ПРИЛОЖЕНИЕ 3

Расчеты выбросов загрязняющих веществ в атмосферу

Теоретический расчет выбросов загрязняющих веществ произведен согласно методикам, утвержденным уполномоченным государственным органом в области охраны окружающей среды Республики Казахстан.

ПЕРИОД РЕКОНСТРУКЦИИ

А.1 Расчет выбросов загрязняющих веществ при организационно-планировочных работах (ист. 7001-01)

При организационно-планировочных работах будет происходить выделение пыли неорганической с содержанием SiO₂ 70-20 %.

Максимально-разовый выброс пыли определяется [1]:

$$Q_{C} = A + B = \frac{k_{1} \times k_{2} \times k_{3} \times k_{4} \times k_{5} \times k_{7} \times G \times 10^{6} \times B}{3600} + k_{3} \times k_{4} \times k_{5} \times k_{6} \times k_{7} \times q \times F, \ \epsilon/C$$

где А – выбросы при переработке (ссыпка, перевалка, перемещение) материала, г/с;

В – выбросы при статическом хранении материала;

 k_1 – весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 – 200 мкм (таблица 1);

 k_2 – доля пыли (от всей массы пыли), переходящая в аэрозоль (таблица 1);

k₃ – коэффициент, учитывающий местные метеоусловия (таблица 2);

 k_4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3);

k₅ – коэффициент, учитывающий влажность материала (таблица 4);

 k_6 – коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение $F_{\phi a k \tau}$ / F. Значение k_6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

 k_7 – коэффициент, учитывающий крупность материала (таблица 5);

F_{факт} – фактическая поверхность материала с учетом рельефа его сечения (учитывать только площадь, на которой производятся погрузочно-разгрузочные работы);

F – поверхность пыления в плане, M^2 ;

q' – унос пыли с одного квадратного метра фактической поверхности в условиях (таблица 6);

G – суммарное количество перерабатываемого материала, т/ч;

В' – коэффициент, учитывающий высоту пересыпки (таблица 7).

Валовый выброс определяется:

$$Q_{\Gamma} = N \times Q_{C} \times 3600 \times 10^{-6}, \, m/200$$

где Q_C – максимально разовый выброс, г/с;

N – время переработки, или хранения, ч/год.

Приводим пример расчета выбросов пыли при переработке ранее устроенной обваловки из суглинка на секции № 5 (ист. 7001-01):

$$A = (0.05 \times 0.02 \times 1.2 \times 1 \times 0.01 \times 1.7 \times 0.6 \times 10^{6} \times 0.7) / 3600 = 0.003 \text{ e/c}$$

$$Q_{\Gamma} = 0.003 \times 2880 \times 3600 \times 10^{-6} = 0.031 \text{ m/sod}$$

Результаты расчета выбросов при организационно-планировочных работах представлены в таблице А.1.

Таблица А.1 – Результаты расчета выбросов пыли при организационно-планировочных работах

Наименование источника	Деятельность	k 1	k ₂	k ₃	k ₄	k ₅	k ₇	G,	B`	Выбросы пыли н содержанием	
								т/ч		г/с	т/год
1	2	3	4	5	6	7	8	9	10	11	12
	Организационно-плани	ровочн	ые раб	оты (и	іст. 7	7001-01)				
Золоотвал гидравлического складирования. Секция № 4.1	Разработка и перевозка золошлаков в чаше секции № 4.1, включая защитный слой	0,06	0,04	1,2	1	0,01	0,8	568,6	0,7	2,547	26,407
	Переработка ранее устроенной обваловки из суглинка на секции № 5	0,05	0,02	1,2	1	0,01	0,8	1,7	0,7	0,003	0,031
Работа на секции 5	Устройство защитного слоя из суглинка поверхности золоотвала толщиной 0.5 м	0,05	0,02	1,2	1	0,01	0,8	92,7	0,7	0,173	1,794
	Обваловка штабеля по периметру	0,05	0,02	1,2	1	0,01	0,8	1,4	0,4	0,001	0,010
	Итого:									0,173	1,835
Примечание: единовременное вы выброс от одной операции	полнение работ на секции осуществлять	ся не бу	дет, в	связи	с че	м в кач	еств	е макси	мальн	о-разового выбро	са принимается
	Устройство подстилающего слоя из ПГС толщиной 20 см	0,03*	0,04*	1,2	1	0,01	0,7	4,2	0,7	0,008	0,083
Работа на откосах секции 5	Изолирующий слой из уплотненного суглинка на откосах штабеля толщиной 0,50 м	0,05	0,02	1,2	1	0,01	0,8	11,8	0,7	0,022	0,228
	Укрепление откосов растительным грунтом	0,05	0,03	1,2	1	0,01	0,8	1,7	0,4	0,003	0,031
	Итого:									0,022	0,342
	К1 и К2 приняты по методике [2]; 2. Единов азового выброса принимается выброс от о				ue pa	абот на	а отк	осах сен	кции о	существляться н	е будет, в связи
Въезд 1 на штабель золошлаков	Устройство защитного слоя из ПГС	0,03*	0,04*	1,2	1	0,01	0,7	0,2	0,7	0,0003	0,003
секции № 5	Слой из суглинка	0,05	0,02	1,2	1	0,01	0,8	0,3	0,7	0,0006	0,006
	Итого:					•				0,0006	0,009
	K1 и K2 приняты по методике [2]; 2. Единов язи с чем в качестве максимально-разового										екции № 5
Въезд 2 на штабель золошлаков	Устройство защитного слоя из ПГС	0,03*	0,04*	1,2	1	0,01	0,7	0,2	0,7	0,0003	0,003
секции № 5	Слой из суглинка	0,05	0,02	1,2	1	0,01	0,8	0,3	0,7	0,0005	0,005
	Итого:		l	1	1		1	<u> </u>	1	0.0005	0.008
	К1 и К2 приняты по методике [2]; 2. Единов язи с чем в качестве максимально-разового										екции № 5
Консервация секции 4.1	Консервация слоем грунта секции 4.1 после его заполнения ЗШО	0,05	0,02	1,2	1	0,01	0,8	27,8	0,7	0,052	0,539
	Итого:									0,052	0,539
	Итого по ист. 7001-01:									2,7951	29,140

А.2 Расчет выбросов загрязняющих веществ при пересыпке строительных материалов (ист. 7001-02)

При пересыпке строительных материалов будет происходить выделение пыли неорганической с содержанием SiO₂ 70-20 %, пыли (неорганической) гипсового вяжущего из фосфогипса с цементом и оксида кальция.

Максимальный разовый выброс при погрузке и разгрузке, рассчитывается по формуле [2]:

$$Mc^{n-p} = \frac{k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G_4 \times 10^6}{3600} \times (1 - \eta), \ e/c$$

где k₁ – весовая доля пылевой фракций в материале (таблица 3.1.1);

 k_2 – доля пыли с размерами частиц 0-50мкм (от все массы пыли), переходящая в аэрозоль (таблица 3.1.1);

k₃ – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2);

 k_4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

 k_5 – коэффициент, учитывающий влажность материала (таблица 3.1.4);

 k_7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

 k_8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6);

 k_9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. k_9 =0,2 при единовременном сбросе материала весом до 10 т, k_9 =0,1 – свыше 10 т. В остальных случаях k_9 =1;

В' – коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

G_ч – производительность узла пересыпки или количество перерабатываемого материала, т/ч;

η – эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

Количество твердых частиц, выделяющихся при разгрузке и погрузке материала, рассчитывается по формуле [2]:

$$M_{\Gamma}^{n-p} = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G_{\Gamma} \times (1 - \eta), m/200$$

Приводим расчет выбросов пыли неорганической с содержанием SiO₂ 70-20 % при пересыпке земли растительной (ист. 7001-02):

$$M_C^{n-p} = 0.05 \times 0.03 \times 1.2 \times 1 \times 0.1 \times 0.8 \times 1 \times 0.2 \times 0.7 \times 1.73 \times 10^6 \times (1-0)/3600 = 0.010e/c$$

$$M_{\Gamma}^{n-p} = 0.05 \times 0.03 \times 1.2 \times 1 \times 0.1 \times 0.8 \times 1 \times 0.2 \times 0.7 \times 5042.8 \times (1-0) = 0.102 \text{ m/sod}$$

Результаты расчетов выбросов при пересыпке строительных материалов приведены в таблице А.2.

Таблица А.2 – Результаты расчета выбросов пыли при пересыпке строительных материалов

Наименование	Nº	k ₁	k ₂	k ₃	k ₄	k ₅	k ₇	k ₈	k ₉	B'		перерабатываемого этериала, G	Наименование загрязняющего	Вь	ыбросы
	ист.										т/ч	т/год	вещества	г/с	т/год
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
						Г	Терес	ыпка	стро	итель	ных материало	в (ист. 7001-02)			
Пересыпка земли растительной		0,05	0,03	1,2	1	0,1	0,8	1	0,2	0,7	1,73	5042,8		0,010	0,102
Пересыпка песка		0,05	0,03	1,2	1	0,8	0,8	1	0,2	0,7	0,12	355,6		0,005	0,057
Пересыпка ПГС	7001	0,03	0,04	1,2	1	0,1	0,7	1	0,2	0,7	4,51	13164,8	Пыль неорганическая с		0,186
Пересыпка портлацемента	-02	0,04	0,03	1,2	1	1	1	1	0,2	0,7	0,11	0,007	содержанием SiO₂ 70-20 %	0,006	0,000001
Пересыпка гипсового вяжущего марки Г-3] "-	0,08	0,04	1,2	1	1	1	1	0,2	0,7	0,02	0,002		0,003	0,000001
Пересыпка извести		0,04	0,02	1,2	1	1	0,5	1	0,2	0,7	0,10	0,005	Оксид кальция	0,002	0,0000003
Примечание: единовременная по	ересыпк	а строи	тельнь	іх мат	ериа	лов ос	ущес	гвлят	ься не	е буде	т, в связи с чем в	в качестве максимально-р	азового выброса принимается выброс от	одной о	перации
				Итог	о по	пыли	неор	ганич	еско	йссо	держанием SiO ₂	70-20 %:		0,018	0,345001
		Ито	Итого по пыли (неорганической) гипсового вяжущего из фосфогипса с цементом:			0,003	0,000001								
							Ито	ого п	о окс	иду ка	льция:			0,002	0,0000003

А.3 Расчет выбросов загрязняющих веществ при буровых работах (ист. 7001-03)

Буровые работы будут осуществляться бурильно-крановой машиной. При буровых работах будет происходить выделение пыли неорганической с содержанием SiO₂ 70-20 %.

Количество твердых частиц, выделяющихся при работе буровых станков, определяется по формуле [2]:

$$M_C = \sum \sum (V_{ij} \times q_{ij} \times k_5 / 3,6)$$
, c/c
 $M_C = \sum \sum (V_{ij} \times q_{ij} \times T_{ij} \times k_5 \times 10^{-3})$, m/cod

где типов работающих буровых станков, шт.;

і – номер типа буровых станков;

n – количество буровых станков і-типа, шт.;

і – порядковый номер станка і-типа;

V_{іі} – объемная производительность j-того бурового станка i-того типа;

 k_5 – коэффициент, учитывающий среднюю влажность выбуриваемого материала, таблица 3.1.4;

q_{іі} – удельное пылевыделение, таблица 3.4.2;

Т_{іі} – чистое время работы ј-го станка і-того типа в год.

Приводим расчет выбросов пыли неорганической с содержанием SiO₂ 70-20 % при бурении станком:

$$M_C = 8.7 \times 0.7 \times 0.01 / 3.6 = 0.017 \text{ e/c}$$

 $M_\Gamma = \sum (8.7 \times 0.7 \times 94.2 \times 0.01 \times 10^{-3}) = 0.006 \text{ m/sod}$

Исходные данные и результаты расчетов выбросов пыли неорганической SiO₂ 70-20 % при буровых работах приведены в таблице A.3.

Таблица А.3 – Результаты расчетов выбросов пыли при буровых работах

№ ист.	Наименование источника выделение	Вид работы	V, м³/ч	q, кг/м³	k 5	Т, ч/год	Выброс неоргани SiO₂ 70	ической
	выделение						г/с	т/год
1	2	3	4	5	6	7	8	9
7001	Машина бурильно- крановая	Буровые работы	8,7	0,7	0,01	94,2	0,017	0,006

А.4 Расчет выбросов вредных веществ при сварочных работах (ист. 7001-04)

Монтаж металлических изделий будет производиться сварочными аппаратами. При проведении сварочных работ будет происходить выделение оксида железа, марганца и его соединений, диоксида азота, оксида углерода, фтористых газообразных соединений, фторидов неорганических плохо растворимых и пыли неорганической SiO₂ 70-20 %.

Валовое количество загрязняющих веществ выбрасываемых в атмосферу в процессе сварки определяют по формуле [3]:

$$M_{\Gamma} = B_{\Gamma} \times K^{\times}_{m} \times 10^{-6} \times (1 - \eta), m/\text{sod}$$

где B_{Γ} – расход применяемого сырья и материалов, кг/год;

К^х_m – удельный показатель выброса загрязняющего вещества «х» на единицу массы расходуемых материалов, г/кг [3];

η – степень очистки воздуха в соответствующем аппарате.

Максимально разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессах сварки, определяют по формуле [3]:

$$M_C = \frac{K^{\times}_m \times B_{\mathcal{Y}}}{3600} \times (1 - \eta), \, s/c$$

где B_ч – фактический максимальный расход применяемых сырья и материалов, с учетом дискретности работы оборудования, кг/ч.

Приводим пример расчета выбросов оксида железа при использовании электродов марки Э-42 (аналог АНО-6) (ист. 7001-04):

$$M_{\Gamma} = 1200.0 \times 14.97 \times 10^{-6} \times (1 - 0) = 0.018 \text{ m/sod}$$

 $M_{C} = 14.97 \times 0.41 / 3600 \times (1 - 0) = 0.002 \text{ s/c}$

Удельные выделения и результаты расчетов выбросов, образующихся при сварочных работах приведены в таблице А.4.

Таблица А.4 – Удельные выделения и результаты расчета выбросов при сварочных работах

	таолица А.4 — Уде			'	•			загрязняющих вец	цеств	
№ ист.	Используемый материал	Расход электродов, <u>кг/ч</u> кг/год	Ед. изм.	Железо (II) оксид (0123)	Марганец и его соединения (0143)	Азота диоксид (0301)	Оксид углерода (0337)	Фтористые газообразные соединения (0342)	Фториды неорганические плохо растворимые (0344)	Пыль неорганическая SiO ₂ 70-20 % (2908)
1	2	3	4	5	6	7	8	9	10	11
				•	УДЕЛЬНЫІ	Е ВЫДЕЛЕН	ия	1	1	
Электр	ооды Э-42 (аналог АНО-6)		14,97	1,73	-	-	-	-	-
Электр	ооды Э-42А (аналог УОНЫ	1 13/45)		10,69	0,92	1,5	13,3	0,75	3,3	1,4
Электр	ооды Э-46 (аналог МР-3)			9,77	1,73	-	-	0,4	-	-
сварки	пока сварочная легирова ı (наплавки) с неомеднені кностью		г/кг	7,67	1,9	-	-	-	-	0,43
Ацетил	тен технический газообра	зный	1	-	-	22	-	-	-	-
	•		•		ВЫБРОСЫ	В АТМОСФІ	РУ			
	Электроды Э-42	0,41	г/с	0,002	0,0002	-	-	-	-	-
	(аналог АНО-6)	1200,0	т/год	0,018	0,002	-	-	-	-	-
	Электроды Э-42А	0,13	г/с	0,0004	0,00003	0,00005	0,0005	0,00003	0,0001	0,00005
	(аналог УОНИ 13/45)	4,00	т/год	0,00004	0,000004	0,000006	0,00005	0,000003	0,00001	0,000006
	Электроды Э-46	0,50	г/с	0,001	0,0002	-	-	0,00006	-	-
	(аналог МР-3)	60,0	т/год	0,001	0,0001	-	-	0,00002	-	-
7001- 04	Проволока сварочная легированная для сварки (наплавки) с	0,12	г/с	0,0003	0,00006	-	-	-	-	0,00001
	неомедненной поверхностью	341,0	т/год	0,003	0,0006	-	-	-	-	0,0001
	Ацетилен	0,12	г/с	-	-	0,0007	-	-	-	-
	технический газообразный	26,16	т/год	-	-	0,0006	-	-	-	-
•	е чание: единовременное варочного материала.	применение сва	арочных	материалов	в не предусматри	вается, в св		ачестве максимальн	о-разового принимает	ся выброс от одного
	Итого по ист. 7001-	.04+	г/с	0,002	0,0002	0,0007	0,0005	0,00006	0,0001	0,00005

 I I								
Итого по ист. 7001-04:	г/с	0,002	0,0002	0,0007	0,0005	0,00006	0,0001	0,00005
Итого по ист. 7001-04:	т/год	0,02204	0,002704	0,000606	0,00005	0,000023	0,00001	0,000106

А.5 Расчеты выбросов загрязняющих веществ атмосферу при газовой резке (ист. 7001-05)

При проведении газорезочных работ будет происходить выделение оксида железа, марганца и его соединений, диоксида азота и оксида углерода.

Валовой выброс на длину реза определяется по формуле [3]:

$$M_{\Gamma} = K^{\times}_{\delta} \times L_{\Gamma} \times 10^{-6} \times (1 - \eta), m/200$$

где K_{δ}^{x} – удельный показатель выброса загрязняющих веществ «х», на длину реза, при толщине разрезаемого металла δ , г/м;

 L_{Γ} – длина реза, м/год;

 η – степень очистки воздуха газоочистным оборудованием (в долях единицы), η = 0.

Максимально разовый выброс на длину реза определяется [3]:

$$M_C = \frac{K^{\times}_{\delta} \times L_{\mathcal{A}}}{3600} \times (1 - \eta), \, \varepsilon/c$$

где L_ч – длина реза, м/ч.

Приводим пример расчета выбросов марганца и его соединений при газовой резке углеродистой стали (ист. 7001-05). Расход пропан-бутана составит 6 кг и равно 24 м разрезаемой стали в год.

$$M_{\Gamma} = 0.06 \times 24 \times 10^{-6} \times (1 - 0) = 0.000001 \text{ m/sod}$$

 $M_{C} = 0.06 \times 0.15 / 3600 \times (1 - 0) = 0.000003 \text{ e/c}$

Удельные выделения, образующиеся при газовой резке металлов, и результаты расчетов приведены в таблице А.5.

Таблица А.5 – Результаты расчетов выбросов при газовой резке металлов

		используемого пропана, метаппарата кг/год				Выделяемые	вредности	
№ ист.	используемого	пропана,	резки металла, <u>м/ч</u> м/год	Единица измерения	Железо (II) оксид (0123)	Марганец и его соединения (0143)	Диоксид азота (0301)	Оксид углерода (0337)
1	2	3	4	5	6	7	8	9
			УДЕЛ	ІЬНЫЕ ВЫДЕЛ	ЕНИЯ			
Пропан	ı-бутан			г/м	4,44	0,06	2,2	2,18
			ВЫБР	ОСЫ В АТМОС	ФЕРУ			
7001-	Газовая резка	6	0,15	г/с	0,0002	0,000003	0,0001	0,0001
05	' 6		24	т/год	0,0001	0,000001	0,0001	0,0001

А.6 Расчет выбросов при подготовке битума (ист. 7001-06)

Гидроизоляция будет производиться горячим битумом. Твердый битум будет приобретаться в специализированных строительных организациях и растапливаться в электрокотлах. Общий расход битума составит 7,2314 т. При нагреве битума будет происходить выделение углеводородов предельных C₁₂-C₁₉.

Максимально разовый выброс углеводородов предельных C₁₂-C₁₉ определяется по формуле [4]:

$$M_c = \frac{0.445 \times P_t \times m \times Kp^{max} \times K_B \times V_Y^{max}}{10^2 \times (273 + t_x^{max})}, \ e/c$$

где P_t – давление насыщенных паров битума;

m – молекулярная масса битума, m = 187;

 Kp^{max} – опытный коэффициент (приложение 8 [4]), Kp^{max} = 1;

 K_B – опытный коэффициент (приложение 9 [4]), K_B = 1;

Vч^{max} – максимальный объем паровоздушной смеси, вытесняемой из котла при разогреве, м³/ч;

 $t_{\rm w}^{\rm max}$ – максимальная температура жидкости, ${}^{\rm o}$ C, $t_{\rm w}^{\rm max}$ = 180 ${}^{\rm o}$ C.

Валовый выброс загрязняющего вещества при разогреве битума определяется по формуле [4]:

$$M_{\Gamma} = \frac{0.16 \times (P_t^{max} \times K_B + P_t^{min}) \times m \times K_p^{cp} \times K_{O5} \times B}{10^4 \times \rho_{\mathcal{H}} \times (546 + t_{\mathcal{H}}^{max} + t_{\mathcal{H}}^{min})}, m/200$$

где P_t^{max} и P_t^{min} – давление насыщенных паров при минимальной и максимальной температуре битума, мм.рт.ст. (таблица П1.1 [5]);

 K_p^{cp} – опытный коэффициент (приложение 8 [4]), $Kp^{cp} = 0.7$;

 K_{OB} – коэффициент оборачиваемости (приложение 10 [4]), K_{OB} = 2,5;

В – годовое количество битума, т, В = 7,2314 т.

 $\rho_{\rm w}$ – плотность битума, т/м³, ρ = 0,95 т/м³.

Приводим пример расчета выбросов углеводородов предельных C_{12} - C_{19} при разогреве битума в котлах 400 л:

$$M_c = \frac{0.445 \times 70.91 \times 187 \times 1 \times 1 \times 5.5}{10^2 \times (273 + 180)} = 0.716 \text{ e/c}$$

$$M_{\Gamma} = \frac{0.16 \times (70.91 \times 1 + 4.26) \times 187 \times 0.7 \times 2.5 \times 0.488}{10^4 \times 0.95 \times (546 + 180 + 100)} = 0.0002 \text{ m/sod}$$

Результаты расчетов приведены в таблице А.6

.

Таблица А.6 – Результаты расчетов выбросов при битумных работах

№ ист.	Источник выделения вредных	Молекулярная масса битума,		Опытнь ффици		ı	насыц пар	іение ценных оов, от.ст.	Температура жидкости,⁰С		Расход битума		Выбро углеводо предель С₁₂-С	родов ыных
	веществ	m	K _p cp.	K _p ^{max}	K _B	Коб	Pt ^{min}	Pt ^{max}	t _ж min	t _ж max	V _ч ^{max} , м ³ /ч	В, т/год	г/с	т/год
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
7004	Разогрев битума в котлах 400 л	187	0,70	1	1	2,5	4,26	70,910	100	180	5,5	0,488	0,716	0,0002
7001	Разогрев битума в котлах 1000 л	187	0,70	1	1	2,5	4,26	70,910	100	180	5,5	6,743	0,716	0,003
Прим	ечание: единовр	ременная работа	оборуд	ования	не п	редус	матрив	ается.		•				
Итого:										0,716	0,0032			

A.7 Расчет выбросов загрязняющих веществ при покрасочных работах (ист. 7001-07)

При покрасочных работах будет происходить выделение ацетона, спирта спирта н-бутилового, спирта изобутилового, бутилацетата, этилового, этилцеллозольва, ксилола, толуола, уайт-спирита и керосина. Также в процессе покрасочных работ будет осуществляться применение водоэмульсионных красок. Выбросов загрязняющих веществ не предусматривается, в связи с водной основой данных красок.

Валовой выброс нелетучей (сухой) части аэрозоля краски, выделяющегося при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле [6]:

$$M^a_{H.OKP} = m_{\phi} \times \delta_a \times (100 - f_p) \times 10^{-4} \times (1 - \eta), m/200$$

m_ф – фактический годовой расход материала (т); где

 δ_a – доля краски, потерянной в виде аэрозоля (%, мас.), таблица 3;

f_p – доля летучей части (растворителя) в краске, (%, мас.), таблица 2;

η – степень очистки воздуха газоочистным оборудованием (в долях единицы).

Максимальный разовый выброс нелетучей (сухой) части аэрозоля краски, образующейся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле [6]:

$$M^{a}_{H.OKP} = \frac{m_{M} \times \delta_{a} \times (100 - f_{p})}{10^{4} \times 3.6} \times (1 - \eta), \ ext{e}/c$$

 $M^{a}_{H.OKp} = \frac{m_{M} \times \delta_{a} \times (100 - f_{p})}{10^{4} \times 3,6} \times (1 - \eta), \ z/c$ $m_{M} -$ фактический часовой расход ЛКМ, с учетом дискретности работы оборудования, где кг/ч. При отсутствии этих данных допускается использовать максимальную паспортную производительность.

Валовой выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам [6]:

а) при окраске:

$$M_{H.OKP}^{x} = m_{\phi} \times f_{p} \times \delta_{p}^{x} \times \delta_{x} \times 10^{-6} \times (1 - \eta), m/200$$

т_ф – фактический годовой расход ЛКМ (т); где

f_p – доля летучей части (растворителя) в ЛКМ, (%, мас.), таблица 2;

 δ'_{p} – доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, мас.);

 δ_{x} – содержание компонента «х» в летучей части ЛКМ, (%, мас.).

б) при сушке:

$$M^{x}_{cyu} = m_{\phi} \times f_{p} \times \delta^{``p} \times \delta_{x} \times 10^{-6} \times (1 - \eta), m/200$$

 δ''_{p} – доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, мас.). где

Общий валовой или максимальный выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле:

$$M_{\text{H.OKD}} = M_{\text{OKD}} + M_{\text{CAM}}$$
, s/c, m/sog

Максимальный разовый выброс индивидуальных летучих компонентов эмали рассчитывается по формулам [6]:

а) при окраске:

$$M^{\times}_{OKP} = \frac{m_{M} \times f_{p} \times \delta^{\hat{}}_{p} \times \delta_{x}}{10^{6} \times 3.6} \times (1 - \eta), \ e/c$$

тм – фактический максимальный часовой расход ЛКМ, с учетом дискретности работы где оборудования, кг/ч. При отсутствии этих данных допускается использовать максимальную паспортную производительность.

б) при сушке:

$$M^{x}_{cyw} = \frac{m_{M} \times f_{p} \times \delta^{``p} \times \delta_{x}}{10^{6} \times 3.6} \times (1 - \eta), \ \epsilon/c$$

где m_м – фактический максимальный часовой расход ЛКМ, с учетом времени сушки, кг/ч. Время сушки берется согласно технологических или справочных данных на данный вид лакокрасочных материалов.

В качестве примера приводим расчет выбросов ксилола при применении грунтовки ГФ-021 (ист. 7001-07):

- выброс в процессе покраски:

$$M^{\times}_{OKD} = 0.14 \times 100 \times 45 \times 28 \times 10^{-6} \times (1-0) = 0.018 \text{ m/sod}$$

- выброс в процессе сушки:

$$M^{x}_{cyu} = 0.14 \times 100 \times 45 \times 72 \times 10^{-6} \times (1 - 0) = 0.045 \text{ m/sod}$$

Общий валовый выброс

$$M^{x}_{H.OKD} = 0.018 + 0.045 = 0.063 \text{ m/sod}$$

- максимально-разовый выброс в процессе покраски:

$$M^{\times}_{OKP} = \frac{0.05 \times 100 \times 45 \times 28}{10^{6} \times 3.6} \times (1 - 0) = 0.002 \text{ e/c}$$

- максимально-разовый выброс в процессе сушки:

$$M^{x}_{cyw} = \frac{0.05 \times 100 \times 45 \times 72}{10^{6} \times 3.6} \times (1-0) = 0.005 \text{ e/c}$$

Общий максимально-разовый выброс

$$M^{x}_{H.OKP} = 0,002 + 0,005 = 0,007 \text{ s/c}$$

Удельные выделения, образующиеся при покрасочных работах и результаты расчетов приведены в таблице А.7.

Таблица А.7 – Удельные выделение и результаты расчетов выбросов загрязняющих веществ при покрасочных работах

	у – удельные выделение и		ľ		Пощих	вощоств		РОСЫ	х расст	<u>u</u> n
Наименование	Содержание компонента в летучей части бх, %	Доля летучей части (раств.) fp, % мас	Расход.	JIKIVI	нан	есение	cy	/шка	В	сего
вещества	летучей части ох, %	ip, 78 Mac	т/год	кг/ч	г/с	т/год	г/с	т/год	г/с	т/год
1	2	3	4	5	6	7	8	9	10	11
		Покрасочные ра								
		Керосин для технических цел	іей марок К		-2	1	1		r	1
Керосин	100	100	0,07	0,06	0,005	0,020	0,012	0,050	0,017	0,070
		Ксилол нефтяной	марки А			T				T
Ксилол	100	100	0,03	0,03	0,002	0,008	0,006	0,022	0,008	0,030
		Грунтовка глифтале	вая ГФ-021	1	1	T	T		T	T
Ксилол	100	45	0,14	0,05	0,002	0,018	0,005	0,045	0,007	0,063
	·	Спирт этиловый ректификов	анный техн	ически	ій				•	
Спирт этиловый	100	100	0,000005	0,03	0,002	0,000001	0,006	0,000004	0,008	0,000005
		Грунтовка битумная (а	налог БТ-9	9)						
Ксилол	96	56	0,17	0,06	0,003	0,026	0,006	0,066	0,009	0,092
Уайт-спирит	4	30	0,17	0,00	0,0001	0,001	0,0003	0,003	0,0004	0,004
Итого:							0,0063	0,069	0,0094	0,096
		Уайт-спири	T							
Уайт-спирит	100	100	0,12	0,04	0,003	0,034	0,008	0,086	0,011	0,120
	Pac	творитель для лакокрасочных	материало	в (анал	юг Р-4)					
Ацетон	26				0,0004	0,0004	0,001	0,001	0,0014	0,0014
Бутилацетат	12	100	0,006	0,02	0,0002	0,0002	0,0005	0,001	0,0007	0,0012
Толуол	62				0,001	0,001	0,002	0,003	0,003	0,004
Итого:					0,0016	0,0016	0,0035	0,005	0,0051	0,0066
		Краска огнезащитная X-FLAN	ИЕ (аналог	ЭП-140)					
Ацетон	33,7				0,001	0,00002	0,001	0,00004	0,002	0,00006
Ксилол	32,78	53,5	0,0003	0,04	0,001	0,00001	0,001	0,00004	0,002	0,00005
Толуол	4,86	55,5	0,0003	0,04	0,0001	0,000002	0,0002	0,00001	0,0003	0,000012
Этилцеллозольв	28,66				0,0005	0,00001	0,001	0,00003	0,0015	0,00004
Итого:					0,0026	0,000042	0,0032	0,00012	0,0058	0,000162
Г	рунтовка водно-дисперсионная а	криловая глубокого проникнов	ения для в	нутрен	них и нар	ужных рабо	от (анало	г АК-113)		
Бутилацетат	50,1	02	0.00040	0,02	0,001	0,0001	0,002	0,0002	0,003	0,0003
Спирт н-бутиловый	19,98	93	0,00049	0,02	0,0003	0,00003	0,001	0,0001	0,0013	0,00013

Окончание таблицы А.7 – Удельные выделение и результаты расчетов выбросов загрязняющих веществ при покрасочных работах

1	2	3	4	5	6	7	8	9	10	11
Спирт этиловый	9,94	93	0,00049	0,02	0,0001	0,00001	0,0004	0,00003	0,0005	0,00004
Толуол	19,98	93	0,00049	0,02	0,0003	0,00003	0,001	0,0001	0,0013	0,00013
Итого:					0,0017	0,00017	0,0044	0,00043	0,0061	0,00060
		Лак электроизоляционны	ій 318 (аналог	МЛ-92)						
Спирт н-бутиловый	10				0,0002	0,00001	0,0005	0,00003	0,0007	0,00004
Ксилол	40	47,5	0,001	0,05	0,001	0,0001	0,002	0,0001	0,003	0,0002
Уайт-спирит	40	77,5	0,001	0,03	0,001	0,0001	0,002	0,0001	0,003	0,0002
Спирт изобутиловый	10				0,0002	0,00001	0,0005	0,00003	0,0007	0,00004
Итого:					0,0024	0,00022	0,005	0,00026	0,0074	0,00048
<u> </u>		аль ПФ-115, краска масляна	я <mark>МА-015 (а</mark> на	лог П⊄						1
Ксилол	50	45	1,041	0.36	0,006	0,066	0,016	0,169	0,022	0,235
Уайт-спирит	50		1,011	0,00	0,006	0,066	0,016	0,169	0,022	0,235
Итого:					0,012	0,132	0,032	0,338	0,044	0,470
		ска перхлорвиниловая фаса	<u>дная ХВ-161 (</u>	аналог						T
Ацетон	13,33				0,0002	0,0001	0,001	0,0004	0,0012	0,0005
Бутилацетат	30	78,5	0,005	0,03	0,0005	0,0003	0,001	0,0008	0,0015	0,0011
Толуол	22,22	70,0	0,000	0,00	0,0004	0,0002	0,001	0,0006	0,0014	0,0008
Ксилол	34,45				0,0006	0,0004	0,002	0,0010	0,0026	0,0014
Итого:					0,0017	0,0010	0,005	0,0028	0,0067	0,0038
		битумный БТ-123 (аналог Б	<u>Г-577), краска</u>	серебр						1
Ксилол	57,4	63	0,0253	0,04	0,001	0,003	0,003	0,007	0,004	0,010
Уайт-спирит	42,6		0,0200	0,0 .	0,001	0,002	0,002	0,005	0,003	0,007
Итого:					0,002	0,005	0,005	0,012	0,007	0,017
-		Итого по покрасоч	ным работам	1:						T
Ацетон					0,001	0,00052	0,001	0,00144	0,002	0,00196
Спирт этиловый					0,002	0,000011	0,006	0,000034	0,008	0,000045
Спирт н-бутиловый					0,0003	0,00004	0,001	0,00013	0,0013	0,00017
Спирт изобутиловый					0,0002	0,00001	0,0005	0,00003	0,0007	0,00004
Бутилацетат			4 600005		0,001	0,0006	0,002	0,002	0,003	0,0026
Этилцеллозольв			1,609095	-	0,0005	0,00001	0,001	0,00003	0,0015	0,00004
Ксилол					0,0060	0,12111	0,016	0,31014	0,022	0,43125
Толуол					0,001	0,001232	0,002	0,00371	0,003	0,004942
Уайт-спирит					0,006	0,1031	0,016	0,2631	0,022	0,3662
Керосин					0,005	0,020	0,012	0,050	0,017	0,070
Примечание: по технологии	производства работ единовр	еменное применение ЛКМ не	е предусматри	вается.	следова	тельно. в ка	честве м	аксимально	-разового	выбросов

Примечание: по технологии производства работ единовременное применение ЛКМ не предусматривается, следовательно, в качестве максимально-разового выбросов принимается наибольшее значение от одного вида ЛКМ

А.8 Расчет выбросов при проведении паяльных работ (ист. 7001-08)

В процессе свинцово-паяльных работ будет происходить выделение свинца и его соединений, оксида олова и окиси сурьмы.

Расчет валовых выбросов производится по формуле [7]:

$$M_{\Gamma} = q \times m \times 10^{-6}, m/200$$

где q – удельные выделения загрязняющего вещества, г/кг (таблица 4.8 [7]);

т – масса израсходованного припоя за год, кг.

Максимально-разовый выброс определяется по формуле [7]:

$$M_C = (M_\Gamma \times 10^6) / (t \times 3600), e/c$$

где t – время «чистой» пайки в год, ч/год.

Приводим пример расчета выбросов свинца и его неорганических соединений при пайке бессурьмянистым свиноцовооловянным припоем (ист. 7001):

$$M_{\Gamma} = 0.51 \times 20.3 \times 10^{-6} = 0.00001 \text{ m/sod}$$
 $M_{C} = 0.00001 \times 10^{6} = 0.0001 \text{ e/c}$

Результаты расчетов выбросов представлены в таблице А.8.

Таблица А.8 – Результаты расчетов выбросов при пайке

		Удельный	выброс,	Γ/C×M ²	Масса	Время	Выделяемое	Выбросы вредных веществ		
№ ист.	Наименование источника	свинец и его соединения (0184)	олова оксид (0168)	окись сурьмы (0190)	израсходованного припоя за год, кг	«чистой» пайки в год, ч/год	загрязняющее вещество	г/с	т/год	
1	2	3	4	5	6	7	8	9	10	
	Пайка оловянно-	0,51	0,28	-	20,3	30	Свинец и его соединения (0184)	0,0001	0,00001	
	бессурьмянистым припоем						Оксид олова (0168)	0,0001	0,00001	
7001-08	7001-08 Пайка оловянно- свинцовым						Свинец и его соединения (0184)	0,00001	0,00000002	
	сурьмянистым	0,51	0,28	0,016	0,04	1	Оксид олова (0168)	0,000003	0,00000001	
	припоем						Окись сурьмы (0190)	0,0000003	0,00000001	
							Свинец и его соединения (0184)	0,00011	0,00001002	
			Итого:) <i>:</i>			Оксид олова (0168)	0,000103	0,00001001	
							Окись сурьмы (0190)	0,0000003	0,000000001	

А.9 Расчет выбросов вредных веществ от двигателей внутреннего сгорания автомобильной техники (ист. 7001-09)

Для монтажных работ, перевозки грузов и прочих работ будет использована автомобильная техника. В процессе работы ДВС автотехники будет происходить выделение окислов азота, диоксида серы, углерода, оксида углерода, паров бензина и паров керосина.

Выбросы оксида углерода, окислов азота, диоксида серы, керосина, бензина и сажи одним автомобилем k-й группы в день при выезде с территории или помещения стоянки M_{1ik} и въезде M_{2ik} рассчитываются по формулам [7]:

$$M_{1ik} = m_{npik} \times t_{np} + m_{Lik} \times L_1 + m_{xxik} \times t_{xx1}$$
, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$, $R_{2ik} = m_{Lik} \times L_2 + m_{xxik} \times t_{xx2}$

m_{Lik} — пробеговый выброс i-го вещества, автомобилем k-й группы при движении со скоростью 10-20 км/час, г/км;

 m_{xxik} — удельный выброс i-го вещества при работе двигателя автомобиля k-й группы на холостом ходу, г/мин;

 t_{np} – время прогрева двигателя, мин;

 L_1 , L_2 – пробег автомобиля по территории стоянки, км:

 t_{xx1} , t_{xx2} – время работы двигателя на холостом ходу при выезде с территории стоянки и возврате на нее (мин).

Значения удельных выбросов загрязняющих веществ m_{прік}, m_{Lik}, и m_{ххік} для различных типов автомобилей представлены в табл. 3.1 ÷ 3.18 [7].

Пример расчета выброса СО от легкового автомобиля, объемом двигателя 1,8-3,5 л (ист. 7001-09):

Теплый период (Т)

$$M_{lik} = 5.0 \times 3 + 17.0 \times 0.08 + 4.5 \times 1.0 = 20.86 \text{ a}$$

 $M_{2ik} = 17.0 \times 0.08 + 4.5 \times 1.0 = 5.86 \text{ a}$

Холодный период (Х)

$$M_{lik}$$
= 6,2 × 15 + 21,3 × 0,08 + 4,5 × 1,0 = 99,2 ϵ
 M_{2ik} = 21,3 × 0,08 + 4,5 × 1,0 = 6,2 ϵ

Таблица А.9 – Время прогрева двигателя t_{пр} в зависимости от температуры воздуха (открытые и закрытые не отапливаемые стоянки)

			Время	прогрева t _і	ъ, МИН.		
Категория автомобиля	выше 5 °C	ниже 5 ºC до -5 ºC	ниже -5 °C до -10 °C	ниже -10 ºC до -15 ºC	ниже -15 ºC до -20 ºC	ниже -20 ºC до -25 ºC	ниже -25 ⁰ С
1	2	3	4	5	6	7	8
Легковые автомобили	3	4	10	15	15	20	20
Грузовые автомобили	4	6	12	20	25	30	30

Пробег автомобиля k-ой группы по территории или помещению стоянки в день определяется путем замера пути (L_1), проходимого автомобилем от центра площадки, выделенной для стоянки данной группы автомобилей, до выездных ворот (при выезде) и от выездных ворот до центра стоянки (L_2) при въезде.

Валовой выброс і-го вещества автомобилями рассчитывается раздельно для каждого периода года по формуле [7]:

$$M_j^i = \sum \alpha_B \times (M_{1ik} + M_{2ik}) \times N_k \times D_P \times 10^{-6}, \, m/200$$

где $\alpha_{\rm B}$ – коэффициент выпуска (выезда);

 N_K – количество автомобилей k-й группы на территории или в помещении стоянки за расчетный период;

 D_P – количество дней работы в расчетном периоде (холодном, теплом, переходном);

j – период года (T – теплый, П – переходный, X – холодный); для холодного периода расчет M_i выполняется для каждого месяца.

$$\alpha_B = \frac{N_{KB}}{N_K}$$

где $N_{\mbox{\tiny KB}}$ — среднее за расчетный период количество автомобилей k-й группы, выезжающих в течение суток со стоянки.

Для определения общего валового выброса M_i валовые выбросы одноименных веществ по периодам года суммируются:

$$M_i = M_i^T + M_i^T + M_i^X$$
, m/20 ∂

Максимально разовый выброс i-го вещества G_i определяется по формуле:

$$G_i = \frac{\sum (m_{npik} \times t_{np} + m_{Lik} \times L_1 + m_{xxik} \times t_{xx1}) \times N_k^*}{3600}, \ s/c$$

Максимально разовый выброс рассчитывается для месяца с наиболее низкой среднемесячной температурой.

Пример расчета выброса СО от легкового автомобиля, объемом двигателя 1,8-3,5 л (ист. 7001-09):

$$M_m = 0.5 \times (20.86 + 5.86) \times 2 \times 215 \times 10^{-6} = 0.0057 \text{ m/sod}$$

 $M_x = 0.5 \times (99.2 + 6.2) \times 2 \times 150 \times 10^{-6} = 0.0158 \text{ m/sod}$
 $M_i = 0.0057 + 0.0158 = 0.022 \text{ m/sod}$
 $G_i = (6.2 \times 15 + 21.3 \times 0.08 + 4.5 \times 1.0) \times 1 / 3600 = 0.028 \text{ e/c}$

Исходные данные для расчета выбросов вредных веществ от ДВС автотранспорта представлены в таблице A.10.

Результаты расчета выбросов вредных веществ от ДВС автотранспорта представлены в таблице A.11.

Таблица А.10 – Исходные данные и результаты расчета выброса загрязняющих веществ от автотранспорта

Таолица А. То		обег		емя	Время			I-BO	Макс.				_	выброс	
Тип подвижного состава	автомоб	илей по тории	ама	огрев ашин, мин	работы на хол. ходу,	кол- дней, во, <u>Dp, шт</u>		кол- во за 1	При- месь:	_	рев, г/мин		іжение, _{ік} г/км,	хол. ход,	
Состава	(выезд), L₁ км	(въезд), L₂ км	Т	X	txx ₁ = =txx ₂ мин	Nкв, шт.	Т	X	час, N ⁱ _k шт.	Mecs.	Т	x	Т	X	т/мин
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				L	ДВС автог	пехники	(ucm.	7001-	-09)						
Легковые										NOx	0,05	0,05	0,4	0,4	0,05
автомобили,	0.00	0.00	2	4.5	_	_	04.5	450	_	SO ₂	0,013	0,014	0,07	0,09	0,012
объемом двигателя	0,08	0,08	3	15	1	2	215	150	1	CO	5	6,2	17	21,3	4,5
1,8-3,5 л										бензин	0,65	0,8	1,7	2,5	0,4
Envisoru is										NOx	0,5	0,5	2,6	2,6	0,5
Грузовые автомобили,										углерод	0,02	0,02	0,2	0,3	0,02
грузоподъемность	0,05	0,05	3	25	1	4	215	150	1	SO ₂	0,072	0,077	0,39	0,49	0,072
ю 2-5 т										CO	1,9	2,5	3,5	4,3	1,5
										керосин	0,3	0,4	0,7	0,8	0,25
Грузовые										NOx	0,6	0,8	3,5	3,5	0,6
автомобили,			_			_			_	углерод	0,03	0,12	0,25	0,35	0,03
грузоподъемность	0,05	0,05	3	25	1	6	215	150	1	SO ₂	0,09	0,108	0,45	0,56	0,09
ю 5-8 т										CO	2,8	4,4	5,1	6,2	2,8
										керосин	0,38	0,8	0,9	1,1	0,35

Таблица А.11 – Результаты расчета выбросов вредных веществ от ДВС автотранспорта

Выброс одной		лытаты расче	<u>-</u>			рязняющих вещес			
машины, г	Период	Окислы азота	Диоксид азота	Оксид азота	Углерод	Диоксид серы	Оксид углерода	Бензин	Керосин
1	2	3	4	5	6	7	8	9	10
				ВС автотехник	·				
			Легковые а	втомобили, объ	емом двигателя	1,8-3,5 л			
Выезд	T	0,23	-	-	-	0,06	20,86	2,49	-
Бысод	X	0,83	-	-	-	0,23	99,2	12,6	-
Возврат	T	0,08	-	-	-	0,018	5,86	0,54	-
Бозврат	X	0,08	-	-	-	0,019	6,2	0,6	-
Выброс вредных	s/c	0,0002	0,0002	0,00003	-	0,00006	0,028	0,004	-
веществ	т/год	0,0002	0,0002	0,00003	-	0,00005	0,022	0,003	-
			Грузовые	автомобили, гру	зоподъемность	ю 2-5 m			
D	Т	2,13	-	-	0,09	0,31	7,38	-	1,19
Выезд	X	13,13	-	-	0,54	2,02	64,22	-	10,29
Pagnar	Т	0,63	-	-	0,03	0,092	1,68	-	0,29
Возврат	X	0,63	-	-	0,04	0,097	1,72	-	0,29
Выброс вредных	s/c	0,004	0,003	0,0005	0,0002	0,0006	0,018	-	0,003
веществ	т/год	0,005	0,004	0,0007	0,0002	0,00081	0,024	-	0,004
			Грузовые	автомобили, гру	<i>зоподъемность</i>	ю 5-8 m			
D:	Т	2,58	-	-	0,13	0,38	11,46	-	1,54
Выезд	Х	15,78	-	-	3,05	2,82	113,11	-	20,41
5	Т	0,78	-	-	0,04	0,11	3,06	-	0,4
Возврат	Х	0,78	-	-	0,05	0,12	3,11	-	0,41
Выброс вредных	e/c	0,004	0,003	0,0005	0,001	0,001	0,031	-	0,006
веществ	т/год	0,01	0,008	0,001	0,001	0,001	0,041	-	0,007
Примечание: едино	временный в	ъезд-выезд осущ	ествляет один в	ид автотехник	u				
Итого по ист.	s/c	-	0,003	0,0005	0,001	0,001	0,031	0,004	0,006
7001-09:	т/год	-	0,0122	0,00173	0,0012	0,00186	0,087	0,003	0,011

А.10 Расчет выбросов вредных веществ при въезде-выезде спецтехники (ист. 7001-10)

Для монтажных работ, перевозки грузов и прочих работ будет использована спецтехника. В процессе работы ДВС спецтехники будет происходить выделение окислов азота, диоксида серы, углерода, оксида углерода, паров керосина.

Выброс загрязняющих веществ при выезде с площадки (M_1) и возврате (M_2) одной машины в день рассчитывается по формулам [5]:

$$M_1 = M_{PU} \times T_{PU} + M_{pr} + M_L \times T_{v1} + V_{xx} \times T_x$$
, z
 $M_2 = M_L \times T_{v2} + V_{xx} \times T_x$, z

где М_{ри} – удельный выброс вещества пусковым двигателем, г/мин. (таблица 4.1);

T_{ри} – время работы пускового двигателя, мин. (таблица 4.3);

 M_{pr} – удельный выброс вещества при прогреве двигателя автомобиля, г/мин. (таблица 4.5):

T_{pr} – время прогрева двигателя, мин. (таблица A.12);

 M_{xx} — удельный выброс вещества при работе двигателя на холостом ходу, г/мин. (таблица 4.2);

 T_x – время работы двигателя на холостом ходу, мин. T_x =1 мин;

 M_L – удельный выброс при движении по территории стоянки с условно постоянной скоростью, г/мин. (таблица 4.6);

Т_{v1}, Т_{v2} – время движения машины по территории стоянки при выезде и возврате, мин.

Валовый выброс вещества автомобилями данной группы рассчитывается раздельно для каждого периода по формуле 4.3 [5]:

$$M_i = A \times (M_1 + M_2) \times N_k \times D_n \times 10^{-6}$$

где А – коэффициент выпуска (выезда);

N_к – количество автомобилей данной группы за расчетный период, штук;

D_n – количество рабочих дней в расчетном периоде (холодном, теплом, переходном).

Для определения общего валового выброса *М₁год* валовые выбросы одноименных веществ по периодам года суммируются:

$$M_{1\Gamma O \mathcal{L}} = M_i^m + M_i^x + M_i^n$$

Максимальный разовый выброс вещества рассчитывается для каждого периода по формуле [5]:

$$M_{1c} = \frac{max(M_{1}, M_{2}) \times N_{k1}}{3600}$$
, e/c

где $\max(M_1, M_2)$ – максимум из выбросов вещества при выезде и въезде автомобиля данной группы, г;

N_{к1} — наибольшее количество автомобилей данной группы, выезжающих со стоянки (въезжающих на стоянку) в течение 1 часа. Из полученных значений М₁сек для разных групп автомобилей и расчетных периодов выбирается максимальное.

Если в течение часа выезжают (въезжают) автомобили разных групп, то их разовые выбросы суммируются.

Таблица А.12 – Среднее время работы двигателя при прогреве двигателя (Трг)

Температура воздуха, ⁰С	≥ +5°C	<+5°C - ≥ -5°C	< -5°C - ≥ -10°C		< -15°C - ≥ -20°C	< -20°C - ≥ -25°C	<-25°C
1	2	3	4	5	6	7	8
Время прогрева, мин	2	6	12	20	28	36	45

Приводим пример расчета выбросов оксида углерода от ДВС спецтехники номинальной мощностью 101-160 кВт, при въезде-выезде из гаража (ист. 7001-10):

Теплый период (Т)

$$M_1 = 35 \times 2 + 3.9 \times 2 + 2.09 \times 3 + 3.91 \times 1 = 87.98 e$$

 $M_2 = 2.09 \times 3 + 3.91 \times 1 = 10.18 e$

Холодный период (Х)

$$M_1 = 35 \times 2 + 7.8 \times 36 + 2.55 \times 3 + 3.91 \times 1 = 362.36 e$$

 $M_2 = 2.55 \times 3 + 3.91 \times 1 = 11.56 e$

Валовый выброс оксида углерода:

$$M_m = 0.5 \times (87.98 + 10.18) \times 17 \times 215 \times 10^{-6} = 0.179 \text{ m/eod}$$

 $M_x = 0.5 \times (362.36 + 11.56) \times 17 \times 150 \times 10^{-6} = 0.4767 \text{ m/eod}$
 $M_i = 0.179 + 0.4767 = 0.656 \text{ m/eod}$

Максимально-разовый выброс оксида углерода:

$$G_i = 362,36 \times 1/3600 = 0,101 \text{ e/c}$$

Исходные данные для расчета выбросов вредных веществ от ДВС спецтехники представлены в таблице А.12. Результаты расчета выбросов вредных веществ от ДВС спецтехники представлены в таблице А.13.

Таблица А.12 – Исходные данные для расчета выбросов вредных веществ от ДВС спецтехники

	·	Вр	емя грева	ные данные		Время	Сред.	Кол	-во очих	Макс. кол-		•		ельны	й выбро	С								
№ ИЗА	Тип подвижного состава	машин,		Средняя продолжи- тельность	Время движения машины по	работы на хол. ходу,	кол- во, Nкв,	дней, Dp, шт		во за 1 час,	При- месь:	HACK.	прогр т _{прік} , г		ДВИЖ М _{Liк} I		хол. ход,							
		Т	х	пуска, мин территории мин шт. Т	x	N ⁱ k шт.		пуск	т	х	т	х	m _{xxiк} , г/мин											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18							
					Į.	ДВС спецп	пехники	(ucm	7001	-10)														
											NOx	3,4	0,78	1,17	4,01	4,01	0,78							
	Спецтехника										Углерод		0,1	0,6	0,45	0,67	0,1							
	(номинальной мощностью	2	36	2	3	1	17	215	150	1	SO ₂	0,058	0,16	0,2	0,31	0,38	0,16							
	101-160 кВт)										СО	35	3,9	7,8	2,09	2,55	3,91							
7001											керосин	2,9	0,49	1,27	0,71	0,85	0,49							
7001	Спецтехника										NOx	7	2	3	10,16	10,16	1,99							
	(номинальной										Углерод		0,26	1,56	1,13	1,7	0,26							
	мощностью	2	36	2	3	1	12	215	150	1	SO ₂	0,15	0,26	0,32	0,8	0,98	0,39							
	свыше 260															i		CO	90	9,9	18,8	5,3	6,47	9,92
	кВт)										керосин	7,5	1,24	3,22	1,79	2,15	1,24							

Таблица А.13 – Результаты расчета выбросов вредных веществ от ДВС спецтехники

			•	Наимено	вание загрязня	ощих веществ		
Выброс одной машины, г	г Период	Окислы азота	Диоксид азота	Оксид азота	Углерод	Диоксид серы	Оксид углерода	Керосин
1	2	3	4	5	6	7	8	9
			ДВС спецтехни	ики (ист. 700	1-10)			
		Спецтехн	ика (номинально	ой мощності	ью 101-160 кВт)		
Di 1005	T	21,17	-	-	1,65	1,53	87,98	9,4
Выезд	Х	61,73	-	-	23,71	8,62	362,36	54,56
Decemen	Т	12,81	-	-	1,45	1,09	10,18	2,62
Возврат	Х	12,81		-	2,11	1,3	11,56	3,04
Idmana:	e/c	0,017	0,014	0,002	0,007	0,002	0,101	0,015
Итого:	т/год	0,157	0,126	0,02	0,039	0,017	0,656	0,095
		Спецтехник	а (номинальной	мощностьк	о свыше 260 к В	m)		
Division	Т	50,47	-	-	4,17	3,61	225,62	24,09
Выезд	Х	154,47	-	-	61,52	15,15	886,13	138,61
December	T	32,47	-	-	3,65	2,79	25,82	6,61
Возврат	Х	32,47		-	5,36	3,33	29,33	7,69
14	e/c	0,043	0,034	0,006	0,017	0,004	0,246	0,039
Итого:	т/год	0,275	0,22	0,036	0,07	0,025	1,148	0,171
Примечание: единовременны	ый въез д- вые	зд осуществля	яет один вид сп	ецтехники				•
M-0-0 -0 -0- 7001 10:	г/с	-	0,034	0,006	0,017	0,004	0,246	0,039
Итого по ист. 7001-10:	т/год	-	0,346	0,056	0,109	0,042	1,804	0,266

А.11 Расчет выбросов загрязняющих веществ при сварке полиэтиленовых труб (ист. 7001-11)

В процессе сварки ПЭ труб будет происходить выделение оксида углерода и хлорэтилена (винилхлорида).

Валовый выброс в процессе сварки полиэтиленовых деталей рассчитывается по формуле [8]:

$$M_i = q_i \times N \times 10^{-6}, m/200$$

где q_i – удельное выделение 3B на 1 сварку (таблица 12 [7]);

N – количество сварок в течение года.

Максимально-разовый выброс в процессе сварки полиэтиленовых деталей рассчитывается по формуле [8]:

$$Q = \frac{M_i \times 10^6}{T \times 3600} \text{ , s/c}$$

где Т – время работы оборудования в год, часов.

Приводим пример расчета выбросов оксида углерода при работе агрегата для сварки ПЭ труб (ист. 7001):

$$M_i = 0,009 \times 324 \times 10^{-6} = 0,000003 \text{ m/sod}$$

 $Q = 0,000003 \times 10^6 / 27 \times 3600 = 0,00003 \text{ s/c}$

Результаты расчетов выбросов при работе агрегатов для сварки полиэтиленовых деталей представлены в таблице A.14.

Таблица А.14 – Результаты расчетов выбросов при работе агрегатов

	Количеств				Выброс З	3
Наименован ие источника	о сварок/го д	Т, ч/год	q _і , г/кг	Наименовани е ЗВ	г/с	т/год
1	2	3	4	5	6	7
		Свар	руб (ист. 7001-11)		
Агрегаты для	324	27	0,009	Оксид углерода	0,00003	0,000003
сварки ПЭ труб	324	27	0,003 9	Винил хлористый	0,00001	0,000001
Mmood Thu coonyo [12 mny6]				Оксид углерода	0,00003	0,000003
Итого при сварке ПЭ труб:			Винил хлористый	0,00001	0,000001	

А.12 Расчет выбросов загрязняющих веществ при использовании газопламенной горелки (ист. 7001-12)

В период реконструкции будут использоваться газопламенные горелки. Время работы горелок составит 0,45 ч/год. В горелках будет осуществляться сжигание пропан-бутана. Расход газа для горелки составляет 0,07 м³/ч. Общий расход 0,0315 м³. Характеристика топлива представлена в таблице A.15.

Таблица А.15 – Характеристика топлива

Топливо	Зольность, A ^r , %	Сернистость, S ^r , %	Теплота сгорания, МДж/м³
Пропан-бутан	0	0	103

Расчет выбросов окислов азота

Расчет выбросов окислов азота (т/год, г/с), выбрасываемых в единицу времени, выполняется по формуле [7]:

$$M_{NOx} = 0,001 \times B \times Q_i^r \times K_{NO2} \times (1 - \beta), m/200$$

 $M_{NOx} = B \times Q_i^r \times K_{NO2} \times (1 - \beta), z/c$

где B -расход топлива (тыс.м 3 /год, м 3 /с);

Q_г – низшая теплота сгорания натурального топлива (МДж/м³), таблица А.15

К_{№2} – параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла (кг/Дж) по рисунку 2.1 [7];

 β – коэффициент, зависящий от степени снижения выбросов окислов азота в результате применения технических решений (β =0).

Перерасчет суммарного выброса окислов азота на NO₂ и NO согласно разделу 1 п. 21 [7]:

$$M_{NO2} = 0.8 \times M_{NOx}$$

 $M_{NO} = 0.13 \times M_{NOx}$

где M_{NO} и M_{NO2} — молекулярный вес NO и NO₂, равный 30 и 46, соответственно; 0,8 — коэффициент трансформации окислов азота в диоксид, 0,13 — коэффициент трансформации в оксид.

Расчет выбросов оксида углерода

Расчет выбросов оксида углерода (т/год, г/с) в единицу времени, выполняется по формуле:

$$M_{NOx} = 0.001 \times B \times Q_i^r \times K_{CO} \times (1 - q_4/100), m/200$$

 $M_{NOx} = B \times Q_i^r \times K_{CO} \times (1 - q_4/100), z/c$

где K_{CO} – параметр, характеризующий количество оксида углерода на единицу теплота, выделяющейся при горении топлива (кг/ГДж), принимается по таблице 2.1 [7]. q_4 – потери теплоты вследствие механической неполноты сгорания топлива, q_4 = 0 % (таблица 2.2, [13]).

Приводим расчет выбросов загрязняющих веществ при сжигании 0,0000315 тыс.м³/год (0,00002 м³/с) пропан-бутана в горелках (ист. 7001-12):

- окислы азота

$$M_C = 0.00002 \times 103 \times 0.02 \times (1-0) = 0.00004$$
 e/c $M_\Gamma = 0.001 \times 0.0000315 \times 103 \times 0.02 \times (1-0) = 0.0000001$ m/eoð

- оксид азота

$$M_C = 0.00004 \times 0.13 = 0.000005$$
 e/c $M_\Gamma = 0.0000001 \times 0.13 = 0.00000013$ m/eoð

- диоксид азота

$$M_C = 0.00004 \times 0.8 = 0.00003$$
 e/c $M_\Gamma = 0.0000001 \times 0.8 = 0.0000001$ m/eoð

- оксид углерода

$$M_{\rm C} = 0.00002 \times 103 \times 0.08 \times (1 - 0/100) = 0.0002$$
 e/c $M_{\rm \Gamma} = 0.001 \times 0.0000315 \times 103 \times 0.08 \times (1 - 0/100) = 0.0000003$ m/sod

Сверка размерностей:

А.13 Расчет выбросов загрязняющих веществ при использовании хлорной извести (ист. 7001-13)

При использовании хлорной извести будет происходить выделение хлора. В атмосферу выделяется 5 % активного хлора.

Количество хлора, выделившегося в атмосферу за год, находится по формуле [9]:

$$M_{\Gamma} = m \times n / 100, m/200$$

где т – годовой расход хлорной извести, 0,003 т;

n – количество выделяющегося хлора в атмосферу, %.

Максимальный секундный выброс определяется по формуле [9]:

$$M_C = M_\Gamma \times 10^3 / (3.6 \times T), \ c/c/$$

где Т – годовой фонд рабочего времени, ч/год.

Приводим расчет выбросов хлора при использовании хлорной извести:

$$M_e = 0.003 \times 5 / 100 = 0.0002 \text{ m/sod}$$

 $M_c = 0.0002 \times 10^3 / (3.6 \times 60) = 0.001 \text{ s/c}$

А.14 Расчет выбросов загрязняющих веществ при работе передвижных электростанций и компрессоров (ист. 1001-1002)

При работе передвижных электростанций и компрессоров будет происходить выделение диоксида и оксида азота, оксида углерода, углерода, диоксида серы, акролеина, формальдегида и углеводородов предельных С₁₂-С₁₉. Выброс будет осуществляться через трубу, диаметром 0,1 м на высоте 2 м. Источники выбросов организованные (ист. 1001-1002).

Выбросы отдельных вредных (загрязняющих) веществ определяются раздельно, и не суммируется между собой [10].

Расчет параметров выбросов производится по формулам:

- выброс вредного (загрязняющего) вещества за год [10]:

$$G_{BBeBe} = 3,1536 \times 10^4 \times E_{ieeo}, \kappa e/eod$$

где 3,1536 × 10⁴ – коэффициент размерности, полученный как частное от деления числа секунд в год на число г в кг;

Е_{ігго} – максимально-разовый выброс загрязняющего вещества.

- максимально-разовый выброс загрязняющего вещества [10]:

$$E_{i220} = 1,144 \times 10^{-4} \times E_{i3} \times \frac{G_{f220}}{G_{f3}}$$
, s/c

где 1,144 × 10⁻⁴ – коэффициент размерности, равный обратной величине числа часов в году; Е_{іэ} – среднеэксплуатационная скорость выделения вредного вещества, г/с;

 G_{frro} – количество топлива, израсходованное дизельной установкой за год эксплуатации, кг/год;

G_{fэ} – средний расход топлива за эксплуатационный цикл, кг/ч.

- среднеэксплуатационная скорость выделения вредного вещества:

$$E_{i3} = 2.778 \times 10^{-4} \times e_i^t, \times G_{f3}, c/c$$

где 2,778 × 10⁻⁴ – коэффициент размерности, равный обратной величине числа секунд в часу:

 e_i^t – значения выбросов на 1 кг топлива, г/кг топлива (таблица 4 [10]);

Приводим пример расчета выбросов диоксида азота (ист. 0001) от передвижной электростанции, мощностью 4 кВт:

$$E_{ia} = 2,778 \times 10^{-4} \times 30 \times 1,76 = 0,015 \text{ e/c}$$
 $E_{ieeo} = 1,144 \times 10^{-4} \times 0,015 \times \frac{501,6}{1,76} = 0,0005 \text{ e/c}$
 $G_{BBeBe} = 3.1536 \times 10^{4} \times 0.0005 = 15.768 \text{ ke/eod} = 0.016 \text{ m/eod}$

Результаты расчета выбросов вредных веществ от ДЭС представлены в таблице А.16.

Таблица А.16 – Результаты расчетов выбросов вредных веществ от ДЭС, компрессоров и трамбовок

Наименование ЗВ	Оценочные значения среднециклового	Расход	дизельного оплива	Среднеэксплуатационная скорость	Выбро	сы 3В
	выброса, е _ј ^t , г/кг топлива	кг/ч	кг/год	выделения ЗВ, г/с	г/с	т/год
1	2	3	4	5	6	7
	Электростанции пе	ередвижн	ые, до 4 кВт	(ucm. 1001)		
Диоксид азота	30			0,015	0,0005	0,016
Оксид азота	39			0,019	0,0006	0,019
Оксид углерода	25			0,012	0,0004	0,013
Углерод	5			0,002	0,0001	0,003
Диоксид серы	10	1,76	501,6	0,005	0,0002	0,006
Акролеин	1,2			0,001	0,00003	0,001
Формальдегид	1,2			0,001	0,00003	0,001
Углеводороды предельные C ₁₂ -C ₁₉	12			0,006	0,0002	0,006
Компресс	соры передвижные с двигателем внутрен	него сгор	ания давлени	ием до 686 кПа (7 атм), 5 м3/мин (ист. 100	2)	•
Диоксид азота	30			0,015	0,001	0,032
Оксид азота	39			0,019	0,002	0,063
Оксид углерода	25			0,012	0,001	0,032
Углерод	5			0,002	0,0002	0,006
Диоксид серы	10	8,2	6174,6	0,005	0,0004	0,013
Акролеин	1,2			0,001	0,0001	0,003
Формальдегид	1,2			0,001	0,0001	0,003
Углеводороды предельные С ₁₂ -С ₁₉	12			0,006	0,001	0,032

А.15 Расчет выбросов загрязняющих веществ при работе станков (ист. 7001-14)

При работе станков будет происходить выделение взвешенных частиц и пыли абразивной.

Выбросы загрязняющих веществ, образующихся при механической обработке металлов, без применения смазывающе-охлаждающих жидкостей, от одной единицы оборудования, определяются по формуле [11]:

Валовой выброс для источников выделения не оборудованных местными отсосами [11]:

$$M_{\Gamma} = k \times Q \times T \times 3600 \times 10^{-6}$$
, m/20d

где k - коэффициент гравитационного оседания, k = 0,2.

Q – удельный выброс пыли технологическим оборудованием, г/с (таблица 1).

Максимально-разовый выброс для источников выделения, не обеспеченных местными отсосами определяется по формуле [11]:

$$Mc = k \times Q$$
, c/c

Приводим пример расчета выбросов взвешенных частиц от токарновинторезного станка (ист. 7001-14):

$$M_{\Gamma} = 0.2 \times 0.0056 \times 1.0 \times 3600 \times 10^{-6} = 0.000004 \text{ m/sod}$$

 $M_{C} = 0.0056 \times 0.2 = 0.001 \text{ s/c}$

Результаты расчетов выбросов от станков представлены в таблице А.17.

Таблица А.17 – Результаты расчета выбросов ЗВ от станков

Наименование станка	№ ист.	Загрязняющее вещество	Q, г/с	Т, ч	k	Вь	ібросы
Паименование станка	Nº PICI.	Загрязняющее вещество	Q, 17C	1, 7	\	г/с	т/год
1	2	3	4	5	6	7	8
Manualla manapapara maa yeropi ia		Взвешенные частицы	0,02	0,3	0,2	0,004	0,000004
Машины шлифовальные угловые		Пыль абразивная	0,013	0,3	0,2	0,003	0,000003
Станки сверлильные		Взвешенные частицы	0,007	0,03	0,2	0,001	0,0000002
Manualla unadoporta una organizativa cita	7001-14	Взвешенные частицы	0,022	412,5	0,2	0,004	0,007
Машины шлифовальные электрические		Пыль абразивная	0,014	412,5	0,2	0,003	0,004
Дрели электрические		Взвешенные частицы	0,0011	13,7	0,2	0,0002	0,00001
Перфоратор электрический		Взвешенные частицы	0,0011	6,4	0,2	0,0002	0,00001
Итого по источнику 7001:						0,007	0,011027
Взвешенные частицы						0,004	0,0070242
Пыль абразивная						0,003	0,004003

Примечание: единовременная работа станков осуществляться не будет, в связи с чем в качестве максимально-разового выброса принимается выброс от одного вида станка

ПРИЛОЖЕНИЕ 4

Твердо-бытовые отходы (ТБО)

Количество персонала в период строительства – 64 человек.

Норма образования бытовых отходов (m₁) определяется по формуле [29]:

$$m_1 = 0.3 \times 4_{crr} \times 0.25$$
, m/20d

где 0,3 – удельная санитарная норма образования бытовых отходов на промышленных предприятиях, м³/год на 1 человека;

Чсп – списочная численность работающих, 64 человек в период строительства;

 ρ – средняя плотность отходов, ρ = 0,25 т/м³.

Расчет образования ТБО (код 20 03 01 [24]):

- период реконструкции

$$m_1 = 1.08^* \times 0.3 \times 61 \times 0.25 = 5.184$$
 m/ π epuod

Примечание: 1,08* — понижающий коэффициент, так как строительство будет осуществляться только 13 месяцев (13/12 = 1,08), удельная норма образования бытовых отходов приведена на год.

Образующиеся твердо-бытовые отходы в количестве 5,184 т в период строительства будут храниться в металлических контейнерах с последующим вывозом на ближайший организованный полигон ТБО.

Производственные отходы в период реконструкции и эксплуатации

- при реконструкции

Ответственность за сбор, хранение и утилизацию производственных отходов, образующихся в период проведения реконструкции, несет ответственность подрядчик, выполняющий данные работы.

Огарки сварочных электродов (код 12 01 13 [11]), образованные при проведении монтажных работ в количестве 0,019 т (1,264 т × 0,015) будут сданы в специализированные пункты приема металлолома по договору.

Строительные отходы (код 17 01 07 [11]), образованные в ходе осуществления проекта [14], в количестве 3,421 т будет вывезен в специализированные организации по договору.

Расчет строительного отхода:

№ п/п	Наименование материала	Единицы измерения	Количество материала согласно смете	Плотность материала, т/м³ [29]	Норма потерь и отходов, согласно [30], %	Количество отходов, т
1	2	3	4	5	6	7
1	Бетон тяжелый класса В7,5 ГОСТ 7473-2010 без добавок	M ³	4,7	2,5	2	0,24
2	Бетон тяжелый класса В12,5 ГОСТ 7473-2010 без добавок	M ³	1,3	2,5	2	0,07
3	Бетон тяжелый класса В15 ГОСТ 7473-2010 без добавок	М ³	4,4	2,5	2	0,22
4	Бетон тяжелый класса В25 ГОСТ 7473-2010 без добавок	M ³	3,7	2,5	2	0,19
5	Бетон тяжелый класса В7,5, сульфатостойкий ГОСТ 7473-2010 без добавок	M ³	42,5	2,5	2	2,13
6	Раствор кладочный цементный ГОСТ 28013-98 марки M50	M ³	0,014	2,2	2	0,001
7	Раствор кладочный цементный ГОСТ 28013-98 марки М100	M ³	12,9	2,2	2	0,57
		Ито	ого:			3,421

Тара металлическая из-под краски (код 17 04 09* [11]) в количестве 0,070 т/год будет образована при проведении покрасочных работ. Количество отхода рассчитывается по формуле [10]:

$$N = \sum M_i \times n + \sum M_k \times \alpha_i$$
, m/200

где Мі – масса і-го вида тары, масса тары составляет 0,3 кг;

n – число видов тары, 4 шт;

 M_k – масса краски, 1,38209 т/год;

α – содержание остатков краски, в долях (0.01-0.05).

$$N = 0,0003 \times 4 + 1,38209 \times 0,05 = 0,070 \text{ m/sod}$$

Тару металлическую из-под краски временно хранят в контейнерах, по окончанию реконструкции передают в специализированные организации на утилизацию по договору.

Тара пластмассовая из-под краски (код 17 02 04* [11]) будет образована при проведении покрасочных работ. Количество отхода рассчитывается по формуле [10]:

$$N = \sum M_i \times n + \sum M_k \times \alpha_i$$
, m/20 ∂

где Мі – масса і-го вида тары, масса тары составляет 0,3 кг;

n – число видов тары, 2 шт;

M_k – масса краски, 0,227005 т/год;

α – содержание остатков краски, в долях (0.01-0.05).

$N = 0.0003 \times 2 + 0.227005 \times 0.03 = 0.007 \text{ m/sod}$

Пластмассовую тару временно хранят в контейнерах, по окончанию реконструкции передают в специализированные организации на утилизацию по договору.

Обрезки ПЭ труб (код 07 02 13 [11]), образованные в ходе осуществления проекта [14], в количестве 0,208 т будут переданы в специализированные организации на утилизацию по договору.

Расчет отходов:

№, п/п	Наименование материала	Единицы измерени я	Количест во материал а согласно смете	Норма потерь и отходов, согласно [30], %	Количест во отходов, т
1	ПЭ трубы	Т	8,3138525	2,5	0,208

Обрезки стальных труб (код 17 04 05 [11]), образованные в ходе осуществления проекта [14], в количестве 0,174 т будут сданы в специализированные пункты приема металлолома по договору.

Расчет отходов:

№, п/п	Наименование материала	Единицы измерени я	Количест во материал а согласно смете	Норма потерь и отходов, согласно [30], %	Количест во отходов, т
1	Стальные трубы	Т	17,412306	1,0	0,174

Демонтажные отходы (код 17 04 11 [24]), образованные в ходе осуществления проекта [14], в количестве 152,442 т будут вывезены по договору со специализированной организацией.

Расчет отходов демонтажа:

Nº п/п	Наименование	Количество материала согласно смете	Единица измерения	Масса кг	Количество отходов, т
1	2	3	4	5	7
1	Железобетонные плиты ПК0- 10 размером 2х4	8	ШТ	220	1,76
2	Трубы стальные электросварные прямошовные Ø530x10	1175	М	128,24	150,682
		ВСЕГО:			152 442

В соответствии с требованиями п. 2 статьи 321 [1] на участке будет организован раздельный сбор отходов, каждый вид отхода будет складироваться в свой контейнер. Под раздельным сбором отходов понимается сбор отходов раздельно по видам или группам в целях упрощения дальнейшего специализированного управления ими. Временное хранение всех видов отходов на участке будет не более 6-ти месяцев согласно п. 2 статьи 320 [1].

Сводная таблица отходов на период строительства представлена в таблице 5.2.

№ п/п	Наименование отходов	Количество, т/год	Код [5]	Образование	Мероприятия по утилизации отходов							
1	2	3	4	5		6						
Период реконструкции												
Неопасные отходы												
1	Строительные отходы	3,421		Образованный в ходе осуществления проекта [14]	анение (не более 6-ти месяцев) на специальной ой площадке. Вывоз спецорганизациями по договору							
2	Твердо-бытовые отходы	5,184	20 03	Санитарно-бытовое обслуживание рабочих	Временное хранение (не более 6-ти месяцев) в контейнерах, установленных на специальной площадке, с последующим вывозом н ближайший организованный полигон ТБО							
3	Огарки сварочных электродов	0,019	12 01 13	При проведении сварочных работ	Временное хранение в контейнерах (не более 6 месяцев). Вывоз в пункты приема металлолома по договору							
4	Обрезки стальных труб	0,174	17 04 05	При прокладке труб	Временное хранение (не более 6-ти месяцев) на специальной бетонированной площадке. Далее отходы будут сданы в специализированные пункты приема металлолома по договору							
5	Обрезки ПЭ труб	0,208	07 02 13	При прокладке труб	Временное хранение (не более 6-ти месяцев) в емкостях. Вывоз спецорганизациями по договору							
6	Отходы демонтажа	152,442		Образованный в ходе осуществления проекта [14]	Временное хранение (не более 6-ти месяцев) в емкостях. Вывоз спецорганизациями по договору							
	Всего			161,448								
				Опасные отходы	·							
1	Тара металлическая из-под краски	0,07		При проведении покрасочных работ	Временное хранение (не более 6-ти месяцев) на специально отведенных площадках вне помещений. Вывоз спецорганизациями по договору							
2	Тара пластмассовая из-под краски	0,007	17 02 04*	При проведении покрасочных работ	Временное хранение (не более 6-ти месяцев) на специально отведенных площадках вне помещений. Вывоз спецорганизациями по договору							
	Всего опасных отх	одов		0,077								
	ИТОГО, в т.ч.			161,525								
отходы производства				156,341								
	отходы потребл	ения	_	5,184								
Период эксплуатации												
1	Золошлаковые отходы	487 800		10 01 15 Сжигание угля в ТЭЦ-3 Размещение на собственном золоотвале								
	Всего, в т.ч.			487 800								
отходы производства				487 800								
	отходы потребл	ения				•						
Прим	ечания:											

Примечания:

^{1.} Реализация проекта [14] не приведет к пересмотру действующего проекта нормативов эмиссий, т.к. изменения емкостей секций и объемов размещения отходов не предусматривается.
2. Золошлаковые отходы относятся к отходам энергетических производств согласно п. 2 статьи 357 [1].

ПРИЛОЖЕНИЕ 5

ФИЗИЧЕСКИЕ ВОЗДЕЙСТВИЯ

Источниками вредного физического воздействия на атмосферный воздух и здоровье человека являются: шум, вибрация, ионизирующее и неионизирующее излучения, электромагнитное излучение, изменяющие температурные, энергетические, волновые, радиационные и другие физические свойства атмосферного воздуха.

1 Шумовое воздействие

Основными источниками шума при функционировании проектируемого объекта является оборудование, являющееся типовым, имеющим шумовые характеристики на уровне нормативных значений, при которых обеспечиваются нормативные значения шума на границе санитарно-защитной зоны.

Предельно-допустимый уровень (ПДУ) шума — это уровень фактора, который при ежедневной работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний в процессе работы или в отдельные сроки жизни настоящего и последующих поколений. Допустимые уровни шума — это уровень, который вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния системы и анализаторов, чувствительных к шуму.

Уровень звукового давления от транспорта не превысит допустимые санитарными нормами уровни звука.

Величина шума в селитебной территории допускается L_{A мах} = 70 дБА (приложение 2, таблица 2 [1]). Транспорт работает только в дневное время. Для оценки уровня шумового загрязнения проведены расчеты на границе CP в 300 м.

Величину шума определяют по формуле, дБА:

$$L_A = 10 lg (\sum A_i \times x_i \times \Phi_i / S_i + 4\psi / B \sum A_i)$$

где $Ai = 10^{0.1 \text{ Lpi}}$;

Lpi – октавный уровень звуковой мощности в дБА, создаваемый i – тым источником шума;

Xi — коэффициент, учитывающий влияние ближнего акустического поля и принимаемый в зависимости от отношения расстояния r в м между акустическим центром источника и расчетной точкой к максимальным габаритным размерам Lмакс в м источника шума [2];

Фі — фактор направленности источника шума, безразмерный, определяемый по опытным данным. Для источников шума с равномерным излучением звука следует принимать Ф = 1;

Si — площадь в $м^2$ воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку. Для источника шума, у которого 2I макс < r, при расположении источника шума в пространстве следует принимать $S = 4 \pi r^2$;

В – постоянная помещения в M^2 , определяемая по [2];

 ф – коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемый по [2].

Максимально возможный шум, создаваемый на границе СР равен:

Наименование источника шума	Октавный уровень звуковой мощности в дБА, создаваемый і – тым источником шума	Ai	Xi	Фі	Si, m²	Ψ	В, м²	L, дБА		
1	2	3	4	5	6	7	8	9		
Насос центробежный горизонтальный ЛивгидромашDelum D125-480В-Ч-УХЛЗ.1	95	3162277660	1	1	3140000	0,88	6120000	34,5		
Насос центробежный горизонтальный ЛивгидромашDelum D125-480B- Ч-УХЛЗ.1	95	3162277660						34,5		
Насос центробежный горизонтальный ЛивгидромашDelum D200-500А-Ч/Ч-УХЛЗ.1	99	7943282347						38,5		
Насос центробежный горизонтальный ЛивгидромашDelum D200-500A-Ч/Ч-УХЛЗ.1	99	7943282347						38,5		
Насос центробежный горизонтальный ЛивгидромашDelum D200-500А-Ч/Ч-УХЛЗ.1	99	7943282347						38,5		
Суммарный шум										

$$L_A = 10 \ lg \left[(10^{0.1 \times 101} \times 1 \times 1 / 3162277660 + 10^{0.1 \times 95} \times 1 \times 1 / 3140000) + ((4 \times 0.88 / 6120000) \times (10^{0.1 \times 80} + 10^{0.1 \times 84} + 10^{0.1 \times 84} + 10^{0.1 \times 92})) \right] = 34.5 \ \delta EA.$$

Указанное значение не превышает санитарных норм в 70 дБА на границе санитарного разрыва в 300 м (приложение 2, таблица 2 [1]).

2 Вибрационное воздействие

Основными источниками вибрационного воздействия при функционировании проектируемого объекта является оборудование.

Особенность действия вибрации заключается в том, что эти механические упругие колебания распространяются по грунту и оказывают свое воздействие на фундаменты различных сооружений, вызывая затем звуковые колебания в виде структурного шума.

Предельно-допустимый уровень (ПДУ) вибрации — это уровень фактора, который при ежедневной работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдельные сроки жизни настоящего и последующих поколений.

Зона действия вибрации определяется величиной их затухания в упругой среде и в среднем эта величина составляет примерно 1 дБА/м. При уровне параметром вибрации 70 дБА, например создаваемых рельсовым транспортом, примерно на расстоянии 70 м от источника эта вибрация практически исчезает.

Проектируемый объект в период своей деятельности не будет оказывать воздействия на фоновый уровень вибрации на территории жилой застройки. Вибрационное воздействие отсутствует.

3 Радиационное воздействие

На территории Золоотвала ТЭЦ-3 источники радиационного воздействия

отсутствуют.

Список использованной литературы

- 1. Приказ Министра здравоохранения Республики Казахстан № ҚР ДСМ-15 от 16.02.2022 года «Об утверждении Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека».
- 2. Лопашев Д.З., Осипов Г.Л., Федосеева Е.И. Методы измерения и нормирования шумовых характеристик. М.: Издательство стандартов, 1983 г.