«ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ «ЭКОЛОГИЯЛЫК РЕТТЕУ ЖӘНЕ БАКЫЛАУ КОМИТЕТІ ШЫМКЕНТ КАЛАСЫ **БОЙЫНША ЭКОЛОГИЯ ДЕПАРТАМЕНТІ»** РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК МЕКЕМЕСІ



Номер: KZ57VVX00280090 республиканское гоДатаств6,01,2024 **УЧРЕЖДЕНИЕ** «ЛЕПАРТАМЕНТ ЭКОЛОГИИ ПО ПО ГОРОДУ ШЫМКЕНТ КОМИТЕТА ЭКОЛОГИЧЕСКОГО РЕГУЛИРОВАНИЯ И

КОНТРОЛЯ» МИНИСТЕРСТВА ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН

160013, Шымкент қ. Ш. Қалдаяқов көшесі, 12А Тел,:8(7252) 56-60-02 E-mail: deshym@mail.ru

160013,г. Шымкент ул. Ш. Калдаякова, 12А. Тел,:8(7252) 56-60-02 E-mail: deshym@mail.ru

#### ТОО «БалхашПолиметалл»

Заключение по результатам оценки воздействия на окружающую среду к отчету о возможных воздействиях к проекту «Модернизация технологической линии завода по производству цветных металлов, расположенного по адресу: Республика Казахстан, г. Шымкент, Енбекшинский район, ул. Капал Батыра, дом 30, промзона «Онтустик»

Материалы поступили на рассмотрение: № KZ04RVX00971496 от 08.12.2023 года. (Дата, номер входящей регистрации)

Товарищество с ограниченной ответственностью «БалхашПолиметалл». Адрес заказчика: 060000, Республика Казахстан, Атырауская область, г. Атырау, Микрорайон Вокзал Маңы-3А, дом № 25А, Квартира 104.

Намечаемая деятельность относится в соответствии с пп.2.5.2 п.2.5 раздела 1 приложения 2 Экологического кодекса РК «Установки для выплавки, включая легирование, цветных металлов (за исключением драгоценных металлов), в том числе рекуперированных продуктов (рафинирование, литейное производство и т.д.), с плавильной мощностью, превышающей: 4 тонны в сутки – для свинца и кадмия; 20 тонн в сутки – для всех других цветных металлов» относится к I категории.

Основной целью проекта является модернизация технологической линии завода по производству цветных металлов, расположенного по адресу: г. Шымкент, Енбекшинский район, ул. Капал Батыра, дом 30, индустриальная зона «Онтустик».

Месторасположение объекта: Завод по производству цветных металлов расположен в восточной части г.Шымкент по ул. Капал батыра, Индустриальная зона Онтустик, уч.30. Кадастровый номер земельного участка 22-329-039-252. Площадь участок составляет 0,8708 га, целевое назначение земельного участка - под проектирование и строительство арматурного завода, складских и офисных помещений. Объект граничит с восточной стороны – с внутриквартальной автодорогой, а остальных сторон – с предприятиями Индустриальной зоны.

Ближайшая жилая застройка расположена: с севера - на расстоянии 2000 м, с востока - на расстоянии 1300 м, с юга – на расстоянии 1300 м, с запада – на расстоянии 5000 м. Выбор места расположением существующего производства. Географическая 1-точка широта 42.272886°//долгота 69.726147°//, расположения объекта: 2-точка широта  $42.271451^{\circ}$ //долгота  $69.726810^{\circ}$ //, 3-точка широта  $42.271469^{\circ}$ //долгота  $69.726095^{\circ}$ //, 4-точка широта 42.272656°//долгота 69.725165°//.

Краткое описание намечаемой деятельности. Модернизируемая технологическая линия на территории завода ТОО "Балхашполиметалл" предназначена для производства чернового свинца, арматуры и сопутствующих цветных металлов, получаемых при гидрометаллургическом и пирометаллургических процессах путём переработки привозного сырья, а именно:



свинец содержащий промышленный продукт (содержание свинца 5%-42%), свинцовый концентрат (42%-70% содержание свинца), лом цветных металлов.

Намечаемой деятельностью предусматривается установка следующего дополнительного оборудования в плавильном участке пирометаллургического цеха (ПМЦ): малая шахтная печь, емкость охлаждения кессона печи, фильтр рукавный, дымосос, воздуходувка, система загрузки кокса и брикетов.

На участке утилизации сернистого ангидрида устанавливается дымосос для откачки газов с шахтной печи через систему газоходов (скрубберов). На участке шихт подготовки и брикетирования гидрометаллургического цеха (ГМЦ) устанавливаются горизонтальная двух шпиндельная мешалка и брикетировочная машина гидравлическая.

На участке сушки свинцового кека устанавливаются: бункер загрузки; став с лентой конвейера; сушильный барабан; циклон; рукавный фильтр; дымосос. На участках фильтрации и переработки хвостовых растворов устанавливается фильтр-пресс. На участке сушки медного кека устанавливаются: бункер загрузки; став с лентой конвейера; сушильный барабан; циклон; рукавный фильтр; дымосос. Для приготовления пара предусматривается блочно-модульная котельная ДСЕ-2,5-14Г (Е-2,5-1,4Г) на природном газе. Мощность производства не изменится и составит 12000 т чернового свинца в год.

На производстве осуществляется переработка свинец содержащего промышленного продукта, свинцового концентрат), лома цветных металлов с получением цветных металлов в виде следующих полупродуктов и продуктов:

- свинцового кека (кек слой твёрдых частиц, остающийся на фильтрующей поверхности после фильтрации суспензий);
  - медного кека;
  - цинкового кека;
  - мышьяк содержащего кека;
  - чернового свинца (свинец с незначительной примесью других металлов).

Проектируемая технологическая линия располагается в существующих строениях и частично во вновь построенных, а именно: - пирометаллургический цех - площадка с навесом, часть в производственном цехе; - гидрометаллургический цех - производственный цех, хвостовой бассейн.

Ранее для объекта была проведена ОВОС и получено положительное заключение государственной экологической экспертизы на рабочий проект «Строительство технологической линии по производству цветных металлов и арматуры на территории завода ТОО «Шымкент Смелтинг» № 17-0005/20 от 17.11.2020 г.

После модернизаций технологической линии завода выбросы загрязняющих веществ в атмосферу увеличиваются с 15,383 т/год до 21,171т/год.

Сырье, предназначенное для переработки – кек, пыль, шламы и другие свинец содержащие материалы и промпродукты свинцовых, медных и цинковых заводов.

Основные технологические процессы — выщелачивание и плавка. Для совершенствования технологического процесса устанавливается дополнительная малая шахтная печь без увеличения общей производительности. Устанавливаемый дымосос предназначен для откачки газов с шахтной печи через систему газоходов (скрубберов) в установку утилизации сернистого ангидрида, где происходит нейтрализация газов путём распыления известкового молока сверху вниз. Для окускования шихты используется устанавливаемая брикет-машина с производительностью 14 т/час. Сушильные барабаны предназначены для сушки свинцовых и медных кеков. В качестве топлива используется природный газ. Для очистки дымовых газов предназначены циклоны и рукавные фильтры.

Режим работы цеха гидрометаллургии и пирометаллургии - 24 часа в сутки, 25 дней в месяц (300 дней в год).

Гидрометаллургический цех предназначен для получения кеков и других промпродуктов для дальнейшей реализации или отправки в Пирометаллургический цех (ПМЦ) на плавку, ПМЦ для получения конечной товарной продукции.



**Участок выщелачивания. Получение свинцового кека.** Сырье (свинец, содержащий промпродукт) вместе с оборотными пылями ПМЦ проходит через автовесы и с помощью ковшового погрузчика загружается в ёмкости выщелачивания объемом 6 тонн в каждую ёмкость. Предварительно в каждую ёмкость заливают воду объёмом 13 м<sup>3</sup>.

В зависимости от содержания серы в исходном сырье в ёмкость добавляют серную кислоту с содержанием 96-98% H2SO4 из промежуточной ёмкости с уровнемером, в объёме 150-200 л на каждую ёмкость. Серная кислота подаётся в ёмкости по трубопроводу с помощью насоса.

После загрузки сырья и сопутствующих компонентов происходит перемешивание (процесс выщелачивания) в течении 40 мин. После окончания процесса выщелачивания пульпа при помощи шламовых насосов по трубопроводу перекачивается на фильтр-пресс (участок фильтрации) где путём сжатия получается свинцовый кек.

Отфильтрованный свинцовый кек разгружается на бетонный пол и далее ковшовым погрузчиком отвозится на участок сушки свинцового кека. После сушки свинцовый кек направляется на участок шихтоподготовки и брикетирования (УШБ) для приготовления брикетов, далее брикеты отправляют на плавильный участок (ПУ) для пирометаллургического процесса, а именно для получения чернового свинца при восстановительной шахтной плавке.

**Участок сушки свинцового кека.** Влажность полученного свинцового кека составляет 12%. Свинцовый кек далее ковшовым погрузчиком отвозится на приемные бункера сушильного барабана. Сушильный барабан работает с горелкой на природном газе. После сушильного барабана влажность свинцового кека будет 5%. На участок сушки свинцового кека предусмотрено установка двух сушильных барабанов. Одна из этих барабанов резервная.

Дымовые газы после сушильного барабана направляются в циклон, далее проходят очистку в рукавных фильтрах.

Коэффициент очистки мелкой и средне дисперсной пыли в циклоне составляет 75%. Коэффициент очистки рукавного фильтра составляет до 98.0%. Для откачки газов с циклона и рукавного фильтра расположен дымосос.

После цикла прохода гидрометталургического цеха высушенный до 5 % влаги свинцовый кек направляется на процесс окускования.

Участок фильтрации медного кека. Получение медного кека. Раствор после фильтрации свинцового кека самотёком сливается в ж/б бассейн хвостовой жидкости. Далее раствор при помощи насоса поступает в полипропиленовые ёмкости объемом 16 м3 с мешалкой. В растворе определяется процентное содержание меди, далее в ёмкость с раствором для цементации меди добавляют железный порошок, объёмом от 1500 кг до 2000 кг, затем производят перемешивание в течении 40 мин. После окончания процесса перемешивания пульпа из емкостей насосом подаётся на фильтр-прессы, где путём сжатия получается медный кек.

Отфильтрованный медный кек разгружается на бетонный пол, далее ковшовым погрузчиком отвозится на участок сушки медного кека.

**Участок сушки медного кека**. Влажность полученного медного кека составляет 15%. Медный кек далее ковшовым погрузчиком отвозится на приемные бункера сушильного барабана. Сушильный барабан работает с горелкой на природном газе. После сушильного барабана влажность медного кека составляет 7%. Процесс сушки аналогичный как процесс сушки свинцового кека, также устанавливаются циклон и рукавный фильтр.

Дымовые газы после сушильного барабана направляются в циклон, далее проходят очистку в рукавных фильтрах. Эффективность очистки циклона составляет 75%. Эффективность очистки рукавного фильтра составляет до 98.0%. Для откачки газов с циклона и рукавного фильтра расположен дымосос.

После сушки медный затаривается в мешки МКР и отправляется на склад готовой продукции.

**Участок переработки хвостовых растворов (УПХР). Получение цинкового кека.** Раствор после фильтрации медного кека сливается в полипропиленовые емкости объемом 13 м<sup>3</sup>, далее добавляются необходимые химические реагенты для осаждения цинка в виде цинкового кека или цинкового концентрата, после перемешивания в течение 30 мин в вышеуказанных ёмкостях пульпа насосами подаётся на фильтр-пресс.



Цинковый кек образуется в количестве до 400 т (СМТ)/месяц. Далее цинковый кек затаривается в мягкие контейнеры (МКР, Биг-Бэги) и хранится на территории завода в специально установленном месте для дальнейшей переработки в цинковый концентрат. Сроки хранения цинкового кека определяются технологическим регламентом и зависят от высвобождения мощностей соответствующего оборудования для получения цинкового концентрата. Цинковый концентрат затаривается в МКР для дальнейшей реализации.

Участок переработки хвостовых растворов (УПХР). Получение мышьяксодержащего кека. Отфильтрованный раствор самотёком сливается в полипропиленовые ёмкости объёмом 13 м³, далее добавляются необходимые химические реагенты для осаждения мышьяка в виде мышьяксодержащего кека. После перемешивания в вышеуказанных емкостях пульпа насосами подается на фильтр-пресс. Полученный мышьяксодержащий кек временно складируется и хранится на участке хранения флюсов и отходов.

Мышьяксодержащий кек затаривается в МКР и с периодичностью не реже одного раза в 6 месяцев вывозится на полигон промышленных отходов для захоронения.

В оставшимся хвостовом растворе определяется рН уровень, при необходимости добавляется свежая вода (производство «горячее» и часть воды испаряется) и далее раствор идёт в голову процесса

**Участок шихтоподготовки и брикетирования (УШБ).** Участок предназначен для изготовления шихты необходимой для плавки кеков. Изготовление шихты проходит в следующей последовательности:

- в приемные бункера (шихтарники) при помощи погрузчиков загружают сырье: (свинцовый кек и (или) свинцовый концентрат) и, флюсы (кварцевая руда, известняк, железная руда), затем посредством ленточного конвейера. Флюсы поступают в горизонтальную двух шпиндельную мешалку, где происходит их равномерное перемешивание, затем полученная смесь через ленточный конвейер поступает в гидравлическую брикетировочную машину, где происходит прессование полученной шихты в брикеты и укладкой её на поддоны.

Влажность поступающего сырья колеблется в пределах 2,5-10%. В качестве флюсов используются неорганические вещества, которые добавляют к руде, чтобы снизить ее температуру плавления и облегчить отделение металла от пустой породы. Флюсы хранятся на территории завода. Парарельно устанавливается вторая брикет производительности 14 т/час. Имеющий отдельно бункер загрузки, транспортерный ленту и барабан смеситель общий у них только бункера флюсов. Оно запускается только при ремонте первый брикет машины. (резерв.)

В качестве топлива используется электродный кокс. Выгрузка и взвешивания кокса производится также, автомобильных весах. Проектом предусматривается монтаж резервных установок.

В состав брикетов в обязательном порядке необходимо добавить расчетное количество флюсующих материалов (железную руду, известняк и кварц), чтобы получить необходимый для конкретной плавки шлак

При помощи погрузчиков свинцовые брикеты отправляют в пирометаллургический цех (ПМЦ) на участок хранения брикетов и далее для загрузки в шахтную печь.

Пирометаллургический цех (ПМЦ). Пирометаллургический цех предназначен для получения чернового свинца и черновой меди путём плавки свинцовых и медных брикетов в шахтной печи типа ZGSZ-XI и RSK-RQ20, полученных в процессе технологических операций в ГМЦ и УШБ. Шахтная печь №1 и Шахтная печь №2 не работают одновременно. При работе одной печи вторая в режиме остановки. График работы печи по 15 дн/мес. Они имеет общий газоход, рукавный фильтр и систему утилизаций сернистого ангидрида.

Цель шахтной плавки - получение чернового свинца восстановлением его окислов из свинцовых брикетов и богатого по свинцу оборотного шлака.

Восстановитель и тепло получается за счёт горения загружаемого в печь кокса. Продуктом плавки являются черновой свинец и гранулированный шлак.

Из печи жидки шлак выходит под температурой  $1100^{0}$ С и через чугунный желоб поступает на кантовальную установку. Состав шлака состоит из оксидов: FeO, CaO, SiO2. В кантовальную установку подается вода.



При смешивании горячего шлака и холодной воды шлак гранулируется в гранулы размером 0.5-1.0 см и попадает в резервуар. В резервуаре вода насосом отправляется повторно на грануляцию. Расход воды 15 м3/час. Вода не питьевого качества. При гранулированиях выделять только пары воды.

Шлак после гранулирования водой, убирается из бассейна при помощи фронтального погрузчика и складируется на специальной площадке для дальнейшей реализации.

Система очистки газов шахтной печи представлена следующим пылегазоочистным оборудованием: - газоходный тракт Ø1200 мм с осадительными камерами (11 шт.) для ручной чистки крупных частиц золы; - система очистки газов (рукавные фильтры); - система утилизации сернистого ангидрида (УСА).

**Участок утилизации сернистого ангидрида (УУСА).** Участок утилизации сернистого ангидрида предназначен для очистки дымовых газов печи от сернистого ангидрида и включает в себя:

- 1. Установку утилизации сернистого ангидрида -1 компл.
- 2. Стальная ёмкость запаса воды V=17 м<sup>3</sup> 1 шт.
- 3. Ж/б резервуар для перемешивания известкового молока  $V = 23.4 \text{ м}^3 1 \text{ шт}$ .
- 4. Бункер для хранения сухой извести 1 шт.
- 5. Аварийный ж/б резервуар для сброса известкового молока из УУСА  $V = 81 \text{ м}^3$  1 шт.
- 6. Вагонный фильтр-пресс 1 шт.
- 7. Стальная ёмкость для перемешивания шлама известкового молока  $V = 16 \text{ м}^3$  1 шт.
- 8. Стальная ёмкость под оборотную воду промывки УУСА V = 16 м<sup>3</sup> -1 шт.

Запылённые печные газы проходят пыле и газоочистное оборудование и затем выбрасываются в атмосферу.

Сернистый ангидрид (двуокись серы, сернистый газ) получается при сжигании серы на воздухе. Растворим в воде, выбрасывается при сжигании кокса в шахтной печи

Газы шахтной печи, содержат сернистый ангидрид, элементарную серу и ее различные соединения (COS, CS2, H2S) и имеют высокую температуру (400—450 °C), после очистки от грубой пыли в скрубберах, газы поступают для тонкой очистки в рукавный фильтр, далее в установку утилизации сернистого ангидрида, где происходит нейтрализации газов путём распыления известкового молока сверху вниз.

Приготовление известкового молока производится в подземной ж/б ёмкости путём перемешивания воды и сухой извести из бункера хранения до равномерной консистенции. При помощи шламовых насосов известковое молоко подаётся на УУСА.

Очистка происходит посредством подачи известкового молока циркуляционным способом на распылители, установленные в УУСА через шламовые насосы в количестве 5 шт. Происходит осадка вредных веществ путём окисления и растворения, где на поверхности катализатора протекает реакция 2SO2-fO2->-2SO3.

Поддержание плотности известкового молока в УУСА осуществляется посредством перемешивания 2-мя мешалками, установленными внизу УУСА и подачей воздуха 2-мя воздуходувками для барботажа известкового молока.

Очистка газов посредством известкового молока осуществляется циркуляционным способом при помощи 5 шламовых насосов, забором снизу и подачей на верх для орошения.

Известковый кек, образующийся на УУСА является отходом.

**Блочно-модульная котельная.** Данным разделом предусматривается установка блочно-модульной котельной. Котельная используется для отопления административного здания и цеха ГМУ. Ранее в объекте было котла на электричества. Котел работает на природном газе. Расход топлива  $200 \, \mathrm{m}^3$ /час.

**Ожидаемое воздействие на атмосферный воздух.** В период строительных работ по модернизации в атмосферу будут поступать выделения, обусловленные: - работой автотранспорта, доставляющего стройматериалы, конструкции и оборудование, работой строительной; - сварочнорезательными работами; - сварки ПЭТ труб специальным агрегатом; - пересыпкой пылящих строительных материалов и грунта строительной техникой; - электросварочными работами; - лакокрасочными работами.



Строительная площадка представляет собой неорганизованный источник загрязнения окружающей среды площадного типа (ист. 6001), на которой размещаются 8 источников выделения. Агрегат для сварки ПЭТ представлены организованными источниками выбросов (ист. 0001).

На этапе строительства в основном проводятся сварочные работы, работы по транспортировке материалов, необходимых для строительства, малярные работы. В целом на полноценно работающем предприятии в проекте будет проведена модернизация технологической линии, а именно в технологический процесс будут помещены резервные печные и сушильные барабаны (свинцовый кек,медный кек) и котел.

Выбросы на период строительство – предельное количество эмиссий составили всего 1,0785 г/сек, 1,323 т/год.

Общая продолжительность строительных работ по модернизации составляет 3 мес., из них 1 мес. – подготовительный период.

После модернизации технологические линии завода выбросы загрязняющих веществ в атмосферу увеличиваются с 15,383 т/год до 21,171 т/год.

В связи с включением дополнительных источников выбросов и внесением поправок в расчеты выбросов от шахтных печей.

После модернизации линии при плавке свинца используется две шахтные печи (большая шахтная печь ист. 0001 ИВ 01 и малая шахтная печь ист. 0001 ИВ 02) которые работают по очередности. Производительность и другие параметры печи одинаковые 2,3 т/час. В атмосферу выбрасываются в одной трубу диаметром 1,0 м и высотой 20,0 м (ист. 0001. Для улавливания взвешенных частиц и оксидов серы предусмотрены осадительные камеры+рукавные фильтры+установка УСА.

Величины эмиссий в атмосферу определены расчетным путем. Перечень источников выбросов и их характеристики определены на основе проектной информации. Определение количественных и качественных характеристик выбросов вредных веществ проведено с применением расчетных (расчетно-аналитических) методов.

Моделирование расчета рассеивания загрязняющих веществ в приземном слое атмосферы выполнен с помощью программного комплекса Эра-Воздух». V 2.0.367 (в дальнейшем ПК «ЭРА»). ПК «ЭРА» разработана в соответствии с «Методикой расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий» (ОНД-86).

Всего на территории предприятия, предусмотрено 17 источников выбросов, в том числе 4 – организованных, 13 – неорганизованных.

Оценка воздействия на атмосферный воздух выполнена расчетным путем с применением метода моделирования рассеивания приземных концентраций загрязняющих веществ с таким условием, чтобы общая нагрузка на атмосферный воздух в пределах области воздействия не приводила к нарушению установленных гигиенических нормативов.

Расчеты рассеивания загрязняющих веществ от источников выбросов намечаемой деятельности выполнены в соответствии с «Методикой расчета концентраций вредных веществ в атмосферном воздухе от выбросов пред- приятий» [21] с применением программного комплекса «ЭРА» (версия 3.0) фирмы Логос-плюс.

На территории индустриальной зоны с целью определения фонового состояния компонентов, не контролируемых РГП «Казгидромет», с помощью аккредитованной лабораторией были проведены инструментальные замеры воздуха. По результатам проведенных испытаний были определены показатели следующих компонентов: Свинец, Взвешенные частицы, Пыль неорганическая: 70-20% двуокиси кремния.

Расчеты рассеивания загрязняющих веществ от источников выбросов намечаемой деятельности выполнены с учетом данных фоновых концентраций.

Расчетные концентрации загрязняющих веществ в приземном слое атмосферы на границе области воздействия не достигают ПДК. Результаты расчетов свидетельствуют о соблюдении гигиенических стандартов качества атмосферного воздуха по всем веществам, выбрасываемым источниками. Выбросы при строительных работах и эксплуатации предлагается установить в качестве предельных количественных показателей эмиссий.



**Ожидаемое воздействие на водные ресурсы.** Стадия строительство. В период производства строительно-монтажных работ на технические нужды вода не используется. Хозяйственно-питьевые нужды работающих при строительстве будут удовлетворяться за счет существующих сетей предприятия.

Стадия эксплуатации. В результате реализации мероприятий, предусмотренных настоящим проектом, система водоснабжения предприятия при эксплуатации не меняется. На предприятии вода используется на хозяйственно-питьевые и производственные нужды.

Для хозяйственно-питьевых нужд используется привозная вода, накапливаемая в специальных емкостях — резервуарах. Хозяйственно-питьевой водопровод предусмотрен для удовлетворения бытовых нужд работающих. Соответствующие санитарные приборы расположены в административно-бытовом корпусе. Для питьевых нужд используется бутилированная вода.

Потребность в воде на хозяйственно-питьевые нужды при штатной численности работающих 150 человек и норме водопотребления в 25 л/сут составит 3,75 м3/сут; 1125 м3/год.

Для производственных нужд вода на предприятии используется: для приготовления технологических растворов и шламов, охлаждения оборудования; гранулирования шлака. Источником производственного водоснабжения является привозная вода непитьевого качества, накапливаемая в специальных емкостях — резервуарах, и ливневые (дождевые, талые) сточные воды, собираемые в дождеприемном колодце. Потребность в воде для гидрометаллургии — 180,0 тыс. м3/год; пирометаллургии — 15,0 тыс. м3/год.

Потребность в воде пирометаллургии удовлетворяется за счет оборотного водоснабжения (охлаждение печей, машин и оборудования, грануляция шлака) и подпитки свежей водой (2,256 тыс. м3/год).

Потребность в воде гидрометаллургии удовлетворяется за счет повторного использования отработанных технологических растворов, фильтрата после вагонных фильтр-прессов УУСА, поверхностных (ливневых) вод и подпитки свежей водой (36,0 тыс. м3/год).

Водоотведение (канализация). На предприятии образуются хозяйственно-бытовые, производственные и поверхностные сточные воды.

Настоящим проектом не рассматривается новая система хозяйственно-бытовой канализации. Хозяйственно-бытовые сточные воды в количестве 1125 м3/год по действующей системе внутренней канализации сбрасываются в существующий септик с последующим вывозом стоков по договору с коммунально-бытовыми службами.

**Ожидаемые виды отходов.** При эксплуатации объекта в процессе гидрометаллургии образуется мышьяксодержащий кек. Образующийся мышьяксодержащий кек вывозится специальным транспортом по договору с ТОО «Glometech» на полигон по захоронению мышьяксодержащего кека, расположенный в юго-западной части г. Шымкент вдоль автодороги г. Шымкент – ГНПС «Шымкент».

В процессе пирометаллургии образуется гранулированный шлак. Шлак после гранулирования водой, убирается из бассейна при помощи фронтального погрузчика и складируется на специальной площадке для дальнейшей реализации. вывозится специальным транспортом по договору на полигон по захоронению мышьяксодержащего кека,

<u>Известковые кеки УУСА</u> образуются на вагонном фильтр-прессе при обезвоживании шламов известкового молока.

Отработанные масла компрессорные и насосов образуются после истечения срока годности в процессе эксплуатации компрессорного оборудования и насосов. По мере образования отработанные масла накапливаются в емкости объемом 50 литров на специальной площадке (в срок не более 6 месяцев). По мере накопления передаются на переработку специализированному предприятию.

Согласно анализу фактических данных работы предприятия за предыдущие годы при обслуживании компрессорного оборудования и насосов годовой объем образования <u>отработанных масел</u> составляет 0,08 т/год.

<u>Обтирочный материал</u> образуется на промплощадке в процессе использования текстиля при техническом обслуживании транспорта, а также при работе на металлообрабатывающих станках.



По мере образования промасленная ветошь накапливается (в срок не более 6 месяцев) в металлических контейнерах объемом  $0.05 \, \mathrm{m}^3$  (2 шт.). Промасленная ветошь относится к янтарному уровню опасности.

<u>Огарки сварочных электродов</u> образуются в результате проведения сварочных работ, которые осуществляются на передвижных постах электродуговой сварки. Отход представляет собой остатки электродов.

Огарки сварочных электродов временно накапливаются в металлическом контейнере объемом  $0.05 \text{ m}^3$  и не реже одного раза в 6 месяцев вывозятся в пункты приема металлолома.

<u>Твердые бытовые отходы (ТБО)</u> на предприятии образуются в производственных и бытовых помещениях в результате непроизводственной деятельности персонала предприятия, а также при уборке помещений. Отходы ТБО, образующиеся на территории предприятия, накапливаются в контейнере объемом  $0.2\,\mathrm{m}^3$ . Далее, по мере накопления твердые бытовые отходы вывозятся на полигон ТБО.

<u>Отработанные ртутьсодержащие лампы</u> образуются вследствие исчерпания ресурса времени работы в процессе освещения открытых площадок, производственных и административных помещений предприятия. По мере выхода из строя ртутные лампы складируются в закрытом помещении центрального склада, в коробках (в срок не более 6 месяцев). По мере накопления отработанные ртутные лампы сдаются на утилизацию специализированному предприятию.

<u>Пыли уловленные в осадительных камерах и в рукавных фильтрах</u>, содержат ценные для производства компоненты, возвращаются в производство в качестве сырья, являются промежуточным продуктам и не относятся к отходам.

Предельное количество накопления отходов на период эксплуатации на 2024-2033 гг.

| Наименование отходов                           | Образование,<br>т/год | Лимит<br>накопления,<br>т/год | Передача сторонним организациям, т/год |
|------------------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| Всего                                          | 36687,44418           | 36687,44418                   | 36087,44418                            |
| в том числе отходов производства               | 36676,16488           | 36676,16488                   | 36076,16488                            |
| отходов потребления                            | 11,2793               | 11,2793                       | 11,2793                                |
| Не опасные отходы                              |                       |                               |                                        |
| Огарки сварочных электродов (17 04 05)         | 0,0036                | 0,0036                        | 0,0036                                 |
| ТБО (20 03 01)                                 | 11,25                 | 11,25                         | 11,25                                  |
| Промасленная ветошь (15 02 03)                 | 0,08128               | 0,08128                       | 0,08128                                |
| Опасные отходы                                 |                       |                               |                                        |
| Отработанные масла (13 02 08*)                 | 0,08                  | 0,08                          | 0,08                                   |
| Мышьяксодержащий кек (10 04 03*)               | 19440,0               | 19440,0                       | 19440,0                                |
| Гранулированный шлак (10 04 02*)               | 16636,0               | 16636,0                       | 16636,0                                |
| Известковый кек (10 04 07*)                    | 600,0*                | 600,0*                        |                                        |
| Отработанные ртутьсодержащие лампы (20 01 21*) | 0,0293                | 0,0293                        | 0,0293                                 |

<sup>\*</sup> отход, используемый в производстве

**Ожидаемое воздействие на растительный и животный мир**. Территория под планируемое производство застроена производственными помещениями.



Объект со всех сторон граничит с арендуемыми производственными и складскими помещениями. В связи с этим, прямое воздействие на растительность, животный мир и почвенно-плодородный слой отсутствует.

ТОО "БалхашПолиметалл" по причине расположения производственных предприятий санитарно-защитной зоны не может высаживать зеленые деревья на показатель не менее 40% площади СЗЗ. Но в соответствии с требованиями, указанными в законе, предприятие планирует высаживать около 500 штук саженцев в год вблизи близлежащих жилых комплексов, получив разрешение местного акимата Енбекшинского района.

**Шумовое воздействие**. Шумовое воздействие на стадии эксплуатации будет определяться функционированием наиболее мощных источников непостоянного шума на площадке. По данным наиболее высокий уровень звуковой мощности оборудования, применяемого на предприятии характерен для шахтной печи и процесса плавки. Все источники шума расположены на максимальном удалении от жилой застройки и не окажут отрицательного воздействия на здоровье населения.

Предприятие расположено в промышленной зоне, где сосредоточены промышленные предприятия с более значимыми шумовыми характеристиками и проведение расчетов шумового воздействия на жилую застройку не целесообразно.

## Сведения о документах, подготовленных в ходе оценки воздействия на окружающую среду:

- 1. Заключение об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействия намечаемой деятельности по объекту «Модернизация технологической линии завода по производству цветных металлов, расположенного по адресу: г. Шымкент, Енбекшинский район, ул.Капал Батыра, дом 30, индустриальная зона «Онтустик» от 10.05.2023 г. №КZ50VWF00096549;
- 2. Проект отчета о возможных воздействиях по объекту «Модернизация технологической линии завода по производству цветных металлов, расположенного по адресу: Республика Казахстан, г. Шымкент, Енбекшинский район, ул. Капал Батыра, дом 30, промзона «Онтустик»;
- 3. Протокол общественных слушаний посредством открытых собраний по отчету о возможных воздействиях по объекту от 03.11.2023 года.

# В дальнейшей разработке проектной документации необходимо учесть требования Кодекса:

- 1. Предусмотреть внедрение мероприятий согласно Приложения 4 к Экологическому Кодексу Республики Казахстан (далее–Кодекс), а также предлагаемые меры по предупреждению, исключению и снижению возможных форм неблагоприятного воздействия на окружающую среду, а также по устранению его последствий: охрана атмосферного воздуха; охрана от воздействия на подземные водные экосистемы; охрана водных объектов; обращение с отходами.
- 2. Необходимо предусмотреть согласование проектной документации с уполномоченным органом в сфере санитарно-эпидемиологического благополучия населения объектов государственного санитарно-эпидемиологического контроля и надзора в соответствии со ст. 46 Кодекса Республики Казахстан «О здоровье народа и системе здравоохранения» от 07 июля 2020 года № 360-IV, согласно которому проводится санитарно-эпидемиологическая экспертиза проектов (технико-экономических обоснований и проектно-сметной документации), предназначенных для строительства новых объектов;
- 3. В соответствии со ст. 77 Кодекса составитель отчета о возможных воздействиях, нициатор несет ответственность, предусмотренную законами Республики Казахстан, за сокрытие полученных сведений о воздействиях на окружающую среду и представление недостоверных сведений при проведении оценки воздействия на окружающую среду;



**Вывод**: Представленный отчет о возможных воздействиях по объекту «Модернизация технологической линии завода по производству цветных металлов, расположенного по адресу: Республика Казахстан, г. Шымкент, Енбекшинский район, ул. Капал Батыра, дом 30, промзона «Онтустик» допускается к реализации намечаемой деятельности при соблюдении условий, указанных в настоящем заключении.

Руководитель департамента

Е.Козыбаев

Исп.: Б.Сатенов Тел.566002



Представленный отчет о возможных воздействиях «Модернизация технологической линии завода по производству цветных металлов, расположенного по адресу: Республика Казахстан, г. Шымкент, Енбекшинский район, ул. Капал Батыра, дом 30, промзона «Онтустик» соответствует Экологическому законодательству.

- 2. Дата размещения проекта отчета 11.12.2023 года на интернет ресурсе Уполномоченного органа в области охраны окружающей среды.
- 3. Объявление о проведении общественных слушаний на официальных интернет-ресурсах уполномоченного органа опубликовано:
- 1) 25.09.2023 года на Едином экологическом портале: https://ecoportal.kz, раздел «Общественные слушания»;
- 2) 27.09.2023 года на официальном интернет-ресурсе местного исполнительного органа (областей, городов республиканского значения, столицы) или официальном интернет-ресурсе государственного органа-разработчика: ГУ «Управление развития комфортной городской среды города Шымкент». <a href="http://www.gov.kz/memleket/entities/shymkent-tabigi-resurstar">http://www.gov.kz/memleket/entities/shymkent-tabigi-resurstar</a>.
- в средствах массовой информации: газета «Айғақ» № 39 от 27.09.2023г.: Бегущая строка. Эфирная справка Телекомпания «Айғақ» №245 от 27.09.2023г.
- 3) на досках объявлений местных исполнительных органов административнотерриториальных единиц: Здание акимата Енбекшинского района, г.Шымкент, ул.Толстого, 119.

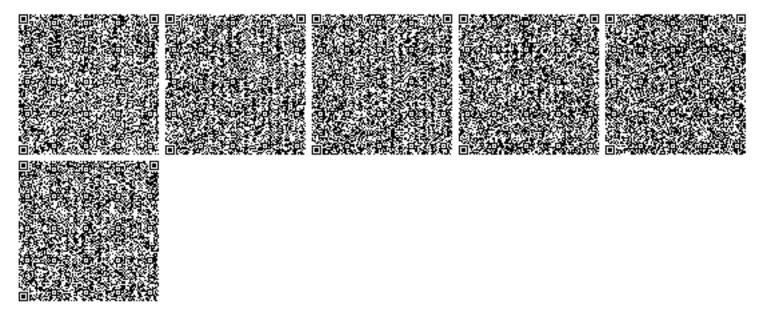
Дата размещения проекта отчета о возможных воздействиях на официальных Интернетресурсах местных исполнительных органов 04.10.2023 года.

Электронный адрес и номер телефона, по которым общественность могла получить дополнительную информацию о намечаемой деятельности, проведении общественных слушаний, а также запросить копии документов, относящихся к намечаемой деятельности — через «Управление развития комфортной городской среды города Шымкент»: а также у разработчиков и инициатора по контактам:

ТОО «БалхашПолиметалл», г. Шымкент, Енбекшинский район, ул. Капал Батыра, дом 30, промзона «Онтустик», тел: 8 (747) 732 81 44. ТОО «Tumar Construction Group», г.Шымкент, ул. Майтобе, 214, тел: 8 (776) 741 70 47, эл.почта: alau-servicek@mail.ru

Электронный адрес и почтовый адрес уполномоченного органа или его структурных подразделений, по которым общественность могла направлять в письменной или электронной форме свои замечания и предложения к проекту отчета о возможных воздействиях - г.Шымкент, ул.Калдаякова, 12A, эл.почта deshym@mail.ru.

Сведения о процессе проведения общественных слушаний: дата и адрес места их проведения, сведения о наличии видеозаписи общественных слушаний, ее продолжительность — общественные слушания проведены 3 ноября 2023 года в 16:00 часов, по адресу », г. Шымкент, Енбекшинский район, ул. Капал Батыра, дом 30, промзона «Онтустик». Присутствовали 12 человек, протокол размещен на Едином экологическом портале <a href="https://ecoportal.kz/">https://ecoportal.kz/</a>.


Все замечания и предложения общественности к проекту отчета о возможных воздействиях, в том числе полученные в ходе общественных слушаний, и выводы, полученные в результате их рассмотрения были сняты.

Также, замечания и предложения от заинтересованных государственных органов инициатором сняты.



#### Руководитель департамента

### Козыбаев Ермахан Тастанбекович



