РП «Газификация г. Астана. III очередь строительства. Газификация ж.м. «Family Village». Корректировка». Пусковой комплекс-3.

Расчет объемов выбросов загрязняющих веществ на период эксплуатации

Источник № 0001-0012 Слив с конденсатосборника объемом 0,025 м³ (залповый)

Наименование источника					
выброса	Н, м	d, M	W,	V,	t, ⁰ C
			м/сек	м³/сек	
Патрубок	2	0,032			30

Расчет проведён согласно «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров». РНД 211.2.02.09-2004. Астана, 2004.

Максимально возможный годовой объем слива составляет 0,24 м³, при условии заполнения емкости на 80% для сброса на свечу и максимально возможное количество 12 раз/год.

Максимальные (разовые) выбросы из конденсатосборника рассчитываются по формуле:

$$\mathbf{M} = \frac{(\mathbf{Cmax} \mathbf{p} * \mathbf{V} \mathbf{c} \mathbf{J})}{\mathbf{t}} \mathbf{r/c}$$

где: $V_{\text{сл}}$ - максимально разово возможный объем слитого конденсата (м³) из технологического оборудования;

 C_p^{max} - максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров, в зависимости от их конструкции и климатической зоны;

t— время слива заданного объёма (V_{cn}) конденсата, приведённое к 20-минутному интервалу времени, с.

M = (580 * 1) / (1200) = 0.483 r/c.

Годовые выбросы (G) от конденсатосборника:

Значение G вычисляется по формуле:

$$G = (C_p^{o3} * Q_{o3} * C_p^{en} * Q_{en}) * 10^{-6}, \text{т/год}$$

Где C_p^{o3} , C_p^{en} - концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний и весенне-летний период соответственно, г/м³ (согласно Приложения 15).

Qвл, Qоз – объём слитого конденсата в весенне-летний и осенне-зимний период года соответственно.

$$G = (260,4 * 0,12 + 308,5 * 0,12) * 10^{-6} = 0,00007$$
 т/год.

Расчет выбросов сероводорода и смеси природных меркаптанов

Компонентный состав природного газа принят по данным Паспорта на газ АО «Интергаз Центральная Азия» № 22-02 от 15.02.2021 г. АГРС Астана-1 МГ Сары-Арка. Содержание сероводорода и меркаптановой серы принято согласно СТ РК 1666-2007, $0,007~\text{г/м}^3$ и $0,016~\text{г/m}^3$ соответственно.

Массовая концентрация сероводорода $q=0,007 \text{ г/м}^3$;

Массовая концентрация меркаптанов q=0,016 г/м³.

$$m = V* q/t$$
, r/cek $M= V* q/10^6$, m/20d

Расчёт максимально разовых и валовых выбросов углеводородов в соответствии с составом газа

Наименование	Доля	г/с	12 paз*т/год
Метан	0,8941	0,432	0,0000626
Углеводороды (С1-С5)	0,008368	0,04042	0,00000059

Углеводороды (С6-С10)	0,00013	0,000063	0,0000000091
Сероводород	-	0,0000012	0,000000002
Смесь природных	-	0,0000027	0,000000004
меркаптанов			

Данный источник выброса – является залповым.

Залповые выбросы - это кратковременные выбросы, во много раз превышающие по мощности средние выбросы производства. Залповые выбросы подлежат нормированию, но согласно пункта 19 Методики определения нормативов эмиссий в окружающую среду, утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 производить расчеты рассеивания вредных веществ в данном случае не целесообразно.

Источник №0013-0020 Технологическое стравливание при обслуживании ГРПШ-6

Наименование	Параметры источника выбросов								
источника выброса	Н, м	d, M	W, м/сек	V, м³/сек	t, ºC				
Свеча	3,0	0,020	16,16	0,013	40				

Нормы расходов газа рассчитаны методике [1].

В соответствии с примечанием к п. 2.3 РНД 211.2.01.01-97 (ОНД-86) для выбросов, продолжительность которых меньше 20 мин., значение мощности М (г/с) определено следующим образом: M=Q/1200 (г/с), где Q - суммарная масса 3B, выброшенная в атмосферу, 1200 (с) - 20-минутный интервал времени.

Количество газа, стравливаемое в атмосферу, при остановке и разгрузке одного компрессора:

$$V_{\it cmp} = \frac{V_{\it K} * \it Pa * \it T_0}{\it P_0 * \it Z * \it T_a} \qquad \rat{\it \Gamma_Ae}$$
 V_k – геометрический объём, м 3 ;

 P_0 , T_0 – атмосферное давление (МПа) и температура газа при нормальных условиях (K);

 P_a , T_a — давление (МПа) и температура (К) в оборудовании;

Z – коэффициент сжимаемости газа.

ρ- плотность газа.

Максимально разовые выбросы газа т (г/с), приведённые к 20 минутам, определяются по формуле:

$$\mathbf{m} = V_{cmp} * \mathbf{\rho} * \mathbf{1000} / \mathbf{t}$$

Валовые выбросы в год:

 $M = V * \rho / 1000.$

Максимально разовые выбросы углеводородов тсх-су (г/с), приведённые к 20 минутам, определяются по формуле:

$$\mathbf{m}_{\mathbf{Cx-Cy}} = \mathbf{m} * /i _{\mathbf{Cx-Cy}} / ,$$
 где

 $[i_{\text{Cx-Cy}}]$ - доля углеводородов в общем объеме газа.

Валовые выбросы углеводородов M_{Cx-Cy} (т/год):

$$MCx-Cy = M * /i Cx-Cy/.$$

Расчёт затрат газа при остановке и разгрузке одного компрессора

Обозначение	V_k	Po	To,	Pa,	Ta,	Z,	Vcmp	ρ	t	m	M
Ед.изм.	м3	МПа	К	МΠа	К	ı	м3	$\kappa\Gamma/M^3$	С	г/с	т/год
Значение	0,1	0,003	293	0,3	288	0,9	11	0,7415	600	13,8539	0,0083

Компонентный состав природного газа принят по данным Паспорта на газ АО «Интергаз Центральная Азия» № 22-02 от 15.02.2021 г. АГРС Астана-1 МГ Сары-Арка. Содержание сероводорода и меркаптановой серы принято согласно СТ РК 1666-2007, 0,007 г/м³ и 0,016 г/м³ соответственно.

Расчет выбросов сероводорода и смеси природных меркаптанов

Массовая концентрация сероводорода q=0.007 г/м³;

Массовая концентрация меркаптанов q=0,016 г/м³.

$$m = V_{crp} * q/t, \Gamma/ce\kappa$$

$$M=V_{cmp}*q/10^6$$
, $m/20\partial$

Исходя из опыта эксплуатации компрессорных станций и проектных решений в расчёте принято, стравливание с ГРПШ будет происходить 12 раз. Максимально возможный годовой объем стравливания составляет 132 м³. Тогда:

Расчёт максимально разовых и валовых выбросов углеводородов в соответствии с составом газа

Наименование	Доля	г/с	12 paз*т/год
Метан	0,8941	12,387	0,0892
Углеводороды (С1-С5)	0,08368	1,159	0,0083
Углеводороды (С6-С10)	0,00013	0,0018	0,000013
Сероводород	-	0,00013	0,00094
Смесь природных меркаптанов	-	0,00030	0,000002

Данный источник выброса – является залповым.

Залповые выбросы - это кратковременные выбросы, во много раз превышающие по мощности средние выбросы производства. Залповые выбросы подлежат нормированию, но согласно пункта 19 Методики определения нормативов эмиссий в окружающую среду, утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 производить расчеты рассеивания вредных веществ в данном случае не целесообразно.

Источник №0021-0135 Технологическое стравливание при обслуживании ГРПШ-10

Наименование	Параметры источника выбросов								
источника выброса	Н, м	d, m	W, м/сек	V, м³/сек	t, ºC				
Свеча	3,0	0,020	16,16	0,013	40				

Нормы расходов газа рассчитаны методике [1].

В соответствии с примечанием к п. 2.3 РНД 211.2.01.01-97 (ОНД-86) для выбросов, продолжительность которых меньше 20 мин., значение мощности М (г/с) определено следующим образом: M=Q/1200 (г/с), где Q - суммарная масса 3B, выброшенная в атмосферу, 1200 (с) - 20-минутный интервал времени.

Количество газа, стравливаемое в атмосферу, при остановке и разгрузке одного компрессора:

$$V_{\it cmp} = \frac{V_{\it K} * \it Pa * \it T_0}{\it P_0 * \it Z * \it T_a} \qquad$$
 rде
 V_k – геометрический объём, м 3 ;

 P_0 , T_0 – атмосферное давление (МПа) и температура газа при нормальных условиях (K);

 P_a , T_a — давление (МПа) и температура (К) в оборудовании;

Z – коэффициент сжимаемости газа.

ρ- плотность газа.

Максимально разовые выбросы газа m (Γ /c), приведённые к 20 минутам, определяются по формуле:

$$m = V_{cmp} * \rho * 1000 / t$$

Валовые выбросы в год:

$$M = V * \rho / 1000$$
.

Максимально разовые выбросы углеводородов m_{Cx-Cy} (г/с), приведённые к 20 минутам, определяются по формуле:

$$\mathbf{m}_{\mathrm{Cx-Cy}} = \mathbf{m} * /i _{\mathrm{Cx-Cy}} /$$
, где

 $[i_{\text{Cx-Cy}}]$ - доля углеводородов в общем объеме газа.

Валовые выбросы углеводородов M_{Cx-Cy} (т/год):

$$MCx-Cy = M * [i Cx-Cy].$$

Расчёт затрат газа при остановке и разгрузке одного компрессора

Обозначение	V_k	Po	To,	Pa,	Ta,	Z,	Vcmp	ρ	t	m	M
Ед.изм.	м3	МПа	К	МΠа	К	-	м3	$\kappa\Gamma/M^3$	c	г/с	т/год
Значение	0,1	0,003	293	0,3	288	0,9	11	0,7415	600	13,8539	0,0083

Компонентный состав природного газа принят по данным Паспорта на газ АО «Интергаз Центральная Азия» № 22-02 от 15.02.2021 г. АГРС Астана-1 МГ Сары-Арка. Содержание сероводорода и меркаптановой серы принято согласно СТ РК 1666-2007, 0,007 г/м 3 и 0,016 г/м 3 соответственно.

Расчет выбросов сероводорода и смеси природных меркаптанов

Массовая концентрация сероводорода $q=0,007 \text{ г/м}^3$;

Массовая концентрация меркаптанов $q=0.016 \text{ г/м}^3$.

$$m = V_{crp} * q/t$$
, $r/ce\kappa$

$$M = V_{cmp} * q/10^6, m/200$$

Исходя из опыта эксплуатации компрессорных станций и проектных решений в расчёте принято, стравливание с ГРПШ будет происходить 12 раз. Максимально возможный годовой объем стравливания составляет 132 м³. Тогда:

Расчёт максимально разовых и валовых выбросов углеводородов в соответствии с составом газа

Наименование	Доля	г/с	12 paз*т/год
Метан	0,8941	12,387	0,0892
Углеводороды (С1-С5)	0,08368	1,159	0,0083
Углеводороды (С6-С10)	0,00013	0,0018	0,000013
Сероводород	-	0,00013	0,00094
Смесь природных меркаптанов	-	0,00030	0,000002

Данный источник выброса – является залповым.

Залповые выбросы - это кратковременные выбросы, во много раз превышающие по мощности средние выбросы производства. Залповые выбросы подлежат нормированию, но согласно пункта 19 Методики определения нормативов эмиссий в окружающую среду, утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 производить расчеты рассеивания вредных веществ в данном случае не целесообразно.