РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ НА ЭТАПЕ СТРОИТЕЛЬСТВА РАСЧЕТ НОРМАТИВОВ ЭМИССИЙ

РП «Газификация г. Астана. III очередь строительства. Газификация ж.м. «Family Village». Корректировка». Пусковой комплекс-1.

На период строительства

Перечень источников загрязнения атмосферы:

Источник № 0001 Работа электростанции до 30 кВт

Источник № 0002 Работа электростанции до 100 кВт

Источник № 0003 Битумный котел

Источник № 6001 Гидроизоляционные работы

Источник № 6002 Пыление от работы отбойных молотков

Источник № 6003 Шлифовальные работы

Источник № 6004 Укладка асфальтового покрытия

Источник № 6005 Склад песка

Источник № 6006 Склад ПГС

Источник № 6007 Склад щебня

Источник № 6008 Склад глины

Источник № 6009 Сварочные работы

Источник № 6010 Покрасочные и грунтовочные работы

Источник № 6011 Пыление при работе бульдозера

Источник № 6012 Пыление при работе экскаватора

Источник № 6013 Разработка грунта вручную

Источник № 6014 Отвал коренного грунта

Источник № 6015 Отвал растительного грунта

Источник № 6016 Рекультивация. Срезка ПСП с перемещением в отвалы бульдозером

Источник № 6017 Рекультивация. Нанесение ПСП бульдозером

Источник № 6018 Пыление от направленного бурения

Источник № 6019 Емкость для нагрева битума

Источник № 6020 Уплотнение грунта трамбовками

Источник № 6021 Движение автотранспорта и строительной спецтехники

Источник № 0001 Работа электростанции до 30кВт

Расчет выбросов вредных веществ в атмосферу от ДЭС произведен по Методике [7]. Расчет на одну ед. ДЭС.

Для электроснабжения предусмотрена установка:

ДЭС- до 30 кВт., 1 ед. Одновременно работает одна из ДЭС

Время работы 1280 часов.

Объем потребляемого топлива: 12,1 л/час, или это с учётом плотности диз.топлива равно:

12,1 л/час * 0,85 кг/л = 10,3 кг/час. 13,2 тонны за период.

ДЭС относится к групп «А» стационарных дизельных установок (СДУ).

Максимальный выброс і-го загрязняющего вещества стационарной дизельной установки определяется по формуле:

 $M_{cek} = (e_i * P_0)/3600, r/c$

 Γ де: e_i — выброс i-того вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, $r/\kappa B \tau^* \tau$, определяемой по таблице 1 или 2 методики;

 P_{9} — эксплуатационная мощность стационарной дизельной установки, кВт. Значение P_{9} берется из технической документации завода изготовителя. Если в технической документации не указывается значение эксплуатационной мощности, то в качестве P_{9} принимается значение номинальной мощности стационарной дизельной установки (N_{c}) — 30 кВт.

Максимально-разовые выбросы загрязняющих веществ

Загрязняющее вещество	Значение выбросов еті, г/кВт*ч (в скобках – уменьшенное значение)	Максимальный выброс загрязняющих веществ, г/с
Диоксид азота	10,3	0,0687
Оксид азота		0,0112
Оксид углерода	7,2	0,060
Диоксид серы	1,1	0,0092
Углеводороды	3,6	0,030
Формальдегид	0,15	0,00125
Бенз/а/пирен	0,000013	0,00000011
Сажа	0,7	0,0058

Валовый выброс і-го загрязняющего вещества за год от стационарной дизельной установки определяется по формуле:

 $M_{\text{год}} = (q_i * B_{\text{год}})/1000, \text{ т/год}$

 Γ де: q_i – выброс i-го загрязняющего вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл;

 $B_{\text{год}}\,$ - расход топлива стационарной дизельной установкой за год, т.

Валовые выбросы загрязняющих веществ

Загрязняющее вещество	Значение выбросов qi, г/кг (в скобках — уменьшенное значение)	Валовый выброс загрязняющих веществ, т/год
Диоксид азота	43	0,4541
Оксид азота		0,073788
Оксид углерода	30	0,396
Диоксид серы	4,5	0,0594
Углеводороды	15	0,198
Формальдегид	0,6	0,00792
Бенз/а/пирен	0,000055	0,000000726
Сажа	3	0,0396

Оценка расхода и температуры отработавших газов

Расход отработавших газов от стационарной дизельной установки в соответствии с методикой [1] определяется по выражению:

где G_B - расход воздуха, определяемый по соотношению:

$$G_B=(1/1000)*(1/3600) (b_3*P_3*\phi*\alpha*L_0),$$

где:

- $b_{_{3}}$ удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, г/кВт*ч (берется из паспортных данных на дизельную установку);
 - ϕ коэффициент продувки, ϕ =1.18;
 - α коэффициент избытка воздуха, α =1.8;

 L_0 - теоретически необходимое количество кг воздуха для сжигания одного кг топлива, $L_{0=}14.3$ кг воздуха/кг топлива.

Значения остальных коэффициентов и параметров такое же, как и в (1) и (2).

 $G_{\text{O}\text{G}=}8.72*10^{\text{-}6*}b_{\text{3}}*P_{\text{3}}=8,\hat{72*}10^{\text{-}6*}224*60=0,1172~\text{kg/c}$

Объемный расход отработавших газов (M^3/c) определяется по ф-ле:

$$Q_{OF} = G_{OF}/\gamma_{OF} = 0.1172 / (1.31/(1+723/273)) = 0.3264 \text{ m}^3/\text{c}.$$

где γ_{or} - удельный вес отработавших газов (кг/м³) рассчитываемый по формуле:

$$\gamma_{\rm or} = \gamma 0_{\rm or} / (1 + T_{\rm or} / 273),$$

где:

 $\gamma 0_{\rm or}$ - удельный вес отработавших газов при температуре, равной 0°C, значение которого согласно можно принимать 1,31 кг/м³;

T_{or} - температура отработавших газов, К.

При организованном выбросе отработавших газов в атмосферу, на удалении от стационарной дизельной установки (высоте) до 5 м., значение их температуры можно принимать равным 450^{0} C (723 K).

Наименование источника выброса	Параметры источника выбросов				
	Н, м	d , м	W,	V,	t, °C
			м/сек	м ³ /сек	
Труба	3	0,1	41,56		450

Источник № 0002 Работа электростанции 100 кВт

Расчет выбросов вредных веществ в атмосферу от ДЭС произведен по Методике [7]. Расчет на одну ед. ДЭС.

Для электроснабжения предусмотрена установка:

ДЭС- 100 кВт., 1 ед. Одновременно работает одна из ДЭС

Время работы 38 часов.

Объем потребляемого топлива: 18 л/час, или это с учётом плотности диз.топлива равно:

18 л/час * 0.85 кг/л = 15.3 кг/час 0.6 тонны за период.

ДЭС относится к групп «В» стационарных дизельных установок (СДУ).

Максимальный выброс і-го загрязняющего вещества стационарной дизельной установки определяется по формуле:

$$M_{cek} = (e_i * P_0)/3600, r/c$$

 Γ де: e_i — выброс i-того вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, $r/\kappa B \tau^* \tau$, определяемой по таблице 1 или 2 методики;

 P_{9} — эксплуатационная мощность стационарной дизельной установки, кВт. Значение P_{9} берется из технической документации завода изготовителя. Если в технической документации не указывается значение эксплуатационной мощности, то в качестве P_{9} принимается значение номинальной мощности стационарной дизельной установки (N_{c}) — 100~kBt.

Максимально-разовые выбросы загрязняющих веществ

171	иксилимото ризовые выоро	сы загрязняющих веществ
Загрязняющее вещество	Значение выбросов emi, г/кВт*ч (в скобках – уменьшенное значение)	Максимальный выброс загрязняющих веществ, г/с
Диоксид азота	9,6	0,2133
Оксид азота		0,0347
Оксид углерода	6,2	0,172
Диоксид серы	1,2	0,0333
Углеводороды	2,9	0,081
Формальдегид	0,12	0,00333

Бенз/а/пирен	0,000012	0,00000033
Сажа	0,5	0,0139

Валовый выброс і-го загрязняющего вещества за год от стационарной дизельной установки определяется по формуле:

 $M_{\text{год}} = (q_i * B_{\text{год}})/1000, \text{ т/год}$

 Γ де: q_i — выброс i-го загрязняющего вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл;

 $B_{\text{год}}\,$ - расход топлива стационарной дизельной установкой за год, т.

Валовые выбросы загрязняющих вешеств

	Б иловые выбросы зис	грязняющих веществ
Загрязняющее вещество	Значение выбросов qi, г/кг (в скобках – уменьшенное значение)	Валовый выброс загрязняющих веществ, т/год
Диоксид азота	40	0,01920
Оксид азота	1	0,0031
Оксид углерода	26	0,01560
Диоксид серы	5	0,00300
Углеводороды	12	0,00720
Формальдегид	0,5	0,00030
Бенз/а/пирен	0,000055	0,000000033
Сажа	2	0,00120

Оценка расхода и температуры отработавших газов

Расход отработавших газов от стационарной дизельной установки в соответствии с методикой [1] определяется по выражению:

где G_B - расход воздуха, определяемый по соотношению:

$$G_B=(1/1000)*(1/3600) (b_3*P_3*\phi*\alpha*L_0),$$

где:

 b_3 - удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, г/кBт*ч (берется из паспортных данных на дизельную установку);

- ф- коэффициент продувки, ф=1.18;
- α коэффициент избытка воздуха, α =1.8;

 L_0 - теоретически необходимое количество кг воздуха для сжигания одного кг топлива, $L_{0=}14.3$ кг воздуха/кг топлива.

Значения остальных коэффициентов и параметров такое же, как и в (1) и (2).

$$G_{\text{O}\Gamma} = 8.72 \times 10^{-6} \text{ b}_3 \times P_3 = 8.72 \times 10^{-6} \times 238 \times 100 = 0.208 \text{ kg/c}$$

Объемный расход отработавших газов (${\rm M}^3/{\rm c}$) определяется по ф-ле:

$$Q_{O\Gamma} = G_{O\Gamma}/\gamma_{O\Gamma} = 0.208 / (1.31/(1+723/273)) = 0.58 \text{ m}^3/\text{c}.$$

где γ_{or} - удельный вес отработавших газов (кг/м³) рассчитываемый по формуле:

$$\gamma_{\rm or} = \gamma 0_{\rm or} / (1 + T_{\rm or} / 273),$$

где:

 $\gamma 0_{\rm or}$ - удельный вес отработавших газов при температуре, равной 0°C, значение которого согласно можно принимать 1,31 кг/м³;

 T_{or} - температура отработавших газов, К.

При организованном выбросе отработавших газов в атмосферу, на удалении от стационарной дизельной установки (высоте) до 5 м., значение их температуры можно принимать равным 450° C (723 K).

Наименование источника выброса		Параметры источника выбросов				
	Н, м	d, м	W, м/сек	V, м³/сек	t, °C	
Труба	3	0,1	73,85	0,58	450	
1 pyou	3	0,1	73,03	0,50	430	

Источник № 0003 Битумный котел

Материал	Кол-во	Ед.измерения
Время работы	2,0	часа

Выбросы определены согласно "Сборника методик по расчету выбросов 3B в атмосферу различными производствами". Алматы, $1996 \, \Gamma$.

	Единица				
Исходные данные	измерения	Количество			
Расход дизтоплива, В	г/с	0,472			
Зольность топлива, Аг	%	0,025			
Содержание серы в топливе Sr	%	0,2			
Время работы	час/год	140,01			
Расчет выбросов тверды	х частиц - сажа	Птв=В*Аг*с*(1-h)			
•		c=	0,01	h=	0
Формула расчета		Количество в	выбросон	з сажи	
Птв=В*Аг*с*(1-h)		т/год			г/сек
		0,000001		0	,00012
Расчет выбросов сернист	гого ангидрида	ПSO2=0,02*В*Sr*(1- h'SO2)*(1-h''SO2)			
		емых летучей золой топлив	a:		0,02
(1-h"SO2)- доля оксидов					
серы, улавливаемых в золоуловителе:					0
4		Количество выбросов			
Формула расчета ПSO2=0,02*B*Sr*(1-		сернистого ангидрида			
h'SO2)*(1-h"SO2)		т/год			г/сек
		0,0000133		0,0019	
Расчет выбросов окси	да углерода	Псо=0,001*Сс	co*B*(1-		
•	•	q3	0,5		
		R	0,65		
Cco=q3*R*Q	pri	Qri	41,9		Мдж/м3
		Cco	13,89		
		q4	0		
Формула расч	ета	Количество выбросов ок	сида угл	ерода	
Псо=0,001*Ссо*В*(1-					
q4/0,01)		т/год		г/сек	
		0,000047		0,0	06560938
Расчет выбросов ок	сида азота	ПNox=0,001*В*Qri*KN	OX*(1-b)	
		b	0		
		KNOX	0,08		

Формула расче	та	Количество выбросов оксида углерода	
ПNox=0,001*B*Qri*K	NOX*(1-b)	т/год г/сек	
		0,001926	0,001583
В т.ч. диоксид азота,%	80	0,000009	0,001266
оксид азота, %	13	0,0000015	0,000206

Итоговые выбросы ЗВ от источника № 0003

	111010BBC BBIOPOCBI 3B 01 HC10 HHRRR 1/2 000C				
Код	Примесь	г/с	т/год		
301	Азота диоксид	0,00127	0,000009		
304	Азота оксид	0,00021	0,0000015		
328	Сажа	0,00012	0,0000009		
330	Диоксид серы	0,00185	0,0000133		
337	Углерод оксид	0,00656	0,0000472		

Наименование источника выброса		Параметры источника выбросов			
	Н, м	d, м	W, м/сек	V, м ³ /сек	t, °C
Труба	3	0,15	14,49	0,256	450

Источник № 6001 Гидроизоляционные работы

При расчете выбросов при укладке асфальтобетонного покрытия (с использованием битума), гидроизоляцию бетонных поверхностей битумом либо битум содержащим материалом применяется «Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе от асфальтобетонных заводов» (приложение 12 к приказу Министра ООС от 18.04.2008г. № 100-п) (далее-Методика).

Расчет выбросов при укладке асфальтобетонного покрытия и гидроизоляционных работах производится согласно предлагаемых данной Методикой нормативов естественной убыли (потерь) дорожно-строительных материалов, % (таблица 3.1).

1. Расход битума и мастики =2,02 т/период;

Суммарный норматив естественной убыли битумсодержащих материалов при складском хранении в резервуарах, при погрузке и разгрузке П равен 0,8%.

Вгод = $\Pi \times Q \times K1W \times Kzx \times 10-2$, т / год (3.5)

Где:

Q – масса материала т/год;

K1W = 0.01:

Kzx =0,005, т.к. хранение в закрытых емкостях;

Вгод =0.8*2.02 т* $0.01*0.005*10^{-2} = 0.00000081$ т/период;

Вг/сек= (Вгод*1000000)/(3600*100*8)=0,0000008 г/сек

Результаты расчета сведены в таблицу:

Наименование 3В	Велич	ина выброса 3В
Паименование 3В	г/сек	т/пер.стр.
Углеводороды предельные	0,0000008	0,00000081

Источник № 6002 Пыление от работы отбойных молотков

Наименование	Обозначение	Ед. изм.	Кол-во	Расчет	Результат
Исходные данные:					
Количество машин	n	ШТ	1		

Количество пыли					
выделяемое при					
бурении	Z	г/час	360		
Эффективность системы					
пылеочистки на участке					
строительства	η		0,85		
Время работы	t	час/год	380		
Расчет:	2909 Пыль н	еорганиче	ская с сод	ержанием диоксида кремния ме	енее 20 %
Объем пылевыделения					
	Мпыль сек	г/сек		Мсек=n*z(1-η)/3600, г/с	0,015
Общее пылевыделение					
	Мпыль год	т/год		Мгод=Мсек*t*3600/1000000	0,02052

Методика расчета нормативов выбросов от неорганизованных источников

(Приложение №8 к приказу МОС иВР РК от 12.06.2014.г.№ 221-о)

Источник № 6003 Шлифовальные работы

Расчет выбросов вредных веществ в атмосферу от станков произведен по методике [5].

Выбросы загрязняющих веществ, образующихся при механической обработке металлов, без применения СОЖ, от одной единицы оборудования, определяется по формулам:

а) валовый выброс для источников выделения, не обеспеченных местными отсосами:

П год=
$$\frac{3600 * k * Q * T}{10^6}$$
, т/год

гле:

- коэффициент гравитационного оседания (см. п.5.3.2);
- Q удельное выделение пыли технологическим оборудованием, г/с (табл. 1-5);

Мсек = k *Q , г/с Расчет выбросов 3В

	ac ici bbiopocob 3D		
Исходные данные:			
Число станков данного типа	Шлифовальные	ед	2
Коэффицент гравитационного оседания			
(п.5.3.2.)	К		0,2
Удельный выброс			
Пыль металлическая	Q	г/с	0,039
Пыль абразивная	Q	г/с	0,026
Время работы технологического			
оборудования	T	ч/год	15,0
Расчет:			
Выброс пыли металлической			
Mc= _K *Q	Mc	г/с	0,0078
Мгод=3600*к*Q*Т/1000000	Мгод	т/год	0,00042
Выброс пыли абразивной (2930)			
Mc=ĸ*Q	Mc	г/с	0,00520
Мгод=3600*к*Q*Т/1000000	Мгод	т/год	0,00028

Источник № 6004 Укладка асфальтового покрытия

<u>Уплотнение</u>

В соответствии с технологической программой укладки асфальтного покрытия необходимо производить уплотнение всех слоев дороги после их формирования.

Уплотнение основания дороги, насыпи из гравийно-песчаной смеси и нижнего слоя щебеночной смеси осуществляется проходом катками по 6-8 раз по каждому слою. При проведении уплотнительных работ происходит выделение пыли в результате взаимодействия машин с полотном дороги.

Объём пылевыделения рассчитываем согласно «Методическому пособию по расчёту выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 1989 г. по формуле:

$$M = (C_1 * C_2 * C_3 * C_6 * N * B * C_7 * S) / 3600, r/cek,$$

где:

С₁ - коэффициент, учитывающий среднюю грузоподъёмность единицы автотранспорта;

С₂ - коэффициент, учитывающий среднюю скорость передвижения транспорта;

Сз - коэффициент, учитывающий состояние дорог;

 C_6 - коэффициент, учитывающий влажность поверхностного слоя материала (при проведение уплотнения производится опрыскивание полотна для уменьшения

пылеобразования);

С7 - коэффициент, учитывающий долю пыли, уносимой в атмосферу - 0,01;

N - число ходов (туда и обратно) всего транспорта в час;

В - средняя протяженность одной ходки, км;

S - пылевыделение в атмосферу на 1 км пробега - 1450 г.

Валовое выделение пыли рассчитываем исходя из общего количества работы оборудования во времени проведения строительных работ:

$$B = M*3600*T*10^{-6}$$
, т/год,

где:

М - максимально-разовый выброс, г/сек;

Т - количество часов работы машин, час/год.

Исходные данные и результаты расчета сведены в таблицу:

Наименование работ		Коэфо	рициент	гы, испо	Продолж.	Выбр	poc 3B				
	C_1	C_1 C_2 C_3 C_6 C_7 N B S								г/сек	т/пер
Уплотнение ПГС	1,6	0,6	1	0,6	0,01	10	0,05	1450	82,3	0,116	0,0172
Всего выброс пыли неорганической (2908)										0,116	0,0172

Испарение битума при пропитке полотна.

Испарение предельных углеводородов, приведенных к лигроину, рассчитываются на основании производственной программы работ.

В соответствии с проектными решениями в качестве вяжущего используется битум. Температура пропиточной смеси 160° C. Скорость нанесения покрытия 2 км/час при ширине прохода 2,0 м, что соответствует 4000,0 м²/час.

Интенсивность испарения определяется по формуле:

$$Z = 10^{-6} * n * M^{0.5} * p, r/cek*m^2$$

n -коэффициент испарения, для скорости 1,0 м/сек = 4,6;

М - молекулярная масса 254;

р - парциальное давление испарения, определяемое по уравнению Антуана - 576,52 КПа:

$$Z = 10^{-6} * 4,6 * 254^{0,5} * 576,52 = 0,042 \text{ r/(cek*m}^2)$$

Количество испарившегося битума в течение 0,25 часа (15 минут) с учетом скорости застывания определяется по формуле:

$$T = Z * p * _{T},$$

где: T - масса испарившегося; Z - интенсивность испарения; P - поверхность испарения; т - продолжительность испарения, принимаем равной 900 сек.

Максимально-разовый выброс с учетом производительности автогудронатора и скорости остывания (одновременность испарения: $4000 \text{m}^2/\text{чаc}*0,25 \text{чаca} = 1000 \text{ m}^2$) определяется по формуле:

$$M = 42.0 \text{ } \Gamma/(\text{cek*}\text{m}^2) / 1000 \text{ } \text{m}^2 = 0.042 \text{ } \Gamma/\text{cek}$$

Площадь покрытий проездов асфальтом составит 17270 м².

Следовательно, валовый выброс углеводородов составит:

B = 0.042*17270*900/1000000 = 0.653 T/Hep

Результаты расчета сведены в таблицу:

Наименование 3В	Величина выброса 3В					
Паименование 3В	г/сек	т/пер.стр.				
Углеводороды предельные (2754)	0,042	0,653				

Испарение битума при укладке асфальтобетонного покрытия.

Асфальтобетонное покрытие представлено 4 слоями.

Скорость движения асфальтоукладчика - 2 км/час.

Температура асфальтобетонной смеси - 160 °C.

Поскольку, согласно проектному решению применяются асфальтобетонные смеси на битуме БНД, скорость укладки смеси и температура аналогичны операции пропитки, интенсивность испарения при укладке асфальтобетона аналогична интенсивности при пропитке и составляет 0,042 г/(сек*м²).

Интенсивность испарения с учетом производительности асфальтоукладчика и скорости остывания (одновременность испарения 1000 м²) определяется по формуле:

 $M = 42.0 \text{ r/(cek*m}^2) / 1000 \text{ m}^2 = 0.042 \text{ r/cek}$

Общая площадь испарения, с учетом 4-х слойной укладки (площадь покрытий проездов 17270 м²) составляет 69080 м².

При этом валовый выброс предельных углеводородов составит:

B = 0.042*69080*900/1000000 = 2.611 T/Hep

Результаты расчета сведены в таблицу:

Наименование 3В	Величина выброса 3В						
Паименование 3В	г/сек	т/пер.стр.					
Углеводороды предельные (2754)	0,042	2,611					

Выбросы ЗВ представлены в таблице:

Наименование 3В	Величина выброса ЗВ							
паименование 3В	г/сек	т/пер.стр.						
Углеводороды предельные (2754)	0,042	3,264						
Пыль неорганическая (2908)	0,116	0,0172						

Источник № 6005-6008 Склады песка, ПГС, щебня, глины

Расчет выбросов вредных веществ произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов», Приложение № 11 к приказу Министра охраны окружающей среды РК от 18.04.08. г. № 100-п.

Максимальный разовый объем пылевыделений от выгрузки рассчитывается по формуле:

Мсек =
$$\frac{k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G \text{час} \times 10^6}{3600} \times (1-\eta)$$
, г/с,

а валовой выброс по формуле:

$$M \circ \partial = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times \text{Good} \times (1-\eta) , m \circ \partial,$$

где k_I – весовая доля пылевой фракции в материале

- k_2 доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения k_2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки отбора пробы;
- k_3 коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;
- k_4 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);
 - k_5 коэффициент, учитывающий влажность материала (таблица 3.1.4).

Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d ≤ 1 мм); k_7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

- k_8 поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных типов перегрузочных устройств $k_{\delta}=1$;
- k_9 поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимаем k_9 =0,2 при единовременном сбросе материала весом до 10 т. и k_9 =0,1 – свыше 10 т. В остальных случаях $k_9=1$.

B' – коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

 $G_{\text{час}}$ – производительность узла пересыпки или количество перерабатываемого материала, т/час;

Gгод – суммарное количество перерабатываемого материала в течение года, т/год;

η – эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм:

Для определения значений $G_{\text{час}}$ и $G_{\text{год}}$ были определены объёмы перерабатываемого материала с планов работ. Исходные данные и результаты расчётов приведены в таблицах ниже.

<u>Максимальный разовый объем пылевыделений при хранении материала рассчитывается по</u> формуле:

Mcek = $k_3 * k_4 * k_5 * k_6 * k_7 * q * S$, ϵ/c ,

а валовой выброс по формуле:

Мгод = $0.0864* k_3* k_4* k_5* k_6* k_7* q*S* [360-(Тсп+Тд)]*(1-<math>\acute{\eta}$), т/год,

где: k_3 , k_4 , k_5 , k_7 - коэффициенты, аналогичны коэффициентам предыдущей формуле;

 k_{6} - коэффициент, учитывающий профиль поверхности складируемого материала;

S- поверхность пыления в плане.

q – унос пыли с одного квадратного метра фактической поверхности, г/м²*с.

Тсп – количество дней с устойчивым снежным покровом;

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

 $T_{\text{Д}}=(2*T_{\text{Д}}^{0})/24$, дней

Где:

 ${\rm Tg^0}$ - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час.

Продолжительность осадков в виде дождя в зоне проведения работ – 511 ч.

Тд=2*511/24=42 дня.

Параметры и результаты расчёта сведены в таблицы 1,2,3.

Таблица 1.

	Хранение и пересыпка									
ИЗА	Вид материала	Объем перерабатываемого материала за год, м ³	Плотность материала, T/M^3	Gгод, объем перерабатываемого материала за год, т/год	Gчас, объем перерабатываемого материала за год, т/час					
№ 6005 Склад песка	песок	3021,1	2,7	8157	1					
№ 6006 Склад ПГС	ПГС	30178	2,6	78462,8	5					
№ 6007 Склад щебня	щебень	265,1	3,2	848,32	5					
№ 6008 Склад глины	Глина		2,7	4,013	1					
	Итого	33464,2		87472,1	12					

Выброс пыли неорганической с содержанием оксида кремния 70-20%

№ ИЗА	Наимен ование матери алов	K 1	K 2	К 3	<i>K</i>	K	K	<i>K</i>	<i>K</i> 9	В'	К6	S	T d	q	T cn	Gча с, т/ча с	Мсек, г/сек
№ 6005	Песок	0,05	0,03	1,2	1	1	1	1	0,2	0,5	1,3	9	42	0,002	90	1	0,0075
№ 6006	ПГС	0,05	0,03	1,2	1	1	1	1	0,2	0,5	1,3	9	42	0,002	90	5	0,0375
№ 6007	щебень	0,02	0,01	1,2	1	1	1	1	0,2	0,5	1,3	9	42	0,002	90	5	0,005
№ 6008	глина	0,05	0,02	1,2	1	1	1	1	0,2	0,5	1,3	9	42	0,004	90	1	0,005
	Итого															12	0,055

Таблица 3.

№ ИЗА	Наимен ование работ	K 1	K 2	К 3	<i>K</i>	K	K	K	К9	В'	К6	S	T d	q	T cn	Gгод, т∕год	Мгод, т/год
№ 6005	Песок	0,05	0,03	1,2	1	1	1	1	0,2	0,5	1,3	9	42	0,002	90	8157	0,52
№ 6006	ПГС	0,05	0,03	1,2	1	1	1	1	0,2	0,5	1,3	9	42	0,002	90	78462,8	4,32
№ 6007	щебень	0,02	0,01	1,2	1	1	1	1	0,2	0,5	1,3	9	42	0,002	90	848,32	0,09
№ 6008	глина	0,05	0,02	1,2	1	1	1	1	0,2	0,5	1,3	9	42	0,004	90	4,013	0,17
	Итого															87472	5,10

Источник №6009 Сварочные работы сварка полиэтиленовых труб

Расчет произведен согласно Приложения № 5 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө «Методика расчета выбросов вредных веществ в атмосферу при работе с пластмассовыми материалами».

При сварке пластиковых деталей в атмосферу выделяются СО и винил хлористый.

Валовый выброс загрязняющих веществ определяется по формуле:

$$M_i = q_i \times N$$
, т/год,

где q_i – удельное выделение загрязняющего вещества, на 1 сварку,

N – количество сварок в течение строительного период-2386

Максимально-разовый выброс загрязняющих веществ определяется по формуле:

$$Q_i = \frac{M_i \times 10^6}{T \times 3600}, \text{ r/cek},$$

где Т - годовое время работы оборудования, часов-1193 часов/период.

Удельное выделение загрязняющих веществ на одну сварку определяется из таблицы.

Удельные показатели выбросов загрязняющих веществ

Наименование загрязняющего вещества	Показатель удельных выбросов,					
	Γ /сварку, q_i					
CO	0,009					
Винил хлористый	0,0039					

Углерод оксид:

 $M_i = 0.009 \times 2386 = 21,474 \text{ T/Hep.cTp.}$

 $Q_i = (21,474*100)/(1193*3600)=0,0005 \text{ r/cek}$

Винилхлорид:

 $M_i = 0.0039 \times 2386 = 9.3054 \text{ т/пер.стр.}$

 $Q_i = (9,3054*100)/(1193*3600) = 0,00022 \text{ r/cek}$

Результаты расчета сведены в таблицу:

Наименование 3В	Величина в	выброса 3В
Паименование 3В	г/сек	т/год

Углерод оксид	0,0005	21,474
Винилхлорид	0,00022	9,3054

Сварка электродами типа Э-42 (АНО6)

Расход электродов 36 кг/период, 1 кг/час

Расход пропан-бутана 128 кг/период, 0,5 кг/час

Расчет выбросов ЗВ в атмосферу выполнен согласно:

РНД 211.2.02.03-2004 "Методика расчета выделений (выброса) ЗВ в атмосферу при сварочных работах" Астана 2005г.

Максимально разовый выброс ЗВ, Мсек, рассчитывается по формуле:

r/cei

Валовый выброс ЗВ,М год, рассчитывается по формуле:

Мгод=(Км*Вгод/1000000)*(1-η)

г/гол

где Кмх-удельный показатель выбросов ЗВ "х" на единицу массы расходуемого материала, г/кг (табл.1)

η- степень очистки воздуха от используемого оорудования

Код ЗВ	Наименование 3B Э42 (AI	Кмх, г/кг НО6)	М, г/с	М, т/год
123	Железо (II,III) оксиды	14,97	0,0021	0,00054
143	Марганец и его соединения	1,73	0,0002	0,0000623

Наименование Обозначение Ед. изм. Исходные данные: Вид сварки: Газовая сварка стали с В кг/пер использованием пропан-бутановой 128 смеси . Расход пропан-бутановой смеси Нормо-часы работы сварочного агрегата Т ч/пер 2 Удельное выделение веществ грамм на Кхм $\Gamma/K\Gamma$ кг массы расходуемой смеси: KNO2 Диоксид азота $\Gamma/K\Gamma$ 15 Расчет: Количество выбросов диоксида азота Мт/год=Вгод*KNO2/1000000 М диоксид т/год 0,001920 азота Мг/сек=KNO2*B/т/3600 М диоксид г/сек 0,266667 азота Итоговые выбросы: г/сек т/год 123 Железо (II,III) оксиды 0,00054 0,02850 143 Марганец и его соединения 0,00111 0,00006 301 Азота диоксид 0,00192 0,002083 337 Углерод оксид 0,0005 21,47400 0827 Винилхлорид 0,00022 9,30540 Всего: 0,032533 30,781921

Источник №6010 Покрасочные и грунтовочные работы

Расчёт выполнен по методике [12].

Производятся покрасочные работы наземных сооружений, которые включают нанесение лакокрасочных материалов. Лакокрасочный материал используется при грунтовке, шпаклевке с последующей покраской сооружений и т.д.

Расчеты производятся по "Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов», РНД 211.2.02.05- 2004 г., Астана

2005 г. Утвержден и введен в действие Приказом Министра охраны окружающей среды РК. В ней приводится табличный материал по типу краски, его компонентного составу, и способу окраски.

І. Расчет валового выброса компонентов аэрозоля краски:

1) Нелетучей части (окрасочный аэрозоль), т/год:

$$M^{a}_{\text{н.окр.}} = m_{\phi} * \delta_{a} * (100 - f_{p)} / 10^{4} * (1 - \eta), \text{т/год};$$

где: m_{ϕ} - фактический годовой расход ЛКМ (т);

 δ_a — доля краски, потерянной в виде аэрозоля (%мас.), что при пневматическом способе окраски составит — 30 % масс;

 f_p - доля летучей части растворителя в ЛКМ, (% масс.) -45 % масс. (табл.1)

 η — степень очистки воздуха газоочистным оборудованием (в долях единицы). Газоочистное оборудование не используется.

2) Летучих компонентов:

а) при окраске:

 $M_{\text{окр}}^{x} = m_{\phi} * f_{p} * \delta'_{p} * \delta_{x} / 10^{6}$, т/год,

где: δ'_p - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, 25 % масс;

 δ_{x} - содержание компонента "x" в летучей части ЛКМ , (%, масс), табличный материал;

б) при сушке:

$$M^{x}_{\text{суш.}} = m_{\phi} * f_{p} * \delta^{"}_{p} * \delta_{x}/10^{6}$$
, т/год

где: δ "р — доля растворителя в ЛКМ, выделившегося при сушке покрытия, 75 % масс .; δ_x - содержание компонента "x" в летучей части ЛКМ , (%, масс).

Общий валовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле:

$$M_{\text{общ}}^{x}=M_{\text{окр}}^{x}+M_{\text{суш.}}^{x}$$
 (см. табл.)

II. Расчет максимального разового выброса компонентов краски

3) Нелетучей (сухой) части (окрасочный аэрозоль), г/сек:

$$M^{a}_{H.0Kp.} = m_{M} * \delta a * (100-f_{p}) / 10^{4} * 3.6 * (1-\eta), \Gamma/cek$$

где: $m_{\scriptscriptstyle M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования (кг/час). Либо максимальная паспортная производительность;

 η – степень очистки воздуха газоочистным оборудованием (в долях единицы). Газоочистное оборудование не используется.

4) Летучих компонентов, г/сек:

а) при окраске:

$$M^{x}_{okp} = m_{\phi} * f_{p} * \delta'_{p} * \delta_{x} / 10^{6} * 3,6$$
, Γ/cek ,

где: $m_{\scriptscriptstyle M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования (кг/час) – 4,5 кг/час;

б) при сушке:

$$M_{\text{суш.}}^x = m_{\phi} * f_p * \delta''_p * \delta_x / 10^6 * 3.6$$
, г/сек

Общий максимальный разовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле:

$$\mathbf{M}^{\mathbf{x}}_{\mathbf{o}\mathbf{6}\mathbf{m}} = \mathbf{M}^{\mathbf{x}}_{\mathbf{o}\mathbf{\kappa}\mathbf{p}} + \mathbf{M}^{\mathbf{x}}_{\mathbf{c}\mathbf{v}\mathbf{m}}$$
 (см. табл).

Исходные данные для расчёта выбросов 3B в атмосферу при проведении покрасочных работ на площадке строительства приняты по материалам проекта и сведены в нижеследующую таблицу:

В таблице 1 приведены итоги расчета. В таблицах 2,3 приведены расчеты выбросов загрязняющих веществ. Расчет производится согласно марке, количеству и компонентному составу используемой краски, а также вида работ (грунтовка, покраска и шпатлевка).

Таблица 1

Наименование краски	тм, Расход краски т/год	Наименование ЗВ	m, г/сек	М, т/год
Грунтовка ГФ 021	0,003	окрасочный аэрозоль ксилол	0,009	0,0005 0,00104
Эмаль ПФ-115 пентафталевая	0,023	ксилол окрасочный аэрозоль	0,013	0,00518
1		уайт-спирит	0,013	0,00518

		спирт н-бутил	0,01	0,0244
		уайт-спирит	0,008	0,0202
Краска масляная Мл-158	0,14	окрасочный	·	,
		аэрозоль	0,009	0,0223
		ксилол	0,008	0,0212
		уайт спирит	0,001	0,000186
Лак БТ-99	0,0083	окрасочный		
Jian Di-77	0,0003	аэрозоль	0,007	0,0011
		ксилол	0,03	0,00446
		уайт-спирит	0,017	0,0456
Олифа (типа лак ПФ-170)	0,153	окрасочный		
	0,100	аэрозоль	0,008	0,023
		ксилол	0,011	0,031
	0,001	ацетон	0,014	0,00026
Растворитель Р-4		бутилацетат	0,007	0,00012
		толуол	0,034	0,00062
Уайт-спирит	0,0004	уайт-спирит	0,056	0,0004
Растворитель ксилол	0,001	ксилол	0,056	0,001
Растворитель керосин	0,005	керосин	0,056	0,005
К расчету:		окрасочный		
		аэрозоль	0,042	0,0507
		ксилол	0,137	0,06388
		ацетон	0,014	0,000
		спирт н бутиловый	0,01	0,0244
		толуол	0,034	0,00062
		уайт-спирит	0,095	0,071566
		бутилацетат	0,007	0,00012
		керосин	0,056	0,005
		Итого:	0,395	0,216546

Наименование краски	тм, Расход краски кг/час	ба	fp	η	Наименование 3В	δ' p	δx	δ"р	Ман.окр, г/сек	Мхокр, г/сек	Мхсуш., г/сек	Мхобщ, г/сек
Грунтовка ГФ 021	0,2	30	45	1	окрасочный аэрозоль				0,009			0,009
	0,2	30	45	1	ксилол	2	100	75	,	0,001	0,019	0,019
	0,2	30	45	1	ксилол	25	50	75		0,003	0,009	0,013
Эмаль ПФ-115 пентафталевая	0,2	30	45	1	окрасочный аэрозоль				0,009			0,009
	0,2	30	45	1	уайт-спирит	25	50	75		0,003	0,009	0,013
	0,2	30	47	1	спирт н-бутил	25	37,03	75		0,002	0,007	0,010
Краска масляная (типа Мл-	0,2	30	47	1	уайт-спирит	25	30,72	75		0,002	0,006	0,008
158)	0,2	30	47	1	окрасочный аэрозоль				0,009			0,009
	0,2	30	47	1	ксилол	25	32,25	75		0,002	0,006	0,008
	0,2	30	56	1	уайт спирит	25	4	75		0,000	0,001	0,001
Лак БТ-99	0,2	30	56	1	окрасочный аэрозоль				0,007			0,007
	0,2	30	56	1	ксилол	25	96	75		0,007	0,022	0,030
	0,2	30	50	1	уайт-спирит	25	59,56	75		0,004	0,012	0,017
Олифа (типа лак ПФ-170)	0,2	30	50	1	окрасочный аэрозоль				0,008			0,008
	0,2	30	50	1	ксилол	25	40,44	75		0,003	0,008	0,011
	0,2	30	100	1	ацетон	25	26	75		0,004	0,011	0,014
Растворитель Р-4	0,2	30	100	1	бутилацетат	25	12	75		0,002	0,005	0,007
	0,2	30	100	1	толуол	25	62	75		0,009	0,026	0,034
Уайт-спирит	0,2	30	100	1	уайт-спирит	25	100	75		0,014	0,042	0,056
Растворитель ксилол	0,2	30	100	1	ксилол	25	100	75		0,014	0,042	0,056
Керосин	0,2	30	100	1	бензин	25	100	75		0,014	0,042	0,056

Наименование краски	тм, Расход краски т/год	δa	fp	η	Наименование 3В	δ'p	δx	δ" p	Ман.окр, т/год	Мхокр, т/год	Мхсуш., т/год	Мхобщ, т/год
Грунтовка ГФ 021	0,003	30	45	1	окрасочный аэрозоль				0,0005			0,0005
	0,003	30	45	1	ксилол	2	100	75		0,0000	0,0010	0,00104
Эмаль ПФ-115 пентафталевая	0,023	30	45	1	ксилол	25	50	75		0,00129	0,00388	0,00518
	0,023	30	45	1	окрасочный аэрозоль				0,00380			0,00380
16 150	0,023	30	45	1	уайт-спирит	25	50	75		0,00129	0,00388	0,00518
Краска масляная Мл-158	0,14	30	47	1	спирт н-бутил	25	37,03	75		0,0061	0,0183	0,0244
	0,14	30	47	1	уайт-спирит	25	30,72	75		0,005	0,015	0,0202
	0,14	30	47	1	окрасочный аэрозоль				0,022			0,0223
	0,14	30	47	1	ксилол	25	32,25	75		0,005	0,016	0,0212
Лак БТ-99	0,0083	30	56	1	уайт спирит	25	4	75		0,00005	0,00014	0,000186
	0,0083	30	56	1	окрасочный аэрозоль				0,0011			0,00110
	0,0083	30	56	1	ксилол	25	96	75		0,0011	0,0033	0,00446
Олифа (типа лак ПФ-170)	0,153	30	50	1	уайт-спирит	25	59,56	75		0,0114	0,0342	0,0456
	0,153	30	50	1	окрасочный аэрозоль				0,023			0,0230
	0,153	30	50	1	ксилол	25	40,44	75		0,008	0,023	0,031
Растворитель Р-4	0,001	30	100	1	ацетон	25	26	75		0,000	0,000	0,00026
	0,001	30	100	1	бутилацетат	25	12	75		0,000	0,000	0,00012
	0,001	30	100	1	толуол	25	62	75		0,000	0,000	0,00062
Уайт-спирит	0,0004	30	100	1	уайт-спирит	25	100	75		0,0001	0,000	0,0004
Растворитель ксилол	0,001	30	100	1	ксилол	25	100	75		0,0003	0,001	0,0010
Растворитель керосин	0,005	30	100	1	керосин	25	100	75		0,001	0,004	0,005

Источник №6011 Пыление при работе бульдозера

Работа бульдозера –26716 куб.м

r doord o	ульдозера –26/16 куо.м				Ед.			
п.п.	Наиенование		Обозн	ачение	изм.	Кол-во		
1	Исходные данные:							
	Производительность узла пер	ресыпки		G	т/час	152,93		
	•			13,50	м3/час	13,50		
	Объем грунта		-	V	T	44349		
	-				м3	26716		
	Время работы бульдозе	pa		t	час/год	290		
	Расчет:	•						
	Объем пылевыделения,	где:		Q	г/с	0,06117		
Q=K1*K2*K3*K4*K5*K7*B*G*1000000/3600*(1-n), г/сек; М=K1*K2*K3*K4*K5*K7*B*G*1000000/3600*(1-n), т/год								
	Вес. доля пыл. фракции в ма			Κ1		0,05		
	Доля пыли переходщая в аэ	розоль	F	Κ2		0,02		
	Коэф. Учитывающий метеоу		F	K 3		1,2		
	Коэф учит. Местные усло	ВИЯ	F	ζ4		1		
	Коэф. Учит влажность мате	ериала	H	ζ5		0,01		
	Коэф. Учит. Крупность мат	ериала	F	ζ7		0,6		
	Коэф.учит.высоту пересь	ІПКИ		В		0,4		
	Эффект пылеподавлен	ия		n		0,5		
	Общее пылевыделени	e]	M	т/год	0,06386		
	Методика расчета нормативов выбросов от неорганизованных источников							
	(Приложение №8 к прі	_	_					

Источник №6012 Пыление при работе экскаватора

Разработка грунта экскаватором –27966 куб.м

п.		Обозначени	И	
п.	Наименование	e	Ед. изм.	Кол-во
1	Исходные данные:			
		G	т/час	42,94
	Производительность узла пересыпки	U	м3/час	26,8
	Объем грунта	V	T	47542,2
			м3/год	27966
	Время работы экскаватора	t	час/год	1042
	Расчет:			
	Объем пылевыделения, где:	Q	г/с	0,01718
	Q=P1*P2*P3*P4*P5*P6*	B*G*100000	0/3600*(1-n)	
	Вес. доля пыл. фракции в материале	P1		0,05
	Доля пыли переходщая в аэрозоль	P2		0,02
	Коэф. Учитывающий метеоусловия	Р3		1,2
	Коэф учит. Местные условия	P6		1
	Коэф. Учит влажность материала	P4		0,01
	Коэф. Учит. Крупность материала	P5		0,6
	Коэф.учит.высоту пересыпки	В		0,4

Эффект пылеподавления	n		0,5					
Общее пылевыделение	M	т/год	0,0644					
Методика расчета нормативов выбросов от неорганизованных источников								
(Приложение №8 к приказу МОС иВР РК от 12.06.2014.г.№ 221-о)								

Источник №6013 Разработка грунта вручную

п.п.	Наименование	Обозначение	Ед. изм.	Кол-во				
1	Исходные данные:							
	Производительность узла							
	пересыпки	G	т/час	9,40				
		5,53	м3/час	5,53				
	Объем грунта	V	т/год	3003,9				
			м3/год	1767				
	Время работы	t	час/год	319,5				
	Расчет:							
	Объем пылевыделения, где:	Q	г/с	0,00376				
	Q=K1*K2*K3*K4*K5*K M=K1*K2*K3*K4*K5*I							
	Вес. доля пыл. фракции в							
	материале	К1		0,05				
	Доля пыли переходщая в аэрозоль	К2		0,02				
	Коэф. Учитывающий метеоусловия	К3		1,2				
	Коэф учит. Местные условия	К4		1				
	Коэф. Учит влажность материала	К5		0,01				
	Коэф. Учит. Крупность материала	К7		0,6				
	Коэф.учит.высоту пересыпки	В		0,4				
	Эффект пылеподавления	n		0,5				
	Общее пылевыделение	M	т/год	0,00433				
	Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу МОС иВР РК от 12.06.2014.г.№ 221-о)							

Источник №6014 Отвал коренного грунта

Количество грунта подаваемого экскаватором на отвал для временного хранения = 27966 куб.м

1	Исходные данные:				Результат
	Площадь отвала	S	м2	3052,8	
	Объем породы транспортируемой на отвал	Qo	м3/год	27966	
	Объем породы, подаваемой на отвал за 1 час	Qч	м3/час	46,4	
	Расчет:				
1	Масса вредных веществ, образующихся на отвалах (ф-ла 7.1.)				
	М ао=Мву+Мсот*S (т/год)	Mao	т/год		0,37799
2	Масса твердых частиц, выделяющихся в зоне выгрузки и укладки пород (ф-ла 7.2)	Мву	т/год		0,0013
	Мву=(qуд.в+qуд.ск)*Qо*К1*К2/10000000				

Уд. Выделение тв. Частиц с 1т породы, выгружаемой их транспортного средства				
(табл.17)	д уд.в	г/м3	3,1	
Уд. Выделение тв. Частиц с 1т породы,				
складируемой в отвал (табл.17)	дуд.ск	г/м3	3,1	
Коэф. Учитывающий скорость ветра	К1		1,2	
Коэф. учитывающий влажность материала	К2		0,1	
Максимально-разовый выброс ВВ на				
отвале в зоне выгрузки и складирования				
пород (ф-ла 7.4.)				
Мву=(qуд.в+qуд.ск)*Qч*К1*К2/3600	Max	-/-		
15/2011)	Мву	г/с		0,00959
Масса твердых частиц, сдуваемых с 1 м2	MBy	170		0,00959
	IVIBY	170		
Масса твердых частиц, сдуваемых с 1 м2	Мсот	т/год		0,00959
Масса твердых частиц, сдуваемых с 1 м2 свежеотсыпанного отвала (ф-ла 7.6.)				
Масса твердых частиц, сдуваемых с 1 м2 свежеотсыпанного отвала (ф-ла 7.6.) Мсот=86,4*qo*(365-Tc)*К1/1000000000				
Масса твердых частиц, сдуваемых с 1 м2 свежеотсыпанного отвала (ф-ла 7.6.) Мсот=86,4*qo*(365-Tc)*K1/1000000000 Удельная сдуваемость тв. Частиц с пылящей			3,7	
Масса твердых частиц, сдуваемых с 1 м2 свежеотсыпанного отвала (ф-ла 7.6.) Мсот=86,4*qo*(365-Tc)*К1/1000000000 Удельная сдуваемость тв. Частиц с пылящей поверхности свежеотсыпанного отвала	Мсот	т/год	3,7	

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу МОС иВР РК от 12.06.2014.г.№ 221-о)

Источник №6015 Отвал растительного грунта

-Количество растительного грунта подаваемого бульдозером на отвал для временного хранения = 763,2 куб.м

	= 763,2 куб.м					
п • п		Обозна	Ед.			
•	Наименование	чение	изм.	Кол-во	Расчет	Результат
1	Исходные данные:					
	Площадь отвала	S	м2	763,2		
	Объем породы транспортируемой на отвал	Qo	м3/год	763,2		
	Объем породы, подаваемой на отвал за 1 час	Qч	м3/час	13,5		
	Расчет:					
1	Масса вредных веществ, образующихся на отвалах (ф-ла 7.1.)					
1	М ао=Мву+Мсот*S (т/год)	Mao	т/год			0,0723
2	Масса твердых частиц, выделяющихся в зоне выгрузки и укладки пород (ф-ла 7.2)	Мву	т/год			0,0001
	Мву=(qуд.в+qуд.ск)*Qо*К1*К2 /1000000					
	Уд. Выделение тв. Частиц с 1т					
	породы, выгружаемой их транспортного средства (табл.17)	q уд.в	г/м3	3,1		
	Уд. Выделение тв. Частиц с 1т породы, складируемой в отвал					
	(табл.17)	дуд.ск	г/м3	3,1		

Коэф. Учитывающий с	корость			
ветра	K1		1,2	
Коэф. учитывающий вла				
материала	K2		0,1	
Максимально-разовый	*			
ВВ на отвале в зоне выг	рузки и			
складирования пород (ф				
Мву=(qуд.в+qуд.ск)*Qч	*K1*K2/			
3600	Мву	г/с		0,00279
Масса твердых част	гиц,			
сдуваемых с 1 м2	2			
свежеотсыпанного отва.	ла (ф-ла			
7.6.) Мсот=86,4*qо	*(365-			
Tc)*K1/10000000	00 Mco	г т/год		0,0001
Удельная сдуваемость тв	в. Частиц			
с пылящей поверхно	ости			
свежеотсыпанного от	гвала	мг/м2		
(таб2.1.)	qo	*c	3,7	
Годовое количество,	дне с			
устойчивым снежным п	окровом Тс	дн.	120	

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу МОС иВР РК от 12.06.2014.г.№ 221-о)

Источник № 6016 Рекультивация. Срезка ПСП с перемещением в отвалы бульдозером

Расчет произведен с учетом запроектированного времени работы техники и на основе Приложения № 3 к приказу Министра охраны окружающей среды РК от 18.04.2008 года № 100-п «Методика расчета

выбросов загрязняющих веществ от автотранспортных предприятий». N_0N_0 Ед. изм. Наименование Обознач. Кол-во Π/Π Исходные данные: 1. 1.1. 0.075 Производительность работ G т/час 1.2. 1,0 Высота пересыпки M 1.3. Коэффициент, учит. высоту пересыпки В 0,5 Количество переработанного грунта 2,7 1.4. T 1.5. Влажность материала % >10 1.6. 36,0 Время работы час/период t рекультивации 1.7. Вес доля пыл. фракции в материале K_1 0.05 1.8. 0,02 Доля пыли, переходящая в аэрозоль K_2 1.9. Коэффициент, учитывающий метеоусловия 1.4 K_3 1.10. Коэффициент, учитывающий местные условия 0,5 K_4 1.11. Коэффициент, учитывающий влажность K_5 0,1 материала 1.12. Коэффициент, учитывающий крупность К7 0,8 материала 2. Расчет: 2.1. Выброс пыли определяется по формуле: 0,0015 M_1 г/с $M_1 = K_1 * K_2 * K_3 * K_4 * K_5 * K_7 * B * G * 10^6 / 3600$ 0,0001945 M_2 т/на период рекультивации

Источник № 6017 Рекультивация. Нанесение ПСП бульдозером

Расчет произведен с учетом запроектированного времени работы техники и на основе Приложения № 3 к приказу Министра охраны окружающей среды РК от 18.04.2008 года № 100-п «Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий».

N_0N_0	Наименование	Обознач.	Ед. изм.	Кол-во
п/п				
1.	Исходные да	нные:		
1.1.	Производительность работ	G	т/час	0,037
1.2.	Высота пересыпки		M	1,0
1.3.	Коэффициент, учит. высоту пересыпки	В		0,5
1.4.	Количество переработанного грунта		T	1,351
1.5.	Влажность материала		%	>10
1.6.	Время работы	t	час/период	36,5
			рекультивации	
1.7.	Вес доля пыл. фракции в материале	K ₁		0,05
1.8.	Доля пыли переходящая в аэрозоль	K ₂		0,02
1.9.	Коэффициент, учитывающий метеоусловия	К3		1,4
1.10.	Коэффициент, учитывающий местные условия	K ₄		0,5
1.11.	Коэффициент, учитывающий влажность материала	K ₅		0,1
1.12.	Коэффициент, учитывающий крупность материала	К ₇		0,8
2.	Расчет:			
2.1.	Выброс пыли определяется по формуле:	M_1	г/с	0,001
	$M_1=K_1*K_2*K_3*K_4*K_5*K_7*B*G*10^6/3600$	M_2	т/на период	0,0001
			рекультивации	

Источник № 6018 Пыление при направленном бурении (ГНБ)

п.п.	Наиенование	Обозначение	Ед. изм.	Кол- во	Расчет	Результат
1	Исходные данные:					
	Количество машин	n	ШТ	1		
	Количество пыли выделяемое при					
	бурении	Z	г/час	2304		
			г/сек	0,64		
	Эффективность системы пылеочистки на участке			0.05		
	строительства	η		0,85		
	Общее время работы машин	t	час/год	36		
	Расчет:					
	Объем пылевыделения					
		Мпыль сек	г/сек		Мсек=n*z(1-η)/3600, г/с	0,096
	Общее пылевыделение					
		Мпыль год	т/год		Мсек*t*3600/1000000	0,01244
	Методика расче	га нормативов вь	ібросов от н	неорганизо	ованных источников	
		е №8 к приказу N				

Источник № 6019- Емкость для нагрева битума

Материал	Кол-во	Ед.измерения
Мастика	0,202	Т
Битум	1,818	Т

Расчет выбросов 3В произведен согласно РНД 211.2.02.09-2004 г. "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров". Астана, 2005 г.

Исходные данные	Обозначения	ед.изм	Кол-во
-----------------	-------------	--------	--------

Количество битума	В	т/год	2,02
Плотность битума	рж	т/м3	0,95
Молекулярная масса битума	m		187
Опытные коэффициенты			
(Прил.8)	Kpmax		0,87
	Крср		0,61
Прил.9	Кв		1
Коэффициент оборачиваемости			
(Прил.10)	Коб		2,5
Давление насыщенных паров	Pti min	мм.рт.ст	38,69
при миним. Темп-ре жидкости			
Давление насыщенных паров	Pti max	мм.рт.ст	70,91
при макс. Темп-ре жидкости			
Миним. Темп-ра жидкости	tж min	С	160
Макс. Темп-ра жидкости	tж max	С	180
Макс. Объем паровоздушной смеси	Vч max	м3/час	2

Расчет выбросов УВ производится по формулам 5.4.1 и 5.4.2

Максимальный выброс, г/с
$$M=$$

$$\frac{0,445*Pt*m*Kpmax*KB*Vчmax}{100*(273+tж max)} M= 0,226652$$

$$\frac{0,16*(Pti max*KB+Pti min)*m*Kpcp*Koб*B}{10000*px*(546*+tж max+tж min)}$$

G= 0,0012

Итоговые выбросы ЗВ от источника № 6019

Код	Примесь	г/с	т/год
2754	Углеводороды С12-С19	0,22665	0,0012

Источник №6020 Уплотнение грунта трамбовками

При уплотнение грунта применяются трамбовки и виброплиты, объем грунта подлежащего

уплотнению составляет 2671	6 куб.м.				
Наименование	Обозначение	Ед. изм.	Кол- во	Расчет	Результат
Исходные данные:					
Количество машин					
одновременно	n	ШТ	1		
Количество пыли выделяемое при бурении Эффективность системы пылеочистки на участке строительства	z	г/час	360		
Время работы	t	час/год	3614		
Расчет:	2909 Пыль	неорганиче	ская с сод	ержанием диоксида кремния м	енее 20 %
Объем пылевыделения					
	Мпыль сек	г/сек		Мсек=n*z(1-η)/3600, г/с	0,015

Общее пылевыделение				
	Мпыль год	т/год	Мгод=Мсек*t*3600/1000000	0,195

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу МОС иВР РК от 12.06.2014.г.№ 221-о)