривать в качестве альтернативы смягчающим или компенсирующим мероприятиям — это мероприятия, выделенные в связи с их способностью обеспечить проекту определенные дополнительные преимущества после того, как реализованы все смягчающие и компенсирующие мероприятия.

По растительному миру.

- перемещение спецтехники и транспорта ограничить специально отведенными дорогами;
- тщательная регламентация проведения работ, связанных с загрязнением рельефа при производстве земляных работ; технической рекультивации;
- установка информационных табличек в местах произрастания редких и исчезающих растений на территории объекта;
- производить информационную кампанию для персонала объекта и населения с целью сохранения редких и исчезающих видов растений.

По животному миру.

- контроль за недопущением разрушения и повреждения гнезд, сбор яиц без разрешения уполномоченного органа;
 - установка информационных табличек в местах гнездования птиц;
- воспитание (информационная кампания) для персонала и населения в духе гуманного и бережного отношения к животным;
- строгое запрещение кормления диких животных персоналом, а также надлежащее хранение отходов, являющихся приманкой для диких животных;
 - соблюдение норм шумового воздействия;
- изоляция источников шума: насыпями, экранизирующими устройствами и заглублениями;
- наличие схем оповещения государственных органов при гибели перелетных птиц, животных и млекопитающих;
- в соответствии со ст. 246 Кодекса при строительстве и эксплуатации электрических сетей должны разрабатыватся и осуществлятся мероприятия, обеспечивающие предотвращение гибели птиц и других диких животных, сохранение среды обитания, условий размножения, путей миграции и мест концентрации. Субъекты, осуществляющие эксплуатацию электрических сетей, обязаны осуществлять регулярное обследование электрических сетей для выявления их негативного влияния на птиц и других диких животных и в случае необходимости принять меры по его снижению;
- проектные решения по строительству принять с учетом требований РК в области охраны окружающей среды, включая проведение работ по технической рекультивации после окончания работ.
- создание ограждений для предотвращения попадания перелетных птиц на производственные объекты;
 - установка вторичных глушителей выхлопа на спецтехнику и авто транспорт;

- регулярное техническое обслуживание производственного оборудования и его эксплуатация в соответствии со стандартами изготовителей;
 - осуществление жесткого контроля нерегламентированной добычи животных;
 - защита окружающей воздушной среды;
 - защиту поверхностных, подземных вод от техногенного воздействия;
- граждение всех технологических площадок, исключающее случайное попадание на них животных;
 - ограничение перемещения техники специально отведенными дорогами;

Движение автотраспорта осуществлять только по дорогам с небольшой скоростью, с ограничением подачи звукового сигнала.

Санитарно-противоэпидемиологические – обеспечение противоэпидемиологической защиты персонала от особо опасных инфекций.

Основными требованиями по сохранению объектов флоры и фауны является:

- сохранение фрагментов естественных экосистем;
- предотвращение случайной гибели животных и растений;
- создание условий производственной дисциплины, исключающих нарушения законодательства по охране животного и растительного мира со сторны производственного персонала.

В целях предупреждения нарушения почвенно-растительного покрова и для охраны животного мира при строительстве намечаются нижеследующие мероприятия:

- ограничение техногенной деятельности вблизи участков с большим биологическим разнообразием;
- утилизацию промышленных и хозяйственно-бытовых отходов в период строительных работ производить только на договорной основе со спец. организацией;
 - поддержание в чистоте территории площадки и прелегающих площадей;
 - сключение проливов ГСМ, своевременная их ликвидация;
 - проведение на заключительном этапе строительства технической рекультивации;
 - организация проведения мониторинговых работ.

При соблюдении этих мероприятий, потери и компенсации биоразнообразия не предусматривается.

18. ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ И ОБОСНОВАНИЕ НЕОБХОДИМОСТИ ВЫПОЛНЕНИЯ ОПЕРАЦИЙ, ВЛЕКУЩИХ ТАКИЕ ВОЗДЕЙСТВИЯ, В ТОМ ЧИСЛЕ СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПОТЕРЬ ОТ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ И ВЫГОДЫ ОТ ОПЕРАЦИЙ, ВЫЗЫВАЮЩИХ ЭТИ ПОТЕРИ, В ЭКОЛОГИЧЕСКОМ, КУЛЬТУРНОМ, ЭКОНОМИЧЕСКОМ И СОЦИАЛЬНОМ КОНТЕКСТАХ

Возможных необратимых воздействий на окружающую среду решения рабочего проекта не предусматривают.

Обоснование необходимости выполнения операций, влекущих такие воздействия не требуется.

Сравнительный анализ потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери, в экологическом, культурном, экономическом и социальном контекстах не приводится.

19. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА, ТРЕБОВАНИЯ К ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДСТАВЛЕНИЯ ОТЧЕТОВ О ПОСЛЕПРОЕКТНОМ АНАЛИЗЕ УПОЛНОМОЧЕННОМУ ОРГАНУ

Согласно Экологическому кодексу республики Казахстан (Статья 67. Стадии оценки воздействия на окружающую среду) послепроектный анализ фактических воздействий при реализации намечаемой деятельности является последней стадией проведения оценки воздействия на окружающую среду.

В соответствии со Статьей 78 ЭК РК послепроектный анализ фактических воздействий при реализации намечаемой деятельности (далее – послепроектный анализ) будет проведен составителем отчета о возможных воздействиях.

Цель проведения послепроектного анализа - подтверждение соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

Сроки проведения послепроектного анализа - послепроектный анализ будет начат не ранее чем через двенадцать месяцев и завершен не позднее чем через восемнадцать месяцев после начала эксплуатации соответствующего объекта, оказывающего негативное воздействие на окружающую среду.

Не позднее срока, указанного выше, составитель отчета о возможных воздействиях подготавливает и подписывает заключение по результатам послепроектного анализа, в котором делается вывод о соответствии или несоответствии реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам оценки воздействия на окружающую среду. В случае выявления несоответствий в заключении по результатам послепроектного анализа приводится подробное описание таких несоответствий.

Составитель направляет подписанное заключение по результатам послепроектного анализа оператору соответствующего объекта и в уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты подписания заключения по результатам послепроектного анализа.

Уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты получения заключения по результатам послепроектного анализа размещает его на официальном интернет ресурсе.

Порядок проведения послепроектного анализа и форма заключения по результатам послепроектного анализа определяются и утверждаются уполномоченным органом в области охраны окружающей среды.

Получение уполномоченным органом в области охраны окружающей среды заключения по результатам послепроектного анализа является основанием для проведения профилактического контроля без посещения субъекта (объекта) контроля.

20. СПОСОБЫ И МЕРЫ ВОССТАНОВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА СЛУЧАИ ПРЕКРАЩЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ОПРЕДЕЛЕННЫЕ НА НАЧАЛЬНОЙ СТАДИИ ЕЕ ОСУЩЕСТВЛЕНИЯ

Для уменьшения влияния работ на состояние окружающей среды предусматривается комплекс мероприятий.

- упорядоченное движение транспорта и другой техники по территории работ, разработка оптимальных схем движения.
- применение новейшего отечественного и импортного оборудования, с учетом максимального сгорания топлива и минимальными выбросами 3В в ОС;
- техосмотр и техобслуживание автотранспорта и спецтехники, а также контроль токсичности выбросов, что обеспечивается плановыми проверками работающего на участках работ транспорта;
- использование высокооктановых неэтилированных сортов бензинов, что позволит: исключить выбросы свинца и его соединений с отработанными газами карбюраторного двигателя, улучшить полноту сгорания топлива, в результате чего снизятся выбросы СО и углеводородов;
- Соблюдение природоохранных требований законодательных и нормативных актов Республики Казахстан, внутренних документов и стандартов компании;
 - применение современных технологий ведения работ;
 - использование экологически безопасных техники и горюче-смазочных материалов;
- проведение земляных работ в наиболее благоприятные периоды с наименьшим негативным воздействием на почвы и растительность (зима);
 - своевременное проведение работ по рекультивации земель;
 - сбор отработанного масла и утилизация его согласно законам Казахстана
 - установка контейнеров для мусора
 - утилизация отходов.

В случае принятия решения о прекращении намечаемой деятельности на начальной стадии ее осуществления, оператором будет разработан план ликвидации последствий производственной деятельности на основании «Инструкции по составлению плана ликвидации», утвержденной приказом №386 от 24.05.2018 г. При планировании ликвидационных мероприятий выделены следующие критерии:

- приведение нарушенного участка в состояние, безопасное для населения и животного мира;
- приведение земель в состояние, пригодное для восстановления почвеннорастительного покрова;
 - улучшение микроклимата на восстановленной территории;
- нейтрализация отрицательного воздействия нарушенной территории на окружающую среду и здоровье человека.

Далее, после ликвидации будет разработан проект рекультивации нарушенных земель согласно «Инструкция по разработке проектов рекультивации нарушенных земель», утвержденной приказом Министра национальной экономики РК №346 от 17.04.2015 г.

Рекультивация земель — это комплекс работ, направленный на восстановление продуктивности и народнохозяйственной ценности нарушенных земель, а также на улучшение условий окружающей среды. Целью разработки проекта рекультивации земель является определение основных решений, обеспечивающих наиболее эффективное

проведение мероприятий с минимумом затрат: установление объемов, технологии и очередности производства работ, определение сметной стоимости рекультивации.

Направление рекультивации земель зависит от следующих факторов:

- природных условий района (климат, почвы, геологические, гидрогеологические и гидрологические условия, растительность, рельеф, определяющие геосистемы или ландшафтные комплексы);
- агрохимических и агрофизических свойств пород и их смесей в отвалах, гидроотвалах, хвостохранилищах;
- хозяйственных, социально-экономических и санитарно-гигиенических условий в районе размещения нарушенных земель;
- срока существования рекультивационных земель и возможности их повторных нарушений;
 - технологии производства комплекса горных и рекультивационных работ;
 - требований по охране окружающей среды;
 - состояния ранее нарушенных земель, т.е. состояния техногенных ландшафтов.

Согласно ГОСТ 17.5.1.01-83, возможны следующие направления рекультивации:

- сельскохозяйственное с целью создания на нарушенных землях сельскохозяйственных угодий;
 - лесохозяйственное с целью создания лесных насаждений различного типа;
- рыбохозяйственное с целью создания в понижениях техногенного рельефа рыбоводческих водоемов;
- водохозяйственное с целью создания в понижениях техногенного рельефа водоемов различного назначения;
 - рекреационное с целью создания на нарушенных землях объектов отдыха;
- санитарно-гигиеническое с целью биологической или технической консервации нарушенных земель, оказывающих отрицательное воздействие на окружающую среду, рекультивация которых для использования в народном хозяйстве экономически неэффективна или нецелесообразна в связи с относительной кратковременностью существования и последующей утилизацией этих объектов;
- строительное с целью приведения нарушенных земель в состояние, пригодное для промышленного и гражданского строительства.

На случаи прекращения намечаемой деятельности предусматривается проведение мероприятий по восстановлению нарушенных земель в два этапа:

- I технический этап рекультивации земель,
- II биологический этап рекультивации земель.

Технический этап рекультивации предполагается выполнить после полной отработки карьера, который будет включать в себя: грубую планировку (уборка строительного мусора, засыпка ям и неровностей, планировка территории, выполаживание откосов породных отвалов) и чистовую планировку (нанесение ПРС).

Завершающим этапом восстановления нарушенных земель является проведение биологического этапа рекультивации. Работы по биологическому восстановлению земель ведутся для создания растительных сообществ декоративного и озеленительного назначения.

До начала проведения работ по рекультивации нарушенных земель должен быть разработан проект на производство этих работ согласно инструкции по разработке проектов рекультивации нарушенных земель, утвержденной Приказом Министра сельского хозяйства Республики Казахстан от 2 августа 2023 года № 289.

Отчет о возможных воздействиях

Рекультивацию нарушенных земель природопользователь выполнит отдельным проектом.

В рабочем проекте будут проработаны технологические вопросы всех этапов работ по рекультивации нарушенных земель и определена сметная стоимость выполнения этих работ.

21. СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ ЗАКОНОДАТЕЛЬНЫЕ РАМКИ ЭКОЛОГИЧЕСКОЙ ОЦЕНКИ

Намечаемая деятельность осуществляется на территории Республики Казахстан, поэтому его экологическая оценка выполнена в соответствии с требованиями Экологического законодательства Республики Казахстан и других законов, имеющих отношение к проекту.

Экологическое законодательство РК основывается на Конституции Республики

Казахстан и состоит из Экологического Кодекса, 2021г. (далее ЭК РК) и иных нормативных правовых актов Республики Казахстан.

Оценка воздействия на окружающую среду (OBOC), согласно ЭК РК – обязательная процедура для намечаемой деятельности, в рамках которой оцениваются возможные последствия хозяйственной и иной деятельности для окружающей среды и здоровья человека, разрабатываются меры по предотвращению неблагоприятных последствий, оздоровлению окружающей среды с учетом требований экологического законодательства Республики Казахстан.

Законодательство РК в области технического регулирования основывается на Конституции Республики Казахстан и состоит из Закона РК «О техническом регулировании» от 30 декабря 2020 года N 396-VI 3PK. и иных нормативных правовых актов.

Техническое регулирование основывается на принципах равенства требований к отечественной и импортируемой продукции, услуге и процедурам подтверждения их соответствия требованиям, установленным в технических регламентах и стандартах.

Технические удельные нормативы эмиссий устанавливаются на основе внедрения наилучших доступных технологий.

Земельное законодательство РК основывается на Конституции Республики Казахстан и состоит из «Земельного кодекса РК» №442-II от 20 июня 2003 и иных нормативных правовых актов.

Задачами земельного законодательства РК является регулирование земельных отношений в целях обеспечения рационального использования и охраны земель.

При размещении, проектировании и вводе в эксплуатацию объектов, отрицательно влияющих на состояние земель, должны предусматриваться и осуществляться мероприятия по охране земель.

Водное законодательство РК основывается на Конституции Республики Казахстан и состоит из «Водного кодекса РК» №481-II ЗРК от 9 июля 2003 года и иных нормативных правовых актов.

Целями водного законодательства РК являются достижение и поддержание экологически безопасного и экономически оптимального уровня водопользования и охраны водного фонда, водоснабжения и водоотведения для сохранения и улучшения жизненных условий населения и окружающей среды.

Санитарно-эпидемиологическое законодательство РК основывается на Конституции Республики Казахстан и состоит из Кодекса РК от 7 июля 2020 года №360-VI «О здоровье народа и системе здравоохранения» и иных нормативных правовых актов.

Кодекс регулирует общественные отношения в области здравоохранения в целях реализации конституционного права граждан на охрану здоровья.

Методическая основа проведения ОВОС

Общие положения проведения ОВОС при подготовке и принятии решений о ведении намечаемой хозяйственной деятельности и иной деятельности на всех стадиях ее организации в соответствии со стадией разработки предпроектной или проектной документации определяет «Инструкции по организации и проведению экологической оценки», утвержденная Приказом Министра экологии, геологии и природных ресурсов РК от 30 июля 2021 года №280.

Методической основой проведения ОВОС являются:

- «Методические указания по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденные Приказом Министерства охраны окружающей среды РК от 29 октября 2010 года №270-п. которые разработаны с использованием документов Всемирного Банка и Европейской комиссии по проведению экологической оценки (Environmental Assessment) и Оценке Воздействия на Окружающую среду (Environmental Impact Assessment.);
- «Оценка риска воздействия на здоровье населения химических факторов окружающей среды» (Методические рекомендации) утверждены Минздравом РК от 19 марта 2004 года;
- «Методические рекомендации по проведению оценки риска здоровью населения от воздействия химических факторов», МНЭ РК от 13.12.2016 г. №193-ОД.

Контроль за соблюдением требований экологического законодательства Республики Казахстан при выполнении процедуры оценки воздействия на окружающую среду осуществляет уполномоченный орган в области охраны окружающей среды – Комитет экологического регулирования и контроля в составе Министерства экологии, геологии и природных ресурсов РК.

23. КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ

1. Описание предполагаемого места намечаемой деятельности

Недропользователем месторождения Барханная является ТОО «Разведка и добыча QazaqGaz»,

который имеет контракт №5205-УВС от 06 апреля 2023 года, на добычу углеводородов на месторождении Барханная расположенной в Жамбылской области РК. Месторождение Барханная расположена в пределах блоков XXXIV – 49 -С (частично), F (частично), 50-А (частично), D (частично). Площадь участка недр составляет – 39,72 кв.км.

Срок действия до 2048 года включительно.

Месторождение Барханная в административном отношении расположено в пределах Мойынкумского района Жамбылской области (лист XXXIV-49, 50) Республики Казахстан. Областной центр, город Тараз, находится в 240 км к югу от площади работ (рис.2.1).

В орографическом отношении территория расположена на юго-западной окраине пустыни Мойынкум, занимающей междуречье рек Шу и Таласа и представляет собой равнинную местность, постепенно воздымающуюся в сторону горной системы Тянь-Шаня. Поверхность песков Мойынкум имеет сложный грядово-бугристый рельеф. Относительные превышения песчаных гряд, простирающихся в северо-западном направлении, достигают 20-60 м. Абсолютные отметки рельефа в районе изменяются от плюс 320 м до 360 м, в районе г.Тараз они увеличиваются до плюс 600 м.

По природно-климатическим условиям район работ относится к зоне среднеазиатских пустынь с резко континентальным климатом: с сухим жарким летом; с холодной, малоснежной зимой. Максимальная температура летом достигает плюс 400С - 450С с минимальной температурой зимой минус 400С. Направление ветров, в основном, северовосточное.

Гидрографическая сеть представлена реками Аса, Талас (на юге) и Чу (на севере), берущими свое начало в горах Киргизского Алатау. Источниками водоснабжения являются также колодцы с пресной водой (уровень воды в которых находится на глубине 10-20 м от устья) и артезианские скважины. Водоносные горизонты палеогена залегают на глубине 60220 м и содержат воду с минерализацией 3-5 г/л. Дебиты воды высокие (до 45 м³/сут). Сейсмичность района (СНИП РК 2.04- 01-2001) 6 баллов. Среднегодовое количество осадков не превышает 80-100 мм, наибольшее количество осадков приходится на ноябрь-март месяцы.

Передвижение в условиях барханных песков возможно с помощью гусеничного и вездеходного автотранспорта. Шоссейная дорога с асфальтовым покрытием, связывающая областной центр г.Тараз с районным центром п.Акколь и населенными пунктами Оик и Уланбель проходит на востоке площади.

Основные промышленные центры области г. Тараз и г. Каратау связаны железной дорогой.

Ближайшие населенные пункты расположены вдоль поймы реки Талас (Оик, Амангельды).

Координаты проектируемых скв. Б-6 (44°31'4,18" С.ш, $70^{\circ}57'30,80$ " В.д.), Б-7 (44°30' 55,45"С.ш., $70^{\circ}58'5,43$ "В.д.), Б-8 (44°31'19,22"с.ш, $70^{\circ}58'18,83$ "В.д.)

Координаты горного отвода:

- 1. 44о30'30,96"СШ, 70о55'39,2"ВД;
- 2. 44032'36,63"СШ, 70055'59,63"ВД;
- 3. 44о31'40,35"СШ, 71о03'27,57"ВД;
- 4. 44о29'29,99"СШ, 71о02'58,47"ВД.

2. Краткое описание намечаемой деятельности

Настоящим проектом предусматривается:

- Обустройство 2-х газодобывающих скважин Б-5 и Б-6;
- Прокладка шлейфа от скважин Б-5, Б-6 до манифольда ПСГ.
- Реконструкция проезда к существующей скважине Б-5;
- Строительство подъездной дороги к проектируемой скважине Б-6 и площадка ПСГ;
- Пункта Сбора Газа (ПСГ);
- Газопровод ПСГ «Барханное- УКПГ Амангельды».
- Строительство ВЛ.

Объем проектирования, а так же увязка проектных решений с существующим положением и ранее выполненными проектами, представлены на чертеже «Ситуационный план».

Планировочные решения по генеральному плану площадок и подъездных автодорог приняты с учетом технического задания.

Планировочные решения по генеральному плану приняты с учетом генерального плана обустройства месторождения Анабай, технологических схем, расположения существующих и проектируемых инженерных сетей, обеспечения рациональных производственных, транспортных и инженерных связей на месторождении.

Промысловая автодорога к площадке скважины запроектирована для обслуживания промышленных этапов бурения на площадке, обеспечивая транспортную связь между существующими дорогами и проектируемыми площадками.

Генеральный план площадок разработан с учетом технологии производства, а также в соответствии с нормами пожаробезопасности.

При этом в основу заложены следующие требования:

- расположение сооружений, а также транспортных путей на территории площадок принято согласно технологического задания, требуемым разрывам по нормам пожаро- и взрывобезопасности и с учетом розы ветров, санитарным требованиям, грузооборота и прогрессивных видов транспорта;
- обеспечение благоприятных и безопасных условий труда, а также обеспечение рациональных производственных, транспортных и инженерных связей на площадках.
- соблюдение минимальных безопасных расстояний размещений объектов обустройства согласно Приложения 1 к Правилам обеспечения промышленной безопасности для опасных производственных объектов нефтяной и газовой отраслей промышленности.

Площадки скважин

Плановое положение площадок определяется по центру. Координаты устья скважин вынесены на чертежах «Разбивочный план», общая схема расположение проектируемой скважины отражена на чертеже «Ситуационный план».

Площадки запроектированы прямоугольной формы, с внутренними размерами в плане 100x100 метров.

Основными путями сообщения являются запроектированные подъездные дороги.

Схема генерального плана и транспорта разработана в соответствии с учетом санитарно-

гигиенических и противопожарных требований, рельефа местности.

На каждой площадке скважины устанавливаются однотипные площадки и сооружения:

- Приустьевой приямок;
- Рабочая площадка;
- Свеча продувочная;
- Площадка под ремонтный агрегат;
- Фундамент под ремонтный агрегат;
- Щит пожарный;
- Якоря для растяжек 4 шт.;
- Площадка блока дозирования метанола БДР;
- Площадка КТП.

За пределами ограждения устья скважины на расстоянии устанавливается площадка КТП в отдельно стоящем ограждении высотой 2.2 м. Для прохода в ограждении установлена калитка КМ1а по серии 3.017-1-1, выпуск 0.

Свеча продувочная расположена за пределами ограждения скважины на расстоянии 45.0 м от устья скважины.

Генеральный план разработан с учетом местоположения участка и создания оптимальных условий для организации производственного процесса.

Ограждение устья скважины размерами в плане 8х16 м выполнено из решетчатых металлических разборных панелей высотой 2.2 м по металлическим стойкам общей протяженностью 128 м. Для обслуживания скважины на въезде установлены ворота шириной 4.8 м по серии 3.017-1-1, вып.0. Для прохода персонала в ограждении установлена калитка КМ1а.

Основные показатели по генеральному плану на 1 скважину:

- площадь проектируемой территории (в пределах отвода земли) 1.0 Га;
- площадь застройки $0.0114 \Gamma a$; плотность застройки 0.89;
- ограждение территории устья скважины из сетчатых разборных панелей по металлическим столбам $H=2.2\ m-43\ n.m.$

На площадках газодобывающих скважин принято типовое размещение сооружений, оборудования, инженерных сетей, коммуникаций. Благоустройство территории скважин включает устройство ограждения на скважинах.

Озеленение скважин не предусмотрено в связи с засушливым климатом, малым количеством осадков и дальностью возки воды для полива зеленых насаждений.

Площадки запроектированы в насыпи и выемки. Возведение насыпи предусматривается из вытесненного, или привозного грунта с близлежащих карьеров.

Проектом не предусмотрено снятие почвенно-растительного слоя согласно отчета геологических изысканий.

Площадки скважин запроектированы в проектных отметках, согласно организации рельефа.

Минимальный требуемый коэффициент уплотнения насыпи - 0.95.

Основные показатели по генеральному плану

№	Наименование	Единицы измерения	Количество
1	Площадь проектируемой территории (в пределах отвода земли)	га	1
2	Площадь проектируемой территории (в пределах ограждения)	га	0,0128
3	Площадь застройки	га	0,0114
4	Площадь территории свободной от застройки	га	0,9886
5	Плотность застройки	%	0,89
6	Ограждение территории из сетчатых панелей по металлическим столбам h=2.2м	П.М.	43
7	Ворота	шт.	1
8	Калитки	шт.	2
9	Ограждение площадки КТП из сетчатых панелей по металлическим столбам h=2.2м	П.М.	18

Пункт сбора газа

Планировочные решения по генеральному плану приняты с учетом генерального плана обустройства месторождения Барханное, технологических схем, расположения существующих и проектируемых инженерных сетей, обеспечения рациональных производственных, транспортных и инженерных связей на месторождении.

Расположение площадок и сооружений на проектируемом объекте определялось исходя из технологической схемы производства и наиболее рационального их размещения в соответствии с требованиями СП РК 3.01-103-2011, СП РК 3.03-122-2013 и с учетом:

- санитарных норм и норм пожаро- и взрывобезопасности;
- вида транспорта, минимизации транспортных маршрутов и величин грузопотоков;
- обеспечения удобных, безопасных и здоровых условий труда работающих;
- рационального размещения инженерных сетей с обеспечением нормальных условий их ремонта и эксплуатации.

Поверхность площадок ПСГ покрыта полупустынной растительностью. Рельеф на площадке относительно сложный, с перепадом высот от минимальной отметки 292,38 до максимальной отметки 297,40 метра.

Площадка ПСГ запроектирована квадратная в плане размерами 100.0 м х 115.5 метров.

На территории площадки ПСГ в ограждении запроектированы следующие здания и сооружения:

- Площадка входного манифольда;
- Площадки блоков сепарации 1 и 2;
- Площадка блока дозирования реагента;
- Площадка подогревателей газа и конденсата;
- Площадка блока насосов конденсата;
- Площадка резервуарного парка конденсата;
- Площадка блока насосов отгрузки конденсата;
- Площадка стояка налива конденсата;
- Площадка факельного сепаратора;
- Площадка факельной установки;

- Площадки дренажных емкостей.

Генеральный план разработан с учетом местоположения участка и создания оптимальных условий для организации производственного процесса.

Проектируемые здания и сооружения на территории площадки размещены таким образом, чтобы обеспечить целесообразную компоновку технической инфраструктуры (трубопроводы, кабели), функциональные связи.

<u>Газопровод ПСГ «Барханное- УКПГ Амангельды»</u>

Планировочные решения по генеральному плану приняты с учетом генерального плана обустройства месторождения Барханное, технологических схем, расположения существующих и проектируемых инженерных сетей, обеспечения рациональных производственных, транспортных и инженерных связей на месторождении.

Генеральный план площадки камеры запуска и приема СОД, площадок крановых узлов КУ-8 и КУ-9 разработан с учетом технологии производства, а также в соответствии с нормативными документами.

Настоящим проектом предусматривается строительство газопровода от ПСГ м/р Барханное до газопровода УКПГ Амангельды.

В состав строительства входят следующие сооружения:

- Газопровод (линейная часть);
- Площадка камеры запуска и приема СОД;
- Площадка крановых узлов КУ-8, КУ-9;
- Площадка расширительной камеры (ловушка) с конденсатосборником;
- Свеча продувочная С-1, 2, 3, 4.
- Площадка дренажной емкости ДЕ-1.

Площадки линейного крана для газопровода КУ-8, КУ-9 расположены на трассе газопровода.

Площадка кранового узла КУ-8 расположена на выходе газопровода с будущего пункта сбора газа месторождения Барханное ПК1+12,00.

Площадка кранового узла КУ-9 расположена на ПК307+00,00 трассы с установкой продувочной свечи.

Площадки камеры запуска и приема СОД запроектированы размерами в плане 42.0 м х 32.0 м в ограждении высотой 2.2 м. Для обслуживания площадки в ограждении установлены ворота. На расстоянии 25 м от площадки запроектирована свеча продувная.

Основные показатели по генеральному плану:

- площадь территории -0.1344 га;
- площадь застройки -0.0063 га;
- плотность застройки -5,2%;

Ограждение запроектировано высотой 2.2 м, в ограждении установлена ворота для обслуживания площадки.

Организация рельефа

Проектом предусматривается вертикальная планировка территории скважин.

Задачей и целью организации рельефа является:

- Создание проектного рельефа на требуемой территории, обеспечивающего удобное и безопасное размещение оборудования, путем проектирования допустимых продольных уклонов;
 - Организация стока поверхностных (атмосферных) вод.

Решения вертикальной планировки на участках, представленных на плане, обеспечивает единую целостность планируемой территории. Вертикальная планировка, выполнена методом проектных отметок с указанием проектных отметок в ключевых точках и указанием направления и величины уклонов.

Водоотвод поверхностных стоков принят открытым.

Поверхностям площадок приданы нормативные уклоны в пониженное место рельефа.

Принципиальные решения по вертикальной планировке и отводу поверхностных вод с планируемой территории представлены на чертежах планов организации рельефа.

Инженерные сети

Инженерные сети запроектированы с учетом взаимной увязки их с проектируемыми технологическими площадками, сооружениями в плане и в продольном профиле с соблюдением санитарных и противопожарных норм, правил безопасности и эксплуатации сетей.

Технологические трубопроводы на площадках скважин запроектированы надземно, частично подземно.

Автомобильные дороги *Нормы проектирования*

	<u> </u>				
№ П/П	Наименование	Ед. изм.	ПоСН 3.03-22- 2013 По СП 3.03-122-2013	Табл. и пункт СП, и СН	Принято в проекте
1	Категория дороги	-	IV-B	Табл.11	IV-B
2	Расчетная скорость	Км/ч	30	Табл. 23	30
3	Число полос движения	-	1	Табл. 30	1
4	Ширина проезжей части	M	4,5	Табл. 30	4,5
5	Ширина обочины	M	1,0	Табл. 30	1,0
6	Поперечный уклон проезжей части и обочин	‰	50	п. 7.2.4	50
7	Поперечный уклон земляного полотна	‰	30	-	30
8	Тип дорожной одежды		низший	табл.38	низший

План и продольный профиль

В рамках данного проекта рассматривается реконструкция существующего проезда к СКВ Б-5, к которому выполнены примыкания проектируемый подъезд к скважине Б-6, а так же строительство подъезда к проектируемый площадке ПСГ.

К площадкам запроектированы подъездные автодороги по кратчайшему расстоянию с учетом особенностей рельефа. Подъезды и проезды обеспечивают перевозку вспомогательных и хозяйственных грузов, проезд пожарных, ремонтных и аварийных машин и отнесены к служебным автомобильным дорогам по СН РК 3.03.22-2013 «Промышленный транспорт», СП РК 3.03-101-2013 «Автомобильные дороги».

В рамках реконструкции существующего проезда проектом предусмотрено выравнивание трассы, формирование целостного земляного полотна и возведение слоя

основания из ПГС. Ранее в ходе бурения СКВ Б-5 была отсыпана грунтовая насыпь.

Общая протяженность подъездов и проезда: 9048,47 м.

Автомобильные дороги запроектированы с учётом их функционального назначения и характера застройки в соответствии с действующими требованиями СН РК 3.03-22-2013, СП РК 3.03-122-2013 «Промышленный транспорт».

Проектируемые дороги запроектированы по нормам межплощадочных дорог IV-в категории.

Расчетные скорости движения специализированных автотранспортных средств, следует принимать в соответствии с технологическими требованиями данного производства и рельефа местности 30 км/ч.

Поперечный профиль проезжей части дорог запроектирован с открытым водоотводом на участках насыпи.

Автодорога принята в насыпи и выемки, двускатный профиль, со следующими основными параметрами поперечного профиля:

- Число полос движения 1;
- Ширина проезжей части 4,5 м;
- Ширина обочин 1,0м;
- Поперечный уклон проезжей части 30 ‰;
- Поперечный уклон обочин 50 ‰.

Поперечный профиль принят с обочинами. Конструкция дорожной одежды представлена на чертеже.

Продольный профиль запроектирован в насыпи и выемке.

Земляное полотно

Земляное полотно запроектировано в насыпи и выемки.

Таким образом в проекте представлено два типа конструкции земляного полотна:

- Тип 1 принимается на участках с полузаросшей и заросшей поверхностью при условиях максимального сохранения растительности и естественного рельефа прилегающей местности;
- Тип 2 принимается в случае необходимости использовать грунт выемки для возведения насыпи

Типы дорожной конструкции представлены на чертеже.

Для устройства насыпи будет использоваться грунт выемки, или привозной грунт из ближайших карьеров.

Поперечный профиль земляного полотна принят двускатный с поперечным уклоном – 30 %..

Уплотнение предусмотрено катками на пневмоколесном ходу весом 25 т, толщиной уплотняемого слоя 30 см за 6 проходов по одному следу. Коэффициент уплотнения земляного полотна принят 0,95 в соответствии со СН РК 3.03-01-2013. Уплотнение грунтов следует производить при влажности, близкой к оптимальной.

Руководящая рабочая отметка подъездных дорог к площадкам скважин и ПСГ принята из условий снегонезаносимости 0.15+0.4=0.55 м, где 0.15 – снеговой покров с 5%

вероятностью и песконезаносимости, а также с учетом планировочных отметок площадок проектируемых скважин.

Дорожная одежда

Конструирование и расчет дорожной одежды произведен, исходя из наличия дорожностроительных материалов, интенсивности движения и инженерно-геологических условий в соответствии с СП РК 3.03-122-2013 «Промышленный транспорт», СП РК 3.03-101-2013* «Автомобильные дороги», СП РК 3.03-104-2014 «Проектирование дорожных одежд нежесткого типа».

В качестве расчетной нагрузки принята нормативная статистическая нагрузка на одиночную ось расчетного автомобиля равная 100 кН (А1).

Дорожная одежда принята низшего типа из щебёночно – гравийно-песчаной смеси С2 по СТ РК 1549-2006 (табл.1) серповидного профиля толщиной по оси 0.24 м и шириной 6.50 м.

Поперечный уклон проезжей части и обочин приняты равными 50 ‰ в соответствии с CH PK 3.03-22-2013, п.7.2.4.

Пересечения и примыкания

Пересечения и примыкания разработаны в соответствии с требованиями СП РК 3.03-122-2013 и применительно к типовым материалам для проектирования серии 503-0-51.89** ПО4-96 «Пересечения и примыкания автомобильных дорог в одном уровне».

В проекте примыкания дорог приняты в одном уровне под углом 90° или близким к нему в соответствии с СП РК 3.03-122-2013 п.7.4.2. Радиусы кривых по оси дорог в плане приняты более 15.0 м согласно табл.37 СП РК 3.03-122-2013.

Конструкция дорожной одежды на примыканиях подъездов к площадке ПСГ и к скважинам принята по типу основной дороги.

Видимость на примыканиях обеспечена.

Расчетную скорость движения автотранспорта в пределах пересечений и примыканий следует уменьшать до 20 км/час.

Искусственные сооружения

Искусственные сооружения в данном проекте не предусмотрены, так как:

- геологическое строение вдоль трассы проектируемой дороги представлено песками, которые обладают большой способностью к аккумуляции дождевых и талых вод;
 - территория является потенциально не подтопляемой;
 - тип местности по характеру и степени уплотнения I.

Водоотвод вдоль дороги от земляного полотна обеспечивается планировкой прилегающей территории.

Обустройство дорог. Организация и безопасность движения

Проектные решения по обустройству дороги направлены на организацию безопасного движения транспортных средств, и выполняются с соблюдением требований СТ РК 1412-2017 «Технические средства регулирования дорожного движения. Правила применения».

Дорожный знак принят по СТ РК 1125-2002 « Технические средства организации дорожного движения. Знаки дорожные. Общие технические условия», I-го типоразмера.

Установка знаков предусматривается на присыпных бермах представлена запрещающей,

предупреждающей и информационно-указательной группами.

При выезде на трассу установить знак 3.24 «Ограничение скорости» на присыпной берме.

Предусмотренные мероприятия по обустройству и обеспечению безопасности движения на проектируемой дороге полностью отвечают требованиям безопасности движения транспортных потоков. Местоположение дорожных знаков и сигнальных столбиков представлены на соответствующих чертежах.

<u>Технико-экономические показатели строительства автомобильных дорог</u>

№№ П.П.	Наименование показателя	Ед. изм.	Значение	Примечание
1	2	3	4	5
1	Строительная длина.	M	9048,47	
2	Категории дороги.		IV-B	
3	Число полос движения.	шт.	1	
4	Ширина земляного полотна.	M	6,5	
5	Ширина проезжей части.	M	4,5	
6	Тип дорожной одежды.		низший	
7	Вид покрытия.		Щебеночно- гравийно-песчаной смеси С2, по СТ РК 1549-2006	

Содержание покрытия

Для обеспечения надлежащих транспортно-эксплуатационных качеств дороги необходимо проводить систематические работы по содержанию гравийных покрытий. С этой целью в весенний, летний и осенний периоды осуществляют выравнивание покрытия, устраняют отдельные ямы, колеи и просадки, очищают от «катуна», грязи, производят уход за пучинистыми участками (весной) и в сухой период обеспыливание. В зимний период проводят снегоуборку и борьбу с зимней скользкостью.

Выравнивание гравийного покрытия производят путем профилирования или ремонтного профилирования с добавлением небольшого количества материала. Профилирование преследует цель улучшения ровности покрытия (после дождей, в весенний и осенний периоды) и равномерного распределения гравийного материала по поверхности.

Первое профилирование проводят ранней весной (после таяния снега), в результате чего улучшается поверхностный водоотвод, ускоряется просыхание покрытия, ликвидируются колеи глубиной до 2—4 см и выравнивается поперечный профиль.

Второе профилирование производят в конце весеннего (влажного) периода для ликвидации вновь образовавшихся деформаций и окончательного выравнивания покрытия.

В летний период профилирование производят по мере надобности после дождей при увлажненном покрытии.

Осенью профилирование производят с таким расчетом, чтобы гравийное покрытие при эксплуатации зимой было ровное, без колей и поперечных волн.

Профилирование выполняют автогрейдерами или грейдерами за один-два прохода по одному месту.

Количество профилировок за сезон зависит от интенсивности движения, погодных условий и состояния покрытия. Выполнять работы по профилированию на сухом

покрытии не рекомендуется.

Технологические решения

Исходные денные для технологических расчетов

Рабочий проект «Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП) разработан на основании:

- Задание на проектирование;
- Материалы инженерных изысканий;
- Исходные данные, представленные Заказчиком.

Физико-химические свойства и состав скважинного флюида представлены в таблицах 3 и 4 соответственно.

Физико-химические свойства скважинного флюида:

№ П/П	Показатель	Единица измерения	Значения
1	Плотность газа при с.у.	$\kappa\Gamma/M^3$	0,763
2	Плотность конденсата	кг/м ³	740
3	Устьевое давление	МПа	19,1
4	Коэффициент сжимаемости	б/р	0,868
5	Потенциальное содержание конденсата в пластовом газе	Γ/M^3	До 17

Усредненный компонентный состав газа скважин

№ П/П	Компоненты	СОДЕРЖАНИЕ КОМПОНЕНТА, % ОБЪЕМНЫЕ		
1	2	3		
12.	Метан	88,08		
13.	Этан	4,10		
14.	Пропан	0,59		
15.	Бутан	0,12		
16.	Изобутан	0,08		
17.	Пентан+	0,17		
18.	Сероводород	-		
19.	Гелий	0,18		
20.	Аргон	0,033		
21.	Углекислый газ	0,59		
22.	Азот	6,23		

Проектные производственные показатели

№ П/П	Показатели	Ед. изм.	Значение
1	Количество обустраиваемых скважин	шт.	2
2	Средний суточный дебит обустраиваемых скважин	тыс. м ³ /сут.	50
3	Давление в шлейфах	МПа	7,5
5	Суточная проектная производительность ПСГ	тыс. м ³ /сут.	150
6	Максимальная пропускная способность ПГС	тыс. м ³ /сут.	250

Объем проектирования

В данном проекте предусмотрено три раздела:

- 01 Система сбора газа;
- 02 Пункта Сбора Газа (ПСГ);
- 03 Газопровод ПСГ «Барханное- УКПГ Амангельды».
- 01 Система сбора газа. Данным разделом проекта предусматривается:
 - Обустройство 2-х новых площадок газодобывающих скважин Б-5, Б-6;
 - Прокладка шлейфа от скважин Б-5, Б-6 до манифольда ПСГ.
- 02 Пункта Сбора Газа (ПСГ). Данным разделом проекта предусматривается:
 - Площадка входного манифольда;
 - Площадка сепарации-1. C-1, C-4;
 - Площадка блока сепарации-2. C-2, C-3
 - Площадка блока дозирования реагентов БР-1;
 - Площадка подогревателя П-1;
 - Площадка насосов конденсатов Н-1А/Б;
 - Площадка резервуарного парка конденсата Е-1А/Б;
 - Площадка насосов конденсатов отгрузки H-2A/Б;
 - Площадка стояка налива СН-1;
 - Площадка дренажных емкостей ДЕ-2/3;
 - Площадка факельного сепаратора ФС-1 и дренажной емкости ДЕ-1;
 - Площадка блока редуцирования топливного газа;
 - Площадка факельной установки Ф-1.
- 03 Газопровод ПСГ «Барханное- УКПГ Амангельды». Данным разделом проекта предусматривается:
 - Газопровод (линейная часть);
 - Площадка камеры запуска и приема СОД;
 - Площадка крановых узлов КУ-8, КУ-9;
 - Площадка расширительной камеры (ловушка) с конденсатосборником;
 - Свеча продувочная C-1, 2, 3.
 - Площадка дренажной емкости ДЕ-1.
- 3. Краткое описание существенных воздействий намечаемой деятельности на окружающую среду, включая воздействия на следующие природные компоненты и иные объекты:

Жизнь и (или) здоровье людей, условия их проживания и деятельности

Одной из основных стратегий сферы здравоохранения остается сохранение и укрепление здоровья населения на основе формирования здорового образа жизни, повышения доступности и качества медицинской помощи, раннего выявления и своевременного лечения заболеваний, являющихся основными причинами смертности, а также развития кадрового потенциала.

Проектом предусмотрен подрядный способ проведения строительных работ. В связи этим будут организованы рабочие места на период строительства.

Таким образом, влияние работ на социально-экономические аспекты оценено как положительное, как для экономики РК, так и для трудоустройства местного населения.

Планируемые работы не приведут к значительному загрязнению окружающей природной среды, что не скажется негативно на здоровье населения. Будут предусмотрены все необходимые меры для обеспечения нормальных санитарно-гигиенических условий работы и отдыха персонала, его медицинского обслуживания. Все работники пройдут необходимую вакцинацию и инструктаж по соблюдению правил личной гигиены, с учетом региональных особенностей, поэтому повышение эпидемиологического риска в районе работ маловероятно.

Привлечение местных трудовых ресурсов снижает вероятность заболеваний среди рабочих, адаптированных к местным климатическим условиям, а также уменьшает риск привнесения инфекционных заболеваний из других регионов.

<u>Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)</u>

Растительный покров и животный мир по видовому составу беден и характерен для зоны пустынь и полупустынь. Растительностью покрыто до 50% территории, это преимущественно серополынные разности, голофиты и керуек. В предгорьях Каратау присутствуют мелко кустарниковые – джизгун.

Ведущую роль среди животного населения играют членистоногие, пресмыкающиеся, рептилии, млекопитающие и птицы.

Засушливость климата определяет бедность территории поверхностными водами, растительность разреженная, характерная для пустынь северного типа. Всхолмленность рельефа, сильная засоленность почв, наличие большой сети каменистости с обедненной растительностью, резко континентальный суровый климат, все это является причиной обедненности батрахо- и герпетофауны исследуемого района. Особенно условия обитания усугубляются в бесснежные зимы.

Строительство и эксплуатация проектируемых объектов производится на территории действующего предприятия, которое имеет спланированные площади, организация рельефа сводится к интеграции проектируемой площадки в существующие планировочные решения, ввиду чего специальные меры по защите флоры и фауны не требуются. Осуществление намечаемой деятельности предусматривается с выполнением мероприятий общего характера по сохранению биоразнообразия и среды обитания и условий размножения объектов животного мира:

- перемещение спецтехники и транспорта ограничить специально отведенными дорогами;
- воспитание (информационная кампания) для персонала и населения в духе гуманного и бережного отношения к растениям и животным;
- регулярное техническое обслуживание производственного оборудования и его эксплуатация в соответствии со стандартами изготовителей;

При проведении строительных работ по модернизации объекта необходимо соблюдать требования п. 8 ст. 257 Экологического кодекса РК от 02.01.2021 г. и ст. 17 Закона РК от 09.07.2004 г. №593 «Об охране, воспроизводстве и использовании животного мира» и должны предусматриваться и осуществляться мероприятия по сохранению среды обитания и условий размножения объектов животного мира, путей миграции и мест концентрации животных, а также обеспечиваться неприкосновенность участков, представляющих особую ценность в качестве среды обитания диких животных.

Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации)

Антропогенные нагрузки на почву изменяют свойства почв, выводят их из сельскохозяйственного оборота и впоследствии почвы становятся вторичными источниками загрязнения для сопредельных сред. Существенным фактором воздействия на почвы является изъятие земель во временное и постоянное пользование.

Почвы являются достаточно консервативной средой, собирающей в себя многочисленные загрязнители и теряющей от этого свои свойства. По сравнению с водой и воздухом почвы - самая малоподвижная среда, миграция загрязняющих веществ в которой происходит относительно медленно. Кроме того при техногенном загрязнении почв вместе с пылью из воздуха в почву оседают аэрозоли и газообразные вещества выделяемые в процессе производства.

В соответствии с п.4 ст.140 Земельного Кодекса РК, собственники земельных участков и землепользователи обязаны проводить мероприятия, направленные на снятие, сохранение и использование плодородного слоя почвы при проведении работ, связанных с нарушением земель.

Проектируемый объект расположен на территории действующего предприятия, которое имеет спланированные площади. Организация рельефа сводится к интеграции проектируемой площадки в существующие планировочные решения.

Воды (в том числе гидроморфологические изменения, количество и качество вод)

Территория не имеет естественных водных объектов, поэтому проведение работ на этой площади не будет оказывать на них влияния.

Воздействия от этого вида хозяйственной деятельности может быть оценено с позиции рационального водопотребления и водоотведения, возможного загрязнения существующих на ограниченном участке техногенных вод, временных водотоков и водосборной площади в случае аварийной ситуации.

Потенциальное воздействие планируемых работ может оказываться на геологическую среду в отношении развития неблагоприятных экзогенных геологических процессов, которые в результате проведения полевых могут быть усилены или спровоцированы и на подземные воды первого от поверхности водоносного горизонта.

Основными источниками потенциального воздействия на геологическую среду и подземные воды при проведении работ, строительных работ будут являться транспорт и спецтехника.

Одним из потенциальных источников воздействия на подземные воды (их загрязнения) могут быть утечки топлива и масел в местах скопления и заправки спецтехники и автотранспорта в период работ.

<u>Атмосферный воздух (в том числе риски нарушения экологических нормативов его качества, целевых показателей качества, а при их отсутствии – ориентировочно безопасных уровней воздействия на него)</u>

Воздействие на атмосферный воздух оценивается как допустимое, на границе санитарно-защитной зоны и жилого массива превышений долей ПДК не ожидается.

Намечаемой деятельностью не будут затронуты высоко значимые, высокочувствительные и средне значимые экосистемы.

Радиационный гамма фон

При реализации проекта изменения в радиационном фоне не планируются.

<u>Сопротивляемость к изменению климата экологических и социально-экономических</u> систем

Наблюдаемые последствия изменения климата, независимо от их причин, выводят вопрос чувствительности природных и социально-экономических систем на первый план.

Модели потребления производства с эффективным использованием ресурсов должны защищать, беречь, восстанавливать и поддерживать экосистемы, водные ресурсы, естественные зоны обитания и биологическое разнообразие, тем самым уменьшая воздействие на окружающую среду.

Создание устойчивого к климатическим изменениям предприятия вносит свой вклад в снижение уязвимости от бедствий (усиленных изменением климата) и повышает готовность к реагированию и восстановлению.

Сочетание опасных природных событий с незащищенностью, уязвимостью и неподготовленностью населения приводит к катастрофам. Любой анализ жизнестойкости изучает то, как люди, места и организации могут пострадать от опасностей, связанных с изменением климата, т.е. определяет их чувствительность к этим изменениям. Степень чувствительности определяется сочетанием экологических и социально-экономических аспектов, включая оценку природных ресурсов, демографические тенденции и уровень бедности.

Меры по адаптации - это такие меры, которые предлагают поправки в экологической, социальной и экономической системах для реагирования на существующие или будущие климатические явления и на их воздействие или последствия. Могут быть изменения в процессах, практиках и структурах для снижения потенциального ущерба или для создания новых возможностей, связанных с изменением климата.

- рекомендации по созданию устойчивости (адаптации) к климату включают следующее:
- продвигать практические исследования в области рисков, связанных с последствиями изменения климата и другими опасностями
- поощрять и поддерживать оценку уязвимости к изменению климата на местах составить карту опасностей (в том числе тех, которые могут появиться по прошествии времени)
- планировать предприятия, регулировать землепользование и предоставлять жизненно важную инфраструктуру, с учётом информации о рисках и поддержки жизнестойкости
- в первую очередь осуществлять меры по укреплению жизнестойкости уязвимых и социально отчуждённых слоев населения
 - продвигать восстановление экосистем и естественных защитных зон
- обеспечивать местное планирование, защищающее экосистемы и предотвращающее «псевдоадаптацию».

Любые меры по адаптации к изменению климата должны стремиться к улучшению жизнестойкости системы. Они должны поддерживать и повышать присущую системе жизнестойкость на основе природных решений и целостного подхода. Стратегии адаптации к климату должны учитывать то, как эти меры скажутся на предприятии.

Качество окружающей среды содержит данные, которые могут помочь в понимании того, каким образом меняющийся климат может повлиять на биопотенциал региона и свойства окружающей среды, например, качество воздуха, воды и почвы. Вместе с данными по устойчивости к климатическим изменениям, данная категория оценивает чувствительность

конкретных экосистем и их способность к адаптации. При помощи этих данных измеряется текущее воздействие на систему, сообщая информацию по реальным стрессам, с которымисталкиваются территории, занятые предприятиями.

Данные по устойчивости к изменениям климата оценивают связи в системе, ее способность смягчать последствия изменения климата и адаптироваться к ним.

При этом отказ от реализации намечаемой деятельности не приведет к значительному улучшению экологических характеристик окружающей среды, но может привести к отказу от социально важных для региона и в целом для Казахстана видов деятельности.

<u>Материальные активы, объекты историко-культурного наследия (в том числе</u> архитектурные и археологические), ландшафты

Историко-культурное наследие, как важнейшее свидетельство исторической судьбы каждого народа, как основа и непременное условие его настоящего и будущего развития, как составная часть всей человеческой цивилизации, требует постоянной защиты от всех опасностей.

Обеспечение этого в РК является гражданским долгом.

Следует отметить, что ответственность за сохранность памятников предусмотрена действующим законодательством РК. Нарушения законодательства по охране памятников истории и культуры влекут за собой установленную материальную, административную и уголовную ответственность.

Реализация данного проекта предусматривается вдали от охраняемых объектов и не затрагивает памятников, культурных ландшафтов, состоящих на учете в органах охраны памятников Комитета культуры РК, имеющих архитектурно-художественную ценность и представляющих научный интерес в изучении народного зодчества Казахстана.

6. Информация о предельных количественных и качественных показателях эмиссий, физических воздействий на окружающую среду, предельном количестве накопления отходов, а также их захоронения, если оно планируется в рамках намечаемой деятельности:

Количество загрязняющих веществ, выбрасываемых в атмосферу от стационарных источников при строительстве проектируемого объекта, составит 6,6132 г/сек или 64,5897 т/период.

Количество загрязняющих веществ, выбрасываемых в атмосферу при эксплуатации проектируемого объекта, составит 29,549532 г/сек или 24,977969 т/год.

В атмосферу будет выбрасываться вещество 12 наименований.

В процессе строительства будут образованы следующие виды отходов:

Таблица Лимиты накопления отходов, установленные при строительстве

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год
1	2	3
Всего		23,0339
в т. ч. отходов производства		12,7089
отходов потребления		10,325
	Опасные отходы	
Тара от ЛКМ		0,5763
Промасленная ветошь		0,0381
	Не опасные отходы	
Огарки сварочных электродов		0,0945

Строительные отходы	7,5
Металлолом	4,5
Твердо-бытовые отходы	10,325

Лимиты накопления отходов, установленные при эксплуатации

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год
1	2	3
Всего		37,983
в т. ч. Отходов производства		36,183
отходов потребления	-	1,8
-	Опасные отходы	
Тара из под хим.реагентов		25,675
Промасленная ветошь		0,508
Отработанное масло		10,0
	Не опасные отходы	
ТБО		1,8

7 Информация: о вероятности возникновения аварий и опасных природных явлений, характерных соответственно для намечаемой деятельности и предполагаемого места ее осуществления:

Намечаемая деятельность направлена на снижение вероятности возникновения аварийных ситуаций и предотвращение возможного воздействия на окружающую среду и здоровье человека.

8. Краткое описание:

мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду

Существенных воздействий намечаемой деятельности на окружающую среду не ожидается

мер по компенсации потерь биоразнообразия, если намечаемая деятельность может привести к таким потерям

Потери биоразнообразия от намечаемой деятельности на окружающую среду не ожидается

возможных необратимых воздействий намечаемой деятельности на окружающую среду и причин, по которым инициатором принято решение о выполнении операций, влекущих таких воздействия

Возможных необратимых воздействий намечаемой деятельности на окружающую среду не ожидается

способов и мер восстановления окружающей среды в случаях прекращения намечаемой деятельности

Необратимого техногенного изменения окружающей среды не ожидается

9. Список источников информации, полученной в ходе выполнения оценки воздействия на окружающую среду:

Законодательные рамки экологической оценки

Намечаемая деятельность осуществляется на территории Республики Казахстан, поэтому его экологическая оценка выполнена в соответствии с требованиями Экологического законодательства Республики Казахстан и других законов, имеющих отношение к проекту.

Экологическое законодательство РК основывается на Конституции Республики Казахстан и состоит из Экологического Кодекса, 2021г. (далее ЭК РК) и иных нормативных правовых актов Республики Казахстан.

Оценка воздействия на окружающую среду (OBOC), согласно ЭК РК – обязательная процедура для намечаемой деятельности, в рамках которой оцениваются возможные последствия хозяйственной и иной деятельности для окружающей среды издоровья человека, разрабатываются меры по предотвращению неблагоприятных последствий, оздоровлению окружающей среды с учетом требований экологического законодательства Республики Казахстан.

Методическая основа проведения ОВОС. Общие положения проведения ОВОС при подготовке и принятии решений о ведении намечаемой хозяйственной деятельности и иной деятельности на всех стадиях ее организации в соответствии со стадией разработки предпроектной или проектной документации определяет «Инструкции по организации и проведению экологической оценки», утвержденная Приказом Министра экологии, геологии и природных ресурсов РК от 30 июля 2021 года №280.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Экологический Кодекс РК, (от 02.01,2021г. №400-VI)
- 2. «Инструкция по организации и проведению экологической оценки», утверждена Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.
- 3. «Методика расчета выбросов 3В в атмосферу при сварочных работах», РНД 211.2.02.03-2004, Астана, 2004;
- 4. «Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов».
- 5. Методика расчета выбросов ЗВ в атмосферу при нанесении лакокрасочных материалов (повеличинам удельных выбросов), РНД 211.2.02.02-2004, Астана, 2005г
- 6. Методика расчета нормативов выбросов от неорганизованных источников, Астана. Приложение 13к, Приказ №100-п от 18.04.08г.
- 7. «Сборник методик по расчету выбросов загрязняющих веществ от различных производств», Алматы 1996 г.
- 8. «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий», РНД 211.2.01-97.
- 9. «Классификатор отходов», утвержденный Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.
- 10. РНД 03.1.0.3.01-96 «Порядок нормирования объемов образования и размещения отходов производства».
- 11. «Методика определения нормативов эмиссий в окружающую среду» от 10 марта 2021 года № 63.
- 12. Санитарные правила «Санитарно эпидемиологические требования к обеспечению радиационной безопасности», утвержденные Приказом Министра здравоохранения Республики Казахстан от 15 декабря 2020 года № ҚР ДСМ-275/2020.
- 13. «Санитарно эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно питьевых целей, хозяйственно питьевому водоснабжению и местам культурно бытового водопользования и безопасности водных объектов» утвержденные приказом Министра национальной экономики от 16.03.2015 г № 209.
- 14. Санитарные правила "Санитарно-эпидемиологические требования к зданиям и сооружениям производственного назначения", утвержденные приказом» Министра здравоохранения Республики Казахстан от 3 августа 2021 года № ҚР ДСМ-72.
- 15. Санитарные правила "Санитарно-эпидемиологические требования к технологическим и сопутствующим объектам и сооружениям, осуществляющим нефтяные операции" № ҚР ДСМ -13 от 11 февраля 2022 года.
- 16. «Санитарно-эпидемиологические требования к административным и жилым зданиям» утвержденных приказом Министра здравоохранения Республики Казахстан от 26 октября 2018 года № ҚР ДСМ-29
- 17. Санитарные правила "Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека" утверждены приказом Исполняющий обязанности Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2.

0	<u> </u>			
Отчет о возможных возде	иствиях			
	•	КОГИЧП	кения	
	F (C	<u> </u>		

Лицензия

1 - 1

ЛИЦЕНЗИЯ

01032P

Товаришество с ограниченной ответственностью "Инженерный центр" Выдана

Республика Казахстан, Мангистауская область, Актау Г.А., г.Актау, 6 мкр., дом № 4., 2.,

БИН: 010440000382

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица / полностью фамилия, имя, отчество (в случае наличия),

индивидуальный идентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

(наименование конкретного лицензируемого вида деятельности в соответствии с

Законом Республики Казахстан «О лицензировании»)

Вид лицензии <u>Генеральная</u>

Особые условия действия лицензии

(в соответствии со статьей 9-1 Закона Республики Казахстан «О лицензировании»)

Лицензиар Министерство окружающей среды и водных ресурсов Республики

> Казахстан. Комитет экологического регулирования и контроля Министерства окружающей среды и водных ресурсов Республики

<u>Казахстан</u>

(полное наименование лицензиара)

Руководитель

(уполномоченное лицо) (фамилия и инициалы руководителя (уполномоченного лица) лицензиара)

Место выдачи г.Астана

Страница 1 из 1

ПРИЛОЖЕНИЕ К ЛИЦЕНЗИИ

Номер лицензии 01032Р

Дата выдачи лицензии <u>13.07.2007</u>

Подвид(ы) лицензируемого вида деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О лицензировании»)

- Работы в области экологической экспертизы для 1 категории хозяйственной и иной деятельности
- Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

Производственная база

(место нахождения)

Лицензиат <u>Товарищество с ограниченной ответственностью "Инженерный центр"</u>

Республика Казахстан, Мангистауская область, Актау Г.А., г.Актау, 6 мкр., дом № 4.,

2., БИН: 010440000382

(полное наименование, местонахождение, бизнес идентификационный номер юридического лица / полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер

физического лица)

Лицензиар <u>Комитет экологического регулирования и контроля Министерства</u>

окружающей среды и водных ресурсов Республики Казахстан. Министерство

окружающей среды и водных ресурсов Республики Казахстан.

(полное наименование лицензиара)

Руководитель

(уполномоченное лицо) фамилия и инициалы руководителя (уполномоченного лица) лицензиара

Номер приложения к лицензии

Дата выдачи приложения

к лицензии

Срок действия лицензии

Место выдачи г.Астана

Берілген құжат «Электрондың құмат және электрондың цифризиқ қолтамба турастын» 2003 жилиті 7 картардағы Қазақсана Республика Баңының 7 бабының 1 дәлиалына сәйек жата тасыгыштағы құжатқа тең Данный нокумет қолтамба турастын қазақсының 2 картардың 1 қартардың 1 қартардың 1 қартардың 1

Расчет выбросов при строительстве

Строительство:

Источник 1101. Сварочный агрегат с дизельным двигателем.

Наименование	Обозн.	Ед. изм.	Кол-во				Pε	ıc'	чет			Резуль- тат
Исходные данные:								_				141
Мощность агрегата	P	кВт	60,00									
Общий расход топлива	G	т/год	1,763									
Диам. выхлоп. трубы	d	М	0,2									
Высота выхл. трубы	Н	М	4									
Время работы	Т	час/год	146,9									
Удельный расход топлива	В	кг/час	12,000									
Количество двигателей		шт.	1									
Расчет вы	бросов											
Согласно справочных		час/год	г/кг топл.									
данных, значение	e _{co}	7,2	30,0		-н	ый вн	збр	oc	і-го веі	пес	тва (г/с)	
выбросов для стацион.		10,30	43,0						00) * e		()	
-	e _{NOx}				1	'	(1/5		00) C	_		
дизельн. установок,	есн	3,6	15,0		_			_			(()	
до кап.ремонг.	есажа	0,7	3,0	Валов					-го веще		ва (т/г)	
	e_{SO2}	1,1	4,5		Ç) = (1/10	00	00) * g *	G		
	e _{CH2O}	0,15	0,6									
	е бензп.	0,000013	0,000055									
Количество выбросов:	Mco	г/с		7,2	*	60	:	*	(1/3600))		0,1200
	M_{NOx}	г/с		10,3		60		*	(1/3600)		*0,8	0,1373
	M_{NO}	г/с		10,3		60	_	*	(1/3600))	*0,13	0,0223
	M_{CH}	г/с		3,6	*	60	:	*	(1/3600))		0,0600
	Мсажа	г/с		0,7		60	2	*	(1/3600))		0,0117
	M_{SO2}	г/с		1,1	*	60	:	*	(1/3600))		0,0183
	$M_{\rm CH2O}$	г/с		0,15	*	60	>	*	(1/3600))		0,00250
	М бензп.	г/с		1E-05		60	:	*	(1/3600)	,		2,2E-07
	Qco	т/год		30		1,76			(1/1000)			0,0529
	Q _{NOx}	т/год		43		1,76			(1/1000)	_	*0.8	0,0606
	Q _{NO}	т/год		43		1,76	_		(1/1000)	-	*0,13	0,0099
				15		_	_		, ,	-	.0,13	
	Q _{CH}	т/год				1,76			(1/1000)			0,0264
	Qсажа	т/год		_		1,76			(1/1000)	_		0,0053
	Q_{SO2}	т/год		4,5		1,76	_		(1/1000)	-		0,0079
	Q _{CH2O}	т/год		0,6		1,76			(1/1000)			0,001058
	Q _{бензп.}	т/год		6E-05	*	1,76	3	*	(1/1000))		9,7E-08
Исходные данные:				Расход	от	рабо	т. і	a	вов от ст	гац	.диз.уст.	
									/(f * n *L3			
			L	$G_{\rm B}=(1/1$	00	0) * (1/36	50	0) * (b * I	P1 *	f *n * Lə)	
Удельный расход топлива	b	г/кВт*ч	200									
на эксп. реж.двиг.(паспорт)												
Коэф.продувки = 1,18	f											
Коэф.изб.воздуха = 1,8	n											
Теор.кол-во возд.для сжиг.												
1 кг топлива = 14,3	Lэ	кг воз/кг топ										
		кг/с	Gor	8,7200	*	1E-0)6	*	200,0	*	60	0,1046
				O					ход отр		зов	
					Ç)or =	G	or	/ Yor, г	де		
Удельн. вес отраб. газов		кг/м ³	Yor	Yor = Y							273), где	0,4627
Удельн.вес отраб.газов при						Ů	Ť	Ī		ΤĖ	1,, ,,,	
$t = 0^{0}C$	Yo	кг/м ³	1,31				\top					
							-					
Температура отр. газов	Tor	°C	500				-					
		м ^{3/} с	Qor	0,1046								0,226
				Скорость выхода ГВС из устья ист-ка								
				$W = 4 * Qor / \pi d^2$								
		м/с	W	4	*	0,2	26	/	3,14	*	0,2*0,2	7,203

чет о возможных в				
точник 1102. К	эмпрессор.			

Наименование	Обозн.	Ед. изм.	Кол-во]	Pac	чет			Резуль- тат
Исходные данные:											1 41
Мощность агрегата	P	кВт	25,00								
Общий расход топлива	G	т/год	1,750								
Диам. выхлоп. трубы	d	M	0,2								
Высота выхл. трубы	Н	M	4								
Время работы	T	час/год	350,0								
Удельный расход топлива	В	кг/час	5,000								
Количество двигателей		шт.	1								
Расчет вы	бросов	BXB:									
Согласно справочных		час/год	г/кг топл.								
данных, значение	e _{co}	7,2	30,0	Максим	-HI	ый выб	po	с і-го вег	цес	тва (г/с)	
выбросов для стацион.	e _{NOx}	10,30	43,0		N	M = (1	/36	600) * e :	۴P		
дизельн. установок,	есн	3,6	15,0								
до кап.ремонт.	есажа	0,7	3,0	Валон	зый	і і выбр	oc	i-го веще	сті	ва (т/г)	
	e _{SO2}	1,1	4,5		($= (1/2)^{-1}$	100	00) * g *	G		
	e _{CH2O}	0,15	0,6			_ ` `		, 6			
	е _{бензп.}	0,000013	0,000055								
	- оензп.	0,000015	0,000000								
Количество выбросов:	Mco	г/с		7,2	*	25	*	(1/3600)			0,0500
количество выбросов.	M _{NOx}	г/с		10,3		Z5 25	*	(1/3600)		*0,8	0,0500
	M _{NO}	г/с		10,3		25	*	(1/3600)		*0,13	0,0093
	M_{CH}	г/с		3,6		25	*	(1/3600)			0,0250
	Мсажа	г/с		0,7		25	*	(1/3600)	-		0,0049
	M_{SO2}	г/с		1,1		25	*	(1/3600)	_		0,0076
	M _{CH2O}	г/с		0,15		25	*	(1/3600)	-		0,00104
	М бензп.	г/с		1E-05		25	*	(1/3600)	-		9,0E-08
	Qсо	т/год		30		1,750		(1/3000)	-		0,0525
		т/год т/год		43		1,750	_	(1/1000)		*0,8	0,0602
	Q _{NOx}			43		1,750	-	(1/1000)	-	*0,13	_
	Q _{NO}	т/год		_		_			-	**0,13	0,0098
	Q _{CH}	т/год		15		1,750		(1/1000)			0,0263
	Qсажа	т/год		_		1,750		(1/1000)	-		0,0053
	Q_{SO2}	т/год		4,5		1,750		(1/1000)	-		0,0079
	Q _{CH2O}	т/год		0,6		1,750	_	(1/1000)	_		0,001050
	Q _{бензп.}	т/год		6E-05				(1/1000)	_		9,6E-08
Исходные данные:						•		зов от ст			
								1/(f *n*Lə			
				$G_{\rm B}=(1/1$	100	0) * (1/	360	0) * (b * F	1 *	f *n * Lə)	
Удельный расход топлива	b	г/кВт*ч	200				H		L		
на эксп. реж.двиг.(паспорт)							-		L		
Коэф.продувки = 1,18	f						-				
Коэф.изб.воздуха = 1,8	n						-				
Теор.кол-во возд.для сжиг.	-	,									
1 кг топлива = 14,3	Lэ	кг воз/кг топ		8,7200	*	1E 0/	- 4	200,0	*	25	0.0426
		кг/с	Gor			1E-06	_		_		0,0436
							_	сход отр. :/ Yor, г		зов	
37		, 3	¥7	1 -						\ 7 3\	0.4/2=
Удельн. вес отраб. газов		кг/м ³	Yor	Yor = Y	(0(1	при t=	=0°(U)/(1+Te) r/2	273), где	0,4627
Удельн.вес отраб.газов при		2					-				
$t = 0^0 C$	Yo	кг/м ³	1,31								
Температура отр. газов	Tor	°C	500								
		м ^{3/} с	Qor	0,0436	/	0,463	3				0,094
				Скорость выхода ГВС из устья ист-ка					я ист-ка	,	
				$W=4 * Qor/\pi d^2$							
		м/с	w	Δ	*	0,094		_	*	0,2*0,2	3,001

Источник 1103. Котел битумный.

Наименование	Обозн.	Ед.изм.	Кол-во			Pac	чет		-	Результат
Исходные данные:										
Время работы	Т	час/год	51,1							
Уд. вес дизтоплива	р	кг/м ³	0,86							
Расход на горелку	В	кг/цикл	164,1312							
Расход на горелку на 1т т-ва	В	кг/т	24							
Расход дизтоплива	В	т/год	0,1641							
Расчет:										
$\Pi_{NO2} = 0$,001 * B * (Q * K _{NOx} * (1	l - b) * 0,8	где Q =	: 42,75 и К _I	$_{NOx} = 0.07$	'49			
Валовый выброс	M _{NO2}	т/год	0,001 *	0,1641	* 42,75 *	0,0749	*	(1 - 0)	* 0,8	0,00042
Максимальный выброс	M _{NO2}	г/с	0,00042	*	10 ⁶ / (3600	*	51,1)	0,0023
$\Pi_{NO} = 0.0$	01 * B * Q	* K _{NOx} * (1 -	b) * 0,13	где Q =	42,75 и КМ	NOx = 0.0	749	•		
Валовый выброс	M _{NO}	т/год	0,001 *	0,1641	* 42,75 *	0,0749	*	(1 - 0)	* 0,13	0,000068
Максимальный выброс	M _{NO}	г/с	0,000068	*	10 ⁶ / (3600	*	51,1)	0,00037
·		Псажа	= B * Ar * X	(* (1 - q)			-		
зольность топлива	Ar	%								0,025
доля золы т-ва в уносе	Х	%								0,01
доля, уловл. в золоулов-ле	g									0
Валовый выброс	М _{сажа}	т/год	0,065	*	0,025	*	0,01	* (1 -	0)	0,0000163
Максимальный выброс	М _{сажа}	г/с	0,0000163	*	10 ⁶ / (3600	*	51,1)	0,0001
	П	02 = 0,02	B * Sr * (1	- g') * (1 - g")					
содер-е серы в топливе	Sr	%								0,3
доля SO ₂ , связ.летучей золой	g'									0,02
доля SO ₂ , уловл. В	g"									0
- · ·										
Валовый выброс	M _{SO2}	т/год	0,02	*	0,1641	*	0,3	*	0,98	0,000984787
Максимальный выброс	M _{SO2}	г/с	0,0009848	*	10 ⁶ / (3600	*	51,1)	0,0054
	Г	1 _{CO} = 0,00	1 * Cco * B	* (1 - g ₄	/100)					
где Ссо = Qr*Kco	M _{co}	т/год	0,001	*	0,1641	*	13,68	* (1-0	/ 100)	0,002245
Kco = 0,32	M _{co}	г/с	0,00225	*	10 ⁶ / (3600	*	51,1)	0,0122
Qi ^r = 42,75										

Источник 7101. Пылевыделение при перемещении пород бульдозером

Наименование	Обозн.	Ед.изм.	Расчет	Результат	
Исходные данные:					
Количество переработ.грунта	G	т/час	114,2		
Время работы бульдозера	T	час	5292,5		
Объем работ	G	т/год	604653,4		
Количество работ-х машин		ед.	1		
Высота пересыпки	Н	М	0,5		
Коэффициент, учитыв.высоту пересыпки	В		0,4		
Влажность грунта		%	0-0,5		
Расчет:	Мсек	=K ₁ * K ₂	*К3 * К4 *	К ₅ * К ₇ *К ₈ *К ₉ *Gчас * Е	$3*10^6/3600*(1-\eta)$
Объем пылевыделения, где	Мсек	г/с			3,0466
Весовая доля пылев. фракции в материале (известняк)	К1				0,04
Доля пыли, переход. в аэрозоль	K_2				0,02
Коэффициент, учитыв. метеоу словия	К3				1,2
Коэффициент, учитыв. местные условия	K_4				1,0
Коэффициент, учитыв. влажность матер иала	K ₅				1
Коэффициент, учитыв. крупность мат-ла при размере куска 50-10 мм	K ₇				0,5
Коэффициент для различных материалов в зависимости от типа грейфера	К ₈				1
Коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала	K ₉				1
Эффективность пылеподавления	η				50%
	M	Ігод =К1	* К2 *К3	* K4 * K5 * K7 *K8*K9*(Бгод * В *(1-η)
Общее пылевыделение	Мгод	т/год			58,0467

Методика расчета нормативов выбросов от неорганизованных источников, Астана. Приложение 13к, Приказ №100-п от 18.04.08г.

Источник 7102 - Пылевыделение от работы экскаватора

Nº	Наименование	Обозн.	Ед. изм.	Кол-во		Pa	счет		Результат
п.п.									
1	2	3	4	5			6		7
1	Исходные данные:								
1.1	Количество перераб. грунта и щебня	G	т/час	69,0					
1.2	Объем грунта	V	Т	272363					
1.3	Время работы	t	час/год	3950					
1.4	Количество работ.машин	К	шт.	1,0					
1.5	Средняя плотность грунта	ρ	т/м ³	2,60					
2	<u>Расчет:</u>								
2.1	Объем пылевыделения, где:	g	г/с		g = P ₁ *I	P ₂ *P ₃ *P ₄ *F	P ₅ *P ₆ *B*G*	10 ⁶ /3600	0,0965
	С уч. пыле-я выброс ум.на 50%		г/с						0,0483
	Вес. доля пыл. фракции в материале	P_1		0,05					
	Доля пыли переходящая в аэрозоль	P_2		0,03					
	Коэф.учитывающий скорость ветра	P ₃		1,2					
	Коэф.учит.местные условия	P ₄		0,1					
	Коэф.учит.влажность материала	P ₅		0,01					
	Коэф.учит.крупность материала	P ₆		0,7					
	Коэф.учит.высоту пересыпки	В		0,4					
2.2	Общее пылевыделение	М	т/год		0,0483	*	3950,00	*3600/10 ⁶	0,6864

Источник 7103. Расчет выбросов пыли от работы катка

Расчет произведен согласно методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Астана 2008 г.

Наименование	Обоз.	Ед. изм.	Кол-во								
Исходные данные:											
Средняя скорость передвижения	V	км/час	3,5								
Число ходок транспорта в час	N	ед/час	14,0								
Ср. протяженность одной ходки на участке											
строительства	L	КМ	0,25								
Число работающих машин на строительном											
участке	n	ед.	3								
Время работы	t	час/год	3920,0								
D		-									

Расчет производился по формулам:

$M_{cek} = C_1 * C_2 * C_3 * C_6 * C_7 * N * L * g_1/3600, s/cek$												
$M_{cod} = M_{cek} * t * 3600 / 100$	M год = M сек * t * 3600 / 1000000, m/год											
Объем пылевыделения,	Мсек	г/с	0,000110									
Коэф. зависящий от грузоподъемности	C ₁		1,3									
Коэф. учитывающий ср.скорость передвиж.	C_2		0,6									
Коэф.учитывающий состояние дорог	C ₃		1									
Коэф.учитывающий влажность материала	C ₆		0,01									
Коэф.учит. долю пыли, уносимый в атмосф.	C ₇		0,01									
Пылевыделение на 1 км пробега	9 1		1450									
Общее пылевыделение	Мгод	т/год	0,001552									

Источник 7104. Пылевыделение при погрузочно-разгрузочных работах

Расчет проведен по "Методи	•					нео	рганизован	ных исто	очников",
	Аста	ана, 20	08 г ,	далее М	етодика				
		Исх	одные	данные	e:				
Производительность разгрузки					G	=	10		т/час
Высота пересыпки						=	2		М
Коэф.учит. высоту пересыпки					В	=	0,7		М
Количество привозного грунта					V	=	272363		Т
Влажность материала						=	0-0,5		%
Время разгрузки 1 машины					t ¹	=	2		мин
Грузоподъемность						=	7,5		Т
Время разгрузки машин					t	=	1210,50		маш-час
	T	еория	расче	та выбן	ooca:				
Выброс пыли при разгрузке автосам	освало	в расс	читыва	ется по	формуле	∍ [N	Іетодика, ф	-ла 1]:	
$M = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot B \cdot G \cdot 10^6 / 3600$		г/сек							
где:									
К ₁ - Весовая доля пылевой фракции	в мате	риале[Методи	іка, табл	ı. 1]				0,04
К ₂ - Доля пыли переходящая в аэрс	золь[М	етодик	а, табл	. 1]					0,02
К ₃ - Коэф., учитывающий скорость в	зетра [N	1етоди	ка, таб	п.2]					1,2
К ₄ - Коэф., учитывающий местные у	словия	[Мето	дика,та	бл.3]					1
К ₅ - Коэф., учитывающий влажность	матері	_ иала [N	Летоди	ка, табл.	4]				1
К ₇ - Коэф., учитывающий крупность						Т			0,5
	T i			,					
		Pac	счет ві	ыброса					
Объем пылевыделения при разгрузі	ке прив	озного	грунта	(код заг	рязняюц	цег	о вещества	2908):	
	0,5			*	10 ⁶			= 0,9333	в г/сек
Γ=	-,-	-,-	0,93	*	1210.50		3600/10 ⁶ =		
			2,20				,	1,2276	
						†			
Выбрасыва	емое	Kc	од		Обши	йв	ыброс		
вещест		веще			г/с		т/пер.ст	p.	

Источник 7105. Пылевыделение при транспортировке грунта автосамосвалами

Наименование	Обозн. Ед.изм. Кол-во Расчет									Результат
Исходные данные:										
пылевыделение в атмосферу на 1 км прпбега	q1	Г	1450							
пылевыделение с единицы фактической повер хности материала на платформе	q2	г/м²	0,002							
Время работы	T	час	2723,6							
число ходок автотранспорта	N		1							
Количество работ-х машин	n	ед.	3							
средняя протяженность одной ходки	L	KM	5							
средняя скорость передвижения автотранспорта		км/час	20							
средняя площадь платформы	F0	м2	6,6							
Расчет:		$Q = (C_1 * C_2 * C_3 * C_4 * N * L * C_7 * q1)/3600 + C4 * C5 * C6 * q2 * F0*n, r/d$								
Объем пылевыделения, где	Q	г/с								0,11414
Коэф., учитыв. среднюю грузоподъемность автотранспорта	C1									1
Коэф., учитыв. среднюю скорость передвижения автотранспорта	C2									2
Коэф., учитыв. состояние дорог	СЗ									1
Коэф., учитыв. профиль поверхности материала на платформе	C4									1,3
Коэф., учитыв. скорость обдува материала	C5									1,2
Коэф., учитыв. влажность поверхности материала	С6									1
Коэффициент, учитыв. долю пыли, уносимой в атмосферу	С7									0,01
Общее пылевыделение	M	т/год	0,1141	*	2723,6	*	3600	/	10^{6}	1,1191

Источник 7106. Расчет выбросов от сварочного агрегата

Источник 7107. Расчет выбросов от лакокрасочных работ

F	асчет пр	оведен г	10 "Мет	годик	e pac	чета выб	poc	ОВ	загрязняю	ощих веще	ств в атмос	феру	
	пр	и нанесеі	нии лак	кокра	сочнь	их матер	иал	юв.	РНД 211.	2.02.05-200	4" Астана		
					Ис	сходны	э да	анн	ые:				
									Эмаль	Краска			
									ГФ-021	ПФ-115			
Расход ЛКМ						r	η _ф	=	0,37500	0,188		Т	
						r	n _M	=	2,815	1,384		г/сек	
Время выполнения	•					t		=	37,00	38		час	
Содержание компо	онента ">	с" в летуч	іей час	ти ЛК	M								
	Ксилол	1					кс	=	100	50		%,мас	
	Уайт-сг	пирит				c	l _{у-с}	=	-	50		%,мас	
	Ацетон					c	a	=	0				
	метилб	ензол (то	луол)			c	т	=	0				
	2-Эток	сиэтанол	1			c	э	=	0				
Доля летучей част	Доля летучей части (растворителя) в ЛКМ						,	=	45	45		%,мас	
Доля растворителя в ЛКМ, выделившегося при окраске						ске с	'p	=	25	25		%,мас	
Доля растворителя	в ЛКМ,	выделив	вшегося	я при	сушк	ce c	,, _p	=	75	75		%,мас	
Доля краски, потеј	оянной в	виде аэр	оозоля			c	a	=	30	30		%,мас	
Степень очистки в	оздуха г	азоочист	ным об	боруд	овани	1ем r		=	0	0		дол.ед.	
	Τ.			T									
					Георі	ия расч	ета	ВЬ	іброса:				
									•				
Выброс нелетуч	эй части	и аэрозо	ля кра	ски,	обра	зующег	οп	ри	нанесени	и ЛКМ, ра	ссчит. по ф	b-лe:	
		- =m _ф *d _a *(1								*(100-f _p)/10			г/с
	·			ΤÌ			Ė		•				
Выброс индивид	уальны	х летучи	ІХ КОМІ	поне	нтов	ЛКМ ра	ССЧ	ит	ывается г	10 формул	іам:		
а) при окраске:	•	n _d *f _p *d' _p *d								d _p *d _x / 10 ⁶ *(г/с
б) при осушке:		m _ф *f _p *d ^{,,} _p				/пер.ст				d ^{,,} _p *d _x / 10 ⁶			г/с
BCEFO: $M^x = m_{\phi}^* f_p^* d_x / 10^{4*} (1-h)$ / $nep.crp$ $M^x = m_{M}^* f_p^* d_x / 10^{4*} (1-h)$							г/с						
			` '										1
					P	асчет в	ыбр	poc	OB:				
Выбрасываемое	T						_		<u> </u>			1	
вещество	Код				Pac	нет				г/с	т/пе	р.стр.	
Ксилол	0616	(2,82 *	100)/10000=	1,2669		0,210938	
Уайт спирит	2752			1	,38 *	45 * *	(1-	О)/10000=	0,3115		0,042188	

Источник 7108. Расчет выбросов от битумной обработки

Наименование	Обозн.	Ед.изм.	Кол-во		Расчет								
ПСН = (1*MY)/1000													
Время работы	Т	час/год							8,252				
Объем производства битума	MY	т/год							6,8388				
Валовый выброс	Мсн	т/год	1,0000	*	6,8388	/	1000,00		0,00684				
Максимальный выброс	Мсн	г/с	0.0068	*	10 ⁶ / (8.2520	*	3600)	0,2302				

Источник 7109. Расчет выбросов от ямобура

Nº	Наименование	Обозн.	Ед. изм.	Кол-во		Расчет	Результат
п.п.							
1	2	3	4	5		6	7
1	Исходные данные:						
1.1	Интенсивность пылевыделения	G	г/час	360,0			
1.2	Время работы	R	час/год	172			
1.3	Количество работ.машин	N	шт.	1,0			
2	<u>Расчет:</u>				GC = N * G * (1-N1)	= 1 * 360 * (1-0)	360
2.1	Объем пылевыделения, где:	G	г/с		G	G = GC/3600	0,1000
					M = GC * R * 10 ⁻⁶		
2.2	Общее пылевыделение	М	т/год		0,1000 *	172,00 /10 ⁶	0,0619

Список литературы: Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Источник 7110. Расчет выбросов от шлифовальной машинки

Расчет выбросс	в 3В провед	ден по "М	етод	ике расче	та	выбросо	в заг	——— РНЕРСС	ющих вец	цеств
в атмосферу при механ	нической обр	работке м	етал	лов РНД 2	211	.2.02.06	-2004'	', Аст	ана, - дал	ее Методика
		Исх	одн	ые данн	ые	:				
Время работы станка					Ш		Т	=	152	час/год
Коэфф. гравитационн	юго оседани	ия					k	=	0,2	
Диаметр шлифоваль	ного круга								400	MM
Мощность станка					Ш		N	=	4	кВт
		Теория	pac	счета вы	бр	oca:				
D 5 0D /										
Выброс ЗВ г/сек от с		итывается	1 ПО	формуле	2:					
	M = q * k				Н					
Выброс ЗВ т/год рас	считывается	я по форм	уле	1:	П					
	00 * k * q * 1									
q - удельное выделе	ение пыли те	ехнологиче	ески	м оборудо	ова	нием (М	етоди	і Іка. та	ь абл. 1)	
7),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							2902)		0,03	г/сек
							2930)		0,02	г/сек
		Pac	счет	г выбросс	OB:					
Объем выбросов пы	пи металлич	еской (код	і ве	щества 29	02):				
M =	0,03 *				П	,			0,0060	г/с
Γ=	3600 *			0,03	*	152	10 ⁶	=	0,0033	т/год
	_				П					
Объем выбросов пы				ства 2930):	:					
M =	0,02 *				Ш				0,0040	г/с
Γ=	3600 *	* 0,2	*	0,02	*	152	10 ⁶	=	0,0022	т/год

Источник 7111. Расчет выбросов передвижных источников

Механизм	Расход топлива т/час	Время работы, час	Расход топлива, т/год	Код ЗВ	Удельный выброс, кг/т	Выбросы, г/с	Выбросы, т/год
				301	40	0,0156	0,2964
				328	15,5	0,0060	0,1148
F	0.0014	5202.5	7.41	330	20	0,0078	0,1482
Бульдозер	0,0014	5292,5	7,41	337	100	0,0389	0,7410
				703	0,00032	0,000000	0,0000024
				2732	30	0,0117	0,2223
				301	40	0,0667	0,2976
				328	15,5	0,0258	0,1153
				330	20	0,0333	0,1488
Трактор	0,006	1240	7,44	337	100	0,1667	0,7440
				703	0,00032	0,000001	0,000002381
				2732	30	0,0500	0,2232
				301	40	0,0494	0,6978
			-	328	15,5	0,0192	0,2704
			-	330	20	0,0247	0,3489
Каток	0,00445	3920	17,44	337	100	0,1236	1,7444
				703	0,00032	0,000000	0,000005582
			 	2732	30	0,0371	0,5233
				301	40	0,0319	0,1091
			-	328	15,5	0,0124	0,0423
			-			-	
Автокран	0,00287	950	2,73	330	20	0,0159	0,0545
			 	337	100	0,0797	0,2727
			 	703	0,00032	0,000000	0,0000009
				2732	30	0,0239	0,0818
			-	301	40	0,1533	2,1804
Экскаватор			-	328	15,5	0,0594	0,8449
	0,0138	3950	54,51	330	20	0,0767	1,0902
			<u> </u>	337	100	0,3833	5,4510
			<u> </u>	703	0,00032	0,000001	0,0000174
				2732	30	0,1150	1,6353
				301	40	0,1533	2,6772
				328	15,5	0,0594	1,0374
Автогрейдер	0,0138	4850	66,93	330	20	0,0767	1,3386
	3,0.20			337	100	0,3833	6,6930
			L	703	0,00032	0,000001	0,000021418
				2732	30	0,1150	2,0079
			L	301	40	0,0711	0,4997
			L	328	0,58	0,0010	0,0072
Поливомоечная	0,0064	1952	12,49	330	2	0,0036	0,0250
машина	0,0004	1732	12,49	337	600	1,0667	7,4957
				703	0,0002	0,00000036	0,00000250
				2704	30	0,0533	0,3748
				301	40	0,0833	0,1074
			Γ	328	15,5	0,0323	0,0416
	0.0075	250	2.60	330	20	0,0417	0,0537
автопогрузчик	0,0075	358	2,69	337	100	0,2083	0,2685
				703	0,00032	0,000001	0,00000086
				2732	30	0,0625	0,0806
				301	40	0,0711	0,6972
				328	15,5	0,0276	0,2702
				330	20	0,0356	0,3486
Автосамосвал	0,0064	2723,63	17,43	337	100	0,1778	1,7431
			⊦	703	0,00032	0,000001	0,00000558
			⊦	2732	30	0,0533	0,5229
		25236,13	189,07	4134	30	0,0333	0,3447

Итоговые выбросы

Код ЗВ	Примесь	г/с	т/год
301	азота диоксид	0,6958	7,5628
328	сажа	0,2431	2,7442
330	сера диоксид	0,3159	3,5565
337	углерод оксид	2,6283	25,1533
703	бензапирен	0,00001	0,00006
2732	керосин	0,4685	5,2973
2704	бензин	0,0533	0,3748
		4,4049	44,6889

Расчет выбросов при эксплуатации

Источник свеча продувочная (2 свечи на скважинах)

Расчет проведен согласно "Методике расчета выбросов 3В в атмосферу на объектах транспорта и хранения газа", 2014 г.

Исходные данные:

Диаметр свечи	d	=	0,05	М
Высота свечи	h	=	5	M
Длина газопровода	L	=	45	M
Диаметр газопровода	D	=	0,05	M
Количество продувок	n	=	20	раз/год
Продолжительность сброса	t	=	600	сек
Время сброса за год			3,33	час/год
Плотность газа	ρ	=	0.763	т/м ³

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,27	м3
где: Vk - геометрический объем газопровода	Vk	=	0,1	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,16	МПа
Температура газа при 0°С	to	=	12	°C
Давление и темп-ра в оборудовании	Pa	=	0,5	МПа
	tn	=	20	°C
	Z	=	1	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,27	/	600	*	20	=	0,009	м ³ /год
		=			0,27	/	600	=	0,000	м ³ /сек
Весовое количество газа	Γ	=			0,009	*	0,763	=	0,006827	т/год
	М	=	0,0004	*	0,763	*	10 ⁶	=	0,568947	г/сек
Скорость выброса	٧	=4*	0,0004	/	(3,14	*	0,0025) =	0,23	м/сек

Неорганизованные ЗРА и ФС

			Расчет	Расчетная	Кол-	Вил	Расчет	Расчетная	_			Массов	Выбро	сы ЗВ
Наименование ИЗА	Кол-во уплотне ний, ед	Вид уплотне ний, ед	ная выделе ния утечки, г/с	уплотнени й потерявш их герметичн ость	во упло т- нен ий, ед	упло т- нен ий, ед	ная выделе ния утечки, г/с	уплотнени й потерявш их герметичн ость	Врем я работ ы, час	Ко д 3В	Наименование ЗВ	ая вредног о компоне нта	г/с	т/год
Площадка манифольда (конденсат)	2	ЗРА	0,01299 6	0,365	4	ФС	0,00039 6	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	100	0,0026 56	0,083 750
Площадка манифольда (газ)	2	3PA	0,02098	0,293	4	ФС	0,00072	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	90	0,0031 02	0,097 817
													0,0057 57	0,181 567
Площадка блока (реагент)	3	ЗРА	0,01299	0,365	6	ФС	0,00039	0,05	8760	10 52	Метанол (Метиловый спирт)	25	0,0009 96	0,031 425
													0,0009 96	0,031 425
Площадка блока реагента	2	3PA	0,01299 6	0,365	4	ФС	0,00039 6	0,05	8760	10 52	Метанол (Метиловый спирт)	25	0,0006 64	0,020 950
													0,0006 64	0,020 950
Площадка ГСП (конденсат)	22	ЗРА	0,01299 6	0,365	44	ФС	0,00039 6	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	99,94	0,0292	0,921 254
Площадка ГСП (газ)	15	3PA	0,02098	0,293	46	ФС	0,00072	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	90	0,0234 06	0,738 122
										04 15	Смесь углеводородов пред. C1-C5		0,0526 20	1,659 409
Площадка Емкостей (конденсат)	4	3PA	0,01299	0,365	8	ФС	0,00039	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	59,94	0,0031 86	0,100 460
	4	3PA	0,01299 6	0,365	8	ФС	0,00039 6	0,05	8760	04 16	Смесь углеводородов пред. C6-C10	40	0,0021 258	0,067 040
													0,0053 11	0,167 501
Площадка стояка	10	3PA	0,01299 6	0,365	20	ФС	0,00039 6	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	59,94	0,0079 64	0,251 150
налива (конденсат)	10	3PA	0,01299	0,365	20	ΦС	0,00039	0,05	8760	04	Смесь углеводородов	40	0,0053	0,167

«Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)»

			6				6			16	пред. С6-С10		146	601
													0,0132 79	0,418 752
Площадка узла	8	3PA	0,02098 8	0,293	46	ФС	0,00072	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	72,46	0,0102 35	0,322 782
учета газа	8	ЗРА	0,02098 8	0,293	46	ФС	0,00072	0,05	8760	04 16	Смесь углеводородов пред. C6-C10	26,8	0,0037 86	0,119 384
													0,0140 21	0,442 166
Площадка узла	17	3PA	0,01299	0,365	34	ФС	0,00039	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	59,94	0,0135 39	0,426 956
учета газа (конденсат)	17	3PA	0,01299	0,365	34	ФС	0,00039	0,05	8760	04 16	Смесь углеводородов пред. С6-С10	40	0,0090 348	0,284 922
, , , , , ,											.		0,0225 73	0,711 878
										04 15	Смесь углеводородов пред. C1-C5		0,0237 74	0,749 738
										04 16	Смесь углеводородов пред. C6-C10		0,0128 20	0,404 306
											,		0,0463 48	1,461 616
Площадка дренажной	2	3PA	0,01299	0,365	17	ФС	0,00039 6	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	89,736	0,0024 49	0,077 223
емкости V-100 (конденсат)	2	3PA	0,01299	0,365	17	ФС	0,00039 6	0,05	8760	04 16	Смесь углеводородов пред. C6-C10	0,004	0,0000 001	0,000 003
							-				177		0,0024 49	0,077 226
Площадка дренажной	3	3PA	0,01299	0,365	34	ФС	0,00039 6	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	89,736	0,0037 15	0,117 157
емкости Е- 1,2(конденсат)	3	3PA	0,01299 6	0,365	34	ФС	0,00039 6	0,05	8760	04 16	Смесь углеводородов пред. C6-C10	0,004	0,0000 002	0,000 005
, ,											•		0,0037 15	0,117 162
Площадка факела(газ)	4	3PA	0,02098 8	0,293	16	ФС	0,00072	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	90	0,0062 75	0,197 898
Пломочко соновотовор			0,02098							04	Смесь углеводородов		0,0326	1,029
Площадка сепараторов газ	21	3PA	0,02098	0,293	52	ФС	0,00072	0,05	8760	15	пред. С1-С5	90	58	908
Площадка компрес.	6	3PA	0,01299	0,365	34	ФС	0,00039	0,05	8760	04	Смесь углеводородов	86,85	0,0070	0,221
агрегатов			6 0,01299	<u> </u>			6 0,00039			15 04	пред. C1-C5 Смесь углеводородов	,	29 0,0010	657 0,033
для закачки (конденсат)	6	3PA	6	0,365	34	ФС	6	0,05	8760	16	пред. С6-С10	13,14	63	536

													0,0080 92	0,255 192
Площадка трубопроводов (газ)	14	3PA	0,02098 8	0,293	39	ΦС	0,00072	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	100	0,0243 02	0,766 395
Площадка ЗУ(газ)	5	3PA	0,02098 8	0,293	12	ФС	0,00072	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	90	0,0077 72	0,245 108
Площадка печей подогрева(газ)	6	3PA	0,02098 8	0,293	12	ФС	0,00072	0,05	8760	04 15	Смесь углеводородов пред. C1-C5	90	0,0093 05	0,293 451

Сепараторы

№ ист	Це	Наименовани	Объем аппарата	Давлени е в	Кол	(P*Vaп/1011)0,	Кq	Время работ		Выбросы іяющих в		Код	Сод., в %	Наименование вещества	Выбросы	Выбросы
	Х	оборудования	, Vап м3	аппарате (гПа), Р	-во	8		ы	кг/ча с	г/сек	т/год	3B	масс.	Tamas Deliger Sa	, г/с	, т/год
		Сепаратор V- 0,8 м3	0,8	14500	1	7,043	0,4	8760	0,0655	0,018	0,573 9	041 5	72,46	Смесь углеводородов пред. С1-С5	0,013187	0,415872
												041 6	26,8	Смесь углеводородов пред. C6- C10	0,004877	0,153814
		Двухфазный сепаратор V-2	2	11000	1	11,753	0,4 3	8760	0,1093	0,030 4	0,957 7	041 5	72,46	Смесь углеводородов пред. С1-С5	0,022005	0,693955
												041 6	26,8	Смесь углеводородов пред. C6- C10	0,008139	0,256666
		3-фазный					0.4			0,011	0,356	041				
		3-фазныи вертикальный	4	1600	1	4,377	0,4 3	8760	0,0407	3	6	5	72,46	Смесь углеводородов пред. С1-С5	0,008195	0,258426
		сепаратор V-4										041 6	26,8	Смесь углеводородов пред. С6- C10	0,003031	0,095581
		Сепаратор	3,5	1000	1	2,701	0,4 5	8760	0,0240	0,006 7	0,210	041 5	89,73 6	Смесь углеводородов пред. С1-С5	0,005984	0,188700
		V-3,5										041 6	0,004	Смесь углеводородов пред. C6- C10	0,000000	0,000008
		Сепаратор факельный	4	70	1	0,358	0,4 5	8760	0,0032	0,000 9	0,027 9	041 5	89,73 6	Смесь углеводородов пред. С1-С5	0,000793	0,025017
		V-4										041 6	0,004	0,004 Смесь углеводородов пред. С6-		0,000001

Дренажные емкости

№ ист.	Произ-	Наименование	Объем аппарата,	Давление в	Кол-	(Р*Vап/1011)0,8	Kq	Время	Выбросы загрязняющих веществ, Смесь углеводородов предельных C1-C5			
	водство	оборудования	Vап м3	аппарате (гПа), Р	ВО		-	работы	кг/час	г/сек	т/год	
		Дренажная емкость	8	100	1	0,8292	0,79	8760	0,004199	0,001166	0,036780	
		Дренажная емкость	8	100	1	0,8292	0,79	8760	0,004199	0,001166	0,036780	
		Дренажная емкость	8	100	1	0,8292	0,79	8760	0,004199	0,001166	0,036780	

Емкости конденсата

	т/год	621
	$ m M^3/год$	839
Плотность конденсата	т/м3	0,74
Количество резервуаров	шт.	1
Объем одного резервуара	M^3	100

Расчет выбросов из емкостей производится согласно "Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров". РНД 211.2.02.09-2004. Астана, 2004 г.

Максимальные выбросы расчитываются по формуле:

 $M = 0.163 \text{ x } P_{38} \text{ x m x } K_t^{\text{max}} \text{ x } K_p^{\text{max}} \text{ x } K_B \text{ x } V_y^{\text{max}} \text{ x } 10^{-4}, \text{ r/cek}$

Валовые выбросы расчитываются по формуле:

 $G = 0.294 \text{ x P}_{38} \text{ x m x } (K_t^{\text{max}} \text{ x } K_B + K_t^{\text{min}}) \text{ x } K_n^{\text{cp}} \text{ x } K_{00} \text{ x B x } (10^{-7} \text{ x P}_{30}), \text{ т/год}$

K _t ^{min} -	1 35 A HEA (ALL A TELL) A TELL	1,	1
K _t max -	опытные коэффициенты (Приложение 7)	1,	3
K _p ^{cp} -		0,0	51
K _p ^{max} -	опытные коэффициенты (Приложение 8)	0,8	37
P ₃₈ -	давление насыщенных паров нефти при температуре 38°C	мм.рт.ст	210
m -	молекулярная масса паров жидкости (Приложение 5)		24

V _u ^{max} -	максимальный объем паровоздушной смеси, вытесняемой из резервуара во время его закачки	м ³ /час	40
К _в -	опытный коэффициент (Приложение 9)	1	
n	оборачиваемость резервуаров	8	}
Коб -	коэффициент оборачиваемости (Приложение 10)	1,3	35
Рж -	плотность жидкости	T/M^3	0,74
	количество жидкости, закачиваемое в 1 резервуар в течении года	т/год	621
В -	, ,	м ³ /год	839
	Выбросы углеводородов (суммарные)	$M_{cek} = G_{rom} =$	3,7166 0,2456

Стояк налива

К олл - воо обо орр - и я	Ко л- во од но вр. ра бот -го обо р- ия	Обору дован ие	Вы сот а вы бро са, м	Диа мет р вы бро са, м	Об ъе м ГВ С, м3 /с	id F C M	ГС М	ρ, τ/ м3	н/про дукт ов при запо нени и резер вуар а и бако в авто маш ин бака Ср ^{та} х	оиз в- ть сли ва в рез ер- вуа р V _{сл} , м3/ час	Пр оиз в- ть ТР К V _{сл} , м3/ час	Врем я слив а н/про дукт ов в резер вуар, час	н/про дукт ов в ВЛ пери од при запо лнен ии резер вуар а Срвл , г/м3 (при л.15)	дукто в, залит ого в резер вуар (баки авто маш ин) в ВЛ пери од года Qвл, м3	н/про дукт ов в ОЗ пери од при запо лнен ии резер вуар а Сроз, г/м3 (при л.15)	дукто в, залит ого в резер вуар (баки авто маш ин) в ОЗ пери од года Qоз, м3	Ко ли- чес тв о рез ер- ву ар ов, шт , Np	Коэ ф- фиц иен т Кнп (Пр ил.1 2)	в нефт е- прод укто в при хран ении ГСМ в 1-м резе рвуа ре, т/год , Gxp	Коэ ф- фи цие нт Кр та х (Пр ил. 8)	Соде р-е комп -та в пара х н/про дукто в, % по массе	К о д 3 В В	Назва ние вещес тва	Выб рос ы, г/с	Выб рос ы, т/го д
	л-		D	Н	05				дукт ов	В- ТЬ	_		дукт ов в	в, залит	дукт ов в	в, залит	ли- чес		e-	ф-	p-e				

«Обустройство месторождения Барханное (Система сбора газа и Пункт сбора газа) и строительство газопровода Барханное-Амангельды (включающее газопровод и ЛЭП)»

																					9			
1	1	Стояк налив а	3	0,10	0,0 01 39	3	кон ден сат	0, 74 00	12,2	5,0	5,0	4,0	1176, 12	11310 ,811	1176, 12	11310 ,811	1,0	1,0	0,1	72,52	0 4 1 5	Смесь углев одоро дов пред. С1-С5	0,00 123	1,92 945
1	1	конде нсата в авто цисте рны	3	0,10	0,0 01 39	3	кон ден сат	0, 74 00	12,2	5,0	5,0	4,0	1176, 12	11310 ,811	1176, 12	11310 ,811	1,0	1,0	0,1	26,8	0 4 1 6	Смесь углев одоро дов пред. С6- С10	0,00 045	0,71 303
																							0,00 168 3	2,64 248 2
1	1	Откач ка из дрена жной емкос	3	0,10	0,0 01 39	3	кон ден сат	0, 81 38	12,2	5,0	5,0	4,0	1176, 12	40,00	1176, 12	40,00 0	1,0	1,0	0,1	72,52	0 4 1 5	Смесь углев одоро дов пред. C1-C5	0,00 123	0,00 682
1	1	ти V=8 м3 в автоц истер ну	3	0,10	0,0 01 39	3	кон ден сат	0, 81 38	12,2	5,0	5,0	4,0	1176, 12	40,00	1176, 12	40,00	1,0	1,0	0,1	26,8	0 4 1 6	Смесь углев одоро дов пред. С6- С10	0,00 045	0,00 252
[<u> </u>														210	0,00 168 3	0,00 934 5

Насосы

				IC	Кол-во						Выбро	сы ЗВ
Площадка	№ ИЗА	№ ист. выд.	Наименование оборудования	Кол- во обор- я, ед	обор-я, работ. одновр., ед	Уд. выброс, кг/час	Время работы, час/год	Код ЗВ	Наименование ЗВ	Содер. в-ва, в %	г/с	т/год
		1	Насосы	2	2	0,02	8760	0415	Смесь углеводородов пред. С1-С5	72,52	0,008058	0,25411
				2	2	0,02	8760	0416	Смесь углеводородов пред. С6-С10	26,8	0,002978	0,09391

										0,011036	0,34802
	2	Насосы	2	2	0,02	8760	0415	Смесь углеводородов пред. С1-С5	72,52	0,008058	0,25411
			2	2	0,02	8760	0416	Смесь углеводородов пред. С6-С10	26,8	0,002978	0,09391
										0,011036	0,34802

Факельная установка

№ ис т. в ы д.	Оборудов ание	Выс ота фак ел. уст- ки, м	Высо та источ ника выбр оса, м	Диа метр вых од. сопл а, м	ujl	Объ ем ГВС, м3/с	Объе м ГВС, м3/год	Тем п- ра сме си, гра д	Темп. проду ктов сгора ния, град	Плотн ость смесе й и газа, кг/мЗ	Макс им. расхо д, м3/с	Рас ход газа , тыс. м3/г од, опе р	Соотно шение Lcx/d	Коэ ф-т избы тка возд уха, =1	Объе м ГВС при сжига нии 1 м3 (кг) смес и	Стехиометр ическое количество воздуха для 1 м3 смеси	Скоро сть истеч ения смесе й, м/с	Показа тель адиаб аты для смеси	Моля рная масса смеси , кг/мо ль	Скор ость звука в смес и, м/с
1	Дежурная горелка	15	22,5	0,5	1, 30	0,580 710	18313 284,5	870	1688	0,9540	0,002 2200	70,0 099	135	2	36,41	17,7052	2,958	1,1034	34,605	552
1	Дежурная горелка	15	22,5	0,5	1, 30	0,580 710	18313 284,5	870	1688	0,9540	0,002 2200	70,0 099	135	2	36,41	17,7052	2,958	1,1034	34,605	552
1	Дежурная горелка	15	22,5	0,5	1, 30	0,580 710	18313 284,5	870	1688	0,9540	0,002 2200	70,0 099	135	2	36,41	17,7052	2,958	1,1034	34,605	552
1	Дежурная горелка	15	22,5	0,5	1, 30	0,580 710	18313 284,5	870	1688	0,9540	0,002 2200	70,0 099	135	2	36,41	17,7052	2,958	1,1034	34,605	552

№ ИСТ ВЫ Д.	Бессажев ый критерий , сажевое горение < 0,2	Низша я теплот а сгоран ия ккал/м 3	Критер ий архиме да, Аг	Длин а факе ла (Lf), м	Маскси м. расход сжигаем ой смеси, Gg , г/с	Доля энергии, теряема я за счет излучен ия, (е)	Тепло- емкость продукт ов сгорани я, ккал/м3 (ккал/кг)	Содер- е серово дорода, в %	Соде р-е мерка птано в, в %	Соде р-е серы , в %	Время работ ы, час/ сутки	Время работ ы, час/го д	Код ЗВ	Наименова ние вещества	Удел. выдел- я, г/г	Выбросы , г/с	Выброс ы, т/год
1	0,00535	16217,9	4,3392	7,5	2,12	0,282	0,39	0	0	0	24	8760,0	0301	Азота диоксид	0,003	0,005083	0,160295
1	0,00535	16217,9	4,3392	7,5	2,12	0,282	0,39	0	0	0	24	8760,0	0328	Сажа	0,002	0,004236	0,133579
1	0,00535	16217,9	4,3392	7,5	2,12	0,282	0,39	0	0	0	24	8760,0	0337	Углерода оксид	0,02	0,042358	1,335789
1	0,00535	16217,9	4,3392	7,5	2,12	0,282	0,39	0	0	0	24	8760,0	0410	Метан	0,0005	0,001059	0,033395

Камера приема и запуска скребка

			Расчетн	Расчетная	Кол-	Вид	Расчетн	Расчетная	Врем			Массова	Выбро	осы ЗВ
Наименование ИЗА	Кол-во уплотнен ий, ед	Вид уплотнен ий, ед	ая выделе ния утечки, г/с	уплотнени й потерявши х герметичн ость	во упло т- нени й, ед	упло т- нени й, ед	ая выделе ния утечки, г/с	уплотнени й потерявши х герметичн ость	я работ ы, час	Ко д 3В	Наименование ЗВ	массова я вредного компоне нта	г/с	т/год
Камеры приема и запуска скребка	12	ЗРА	0,020988	0,293	48	ФС	0,00072	0,05	8760	041 5	Смесь углеводородов пред. C1-C5	72,46	0,0152 01	0,4793 74
	12	3PA	0,020988	0,293	48	ФС	0,00072	0,05	8760	041 6	Смесь углеводородов пред. C6-C10	26,8	0,0056 22	0,1773 01
													0,0208 23	0,6566 75

	Конденсатосборни	1K									
Объем дренажных емкостей							Выб	росы загрязн	яющих веш	цеств	
m ³	(50*Vап/1011) ^{0,8}	$K_{\mathbf{q}}$	I	Время рабо	ты	кг/	час		г/сек		т/год
3	0,217	0,57		8760		0,0	015		0,000423		0,0133

<u>БР (3 ед)</u>

Высота устья	устья источ-	Объем ГВС, м3/с	Темпе-ратура ГВС. грал. С)B03-	_	عقاظ	насыщ: паров вещества	~ ~	Объем резер- вуара V.м3	Кол-во рез- ров. Np (шт.)	ооорачи- ваемость	закачки Qзак	откачки Фотк,	жидкости В , т/год, закачив в 1	75.	Средства сокра-щения выб-росов	темпе-ратура	темпе-ратура	Наиме- нование	Кате-гория	Режим экспл- и резер-вуара	Клим. зона	Kt max (прил. 7)	Kt min (прил. 7)	Конст-рукция резер-вуара	Кр ср (прил. 8)	Кр мах (прил. 8)	В, (п	<u> </u>	m = 45 + 0,6	работы,	работы,	Код 3В	Сод., в % масс.	Наименовани е вещества	Выбросы, г/с	Выбросы, т/год
5	0, 1 0	0,00 001 1	3 0	1 5	5	44 4, 9	12 1, 4	5 0	6	1	1,8 51 9	0, 0 4	0, 0 3	10, 000 0	0,9	газ ова я обв язк а	4 9	2 0	Мет ано л	Б	"ме рни к"	юж ная (тр еть я)	0, 7 4	0	На зе м. ве рт.	0, 5 6	0	1	2	32 ,0 4	2 4	8 7 6 0	1 0 5 2	1 0 0	Мета нол (Мет илов ый спирт)	0,0 007 9	0,0 131 1

ППУ

Марка котла	Тепловая мощность,		Максим. КПД расход котла, топлива Вн:		КПД расход топлива Вн:		д расход та, топлива Вн:		д расход		Факт.сргод расход топлива,	Годовой расход топлива	Дь	Дымовая труба:		Темпера- тура	Режим работы,	Вид
	Гкал/час	Qн, кВт	Среднегод Оф, кВт	%	м3/ч, кг/ч	л/с, г/с	Вут, кгут/ч	м3/час, кг/ч	, тыс. м3/год, т/год	Н,	D, м	к-во труб	уходящих газов, °С	ч/год	топлива			
Установка ППУ		167,00	167,00	95	7,563	10,562	0,000	7,56	66,256	9	0,5		250	8760	дт			

Qir, МДж/м3 , МДж/кг	Qir , ккал/м3, ккал/кг	Топливный экв-т	Макс доля топлива δ	q₃	q ₄	R	K NO ₂	К NO ₂ * (Qф/Qн) ^{0,25}	Sr, %	n'so ₂	Ar, %	х	Содержание H2S в топливе	Годовой расход топлива
42,75	10210			0,5		0,65	0,0823	0,082	0,3	0,02	0	0	0	66,256

	co	N	Ox	N	02	NO		SO2		Сажа	
M = 0,001 B Qi	ir Kco (1 - q4/100)	·	Qir KNO2 (1 - b=0	80	%	13 %		1	$\frac{12 *B *Sr * (1 - \eta_{SO2}^{-1}) * (1 - \eta_{SO2}^{-1})}{\eta_{SO2}^{-1})} M = B$		(1-η), η=0
г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год
0,14675	0,92054	0,03716	0,23311	0,02973	0,18649	0,00483	0,03030	0,06210	0,38959	0,00264	0,01656

Источник свеча продувочная (3 свечи на газопроводе)

Исходные данные:	Обозн.	Ед.изм.	Кол-во
Диаметр свечи	Ду	М	0,05
Высота свечи	h	М	5
Длина участка газопровода	L	М	50
Диаметр газопровода	D	М	0,08
Плотность газа	ρ	кг/м ³	0,74
Время сброса	t	сек	6000
		час/год	1,67
$rac{ extbf{Pacчет:}}{ ext{Объем газа при продувке определяется по ф-ле 3.1}} \ V_{ ext{cmp}} = Vk rac{Pa(t0+273)}{Po(tn+273)*Z}$			•
Po(tn+273)*Z	V	м ³	10,3887
где: Vк - геометр. объем соедин. газопроводов	Vκ	м ³	0,2512
$V\kappa = \pi D^2/4^*L$			
Атмосферное давление	Po	МПа	0,180000
температура газа при 0°C	to	0°C	12
давление и температура в оборудовании	Pa	МПа	7,5
	tn	0°C	20
Коэффициент сжимаемости газа	Z		0,98
Объемный расход газа: V₁=V/t	V_1	м ³ /с	0,00173
Максимальные выбросы УВ: M=V*ρ*1000/t Секундный выброс, отнесенный к 20-ти мин.	М	г/с	1,28127
осреднению	М	г/с	6,4063
Валовый выброс 3В от одной свечи:	G	т/год	0,00769
Скорость выхода ГВС:	W	м/с	0,88226
W=V ₁ /S, где S=πD ² /4			

Методика расчета выбросов 3В в атмосферу на объектах транспорта и хранения газа. Приложение 1 к приказу Министра ОСиВР РК от 12.06.2014г. №221-ө

Наименование	Обозн.	Ед. изм.	Кол-во			I	ac	чет			Резуль- тат
Исходные данные:											141
Мощность агрегата	P	кВт	200,00								
Общий расход топлива	G	т/год	90,027								
Диам. выхлоп. трубы	d	M	0,2								
Высота выхл. трубы	Н	M	5								
Время работы	T	час/год	4380,0								
Удельный расход топлива	В	кг/час	62,000								
Количество двигателей		шт.	1								
Расчет вы	бросов		,				_				
Согласно справочных		час/год	г/кг топл.								
данных, значение	e _{co}	6,2	26,0	Макси	M-1			і-го вещ		гва (г/с)	
выбросов для стацион.	e _{NOx}	9,60	40,0			$\mathbf{M} = (1)$	36	00) * e *	P		
дизельн. установок,	есн	2,9	12,0								
до кап.ремонг.	есажа	0,5	2,0	Вало	вь	ый выбро	oc i	-го веще	ств	а (т/г)	
	e _{SO2}	1,2	5,0			Q = (1/1)	100	0) * g *	G		
	e _{CH2O}	0,12	0,5								
	е бензп.	0,000012	0,000055								
							+		-		.
Количество выбросов:	Mco	г/с г/с		6,2 9,6	2/4	200	*	(1/3600) (1/3600)		*0.8	0,3444
	M_{NOx} M_{NO}	г/с		9,6			344	(1/3600)		*0,13	0,4267
	M_{CH}	г/с		2,9		200	*			0,13	0,1611
	Мсажа	г/с		0,5		200	*	(1/3600)			0,0278
	M _{SO2}	г/с		1,2		200	344				0,0667
		г/с		0,12		200	2010	(1/3600)			0,00667
	M _{CH2O}					-	*				
	М бензп.	г/с		1E-05		200		(1/3600)			6,7E-07
	Qco	т/год		26		90,027 90,027	*	(1/1000)	-	*0.8	2,3407
	Q _{NOx}	т/год						(1/1000)	-	- , -	2,8808
	Q _{NO}	т/год				90,027		(1/1000)	-	*0,13	0,4681
	Q _{CH}	т/год				90,027		(1/1000)	-		1,0803
	Qсажа	т/год				90,027		(1/1000)			0,1801
	Q_{SO2}	т/год				90,027		(1/1000)			0,4501
	$Q_{\rm CH2O}$	т/год				90,027		(1/1000)			0,045013
	Q _{бензп.}	т/год		6E-05	*	90,027	*	(1/1000)			5,0E-06
Исходные данные:						•		вов от ста			
				Gor = $G_B * (1+1/(f*n*L_3))$, где $G_B = (1/1000) * (1/3600) * (b * P1 * f*n * L_3)$							
				$G_B = (1/$	10	00) * (1/3	600	0) * (b * P	1 *	f *n * Lə)	
Удельный расход топлива	b	г/кВт*ч	310				-				
на эксп. реж.двиг.(паспорт)							+				
Коэф.продувки = 1,18	f						+		-		
Коэф.изб.воздуха = 1,8 Теор.кол-во возд.для сжиг.	n						+		-		
1 кг топлива = 14,3	Lэ	кг воз/кг тог	ļ								
1 кі топпива — 14,3		кг воз/кг тог кг/с	Gor	8,7200	*	1F-0	5 *	310,0	*	200	0,5406
		KI/C	GOI	-,-				ход отр.			0,5400
								/ Yor, гд		.02	
Удельн. вес отраб. газов		кг/м ³	Yor	Vor =	V	_		C)/(1+To		73) FEE	0,4627
Удельн. вес отраб. газов при		KI / MI	101	101 -	- 0	дири с		·//(I IO	1,2	, э,, тде	0,4027
$t = 0^{0}$ C		кг/м ³	1 21								
t = 0°C Температура отр. газов	Yo Tor	кг/м° °С	1,31 500				+		\vdash	-	
температура отр. газов	1 OF	м ^{3/} с		0.5405		0.45	,			-	1.160
	-	M C	Qor	0,5406				 ВС из ус			1,169
				Скоро	СT					ист-ка	
			***		4			Qor / nd ²		0.0*0.0	27.21
		м/с	W	4	が	1,169	1 /	3,14	7	0,2*0,2	37,216

		г/сек	т/год
0301	Азота (IV) диоксид (4)	0,52117767	3,09197664
0304	Азот (II) оксид (6)	0,08469033	0,5024419
0328	Углерод (593)	0,03523544	0,21714404
0330	Сера диоксид (526)	0,13876667	0,8397226
0337	Углерод оксид (594)	0,54937111	3,26122952
0703	Бенз/а/пирен (54)	7,6667E-07	0,20531995
1325	Формальдегид (619)	0,00766667	0,04501326
2754	Углеводороды предельные С12-19	0,18527778	1,08031824
	/в пересчете на С/ (592)		
0415	C1-C5	6,829249	10,587283
416	C6-C10	0,0671915	2,806186
1052	Метанол	0,00245	0,065485
0410	Метан	0,000163	0,005133

8,4212399

22,707253

Площадка устья скважины (2 ед)

		Пока	азатели			
		Расчет.	Расчет.			
Наименование		вел-на	доля у плот-	Площадка		
		у течки У ,	ний, потер.	уст	гья	
		r/c	гермет-ть, Д	скважи	ны	
Исходные данные:						
Газ						
Количество ЗРА		0,00583	0,293	3	3	
Количество ФС		0,0002	0,030	3	3	
Время работы ЗРА и ФС, час/год				87	60	
Химреагенты						
Количество ЗРА		0,00583	0,293		l	
Количество ФС		0,0002	0,030		ľ	
Время работы ЗРА и ФС, час/год						
Расчет:						
Y=Nзра*Узра*Дзра+Nфс*Уфс*Дфс						
Общ ие выбросы по площ адкам:						
Всего выбросов, в том числе:	%			г/с	т/год	
Газ	100			0,005143	0,162176	
Углеводороды C ₁ -C ₅	100			0,005143	0,162176	

Расчет выбросов от неорганизованных источников

	П	оказатели		№№ источника выброса									
	Расче	г. Расчет.											
Наименование	вел-н	а доля уплот	- Плоц	Площадка		Площадка		подк-я	Точка врезки в сущ.				
	утечки	У, ний, потер.	лине	йного	лине	йного	к сущ.ма	нифольду	газопр	овод -			
	г/с	гермет-ть,	Д кран	ıa	кран	ıa ·		,					
Исходные данные:													
Газ													
Количество ЗРА	0,0058	3 0,293		2		2		1	_ 1				
Количество ФС	0,000	2 0,030		4	4		2		2				
Время работы ЗРА и ФС, час/год			8760		8760		8760		8760				
Расчет:													
Ү=Nзра*Узра*Дзра+Nфс*Уфс*Дфс													
Общие выбросы по площадкам:													
Всего выбросов , в том числе:	%		г/с	т/год	г/с	т/год	r/c	т/год	г/с	т/год			
Газ	100		0,003440	0,108496	0,003440	0,108496	0,001720	0,054248	0,001720	0,054248			