

ПРОЕКТ ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

для действующего предприятия

TOO «KazBeef Ltd» расположенного в Акмолинской области, район им. Биржан Сал, с. Мамай

«Согласован» Директор TOO «KazBeef LTD» Aŭcabaeba E.E.

Индивидуальный предприниматель

Иваненко А.А.

г. Кокшетау

СПИСОК ИСПОЛНИТЕЛЕЙ ПРОЕКТА

АННОТАЦИЯ

Основная цель Отчета о возможных воздействиях — определение экологических и иных последствий вариантов, принимаемых управленческих и хозяйственных решений, разработка рекомендаций по оздоровлению окружающей среды, предотвращение уничтожения, деградации, повреждения и истощения естественных экологических систем и природных ресурсов.

Отчет о возможных воздействиях выполнен в соответствии с Экологическим кодексом Республики Казахстан от 2 января 2021 года № 400-VI, "Инструкцией по организации и проведению экологической оценки", утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 и другими действующими в республике нормативными и методическими документами.

В проекте определены предварительные нормативы предельно-допустимых эмиссий: проведена предварительная оценка воздействия объекта на атмосферный воздух: выполнены расчеты выбросов загрязняющих веществ в атмосферный воздух от источников загрязнения, обоснование санитарно-защитной зоны объекта, расчет рассеивания приземных концентраций; приводятся данные по водопотреблению и водоотведению; предварительные нормативы по отходам, образующиеся в период проведения работ; произведена предварительная оценка воздействия на поверхностные и подземные воды, на почвы, растительный и животный мир; описаны социальные аспекты воздействия при проведении работ.

Согласно Решению по определении категории объекта выданным РГУ «Департамент экологии по Акмолинской области» от 22.12.2021 года данный объект отнесен к 2 категории.

На территории площадки на период эксплуатации объекта имеется 67 неорганизованных источника выброса и 18 организованных источника выброса загрязняющих веществ в атмосферу.

В выбросах в атмосферу на период эксплуатации объекта содержится 39 загрязняющих вещества: железо оксид, марганец и его соединения, кальций дигидроксид, азот диоксид, аммиак, азот оксид, серная кислота, углерод, сера диоксид, сероводород, углерод оксид, фтористые газообразные соединения, бутан, метан, смесь углеводородов предельных С1-С5, смесь углеводородов предельных С6-С10, пентилены, бензол, диметилбензол, метилбензол, этилбензол, метанол, гидроксибензол, этилформиат, пропаналь, гексановая кислота, диметисульфид, метантиол, метиламин, уайт-спирит, алканы С12-19, бензин, керосн, взвешенные частицы, пыль неорганическая: 70-20% SiO², пыль неорганическая менее 20% двуокиси кремния, пыль меховая, пыль абразивная, пыль зерновая.

Общий валовый выброс загрязняющих веществ на период эксплуатации с учетом передвижных источников составит – 82,82778582362 т/г, без учета передвижных источников составит - 72.5677633636 т/г.

Содержание

	описок исполнителей	1
	СПИСОК ИСПОЛНИТЕЛЕЙ	2
	Аннотация	3
1	Содержание	4
1	Введение	7
2	Описание предпологаемого места осуществления намечаемой деятельности	8
	Рисунок 1. Обзорная карта — схема расположения объектов	10
	Рисунок 2. Ситуационная карта –схема с нанесенными на нее источниками выбросов в	12
2.5	атмосферу на период эксплуатации	1.5
2.5	Описание изменений окружающей среды, которые могут произойти в случае отказа от начала намечаемой деятельности	15
2.6	Информация о категории земель и целях использования земель в ходе строительства и	16
	эксплуатации объектов, необходимых для осуществления намечаемой деятельности	
2.7	Описание работ по постутилизации существующих зданий, строений, сооружений, оборудования и способов их выполнени	16
2.8	Информация о показателях объектов, необходимых для осуществления намечаемой деятельности	16
3	Оценка воздействий на состояние атмосферного воздуха	28
3.1	Краткая характеристика физико-географических и климатических условий района расположения	28
3.1	производного объекта	20
	Метеорологические характеристики и коэффициенты, определяющие условия рассеивания	29
	ЗВ в атмосфере	
4	Ожидаемые виды эмиссий в окружающую среду, характеристика и количество	20
4.1.	Краткая характеристика технологии производства и технологического оборудования на период	31
	эксплуатации	
4.2	Перечень загрязняющих веществ, выбрасываемых в атмосферу	46
4.3.1	Параметры выбросов загрязняющих веществ в атмосферу	46
	Таблица 4.2.1 Перечень загрязняющих веществ, выбрасываемых атмосферу на период	47
	строительства	
	Таблица 4.3.1.1 Параметры выбросов загрязняющих веществ в атмосферу на период	50
	строительства	
4.4	Границы области воздействия	106
4.5	Мероприятия по благоустройству и озеленению СЗЗ	108
5	Расчет и анализ приземных концентраций загрязняющих веществ в атмосфере	109
5.1	Общие положения	109
5.2	Анализ результатов расчета загрязнения атмосферы вредными веществами	110
5.3	Мероприятия по предотвращению и снижению негативного воздействия на атмосферный воздух	183
	Таблица 5.2.2-5.2.3 Перечень источников, дающих наибольшие вклады в уровень загрязнения на	185
	период эксплуатации	
	Таблица 5.2.4 Нормативы выбросов загрязняющих веществ	194
5.4	Методы и средства контроля за состоянием воздушного бассейна	208
	Таблица 5.4.1 План-график контроля на объекте за соблюдением нормативов выбросов	210
5.5	Оценка ожидаемого воздействия на воды	227
5.5.1	Воздействие на поверхностные и подземные воды	228
5.5.2	Мероприятия по снижению воздействия на водные объекты	228
5.5.3	Методы и средства контроля за состоянием водных объектов	228
5.5.4	Общие выводы	228
5.6	Оценка ожидаемого воздействия на недра	228
5.7	Оценка ожидаемого воздействия на земельные ресурсы и почвы	229
5.7.1	Условия землепользования	229
5.7.2	Мероприятия по снижению воздействия на земельные ресурсы и почвы	229
5.7.3	Методы и средства контроля за состоянием земельных ресурсов и почв	230
5.7.4	Общие выводы	230
5.8	Оценка ожидаемых физических воздействий на окружающую среду	230
5.9	Оценка ожидаемого воздействия на растительный и животный мир	232
5.10	Оценка ожидаемого воздействия на социально-экономическую среду	233
6	Информация об ожидаемых видах, характеристиках и количестве отходов, которые будут	234
U	оборазованы в ходе строительства и эксплуатации объектов в рамках намечаемой	234
	деятельности, в том числе отходов	
6.1	Общие сведения	234
6.2		241
0.2	Управление отходами	441

6.3	Мероприятия по предотвращению загрязнения окружающей среды отходами производства и потребления	244
6.4	Общие выводы	244
7	Описание затрагиваемой территории и участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой деятельности на окружающую среду, участков извлечения природных ресурсов и захоронения отходов	246
8	Описание возможных вариантов осуществления намечаемой деятельности	247
8.1	Отсутствие возможных нарушений прав и законных интересов населения затрагиваемой территории в результате осуществления намечаемой деятельности по данному варианту	248
9	Информация о компонентах природной среды и иных объектах, которые могут быть подвержены существенным воздействиям намечаемой деятельности	249
9.1	Жизнь и здоровье людей, условия их проживания и деятельности	249
9.2	Биоразнообразие	249
9.3	Земли и почвы	249
9.4	Воды	250
9.5	Атмосферный воздух	250
9.6	Сопротивляемость к изменению климата экологических и социально-экономических систем	250
9.7	Материальные активы, объекты историко-культурного наследия	250
9.8	Взаимодействие затрагиваемых компонентов	250
10	Описание возможных существенных воздействий (прямых и косвенных, кумулятивных, трансграничных, краткострочных и долгосрочных, положительных и отрицательных) намечаемой деятельности на компоненты окружающей среды и иные объекты	251
11	Обоснование предельных количественных и качественных показателей, физических воздействий на окружающую среду, выбора операций по управлению отходами	253
11.1	Обоснование предельных количественных и качественных показателей эмиссий в атмосферный воздух	253
11.2	Физическое воздействие	254
11.3	Выбор операций по управлению отходами	254
12	Обоснование предельного количества накопления отходов по их видам	256
13	Обоснование предельных объемов захоронения отходов	263
14	Информация об определении вероятности возникновения аварий и опасных природных явлений, описание возможных существенных вредных воздействий на окружающую среду, связанных с рисками возникновения аварий и опасных природных явлений	264
14.1	Вероятность возникновения аварийных ситуаций	264
14.2	Мероприятия по предотвращению, локализации и ликвидации возможных аварийных ситуаций	265
14.3	Ответственность за нарушение законодательства в области чрезвычайных ситуаций природного и техногенного характера	265
14.4	Возмещение ущерба, причиненного вследствие чрезвычайных ситуаций природного и техногенного характера	266
14.5	Экстренная медицинская помощь при ликвидации чрезвычайных ситуаций природного и техногенного характера	266
15	Описание предусматриваемых для периодов строительства и эксплуатации объекта мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду	267
15.1	Комплекс мероприятий по уменьшению выбросов в атмосферу	267
15.2	Мероприятия по охране недр и подземных вод	268
15.3	Мероприятия по предотвращению и смягчению воздействия отходов на окружающую среду	268
15.4 15.5	Мероприятия по снижению физических воздействий на окружающую среду Мероприятия по охране почвенного покрова	269 269
15.6	Мероприятия по охране растительного покрова	270
15.7	Мероприятия по охране животного мира	270
16	Цели, масштабы и сроки проведения послепроектного анализа	271
17	Оценка возможных необратимых воздействий на окружающую среду	272
18	Способы и меры восстановления окружающей среды по случаю прекращения намечаемой деятельности	273
19	Описание методологии исследований и сведения об источниках экологической информации, использованной при составлении отчета о возможных воздействиях	274
20	Трудности при проведении исследований	276
21	Краткое нетехническое резюме	277
	Приложения	

2	Письмо РГП «Казгидромет» о прогнозируемых НМУ	416
3	Копия лицензии ИП Иваненко А.А.	417
4	Заключение об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействия намечаемой деятельности	419
5	План мероприятий по охране окружающей среды и план по управлению отходами	427

1. ВВЕДЕНИЕ

В Отчете о возможных воздействиях определяются потенциально возможные направления изменений в компонентах окружающей и социально-экономической среды и вызываемых ими последствий в жизни общества и окружающей среды.

Отчет о возможных воздействиях включает следующие разделы:

- характеристику современного состояния окружающей среды, включая атмосферу, гидросферу, литосферу, флору и фауну;
- анализ приоритетных по степени антропогенной нагрузки факторов воздействия и характеристику основных загрязнителей окружающей среды;
 - оценку чувствительности наиболее уязвимых природных сред;
- прогноз и оценку ожидаемых изменений в окружающей среде и социальной сфере при реализации проекта;

Согласно кодексу в состав Отчета о возможных воздействиях входят следующие разделы, требуемые для представления в органы экологической экспертизы:

- детальная информация о природных условиях территории, отведенных под эксплуатацию объектов;
 - характеристика намечаемой деятельности;
 - оценка воздействия деятельности на природную среду;
 - рекомендуемые природоохранные мероприятия, включая и аварийные ситуации;
 - программа экологического мониторинга и др.

Проект выполнен в соответствии с требованиями:

- Экологический Кодекс Республики Казахстан, регулирует отношения в области охраны, восстановления и сохранения окружающей среды, использования и воспроизводства природных ресурсов при осуществлении хозяйственной и иной деятельности, связанной с использованием природных ресурсов и воздействием на окружающую среду, в пределах терри-тории Республики Казахстан. Кодекс Республики Казахстан от 2 января 2021 года № 400-VI ЗРК.
- О внесении изменений в приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 «Об утверждении Инструкции по организации и проведению экологической оценки». Приказ Министра экологии, геологии и природ-ных ресурсов Республики Казахстан от 26 октября 2021 года № 424.
- Об утверждении Методики определения нормативов эмиссий в окружающую среду Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.

Разработчиком проекта является фирма «CONSULTING ECO PROJECT» ИП «Иваненко А.А.», который осуществляет свою деятельность в соответствии с Государственной лицензией МООС РК № 01801Р от 11.04.2008 г. на выполнение работ в области охраны окружающей среды.

Адрес исполнителя: Акмолинская область, г. Кокшетау, ул. Б. Момыш-улы,41/504 тел. факс: 8 (7162) 25-11-44.

Заказчик: TOO «KazBeef LTD».

Адрес заказчика: Акмолинская область, район им. Биржан Сал, с. Мамай.

2. ОПИСАНИЕ ПРЕДПОЛОГАЕМОГО МЕСТА ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

TOO «KazBeef Ltd» является действующим предприятием.

Основным видом деятельности предприятия является животноводство: разведение крупного рогатого скота (КРС) породы Ангус и Герефорд.

Животноводческий комплекс расположен в Акмолинской области, район им.Биржан Сал, с. Мамай.

Все административные и производственные помещения Хозяйства расположены на трех площадках, расположенных в непосредственной близости друг от друга:

- Репродуктор № 1 выращивание КРС породы Герефорд со шлейфом (телятами);
- Репродуктор №2 выращивание КРС породы Ангус со шлейфом (телятами);
- Репродуктор №3 содержание КРС породы Герефорд и Ангус со шлейфом (телятами).

В состав предприятия входит:

- ΚΠΠ;
- 2. Площадки для сбора ТБО;
- 3. Административно-бытовые корпуса;
- 4. Ветеринарные пункты, изоляторы;
- 5. Накопительные площадки, распределительные площадки;
- 6. Загоны для откорма КРС;
- 7. Предродовые загоны для КРС;
- 8. Весовые;
- 9. Автостоянки;
- 10. Ангары для сельхозтехники;
- 11. Ремонтные мастерские (МТМ);
- 12. Склады ГСМ (Репродуктор №2,3) и автозаправочная газовая станция (репродуктор №3);
 - 13. Ангары для переработки и хранения кормов;
 - 14. Площадки открытого хранения сена, соломы, силоса и сенажа;
 - 15. Зерносклады;
 - 16. Баня (Репродуктор №2);
 - 17. Крематор (Репродуктор №2);
 - 18. Открытые каналы для удаления навоза;
 - 19. Открытые площадки для буртования навоза;
 - 20. Площадки для сухого навоза;
 - 21. Трансформаторные подстанции с дизельной электростанцией;
- 22. Насосные станции с глубинной скважиной и подземным 100 м.куб. резервуаром хранения воды;
 - 23. Жилые дома для рабочих;
 - 24. Пастбищные отгоны;
 - 25. Участок для выращивания кукурузы.

Площадь земельного участка репродуктора №1 составляет - 45,0 га.

Площадь земельного участка репродуктора №2 составляет - 51,6 га.

Площадь земельного участка репродуктора №3 составляет - 73,6 га.

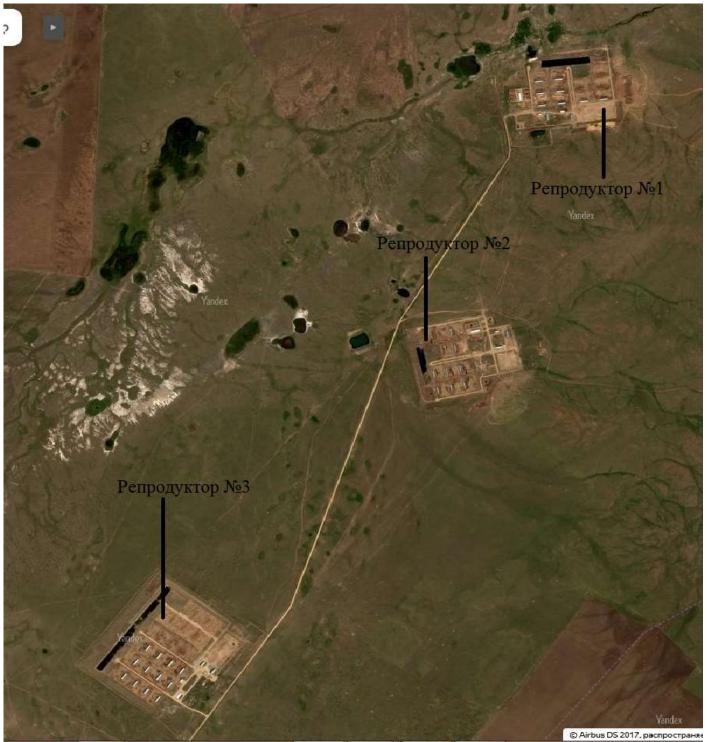
Площадь земельного участка для выращивания кукурузы на силос – 240,0 га.

Площадки отвечают санитарно-гигиеническим, пожаровзрывобезопасным, экологическим, социальным, экономическим, функциональным, технологическим и инженерно-техническим требованиям.

Жилые объекты, а также объекты с повышенными санитарно-эпидемиологическими требованиями (зоны отдыха, территории курортов, территории садоводческих товариществ, образовательные и детские организации, оздоровительные организации и т.п.) в санитарно-защитную зону не входят.

Ближайшим населенным пунктом является с. Мамай, расположенный в 1.5 километре от репродуктора №3 на юго-запад.

Расстояние до жилого массива в метрах


Румбы направлений	С	СВ	В	ЮВ	Ю	ЮЗ	3	C3
Репродуктор №3	-	-	-	-	-	1500	-	-

Знак «-» означает что в данном направлении жилая зона отсутствует

Рисунок 1

Обзорная карта-схема размещения репродукторов №№1,23

Обзорная карта-схема размещения участка для выращивания кукурузы

Обзорная карта-схема размещения жилых домов

Рисунок 2 Ситуационная карта — схема с нанесенными на нее источниками выбросов в атмосферу Репродукторов №№1,2,3

Условные обозначения:

0001 — организованный источник выброса 6001 — неорганизованный источник выброса

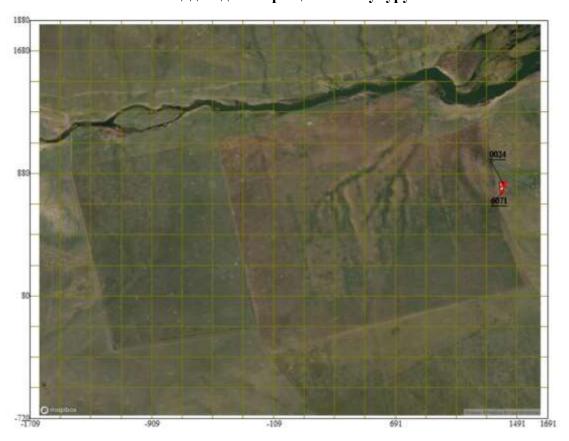
- граница предприятия

Масштаб: 1: 51500 0 515 1030

Ситуационная карта – схема с нанесенными на нее источниками выбросов в атмосферу Жилых домов

Условные обозначения:

0001 — организованный источник выброса 6001 — неорганизованный источник выброса


- граница предприятия

Масштаб: 1: 2200 0 22 44

Ситуационная карта – схема с нанесенными на нее источниками выбросов в атмосферу Площадки для выращивания кукурузы

Условные обозначения:

0001 — организованный источник выброса 6001 — неорганизованный источник выброса

- граница предприятия

Масштаб: 1: 2200 0 22 44

2.5 Описание изменений окружающей среды, которые могут произойти в случае отказа от начала намечаемой деятельности

В настоящем проекте дана качественная и количественная оценка воздействия деятельности предприятия на окружающую среду.

Анализ воздействия на окружающую среду деятельности показывает, что значительного ухудшения состояния природной среды не прогнозируется. Анализ деятельности предприятия показал, что выбросы загрязняющих веществ не создают на границах санитарно-защитной и жилой зон концентраций, превышающих предельно-допустимые нормы.

Сброс производственных и хозяйственно-бытовых сточных вод в поверхностные и подземные водные источники не предусмотрен. Негативное воздействие на водные ресурсы отсутствует. Предполагаемые к образованию отходы будут временно (не более 6 месяцев) храниться в специально отведенных организованных местах, а затем передаваться для дальнейшей утилизации, переработки или захоронения сторонним организациям согласно договоров.

Осуществление деятельности предприятия не приведет к деградации экологических систем, истощению природных ресурсов, не приведет к нарушению экологических нормативов качества окружающей среды; не приведет к ухудшению условий проживания людей и их деятельности.

В зоне влияния деятельности предприятия зоны отдыха, территории курортов, территории садоводческих товариществ, образовательные и детские организации, оздоровительные организации и т.п. отсутствуют.

Ближайший населенный пункт расположен на значительном удалении от территории деятельности предприятия (1500 м).

В районе расположения исследуемого участка отсутствуют скотомогильники и места захоронения животных, неблагополучных по сибирской язве и других особо опасных инфекций. Исследуемая территория находится вне земель государственного лесного фонда и особо охраняемых природных территорий Республики Казахстан, а также не входит в водоохранные зоны и полосы водных объектов. Также на территории отсутствуют объекты историко-культурного наследия. Редких видов деревьев и растений, животных, занесенных в Красную книгу, которые могут быть подвергнуты отрицательному влиянию в ходе строительства и эксплуатации объекта, не выявлено.

Территория осуществления деятельности выбрана с учетом логистических ресурсов и производственной необходимости.

Реализация деятельности предприятия не нарушит существующего экологического равновесия, воздействие на все компоненты окружающей среды будет допустимым.

В случае отказа от деятельности изменений в окружающей среде района расположения объекта не прогнозируется. На исследуемой территории будут происходить естественные природные процессы в экосистеме рассматриваемой территории, а также антропогенные факторы, возникающие при эксплуатации объекта.

2.6 Информация о категории земель и целях использования земель в ходе эксплуатации объекта, необходимых для осуществления намечаемой деятельности

Деятельность предприятия не осуществляется в заповедной зоне, на особо охраняемых природных территориях в соответствии с постановлением Правительства Республики Казахстан от 26 сентября 2017 года № 593 «Об утверждении перечня особо охраняемых природных территорий республиканского значения».

Согласно Статье 1 Земельного кодекса РК земельные участки должны использоваться в соответствии с установленным для них целевым назначением. Правовой режим земель определяется исходя из их принадлежности к той или иной категории и разрешенного использования в соответствии с зонированием земель.

2.7. Описание работ по постутилизации существующих зданий, строений, сооружений, оборудования и способов их выполнения

Работы по постутилизации не требуются.

2.8 Информация о показателях объектов, необходимых для осуществления намечаемой деятельности

Репродуктор № 3 - содержание КРС породы Герефорд и Ангус со шлейфом (телятами). Репродуктор № 3 -2500 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров
- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.
- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 -ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 3 тонны.

Также на территории откормочного комплекса в зимнее время содержаться лошади в количестве 35 голов. Они находятся в открытом загоне, отдельно от КРС.

Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (**зернодробилка**) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет 8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму, затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер).

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов

Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072. Время работы составляет 0,7 час/сут, 267 час/год.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора №3 — 19300 тонн. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

На репродукторе №3 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0) . Площадь бурта составляет $8000,0 \text{ м}^2$.

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток. При разложении навоза с площадки.

Ветеринарный пункт.

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, инженера, конференц зал на 20 мест, вип кабинет, столовая на 32 посадочных места, кухня, плита посудомоечная, 2 душевые, три туалета, кладовая, санузлы, помещения уборочного инвентаря, 2 комнатная квартира. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от электрокотла. В качестве аварийнного отопления в зимнее время предусмотрен самодельный котел, работающий на твердом топливе. Годовой расход угля: Кузнецкий бассейна, зольностью 27,9% — 45,0 тонн, Карагандинский бассейн (Шубаркульского месторождения), зольностью — 22,5% - 20 тонн и дрова 10 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 7,0 м, диаметром 0,15 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 65 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Автостоянка.

На открытой стоянке паркуется 10 единиц автотранспорта: КАМаз – 3 ед; колесный трактор – 7 ед;

Ангар для сельхозтехники.

В ангаре паркуются: КАМаз -2 ед; колесный трактор -6 ед, Уаз -3 ед., Газ-1 ед., Паз -1 ед. Ангар не отапливаемый.

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Заточный станок, с диаметром шлифовального круга 100 мм. Время работы 150 час/год.
- Сверлильный станок. Мощность 1,5 кВт. Время работы 150 час/год.
- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки МР-3 400 кг/год.
- Зарядка аккумуляторов. За год проводится зарядка 23 аккумуляторных батарей номинальной емкостью 60, 190, 55, 90, 60, 65, 75 А.ч. Максимально за один раз заряжаются 2 аккумулятора.

В ремонтной мастерской (МТМ) установлен самодельный котел (строительство дополнительных помещений не производилось). Годовой расход угля: Карагандинский бассейн

(Шубаркульского месторождения), зольностью -22.5% -20 тонн и Экибастузского угля, зольностью 42.3% -15 тонн и дрова 5 тонн. Время работы котла 215 дней в году, 24.0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 8.0 м, диаметром 0.15 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 35 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 1,0 м.

Золошлак складируется в контейнере.

Склад ГСМ.

На складе ГСМ установлено 3 наземных резервуара: из них 2 по $V=7~{\rm M}^3$ и 1 по $10~{\rm M}^3$ для хранения дизельного топлива. Годовой объем дизельного топлива составляет 150 тонн.

Для уменьшения потерь нефтепродуктов в резервуарах от «больших» и «малых» дыханий предусмотрены дыхательных клапаны повышенного давления. Дыхательные клапаны резервуаров расположены на высоте 2,5, диаметр 0,025м.

Для отпуска нефтепродуктов установлена однорукавная топливораздаточная колонка. Производительностью 50 л/мин.

Подача топлива к ТРК осуществляется насосом перекачки (с двумя сальниковыми уплотнениями) – $1\,\mathrm{mt}$.

На территории ГСМ имеется АГЗС предназначена для заправки автомобилей.

Газозаправочный модуль $V=10 \text{ м}^3 \text{ (1 шт)}$ надземного исполнения для предназначен для приема, хранения и заправки сжиженным углеводородным газом (СУГ).

- 1. АГЗС состоит из таких основных узлов и систем:
- 2. Сосуд для хранения СУГ;
- 3. Насосная установка;
- 4. Топливозаправочная колонки для выдачи СУГ;
- 5. Шаровые краны;
- 6. Дифференциальный байпасный клапан;
- 7. Клапан предохранительный.

Сосуд СУГ (аппарат емкостной для сжиженного пропана и бутана), предназначен для приема, хранения и выдачи СУГ при температуре от -40 до +50 оС.

Сосуд изготовлен как горизонтальный цилиндрический аппарат с двумя эллиптическими днищами, установленный на две опоры. Резервуар изготовлен как горизонтальный цилиндрический аппарат с двумя эллиптическими днищами, установленный на две опоры.

Насосная установка для перекачки СУГ. Насос приводится в движение электродвигателем во взрывозащищенном исполнении. Для передачи движения от двигателя к насосу применяется специальная искробезопасная муфта. Паровая фаза СУГ, выделяющаяся в трубопроводе перед насосом (в фильтре) отводится в полость паровой фазы резервуара. Топливозаправочная колонки для выдачи СУГ. Топливозаправочная колонка состоит из гидравлической части, которая крепится к нижней части несущей стойки, и блока индикации с электронным счетчиком, который крепится в верхней части несущей стойки. Жидкая фаза СУГ от насосной установки подводится к оборудованию гидравлической части колонки, состоящей из сепаратора с фильтром и обратным клапаном, поршневого измерительного прибора, дифференциального клапана и предохранительной

или разрывной муфты. Фильтр улавливает механические примеси из закачиваемого топлива. В сепараторе происходит отделение паровой фазы СУГ для предотвращения попадания ее в измеритель. Паровая фаза СУГ сбрасывается через запорный клапан в резервуар. Жидкая фаза СУГ после сепаратора через обратный клапан поступает в измерительный прибор, дифференциальный клапан, и через смотровой индикатор, предохранительную или разрывную муфту в шланг и раздаточный пистолет.

Раздаточный шланг применен стандартной длины 4 м. На одном конце шланга имеется резьбовая втулка для раздаточного крана, а на втором — резьбовая втулка для соединения с предохранительной или разрывной муфтой.

Топливораздаточный кран - элемент топливораздаточной колонки, через который осуществляется заправка автомобиля.

Присоединительный наконечник топливораздаточного крана оснащен резиновой манжетой, которая обеспечивает плотное соединение крана с горловиной топливного бака автомобиля. На топливораздаточной кране имеется защитная оболочка из пластмассы, которая предохраняет обслуживающий персонал от переохлаждения металла.

При заправке топливного бака автомобиля после подсоединения топливоавтомобиля раздаточного баку производится крана нажатие кнопки топливо-Происходит раздаточной колонке. вначале автоматическое зануление счетчика затем включается электродвигатель насосной установки.

Годовой объем поступаемого газа для заправки автотранспорта составляет 40 тонн.

На территории откормочного комплекса производятся покрасочные работы. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 60 кг (для замазки соединения сварных швов)
- Эмаль ПФ 115 150 кг (белый, черный)
- Уайт спирит растворитель 1 кг.

Репродуктор № 1 - выращивание КРС породы Герефорд со шлейфом (телятами);

Репродуктор №1 - 1250 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров

- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.
- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 -ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 2,5 тонны. Источником выделения является узел пересыпки реагента. Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (**зернодробилка**) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет 8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму, затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер).

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов

Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072. Время работы составляет 0,2 час/сут, 66 час/год.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора N=1 11700 тонн. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

На репродукторе №1 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных

площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0). Площадь бурта составляет 8000,0 м².

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток.

Ветеринарный пункт

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, инженера, конференц зал на 20 мест, вип кабинет, столовая на 32 посадочных места, кухня, плита посудомоечная, 2 душевые, три туалета, кладовая, санузлы, помещения уборочного инвентаря, 2 комнатная квартира. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от самодельного котла, работающего на твердом топливе. Годовой расход угля Карагандинский бассейн (Шубаркульского месторождения), зольностью — 22,5% — 40,0 тонн и дрова 10 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 7,0 м, диаметром 0,15 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 40 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Автостоянка.

На открытой стоянке паркуются 3 трактора, КАМаз – 3 ед работающих на дизельном топливе.

Ангар для сельхозтехники.

В ангаре паркуются спецтехника (трактора, Камаз), работающих на дизельном топливе.

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Заточный станок, с диаметром шлифовального круга 100 мм. Время работы 50 час/год.
- Сверлильный станок. Мощность 1,5 кВт. Время работы 50 час/год.
- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки MP-3 200 кг/год, MP-4 -200 кг/г.

- Зарядка аккумуляторов. За год проводится зарядка 23 аккумуляторных батарей номинальной емкостью – 60, 190, 55, 90, 60, 65, 75 А.ч. Максимально за один раз заряжаются 2 аккумулятора.

Отопление Ремонтной мастерской осуществляется от электрокотла.

На территории откормочного комплекса производятся покрасочные работы. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 26 кг (для замазки соединения сварных швов)
- Эмаль ПФ 115 − 141,4 кг (белый, черный)
- Уайт спирит растворитель 1 кг.

Репродуктор № 2 - выращивание КРС породы Герефорд со шлейфом (телятами);

Репродуктор № 2 - 1250 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров
- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.
- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 -ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 2,5 тонны. Источником выделения является узел пересыпки реагента. Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (**зернодробилка**) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет 8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму, затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер).

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов

Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072. Время работы составляет 0,2 час/сут, 66 час/год.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора №2 − 11700 тонн. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

На репродукторе №2 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0) . Площадь бурта составляет 8000,0 м².

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток.

Ветеринарный пункт.

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

Крематор ТП300-ЭД.

Крематор ТП300-ЭД предназначен для термического уничтожения падежа животных.

Утилизация посредством сжигания является одним из наиболее простых и действенных способов обеспечения санитарной чистоты в местах появления биологических отходов.

Технические характеристики крематора:

- максимальная загрузка -300 кг;

- наличие огнеупорной прокладки;
- температурные свойства прокладки 1650° C;
- средний расход топлива 3,5-5 л/час;
- время сжигания при полной загрузке 5-7 часов;
- электричество 220 В/20 А/ 50 Гц;
- температура горения -760° C 870° C

Технологическая схема работы крематора:

- загрузка;
- процесс сжигания;
- остывание пепла;
- очистка камеры.

Годовое количество трупов животных, сжигаемых в крематоре, составляет 80,0 тонн. Расход дизельного топлива 2520,0 л/год (2,1 тонн/год).

Время работы крематора 7 час/сут, 360,0 час/год.

Источником загрязнения является дымовая труба высотой 6,0 м и диаметром 0,18 м.

Крематор установлен на бетонной площадке под навесом. Предусмотрено ограждение площадки установления крематора размером 9х9 м вокруг крематора. Также предусмотрены ворота и проезд.

Для хранения дизельного топлива предусмотрен топливный бак объемом $0,1\,\mathrm{m}^3$. Выброс загрязняющих веществ при хранении топлива осуществляется через дыхательный клапан высотой $0,8\,\mathrm{m}$, диаметром $0,05\,\mathrm{m}$.

Зола от очистки камеры крематора складируется в закрытом контейнере.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, агрономов, две спальни с санузлами, буфет на 24 посадочных места, кладовая, санузлы, помещения уборочного инвентаря. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от электрокотла.

Автостоянка.

На открытой стоянке паркуется 4 спец. сельхозтехники (трактора), работающие на дизельном топливе.

Ангар для сельхозтехники.

В ангаре паркуются: Уаз – 1 ед., Ваз-21214 – 1 ед., трактор - 2 ед.

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки МР-3, МР-4 по 200 кг/год.
- Токарный станок. Время работы 50 час/год.

Отопление МТМ осуществляется от самодельного котла, работающего на твердом топливе. Годовой расход угля: Карагандинский бассейн (Шубаркульского месторождения), зольностью –

22,5% - 35 тонн и дрова 5 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 8,0 м, диаметром 0,15 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 35 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Склад ГСМ.

На складе ГСМ установлено 4 наземный резервуар 1 шт V=50 м 3 (д/т), 3 шт V= 8 м 3 (из них 2 шт — диз.топлива, 1 — шт — бензин). Годовое поступление дизельного топлива 160 тонн, бензина 12,0 тонн.

Для уменьшения потерь нефтепродуктов в резервуарах от «больших» и «малых» дыханий предусмотрены дыхательных клапаны повышенного давления. Дыхательные клапаны резервуаров расположены на высоте 2,5, диаметр 0,025м.

Для отпуска нефтепродуктов установлена двухрукавная топливораздаточная колонка. Производительностью 50 л/мин.

Подача топлива к ТРК осуществляется насосом перекачки (с двумя сальниковыми уплотнениями) — $1 \, \mathrm{mt}$.

Основными источниками загрязнения атмосферного воздуха на складе ГСМ являются:

На территории откормочного комплекса производятся покрасочные работы. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 26 кг (для замазки соединения сварных швов)
- Эмаль ПФ 115 − 141,4 кг (белый, черный)
- Уайт спирит растворитель 1 кг.

Баня.

Отопление бани осуществляется от самодельного котла, работающего на дровах. Годовой расход дров 20 тонн. Время работы котла 365 дней в году, 6,0 ч/сутки. Источником загрязнения атмосферы является дымовая труба высотой 7,0 м, диаметром 0,15 м.

Золошлак складируется в контейнере.

Жилые дома.

В 2018 году предприятие приобрело 3 жилых дома, для работников работающих вахтовым методом.

В одном из домов имеется котел длительного горения, который отапливает 3 дома. Отопление жилых домов осуществляется от котла Теплос (котел долгового горения), работающего на твердом топливе. Годовой расход угля: Карагандинский бассейн (Шубаркульского месторождения), зольностью – 22,5% – 40 тонн, Кузнецкий бассейна, зольностью 27,9% – 6,0 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 4,5 м, диаметром 0,25 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 46 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Пастбишные отгоны.

Отопление передвижных бытовых вагончиков (10 шт) в весенне-осенний период на пастбищных отгонах осуществляется бытовыми печами (2 шт).

Годовой расход угля Карагандинского бассейна (Шубаркульского месторождения), зольностью — 22,5% для каждого передвижного вагончика составляет - 4 тн/год, дров —7 тн/год. Время работы одной бытовой печи: 12 час/сут, 1440 час/год. Источником загрязнения является дымовая труба, высотой 3,0 м, диаметром 0,15 м каждая.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 8 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Участок для выращивания кукурузы.

На территории площадки имеется металлический контейнер в которой установлен самодельная печь, работающая на твердом топливе для обогрева рабочих.

Годовой расход угля Карагандинского бассейна (Шубаркульского месторождения), зольностью -22,5% - 5 тн/год, дров - 5 тн/год. Время работы печи: 12 час/сут, 2760 час/год. Источником загрязнения является дымовая труба высотой 4,0 м, диаметром 0,15 м.

Уголь доставляется в мешках по мере необходимости.

Золошлак складируется в контейнере.

На территории Хозяйств (1,2,3) для аварийного электроснабжения объектов установлены дизель-генераторы, согласно «Методике расчета выбросов 3В в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004» выбросы загрязняющих веществ аварийных ДЭС не подлежат нормированию.

3. ОЦЕНКА ВОЗДЕЙСТВИЙ НА СОСТОЯНИЕ АТМОСФЕРНОГО ВОЗДУХА

3.1. Краткая характеристика физико-географических и климатических условий района расположения производного объекта

Климат Акмолинской области, лежащей в глубине огромного континента, характеризуется большой изменчивостью температуры, влажности и других метеорологических элементов, как и в суточном, так и в годовом ходе.

Средняя месячная температура воздуха самого теплого месяца — июля составляет 18,5-21,5°C, а самого холодного — января — 13-18° мороза.

В отдельные жаркие дни температура воздуха повышается до $39-42^{\circ}$ С (абсолютный максимум), а в очень суровые зимы на ровных открытых местах понижается до -49, 52° мороза (абсолютный минимум). Продолжительности теплого периода с температурой выше 0° С составляет в среднем 200 дней.

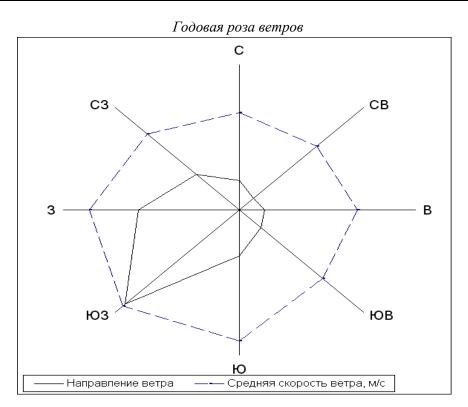
В отличии от других областей Северного Казахстана, существенное влияние на климат Акмолинской области оказывает сильно расчлененный мелкосопочный рельеф. Рельеф мелкосопочника, на территории которого расположена Акмолинская область, имеет повышенное количество осадков и более равномерное распределение их в году. В центральной части области выпадает около 350 мм осадков в год, а на востоке области до 400 мм. Максимум осадков приходится на теплый период (апрель-октябрь). Такое распределение осадков является характерным признаком континентальности климата.

Средняя годовая скорость ветра в пределах от 3,4 до 5,4 м/с. Годовой максимум ветра по области в пределах 20-34м/с, порывы до 30-48м/с, (максимум в Щучинске, Степногорске). Преобладающее направление ветра по расчетам за год по территории области отмечается юго-западные ветра с повторяемостью 40-55%.

Среднемесячная и годовая температура воздуха.

	1	11	Ш	1V	V	V1	VΠ	VIII	1X	X	XI	ΧП	год
Ī	-15,8	-15,3	-9,2	3,3	12,1	17,8	19,8	17,1	11,5	2,8	-6,7	-13,4	2,0

Направление ветра, %


	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	год
	2	3	4	6	9	13	15	8	7	6	4	3	7
	2	3	3	5	5	6	9	7	3	2	3	2	4
В	4	6	6	8	7	6	7	6	4	4	2	3	5
	7	8	8	8	7	7	6	4	6	4	5	7	6
C	19	19	16	15	13	11	8	10	11	13	11	19	11
СВ	43	40	41	30	24	19	15	20	28	36	41	42	32
3	19	15	16	18	19	20	20	25	25	24	20	18	20
<i>C</i> 3	4	6	6	10	16	18	20	20	13	11	11	6	12

Средняя скорость ветра, м/с

	Ι	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	год
C	3,1	3,5	3,9	4,4	4,8	4,0	4,1	4,1	3,4	4,9	4,1	3,3	4,0
CB	3,2	3,4	3,7	3,9	4,4	3,9	3,6	3,1	3,3	4,5	3,8	3,7	3,7
В	4,2	4,0	3,2	5,2	4,5	4,4	3,7	3,4	3,7	3,9	4,0	3,7	4,0
ЮВ	4,2	3,8	3,8	4,1	4,2	4,3	3,8	4,4	4,1	4,1	4,1	3,8	4,0

Ю	7,1	5,7	6,1	5,2	5,4	4,2	4,1	4,4	5,8	5,4	5,9	6,3	5,4
ЮЗ	6,7	5,3	6,3	5,4	5,3	4,9	4,2	4,8	5,4	5,8	6,4	6,8	5,6
3	5,4	4,6	5,4	5,5	5,3	4,4	4,2	4,5	4,9	5,8	5,5	5,5	5,1
<i>C</i> 3	4,9	4,0	4,6	4,5	4,8	3,9	3,9	4,3	4,7	4,4	4,6	4,0	4,4

СЕЙСМИЧНОСТЬ ТЕРРИТОРИИ

Согласно СНиП 2.03-30-2006, приложение 1 (список населенных пунктов Республики Казахстан) и карты сейсмического районирования (прил.3) территория расположена вне зоны развития сейсмических процессов.

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосферу

Наименование характеристик	Величина
1	2
Коэффициент, зависящий от стратификации атмосферы, А	200
Коэффициент рельефа местности в городе	1.00
Средняя максимальная температура наружного воздуха наиболее жаркого месяца	25.5
года, град.С	
Средняя температура наружного воздуха наиболее холодного месяца	-19.9
(для котельных, работающих по отопительному графику), град С	
Среднегодовая роза ветров, %	
C	6
CB	5
В	8
ЮВ	8
Ю	15
ЮЗ	31
3	18
C3	9

Среднегодовая скорость ветра, м/с	4.0
Скорость ветра (по средним данным), повторяемость превышения которой	12.0
составляет 5 %, м/с	

4. ОЖИДАЕМЫЕ ВИДЫ ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ХАРАКТЕРИСТИКА И КОЛИЧЕСТВО

4.1 Краткая характеристика технологии производства и технологического оборудования на период эксплуатации объекта

Репродуктор № 3 - содержание КРС. породы Герефорд и Ангус со шлейфом (телятами). Репродуктор № 3-2500 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров
- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.
- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 —ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Источниками загрязнения откормочного комплекса являются ворота изолятора (ucm.№6001), ворота предродового загона (ucm.№6002/01), накопительная площадка (ucm.№6003), распределительная площадка (ucm.№6004), загон для откорма КРС (ucm.№6005).

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 3 тонны. Источником выделения является узел пересыпки реагента. Выброс загрязняющих веществ происходит неорганизованно через ворота (ист.№6002/02). Выделяется следующее загрязняющее вещество: кальций дигидроксид.

Также на территории откормочного комплекса в зимнее время содержаться лошади в количестве 35 голов. Они находятся в открытом загоне *(ист. № 6006)*, отдельно от КРС.

Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

При содержании КРС в атмосферный воздух выделяются следующие вещества: *аммиак*, сероводород, метан, метанол, гидроксибензол, этилформиат, пропиональдегид, гексановая кислота, диметилсульфид, метантиол, метиламин, пыль меховая.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (**зернодробилка**) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет

8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму *(ист.№6007/01)*, затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер) *(ист.№ 6007/02)*. В процессе работы зернодробилки выделяется неорганизованно: *пыль зерновая*.

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн. Выброс *пыли зерновой* в атмосферу осуществляется неорганизованно через ворота ангара *(ист. № 6007/03)* в момент проведения погрузочно-разгрузочных работ.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов

Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072 *(ист.№6008)*. Время работы составляет 0,7 час/сут, 267 час/год. Загрязняющим веществом в атмомферный воздух является: *пыль зерновая*.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора *(ист. №6009)* для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

При этом неорганизованно выделяются: азота диоксид, азота оксид, углерод (сажа), сера диоксид, углерод оксид, керосин.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора №3 — 19300 тонн. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

Разгрузка навоза перед буртом на месте складирования навоза *(ист. №6010)- на консервации*.

На репродукторе №3 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0) . Площадь бурта составляет $8000,0 \, \text{м}^2$.

Буртование навоза (ист. №6011)- на консервации.

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток. При разложении навоза с площадки *(ист.№ 6012)*. Загрязняющими веществами в атмосферный воздух являются: *аммиак и сероводород*.

Ветеринарный пункт.

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, инженера, конференц зал на 20 мест, вип кабинет, столовая на 32 посадочных места, кухня, плита посудомоечная, 2 душевые, три туалета, кладовая, санузлы, помещения уборочного инвентаря, 2 комнатная квартира. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от электрокотла. В качестве аварийнного отопления в зимнее время предусмотрен самодельный котел, работающий на твердом топливе. Годовой расход угля: Кузнецкий бассейна, зольностью 27,9% − 45,0 тонн, Карагандинский бассейн (Шубаркульского месторождения), зольностью − 22,5% − 20 тонн и дрова 10 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба (*ист.* №0001) высотой 7,0 м, диаметром 0,15 м. При сгорании угля в атмосферу выбрасываются такие вредные вещества, как: *азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния*.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 65 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м *(ист.№ 6013)*. В атмосферу при погрузочно-разгрузочных работах неорганизованно выделяется: *пыль неорганическая (содержащая ниже 20% двуокиси кремния)*.

Золошлак складируется в контейнере *(ист.№ 6014)*. Зола используется на предприятии на собственные нужды. Загрязняющим веществом в атмосферный воздух является: *пыль неорганическая 70-20% двуокиси кремния*.

Автостоянка.

На открытой стоянке *(ист.№ 6015)* паркуется 10 единиц автотранспорта: КАМаз – 3 ед; колесный трактор – 7 ед. При въезде и выезде техники со стоянки в выбросах содержатся: *оксиды азота, углерод (сажа), сера диоксид, углерод оксид, керосин.*

Ангар для сельхозтехники.

В ангаре (*ист.*№6016) паркуются: КАМаз – 2 ед; колесный трактор – 6 ед, Уаз – 3 ед., Газ-1 ед., Паз – 1 ед. В выбросах содержатся *оксиды азота*, *углерод* (*сажа*), *сера диоксид*, *углерод оксид*, *керосин*, *бензин*.

Ангар не отапливаемый.

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Заточный станок, с диаметром шлифовального круга 100 мм. Время работы 150 час/год.
- Сверлильный станок. Мощность 1,5 кВт. Время работы 150 час/год.
- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки МР-3 400 кг/год.
- Зарядка аккумуляторов. За год проводится зарядка 23 аккумуляторных батарей номинальной емкостью 60, 190, 55, 90, 60, 65, 75 А.ч. Максимально за один раз заряжаются 2 аккумулятора.

Выброс загрязняющих веществ осуществляется через ворота *(ист.№ 6057)*.

Загрязняющие вещества в атмосферный воздух являются: взвешенные вещества, пыль абразивная, железо оксид, марганец и его соединения, фтористые газообразные соединения, азот диоксид, азот оксид, серная кислота.

В ремонтной мастерской (МТМ) установлен самодельный котел (строительство дополнительных помещений не производилось). Годовой расход угля: Карагандинский бассейн (Шубаркульского месторождения), зольностью − 22,5% − 20 тонн и Экибастузского угля, зольностью 42,3% − 15 тонн и дрова 5 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба (*ист. №0020*) высотой 8,0 м, диаметром 0,15 м. При сгорании угля в атмосферу выбрасываются такие вредные вещества, как: *азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния*.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 35 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 1,0 м (ист.№ 6062). В атмосферу при погрузочно-разгрузочных работах неорганизованно выделяется: пыль неорганическая (содержащая ниже 20% двуокиси кремния).

Золошлак складируется в контейнере *(ист.№ 6063)*. Зола используется на предприятии на собственные нужды. Загрязняющим веществом в атмосферный воздух является: *пыль неорганическая 70-20% двуокиси кремния*.

Склад ГСМ.

На складе ГСМ установлено 3 наземных резервуара: из них 2 по $V=7~{\rm M}^3$ и 1 по $10~{\rm M}^3$ для хранения дизельного топлива. Годовой объем дизельного топлива составляет $150~{\rm tohh}$.

Для уменьшения потерь нефтепродуктов в резервуарах от «больших» и «малых» дыханий предусмотрены дыхательных клапаны повышенного давления. Дыхательные клапаны резервуаров расположены на высоте 2,5, диаметр 0,025м.

Для отпуска нефтепродуктов установлена однорукавная топливораздаточная колонка. Производительностью $50\ \mathrm{n/muh}$.

Подача топлива к ТРК осуществляется насосом перекачки (с двумя сальниковыми уплотнениями) – 1 шт.

Основными источниками загрязнения атмосферного воздуха на складе ГСМ являются:

- дыхательные клапаны резервуаров при хранении дизельного топлива *(ист. №№ 0003, 0004)*. Высота дыхательных клапанов 2,5 м, диаметр $0{,}025$ м.
- горловины бензобаков при заправке автомобилей пистолетами топливораздаточных колонок дизельного топлива *(ист.№ 6017)*, высота 0,8 м, диаметр 0,05 м.

- насос перекачки топлива на ТРК для дизельного топлива – 1 шт *(ист.№6018)*.

Загрязняющими веществами являются: сероводород, углеводороды предельные С12-С19.

На территории ГСМ имеется АГЗС предназначена для заправки автомобилей.

Газозаправочный модуль $V=10 \text{ м}^3$ (1 шт) надземного исполнения для предназначен для приема, хранения и заправки сжиженным углеводородным газом (СУГ).

АГЗС состоит из таких основных узлов и систем:

- Сосуд для хранения СУГ;
- Насосная установка;
- Топливозаправочная колонки для выдачи СУГ;
- Шаровые краны;
- Дифференциальный байпасный клапан;
- Клапан предохранительный.

Сосуд СУГ (аппарат емкостной для сжиженного пропана и бутана), предназначен для приема, хранения и выдачи СУГ при температуре от -40 до +50 оС.

Сосуд изготовлен как горизонтальный цилиндрический аппарат с двумя эллиптическими днищами, установленный на две опоры. Резервуар изготовлен как горизонтальный цилиндрический аппарат с двумя эллиптическими днищами, установленный на две опоры.

Насосная установка для перекачки СУГ. Насос приводится в движение электродвигателем во взрывозащищенном исполнении. Для передачи движения от двигателя к насосу применяется специальная искробезопасная муфта. Паровая фаза СУГ, выделяющаяся в трубопроводе перед насосом (в фильтре) отводится в полость паровой фазы резервуара. Топливозаправочная колонки для выдачи СУГ. Топливозаправочная колонка состоит из гидравлической части, которая крепится к нижней части несущей стойки, и блока индикации с электронным счетчиком, который крепится в верхней части несущей стойки. Жидкая фаза СУГ от насосной установки подводится к оборудованию гидравлической части колонки, состоящей из сепаратора с фильтром и обратным клапаном, поршневого измерительного прибора, дифференциального клапана и предохранительной или разрывной муфты. Фильтр улавливает механические примеси из закачиваемого топлива. В сепараторе происходит отделение паровой фазы СУГ для предотвращения попадания ее в измеритель. Паровая фаза СУГ сбрасывается через запорный клапан в резервуар. Жидкая фаза СУГ после сепаратора через обратный клапан поступает в измерительный прибор, дифференциальный клапан, и через смотровой индикатор, предохранительную или разрывную муфту в шланг и раздаточный пистолет.

Раздаточный шланг применен стандартной длины 4 м. На одном конце шланга имеется резьбовая втулка для раздаточного крана, а на втором — резьбовая втулка для соединения с предохранительной или разрывной муфтой.

Топливораздаточный кран - элемент топливораздаточной колонки, через который осуществляется заправка автомобиля.

Присоединительный наконечник топливораздаточного крана оснащен резиновой манжетой, которая обеспечивает плотное соединение крана с горловиной топливного бака автомобиля. На топливораздаточной кране имеется защитная оболочка из пластмассы, которая предохраняет обслуживающий персонал от переохлаждения металла.

При заправке топливного бака автомобиля подсоединения после топливораздаточного баку автомобиля производится крана нажатие кнопки топливораздаточной колонке. Происходит вначале автоматическое зануление счетчика затем включается электродвигатель насосной установки.

Годовой объем поступаемого газа для заправки автотранспорта составляет 40 тонн.

На газозаправочной установки имеются следующие источники выбросов:

Ист. № 6064 - Закачка в резервуары СУГ.

Ист. № №6065 - Газозаправочная колонка. Заправка газа машин.

Загрязняющими веществами являются: бутан.

На территории откормочного комплекса производятся покрасочные работы *(ист.№6019)*. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 60 кг (для замазки соединения сварных швов).
- Эмаль ПФ 115 150 кг (белый, черный).
- Уайт спирит растворитель 1 кг.

Выбросы при покрасочных работах осуществляются неорганизованно, при этом выделяются: Уайт-спирит, ксилол.

Репродуктор № 1 - выращивание КРС породы Герефорд со шлейфом (телятами);

Репродуктор №1 - 1250 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров
- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.
- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 -ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Источниками загрязнения репродуктора № 1 являются ворота отелочного отделения (ucm.№6020/01), распределительная площадка (ucm.№6021), загон для КРС (ucm.№6022), загон для содержания быков (ucm.№6023).

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 2,5 тонны. Источником выделения является узел пересыпки реагента. Выброс загрязняющих веществ происходит неорганизованно через ворота (ист.№6020/02). Выделяется следующее загрязняющее вещество: кальций дигидроксид.

Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

При содержании КРС в атмосферный воздух выделяются следующие вещества: *аммиак,* сероводород, метан, метанол, гидроксибензол, этилформиат, пропиональдегид, гексановая кислота, диметилсульфид, метантиол, метиламин, пыль меховая.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (зернодробилка) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет 8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму (ист.№6024/01), затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер) (ист.№ 6024/02). В процессе работы зернодробилки выделяется неорганизованно: пыль зерновая.

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн. Выброс *пыли зерновой* в атмосферу осуществляется неорганизованно через ворота ангара *(ист. № 6024/03)* в момент проведения погрузочно-разгрузочных работ.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов

Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072 *(ист.№6025)*. Время работы составляет 0,2 час/сут, 66 час/год. Загрязняющим веществом в атмосферный воздух является: *пыль зерновая*.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора *(ист. №6026)* для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

При этом неорганизованно выделяются: азота диоксид, азота оксид, углерод (сажа), сера диоксид, углерод оксид, керосин.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора №1 − 11700 тонн.

Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

Разгрузка навоза перед буртом на месте складирования навоза *(ист. №6027)- на консервации*.

На репродукторе №1 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0) . Площадь бурта составляет $8000,0 \text{ м}^2$.

Буртование навоза (ист. №6028)- на консервации.

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток. При разложении навоза с площадки *(ист.№ 6029)*. Загрязняющими веществами в атмосферный воздух являются: *аммиак и сероводород*.

Ветеринарный пункт.

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, инженера, конференц зал на 20 мест, вип кабинет, столовая на 32 посадочных места, кухня, плита посудомоечная, 2 душевые, три туалета, кладовая, санузлы, помещения уборочного инвентаря, 2 комнатная квартира. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от самодельного котла, работающего на твердом топливе. Годовой расход угля Карагандинский бассейн (Шубаркульского месторождения), зольностью − 22,5% − 40,0 тонн и дрова 10 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба (*ист. №0021*) высотой 7,0 м, диаметром 0,15 м. При сгорании угля в атмосферу выбрасываются такие вредные вещества, как: азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая 70-20% двуокиси кремния.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 40 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м *(ист.№ 6066)*. В атмосферу при погрузочно-разгрузочных работах неорганизованно выделяется: *пыль неорганическая (содержащая ниже 20% двуокиси кремния)*.

Золошлак складируется в контейнере *(ист. №6067)*. Зола используется на предприятии на собственные нужды. Загрязняющим веществом в атмосферный воздух является: *пыль неорганическая 70-20% двуокиси кремния*.

Автостоянка.

На открытой стоянке *(ист.№ 6032)* паркуются 3 трактора, КАМаз – 3 ед работающих на дизельном топливе. При въезде и выезде техники со стоянки в выбросах содержатся: *оксиды азота*, углерод (сажа), сера диоксид, углерод оксид, керосин.

Ангар для сельхозтехники.

В ангаре паркуются спецтехника (трактора, Камаз), работающих на дизельном топливе. Выброс загрязняющих веществ происходит при въезде и выезде автотранспорта через ворота *(ист.№6033)*. При въезде и выезде техники со стоянки в выбросах содержатся: *оксиды азота, углерод (сажа), сера диоксид, углерод оксид, керосин.*

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Заточный станок, с диаметром шлифовального круга 100 мм. Время работы 50 час/год.
- Сверлильный станок. Мощность 1,5 кВт. Время работы 50 час/год.
- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки MP-3 200 кг/год, MP-4 200 кг/г. Выброс загрязняющих веществ осуществляется через ворота (ucm.N 6058).

Загрязняющие вещества в атмосферный воздух являются: взвешенные частицы, пыль абразивная, железо оксид, марганец и его соединения, фтористые газообразные соединения, азот диоксид, азо оксид.

Отопление Ремонтной мастерской осуществляется от электрокотла.

Склад ГСМ.

Дыхательный клапан резервуаров при хранении дизельного топлива *(ист. №№0007, 0008)*-ликвидирован.

- ТРК *(ист.№6034)* – ликвидирован.

Насос перекачки топлива на ТРК для дизельного топлива — 1 шт *(ист.№№6035)* — *ликвидирован*.

На территории откормочного комплекса производятся покрасочные работы *(ист.№6036)*. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 26 кг (для замазки соединения сварных швов)
- Эмаль ПФ 115 141,4 кг (белый, черный)
- Уайт спирит растворитель 1 кг.

Репродуктор № 2 - выращивание КРС породы Герефорд со шлейфом (телятами);

Репродуктор № 2 - 1250 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с

использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров
- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.
- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 –ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Источниками загрязнения репродуктора № 2 являются ворота отелочного отделения (ucm.№6037/01), распределительная площадка (ucm.№6038), загон для КРС (ucm.№6039), загон для содержания быков (ucm.№6040).

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 2,5 тонны. Источником выделения является узел пересыпки реагента. Выброс загрязняющих веществ происходит неорганизованно через ворота (ист.№6037/02). Выделяется следующее загрязняющее вещество: кальций дигидроксид.

Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

При содержании КРС в атмосферный воздух выделяются следующие вещества: *аммиак*, сероводород, метан, метанол, гидроксибензол, этилформиат, пропиональдегид, гексановая кислота, диметилсульфид, метантиол, метиламин, пыль меховая.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (зернодробилка) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет 8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму (ист.№6041/01), затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер) (ист.№ 6041/02). В процессе работы зернодробилки выделяется неорганизованно: пыль зерновая.

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн. Выброс *пыли зерновой* в атмосферу осуществляется неорганизованно через ворота ангара *(ист. № 6041/03)* в момент проведения погрузочно-разгрузочных работ.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов

Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072 *(ист.№6042)*. Время работы составляет 0,2 час/сут, 66 час/год. Загрязняющим веществом в атмосферный воздух является: *пыль зерновая*.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора *(ист. №6043)* для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

При этом неорганизованно выделяются: азота диоксид, азота оксид, углерод (сажа), сера диоксид, углерод оксид, керосин.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора №2 − 11700 тонн. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

Разгрузка навоза перед буртом на месте складирования навоза *(ист. №6044)- на консервации*.

На репродукторе №2 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0) . Площадь бурта составляет $8000,0 \text{ м}^2$.

Буртование навоза (ист. №6045)- на консервации.

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток. При разложении навоза с площадки *(ист.№ 6046)*. Загрязняющими веществами в атмосферный воздух являются: *аммиак и сероводород*.

Ветеринарный пункт.

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

Крематор ТП300-ЭД.

Крематор ТП300-ЭД предназначен для термического уничтожения падежа животных.

Утилизация посредством сжигания является одним из наиболее простых и действенных способов обеспечения санитарной чистоты в местах появления биологических отходов.

Технические характеристики крематора:

- максимальная загрузка -300 кг;
- наличие огнеупорной прокладки;
- температурные свойства прокладки 1650° C;
- средний расход топлива 3,5-5 л/час;
- время сжигания при полной загрузке 5-7 часов;
- электричество 220 B/20 A/ 50 Гц;
- температура горения -760° C 870° C

Технологическая схема работы крематора:

- загрузка;
- процесс сжигания;
- остывание пепла;
- очистка камеры.

Годовое количество трупов животных, сжигаемых в крематоре, составляет 80,0 тонн. Расход дизельного топлива 2520,0 л/год (2,1 тонн/год).

Время работы крематора 7 час/сут, 360,0 час/год.

Источником загрязнения является дымовая труба *(ист. №0010)* высотой 6,0 м и диаметром 0,18 м. Загрязняющими веществами при работе крематора являются: *азота оксид, азота диоксид, сера диоксид, углерод оксид, сажа.*

Крематор установлен на бетонной площадке под навесом. Предусмотрено ограждение площадки установления крематора размером 9х9 м вокруг крематора. Также предусмотрены ворота и проезд.

Для хранения дизельного топлива предусмотрен топливный бак объемом 0,1 м³. Выброс загрязняющих веществ при хранении топлива осуществляется через дыхательный клапан высотой 0,8 м, диаметром 0,05 м (*ист.* №0011). В атмосферный воздух выделяется *углеводороды предельные* C12-C19, сероводород.

Зола от очистки камеры крематора складируется в закрытом контейнере *(ист. №6047)*. По мере накопления зола вывозится сторооней организацией без договора. При погрузочно-разгрузочных работах в атмосферу неорганизованно выделяется: *пыль неорганическая*: 70-20% двуокиси кремния.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, агрономов, две спальни с санузлами, буфет на 24 посадочных места, кладовая, санузлы, помещения уборочного инвентаря. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от электрокотла.

Автостоянка.

На открытой стоянке *(ист.№№ 6050)* паркуется 4 спец. сельхозтехники (трактора), работающие на дизельном топливе. При въезде и выезде техники со стоянки в выбросах содержатся: *оксиды азота, углерод (сажа), сера диоксид, углерод оксид, керосин.*

Ангар для сельхозтехники.

В ангаре паркуются: Уаз -1 ед., Ваз-21214 - 1 ед., трактор -2 ед. Выброс загрязняющих веществ происходит при въезде и выезде автотранспорта через ворота *(ист. № 6051)*. В выбросах содержатся: *оксиды азота, углерод (сажа), сера диоксид, углерод оксид, керосин, бензин.*

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки МР-3, МР-4 по 200 кг/год.
- Токарный станок. Время работы 50 час/год.

Выброс загрязняющих веществ осуществляется через ворота *(ист.№ 6059)*.

Загрязняющие вещества: взвешенные вещества, железо оксид, марганец и его соединения, фтористые газообразные соединения, азот диоксид, азот оксид.

Отопление МТМ осуществляется от самодельного котла, работающего на твердом топливе. Годовой расход угля: Карагандинский бассейн (Шубаркульского месторождения), зольностью − 22,5% − 35 тонн и дрова 5 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба (*ист. №0022*) высотой 8,0 м, диаметром 0,15 м. При сгорании угля в атмосферу выбрасываются такие вредные вещества, как: *азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния*.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 35 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м (ист.№ 6068). В атмосферу при погрузочно-разгрузочных работах неорганизованно выделяется пыль неорганическая (содержащая ниже 20% двуокиси кремния).

Золошлак складируется в контейнере *(ист. № 6069)*. Зола используется на предприятии на собственные нужды. Загрязняющим веществом в атмосферный воздух является: *пыль неорганическая: 70-20% двуокиси кремния*.

Склад ГСМ.

На складе ГСМ установлено 4 наземный резервуар 1 шт V=50 м 3 (д/т), 3 шт V= 8 м 3 (из них 2 шт — диз.топлива, 1 — шт — бензин). Годовое поступление дизельного топлива 160 тонн, бензина 12,0 тонн.

Для уменьшения потерь нефтепродуктов в резервуарах от «больших» и «малых» дыханий предусмотрены дыхательных клапаны повышенного давления. Дыхательные клапаны резервуаров расположены на высоте 2,5, диаметр 0,025м.

Для отпуска нефтепродуктов установлена двухрукавная топливораздаточная колонка. Производительностью 50 л/мин.

Подача топлива к ТРК осуществляется насосом перекачки (с двумя сальниковыми уплотнениями) — $1~\rm{mt}$.

Основными источниками загрязнения атмосферного воздуха на складе ГСМ являются:

- дыхательные клапаны резервуаров при хранении дизельного топлива и бензина *(ист. №№*

0014, *0015*, *0016*). Высота дыхательных клапанов 2,5 м, диаметр 0,025 м.

- горловины бензобаков при заправке автомобилей пистолетами топливораздаточных колонки дизельного топлива и бензина *(ист.№ 6052)*, высота 0,8 м, диаметр 0,05 м.
- насос перекачки топлива на TPK 1 шт *(ист.№6053)*.

Загрязняющими веществами в атмосферный воздух являются: сероводород, углеводороды предельные C12-C19, смесь углеводородов предельных C1-C5, смесь углеводородов предельных C6-C10, пентилены, бензол, толуол, метилбензол, этилбензол.

На территории откормочного комплекса производятся покрасочные работы *(ист.№6054)*. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 26 кг (для замазки соединения сварных швов)
- Эмаль ПФ 115 141,4 кг (белый, черный)
- Уайт спирит растворитель 1 кг.

Выбросы при покрасочных работах осуществляются неорганизованно, при этом выделяются: Уайт-спирит, ксилол.

Баня.

Отопление бани осуществляется от самодельного котла, работающего на дровах. Годовой расход дров 20 тонн. Время работы котла 365 дней в году, 6,0 ч/сутки. Источником загрязнения атмосферы является дымовая труба (*ист. №0023*) высотой 7,0 м, диаметром 0,15 м. Загрязняющими веществами в атмосферный воздух являются: *азота диоксид, азота оксид, углерод оксид, взвешенные вещества*.

Золошлак складируется в контейнере *(ист.№ 6070)*. Зола используется на предприятии на собственные нужды. Загрязняющим веществом в атмосферный воздух является: *пыль неорганическая: 70-20% содержащая двуокиси кремния*.

Жилые дома.

В 2018 году предприятие приобрело 3 жилых дома, для работников работающих вахтовым методом.

В одном из домов имеется котел длительного горения, который отапливает 3 дома. Отопление жилых домов осуществляется от котла Теплос (котел долгового горения), работающего на твердом топливе. Годовой расход угля: Карагандинский бассейн (Шубаркульского месторождения), зольностью – 22,5% – 40 тонн, Кузнецкий бассейна, зольностью 27,9% – 6,0 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба (ист. №0019) высотой 4,5 м, диаметром 0,25 м. При сгорании угля в атмосферу выбрасываются такие вредные вещества, как: азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 46 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м *(ист.№ 6060)*. В атмосферу при погрузочно-разгрузочных работах неорганизованно выделяется: *пыль неорганическая (содержащая ниже 20% двуокиси кремния)*.

Золошлак складируется в контейнере *(ист.№ 6061)*. Зола используется на предприятии на собственные нужды. Загрязняющим веществом в атмосферный воздух является: *пыль неорганическая: 70-20% двуокиси кремния*.

Пастбишные отгоны.

Отопление передвижных бытовых вагончиков (10 шт) в весенне-осенний период на пастбищных отгонах осуществляется бытовыми печами (2 шт).

Годовой расход угля Карагандинского бассейна (Шубаркульского месторождения), зольностью — 22,5% для каждого передвижного вагончика составляет - 4 тн/год, дров −7 тн/год. Время работы одной бытовой печи: 12 час/сут, 1440 час/год. Источником загрязнения является дымовая труба (*ист.№№ 0017, 0018*), высотой 3,0 м, диаметром 0,15 м каждая. При сгорании угля в атмосферу выбрасываются такие вредные вещества, как: *азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния*.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 8 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м *(ист.№ 6055)*. В атмосферу при погрузочно-разгрузочных работах неорганизованно выделяется *пыль неорганическая (содержащая ниже 20% двуокиси кремния)*.

Золошлак складируется в контейнере *(ист.№ 6056)*. Зола используется на предприятии на собственные нужды. Загрязняющим веществом в атмосферный воздух является: *пыль неорганическая: 70-20% двуокиси кремния*.

Участок для выращивания кукурузы.

На территории площадки имеется металлический контейнер в которой установлен самодельная печь, работающая на твердом топливе для обогрева рабочих.

Годовой расход угля Карагандинского бассейна (Шубаркульского месторождения), зольностью — 22,5% - 5 тн/год, дров — 5 тн/год. Время работы печи: 12 час/сут, 2760 час/год. Источником загрязнения является дымовая труба (*ист.№ 0024*) высотой 4,0 м, диаметром 0,15 м. При сгорании угля в атмосферу выбрасываются такие вредные вещества, как: *азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния*.

Уголь доставляется в мешках по мере необходимости.

Золошлак складируется в контейнере *(ист. № 6071)*. Зола используется на предприятии на собственные нужды. Загрязняющим веществом в атмосферный воздух является: *пыль неорганическая: 70-20% двуокиси кремния*.

На территории Хозяйств (1,2,3) для аварийного электроснабжения объектов установлены дизель-генераторы, согласно «Методике расчета выбросов 3В в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004» выбросы загрязняющих веществ аварийных ДЭС не подлежат нормированию.

ЭРА v3.0 Таблица групп суммаций на существующее положение

Район им	. Биржан	Сал, с. Мамай, TOO "KazBeef LTD"
Номер	Код	
группы	загряз-	Наименование
сумма-	няющего	загрязняющего вещества
ции	вещества	
1	2	3
		Площадка:01,Площадка 1
01(03)	0303	Аммиак (32)
	0333	Сероводород (Дигидросульфид) (518)
07(31)	0301	Азота (IV) диоксид (Азота диоксид) (4)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Сера (IV) оксид) (516)

08 (33)	0301	Азота (IV) диоксид (Азота диоксид) (4)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
	0337	Сера (IV) оксид) (516)
	1071	Углерод оксид (Окись углерода, Угарный газ) (584)
10 (24)		Гидроксибензол (155)
40 (34)	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
	1071	Сера (IV) оксид) (516)
44 (05)	1071	Гидроксибензол (155)
41 (35)	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Cepa (IV) оксид) (516)
	0342	Фтористые газообразные соединения /в пересчете на
		фтор/ (617)
42 (28)	0322	Серная кислота (517)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Сера (IV) оксид) (516)
44 (30)	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Сера (IV) оксид) (516)
	0333	Сероводород (Дигидросульфид) (518)
Пыли	2902	Взвешенные частицы (116)
	2908	Пыль неорганическая, содержащая двуокись кремния в
		%: 70-20 (шамот, цемент, пыль цементного
		производства - глина, глинистый сланец, доменный
		шлак, песок, клинкер, зола, кремнезем, зола углей
		казахстанских месторождений) (494)
	2909	Пыль неорганическая, содержащая двуокись кремния в
		%: менее 20 (доломит, пыль цементного производства
		- известняк, мел, огарки, сырьевая смесь, пыль
		вращающихся печей, боксит) (495*)
	2920	Пыль меховая (шерстяная, пуховая) (1050*)
	2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)
	2937	Пыль зерновая /по грибам хранения/ (487)
-		

Примечание: В колонке 1 указан порядковый номер группы суммации по Приложению 1 к СП, утвержденным Постановлением Правительства РК от 25.01.2012 №168. После него в круглых скобках указывается служебный код групп суммаций, использовавшийся в предыдущих сборках ПК ЭРА.

4.2. Перечень загрязняющих веществ, выбрасываемых в атмосферу

Перечень загрязняющих веществ по проектируемому объекту представлен в таблице 4.2.1. Количественная характеристика выбрасываемых в атмосферу веществ в т/год приведена по рассчитанным значениям с учетом режима работы предприятия, технологического процесса и оборудования, характеристик сырья, топлива и т. д.

4.3.1 Параметры выбросов загрязняющих веществ в атмосферу

Параметры выбросов загрязняющих веществ по проектируемому объекту представлены в таблице 4.3.1.1. Исходные данные (г/сек, т/год), принятые для расчета валовых выбросов, определены расчетным путем, согласно методик расчета выбросов, на основании рабочего проекта. При этом учитываются как организованные, так и неорганизованные источники выброса загрязняющих веществ в атмосферу.

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай

LTD"

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef

C1-C5 (1502*)

C6-C10 (1503*) 0501 Пентилены (амилены - смесь

изомеров) (460)

изомеров) (203) 0621 Метилбензол (349)

0602 Бензол (64)

0416 Смесь углеводородов предельных

0616 Диметилбензол (смесь о-, м-, п-

9PA v3.0 Иваненко A.A. Таблица 4.2.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Кол Наименование ЭНК, ПДК ПДК Класс Выброс вещества Выброс вещества Значение ЗВ загрязняющего вещества мг/м3 максимальсреднесу-ОБУВ, опасс учетом с учетом м/энк ная разоточная, мг/м3 ности очистки, г/с очистки, т/год вая, мг/м3 мг/м3 ЗВ (M) 7 1 6 10 0.00957083333 0.011776 0.2944 0123 Железо (II, III) оксиды (в 0.04 пересчете на железо) (диЖелезо триоксид, Железа оксид) (274) 0143 Марганец и его соединения (в 0.01 0.001 2 0.00168194445 0.001824 1.824 пересчете на марганца (IV) оксид) 0214 Кальций дигидроксид (Гашеная 0.03 0.01 3 0.000161 0.00000941 0.000941 известь, Пушонка) (304) 0301 Азота (IV) диоксид (Азота 0.2 0.04 1.1388456 4.2137224 105.34306 диоксид) (4) 0303 Аммиак (32) 0.3718704 13.043922985 326.098075 0.2 0.04 4 0304 Азот (II) оксид (Азота оксид) (6) 3 0.18504946 0.68472989 11.4121648 0.4 0.06 2 0322 Серная кислота (517) 0.0000095 0.000003591 0.00003591 0.3 0.1 0328 Углерод (Сажа, Углерод черный) (0.15 0.05 3 0.200757 0.6154733 12.309466 0330 Сера диоксид (Ангидрид сернистый, 0.5 0.05 3 0.3542856 3.7846164 75.692328 Сернистый газ, Сера (IV) оксид) (516) 0333 Сероводород (Дигидросульфид) (0.008 2 0.27282819056 13.3859369336 1673.24212 518) 15.08939 0337 Углерод оксид (Окись углерода, 2.73405168 5.02979667 Угарный газ) (584) 0342 Фтористые газообразные соединения 0.02 0.005 0.00038888889 0.00048 0.096 /в пересчете на фтор/ (617) 0402 Бутан (99) 200 14.7304484657 0.0883826908 0.00044191 0410 Метан (727*) 50 0.7341692 10.5297483341 0.21059497 0415 Смесь углеводородов предельных 50 2.09519854 0.216320689 0.00432641

1.5

0.3

0.2

0.1

30

4

2

0.77435962

0.077405

0.0712126

0.32147898

0.06718754

0.079949467

0.00799175

0.00735241

0.265707043

0.006936839

0.00266498

0.00532783

0.0735241

1.32853522

0.0115614

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай

ЭРА v3.0 Иваненко A.A. Таблица 4.2.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD"

1	2	3	4	5	6	7	8	9	10
0627	Этилбензол (675)		0.02			3	0.00185772	0.000191802	0.0095901
1052	Метанол (Метиловый спирт) (338)		1	0.5		3	0.00566048	0.08118486834	0.16236974
1071	Гидроксибензол (155)		0.01	0.003		2	0.00057745	0.00828201888	2.76067296
1246	Этилформиат (Муравьиной кислоты				0.02		0.00878592	0.12601117902	6.30055895
	этиловый эфир) (1486*)								
1314	Пропаналь (Пропионовый альдегид,		0.01			3	0.0028848	0.04137495552	4.13749555
	Метилуксусный альдегид) (465)								
1531	Гексановая кислота (Капроновая		0.01	0.005		3	0.003434912	0.0492648819	9.8529764
	кислота) (137)								
1707	Диметилсульфид (227)		0.08			4	0.004461248	0.0639850033	0.79981254
1715	Метантиол (Метилмеркаптан) (339)		0.006			4	0.000011528	0.00016533917	0.02755653
1849	Метиламин (Монометиламин) (341)		0.004	0.001		2	0.00230532	0.03306382157	33.0638216
2704	Бензин (нефтяной, малосернистый)		5	1.5		4	0.007813	0.040761	0.027174
	/в пересчете на углерод/ (60)								
2732	Керосин (654*)				1.2		0.37089	0.9842305	0.82019208
2752	Уайт-спирит (1294*)				1		0.1875	0.10038	0.10038
2754	Алканы С12-19 /в пересчете на С/		1			4	0.11974896144	0.0699326388	0.06993264
	(Углеводороды предельные C12-C19								
	(в пересчете на С); Растворитель								
	РПК-265П) (10)								
2902	Взвешенные частицы (116)		0.5	0.15		3	0.10328	0.2532492	1.688328
2908	Пыль неорганическая, содержащая		0.3	0.1		3	0.659618497	13.4260596234	134.260596
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
2909	Пыль неорганическая, содержащая		0.5	0.15		3	0.04033	0.0791813	0.52787533
	двуокись кремния в %: менее 20 (
	доломит, пыль цементного								
	производства - известняк, мел,								
	огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)								
2920	Пыль меховая (шерстяная, пуховая)				0.03		0.04021904	0.5768375593	19.2279186
	(1050*)								
2930	Пыль абразивная (Корунд белый,				0.04		0.0016	0.000576	0.0144
	Монокорунд) (1027*)								
2937	Пыль зерновая /по грибам		0.5	0.15		3	3.42733	4.85878	32.3918667
	хранения/ (487)								

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай

ЭРА v3.0 Иваненко A.A.

Таблица 4.2.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD"

1	2	3	4	5	6	7	8	9	10
	всего:						29.1292689194	82.8277858236	2459.22288

Примечания: 1. В колонке 9: "М" - выброс ЗВ, т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ро	Источник выде, загрязняющих вец		Число часов	Наименование источника выброса	Номер источ	Высо та	Диа- метр	на вых	гры газовозд.с оде из трубы п	ри	:	_	ы источника е-схеме, м	ì
зв Цех дс во	Наименование	Коли-	рабо- ты в	вредных веществ	ника выбро сов	источ ника выбро	устья трубы	ман	ссимальной раз нагрузке	овой	точечного /1-го конц		2-го : /длина, ши	конца лин рина
		во,	году			COB,	М	ско- рость м/с	объем на 1 трубу, м3/с	тем- пер. oC	/центра пл ного источ		площа ИСТОЧ	
			<u></u>								X1	Y1	X2	Y2
1 2	3	4	5	6	7	8	9 адка 1	10	11	12	13	14	15	16
001	Самодельный котел		5160	Дымовая труба	0001	7		6	0.1060288		-1172	-2017		
005	Емкость объемом 10 м3 для дизтоплива	1	. 8760	Дыхательный клапан	0003	2.5	0.025	2.5	0.0012272		-1066	-1870		

Таблица 4.3.1.1

Наименование газоочистных	Вещество по кото-	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выброс :	загрязняющего	вещества	
установок, тип и мероприятия по сокращению выбросов	рому произво- дится газо- очистка	газо- очист кой,	степень очистки/ max.степ очистки%	ще- ства	вещества	F/C	мг/нм3	т/год	Год дос- тиже ния НДВ
17	18	19	20	21	22	23	24	25	26
				0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00556	52.439	0.152304	2023
				0304	Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0.0009035	8.521	0.0247494	2023
				0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.034848	328.665	0.9396	2023
				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.26117	2463.199	3.02854	2023
				2902	Взвешенные частицы (116)	0.039	367.825	0.06	2023
				2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.1552914	1464.615	3.92265	2023
				0333	Сероводород (Дигидросульфид) (518)	0.000026376	21.493	0.0000020692	2023
					Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.009393624	7654.518	0.0007369308	2023

Район	иM.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
-------	-----	--------	------	----	--------	-----	----------	------

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
005		Емкость объемом 7 м3 для дизтоплива	1	8760	Дыхательный клапан	0004	2.5	0.025	2.5	0.0012272		-1060	-1875		
016 016 023		Резервуар для дизтоплива Резервуар для дизтоплива Крематор ТМ300-ЭД	1		Дыхательный клапан Дыхательный клапан Дымовая труба	0007 0008 0010	2 2 6	0.18	2.5	0.0636173		1374 1404 1031	2317		
023		Емкость для хранения дизтоплива	1	360	Дыхательный клапан	0011	2	0.05	1	0.0019635		1043	666		
027		Дыхательный клапан	1	8760	Дыхательный клапан	0014	2.5	0.02	2.5	0.0007854		911	488		

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
					пересчете на С); Растворитель РПК- 265П) (10)				
				0333	Сероводород (Дигидросульфид) (518)	0.000026376	21.493	0.0000041412	2023
				2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0.009393624	7654.518	0.0014748588	2023
				0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0042	66.020	0.005512	2023
				0304	Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0.0006825	10.728	0.0008957	2023
				0328	Углерод (Сажа, Углерод черный) (583)	0.0004	6.288	0.000525	2023
				0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.009408	147.884	0.012348	2023
				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.02224	349.590	0.02919	2023
				0333	Сероводород (Дигидросульфид) (518)	0.000000244	0.124	0.0000018004	2023
				2754	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0.000086955	44.286	0.0006411996	2023
				0333	Сероводород (Дигидросульфид) (518)	0.000026376	33.583	0.000002352	2023
				2754	Алканы C12-19 /в пересчете на С/ (0.009393624	11960.306	0.000837648	2023

1	2	Биржан Сал, с. № 3	4	5	6	7	8	9	10	11	12	13	14	15	16
027		Дыхательный клапан Дыхательный клапан	1		Дыхательный клапан	0015	2.5	0.025	2.5	0.0012272		911	500		
027		Дыхательный клапан	1		Дыхательный клапан	0016	2.5	0.025	2.5	0.0012272		905	513		
030		Бытовая печь	1	1440	Дымовая труба	0017	3	0.15	6	0.1060288		1160	1165		

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
					Углеводороды				
					предельные С12-С19 (в				
					пересчете на С);				
					Растворитель РПК-				
					265Π) (10)				
				0333	Сероводород (0.000052752	42.986	0.0000039144	2023
					Дигидросульфид) (518)				
				2754	Алканы С12-19 /в	0.018787248	15309.035	0.0013940856	2023
					пересчете на С/ (
					Углеводороды				
					предельные С12-С19 (в				
					пересчете на С);				
					Растворитель РПК- 265П) (10)				
				0415	Смесь углеводородов	1.9732572	1607934.485	0.155641	2023
					предельных С1-С5 (
					1502*)				
				0416	Смесь углеводородов	0.7292916	594272.816	0.057523	2023
					предельных С6-С10 (
					1503*)				
				0501	Пентилены (амилены -	0.0729	59403.520	0.00575	2023
					смесь изомеров) (460)				
					Бензол (64)	0.067068	54651.239	0.00529	
				0616	Диметилбензол (смесь	0.0084564	6890.808	0.000667	2023
					о-, м-, п- изомеров)				
					(203)				
					Метилбензол (349)	0.0632772	51562.256	0.004991	
					Этилбензол (675)	0.0017496	1425.684	0.000138	
				0301	Азота (IV) диоксид (0.0013984	13.189	0.00774	2023
				0204	Азота диоксид) (4)	0 00000704	2 142	0 00105775	2023
				0304	Азот (II) оксид (0.00022724	2.143	0.00125775	2023
				0220	Азота оксид) (6) Сера диоксид (0.0112266	105.883	0.05832	2023
				0330	сера диоксид (Ангидрид сернистый,	0.0112266	105.883	0.05832	2023
					Сернистый газ, Сера (
					сернистый газ, сера (IV) оксид) (516)				
				0337	1V) ОКСИД) (516) Углерод ОКСИД (ОКИСЬ	0.03179484	299.870	0.305798	2023
				0001	углерод оксид (окись	0.031/3404	200.010	0.303790	2023
					газ) (584)				
				2902	Взвешенные частицы (0.00405	38.197	0.021	2023
					116)	2.111100			
				2908	Пыль неорганическая,	0.0398475	375.818	0.207	2023

Райо	н им.	Биржан Сал, с. М	¶амай , ∏	00 "Ka	zBeef LTD"										
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
030		Бытовая печь	1			0018	3						1180		10
002		Котел Теплос	1	5160	Дымовая труба	0019	4.5	0.25	6	0.2945243		200	210		

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
					содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,				
					клинкер, зола, кремнезем, зола углей казахстанских				
				0301	месторождений) (494) Азота (IV) диоксид (Азота диоксид) (4)	0.0013984	13.189	0.00774	
				0304	Азот (II) оксид (Азота оксид) (6)	0.00022724	2.143	0.00125775	2023
				0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0112266	105.883	0.05832	2023
				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.03179484	299.870	0.305798	2023
				2902	Взвешенные частицы (0.00405	38.197	0.021	2023
				2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец,	0.0398475	375.818	0.207	2023
					доменный шлак, песок, клинкер, зола, кремнезем, зола углей казакстанских месторождений) (494)				
				0301	Азота (IV) диоксид (0.005608	19.041	0.11976	2023
				0304	Азота диоксид) (4) Азот (II) оксид (0.0009113	3.094	0.019461	2023
				0330	Азота оксид) (6) Сера диоксид (Ангидрид сернистый,	0.031347	106.433	0.6696	2023

	Биржан Сал, с. М		T -	EBEET BIB	7	0	0	1.0	1.1	1.0	1.0	1.4	1 -	1.0
2	3	4	5	6	-7	8	9	10	11	12	13	14	15	16
2	З З	1	5	б	0020	2	9	10	0.1060288	12	-999	-1857	15	16

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0337	Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.0887778	301.428	1.8918	2023
				2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,	0.1112625	377.770	2.45502	2023
					клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)				
				0301	Азота (IV) диоксид (Азота диоксид) (4)	0.002404	22.673	0.0687328	2023
				0304	Азот (II) оксид (Азота оксид) (6)	0.00039065	3.684	0.01116908	2023
				0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0157464	148.511	0.45624	2023
				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1297814	1224.020	1.45919	2023
				2902	Взвешенные частицы (0.01938	182.781	0.03	2023
				2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей	0.077832	734.065	2.49435	2023
					кремнезем, зола утпеи казахстанских месторождений) (494)				

	ан Сал, с. Мамай, TOO "KazBeef LTD	,
--	------------------------------------	---

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
012		Самодельный	1	5160	Дымовая труба	0021	7	0.15	6	0.1060288		1096	2244		
		котел													
006		_		F1.00		0000	_	0 1 5	_	0 1060000		0.50	606		
026		Самодельный	1	5160	Дымовая труба	0022	8	0.15	6	0.1060288		958	696		
		котел													
														ĺ	
														ĺ	
1		I	1	l	ĺ	I		1		I				1	

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0301	Азота (IV) диоксид (0.00504	47.534	0.094752	2023
					Азота диоксид) (4)				
				0304	Азот (II) оксид (0.000819	7.724	0.0153972	2023
					Азота оксид) (6)				
				0330	Сера диоксид (0.031347	295.646	0.5832	2023
					Ангидрид сернистый,				
					Сернистый газ, Сера (
				0000	IV) оксид) (516)		005 000	4 05050	0000
				0337	Углерод оксид (Окись	0.0887778	837.299	1.85258	2023
					углерода, Угарный				
				2002	газ) (584)	0 0020	26 702	0 02	2023
				2902	Взвешенные частицы (116)	0.0039	36.782	0.03	2023
				2000	Пыль неорганическая,	0.1112625	1049.361	2.07	2023
				2300	содержащая двуокись	0.1112025	1049.301	2.07	2023
					кремния в %: 70-20 (
					шамот, цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (494)				
				0301	Азота (IV) диоксид (0.004456	42.026	0.082496	2023
					Азота диоксид) (4)				
				0304	Азот (II) оксид (0.0007241	6.829	0.0134056	2023
					Азота оксид) (6)				
				0330	Сера диоксид (0.027702	261.269	0.5103	2023
					Ангидрид сернистый,				
					Сернистый газ, Сера (
					IV) оксид) (516)				
				0337	Углерод оксид (Окись	0.1317904	1242.968	1.54567	2023
					углерода, Угарный				
					ras) (584)	0 04	405 212		0000
				2902	Взвешенные частицы (0.01968	185.610	0.015	2023
				2000	116)	0 000005	007 040	1 01105	2022
				2908	Пыль неорганическая,	0.098325	927.342	1.81125	2023
					содержащая двуокись				
					кремния в %: 70-20 (
		1			шамот, цемент, пыль				

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
29	Самодельный котел	1	2190	Дымовая труба	0023	7	0.15	6	0.1060288		886	803		
31	Самодельная печь	1	2760	Дымовая труба	0024	4	0.15	6	0.1060288		1215	1220		

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (494)				
				0301	Азота (IV) диоксид (0.0001728	1.630	0.00136	2023
					Азота диоксид) (4)				
				0304	Азот (II) оксид (Азота оксид) (6)	0.00002808	0.265	0.000221	2023
				0337	Углерод оксид (Окись	0.0510286	481.271	0.4018	2023
				0007	углерода, Угарный	0.0010200	101.271	0.1010	2023
					ras) (584)				
				2902	Взвешенные частицы (0.00762	71.867	0.06	2023
					116)				
				0301	Азота (IV) диоксид (0.000908	8.564	0.00942	2023
					Азота диоксид) (4)				
				0304	Азот (II) оксид (0.00014755	1.392	0.00153075	2023
					Азота оксид) (6)				
				0330	Сера диоксид (0.00729	68.755	0.0729	2023
					Ангидрид сернистый,				
					Сернистый газ, Сера (
				0227	IV) оксид) (516)	0.020646	194.721	0.30691	2022
				0337	Углерод оксид (Окись	0.020646	194.721	0.30691	2023
					углерода, Угарный газ) (584)				
				2902	Взвешенные частицы (0.0015	14.147	0.015	2023
				2302	116)	0.0013	11.11/	0.013	2025
				2908	Пыль неорганическая,	0.025875	244.037	0.25875	2023
					содержащая двуокись				
					кремния в %: 70-20 (
					шамот, цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (494)				

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD	Район	им.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD
--	-------	-----	--------	------	----	--------	-----	----------	-----

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001		Содержание КРС	1	3984	Ворота	6001	3					-1400	-1827	307	205
		в изоляторе													
0.01			4	2004		6000						11.61	1050	4.7	2.1
001		Содержание КРС в предродовом	1	3984	Ворота	6002	3					-1101	-1853	47	31
		загоне													
		Узел пересыпки	1	25											
		гашевой													
		извести													
						1									

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0303	Аммиак (32)	0.005544		0.0795142656	2023
				0333	Сероводород (0.00009072		0.0013011425	2023
					Дигидросульфид) (518)				
				0410	Метан (727*)	0.026712		0.3831141888	2023
				1052	Метанол (Метиловый	0.0002058		0.0029516659	2023
					спирт) (338)				
				1071	Гидроксибензол (155)	0.000021		0.0003011904	2023
				1246	Этилформиат (0.0003192		0.0045780941	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
				1314	Пропаналь (0.000105		0.001505952	2023
					Пропионовый альдегид,				
					Метилуксусный				
					альдегид) (465)				
				1531	Гексановая кислота (0.00012432		0.0017830472	2023
					Капроновая кислота) (
					137)				
				1707	Диметилсульфид (227)	0.00016128		0.0023131423	
				1715	Метантиол (0.00000042		0.0000060238	2023
					Метилмеркаптан) (339)				
				1849	Метиламин (0.000084		0.0012047616	2023
					Монометиламин) (341)				
				2920	Пыль меховая (0.0023016		0.0330104678	2023
					шерстяная, пуховая) (
					1050*)				
				0214	Кальций дигидроксид (0.000056		0.00000353	2023
					Гашеная известь,				
					Пушонка) (304)				
				0303	Аммиак (32)	0.020064		0.2877659136	
					Сероводород (0.00032832		0.0047088968	2023
					Дигидросульфид) (518)				
					Метан (727*)	0.096672		1.3865084928	
				1052	Метанол (Метиловый	0.0007448		0.0106822195	2023
					спирт) (338)				
					Гидроксибензол (155)	0.000076		0.0010900224	
				1246	Этилформиат (0.0011552		0.0165683405	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
					Пропаналь (0.00038		0.005450112	2023
					Пропионовый альдегид,				

	и. Биржан Сал, с. М	1 4	I -	22001 1111	7	0	0	1.0	1.1	1.0	1.0	1.4	1.5	1.0
1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001	Содержание КРС в накопительной площадке	1		Накопительная площадка	6003	2					-1240	-1614	76	96
001	Содержание КРС в распределитель	1		Распределительная площадка	6004	2					-1142	-1531	74	92

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				1531	Метилуксусный альдегид) (465) Гексановая кислота (Капроновая кислота) (0.00044992		0.0064529326	2023
					137) Диметилсульфид (227) Метантиол (0.00058368 0.00000152		0.008371372 0.0000218005	
				1849	Метилмеркаптан) (339) Метиламин (Монометиламин) (341)	0.000304		0.0043600896	2023
				2920	Пыль меховая (шерстяная, пуховая) (0.0083296		0.119466455	2023
					1050*) Аммиак (32) Сероводород (0.0064548 0.000105624		0.0925773235 0.0015149017	2023 2023
					Дигидросульфид) (518) Метан (727*) Метанол (Метиловый	0.0311004 0.00023961		0.446054377 0.0034365825	
					спирт) (338) Гидроксибензол (155) Этилформиат (0.00002445 0.00037164		0.0003506717 0.0053302095	
				1014	Муравьиной кислоты этиловый эфир) (1486*)	0.00012225		0.0017522504	2022
				1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.00012225		0.0017533584	2023
				1531	альдегид) (465) Гексановая кислота (Капроновая кислота) (137)	0.000144744		0.0020759764	2023
					Диметилсульфид (227) Метантиол (Метилмеркаптан) (339)	0.000187776 0.000000489		0.0026931585 0.0000070134	
					Метиламин (Монометиламин) (341)	0.0000978		0.0014026867	
					Пыль меховая (шерстяная, пуховая) (1050*)	0.0011736		0.0168322406	
					Аммиак (32) Сероводород (Дигидросульфид) (518)	0.0064548 0.000105624		0.0925773235 0.0015149017	

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD	Район и	м. Биржан	Район	Сал,	c.	Мамай,	TOO	"KazBeef	LTD
--	---------	-----------	-------	------	----	--------	-----	----------	-----

1 2		4	5	6	7	8	9	10	11	12	13	14	15	16
	ной площадке													
001	Загон для откорма КРС	1	3984	Загон КРС	6005	2					-1274	-1997	80	70

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0410	Метан (727*)	0.0311004		0.446054377	2023
				1052	Метанол (Метиловый спирт) (338)	0.00023961		0.0034365825	2023
				1071	Гидроксибензол (155)	0.00002445		0.0003506717	2023
					Этилформиат (0.00037164		0.0053302095	1
					Муравьиной кислоты этиловый эфир) (1486*				
)				
				1314	, Пропаналь (0.00012225		0.0017533584	2023
					Пропионовый альдегид, Метилуксусный				
					альдегид) (465)				
					Гексановая кислота (0.000144744		0.0020759764	2023
					Капроновая кислота) (137)				
				1707	Диметилсульфид (227)	0.000187776		0.0026931585	2023
				1715	Метантиол (0.000000489		0.0000070134	2023
					Метилмеркаптан) (339)				
					Метиламин (0.0000978		0.0014026867	2023
					Монометиламин) (341)				
					Пыль меховая (0.0011736		0.0168322406	2023
					шерстяная, пуховая) (1050*)				
				0303	Аммиак (32)	0.016632		0.2385427968	2023
				0333	Сероводород (0.00027216		0.0039034276	2023
					Дигидросульфид) (518)				
					Метан (727*)	0.080136		1.1493425664	
				1052	Метанол (Метиловый спирт) (338)	0.0006174		0.0088549978	2023
				1071	Гидроксибензол (155)	0.000063		0.0009035712	2023
				1246	Этилформиат (0.0009576		0.0137342822	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
				1314	Пропаналь (0.000315		0.004517856	2023
					Пропионовый альдегид,				
					Метилуксусный				
				1 = 2 1	альдегид) (465)	0 00027006		0 0052401415	2022
				1331	Гексановая кислота (0.00037296		0.0053491415	2023
					Капроновая кислота) (137)				
				1707	Диметилсульфид (227)	0.00048384		0.0069394268	2023

навоза в Камаз

гаион	им.	. Биржан Сал, с. М	иамаи, '	roo "Ka	ZREGI TID.	7 7		0	1.0	1.1	1.0	1.0	1.4	1.5	1.0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001		Содержание лошадей в загоне	1	3984	Загон лошадей	6006	2					-1033	-1454	56	70
001		Завальная яма	1	400	Ворота	6007	3					-996	-1747	12	18
001		Зернодробилка Ангар для хранения зерна Загрузка кормушек	1 1 1			6008	3					-1288	-1873	16	16
001		Загрузка	1	573	Трактор	6009	3					-1274	-1711	22	22

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				1715	Метантиол (0.00000126		0.0000180714	2023
					Метилмеркаптан) (339)				
				1849	Метиламин (0.000252		0.0036142848	2023
					Монометиламин) (341)				
				2920	Пыль меховая (0.003024		0.0433714176	2023
					шерстяная, пуховая) (1050*)				
				0303	Аммиак (32)	0.00084		0.012047616	2023
				0333	Сероводород (0.000014		0.0002007936	2023
					Дигидросульфид) (518)				
				0410	Метан (727*)	0.00455		0.06525792	2023
				1052	Метанол (Метиловый	0.0000392		0.0005622221	2023
					спирт) (338)				
				1071	Гидроксибензол (155)	0.00000385		0.0000552182	2023
				1246	Этилформиат (0.0000672		0.0009638093	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
				1314	Пропаналь (0.0000168		0.0002409523	2023
					Пропионовый альдегид,				
					Метилуксусный				
					альдегид) (465)				
				1531	Гексановая кислота (0.0000392		0.0005622221	2023
					Капроновая кислота) (
					137)				
					Диметилсульфид (227)	0.000056		0.0008031744	
				1715	Метантиол (5.6e-8		0.0000008032	2023
					Метилмеркаптан) (339)				
				1849	Метиламин (0.00001092		0.000156619	2023
					Монометиламин) (341)	0 0004560			
				2920	Пыль меховая (0.0001568		0.0022488883	2023
					шерстяная, пуховая) (
					1050*)	4 40065		4 50066	
				2937	Пыль зерновая /по	1.12267		1.59966	2023
					грибам хранения/ (
					487)				
				0005		0 00100		0 0015	0000
				2937	Пыль зерновая /по	0.02133		0.0215	2023
					грибам хранения/ (
				0001	487)	0 0 1 1 5		0 0050540	0000
				0301	Азота (IV) диоксид (0.0445		0.0052712	2023
					Азота диоксид) (4)				

	м. Биржан Сал, с. 1 2 3	4	5	6	7	8	9	10	11	12	13	14	15	16
1 2	. J	4	J	0		0	9	10	11	12	13	14	13	10
01	Разгрузка	1		Камаз	6010	2					-1562	-1483	22	2.2
	навоза	_												
01	Буртование	1		Трактор	6011	2					-1508	-1414	32	32
1	навоза		F106		6010						1505	1 400	4.0.1	4.0
001	Открытая площадка	1	5136	Открытая площадка навоза	6012	3					-1535	-1492	401	40
	навоза			Павоза										
01	Открытый склад	1	5160	Пылящая	6013	2					-1145	-2011	2	3
	угля			поверхность										
001	Металлический	1	215	Пылящая	6014	2					-1156	-2001	2	2
	контейнер			поверхность										
					1									

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0304	Азот (II) оксид (0.00723		0.00085657	2023
					Азота оксид) (6)				
				0328	Углерод (Сажа,	0.00911		0.0008791	2023
				0220	Углерод черный) (583)	0 00574		0 0000550	2022
				0330	Сера диоксид (Ангидрид сернистый,	0.00574		0.0006552	2023
					Сернистый газ, Сера (
					IV) оксид) (516)				
				0337	Углерод оксид (Окись	0.0543		0.007528	2023
				0007	углерода, Угарный	0.0010		0.007020	2020
					газ) (584)				
				2732	Керосин (654*)	0.01358		0.0016235	2023
					_				
					Аммиак (32)	0.0732		3.62	
				0333	Сероводород (0.09		4.45	2023
				2000	Дигидросульфид) (518)	0.008		0.0095913	2023
				2909	Пыль неорганическая, содержащая двуокись	0.008		0.0095913	2023
					кремния в %: менее 20				
					(доломит, пыль				
					цементного				
					производства -				
					известняк, мел,				
					огарки, сырьевая				
					смесь, пыль				
					вращающихся печей,				
					боксит) (495*)				
				2908	Пыль неорганическая,	0.000032		0.00001734	2023
					содержащая двуокись				
					кремния в %: 70-20 (
					шамот, цемент, пыль				
					цементного производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (494)				

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD	Район	им.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD
--	-------	-----	--------	------	----	--------	-----	----------	-----

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001		открытая автостоянка	1		о Автотранспорт	6015	3	9	10	11	12	-1189	-1967	10 1:	
003		Автотранспорт	1	400	Ворота	6016	3					-1013	-1856	4 4	
005		TPK	1	360	Горловина бензобака	6017	2	0.05	1	0.0019635		-1058	-1867		
005		Насос	1	120	Сальниковое	6018	2					-1067	-1866	3 3	

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0301	Азота (IV) диоксид (0.37		0.40136	2023
					Азота диоксид) (4)				
				0304	Азот (II) оксид (0.0601		0.065221	2023
					Азота оксид) (6)				
					Углерод (Сажа,	0.05357		0.06472	2023
					Углерод черный) (583)				
					Сера диоксид (0.0696		0.04978	2023
					Ангидрид сернистый,				
					Сернистый газ, Сера (
				0227	IV) оксид) (516)	0.731		0.48748	2023
					Углерод оксид (Окись углерода, Угарный	0.731		0.48/48	2023
					газ) (584)				
				2732	Керосин (654*)	0.1274		0.1139	2023
					Азота (IV) диоксид (0.19316		2.268504	
				0301	Азота диоксид) (4)	0.19310		2.200004	2023
				0304	Азот (II) оксид (0.0313893		0.3686319	2023
				0001	Азота оксид) (6)	0.0010000		0.0000013	2020
				0328	Углерод (Сажа,	0.046797		0.400919	2023
					Углерод черный) (583)				
					Сера диоксид (0.026338		0.253079	2023
					Ангидрид сернистый,				
					Сернистый газ, Сера (
					IV) оксид) (516)				
					Углерод оксид (Окись	0.37917		2.35474	2023
					углерода, Угарный				
					газ) (584)				
					Бензин (нефтяной,	0.00608		0.03625	2023
					малосернистый) /в				
					пересчете на углерод/				
				0720	(60)	0 07500		0 60602	2022
					Керосин (654*)	0.07589	0 400	0.60603	
				0333	Сероводород (0.000000977	0.498	0.00001414	2023
				2754	Дигидросульфид) (518) Алканы С12-19 /в	0.000348022	177.246	0.00503586	2023
				2/34	пересчете на С/ (0.000340022	1//.240	0.00303366	2023
					Углеводороды				
					предельные С12-С19 (в				
					пересчете на С);				
					Растворитель РПК-				
					265Π) (10)				
					Сероводород (0.00010108		0.00004368	2023

Район им.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
-----------	--------	------	----	--------	-----	----------	------

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		перекачки дизтоплива			уплотнение										
006		Покрасочный пост	1	50	Окрашенная поверхность	6019	2					-1237	-1919	2	2
007		Отелочное отделение Узел пересыпки гашенной извести	1	3984	Ворота	6020	3					1096	2500	5	3
007		Распределитель	1	3984	Распределительная	6021	2					1513	2522	51	51

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				2754	Дигидросульфид) (518) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-	0.03599892		0.01555632	2023
				0616	265П) (10) Диметилбензол (смесь о-, м-, п- изомеров)	0.125		0.06075	2023
					(203) Уайт-спирит (1294*) Кальций дигидроксид (Гашеная известь,	0.0625 0.0000583		0.03475 0.00000294	
				0333	Пушонка) (304) Аммиак (32) Сероводород (Дигидросульфид) (518)	0.0140448 0.000229824		0.2014361395 0.0032962277	2023
					Метан (727*) Метанол (Метиловый спирт) (338)	0.0676704 0.00052136		0.970555945 0.0074775537	
					Гидроксибензол (155) Этилформиат (Муравьиной кислоты этиловый эфир) (1486*	0.0000532 0.00080864		0.0007630157 0.0115978383	
				1314	/ Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)	0.000266		0.0038150784	2023
				1531	Пексановая кислота (Капроновая кислота) (137)	0.000314944		0.0045170528	2023
					Диметилсульфид (227) Метантиол (Метилмеркаптан) (339)	0.000408576 0.000001064		0.0058599604 0.0000152603	
				1849	Метиламин (Монометиламин) (341)	0.0002128		0.0030520627	2023
				2920	Пыль меховая (шерстяная, пуховая) (0.00583072		0.0836265185	2023
				0303	1050*) Аммиак (32)	0.01155		0.16565472	2023

Район им. Биржан Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
-----------------------	----	--------	-----	----------	------

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		ная площадка			площадка		,								
007		Содержание КРС	1	3984	Загон для КРС	6022	2					1297	2556	110	90
		в загоне	_	0301	ouron gon no	0022						123,	2000	110	

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0333	Сероводород (0.000189		0.0027107136	2023
					Дигидросульфид) (518)				
				0410	Метан (727*)	0.05565		0.79815456	2023
				1052	Метанол (Метиловый	0.00042875		0.006149304	2023
					спирт) (338)				
				1071	Гидроксибензол (155)	0.00004375		0.00062748	2023
				1246	Этилформиат (0.000665		0.009537696	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
				1314	Пропаналь (0.00021875		0.0031374	2023
					Пропионовый альдегид,				
					Метилуксусный				
					альдегид) (465)				
				1531	Гексановая кислота (0.000259		0.0037146816	2023
					Капроновая кислота) (137)				
				1707	Диметилсульфид (227)	0.000336		0.0048190464	2023
					Метантиол (0.000000875		0.0000125496	2023
					Метилмеркаптан) (339)				
				1849	Метиламин (0.000175		0.00250992	2023
					Монометиламин) (341)				
				2920	Пыль меховая (0.0021		0.03011904	2023
					шерстяная, пуховая) (
					1050*)				
				0303	Аммиак (32)	0.0180576		0.2589893222	2023
				0333	Сероводород (0.000295488		0.0042380071	2023
					Дигидросульфид) (518)				
					Метан (727*)	0.0870048		1.2478576435	
				1052	Метанол (Метиловый	0.00067032		0.0096139976	2023
					спирт) (338)				
					Гидроксибензол (155)	0.0000684		0.0009810202	
				1246	Этилформиат (0.00103968		0.0149115064	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
				1314	Пропаналь (0.000342		0.0049051008	2023
					Пропионовый альдегид,				
					Метилуксусный				
					альдегид) (465)				
				1531	Гексановая кислота (0.000404928		0.0058076394	2023
					Капроновая кислота) (

Район	им.	Биржан Сал, с. М													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
007		Содержание быков в загоне	1	3984	Загон для быков	6023	2						2412		70
008		Завальная яма Зернодробилка Ангар для хранения зерна	1 1 1	400 400 400		6024	3					1283	2339	4	3
009		Загрузка кормушек	1	400	Миксер Botex 4072	6025	3					1283	2492	2	2

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
					137)				
					Диметилсульфид (227)	0.000525312		0.0075342348	
				1715	Метантиол (0.000001368		0.0000196204	2023
					Метилмеркаптан) (339)				
				1849	Метиламин (0.0002736		0.0039240806	2023
					Монометиламин) (341)				
				2920	Пыль меховая (0.0032832		0.0470889677	2023
					шерстяная, пуховая) (
					1050*)				
					Аммиак (32)	0.004488		0.0643686912	
				0333	Сероводород (0.00007344		0.0010533059	2023
					Дигидросульфид) (518)				
					Метан (727*)	0.021624		0.3101400576	
				1052	Метанол (Метиловый	0.0001666		0.0023894438	2023
					спирт) (338)				
					Гидроксибензол (155)	0.000017		0.0002438208	
				1246	Этилформиат (0.0002584		0.0037060762	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
				1014)	0 000005		0 001010104	0000
				1314	Пропаналь (0.000085		0.001219104	2023
					Пропионовый альдегид, Метилуксусный				
					метилуксусный альдегид) (465)				
				1521	Гексановая кислота (0.00010064		0.0014434191	2023
				1001	Капроновая кислота (0.00010004		0.0014434191	2023
					137)				
				1707	Диметилсульфид (227)	0.00013056		0.0018725437	2023
					Метантиол (0.000013030		0.0010723437	
				1715	Метилмеркаптан) (339)	0.0000001		0.00000101	2023
				1849	Метиламин (0.000068		0.0009752832	2023
				1010	Монометиламин) (341)	0.00000			
				2920	Пыль меховая (0.000816		0.0117033984	2023
					шерстяная, пуховая) (******		***************************************	
					1050*)				
				2937	Пыль зерновая /по	1.12267		1.59966	2023
					грибам хранения/ (
					487)				
				2937	Пыль зерновая /по	0.02133		0.0215	2023
					грибам хранения/ (
					487)				

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTI	Район	им.	Биржан	Сал,	c.	Мамай.	TOO	"KazBeef	LTD'	1
--	-------	-----	--------	------	----	--------	-----	----------	------	---

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 1	16
1 010		3 Загрузка навоза в Камаз	4 1		6 Трактор	7 6026	3	9	10	11	12	13 1369		15 1	.6
011 011 011 013		Разгрузка навоза Буртования навоза Открытая площадка навоза Открытая стоянка	1 1 1	5136	Камаз Трактор Открытая площадка навоза Спецтехника	6027 6028 6029 6032	2 2 3					1401 1449 1429 1164	2795 2779	2 2 2 2 150 15 4 4	
014		Автотранспорт	1	500	Ворота	6033	3					1216	2338	2 3	

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0301	Азота (IV) диоксид (0.0445		0.0052712	2023
					Азота диоксид) (4)				
				0304	Азот (II) оксид (0.00723		0.00085657	2023
					Азота оксид) (6)				
					Углерод (Сажа,	0.00911		0.0008791	2023
					Углерод черный) (583)	0 00574		0 0006550	0000
					Сера диоксид (0.00574		0.0006552	2023
					Ангидрид сернистый,				
					Сернистый газ, Сера (IV) оксид) (516)				
				0337	Углерод оксид (Окись	0.0543		0.007528	2023
					углерод оксид (окись углерода, Угарный	0.0343		0.007520	2023
					ras) (584)				
				2732	Керосин (654*)	0.01358		0.0016235	2023
					, ,	***************************************		*****	
					Аммиак (32)	0.0732		3.62	
					Сероводород (0.09		4.45	2023
					Дигидросульфид) (518)				
					Азота (IV) диоксид (0.1218		0.171088	2023
					Азота диоксид) (4)				
					Азот (II) оксид (0.0198		0.0278018	2023
					Азота оксид) (6)	0.01050		0.000000	0000
					Углерод (Сажа,	0.01958		0.020268	2023
					Углерод черный) (583)	0 00077		0 004700	2022
					Сера диоксид (Ангидрид сернистый,	0.02077		0.024708	2023
					Сернистый газ, Сера (
					IV) оксид) (516)				
				0337	Углерод оксид (Окись	0.2017		0.24756	2023
					углерода, Угарный	0.2017		0.21700	2023
					ras) (584)				
				2732	Керосин (654*)	0.03923		0.04905	2023
					Азота (IV) диоксид (0.1218		0.197408	
					Азота диоксид) (4)				
				0304	Азот (II) оксид (0.0198		0.0320788	2023
					Азота оксид) (6)				
					Углерод (Сажа,	0.01958		0.025924	2023
					Углерод черный) (583)				
				0330	Сера диоксид (0.02077		0.03006	2023

1	2	Биржан Сал, с. М	4	5	6	7	8	9	10	11	12	13	14	15	16
1		3	4	J	0	/	O	J	10	11	12	13	14	10	10
016		TPK	1		TPK	6034	2					1399	2290	1	1
016		Насос перекачки	1		Hacoc	6035	2					1373	2288	1	1
		топлива													
017		Покрасочные	1	200	Окрашенная	6036	2					1223	2368	2	2
		работы			поверхность										
018		Содержание КРС	1	3984	Ворота	6037	3					771	706	3	2
010		в отелочном	_	3304	Борота	0037	3					, , ,	700	9	_
		отделении													
		Узел пересыпки	1	25											
		гашенной													
		извести													

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
					Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Керосин (654*)	0.2017		0.29816	
				0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0625		0.160515	2023
					Уайт-спирит (1294*)	0.0625		0.032815	
				0214	Кальций дигидроксид (Гашеная известь, Пушонка) (304)	0.0000467		0.00000294	2023
					Аммиак (32)	0.0140448		0.2014361395	
					Сероводород (Дигидросульфид) (518)	0.000229824		0.0032962277	
					Метан (727*) Метанол (Метиловый	0.0676704		0.970555945 0.0074775537	
				1052	метанол (метиловыи спирт) (338)	0.00052136		0.00/4//553/	2023
				1071	Гидроксибензол (155)	0.0000532		0.0007630157	
				1246	Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)	0.00080864		0.0115978383	2023
				1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.000266		0.0038150784	2023
				1531	альдегид) (465) Гексановая кислота (Капроновая кислота) (137)	0.000314944		0.0045170528	2023
					Диметилсульфид (227)	0.000408576		0.0058599604	
					Метантиол (Метилмеркаптан) (339)	0.000001064		0.0000152603	2023
				1849	Метиламин (Монометиламин) (341)	0.0002128		0.0030520627	2023
				2920	Пыль меховая (0.00583072		0.0836265185	2023

Район им.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
-----------	--------	------	----	--------	-----	----------	------

1	2	з 3	4	5	6	7	8	9	10	11	12	13	14	15	16
018		Содержание КРС в распределитель ной площадке	1		Распределительная площадка	6038	2						410		63
018		Содержание КРС в загоне	1	3984	Загон для КРС	6039	2					684	700	59	59

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
					шерстяная, пуховая) (
					1050*)				
					Аммиак (32)	0.01155		0.16565472	
				0333	Сероводород (0.000189		0.0027107136	2023
					Дигидросульфид) (518)				
				0410	Метан (727*)	0.05565		0.79815456	2023
				1052	Метанол (Метиловый	0.00042875		0.006149304	2023
					спирт) (338)				
					Гидроксибензол (155)	0.00004375		0.00062748	
				1246	Этилформиат (0.000665		0.009537696	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
				1314	Пропаналь (0.00021875		0.0031374	2023
					Пропионовый альдегид,				
					Метилуксусный				
					альдегид) (465)				
				1531	Гексановая кислота (0.000259		0.0037146816	2023
					Капроновая кислота) (
					137)				
					Диметилсульфид (227)	0.000336		0.0048190464	
				1715	Метантиол (0.000000875		0.0000125496	2023
					Метилмеркаптан) (339)				
				1849	Метиламин (0.000175		0.00250992	2023
					Монометиламин) (341)				
				2920	Пыль меховая (0.0021		0.03011904	2023
					шерстяная, пуховая) (
					1050*)				
					Аммиак (32)	0.0180576		0.2589893222	
				0333	Сероводород (0.000295488		0.0042380071	2023
					Дигидросульфид) (518)				
					Метан (727*)	0.0870048		1.2478576435	
				1052	Метанол (Метиловый	0.00067032		0.0096139976	2023
					спирт) (338)				
					Гидроксибензол (155)	0.0000684		0.0009810202	
				1246	Этилформиат (0.00103968		0.0149115064	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
				1314	Пропаналь (0.000342		0.0049051008	2023
					Пропионовый альдегид,				
					Метилуксусный				

1	2	. Биржан Сал, с. М	4	5	6	7	8	9	10	11	12	13	14	15	16
Τ		3	4	5	6		8	9	10	11	12	13	14	13	10
018		Содержание быков в загоне	1	3984	Загон для быков	6040	2					713	581	60	60
019		Завальная яма Дробилка Ангар для хранения зерна	1 1 1 1	400	Ворота	6041	3					982	586	2	3

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
					альдегид) (465)				
				1531	Гексановая кислота (0.000404928		0.0058076394	2023
					Капроновая кислота) (
					137)				
					Диметилсульфид (227)	0.000525312		0.0075342348	
				1715	Метантиол (0.000001368		0.0000196204	2023
					Метилмеркаптан) (339)				
				1849	Метиламин (0.0002736		0.0039240806	2023
					Монометиламин) (341)				
				2920	Пыль меховая (0.0032832		0.0470889677	2023
					шерстяная, пуховая) (1050*)				
				0303	Аммиак (32)	0.004488		0.0643686912	2023
				0333	Сероводород (0.00007344		0.0010533059	2023
					Дигидросульфид) (518)				
					Метан (727*)	0.021624		0.3101400576	
				1052	Метанол (Метиловый	0.0001666		0.0023894438	2023
					спирт) (338)				
					Гидроксибензол (155)	0.000017		0.0002438208	
				1246	Этилформиат (0.0002584		0.0037060762	2023
					Муравьиной кислоты				
					этиловый эфир) (1486*				
)				
				1314	Пропаналь (0.000085		0.001219104	2023
					Пропионовый альдегид,				
					Метилуксусный				
				1 - 0 1	альдегид) (465)	0 00010064		0 001 440 4101	0000
				1531	Гексановая кислота (0.00010064		0.0014434191	2023
					Капроновая кислота) (137)				
				1707	Диметилсульфид (227)	0.00013056		0.0018725437	2023
					Метантиол (0.00000034		0.0000048764	
					Метилмеркаптан) (339)				
				1849	Метиламин (0.000068		0.0009752832	2023
					Монометиламин) (341)				
				2920	Пыль меховая (0.000816		0.0117033984	2023
					шерстяная, пуховая) (
					1050*)				
				2937	Пыль зерновая /по	1.118		1.59496	2023
					грибам хранения/ (
					487)				

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD	Район	им.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD
--	-------	-----	--------	------	----	--------	-----	----------	-----

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
020		Загрузка кормушек	1	400	Миксер Botex	6042	2					715	387	2 2	!
021		Загрузка навоза в Камаз	1	573	Трактор	6043	3					637	318	2 2	2
022		Разгрузка навоза	1		Камаз	6044	2					387	524	2 2	:
022		Буртование	1		Трактор	6045	2					398	444	2 2	2
022		навоза Открытая площадка навоза	1	5136	Открытая площадка навоза	6046	3					403	467	20 3	800
023		навоза Металлический контейнер	1	360	Пылящая поверхность	6047	2					1041	682	1 1	
024		Трактора	1		Трактора	6050	3					902	708	4 5	5

Таблица 4.3.1.1

17	18	19	20	21 22 2937 Пыль зерновая /по		23	24	25	26
				2937	Пыль зерновая /по грибам хранения/ (487)	0.02133		0.0215	2023
				0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0445		0.0052712	2023
				0304	Азот (II) оксид (Азота оксид) (6)	0.00723		0.00085657	2023
				0328	Углерод (Сажа, Углерод черный) (583)	0.00911		0.0008791	2023
				0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (0.00574		0.0006552	2023
				0337	IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.0543		0.007528	2023
				2732	Керосин (654*)	0.01358		0.0016235	2023
				0202	7	0.0720		2 62	2022
					Аммиак (32) Сероводород (Дигидросульфид) (518)	0.0732 0.09		3.62 4.45	
				2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль	0.0000008		0.000000806	2023
					цементного производства - глина, глинистый сланец,				
					доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских				
				0301	месторождений) (494) Азота (IV) диоксид (0.0666		0.108	2023
					Азота диоксид) (4) Азот (II) оксид (0.01083		0.01755	
					Азота оксид) (6) Углерод (Сажа, Углерод черный) (583)	0.01367		0.01832	

Раион 1	им. 2	Биржан Сал, с. М	амаи, 1	5 5	zgeei rid.	7	8	9	10	11	12	13	14	15	16
		,	7	3	Ü	,	0		10	11	12	13	14	13	10
025		Сельхозтехника	1		Ворота	6051	3					1006	713	2	3
027		TPK	1	700	Горловина баков	6052	2	0.05	0.5	0.0009817		921	498		
ı															
ı															

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0330	Сера диоксид (0.00862		0.012634	2023
					Ангидрид сернистый,				
					Сернистый газ, Сера (
					IV) оксид) (516)				
				0337	Углерод оксид (Окись	0.0815		0.1233	2023
					углерода, Угарный				
					ras) (584)				
					Керосин (654*)	0.0204		0.0303	
					Азота (IV) диоксид (0.08584		0.480132	2023
					Азота диоксид) (4)				
				0304	Азот (II) оксид (0.0139415		0.07802145	2023
					Азота оксид) (6)				
					Углерод (Сажа,	0.01983		0.08216	2023
					Углерод черный) (583)				
					Сера диоксид (0.010826		0.0515618	2023
					Ангидрид сернистый,				
					Сернистый газ, Сера (
					IV) оксид) (516)	0 11000		0 40000	2023
					Углерод оксид (Окись	0.11828		0.42829	2023
					углерода, Угарный				
				2704	ras) (584)	0.001733		0.004511	2023
					Бензин (нефтяной, малосернистый) /в	0.001/33		0.004511	2023
					пересчете на углерод/				
					(60)				
				2732	Керосин (654*)	0.028		0.1214	2023
					Сероводород (0.000000977	0.995	0.000015064	
				0000	Дигидросульфид) (518)	0.000000377	0.333	0.000010001	2020
				0415	Смесь углеводородов	0.0730836	74445.961	0.007897089	2023
					предельных С1-С5 (
					1502*)				
				0416	Смесь углеводородов	0.0270108	27514.312	0.002918667	2023
					предельных С6-С10 (
					1503*)				
				0501	Пентилены (амилены -	0.0027	2750.331	0.00029175	2023
					смесь изомеров) (460)				
				0602	Бензол (64)	0.002484	2530.305	0.00026841	2023
				0616	Диметилбензол (смесь	0.0003132	319.038	0.000033843	2023
					о-, м-, п- изомеров)				
					(203)				
					Метилбензол (349)	0.0023436	2387.287	0.000253239	
				0627	Этилбензол (675)	0.0000648	66.008	0.000007002	2023

1 2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
							1								
027		Насос перекачки топлива	1	300	Насос	6053	2					898	495	1	1
028		Покрасочные работы Открытый склад угля	1	2880	Окрашенная поверхность Пылящая поверхность	6054	2						715	2	

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				2754	Алканы С12-19 /в	0.000348022	354.510	0.005364936	2023
					пересчете на С/ (
					Углеводороды				
					предельные С12-С19 (в				
					пересчете на С);				
					Растворитель РПК-				
					265Π) (10)				
				0333	Сероводород (0.00010108		0.0001092	2023
					Дигидросульфид) (518)				
				0415	Смесь углеводородов	0.04885774		0.0527826	2023
					предельных С1-С5 (
					1502*)				
				0416	Смесь углеводородов	0.01805722		0.0195078	2023
					предельных С6-С10 (
				0501	1503*)	0 001005		0 00105	0000
				0501	Пентилены (амилены -	0.001805		0.00195	2023
				0.000	смесь изомеров) (460)	0 0016606		0.001794	2023
					Бензол (64)	0.0016606 0.00020938		0.001794	
				0010	Диметилбензол (смесь о-, м-, п- изомеров)	0.00020938		0.0002262	2023
					(203)				
				0621	Метилбензол (349)	0.00156674		0.0016926	2023
					Этилбензол (675)	0.00004332		0.00010320	
					Алканы C12-19 /в	0.03599892		0.0388908	
				2,01	пересчете на С/ (0.00033032		0.0000300	2020
					Углеводороды				
					предельные С12-С19 (в				
					пересчете на С);				
					Растворитель РПК-				
					265Π) (10)				
				0616	Диметилбензол (смесь	0.125		0.043515	2023
					о-, м-, п- изомеров)				
					(203)				
				2752	Уайт-спирит (1294*)	0.0625		0.032815	2023
				2909	Пыль неорганическая,	0.00333		0.0031768	2023
					содержащая двуокись				
					кремния в %: менее 20				
					(доломит, пыль				
					цементного				
					производства -				
					известняк, мел,				
					огарки, сырьевая				

Район им. Биржан Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
-----------------------	----	--------	-----	----------	------

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
030		Металлический контейнер	1		Пылящая поверхность	6056	1.5					1205	1210	1	1
004		Заточной станок Сверлильный станок Газовая сварка Электродуговая сварка Зарядка аккумуляторов	1 1 1 1	150 200 300		6057	3					-993	-1869	8	5
015		Заточной станок Сверлильный	1	50 50	Ворота	6058	3					1245	2338	2	3

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				2000	смесь, пыль вращающихся печей, боксит) (495*)	0.000001		0.0000000000	2023
				2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного	0.00001		0.0000003024	2023
					производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей				
					казахстанских месторождений) (494)				
				0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо	0.004070833		0.003908	2023
					триоксид, Железа оксид) (274)				
				0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.000720833		0.000692	2023
				0301	Азота (IV) диоксид (Азота диоксид) (4)	0.005		0.0072	2023
				0304	Азот (II) оксид (Азота оксид) (6)	0.0008125		0.00117	2023
					Серная кислота (517) Фтористые газообразные соединения /в пересчете на фтор/ (0.0000095 0.000166666		0.00003591 0.00016	
				2902	617) Взвешенные частицы (0.00142		0.0007668	2023
				2930	116) Пыль абразивная (0.0008		0.000432	2023
				0123	Корунд белый, Монокорунд) (1027*) Железо (II, III) оксиды (в пересчете на железо) (диЖелезо	0.00275		0.003934	2023

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD	Район	им.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD
--	-------	-----	--------	------	----	--------	-----	----------	-----

	2	3				7	8	9	1.0	11	12	13	1.4	15	1.6
1	2	3 станок Сварочный пост	1	5	6	7	8	9	10	11	12	13	14	15	16
026		Токарный станок Сварочный пост	1		Ворота	6059	3					936	701	2	3
002		Открытый склад угля	1	5160	Пылящая поверхность	6060	2					240	245	2	3

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0143	триоксид, Железа оксид) (274) Марганец и его соединения (в пересчете на марганца	0.000480555		0.000566	2023
				0301	(IV) оксид) (327) Азота (IV) диоксид (Азота диоксид) (4)	0.005		0.0072	2023
				0304	Азот (II) оксид (Азота оксид) (6)	0.0008125		0.00117	2023
				0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.000111111		0.00016	2023
				2902	Взвешенные частицы (0.00142		0.0002556	2023
				2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0008		0.000144	2023
				0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0.00275		0.003934	2023
				0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.000480555		0.000566	2023
				0301	Азота (IV) диоксид (Азота диоксид) (4)	0.005		0.0072	2023
				0304	Азот (II) оксид (Азота оксид) (6)	0.0008125		0.00117	2023
				0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.000111111		0.00016	2023
				2902	Взвешенные частицы (0.00126		0.0002268	2023
				2909	Пыль неорганическая, содержащая двуокись	0.008		0.009551	2023

1	2	Биржан Сал, с. М	4	5	6	7	8	9	10	11	12	13	14	15	16
002		Металлический контейнер	1	215	Пылящая поверхность	6061	1.5						255	1	
004		Открытый склад угля	1		Пылящая поверхность	6062	2					-984	-1851	5	5
004		Металличсеский контейнер	1	215	Пылящая поверхность	6063	2					-994	-1845	4	4

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				2908	кремния в %: менее 20 (доломит, пыль цементного производства — известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства — глина, глинистый сланец, доменный шлак, песок,	0.000024		0.000013	2023
				2909	клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства —	0.007		0.0189382	2023
				2908	известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей	0.0000096		0.00000052	2023

Район им.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
-----------	--------	------	----	--------	-----	----------	------

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
005	Закачка газа в резервуар	1	365	Горловина шланга	6064	2					-1047	-1890	1	1
005	Заправка газа машин	1	1200	Горловина шланга	6065	2					-1039	-1881	1	1
012	Открытый склад угля	1	5160	Пылящая поверхность	6066	2					1105	2239	4	3
012	Металлический контейнер	1	215	Пылящая поверхность	6067	2					1104	2245	2	2
026	Открытый склад угля	1	5160	Пылящая поверхность	6068	2					972	717	3	4
026	Металлический контейнер	1	215	Пылящая поверхность	6069	2					971	702	2	2

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
				0402	казахстанских месторождений) (494) Бутан (99)	7.365224232		0.0441913454	2026
				0402	Бутан (99)	7.365224232		0.0441913454	2026
				2909	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей,	0.007		0.0095358	2026
				2908	боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казакстанских	0.000000667		0.00000361	2026
				2909	месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)	0.007		0.0283882	2026
				2908	Пыль неорганическая, содержащая двуокись	0.00001		0.00000542	2026

1	2	Биржан Сал, с. № 3	4	5	6	7	8	9	10	11	12	13	14	15	16
029		Металлический контейнер	1		Пылящая поверхность	6070	2					893	807	2	2
031		Металлический контейнер	1		Пылящая поверхность	6071	1.5					1130	1135	1	1

Таблица 4.3.1.1

17	18	19	20	21	22	23	24	25	26
17	18	19	20		кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,	0.00000467	24	0.000001294	
				2908	кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.000001		0.00000058	2023

4.4.Границы области воздействия

Областью воздействия является территория (акватория), подверженная антропогенной нагрузке и определенная путем моделирования рассеивания приземных концентраций загрязняющих веществ.

Для совокупности стационарных источников область воздействия рассчитывается как сумма областей воздействия отдельных стационарных источников выбросов.

Нормативы допустимых выбросов устанавливаются для каждого загрязняющего вещества, включенного в перечень загрязняющих веществ, в виде:

- 1) массовой концентрации загрязняющего вещества;
- 2) скорости массового потока загрязняющего вещества.

Граница области воздействия на атмосферный воздух объекта определяется как проекция замкнутой линии на местности, ограничивающая область, за границей которого соблюдаются установленные экологические нормативы качества и/или целевые показатели качества окружающей среды с учетом индивидуального вклада объекта в общую нагрузку на атмосферный воздух (Сіпр/Сізв≤1).

Пределы области воздействия на графических материалах (генеральный план города, схема территориального планирования, топографическая карта, ситуационная схема) территории объекта воздействия обозначаются условными обозначениями.

Нормирование выбросов вредных веществ в атмосферу основано на необходимости соблюдения экологических нормативов качества или целевых показателей качества окружающей среды.

Область воздействия для данного вида работ устанавливается по расчету рассеивания согласно Санитарным правилам «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года No ҚР ДСМ-2.

Согласно «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» утверждены приказом Исполняющий обязанности Министра здравоохранения Республики Казахстан от 11 января 2022 года No ҚР ДСМ-2 санитарно-защитная зона — территория, отделяющая зоны специального назначения, а также промышленные организации и другие производственные, коммунальные и складские объекты в населенном пункте от близлежащих селитебных территорий, зданий и сооружений жилищно-гражданского назначения в целях ослабления воздействия на них неблагоприятных факторов.

В границах СЗЗ объекта (в том числе территории объекта, от которого устанавливается СЗЗ) размещаются здания и сооружения для обслуживания работников объекта и для обеспечения его деятельности:

- 1) нежилые помещения для дежурного аварийного персонала, помещения для пребывания работающих по вахтовому методу;
- 2) пожарные депо, бани, прачечные, объекты торговли и общественного питания, гаражи, площадки и сооружения для хранения общественного и индивидуального транспорта,

автозаправочные станции, общественные и административные здания, конструкторские бюро, учебные заведения, поликлиники, научно-исследовательские лаборатории, спортивно-оздоровительные сооружения закрытого типа;

- 3) местные и транзитные коммуникации, линии электропередач, электроподстанции, нефте- и газопроводы, артезианские скважины для технического водоснабжения, водоохлаждающие сооружения для подготовки технической воды, насосные станции водоотведений, сооружения оборотного водоснабжения;
- 4) при обосновании размещаются сельскохозяйственные угодья для выращивания технических культур, неиспользуемых в качестве продуктов питания.

В границах СЗЗ объектов (в том числе территории объекта, от которого устанавливается СЗЗ) размещаются здания и сооружения для обслуживания работников объекта и для обеспечения его деятельности, указанные в пункте 47 настоящих Санитарных правил, за исключением:

- 1) вновь строящуюся жилую застройку, включая отдельные жилые дома;
- 2) ландшафтно-рекреационные зоны, площадки (зоны) отдыха, территории курортов, санаториев и домов отдыха;
- 3) создаваемые и организующиеся территории садоводческих товариществ и коттеджной застройки, коллективных или индивидуальных дачных и садово-огородных участков;
- 4) спортивные сооружения, детские площадки, образовательные и детские организации, лечебно-профилактические и оздоровительные организации общего пользования;
- 5) объекты по выращиванию сельскохозяйственных культур, используемых в качестве продуктов питания.

В границах СЗЗ и на территории объектов других отраслей промышленности размещаются здания и сооружения для обслуживания работников объекта и для обеспечения его деятельности, указанные в пункте 47 настоящих Санитарных правил, за исключением:

- 1) объектов по производству лекарственных веществ, лекарственных средств и (или) лекарственных форм, склады сырья и полупродуктов для фармацевтических объектов;
- 2) объектов пищевых отраслей промышленности, оптовых складов продовольственного сырья и пищевых продуктов;
 - 3) комплексов водопроводных сооружений для подготовки и хранения питьевой воды.

Согласно Санитарным правилам «Санитарно-эпидемиологические требования к санитарнозащитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года No ҚР ДСМ-2 на период эксплуатации объектов СЗЗ принемается:

- склады горюче-смазочных материалов 100 м.
- гаражи и парки по ремонту, техническому обслуживанию и хранению автомобилей, металлообрабатывающие станки, сварочные работы не менее 100 м.
 - площадки для буртования навоза не менее 300 м.
- крематории без подготовительных и обрядовых процессов с 1 (одной) однокамерной печью не менее 500 м.
- хозяйство по выращиванию и откорму крупного рогатого скота от 1200 до 5000 коров и 6000 скотомест для молодняка 500 м.

- при установлении минимальной величины санитарно-защитной зоны от всех типов котельных тепловой мощностью менее 200 Гкал, работающих на твердом, жидком и газообразном топливе, необходимо определение расчетной концентрации в приземном слое и по вертикали с учетом высоты жилых зданий в зоне максимального загрязнения атмосферного воздуха от котельной (10-40 высот трубы котельной), а также акустических расчетов. СЗЗ при расчетных значениях ожидаемого загрязнения атмосферного воздуха в пределах ПДК в приземном слое и на различных высотах прилегающей жилой застройки должна быть не менее 50 м.
- отопительные котлы, самодельные печи размещенных в общественных, жылых домах и вагончиках СЗЗ не устанавливается, согласно Санитарным правилам «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года No ҚР ДСМ-2.

4.5 Мероприятия по благоустройству и озеленению СЗЗ

При организации СЗЗ необходимо учесть следующие факторы: одним из основных ее факторов является обеспечение защиты воздушной среды населенных пунктов от промышленных загрязнений. В качестве мероприятий применяется озеленение.

СЗЗ для предприятий IV, V классов предусматривает максимальное озеленение — не менее 60 % площади, для предприятий II и III класса — не менее 50 %, для предприятий имеющих СЗЗ 1000 м и более — не менее 40 % ее территории с обязательной организацией полосы древесно-кустарниковых насаждений со стороны жилой застройки.

Растения, которые используются для озеленения C33, должны быть устойчивы к загрязнению атмосферы. Вновь создаваемые зеленые насаждения решаются посадками плотной структуры изолирующего типа, которые создают на пути загрязненного воздушного потока механическую преграду, осаждая и поглощая часть вредных выбросов, или посадками ажурной структуры фильтрующего типа, выполняющими роль механического и биологического фильтра загрязненного воздушного потока. Деревья основной породы в изолирующих посадках высажены через 3 м в ряду при расстоянии 3 м между рядами: расстояние между деревьями сопутствующих пород-2-2,5 м.

Для Акмолинской области рекомендуется следующий ассортимент деревьев и кустарников: Породы, устойчивые против производственных выбросов:

- деревья (клен ясенелистный, ива белая, форма полукруглая, шелковица белая)
- кустарники (акация желтая, бузина красная, жимолость татарская, лохузколистный, чубушник обыкновенный, шиповник краснолистный)
 - лианы (виноград пятилистный)

Породы, относительно устойчивые против производственных выбросов:

- деревья (береза бородавчатая, вяз обыкновенный, вяз перисто-ветвистый, осина, рябина обыкновенная, тополь китайский, тополь берлинский, яблоня сибирская, ясень зеленый, ясень обыкновенный)
- кустарники (барбарис обыкновенный, боярышник обыкновенный, дерен белый, ива козья, клен гиниала, клен татарский, птелея трехлистная, пузыреплодник клинолистный, сирень

обыкновенная, смородина золотистая, смородина черная, спирея Вангутта, спирея иволистная, шиповник обыкновенный).

Породы, относительно устойчивые против производственных выбросов: деревья (вяз перистоветвистый, клен полевой, софора японская, черешня обыкновенная); кустарники (айва обыкновенная, барбарис обыкновенный, пузыреплодник калинолистный, птелея трехлистная, смородина золотистая, скумпия величественная).

Площадь озеленения санитарно-защитной зоны для предприятия ТОО «KazBeef Ltd» составляет 120,0 га. Деревья (тополь пирамидальный, клен ясенелиственый, ива белая, форма полукруглая, шелковица белая, березабородавчатая, вяз обыкновенный, вяз перисто-ветвистый, осина, рябина обыкновенная, тополь китайский, тополь берлинский, яблоня сибирская, ясень зеленый, ясень обыкновенный) высаживаются через 3-5 м. Планируется высадка 100 саженцев, с обязательной организацией полосы древесно-кустарниковых насаждений со стороны жилой застройки.

План – график выполнения мероприятий по организации, благоустройству и озеленению

территории, граница СЗЗ

территории, граница Сээ										
№ п/п	Наименование	Мероприятия по	Срок исполнения	Ответственный						
	предприятия	благоустройство и озеленению	1							
		Организация благоустройство и озеленение территории границы СЗЗ и прилегающей территории:	После введения в эксплуатацию объекта Начало 3 квартала Ежегодно	Директор, эколог предприятия по назначению						
	TOO «KazBeef Ltd»	Посадка древесно-кустарников насаждений	Апрель-май Ежегодно	Директор, эколог предприятия по назначению						
1		Обрезка кустов и деревьев	Апрель-сентябрь ежегодно	Директор, эколог предприятия по назначению						
		Проведение субботников	Ежемесячно в течении года	Директор, эколог предприятия по назначению						
		Полив зеленых насаждений	Ежегодно, в жаркий период года	Директор, эколог предприятия по назначению						

5. Расчет и анализ приземных концентраций загрязняющих веществ в атмосфере

5.1. Общее положение

Расчет загрязнения воздушного бассейна вредными веществами производился на персональном компьютере модели Pentium IV-2800 по унифицированному программному комплексу расчета величин приземных концентраций вредных веществ в атмосферном воздухе «Эра» версии 3.0.

Программный комплекс «ЭРА» предназначен для расчета полей концентрации вредных веществ в приземном слое атмосферы, содержащихся в эмиссиях предприятий, с целью установления предельно допустимых эмиссий (ПДЭ).

Программный комплекс «ЭРА» разрешен к применению в Республике Казахстан Комитетом экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов письмом № 28-02—28/ЖТ-Б-13 от 23.02.2022.

5.2. Анализ результатов расчета загрязнения атмосферы вредными веществами (существующее положение)

Расчет максимальных приземных концентраций вредных веществ позволяет выделить зоны с нормативным качеством воздуха и повышенным содержанием отдельных ингредиентов по отношению к ПДК.

Расчет рассеивания приземных концентраций проведен с оценкой максимальной концентрации загрязняющих веществ от источников рассматриваемого объекта на границе жилой зоны и санитарно-защитной зоны.

Расчет рассеивания приземных концентраций произведен без учета фоновых концентраций согласно справке РГП «Казгидромет» от 18.04.2023 года.

Результаты расчетов приземных концентраций загрязняющих веществ в атмосфере представлены в таблице 5.2.1.

Таблица 5.2.1

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ

Юд ЗВ 	Наименование загрязняющих веществ и состав групп суммаций	ЖЗ
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.046383
0304	Азот (II) оксид (Азота оксид) (6)	Cm<0.0
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.103706
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.029370
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.636188
2909 	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль	0.057296

TOO "KazBeef LTD" Репродуктор №№1,2,3.

| 0.150088 |

| 0.407608 |

| вращающихся печей, боксит) (495*|

07 | 0301 + 0330

пл | 2908 + 2909

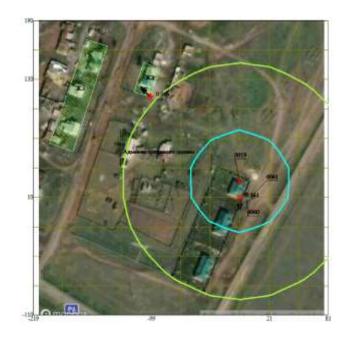
Код ЗВ	Наименование загрязняющих веществ и состав групп суммаций	C33	ЖЗ
0123	пересчете на железо) (диЖелезо	0.004102	нет расч.
0143	триоксид, Железа оксид) (274) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.029055	 нет расч.
0214	Кальций дигидроксид (Гашеная известь, Пушонка) (304)	0.000784	 нет расч.
0301 	Азота (IV) диоксид (Азота диоксид) (4)	0.714567	нет расч.
0303	Аммиак (32)	0.069407	нет расч.
0304 	Азот (II) оксид (Азота оксид)	0.058046	нет расч.
0322	Серная кислота (517)	Cm<0.0	нет расч.
0328 	Углерод (Сажа, Углерод черный) (583)	0.148313	нет расч.
0330 	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.087139	нет расч.
0333 	Сероводород (Дигидросульфид) (518)	0.825567	нет расч.
0337 	Углерод оксид (Окись углерода, Угарный газ) (584)	0.079913	нет расч.
0342 	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.003190	нет расч.
0402	Бутан (99)		нет расч.
0410	Метан (727*)	0.001338	нет расч.

0415 	Смесь углеводородов предельных C1-C5 (1502*)	0.018596	нет расч.
0416	Смесь углеводородов предельных C6-C10 (1503*)	0.011455	нет расч.
0501		0.022900	нет расч.
1 0602	Бензол (64)	0.105340	нет расч.
0616			нет расч.
1 0010	изомеров) (203)	0.324033	I paca. I
0621	-	0 040603	нет расч.
			_
	Этилбензол (675)		нет расч.
	Метанол (Метиловый спирт) (338)		нет расч.
	Гидроксибензол (155)		нет расч.
1246 	Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)	0.039962	нет расч.
1314	Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)	0.026291	нет расч.
1 1531	Гексановая кислота (Капроновая	0.031128	нет расч.
1 1221	кислота) (137)	0.031120	Her pacq.
1 1707		0.005048	luom pagu
			нет расч.
1715 1849			_
	, , , , , ,		нет расч.
2704		Cm<0.0	нет расч.
	/в пересчете на углерод/ (60)		!
2732			· •
2752			нет расч.
2754			нет расч.
	(Углеводороды предельные С12-С19		
	(в пересчете на С); Растворитель		
1	РПК-265П) (10)		
2902			нет расч.
2908		0.182262	нет расч.
	двуокись кремния в %: 70-20		
	(шамот, цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских		
1	месторождений) (494)		1
2909	Пыль неорганическая, содержащая	0.005970	нет расч.
1	двуокись кремния в %: менее 20		1
	(доломит, пыль цементного		
	производства - известняк, мел,		1
	огарки, сырьевая смесь, пыль		
	вращающихся печей, боксит) (495*		1
)		1
2920	Пыль меховая (шерстяная,	0.102145	нет расч.
	пуховая) (1050*)		1
2930	Пыль абразивная (Корунд белый,	0.008061	нет расч.
	Монокорунд) (1027*)		1
2937	Пыль зерновая /по грибам	0.904744	нет расч.
	хранения/ (487)		1
01	0303 + 0333	0.886132	нет расч.
07	0301 + 0330	0.787948	нет расч.
08	0301 + 0330 + 0337 + 1071	0.866821	_
	0330 + 1071		нет расч.
41	0330 + 0342		нет расч.
42	0322 + 0330		нет расч.
44	0330 + 0333	0.840921	нет расч.
•	2902 + 2908 + 2909 + 2920 + 2930		нет расч.
i '	+ 2937		
	·		

ИП Иваненко А.А.


```
Жилые дома.
3. Исходные параметры источников.
    Город :031 Район им. Биржан Сал, с. Мамай.
            :0001 TOO "KazBeef LTD" Жилые дома.
    Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
             ПДКм.р для примеси 0301 = 0.2 мг/м3
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
       Признак источников "для зимы" - отрицательное значение высоты
       |Тип| H | D | Wo | V1 | T X1 | Y1 | X2 | Y2
   Код
                                                                               |Alf| F | KP |Ди|
Выброс
Объ.Пл
000101 0019 T 4.5 0.25 6.00 0.2945 0.0 -8.88 26.38
                                                                                    1.0 1.000 0
0.0056080
4. Расчетные параметры См, Им, Хм
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
    Сезон :ЗИМА для энергетики и ЛЕТО для остальных
    Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4) ПДКм.р для примеси 0301 = 0.2 мг/м3
                               |____Их расчетные параметры
           Источники
1 |000101 0019| 0.005608| T | 0.150969 | 0.50 | 25.6
   Суммарный Мд= 0.005608 г/с
    Сумма См по всем источникам = 0.150969 долей ПДК
  _____
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
             :ЗИМА для энергетики и ЛЕТО для остальных
    Сезон
            :0301 - Азота (IV) диоксид (Азота диоксид) (4)
    Примесь
             ПДКм.р для примеси 0301 = 0.2 мг/м3
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 300х300 с шагом 30
    Расчет по территории жилой застройки. Покрытие РП 001
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (Ump) \, \text{м/c}
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
    Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
             ПДКм.р для примеси 0301 = 0.2 мг/м3
    Расчет проводился на прямоугольнике 1
    с параметрами: координаты центра X=-69, Y=40
                 размеры: длина (по X) = 300, ширина (по Y) = 300, шаг сетки= 30
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Имр) м/с
 Результаты расчета в точке максимума
                              -9.0 м, Y=
                                           10.0 м
        Координаты точки : X=
Максимальная суммарная концентрация | Cs= 0.1444371 доли ПДКмр|
                                      0.0288874 мг/м3 |
                                Достигается при опасном направлении 0 град.
                   и скорости ветра 0.50 м/с
```

Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада вклады источников


```
Код
             |Тип| Выброс |
                                Вклад |Вклад в%| Сум. %| Коэф.влияния |
1 | 000101 0019 | T | 0.005608 | 0.144437 | 100.0 | 100.0 | 25.7555408 |
              B \text{ cymme} = 0.144437 \quad 100.0
7. Суммарные концентрации в узлах расчетной сетки.
    Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
            :0301 - Азота (IV) диоксид (Азота диоксид) (4)
    Примесь
             ПДКм.р для примеси 0301 = 0.2 мг/м3
     | Шаг сетки (dX=dY) : D=
                              30 м
      Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
      В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.1444371 долей ПДКмр
                                  = 0.0288874 мг/м3
    гигается в точке с координатами: XM = -9.0 \text{ M} ( X-столбец 8, Y-строка 7) YM = 10.0 \text{ M} опасном направлении ветра : 0 град.
Достигается в точке с координатами: Хм =
 При опасном направлении ветра :
 и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке.
    Город :031 Район им. Биржан Сал, с. Мамай.
    Объект
            :0001 TOO "KazBeef LTD" Жилые дома.
    Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
            ПДКм.р для примеси 0301 = 0.2 мг/м3
    Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
    Всего просчитано точек: 24
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0\,\mathrm{(Ump)} м/с
 Результаты расчета в точке максимума
        Координаты точки : X= -100.0 м, Y= 113.0 м
Максимальная суммарная концентрация | Cs= 0.0463825 доли ПДКмр| 0.0092765 мг/м3 |
                               Достигается при опасном направлении 134 град.
                 и скорости ветра 0.83 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                       ____ВКЛАДЫ_ИСТОЧНИКОВ
       Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
| 1 |000101 0019| T | 0.005608| 0.046383 | 100.0 | 100.0 | 8.2707815 |
                    В сумме = 0.046383 100.0
```


Город : 031 Район им. Биржан Сал, с. Мамай Объект : 0001 ТОО "KazBeef LTD" Жилые дома Вар.№ 3 ПК ЭРА v3.0, Модель: MPK-2014

0301 Азота (IV) диоксид (Азота диоксид) (4)

Изолинии в долих ПДК 0.050 0.100 0.114

Макс концентрация 0.1444371 ПДК достигается в точке х=-8. у= 10 При опасном напревления 0° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 300 м, высота 300 м, шаг расчетной сетки 30 м, количество расчетных точек 11*11 Расчёт на существующее положение.

Условные обозначения: Жилые зоны, группа N 01 — Административные границы Максим, значение концентрации Расч. прямоугольник № 01


```
3. Исходные параметры источников.
             :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
    Объект
            :0304 - Азот (II) оксид (Азота оксид) (6)
    Примесь
             ПДКм.р для примеси 0304 = 0.4 мг/м3
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
       Признак источников "для зимы" - отрицательное значение высоты
          |Тип| Н | D | Wo | V1 | Т
                                              Х1
   Код
                                                            1
                                                                  Х2
                                                                                  |Alf| F | KP |Ди|
Выброс
Объ.Пл
0.0009113
4. Расчетные параметры См, Им, Хм
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
             :ЗИМА для энергетики и ЛЕТО для остальных
    Сезон
    Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
              ПДКм.р для примеси 0304 = 0.4 мг/м3
                              ___|__Их расчетные параметры
           Источники____
|Номер|
        Код | M |Тип | Cm | Um | Xm
|-п/п-|Объ.Пл Ист.|------|---|-[доли ПДК]-|--[м/с]-
  1 |000101 0019| 0.000911| T | 0.012266 | 0.50 | 25.6
  Суммарный Мq= 0.000911 г/с
                                    0.012266 долей ПДК
    Сумма См по всем источникам =
    Средневзвешенная опасная скорость ветра =
       -----
     Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
5. Управляющие параметры расчета
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
    Объект
    Сезон
             :ЗИМА для энергетики и ЛЕТО для остальных
            :0304 - Азот (II) оксид (Азота оксид) (6)
    Примесь
             ПДКм.р для примеси 0304 = 0.4 мг/м3
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 300х300 с шагом 30
    Расчет по территории жилой застройки. Покрытие РП 001
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (Ump) \, \text{м/c}
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
           :031 Район им. Биржан Сал, с. Мамай.
    Объект
             :0001 TOO "KazBeef LTD" Жилые дома.
            :0304 - Азот (II) оксид (Азота оксид) (6)
    Примесь
              ПДКм.р для примеси 0304 = 0.4 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
7. Суммарные концентрации в узлах расчетной сетки.
            :031 Район им. Биржан Сал, с. Мамай.
:0001 ТОО "KazBeef LTD" Жилые дома.
    порол
    Объект
            :0304 - Азот (II) оксид (Азота оксид) (6)
              ПДКм.р для примеси 0304 = 0.4 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
8. Результаты расчета по жилой застройке.
             :031 Район им. Биржан Сал, с. Мамай.
:0001 ТОО "KazBeef LTD" Жилые дома.
    Γοροπ
    Объект
            :0304 - Азот (II) оксид (Азота оксид) (6)
    Примесь
              ПДКм.р для примеси 0304 = 0.4 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
```



```
3. Исходные параметры источников.
            :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
            :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
    Примесь
             ПДКм.р для примеси 0330 = 0.5 мг/м3
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
      Признак источников "для зимы" - отрицательное значение высоты
          |Тип| Н | D | Wo | V1 | Т
                                             Х1
   Код
                                                         Y1
                                                            X2
                                                                                   |Alf| F | KP |Ди|
Выброс
Объ.Пл
0.0313470
4. Расчетные параметры См, Uм, Хм
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
             :ЗИМА для энергетики и ЛЕТО для остальных
    Сезон
    Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
              ПДКм.р для примеси 0330 = 0.5 мг/м3
        |Номер|
|-п/п-|Объ.Пл Ист.|------|----|-[доли ПДК]-|--[м/с]--|-
  1 |000101 0019| 0.031347| T | 0.337548 | 0.50 | 25.6
 Суммарный Мq= 0.031347 г/с
                                   0.337548 долей ПДК
     Сумма См по всем источникам =
     Средневзвешенная опасная скорость ветра = 0.50 \text{ м/c}
5. Управляющие параметры расчета
    Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
            :ЗИМА для энергетики и ЛЕТО для остальных
:0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
    Сезон
    Примесь
             ПДКм.р для примеси 0330 = 0.5 мг/м3
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 300х300 с шагом 30
    Расчет по территории жилой застройки. Покрытие РП 001
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Имр) м/с
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
    Объект
              :0001 TOO "KazBeef LTD" Жилые дома.
            :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
    Примесь
              ПДКм.р для примеси 0330 = 0.5 мг/м3
    Расчет проводился на прямоугольнике 1
    с параметрами: координаты центра X= -69, Y= 40
                 размеры: длина (по X) = 300, ширина (по Y) = 300, шаг сетки= 30
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (Ump) \, \text{м/c}
 Результаты расчета в точке максимума
        Координаты точки : X = -9.0 \text{ м, } Y =
                                            10.0 м
Максимальная суммарная концентрация | Cs= 0.3229436 доли ПДКмр|
                                        0.1614718 мг/м3
                                 Достигается при опасном направлении 0 град.
                    и скорости ветра 0.50 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                           _вклады источников
```

Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |

| Hom. |


```
|----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|-----|----- b=C/М ---|
| 1 | 000101 0019| T | 0.0313| 0.322944 | 100.0 | 100.0 | 10.3022165 |
                      B \text{ cymme} = 0.322944 100.0
7. Суммарные концентрации в узлах расчетной сетки.
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
    Объект
    Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
              ПДКм.р для примеси 0330 = 0.5 мг/м3
          Параметры_расчетного_прямоугольника_No 1__
     | Координаты центра : X= -69 м; Y= 40
| Длина и ширина : L= 300 м; B= 300 м
| Шаг сетки (dX=dY) : D= 30 м
      Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
      В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.3229436 долей ПДКмр
                                     = 0.1614718 мг/м3
Достигается в точке с координатами: XM = -9.0 \text{ м} ( X-столбец 8, Y-строка 7) YM = 10.0 \text{ м} При опасном направлении ветра : 0 град.
  и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке.
    Город :031 Район им. Биржан Сал, с. Мамай.
    Объект
             :0001 TOO "KazBeef LTD" Жилые дома.
    Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
             ПДКм.р для примеси 0330 = 0.5 мг/м3
    Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
    Всего просчитано точек: 24
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0\,\mathrm{(Ump)} м/с
 Результаты расчета в точке максимума
        Координаты точки : X= -100.0 м, Y= 113.0 м
Максимальная суммарная концентрация | Cs= 0.1037057 доли ПДКмр| 0.0518528 мг/м3 |
                                  Достигается при опасном направлении 134 град.
                  и скорости ветра 0.83 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                        ____ВКЛАДЫ_ИСТОЧНИКОВ
       Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
| 1 | 000101 0019 | T | 0.0313 | 0.103706 | 100.0 | 100.0 | 3.3083124 |
                 B cymme = 0.103706 100.0
```


Город : 031 Район им. Биржан Сал, с. Мамай Объект : 0001 ТОО "KazBeef LTD" Жилые дома Вар.№ 3 ПК ЭРА v3.0, Модель: MPK-2014

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Изолинии в долих ПДК 0.050 ПДК -0.100 ПДК 0.255 ПДК

Макс концентрация 0.3229436 ПДК достигается в точке х=-9. у= 10 При опасном направления 0° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 300 м, высота 300 м, шаг расчетной сетки 30 м, количество расчетных точек 11*11 Расчёт на существующее положение.

Условные обозначения: Жилые зоны, группа N 01 Административные границы Максим, значение концентрации Расч. прямоугольник № 01


```
3. Исходные параметры источников.
            :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
            :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
    Примесь
             ПДКм.р для примеси 0337 = 5.0 мг/м3
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
      Признак источников "для зимы" - отрицательное значение высоты
          |Тип| Н | D | Wo | V1 | Т
                                             Х1
   Код
                                                            | X2
                                                                                  |Alf| F | KP |Ди|
Выброс
Объ.Пл
0.0887778
4. Расчетные параметры См, Uм, Хм
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
             :ЗИМА для энергетики и ЛЕТО для остальных
    Сезон
    Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
              ПДКм.р для примеси 0337 = 5.0 мг/м3
        |Номер|
|-п/п-|Объ.Пл Ист.|------|---|-[доли ПДК]-|--[м/с]--|-
  1 |000101 0019| 0.088778| T | 0.095597 | 0.50 | 25.6
 .....
    Суммарный Мq= 0.088778 г/с
                                   0.095597 долей ПДК
     Сумма См по всем источникам =
     Средневзвешенная опасная скорость ветра = 0.50 \text{ м/c}
5. Управляющие параметры расчета
    Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
    Сезон :ЗИМА для энергетики и ЛЕТО для остальных Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
             ПДКм.р для примеси 0337 = 5.0 мг/м3
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 300х300 с шагом 30
    Расчет по территории жилой застройки. Покрытие РП 001
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Имр) м/с
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
    Объект
    Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
              ПДКм.р для примеси 0337 = 5.0 мг/м3
    Расчет проводился на прямоугольнике 1
    с параметрами: координаты центра X=-69, Y=40
                 размеры: длина (по X) = 300, ширина (по Y) = 300, шаг сетки= 30
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Результаты расчета в точке максимума
        Координаты точки : Х= -9.0 м, Y=
Максимальная суммарная концентрация | Cs= 0.0914608 доли ПДКмр|
                                        0.4573040 мг/м3
  Достигается при опасном направлении 0 град.
                    и скорости ветра 0.50 м/с
```

Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада


```
_вклады_источников
   1 |000101 0019| T | 0.0888| 0.091461 | 100.0 | 100.0 | 1.0302216
                        _____
                      B \text{ cymme} = 0.091461 100.0
7. Суммарные концентрации в узлах расчетной сетки.

      Город
      :031 Район им. Биржан Сал, с. Мамай.

      Объект
      :0001 ТОО "KazBeef LTD" Жилые дома

              :0001 TOO "KazBeef LTD" Жилые дома.
    Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
              ПДКм.р для примеси 0337 = 5.0 мг/м3
           Параметры_расчетного_прямоугольника_No 1_
      | Координаты центра : X= -69 м; Y=
     | Длина и ширина : L=
| Шаг сетки (dX=dY) : D=
                                  300 м; в= 300 м I
                                  30 м
      Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
      В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.0914608 долей ПДКмр = 0.4573040 мг/м3
Достигается в точке с координатами: XM = -9.0 \text{ M} ( X-столбец 8, Y-строка 7) YM = 10.0 \text{ M} При опасном направлении ветра : 0 град.
 и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке.
    Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
    Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
              ПДКм.р для примеси 0337 = 5.0 мг/м3
    Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
    Всего просчитано точек: 24
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Результаты расчета в точке максимума
         Координаты точки : X= -100.0 м, Y= 113.0 м
Максимальная суммарная концентрация | Cs= 0.0293705 доли ПДКмр|
                                          0.1468524 мг/м3
  Достигается при опасном направлении 134 град. и скорости ветра 0.83 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
                           ____ВКЛАДЫ_ИСТОЧНИКОВ_
         Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
|----|Объ.Пл Ист.|---|Мq)--|-С[доли ПДК]|-----|----|b=C/M ---|
|------
                      B \text{ cymme} = 0.029370 \quad 100.0
```


Город : 031 Район им. Биржан Сал, с. Мамай Объект : 0001 ТОО "KazBeef LTD" Жилые дома Вар.№ 3 ПК ЭРА v3.0, Модель: MPK-2014

0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Изолинии в долих ПДК 0.050 ПДК 0.072 ПДК

Макс концентрация 0.0914608 ПДК достигается в точке х=-9. у= 10 При опасном напревления 0° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 300 м, высота 300 м, шаг расчетной сетки 30 м, количество расчетных точек 11*11 Расчёт на существующее положение.

Условные обозначения: Жилые зоны, группа N 01 — Административные границы Максим, значение концентрации Расч. прямоугольник № 01

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай

3. Исходные параметры источников.


```
:031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Жилые дома.
    Объект
             :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
    Примесь
                     цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола,
                     кремнезем, зола углей казахстанских месторождений) (494)
              ПДКм.р для примеси 2908 = 0.3 мг/м3
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
       Признак источников "для зимы" - отрицательное значение высоты
          |Тип| H | D | Wo | V1 | Т
                                               X1 |
   Код
                                                         Y1 |
                                                                   X2
                                                                         Y2.
                                                                                   |Alf| F | KP |Ди|
Выброс
0.1112625
                                             1.82 9.84 1.00
000101 6061 П1
              1.5
                                         0.0
                                                                                1.00 0 3.0 1.000 0
0.0000240
4. Расчетные параметры См, Им, Хм
    Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Жилые дома.
    Объект
             :ЗИМА для энергетики и ЛЕТО для остальных
    Сезон
    Примесь
            :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                     цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола,
                     кремнезем, зола углей казахстанских месторождений) (494)
              ПДКм.р для примеси 2908 = 0.3 мг/м3
 - Для линейных и площадных источников выброс является суммарным по
   всей площади, а Ст - концентрация одиночного источника,
   расположенного в центре симметрии, с суммарным М
                                 |_____Nх расчетные параметры
            Источники
|Номер| Код | М |Тип |
                                    Cm | Um | Xm
|-п/п-|Объ.Пл Ист.|-----[м]---|-[доли ПДК]-|--[м/с]--|---[м]---|
   1 |000101 0019| 0.111263| T | 5.990440 | 0.50 | 2 |000101 6061| 0.000024| П1 | 0.008572 | 0.50 |
                                                         12.8
 Суммарный Мq= 0.111287 г/с
                                   5.999012 долей ПДК
     Сумма См по всем источникам =
     Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
            :031 Район им. Биржан Сал, с. Мамай.
:0001 ТОО "KazBeef LTD" Жилые дома.
    Город
    Объект
              :ЗИМА для энергетики и ЛЕТО для остальных
    Сезон
              :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
    Примесь
                     цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола.
                     кремнезем, зола углей казахстанских месторождений) (494)
              ПДКм.р для примеси 2908 = 0.3 мг/м3
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 300x300 с шагом 30
    Расчет по территории жилой застройки. Покрытие РП 001
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) м/с
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Жилые дома.
    Объект
            :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                     цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола.
```

кремнезем, зола углей казахстанских месторождений) (494)


```
ПДКм.р для примеси 2908 = 0.3 мг/м3
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X= -69, Y= 40
                   размеры: длина (по X) = 300, ширина (по Y) = 300, шаг сетки= 30
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) _{\rm M}/{\rm c}
 Результаты расчета в точке максимума
         Координаты точки : X= -9.0 м, Y= 40.0 м
Максимальная суммарная концентрация \overline{\mid \text{Cs}=5.9173460} доли ПДКмр\mid
                                           1.7752039 мг/м3
   Достигается при опасном направлении 179 град.
                     и скорости ветра 0.53 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                          ____ВКЛАДЫ_ИСТОЧНИКОВ_
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | --- | --- | b=C/M --- |
 1 |000101 0019| T | 0.1113| 5.916192 | 100.0 | 100.0 | 53.1735153 |
|-----
                 B cymme = 5.916192 100.0
     Суммарный вклад остальных = 0.001154
                                               0.0
7. Суммарные концентрации в узлах расчетной сетки.
     Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Жилые дома.
     Объект
    Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                      цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола,
                      кремнезем, зола углей казахстанских месторождений) (494)
               ПДКм.р для примеси 2908 = 0.3 мг/м3
           Параметры_расчетного_прямоугольника_No 1_
        Координаты центра : X= -69 м; Y= 40 |
Длина и ширина : L= 300 м; B= 300 м |
      30 м
       Шаг сетки (dX=dY) : D=
       Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
      В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 5.9173460 долей ПДКмр
                                       = 1.7752039 мг/м3
                                           -9.0 м
40.0 м
 Достигается в точке с координатами: Хм =
    ( X-столбец 8, Y-строка 6) Yм = 4
попасном направлении ветра : 179 град.
 При опасном направлении ветра : 179 гр
и "опасной" скорости ветра : 0.53 м/с
8. Результаты расчета по жилой застройке.
    Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Жилые дома.
     Объект
    Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                      цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола,
                      кремнезем, зола углей казахстанских месторождений) (494)
               ПДКм.р для примеси 2908 = 0.3 мг/м3
     Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
    Всего просчитано точек: 24
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
 Результаты расчета в точке максимума
         Координаты точки : X = -100.0 \text{ м}, Y = 113.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.6361884 доли ПДКмр|
                                           0.1908565 мг/м3
```


Достигается при опасном направлении 134 град. и скорости ветра 1.96 м/с

Hom.	Код	Тип	Выброс	Вклад	Вклад в%	Сум. %	Коэф.влияния
Oб	ъ.Пл Ист	.	M- (Mq) -	С[доли ПДК]		-	b=C/M
1 00	0101 001	9 T	0.1113	0.636080	100.0	100.0	5.7169571
1			В сумме =	0.636080	100.0		
C	уммарный	вклад с	остальных =	0.000108	0.0		
~~~~~~	~~~~~~	~~~~~		~~~~~~~		~~~~~~~	



Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Жилые дома Вар.№ 3

ПК ЭРА v3.0, Модель: MPK-2014

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного 10 производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)



Изогинии в долих ПДК
——1.0 ПДК
——3.802 ПДК



Макс концентрация 5.917346 ПДК достигается в точке x= 9 y= 40 При опасном направлении 179° и опасной скорости ветра 0.53 м/с Расчетный грямоугольник № 1, шкрина 300 м, высота 300 м, шаг расчетной сетки 30 м, количество расчетных точек 11°11 Расчёт на существующее положение.

Условные обозначения:

Жилие зоны, группа N 01

— Адменистретивные греняцы

† Максим. значение коещентреции

— Расч. прямоугольник N 01

#### Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай



```
3. Исходные параметры источников.
                       :031 Район им. Биржан Сал, с. Мамай.
                        :0001 TOO "KazBeef LTD" Жилые дома.
        Объект
                       :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
       Примесь
                                    цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся
                                    печей, боксит) (495*)
                         ПДКм.р для примеси 2909 = 0.5 мг/м3
        Коэффициент рельефа (КР): индивидуальный с источников
        Коэффициент оседания (F): индивидуальный с источников
            Признак источников "для зимы" - отрицательное значение высоты
                 |Тип| H | D | Wo | V1 | T
                                                                                X1 |
      Код
                                                                                                  Y1
                                                                                                        X2
                                                                                                                             Y2
                                                                                                                                               |Alf| F | KP |Ди|
Выброс
Nct. | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
000101 6060 П1
                                                                                  -1.84 10.57 3.00
                          1.5
                                                                    0.0
                                                                                                                                         2.00 0 3.0 1.000 0
0.0080000
4. Расчетные параметры См, Им, Хм
       Город
                      :031 Район им. Биржан Сал, с. Мамай.
        Объект
                        :0001 TOO "KazBeef LTD" Жилые дома.
                       :ЗИМА для энергетики и ЛЕТО для остальных
        Сезон
                       :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
       Примесь
                                    цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся
                                    печей, боксит) (495*)
                         ПДКм.р для примеси 2909 = 0.5 мг/м3
  - Для линейных и площадных источников выброс является суммарным по |
      всей площади, а Ст - концентрация одиночного источника,
      расположенного в центре симметрии, с суммарным М
      ......
                                                         |_____Их расчетные параметры_
                     Источники_
                 Код |
                                      М
                                                 |Тип |
                                                                 Cm | Um | Xm
|-п/п-|Объ.Пл Ист.|------|---|-[доли ПДК]-|--[м/с]--|--
     1 |000101 6060| 0.008000| N1 | 1.714393 | 0.50 |
     ·
        Суммарный Мq= 0.008000 г/с
                                                           1.714393 долей ПДК
         Сумма См по всем источникам =
             _____
         Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
       Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
        Сезон
                        :ЗИМА для энергетики и ЛЕТО для остальных
                     :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                                    цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся
                                    печей, боксит) (495*)
                         ПДКм.р для примеси 2909 = 0.5 мг/м3
       Фоновая концентрация не задана
        Расчет по прямоугольнику 001 : 300х300 с шагом 30
        Расчет по территории жилой застройки. Покрытие РП 001
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
        Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
        Средневзвешенная опасная скорость ветра Ucb= 0.5 \text{ м/c}
6. Результаты расчета в виде таблицы.
                     :031 Район им. Биржан Сал, с. Мамай.
:0001 ТОО "KazBeef LTD" Жилые дома.
        Горол
        Объект
                        :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
        Примесь
                                    цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся
                                    печей, боксит) (495*)
                        ПДКм.р для примеси 2909 = 0.5 мг/м3
        Расчет проводился на прямоугольнике 1
        с параметрами: координаты центра X= -69, Y= 40
                               размеры: длина(по X)= 300, ширина(по Y)= 300, шаг сетки= 30
```

Фоновая концентрация не задана



```
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Результаты расчета в точке максимума
          Координаты точки : X = -9.0 \text{ м,} Y = 10.0 \text{ м}
Максимальная суммарная концентрация | Cs= 1.5604041 доли ПДКм | 0.7802020 мг/м3
                                               1.5604041 доли ПДКмр|
   Достигается при опасном направлении 85 град.
                       и скорости ветра 0.53 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                              ____ВКЛАДЫ_ИСТОЧНИКОВ_
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | ---- | ---- b=C/M --- |
| 1 |000101 6060| H1| 0.008000| 1.560404| 100.0 | 100.0 | 195.0504913 |
|-----|
                         В сумме = 1.560404 100.0
7. Суммарные концентрации в узлах расчетной сетки.
     Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
     Примесь
              :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                       цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся
                       печей, боксит) (495*)
                ПДКм.р для примеси 2909 = 0.5 мг/м3
            Параметры_расчетного_прямоугольника_No 1___
         Координаты центра : X= -69 м; Y= 40 |
Длина и ширина : L= 300 м; B= 300 м |
      | Шаг сетки (dX=dY) : D= 30 м
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0\,\mathrm{(Ump)} м/с
       В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 1.5604041 долей ПДКмр = 0.7802020 мт/м2
                                         = 0.7802020 мг/м3
Достигается в точке с координатами: XM = -9.0 \text{ M} ( X-столбец 8, Y-строка 7) YM = 10.0 \text{ M} При опасном направлении ветра : 85 град.
 При опасном направлении ветра : 85 г и "опасной" скорости ветра : 0.53 м/с
  и "опасной" скорости ветра
8. Результаты расчета по жилой застройке.
     Город :031 Район им. Биржан Сал, с. Мамай.
                :0001 TOO "KazBeef LTD" Жилые дома.
     Объект
     Примесь :2909 - Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                        цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся
                       печей, боксит) (495*)
               ПДКм.р для примеси 2909 = 0.5 мг/м3
     Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
     Всего просчитано точек: 24
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
 Результаты расчета в точке максимума
          Координаты точки : X = -100.0 \text{ м}, Y = 113.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0572955 доли ПДКмр|
                                              0.0286478 мг/м3 |
                            Достигается при опасном направлении 136 град.
                       и скорости ветра 11.41 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                _вклады_источников_
| Ном. | Код | Тип | Выброс | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | ---- | ---- | b=C/M --- |
 1 |000101 6060| П1| 0.008000| 0.057296 | 100.0 | 100.0 | 7.1619401
                        B \text{ cymme} = 0.057296 100.0
```



Город : 031 Район им. Биржан Сал, с. Мамай
Объект : 0001 ТОО "КаzВeef LTD" Жилые дома Вар.№ 3
ПК ЭРА v3.0, Модель: МРК-2014
2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

25 22 6





Макс концентрация 1.5604041 ПДК достигается в точке x=-8 y= 10 При опасном направлении 85° и опасной скорости ветра 0.53 м/с Расчетный прамоугольник № 1, ширина 300 м, высота 300 м, шаг расчетный сетки 30 м, количество расчетных точек 11°11 Расчет на существующее положение.

Условные обозначения:
Жилые зоны, группа N 01
— Адменистретивные греницы
† Максим значение концентреции
— Расч. прямоугольник N 01



```
3. Исходные параметры источников.
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
    Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
                       0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
      Признак источников "для зимы" - отрицательное значение высоты
         |Тип| Н | D | Wo | V1 | Т
   Код
                                           X1 |
                                                          | X2 | Y2
                                                                                |Alf| F | KP |Ди|
Выброс
Объ.Пл
----- Примесь 0301-----
000101 0019 T 4.5 0.25 6.00 0.2945 0.0 -8.88
                                                       26.38
0.0056080
        ----- Примесь 0330-----
000101 0019 T 4.5 0.25 6.00 0.2945 0.0 -8.88 26.38
                                                                                     1.0 1.000 0
0.0313470
4. Расчетные параметры См, Uм, Xм
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Жилые дома.
           :ЗИМА для энергетики и ЛЕТО для остальных
    Сезон
    Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
                       0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
 - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная \mid
   концентрация CM = CM1/\Pi ДК1 + ... + CMN/\Pi ДК 
 Источники_
                                Код | Мq |Тип |
|-п/п-|Объ.Пл Ист.|-----[м]---|-[доли ПДК]-|--[м/с]--|---[м]---|
   1 |000101 0019| 0.090734| T | 0.488517 | 0.50 | 25.6 |
  Суммарный Мq= 0.090734 (сумма Мq/ПДК по всем примесям)
    Сумма См по всем источникам = 0.488517 долей ПДК
     Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
    Сезон
            :ЗИМА для энергетики и ЛЕТО для остальных
    Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
                       0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 300х300 с шагом 30
    Расчет по территории жилой застройки. Покрытие РП 001
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) м/с
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
    Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
                       0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
    Расчет проводился на прямоугольнике 1
    с параметрами: координаты центра X = -69, Y = 40
             размеры: длина(по X) = 300, ширина(по Y) = 300, шаг сетки= 30
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Результаты расчета в точке максимума
                               -9.0 м, Y=
                                           10.0 м
        Координаты точки : Х=
```



```
Максимальная суммарная концентрация | Cs= 0.4673806 доли ПДКмр|
   Достигается при опасном направлении
                                           0 град.
                      и скорости ветра 0.50 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
                           ____ВКЛАДЫ_ИСТОЧНИКОВ
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | --- | b=C/M --- |
                        Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
  1 |000101 0019| T | 0.0907| 0.467381 | 100.0 | 100.0 | 5.1511083 |
  ______
                       B \text{ cymme} = 0.467381 100.0
7. Суммарные концентрации в узлах расчетной сетки.
     Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
     Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
                          0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
     | Длина и ширина : L=
| Шаг сетки (dX=dY) : D=
       Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
      В целом по расчетному прямоугольнику:
 Безразмерная макс. концентрация ---> См = 0.4673806
 Достигается в точке с координатами: Хм =
    стигается в точке с координатами: XM = -9.0 \text{ M} ( X-столбец 8, Y-строка 7) YM = 10.0 \text{ M} и опасном направлении ветра : 0 град.
 При опасном направлении ветра : 0 гу и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке.
     Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
     Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
                          0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
     Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
     Всего просчитано точек: 24
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Результаты расчета в точке максимума
         Координаты точки : X= -100.0 м, Y= 113.0 м
Максимальная суммарная концентрация | Cs= 0.1500882 доли ПДКмр|
  Достигается при опасном направлении 134 град. и скорости ветра 0.83 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
                           вклады источников
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | ---- | ---- | b=C/M --- |
|-----
                       B \text{ cymme} = 0.150088 100.0
```



Город : 031 Район им. Биржан Сал, с. Мамай Объект : 0001 ТОО "KazBeef LTD" Жилые дома Вар.№ 3 ПК ЭРА v3.0, Модель: MPK-2014

6007 0301+0330





Изолинии в долих ПДК 0.050 ПДК -0.100 ПДК 0.369 ПДК



Макс концентрация 0.4673806 ПДК достигается в точке х=-8. у= 10 При опасном напревления 0° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 300 м, высота 300 м, шаг расчетной сетки 30 м, количество расчетных точек 11*11 Расчёт на существующее положение.

Условные обозначения: Жилые зоны, группа N 01
— Администретивные границы
в Максим, значение концентрации Расч. прямоугольник № 01

#### Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай



3. Исходные параметры источников.

Город :031 Район им. Биржан Сал, с. Мамай. Объект :0001 ТОО "KazBeef LTD" Жилые дома.

Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,

клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

Коэффициент рельефа (КР): индивидуальный с источников

Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

 Код  Тип	H   D	Wo   V1	l T	X1	Y1	X2	Y2  Al	.f  F   KP  Ди
Выброс								
Объ.Пл								
Mct.   ~~~   ~~m~~	~~M~~ ~M/C~ ~M	:3/c~~ градС	~~~~M~~~	~~   ~~~~M~~~	~~   ~~~~M~~~~	~   ~~~~M~~~~	~ rp. ~~~	~~~~ ~~ ~~~T/C~~
	<b></b> Примесь 29	80						
000101 0019 T	4.5 0.25 6	0.2945	0.0	-8.88	26.38			3.0 1.000 0
0.1112625								
000101 6061 П1	1.5		0.0	1.82	9.84	1.00	1.00	0 3.0 1.000 0
0.0000240								
	<b></b> Примесь 29	09						
000101 6060 П1	1.5		0.0	-1.84	10.57	3.00	2.00	0 3.0 1.000 0
0.0080000								

#### 4. Расчетные параметры См, Uм, Хм

Город :031 Район им. Биржан Сал, с. Мамай. Объект :0001 ТОО "KazBeef LTD" Жилые дома.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства – известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

- Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная | концентрация См = Cм1/ПДК1 +...+ Смn/ПДКn | - Для линейных и площадных источников выброс является суммарным по | всей площади, а См - концентрация одиночного источника, | расположенного в центре симметрии, с суммарным М

	Источ	ІНИКИ		Их расчетные параметры					
Номер	о  Код	Mq	Тип	Cm		Um		Xm	
-п/п	- Объ.Пл Ист.		-	[доли ПД	K]-	[M/C]-	-	[м]	
1	000101 0019	0.22252	25  T	3.5942	64	0.50		12.8	
2	000101 6061	0.00004	18  П1	0.0051	43	0.50		5.7	
3	000101 6060	0.01600	00  П1	1.7143	93	0.50		5.7	
~~~	Суммарный Мq= Сумма См по в		, ,	~~~~~ а Mq/ПДК 5.3138		-		~~~~~	
	Средневзвешен	ная опасная	н скорост	 ь ветра	=	0.50	 м/с		

5. Управляющие параметры расчета

Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "KazBeef LTD" Жилые дома.
Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

Фоновая концентрация не задана

Расчет по прямоугольнику 001: $300 \times 300 \times 300$ с шагом 30 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай

Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с

```
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Жилые дома.
    Объект
     Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                              пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                               клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                          2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                               цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
                               вращающихся печей, боксит) (495*)
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X = -69, Y = 40
                   размеры: длина (по X) = 300, ширина (по Y) = 300, шаг сетки= 30
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) м/с
 Результаты расчета в точке максимума
         Координаты точки : Х=
                                 -9.0 м, Y=
                                               40.0 M
Максимальная суммарная концентрация | Cs= 3.8904290 доли ПДКмр|
                                   ~~~~~~~~~~~~~~~
  Достигается при опасном направлении 178 град. и скорости ветра 0.54 м/с
Всего источников: 3. В таблице заказано вкладчиков не более чем с 95% вклада
                             вклады источников
        Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
|----|Объ.Пл Ист.|---|--М-(Mq)--|-С[доли ПДК]|------|-----b=C/M ---|
В сумме = 3.889696 100.0
     Суммарный вклад остальных = 0.000733
                                              0.0
7. Суммарные концентрации в узлах расчетной сетки.
    Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Жилые дома.
     Объект
    Группа суммации: __ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                               пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                               клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                          2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                               цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
                               вращающихся печей, боксит) (495*)
           _Параметры_расчетного_прямоугольника_No 1_
        Координаты центра : X= -69 м; Y=
      | Длина и ширина : L=
                                   300 м; в= 300 м
                                 30 м
       Шаг сетки (dX=dY) : D=
      .....
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0\,\mathrm{(Ump)} м/с
      В целом по расчетному прямоугольнику:
 Безразмерная макс. концентрация ---> См = 3.8904290
    тигается в точке с координатами. ... (X-столбец 8, Y-строка 6) Ум = 4
Достигается в точке с координатами: XM = -9.0 \text{ M} ( X-столбец 8, Y-строка 6) YM = 40.0 \text{ M}
                                            40.0 м
 При опасном направлении ветра :
  и "опасной" скорости ветра : 0.54 м/с
8. Результаты расчета по жилой застройке.
    Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Жилые дома.
     Объект
     Группа суммации : ПЛ=2908 Пыль неорганическая, содержащая двускись кремния в %: 70-20 (шамот, цемент,
                              пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                               клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                          2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                               цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
                               вращающихся печей, боксит) (495*)
```

Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001

Всего просчитано точек: 24

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай

Фоновая концентрация не задана

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с

Результаты расчета в точке максимума

Координаты точки : X= -100.0 м, Y= 113.0 м

Максимальная суммарная концентрация | Cs= 0.4076079 доли ПДКмр|

Достигается при опасном направлении 134 град. и скорости ветра 3.81 м/с

Всего источников: 3. В таблице заказано вкладчиков не более чем с 95% вклада

ВКЛАДЫ ИСТОЧНИКОВ												
Ном. Код Тип	Выброс	Вклад	Вклад в% Сум	. % Коэф.влияния								
Объ.Пл Ист.	M-(Mq) -C	[доли ПДК]		b=C/M								
1 000101 0019 T	0.2225	0.366895	90.0 90	.0 1.6487809								
2 000101 6060 П1	0.0160	0.040597	10.0 100	.0 2.5373113								
1	В сумме =	0.407492	100.0	1								
Суммарный вкла	д остальных =	0.000116	0.0									

Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 TOO "KazBeef LTD" Жилые дома Вар.№ 3 ПК ЭРА v3.0, Модель: MPK-2014 __ПЛ 2908+2909

Изолинии в долях ПДК
——1.0 ПДК
——2.368 ПДК

Макс концентрация 3.890429 ПДК достигается в точке х= -9 у= 40 При опасном направлении 178° и опасной скорости ветра 0.54 м/с Расчетный прамоугольник № 1, шкрина 300 м, высота 300 м, шке ресчетной сети 3 00 м, количество расчетных точек 11°11 Расчёт на существующее положение.

Условные обозначения:
Жилые зоны, группа N 01
— Адменистретивные греницы
† Максим значение коещентреции
— Расч. прямоугольник N 01

Репродуктор №№1,2,3.

3. Исходные параметры источников.

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор $N^{Q}N^{Q}$ 1,2,3. Примесь :0301 — Азота (IV) диоксид (Азота диоксид) (4)

ПДКм.р для примеси 0301 = 0.2 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

 Код Тип	H	D I	Wo	V1	Т	X1	Y1	1	X2	Y2 #	11 f l	F I	КР Д	ти I
Выброс	1 11 1	ו ע	WO 1	V 1	1	AI I	11	ı	AZ	12 F	711	E	та јд	Įν.
Объ.Пл														
Ист. ~~~ ~~м~~	~~M~~	~M/C~	~м3/с~	~ градC~	~~M~~	~~~ ~~~~M~~	~~~ ~~~~	M~~~	~~~ ~~~~M~~	~~~ rp. ~~~	~~	~~ ~	~ ~~~ г	/c~~
000101 0001 T	7.0	0.15	6.00	0.1060	0.0	-1172.03	-2016.	89				1.0	1.000	0
0.0055600														
000101 0010 T	6.0	0.18	2.50	0.0636	0.0	1031.36	666.	19				1.0	1.000	0
0.0042000														
000101 0020 T	8.0	0.15	6.00	0.1060	0.0	-999.29	-1857.	13				1.0	1.000	0
0.0024040		0 45				1006 10	0010					4 0		
000101 0021 T 0.0050400	7.0	0.15	6.00	0.1060	0.0	1096.12	2243.	98				1.0	1.000	0
0.0030400 000101 0022 T	8.0	0.15	6.00	0.1060	0.0	958.13	696.	20				1 0	1.000	. 0
0.00101 0022 1	0.0	0.13	0.00	0.1000	0.0	930.13	090.	30				1.0	1.000	U
000101 0023 T	2.0	0.15	6.00	0.1060	0.0	886.44	803.	36				1 0	1.000	. 0
0.0001728	2.0	0.10	0.00	0.1000	•••	000.11	000.	0 0					1.000	· ·
000101 6009 П1	3.0				0.0	-1274.33	-1710.	80	21.88	21.88	50	1.0	1.000	0
0.0445000														
000101 6015 П1	3.0				0.0	-1189.23	-1966.	54	10.00	10.99	50	1.0	1.000	0
0.3700000														
000101 6016 П1	3.0				0.0	-1013.45	-1856.	21	4.00	4.00	70	1.0	1.000	0
0.1931600														
000101 6026 П1	3.0				0.0	1369.18	2538.	50	2.00	2.00	0	1.0	1.000	0
0.0445000 000101 6032 Π1	3.0				0 0	1163.56	2326.	0.0	4.00	4.00	0	1 0	1.000	
0.1218000	3.0				0.0	1103.30	2320.	06	4.00	4.00	U	1.0	1.000	U
000101 6033 П1	3.0				0.0	1216.19	2337.	76	2.00	3.00	0	1 0	1.000	0
0.1218000	3.0				0.0	1210.19	2557.	, 0	2.00	3.00	O	1.0	1.000	0
000101 6043 П1	3.0				0.0	636.78	317.	98	2.00	2.00	0	1.0	1.000	0
0.0445000														
000101 6050 П1	3.0				0.0	902.43	707.	57	4.00	5.00	0	1.0	1.000	0
0.0666000														
000101 6051 П1	3.0				0.0	1006.44	712.	61	2.00	3.00	0	1.0	1.000	0
0.0858400														
000101 6057 П1	3.0				0.0	-993.08	-1869.	12	8.00	5.00	50	1.0	1.000	0
0.0050000	2 0				0 0	1044 67	0007	<i>C</i> 1	2 00	2 00	0	1 0	1 000	
000101 6058 Π1 0.0050000	3.0				0.0	1244.67	2337.	04	2.00	3.00	U	1.0	1.000	U
0.0050000	3.0				0.0	935.81	701.	19	2.00	3.00	Λ	1 0	1.000	. 0
0.0050000	5.0				0.0	222.01	/ U I •	1)	2.00	5.00	U	1.0	1.000	. 0

4. Расчетные параметры См, Им, Хм

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 TOO "КаzBeef LTD" Репродуктор $N^{o}N^{o}1,2,3$.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)

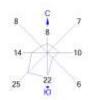
ПДКм.р для примеси 0301 = 0.2 мг/м3

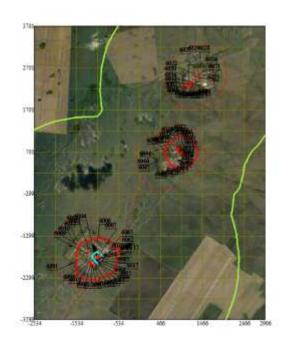
— Дл	ія линей:	ных и	площадных і	источн	ик	рв выброс я:	вля	ется су	мма]	рным по	
ВС	сей площ	ади, а	Ст - конце	ентраці	ия	одиночного	ИС	точника	,		
ра	сположе	нного 1	в центре сі	имметр	ии	с суммарн	ЫМ	M			
~~~~	~~~~~	~~~~~	~~~~~~~	~~~~~	~~	~~~~~~~	~~~	~~~~~	~~~	~~~~~~	٠
		_Источ	ники	_   _	Их рас	чет	ные пар	аме	тры		
Номер	) Ко;	д	M	Тип		Cm		Um		Χm	
-п/п-	- Объ.Пл	McT.			-   -	-[доли ПДК]	-   -	-[M/C]-	-   -	[м]	٠
1	000101	0001	0.0055	60  T		0.806143		0.59		13.3	
2	000101	0010	0.00420	T   0C		0.057784		0.50		34.2	
3	000101	0020	0.0024	04  T		0.348555		0.59		13.3	
4	000101	0021	0.0050	40  T		0.730748		0.59		13.3	
5	000101	0022	0.0044	56  T		0.646074		0.59		13.3	
6	000101	0023	0.0001	73  T		0.025054		0.59		13.3	
7	000101	6009	0.04450	00  П1		3.085458		0.50		17.1	



```
8 | 000101 6015 | 0.370000 | П1 | 25.654366 | 0.50 | 9 | 000101 6016 | 0.193160 | П1 | 13.392965 | 0.50 | 10 | 000101 6026 | 0.044500 | П1 | 3.085458 | 0.50 |
                                                                  17.1
                                                                   17.1
                                                                   17.1
  11 |000101 6032| 0.121800| Π1 | 8.445139 | 0.50 | 12 |000101 6033| 0.121800| Π1 | 8.445139 | 0.50 |
                                                                  17.1
                                                                  17.1
  0.005000| П1 | 0.346681 | 0.50 |
0.005000| П1 | 0.346681 | 0.50 |
   16 |000101 6057|
                                                                  17.1
   17 | 000101 6058|
                                                                  17.1
   18 |000101 6059| 0.005000| N1 | 0.346681 | 0.50 | 17.1
     Суммарный Мq= 1.129533 г/с
     Сумма См по всем источникам =
                                       79.417969 долей ПДК
     Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
     Город :031 Район им. Биржан Сал, с. Мамай.
               :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
     Объект
               :ЗИМА для энергетики и ЛЕТО для остальных
     Сезон
     Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                ПДКм.р для примеси 0301 = 0.2 мг/м3
     Фоновая концентрация не задана
     Расчет по прямоугольнику 001 : 5500х7000 с шагом 500
     Расчет по границе санзоны. Вся зона 002
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
     Средневзвешенная опасная скорость ветра Ucb= 0.5 \text{ м/c}
6. Результаты расчета в виде таблицы.
     Город :031 Район им. Биржан Сал, с. Мамай.
     Объект :0001 ТОО "КаzBeef LTD" Репродуктор N^{Q}1,2,3. Примесь :0301 — Азота (IV) диоксид (Азота диоксид) (4)
               ПДКм.р для примеси 0301 = 0.2 мг/м3
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X= 216, Y= 201
                    размеры: длина (по X) = 5500, ширина (по Y) = 7000, шаг сетки= 500
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
 Результаты расчета в точке максимума
         Координаты точки : X= -1034.0 м, Y= -1799.0 м
Максимальная суммарная концентрация | Cs= 6.2940989 доли ПДКмр|
                           I
                                             1.2588198 мг/м3
  Достигается при опасном направлении 160 град. и скорости ветра 0.71 м/с
Всего источников: 18. В таблице заказано вкладчиков не более чем с 95% вклада
ВКЛАДЫ ИСТОЧНИКОВ

| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | ---- | b=C/M --- |
|-----
                        B \text{ cymme} = 6.127804 97.4
      Суммарный вклад остальных = 0.166295
                                                  2.6
7. Суммарные концентрации в узлах расчетной сетки.
     Город :031 Район им. Биржан Сал, с. Мамай.
               :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
     Объект
     Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                ПДКм.р для примеси 0301 = 0.2 мг/м3
         Параметры расчетного прямоугольника No 1
Координаты центра : X= 216 м; Y= 201 |
Длина и ширина : L= 5500 м; B= 7000 м |
Шаг сетки (dX=dY) : D= 500 м
```





```
Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
      В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 6.2940989 долей ПДКмр = 1.2588198 мг/м3
 Достигается в точке с координатами: Хм = -1034.0 м
   ( Х-столбец 4, Y-строка 12) Yм = -1799.0 м
и опасном направлении ветра : 160 град.
При опасном направлении ветра : 160 гр и "опасной" скорости ветра : 0.71 м/с
9. Результаты расчета по границе санзоны.
    Город :031 Район им. Биржан Сал, с. Мамай.
    Объект
              :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
    Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
              ПДКм.р для примеси 0301 = 0.2 мг/м3
    Расчет проводился по всей санитарно-защитной зоне N^{\circ} 2
    Расчетный шаг 50 м. Всего просчитано точек: 1257
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
Результаты расчета в точке максимума
         Координаты точки : X = -501.3 \text{ м}, Y = -1620.1 \text{ м}
Максимальная суммарная концентрация | Сs= 0.7145672 доли ПДКмр|
                                         0.1429135 мг/м3 |
                         .....
  Достигается при опасном направлении 244 град.
                     и скорости ветра 12.00 м/с
Всего источников: 18. В таблице заказано вкладчиков не более чем с 95% вклада
                            вклады источников
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | ---- | b=C/M --- |
|-----|
     В сумме = 0.695431 97.3
Суммарный вклад остальных = 0.019136 2.7
```

ИП Иваненко А.А.



Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4 ПК ЭРА v3.0, Модель: МРК-2014 0301 Азота (IV) диоксид (Азота диоксид) (4)









Макс концентрация 6.2940989 ПДК достигается в точке x= -1034 y= -1799 При опасном направлении 160° и опасной скорости ветра 0.71 м/с Расчетный прямоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетных точек 12*15 Расчёт на существующее положение.





3. Исходные параметры источников.

Город :031 Район им. Биржан Сал, с. Мамай. Примесь :0333 - Сероводород (Дигидросульфид) (518)

ПДКм.р для примеси 0333 = 0.008 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

 Код	Тип	Н	l D	Wo	V1	Т	х1 г	Y1	X2	Y2   <i>I</i>	.lf  F   KP  Ди
Выброс											
Объ.Пл											
	M~~  ~	~ M ~ ~	I~M/C~	/1~м3/с^	~ I гралC~	~~M~~	~~~   ~~~~M~~	~~~   ~~~~M~	~~~~   ~~~~m~~	~~~  ¬p. ~~~	~~~~ ~~ /C~~
000101 0003			0.025		0.0012	0.0	-1065.74	-1869.82	,	1-11	1.0 1.000 0
0.0000264	-		0.020	2.00	0.0012	0.0	1000.71	1003.02			1.0 1.000 0
000101 0004	т	2 5	0.025	2.50	0.0012	0.0	-1060.26	-1874.75			1.0 1.000 0
0.0000264	-		0.020	2.00	0.0012	0.0	1000.20	1071.70			1.0 1.000 0
000101 0011	Т	2.0	0.050	1.00	0.0020	0.0	1043.43	665.85			1.0 1.000 0
0.0000002	-		0.000	1.00	0.0020	0.0	1010.10	000.00			1.0 1.000 0
000101 0014	Т	2.5	0.020	2.50	0.0008	0.0	911.44	488.19			1.0 1.000 0
0.0000264											
000101 0015	т	2.5	0.025	2.50	0.0012	0.0	911.28	499.64			1.0 1.000 0
0.0000528	-		0.020	2.00	0.0012	0.0	311.20	133.01			1.0 1.000 0
000101 6001	П1	3.0				0.0	-1400.48	-1827.18	307.23	204.75	50 1.0 1.000 0
0.0000907											
000101 6002	П1	3.0				0.0	-1160.59	-1853.35	47.23	31.49	50 1.0 1.000 0
0.0003283											
000101 6003	П1	2.0				0.0	-1240.44	-1614.41	76.46	95.58	50 1.0 1.000 0
0.0001056											
000101 6004	П1	2.0				0.0	-1141.67	-1531.37	73.80	92.24	50 1.0 1.000 0
0.0001056											
000101 6005	П1	2.0				0.0	-1274.04	-1996.93	80.00	70.00	50 1.0 1.000 0
0.0002722											
000101 6006	П1	2.0				0.0	-1032.52	-1453.93	55.60	69.50	50 1.0 1.000 0
0.0000140											
000101 6012	П1	3.0				0.0	-1534.66	-1492.19	400.88	40.22	50 1.0 1.000 0
0.0900000											
000101 6017	T	2.0	0.050	1.00	0.0020	0.0	-1057.56	-1867.00			1.0 1.000 0
0.0000010											
000101 6018	П1	2.0				0.0	-1066.75	-1865.56	3.02	3.02	50 1.0 1.000 0
0.0001011											
000101 6020	П1	3.0				0.0	1095.63	2500.37	5.00	3.00	0 1.0 1.000 0
0.0002298											
000101 6021	П1	2.0				0.0	1512.71	2521.68	50.80	50.80	0 1.0 1.000 0
0.0001890											
000101 6022	П1	2.0				0.0	1296.56	2556.37	110.00	90.00	0 1.0 1.000 0
0.0002955							1000 00	0.440 44		<b>50.00</b>	
000101 6023	111	2.0				0.0	1309.86	2412.44	80.00	70.00	0 1.0 1.000 0
0.0000734	-1	2 0				0 0	1400 40	0770 60	150.00	15.00	F 1 0 1 000 0
000101 6029	111	3.0				0.0	1429.48	2778.69	150.00	15.00	5 1.0 1.000 0
0.0900000	<del>□</del> 1	2 0				0 0	770 (4	705 54	2 00	2 00	0 1 0 1 000 0
000101 6037 0.0002298	111	3.0				0.0	770.64	705.54	3.00	2.00	0 1.0 1.000 0
0.0002298	п1	2.0				0.0	658.39	409.84	62.71	62.71	10 1.0 1.000 0
0.000101 0030	111	2.0				0.0	030.39	409.04	02.71	02.71	10 1.0 1.000 0
000101 6039	п1	2.0				0.0	683.98	700.17	58.58	58.58	10 1.0 1.000 0
0.0002955	111	2.0				0.0	003.90	700.17	30.30	30.30	10 1.0 1.000 0
000101 6040	п1	2.0				0.0	713.19	580.52	59.92	59.92	10 1.0 1.000 0
0.0000734	111	2.0				0.0	713.13	300.32	33.32	33.32	10 1.0 1.000 0
000101 6046	п1	3.0				0.0	403.40	467.46	20.01	300.00	0 1.0 1.000 0
0.0900000	. 117	J. 0				0.0	400.40	407.40	20.01	300.00	0 1.0 1.000 0
0.0900000	т	2 0	0 050	0.500	0.0010	0.0	921.11	497.87			1.0 1.000 0
0.0000010	_	2.0	3.030	. 3.300	0.0010	0.0	221.11	457.07			1.0 1.000 0
000101 6053	П1	2.0				0.0	897.58	494.89	1.00	1.00	0 1.0 1.000 0
0.0001011											

^{4.} Расчетные параметры См, Им, Хм

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "КаzBeef LTD" Репродуктор  $\mathbb{N}^{0}$ 1,2,3. Сезон :ЗИМА для энергетики и ЛЕТО для остальных Примесь :0333 - Сероводород (Дигидросульфид) (518)

ПДКм.р для примеси 0333 = 0.008 мг/м3

^{| -} Для линейных и площадных источников выброс является суммарным по

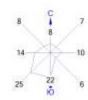


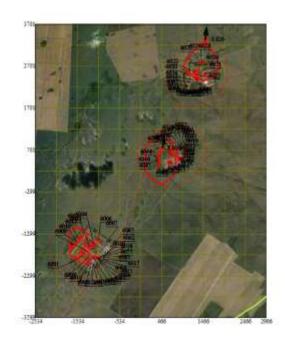
```
всей площади, а Ст - концентрация одиночного источника,
       расположенного в центре симметрии, с суммарным М
                |Номер|
|-п/п-|Объ.Пл Ист.|-----[м]---
     11 |000101 6006| 0.000014| П1 | 0.062504 | 0.50 | 12 |000101 6012| 0.090000| П1 | 3.649321 | 0.50 |
                                                                                                                                 11.4
                                                                                                                                 85.5
     13 |000101 6012| 0.090000| H | 3.049321 | 0.50 | 35.5

13 |000101 6017| 0.00000098| T | 0.004363 | 0.50 | 11.4

14 |000101 6018| 0.000101| Π1 | 0.451278 | 0.50 | 11.4

15 |000101 6020| 0.000230| Π1 | 0.398378 | 0.50 | 17.1
     16 | 000101 | 6021 | 0.000189 | П1 | 0.843803 | 0.50 | 11.4 | 17 | 000101 | 6022 | 0.000295 | П1 | 1.319225 | 0.50 | 11.4 | 18 | 000101 | 6023 | 0.000073 | П1 | 0.327878 | 0.50 | 11.4 | 19 | 000101 | 6029 | 0.090000 | П1 | 3.649321 | 0.50 | 85.5 | 20 | 000101 | 6037 | 0.000230 | П1 | 0.398378 | 0.50 | 17.1
     20 | 000101 | 6037 | 0.000230 | 11 | 0.398378 | 0.30 | 17.1 | 21 | 000101 | 6038 | 0.000189 | 11 | 0.843803 | 0.50 | 11.4 | 22 | 000101 | 6039 | 0.000295 | 11 | 1.319225 | 0.50 | 11.4 | 23 | 000101 | 6040 | 0.000073 | 11 | 0.327878 | 0.50 | 11.4 | 24 | 000101 | 6046 | 0.090000 | 11 | 3.649321 | 0.50 | 85.5 | 25 | 000101 | 6052 | 0.0000098 | T | 0.004363 | 0.50 | 11.4 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 
     26 |000101 6053|   0.000101| Π1 |   0.451278 |   0.50 |   11.4
          Суммарный Мq= 0.272828 г/с
          Сумма См по всем источникам = 20.935789 долей ПДК
      _____
          Средневзвешенная опасная скорость ветра = 0.50 \text{ м/c}
5. Управляющие параметры расчета
          Город :031 Район им. Биржан Сал, с. Мамай.
                             :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
         Объект
          Сезон
                             :ЗИМА для энергетики и ЛЕТО для остальных
         Примесь :0333 - Сероводород (Дигидросульфид) (518) ПДКм.р для примеси 0333 = 0.008 мг/м3
         Фоновая концентрация не задана
         Расчет по прямоугольнику 001 : 5500х7000 с шагом 500
          Расчет по границе санзоны. Вся зона 002
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
          Средневзвешенная опасная скорость ветра Ucb= 0.5\ \mathrm{m/c}
6. Результаты расчета в виде таблицы.
         Город :031 Район им. Биржан Сал, с. Мамай.
                             :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
         Объект
         Примесь :0333 - Сероводород (Дигидросульфид) (518)
                               ПДКм.р для примеси 0333 = 0.008 мг/м3
          Расчет проводился на прямоугольнике 1
          с параметрами: координаты центра X=216, Y=201
                                        размеры: длина (по X) = 5500, ширина (по Y) = 7000, шаг сетки= 500
          Фоновая концентрация не задана
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
  Результаты расчета в точке максимума
                   Координаты точки : X= 466.0 м, Y= 701.0 м
 Максимальная суммарная концентрация | Cs= 2.0003245 доли ПДКмр| 0.0160026 мг/м3 |
```


Достигается при опасном направлении 199 град.




```
и скорости ветра 0.58 м/с
Всего источников: 26. В таблице заказано вкладчиков не более чем с 95% вклада
                              ____ВКЛАДЫ_ИСТОЧНИКОВ_
| Ном. | Код | Тип | Выброс | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | --- | Мст. | --- | Бес/М --- |
| 1 |000101 6046| Π1| 0.0900| 1.983331| 99.2 | 99.2 | 22.0370083
       В сумме = 1.983331 99.2
Суммарный вклад остальных = 0.016994 0.8
7. Суммарные концентрации в узлах расчетной сетки.
              :031 Район им. Биржан Сал, с. Мамай.
     Город
     Объект
               :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
     Примесь :0333 - Сероводород (Дигидросульфид) (518)
                ПДКм.р для примеси 0333 = 0.008 мг/м3
            _Параметры_расчетного_прямоугольника_No 1_
      | Координаты центра : X= 216 м; Y= 201 | Длина и ширина : L= 5500 м; B= 7000 м | Шаг сетки (dX=dY) : D= 500 м
       .....
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
       В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 2.0003245 долей ПДКмр = 0.0160026 мг/м3
Достигается в точке с координатами: XM = 466.0 м (X-столбец 7, Y-строка 7) YM = 701.0 м При опасном направлении ветра : 199 град.
  и "опасной" скорости ветра : 0.58 м/с
9. Результаты расчета по границе санзоны.
     Город :031 Район им. Биржан Сал, с. Мамай.
Объект :0001 ТОО "КаzВeef LTD" Репродуктор №№1,2,3.
     Примесь :0333 - Сероводород (Дигидросульфид) (518)
                ПДКм.р для примеси 0333 = 0.008 мг/м3
     Расчет проводился по всей санитарно-защитной зоне № 2
     Расчетный шаг 50 м. Всего просчитано точек: 1257
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0\,\mathrm{(Ump)}\, м/с
 Результаты расчета в точке максимума
          Координаты точки : X= 1510.2 м, Y= 3292.6 м
Максимальная суммарная концентрация | Cs= 0.8255665 доли ПДКмр|
                                               0.0066045 мг/м3
   Достигается при опасном направлении 189 град.
                       и скорости ветра 0.82 м/с
Всего источников: 26. В таблице заказано вкладчиков не более чем с 95% вклада
                             ____ВКЛАДЫ_ИСТОЧНИКОВ_
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | ---- | М- (Мq) -- | -С [доли ПДК] | ------ | ---- | b=C/M --- |
|-----
     В сумме = 0.806913 97.7
Суммарный вклад остальных = 0.018653 2.3
```



Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4 ПК ЭРА v3.0, Модель: МРК-2014 0333 Сероводород (Дигидросульфид) (518)





Изолинии в долях ПДК 0.050 ПДК 0.100 ПДК 1.0 ПДК



Макс концентрация 2.0003245 ПДК достигается в точке x= 466 y= 701 При опасном направлении 195° и опасной скорости ветра 0.58 м/с Расчетный примоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетный сетия 500 м, количество расчетных точек 12°15 Расчёт на существующее положение.

Условные обозначения:
Производственные здания
— Дороки
— Санктарно-защитные зоны, группа N 02
— Административные границы
1 Максим, значение концентрация
— Расч. примоугольник N 01

### Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай



3. Исходные параметры источников.

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 TOO "KazBeef LTD" Репродуктор  $\mathbb{N}^{2}\mathbb{N}^{2}$ 1,2,3.

Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,

зола,

кремнезем, зола углей казахстанских месторождений) (494)

ПДКм.р для примеси 2908 = 0.3 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

 Код  Тип	Н	D	Wo	V1	Т	X1	Y1	X2	Y2   A	1f	F	KP   [	Įи
Выброс													
Объ.Пл													
Mct.   ~~~   ~~m~~	~~M~~	~M/C~	~м3/с~	~ градС~	~~~M~~	~~~   ~~~~M~~	~~~   ~~~~M~	~~~~   ~~~~M~~~	~~~ rp. ~~~	~~	~~   ~~	~   ~~~I	1/c~~
000101 0001 T	7.0	0.15	6.00	0.1060	0.0	-1172.03	-2016.89				3.0	1.000	0
0.1552914													
000101 0020 T	8.0	0.15	6.00	0.1060	0.0	-999.29	-1857.13				3.0	1.000	0
0.0778320													
000101 0021 T	7.0	0.15	6.00	0.1060	0.0	1096.12	2243.98				3.0	1.000	0
0.1112625													
000101 0022 T	8.0	0.15	6.00	0.1060	0.0	958.13	696.30				3.0	1.000	0
0.0983250													
000101 6014 П1	2.0				0.0	-1156.25	-2001.44	2.00	2.00	50	3.0	1.000	0
0.0000320						4044.00		1 00	4 00	•			
000101 6047 П1	2.0				0.0	1041.02	682.06	1.00	1.00	0	3.0	1.000	) ()
0.0000008	0 0				0 0	004 43	1044 50	4 00	4 00	- 0	2 0	1 000	
000101 6063 П1	2.0				0.0	-994.43	-1844.59	4.00	4.00	50	3.0	1.000	) 0
0.0000010 000101 6067 Π1	2.0				0.0	1104.48	2244.83	2.00	2.00	0	2 0	1.000	٠
0.000007	2.0				0.0	1104.48	2244.83	2.00	2.00	U	3.0	1.000	) 0
0.0000007	2.0				0.0	971.16	702.24	2.00	2.00	0	3 0	1.000	٠
0.000101 0009 111	2.0				0.0	2/1.10	702.24	2.00	2.00	U	J. 0	1.000	, 0
0.0000100	2.0				0.0	893.37	806.61	2.00	2.00	Λ	3 0	1.000	) ()
0.000047	2.0				0.0	0,55.57	500.01	2.00	2.00	U	J. 0	1.000	, 0
0.0000017													

4. Расчетные параметры См, Им, Хм

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 TOO "KazBeef LTD" Репродуктор  $N^{0}$ 1,2,3.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,

зола,

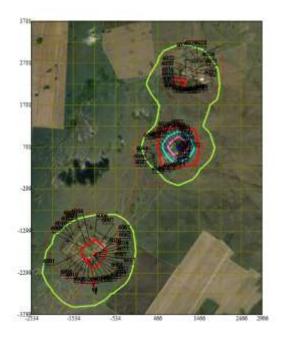
кремнезем, зола углей казахстанских месторождений) (494)

ПДКм.р для примеси 2908 = 0.3 мг/м3

- Для линейных и площадных источников выброс является суммарным по   всей площади, а Ст - концентрация одиночного источника,   расположенного в центре симметрии, с суммарным М													
l pa	сположен	HOLO	-	_	и, с суммарны ~~~~~								
		Источ				четные пара	іметры						
Номер	Код	_ I	M	Тип	Cm	Um	Xm						
-n/n-	Объ.Пл	Ист.			-[доли ПДК]-	- [M/C]	[M]						
1	000101	0001	0.155291	T	45.031315	0.59	6.7						
2	2  000101 0020  0.077832  T   22.569679   0.59   6.7												
3  000101 0021  0.111263  T   32.263836   0.59   6.7													
4  000101 0022  0.098325  T   28.512228   0.59   6.7													
5  000101 6014  0.000032  Π1   0.011429   0.50   5.7													
6	000101	6047			0.000286		5.7						
7	000101	6063	0.00000096	П1	0.000343	0.50	5.7						
8	000101	6067	0.00000067	П1	0.000238		5.7						
9	000101	6069	0.00001000	П1	0.003572	0.50	5.7						
10	000101	6070	0.00000467	П1	0.001668	0.50	5.7						
~~~~	~~~~~	~~~~	~~~~~~~~	~~~~	~~~~~~~	~~~~~~~	.~~~~~~						
		-	- 0.442760				I						
Сумма См по всем источникам = 128.394592 долей ПДК													
Средневзвешенная опасная скорость ветра = 0.58 м/с													

5. Управляющие параметры расчета


```
Город
               :031 Район им. Биржан Сал, с. Мамай.
               :0001 TOO "KazBeef LTD" Репродуктор N^{0}N^{0}1,2,3.
     Объект
               :ЗИМА для энергетики и ЛЕТО для остальных
     Примесь
               :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                       цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола,
                       кремнезем, зола углей казахстанских месторождений) (494)
                ПДКм.р для примеси 2908 = 0.3 мг/м3
     Фоновая концентрация не задана
     Расчет по прямоугольнику 001 : 5500х7000 с шагом 500
     Расчет по границе санзоны. Вся зона 002
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) м/с
     Средневзвешенная опасная скорость ветра Ucb= 0.58 м/c
6. Результаты расчета в виде таблицы.
     Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Репродуктор N^{0}N^{0}1,2,3.
     Объект
             :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                       цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола.
                       кремнезем, зола углей казахстанских месторождений) (494)
                ПДКм.р для примеси 2908 = 0.3 мг/м3
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X= 216, Y= 201
                    размеры: длина (по X) = 5500, ширина (по Y) = 7000, шаг сетки= 500
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Результаты расчета в точке максимума
         Координаты точки : X= 966.0 м, Y= 701.0 м
Максимальная суммарная концентрация \overline{\mid \text{Cs=} 26.0221710} доли ПДКмр\mid
                                            7.8066516 мг/м3
   Достигается при опасном направлении 239 град.
                      и скорости ветра 0.64 м/с
Всего источников: 10. В таблице заказано вкладчиков не более чем с 95% вклада
                            ____ВКЛАДЫ_ИСТОЧНИКОВ
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | --- | --- b=C/M --- |
 1 |000101 0022| T | 0.0983| 26.021564 | 100.0 | 100.0 | 264.6484985 |
                        B \text{ cymme} = 26.021564 100.0
      Суммарный вклад остальных = 0.000607
                                                  0.0
7. Суммарные концентрации в узлах расчетной сетки.
     Город :031 Район им. Биржан Сал, с. Мамай.
               :0001 TOO "KazBeef LTD" Репродуктор N^{\circ}N^{\circ}1,2,3.
     Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                       цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола,
                       кремнезем, зола углей казахстанских месторождений) (494)
                ПДКм.р для примеси 2908 = 0.3 мг/м3
            _Параметры_расчетного_прямоугольника_No 1_
         Координаты центра : X= 216 м; Y=
        длина и ширина : L= \text{Шаг сетки (dX=dY)} : D=
                                  5500 м; B= 7000 м
500 м
       Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) м/с
       В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 26.0221710 долей ПДКмр
                                        = 7.8066516 мг/м3
Достигается в точке с координатами: XM = 966.0 \text{ M} ( X-столбец 8, Y-строка 7) YM = 701.0 \text{ M}
     ( Х-столбец 8, У-строка 7)
```


Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай


```
При опасном направлении ветра :
                                      239 град.
  и "опасной" скорости ветра : 0.64 м/с
9. Результаты расчета по границе санзоны.
              :031 Район им. Биржан Сал, с. Мамай.
               :0001 TOO "KazBeef LTD" Репродуктор N^{o}1,2,3.
     Объект
     Примесь :2908 - Пыль неорганическая, содержащая двускись кремния в %: 70-20 (шамот, цемент, пыль
                       цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
зола,
                       кремнезем, зола углей казахстанских месторождений) (494)
                ПДКм.р для примеси 2908 = 0.3 мг/м3
     Расчет проводился по всей санитарно-защитной зоне N^{\circ} 2
     Расчетный шаг 50 м. Всего просчитано точек: 1257
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
 Результаты расчета в точке максимума
         Координаты точки : X = -1068.7 \text{ м}, Y = -2506.4 \text{ м}
Максимальная суммарная концентрация | Cs= 0.1822624 доли ПДКмр|
                                     0.0546787 мг/м3
                                      Достигается при опасном направлении 348 град.
                       и скорости ветра 12.00 м/с
Всего источников: 10. В таблице заказано вкладчиков не более чем с 95% вклада
                              ___ВКЛАДЫ_ИСТОЧНИКОВ
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | ---- | Объ.Пл Ист. | ---- М- (Мq) -- | -С [доли ПДК] | ----- | ---- b=C/M ---
                                      Вклад |Вклад в%| Сум. %| Коэф.влияния |
  1 |000101 0001| T | 0.1553| 0.181929 | 99.8 | 99.8 | 1.1715382
      В сумме = 0.181929 99.8
Суммарный вклад остальных = 0.000333 0.2
```


Город : 031 Район им. Биржан Сал, с. Мамай
Объект : 0001 ТОО "КаzВeef LTD" Репродуктор №№1,2,3 Вар.№ 4
ПК ЭРА v3.0, Модель: МРК-2014
2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, лесок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Макс концентрация 26.022171 ПДК достигается в точке x= 966 y= 701 При опасном направлении 239° и опасной скорости ветра 0.64 м/с Расчетный прямоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетной сетки 500 м, количество расчетных точек 12*15 Расчёт на существующее положение.

:031 Район им. Биржан Сал, с. Мамай.

:0001 TOO "KazBeef LTD" Репродуктор $N^{o}N^{o}1,2,3$. Объект :2920 - Пыль меховая (шерстяная, пуховая) (1050*) Примесь

ПДКм.р для примеси 2920 = 0.03 мг/м3 (ОБУВ)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

Выброс	Тип	Н	I	D	Wo	1	V1	I	Т	X1	-	1	Υ1	I	2	X2	I	Y2	2	Alf	F	KP I	Įи
Объ.Пл Ист. ~~~ ~~N			1	/ a . 1	2 /	a I		٠		1 .								1-	I				./
000101 6001		3.0		/ [~]	~M3/	C~~	традс	,~~	0.0		100.4		-182			307			± .			1.000	
0.0023016	111	3.0							0.0	-14		10	-102	7.10		307	. 23	•	204.75	50	3.0	1.000	, 0
000101 6002	п1	3.0							0.0	_11	60.5	5.9	-185	2 25		47	.23		31.49	5.0	3 0	1.000	١
0.0083296	11.1	J. 0							0.0			, ,	100	J. JJ		1,	• 20		01.1.	00	J.0	1.000	, 0
000101 6003	п1	2.0							0.0	-12	240.4	4.4	-161	4.41		76	.46		95.58	5.0	3.0	1.000	0
0.0011736																							
000101 6004	П1	2.0							0.0	-11	41.6	67	-153	1.37		73	.80		92.24	5.0	3.0	1.000	0
0.0011736																							
000101 6005	П1	2.0							0.0	-12	274.0	04	-199	6.93		80	.00		70.00	50	3.0	1.000	0 (
0.0030240																							
000101 6006	П1	2.0							0.0	-10	32.5	52	-145	3.93		55	.60		69.50	50	3.0	1.000	0
0.0001568																							
000101 6020	П1	3.0							0.0	10	95.6	63	250	0.37		5	.00		3.00	0	3.0	1.000	0
0.0058307																							
000101 6021	П1	2.0							0.0	15	12.7	71	252	1.68		50	.80		50.80	0	3.0	1.000	0
0.0021000																							
000101 6022	П1	2.0							0.0	12	296.5	56	255	6.37		110	.00		90.00	0	3.0	1.000	0
0.0032832																							
000101 6023	П1	2.0							0.0	13	309.8	36	241	2.44		80	.00		70.00	0	3.0	1.000	0
0.0008160 000101 6037	 1	3.0							0.0	_	770.6	<i>-</i> 1	7.0	5.54		2	.00		2.00		2 0	1.000	
0.0058307	111	3.0							0.0	,	70.8	04	70	3.34		3	.00		2.00	U	3.0	1.000	0
0.0036307	п1	2.0							0.0		558.3	2.0	40	9.84		60	.71		62.71	1.0	2 0	1.000	
0.0021000	111	2.0							0.0	,	000.0	09	40	9.04		02	• / 1		02.71	10	3.0	1.000	0
000101 6039	п1	2.0							0.0	6	83.9	3.8	70	0.17		5.8	.58		58.58	1.0	3 0	1.000	. 0
0.0032832	111	2.0							0.0		,00.	, ,	, 0	0.17		50	• 50		30.30	10	3.0	1.000	. 0
000101 6040	п1	2.0							0.0	7	713.1	19	58	0.52		59	. 92		59.92	1.0	3.0	1.000	0
0.0008160									0	,			0.0			0,5					0		-

4. Расчетные параметры См, Им, Хм

:031 Район им. Биржан Сал, с. Мамай. Город

:0001 TOO "KazBeef LTD" Репродуктор №1,2,3. Объект

Сезон

:ЗИМА для энергетики и ЛЕТО для остальных :2920 - Пыль меховая (шерстяная, пуховая) (1050*)

ПДКм.р для примеси 2920 = 0.03 мг/м3 (ОБУВ)

- Для линейных и площадных источников выброс является суммарным по всей площади, а Ст - концентрация одиночного источника, расположенного в центре симметрии, с суммарным М														
l be	ісположе:	нного	в це	ентре с	СИММ	етри	и,	с сум	марн	I MIc	Μ			- !
Источники Их расчетные параметры														
Номер) Ko,	Д		M		Тип		Cm			Um		Χm	
-n/n-	- Объ.Пл	Ист.					-	[доли	пдк].	- -	-[м/с]-	-	[м]	-
1	000101	6001		0.0023	302	П1		3.19	1680		0.50		8.5	
2	000101	6002		0.0083	330	П1		11.55	0844		0.50		8.5	
3	000101	6003		0.0011	74	П1		4.19	1691		0.50		5.7	
4	000101	6004	I	0.0011	74	П1		4.19	1691		0.50		5.7	
1 5	1000101	6005	I	0.0030	241	П1	1	10.80	0676	1	0.50	1	5.7	- 1
1 6	1000101	6006	İ	0.0001	571	П1	Ĺ	0.56	0035	Ĺ	0.50	i	5.7	i
I 7	1000101	6020	i İ	0.0058	331 i	П1	Ĺ	8.08	5590	i	0.50	i	8.5	i
I 8	1000101	6021	i İ	0.0021	. 0 0 i	П1	Ĺ	7.50	0469	i	0.50	i	5.7	i
I 9	1000101	6022	i İ	0.0032	283 i	П1	Ĺ	11.72	6449	i	0.50	i	5.7	i
1 10	1000101		i i	0.0008	3161	П1	i.	2.91	4468	i	0.50	i	5.7	i
1 11	1000101	6037	i i	0.0058	331	П1	i.	8.08	5590	i	0.50	i	8.5	i
1 12	1000101			0.0021			i	7.50		i	0.50	i	5.7	i
1 13	1000101			0.0032			i	11.72		i	0.50	i	5.7	i
1 14	1000101			0.0008		П1	i	2.91		<u> </u>	0.50		5.7	i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
Суммарный Мд= 0.040219 г/с														
1		-				, -		04 04	0567			^		- 1
	Сумма С	M HO I	всем	источн	ика	м =		94.94	056/	що.	пей ПДН			- 1


```
|-----|
     Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    Город :031 Район им. Биржан Сал, с. Мамай.
    Объект :0001 TOO "KazBeef LTD" Репродуктор N^{Q}N^{Q}1,2,3.
              :ЗИМА для энергетики и ЛЕТО для остальных
    Примесь :2920 - Пыль меховая (шерстяная, пуховая) (1050*)
             ПДКм.р для примеси 2920 = 0.03 мг/м3 (ОБУВ)
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 5500х7000 с шагом 500
    Расчет по границе санзоны. Вся зона 002
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
    Примесь :2920 - Пыль меховая (шерстяная, пуховая) (1050*)
              ПДКм.р для примеси 2920 = 0.03 мг/м3 (ОБУВ)
    Расчет проводился на прямоугольнике 1
    с параметрами: координаты центра X= 216, Y= 201
                  размеры: длина (по X) = 5500, ширина (по Y) = 7000, шаг сетки= 500
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) _{\rm M}/{\rm c}
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
         Координаты точки : X = -1034.0 \text{ м}, Y = -1799.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.5193039 доли ПДКмр|
                                         0.0155791 мг/м3 |
                        |
  Достигается при опасном направлении 247 град. и скорости ветра 3.87 м/с
Всего источников: 14. В таблице заказано вкладчиков не более чем с 95% вклада
                         ____ВКЛАДЫ_ИСТОЧНИКОВ_
1 |000101 6002| Π1| 0.008330| 0.513002| 98.8 | 98.8 | 61.5878296
      В сумме = 0.513002 98.8
Суммарный вклад остальных = 0.006302 1.2
7. Суммарные концентрации в узлах расчетной сетки.
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
    Объект
    Примесь :2920 - Пыль меховая (шерстяная, пуховая) (1050^{\star})
              ПДКм.р для примеси 2920 = 0.03 мг/м3 (ОБУВ)
     Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
      В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.5193039 долей ПДКмр = 0.0155791 мл/м3
                                      = 0.0155791 мг/м3
Достигается в точке с координатами: Хм = -1034.0 м
   СТИГАЕТСЯ В ТОЧКЕ С КООРДИПАТАТИТЕ . .... ( X—столбец 4, Y—строка 12) Yм = -1799.0 м опасном направлении ветра : 247 град.
При опасном направлении ветра : 247 гу и "опасной" скорости ветра : 3.87 м/с
```


9. Результаты расчета по границе санзоны.

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 TOO "KazBeef LTD" Репродуктор N^{0} 1,2,3. Примесь :2920 - Пыль меховая (шерстяная, пуховая) (1050*)

ПДКм.р для примеси 2920 = 0.03 мг/м3 (ОБУВ)

Расчет проводился по всей санитарно-защитной зоне N° 2

Расчетный шаг 50 м. Всего просчитано точек: 1257

Фоновая концентрация не задана

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до $12.0\,\mathrm{(Ump)}$ м/с

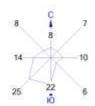
Результаты расчета в точке максимума Координаты точки : X = 595.5 м, Y = 2449.9 м

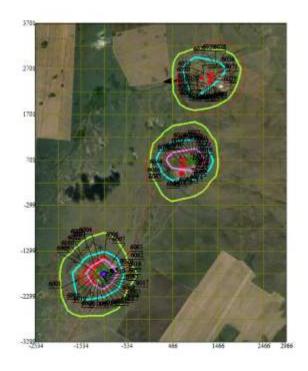
Достигается при опасном направлении 84 град. и скорости ветра 12.00 м/с

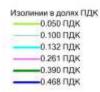
Всего источников: 14. В таблице заказано вкладчиков не более чем с 95% вклада ВКЛАЛЫ ИСТОЧНИКОВ

				<u></u>	.05		
Hom.	Код	Тип	Выброс	Вклад	Вклад в	% Сум. ⁹	% Коэф.влияния
	Объ.Пл И	CT. -	M- (Mq) -	С[доли ПДК]		-	- b=C/M
1	000101 6	020 П1	0.005831	0.078306	76.7	76.7	13.4299736
2	000101 6	022 П1	0.003283	0.015657	15.3	92.0	4.7689528
3	000101 6	021 П1	0.002100	0.006816	6.7	98.7	3.2456703
			В сумме =	0.100780	98.7		I
	Суммарн	ый вклад о	остальных =	0.001365	1.3		

ИП Иваненко А.А.




Город: 031 Район им. Биржан Сал, с. Мамай


Объект : 0001 TOO "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4

ПК ЭРА v3.0, Модель: MPK-2014

2920 Пыль меховая (шерстяная, пуховая) (1050*)

Макс конщентрация 0.5193039 ПДК достигается в точке х= -1034 у= -1799 При опасном направлении 247° и опасной скорости ветра 3.87 м/с Расчетный прямоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетной сетки 500 м, количество расчетных точек 12°15 Расчёт на существующее положение.

Условные обозначения:
Производственные здания
Дорсги
Санитарно-защитные эсны, группа N 02
Административные границы
† Максим. значение концентрации
Расч. прямоугольник N 01

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3. Примесь :2937 - Пыль зерновая /по грибам хранения/ (487)

ПДКм.р для примеси 2937 = 0.5 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

 Код Ти	ип Е	I	D	-	Wo	1	V1	1	Т	X1	1	Y1	-	Х2	1	Y2	A.	lf	F	КP	Ди
Выброс																					
Объ.Пл																					
Ист. ~~~ ~~м~~	~ ~ ~ n	1~~	~м/с	~ ~	м3/с	c~~	гра;	дС∼∽	~~~m~	~~~~ ~~~	~M~~	~~~ ~~~	~M~~	~~~ ~~~	~M~~	~~~ rp.	~~~	~~~	~ ~	~ ~ ~	~r/c~~
000101 6007 П	1 3	3.0							0.0	-995	. 66	-1747	.02	12	.32	18	.48	50	3.0	1.0	0 0 0
1.122670																					
000101 6008 П	1 3	3.0							0.0	-1287	.79	-1872	.58	16	.30	16	.30	50	3.0	1.0	0 0 0
0.0213300																					
000101 6024 П	1 3	3.0							0.0	1282	.79	2338	.73	4	.00	3	.00	0	3.0	1.0	00 0
1.122670																					
000101 6025 П1	1 :	3.0							0.0	1283	.40	2491	.70	2	.00	2	.00	0	3.0	1.0	0 0 0
0.0213300																					
000101 6041 П1	1 :	3.0							0.0	982	.22	585	.69	2	.00	3	.00	0	3.0	1.0	00 0
1.118000																					
000101 6042 П1	1 2	2.0							0.0	714	. 85	387	.29	2	.00	2	.00	10	3.0	1.0	00 0
0.0213300																					

4. Расчетные параметры См, Uм, Хм

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "КаzBeef LTD" Репродуктор $N^{0}N^{0}1,2,3$.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Примесь :2937 - Пыль зерновая /по грибам хранения/ (487)

ПДКм.р для примеси 2937 = 0.5 мг/м3

- Для линейных и площадных источников выброс является суммарным по										
всей площади, а Cm	- концентраци	я одиночного источника,								
расположенного в це	ентре симметри	и, с суммарным М								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
Источник	и	Их расчетные параметры								
Номер  Код	М   Тип	Cm   Um   Xm								
-п/п- Объ.Пл Ист.		-[доли ПДК]- [м/с] [м]								
1  000101 6007	1.122670  П1	93.409904   0.50   8.5								
2  000101 6008	0.021330  П1	1.774727   0.50   8.5								
3  000101 6024	1.122670  П1	93.409904   0.50   8.5								
4  000101 6025	0.021330  П1	1.774727   0.50   8.5								
5  000101 6041	1.118000  П1	93.021347   0.50   8.5								
6  000101 6042	0.021330  П1	4.571001   0.50   5.7								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
Суммарный Mq=	3.427330 г/с									
Сумма См по всем	источникам =	287.961639 долей ПДК								
Средневзвешенная	опасная скоро	сть ветра = 0.50 м/с								
l										

5. Управляющие параметры расчета

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 TOO "KazBeef LTD" Репродуктор №1,2,3.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Примесь :2937 - Пыль зерновая /по грибам хранения/ (487)

ПДКм.р для примеси 2937 = 0.5 мг/м3

Фоновая концентрация не задана

Расчет по прямоугольнику 001 : 5500х7000 с шагом 500

Расчет по границе санзоны. Вся зона 002

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с

Средневзвешенная опасная скорость ветра Ucb= 0.5 м/c

6. Результаты расчета в виде таблицы.

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор N^{Ω} 1,2,3.

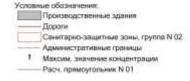

```
:2937 - Пыль зерновая /по грибам хранения/ (487)
               ПДКм.р для примеси 2937 = 0.5 мг/м3
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X= 216, Y= 201
                   размеры: длина (по X) = 5500, ширина (по Y) = 7000, шаг сетки= 500
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) м/с
 Результаты расчета в точке максимума
         Координаты точки : X= -1034.0 м, Y= -1799.0 м
Максимальная суммарная концентрация | Cs= 14.2509098 доли ПДКмр|
                                           7.1254549 мг/м3
   Достигается при опасном направлении 36 град.
                    и скорости ветра 0.94 м/с
Всего источников: 6. В таблице заказано вкладчиков не более чем с 95% вклада
                              вклады источников
        Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
|----|Объ.Пл Ист.|---|---M-(Mq)--|-С[доли ПДК]|------|-----b=C/M ---|
\rm B сумме = 14.244085 100.0 Суммарный вклад остальных = 0.006824 0.0
7. Суммарные концентрации в узлах расчетной сетки.
             :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
             :2937 - Пыль зерновая /по грибам хранения/ (487)
     Примесь
               ПДКм.р для примеси 2937 = 0.5 мг/м3
           Параметры_расчетного_прямоугольника_No 1_
        Координаты центра : X= 216 м; Y= 20
Длина и ширина : L= 5500 м; B= 7000 м
      | Шаг сетки (dX=dY) : D= 500 м
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
       В целом по расчетному прямоугольнику:
Максимальная концентрация -----> {\tt Cm} = 14.2509098 долей ПДКмр
                                        = 7.1254549 мг/м3
 Достигается в точке с координатами: Хм = -1034.0 м
   стигается в точке с координатами. ( X-столбец 4, Y-строка 12) Y_M = -1799.0 M ( ORSCHOM Направлении ветра : 36 град.
 При опасном направлении ветра :
                               : 0.94 м/с
  и "опасной" скорости ветра
9. Результаты расчета по границе санзоны.
             :031 Район им. Биржан Сал, с. Мамай.
     Город
              :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
     Объект
     Примесь :2937 - Пыль зерновая /по грибам хранения/ (487)
               ПДКм.р для примеси 2937 = 0.5 мг/м3
     Расчет проводился по всей санитарно-защитной зоне № 2
     Расчетный шаг 50 м. Всего просчитано точек: 1257
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0\,\mathrm{(Ump)} м/с
 Результаты расчета в точке максимума
         Координаты точки : X= 1412.1 м, Y= 327.1 м
Максимальная суммарная концентрация | Cs= 0.9047444 доли ПДКмр|
                                           0.4523722 мг/м3
   Достигается при опасном направлении 301 град.
                      и скорости ветра 12.00 м/с
Всего источников: 6. В таблице заказано вкладчиков не более чем с 95% вклада
                              _ВКЛАДЫ_ИСТОЧНИКОВ
                        Выброс
| Hom. |
          Код
                 |Тип|
                                     Вклад
                                             |Вклад в%| Сум. %| Коэф.влияния |
```

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай



Объ.Пл	Ист.	1	M- (Mq) -0	С[до	оли ПДК	-				b=C/I	I
1 000101	6041	П1	1.1180	0.	.904744		100.0	100.0)	0.809252	520
İ	00	стальные	источники	не	влияют	на	данную	точку.			j

Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4 ПК ЭРА v3.0, Модель: МРК-2014 2937 Пыль зерновая /по грибам хранения/ (487)



Макс концентрация 14.2509098 ГДЖ достигается в точке х= -1034 у= -1799 При опасном направления 36° и опасной схорости ветра 0.94 м/с Расчетный прямоугальник № 1, ширина 5500 м, высота 7000 м, шае расчетной сетки 500 м, количество расчетных точек 12°15 Расчёт на существующее положения.

:031 Район им. Биржан Сал, с. Мамай. род Объект Груг

:0001 TOO "KazBeef LTD" Репродуктор №1,2,3.

Группа суммации :6001=0303 Аммиак (32)

0333 Сероводород (Дигидросульфид) (518)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

Код Выброс Объ.Пл	Тип	H D	Wo	V1	Т	X1	Y1	X2	Y2 A	lf F КР Ди
	M~~	~~M~~ ~M/C	~ ~м3/с~	~~ градС~	~~~M~~	~~~ ~~~~M~~	~~~ ~~~~M~~	~~~ ~~~~M~~~	~~ rp. ~~~	~~~~ ~~ /C~~
		Примес	ь 0303							
000101 6001 0.0055440	П1	3.0			0.0	-1400.48	-1827.18	307.23	204.75	50 1.0 1.000 0
000101 6002 0.0200640	П1	3.0			0.0	-1160.59	-1853.35	47.23	31.49	50 1.0 1.000 0
000101 6003 0.0064548	П1	2.0			0.0	-1240.44	-1614.41	76.46	95.58	50 1.0 1.000 0
000101 6004 0.0064548	П1	2.0			0.0	-1141.67	-1531.37	73.80	92.24	50 1.0 1.000 0
000101 6005 0.0166320	П1	2.0			0.0	-1274.04	-1996.93	80.00	70.00	50 1.0 1.000 0
000101 6006	П1	2.0			0.0	-1032.52	-1453.93	55.60	69.50	50 1.0 1.000 0
0.0008400 000101 6012	П1	15.0			0.0	-1534.66	-1492.19	400.88	40.22	50 1.0 1.000 0
0.0732000 000101 6020	П1	3.0			0.0	1095.63	2500.37	5.00	3.00	0 1.0 1.000 0
0.0140448 000101 6021	П1	2.0			0.0	1512.71	2521.68	50.80	50.80	0 1.0 1.000 0
0.0115500 000101 6022	П1	2.0			0.0	1296.56	2556.37	110.00	90.00	0 1.0 1.000 0
0.0180576 000101 6023	П1	2.0			0.0	1309.86	2412.44	80.00	70.00	0 1.0 1.000 0
0.0044880 000101 6029	П1	15.0			0.0	1429.48	2778.69	150.00	15.00	5 1.0 1.000 0
0.0732000 000101 6037	П1	3.0			0.0	770.64	705.54	3.00	2.00	0 1.0 1.000 0
0.0140448 000101 6038	П1	2.0			0.0	658.39	409.84	62.71	62.71	10 1.0 1.000 0
0.0115500 000101 6039	П1	2.0			0.0	683.98	700.17	58.58	58.58	10 1.0 1.000 0
0.0180576 000101 6040	П1	2.0			0.0	713.19	580.52	59.92	59.92	10 1.0 1.000 0
0.0044880 000101 6046	П1	15.0			0.0	403.40	467.46	20.01	300.00	0 1.0 1.000 0
0.0732000		Примес	⊾ N333							
000101 0003 0.0000264	Т	2.5 0.02			0.0	-1065.74	-1869.82			1.0 1.000 0
000101 0004 0.0000264	Т	2.5 0.02	5 2.50	0.0012	0.0	-1060.26	-1874.75			1.0 1.000 0
000101 0011	Т	2.0 0.05	0 1.00	0.0020	0.0	1043.43	665.85			1.0 1.000 0
000101 0014 0.0000264	Т	2.5 0.02	0 2.50	0.0008	0.0	911.44	488.19			1.0 1.000 0
000101 0015	Т	2.5 0.02	5 2.50	0.0012	0.0	911.28	499.64			1.0 1.000 0
000101 6001 0.0000907	П1	3.0			0.0	-1400.48	-1827.18	307.23	204.75	50 1.0 1.000 0
000101 6002	П1	3.0			0.0	-1160.59	-1853.35	47.23	31.49	50 1.0 1.000 0
0.0003283 000101 6003 0.0001056	П1	2.0			0.0	-1240.44	-1614.41	76.46	95.58	50 1.0 1.000 0
000101 6004	П1	2.0			0.0	-1141.67	-1531.37	73.80	92.24	50 1.0 1.000 0
0.0001056 000101 6005 0.0002722	П1	2.0			0.0	-1274.04	-1996.93	80.00	70.00	50 1.0 1.000 0
0.0002722 000101 6006 0.0000140	П1	2.0			0.0	-1032.52	-1453.93	55.60	69.50	50 1.0 1.000 0
000101 6012 0.0900000	П1	15.0			0.0	-1534.66	-1492.19	400.88	40.22	50 1.0 1.000 0

000101 6017 T 0.0000010	2.0 0.050 1.00	0.0020	0.0	-1057.56	-1867.00			1.0 1.000 0
0.0000010 000101 6018 Π1 0.0001011	2.0		0.0	-1066.75	-1865.56	3.02	3.02	50 1.0 1.000 0
000101 6020 П1 0.0002298	3.0		0.0	1095.63	2500.37	5.00	3.00	0 1.0 1.000 0
000101 6021 Π1 0.0001890	2.0		0.0	1512.71	2521.68	50.80	50.80	0 1.0 1.000 0
000101 6022 Π1 0.0002955	2.0		0.0	1296.56	2556.37	110.00	90.00	0 1.0 1.000 0
000101 6023 Π1 0.0000734	2.0		0.0	1309.86	2412.44	80.00	70.00	0 1.0 1.000 0
000101 6029 Π1 0.0900000	15.0		0.0	1429.48	2778.69	150.00	15.00	5 1.0 1.000 0
000101 6037 Π1 0.0002298	3.0		0.0	770.64	705.54	3.00	2.00	0 1.0 1.000 0
000101 6038 П1 0.0001890	2.0		0.0	658.39	409.84	62.71	62.71	10 1.0 1.000 0
000101 6039 Π1 0.0002955	2.0		0.0	683.98	700.17	58.58	58.58	10 1.0 1.000 0
000101 6040 Π1 0.0000734	2.0		0.0	713.19	580.52	59.92	59.92	10 1.0 1.000 0
000101 6046 Π1 0.0900000	15.0		0.0	403.40	467.46	20.01	300.00	0 1.0 1.000 0
000101 6052 T 0.0000010	2.0 0.050 0.500	0.0010	0.0	921.11	497.87			1.0 1.000 0
000101 6053 Π1 0.0001011	2.0		0.0	897.58	494.89	1.00	1.00	0 1.0 1.000 0

4. Расчетные параметры См, Им, Хм

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3.

| - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная |

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Группа суммации :6001=0303 Аммиак (32)

0333 Сероводород (Дигидросульфид) (518)

-			-	-	и, с суммарным		. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
			ники			етные парам	
Номер			Mq	Тип	Cm	Um	Xm
					-[доли ПДК]-		
			0.039060				
			0.141360				
			0.045477				
	000101			П1	1.624280		
5	000101	6005	0.117180	П1	4.185262	0.50	11.4
6	000101	6006	0.005950	П1	0.212513	0.50	11.4
7	000101	6012	11.616000	П1	3.768045	0.50	85.5
8	000101	6020	0.098952	П1	1.372190	0.50	17.1
9	000101	6021	0.081375	П1	2.906432	0.50	11.4
10	000101	6022	0.127224	П1	4.543999	0.50	11.4
11	000101	6023	0.031620	П1	1.129356	0.50	11.4
12	000101	6029	11.616000	П1	3.768045	0.50	85.5
13	000101	6037	0.098952	П1	1.372190	0.50	17.1
14	000101	6038	0.081375	П1	2.906432	0.50	11.4
15	000101	6039	0.127224	П1	4.543999	0.50	11.4
16	000101	6040	0.031620	П1	1.129356	0.50	11.4
17	000101	6046	11.616000	П1	3.768045	0.50	85.5
18	000101	0003	0.003297	T	0.069962	0.50	14.3
19	000101	0004	0.003297	T	0.069962	0.50	14.3
20	000101	0011	0.000030	T	0.001089	0.50	11.4
21	000101	0014	0.003297	T	0.069962	0.50	14.3
22	000101	0015	0.006594	T	0.139925	0.50	14.3
23	000101	6017	0.000122	T	0.004361	0.50	11.4
24	000101	6018	0.012635	П1	0.451278	0.50	11.4
25	000101	6052	0.000122	T	0.004361	0.50	11.4
26	000101	6053	0.012635	П1	0.451278	0.50	11.4


```
______
     Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
     Город :031 Район им. Биржан Сал, с. Мамай.
     Объект :0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3.
Сезон :ЗИМА для энергетики и ЛЕТО пля остальных
               :ЗИМА для энергетики и ЛЕТО для остальных
     Группа суммации :6001=0303 Аммиак (32)
                           0333 Сероводород (Дигидросульфид) (518)
     Фоновая концентрация не задана
     Расчет по прямоугольнику 001 : 5500х7000 с шагом 500
     Расчет по границе санзоны. Вся зона 002
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
     Средневзвешенная опасная скорость ветра Ucb= 0.5\ \mathrm{m/c}
6. Результаты расчета в виде таблицы.
     Город :031 Район им. Биржан Сал, с. Мамай.
     Объект :0001 TOO "KazBeef LTD" Репродуктор N^{0}N^{0}1,2,3.
     Группа суммации :6001=0303 Аммиак (32)
                           0333 Сероводород (Дигидросульфид) (518)
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X= 216, Y= 201
                    размеры: длина(по X)= 5500, ширина(по Y)= 7000, шаг сетки= 500
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) _{\rm M}/{\rm c}
 Результаты расчета в точке максимума
          Координаты точки : X= 466.0 м, Y= 701.0 м
Максимальная суммарная концентрация | Cs= 2.0680811 доли ПДКмр|
   Достигается при опасном направлении 200 град.
                       и скорости ветра 0.58 м/с
Всего источников: 26. В таблице заказано вкладчиков не более чем с 95% вклада
                               __ВКЛАДЫ_ИСТОЧНИКОВ
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | ---- | М- (Мq) -- | -С [доли ПДК] | ------ | ---- | b=C/M --- |
| 1 | 000101 6046 | T1 | 11.6160 | 2.046352 | 98.9 | 98.9 | 0.176166639 |
|-----|
       В сумме = 2.046352 98.9
Суммарный вклад остальных = 0.021729 1.1
7. Суммарные концентрации в узлах расчетной сетки.
     Город :031 Район им. Биржан Сал, с. Мамай.
     Объект
               :0001 TOO "KazBeef LTD" Репродуктор N^{o}N^{o}1,2,3.
     Группа суммации :6001=0303 Аммиак (32)
                            0333 Сероводород (Дигидросульфид) (518)
            Координаты центра : X= 216 м; Y= 201
Длина и ширина : L= 5500 м; B= 7000 м
Шаг сетки (dX=dY) : D= 500 м
      | Длина и ширина : L=
| Шаг сетки (dX=dY) : D=
       ......
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
       В целом по расчетному прямоугольнику:
 Безразмерная макс. концентрация ---> См = 2.0680811
Достигается в точке с координатами: Xм = 466.0 м ( X-столбец 7, Y-строка 7) Yм = 701.0 м При опасном направлении ветра : 200 град. и "опасной" скорости ветра : 0.58 м/с
```


9. Результаты расчета по границе санзоны.

Город :031 Район им. Биржан Сал, с. Мамай. Объект :0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3.

Группа суммации :6001=0303 Аммиак (32)

0333 Сероводород (Дигидросульфид) (518)

Расчет проводился по всей санитарно-защитной зоне $N^{\underline{o}}$ 2

Расчетный шаг 50 м. Всего просчитано точек: 1257

Фоновая концентрация не задана

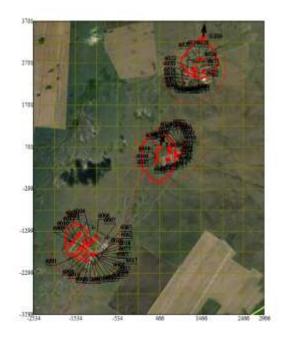
Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с

Результаты расчета в точке максимума

Координаты точки : X= 1510.2 м, Y= 3292.6 м

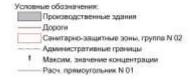
Максимальная суммарная концентрация | Cs= 0.8861316 доли ПДКмр|

Достигается при опасном направлении 190 град. и скорости ветра 0.81 м/с


Всего источников: 26. В таблице заказано вкладчиков не более чем с 95% вклада _ВКЛАДЫ_ИСТОЧНИКОВ

Ном. Код Тип	Выброс	_ Вклад	Вклад в%	Сум. %	Коэф.влияния
Объ.Пл Ист. -	M- (Mq) -C	[доли ПДК]			b=C/M
1 000101 6029 П1	11.6160	0.799968	90.3	90.3	0.068867750
2 000101 6046 П1	11.6160	0.032087	3.6	93.9	0.002762285
3 000101 6022 П1	0.1272	0.021251	2.4	96.3	0.167034224
1	В сумме =	0.853305	96.3		
Суммарный вклад	остальных =	0.032826	3.7		

Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4 ПК ЭРА v3.0, Модель: МРК-2014 6001 0303+0333



Макс концентрация 2.0680811 ПДК достигается в точке х= 466 у= 701 При опасном направлении 200° и опасной скорости ветра 0.58 м/с Расчетный прямоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетной сетки 500 м, количество расчетных точек 12°15 Расчёт на существующее положение.

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 TOO "KazBeef LTD" Репродуктор $N^{0}N^{0}1$,2,3.

Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

											
Код Выброс	Тип	Н	D	Wo	V1	Т	X1	Y1	X2	Y2 A3	.f F КР Ди
Объ.Пл			, ,	2 /							
ИСТ. ~~~ ~	~M~~ ^				~ градС~^ 	~~M~~	~~~ ~~~M~~	~~~ ~~~M~~	~~~ ~~~M~~	~~~ rp. ~~~	~~~~ ~~ ~~r/c~~
000101 000 0.0055600	1 T	7.0	0.15		0.1060	0.0	-1172.03	-2016.89			1.0 1.000 0
000101 001 0.0042000	0 Т	6.0	0.18	2.50	0.0636	0.0	1031.36	666.19			1.0 1.000 0
000101 002 0.0024040	0 Т	8.0	0.15	6.00	0.1060	0.0	-999.29	-1857.13			1.0 1.000 0
000101 002 0.0050400	1 T	7.0	0.15	6.00	0.1060	0.0	1096.12	2243.98			1.0 1.000 0
000101 002 0.0044560	2 Т	8.0	0.15	6.00	0.1060	0.0	958.13	696.30			1.0 1.000 0
000101 002 0.0001728	3 Т	7.0	0.15	6.00	0.1060	0.0	886.44	803.36			1.0 1.000 0
000101 600 0.0445000	9 П1	3.0				0.0	-1274.33	-1710.80	21.88	21.88	50 1.0 1.000 0
000101 601 0.3700000	5 П1	3.0				0.0	-1189.23	-1966.54	10.00	10.99	50 1.0 1.000 0
000101 601 0.1931600	6 П1	3.0				0.0	-1013.45	-1856.21	4.00	4.00	70 1.0 1.000 0
000101 602 0.0445000	6 П1	3.0				0.0	1369.18	2538.50	2.00	2.00	0 1.0 1.000 0
000101 603 0.1218000	2 П1	3.0				0.0	1163.56	2326.06	4.00	4.00	0 1.0 1.000 0
000101 603 0.1218000		3.0				0.0	1216.19	2337.76	2.00	3.00	0 1.0 1.000 0
000101 604 0.0445000		3.0				0.0	636.78	317.98	2.00	2.00	0 1.0 1.000 0
000101 605 0.0666000		3.0				0.0	902.43	707.57	4.00	5.00	0 1.0 1.000 0
000101 605 0.0858400		3.0				0.0	1006.44	712.61	2.00	3.00	0 1.0 1.000 0
000101 605		3.0				0.0	-993.08	-1869.12	8.00	5.00	50 1.0 1.000 0
000101 605		3.0				0.0	1244.67	2337.64	2.00	3.00	0 1.0 1.000 0
000101 605 0.0050000	9 П1	3.0				0.0	935.81	701.19	2.00	3.00	0 1.0 1.000 0
000101 000	 1 m	Пр 7.0	имесь 0.15		0.1060	0.0	-1172.03	-2016.89			1.0 1.000 0
0.0348480 0.00101 001		6.0	0.13	2.50	0.1000	0.0	1031.36	666.19			1.0 1.000 0
0.0094080 0.00101 002		8.0	0.15	6.00	0.1060	0.0	-999.29	-1857.13			1.0 1.000 0
0.0157464 000101 002					0.1060	0.0	1096.12	2243.98			1.0 1.000 0
0.0313470 000101 002					0.1060	0.0	958.13	696.30			1.0 1.000 0
0.0277020 0.0101 600		3.0	0.13	0.00	0.1000	0.0	-1274.33	-1710.80	21.88	21 88	50 1.0 1.000 0
0.0057400 0.00101 601		3.0				0.0	-1189.23	-1966.54	10.00		50 1.0 1.000 0
0.0696000 000101 601		3.0				0.0	-1013.45	-1856.21	4.00		70 1.0 1.000 0
0.0263380 000101 602		3.0				0.0	1369.18	2538.50	2.00	2.00	0 1.0 1.000 0
0.0057400 000101 603		3.0				0.0	1163.56	2326.06	4.00	4.00	0 1.0 1.000 0
0.0207700 000101 603		3.0				0.0	1216.19	2337.76	2.00	3.00	0 1.0 1.000 0
0.0207700							1210.17	2007.70	2.00	3.00	1 1.0 1.000 0

000101 6043 Π1 0.0057400	3.0	0.0	636.78	317.98	2.00	2.00	0 1.0 1.000 0
0.0037400 000101 6050 Π1 0.0086200	3.0	0.0	902.43	707.57	4.00	5.00	0 1.0 1.000 0
	3.0	0.0	1006.44	712.61	2.00	3.00	0 1.0 1.000 0

4. Расчетные параметры См, Им, Хм

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор $N^{0}N^{0}1,2,3$.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

```
- Для групп суммации выброс Mq = M1/\Pi J K1 + \ldots + Mn/\Pi J K n, а суммарная
   концентрация Cm = Cm1/\Pi ДК1 + ... + Cmn/\Pi ДКп
 - Для линейных и площадных источников выброс является суммарным по
   всей площади, а Ст - концентрация одиночного источника,
   расположенного в центре симметрии, с суммарным М
                                  _|____Их расчетные параметры
            Источники
0.087894| T | 2.548745 | 0.59 | 0.077684| T | 2.252676 | 0.59 | 0.000864| T | 0.025054 | 0.59 |
   4 |000101 0021|
                                                              13.3
   5 |000101 0022|
                                                              13.3
   6 |000101 0023|
                                                              13.3
                    0.233980| П1 | 3.244653 | 1.989200| П1 | 27.584684 |
                                      3.244653 | 0.50 |
27.584684 | 0.50 |
   7 |000101 6009|
                                                              17.1
   8 | 000101 6015|
                                                              17.1
  9 | 000101 6016 | 1.018476 | П1 | 14.123436 | 0.50 | 10 | 000101 6026 | 0.233980 | П1 | 3.244653 | 0.50 | 11 | 000101 6032 | 0.650540 | П1 | 9.021186 | 0.50 |
                                                              17.1
                                                              17.1
                                                              17.1
                   0.650540| П1 | 9.021186 | 0.50 | 0.233980| П1 | 3.244653 | 0.50 |
  12 |000101 6033|
                                                              17.1
  13 |000101 6043|
                                                              17.1
  14 |000101 6050| 0.350240| M1 | 4.856857 | 0.50 |
                                                              17.1
                   0.450852| П1 | 6.252066 | 0.50 | 0.025000| П1 | 0.346681 | 0.50 |
  15 |000101 6051|
                                                              17.1
  16 |000101 6057|
                                                              17.1
  17.1
                                                   0.50 |
  .....
    Суммарный Мq= 6.234055 (сумма Мq/ПДК по всем примесям)
     Сумма См по всем источникам = 90.658409 долей ПДК
     Средневзвешенная опасная скорость ветра = 0.51 м/с
```

5. Управляющие параметры расчета

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор $N^{Q}N^{Q}1,2,3$.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Фоновая концентрация не задана

Расчет по прямоугольнику 001 : 5500x7000 c шагом 500

Расчет по границе санзоны. Вся зона 002

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с

Средневзвешенная опасная скорость ветра Ucb= 0.51 м/c

6. Результаты расчета в виде таблицы.

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3.

Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)

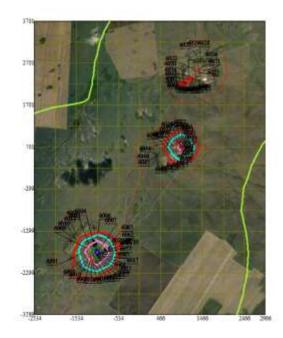
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Расчет проводился на прямоугольнике 1

с параметрами: координаты центра X= 216, Y= 201

размеры: длина(по X)= 5500, ширина(по Y)= 7000, шаг сетки= 500

Фоновая концентрация не задана


```
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
 Результаты расчета в точке максимума
         Координаты точки : X = -1034.0 \text{ м}, Y = -1799.0 \text{ м}
Максимальная суммарная концентрация | Cs= 6.8308096 доли ПДКмр|
                                  Достигается при опасном направлении 160 град. и скорости ветра 0.71 м/с
Всего источников: 18. В таблице заказано вкладчиков не более чем с 95% вклада
                           __ВКЛАДЫ_ИСТОЧНИКОВ_
        Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
|----|Объ.Пл Ист.|---|--М-(Mq)--|-С[доли ПДК]|------|-----|----- b=C/M ---|
  1 | 1000101 | 6016 | 11 | 1.0185 | 6.462023 | 94.6 | 94.6 | 6.3447719 | 2 | 1000101 | 0020 | T | 0.0435 | 0.279777 | 4.1 | 98.7 | 6.4297700
|------
               B \text{ cymme} = 6.741800 98.7
      Суммарный вклад остальных = 0.089009
                                             1.3
7. Суммарные концентрации в узлах расчетной сетки.
    Город
            :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Репродуктор №1,2,3.
    Объект
    Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
                        0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
       Параметры расчетного прямоугольника No 1

Координаты центра : X= 216 м; Y= 201 |
        Длина и ширина
                          : L=
                                5500 м; B= 7000 м
     | Шаг сетки (dX=dY) : D=
                               500 м
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
      В целом по расчетному прямоугольнику:
 Безразмерная макс. концентрация ---> См = 6.8308096
Достигается в точке с координатами: XM = -1034.0 M
    При опасном направлении ветра :
 и "опасной" скорости ветра : 0.71 м/с
9. Результаты расчета по границе санзоны.
    Город :031 Район им. Биржан Сал, с. Мамай.
             :0001 TOO "KazBeef LTD" Репродуктор №1,2,3.
    Объект
    Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
                        0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
    Расчет проводился по всей санитарно-защитной зоне N^{\circ} 2
    Расчетный шаг 50 м. Всего просчитано точек: 1257
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
 Результаты расчета в точке максимума
         Координаты точки : X = -501.3 \text{ м, } Y = -1620.1 \text{ м}
Максимальная суммарная концентрация | Cs= 0.7879481 доли ПДКмр|
  Достигается при опасном направлении 244 град.
                    и скорости ветра 12.00 м/с
Всего источников: 18. В таблице заказано вкладчиков не более чем с 95% вклада
                            _ВКЛАДЫ_ИСТОЧНИКОВ_
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
В сумме = 0.761579 96.7
Суммарный вклад остальных = 0.026369 3.3
```


Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4 ПК ЭРА v3.0, Модель: МРК-2014 6007 0301+0330

Макс концентрация 6.8308096 ПДК достигается в точке x= -1034 y= -1799 При опасном направлении 160° и опасной скорости ветра 0.71 м/с Расчетный прямоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетных точек 12*15 Расчёт на существующее положение.

Город :031 Район им. Биржан Сал, с. Мамай. Объект :0001 ТОО "KazBeef LTD" Репродуктор :0001 T00 "KazBeef LTD" Репродуктор №№1,2,3.

Группа суммации :6008=0301 Азота (IV) диоксид (Азота диоксид) (4)

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

1071 Гидроксибензол (155)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

													
Код Выброс Объ.Пл	Тип	Н	D	Wo	V1	Т	X1	Y1	X2	Y2 A1	E F	КР Д	[N
	~M~~ ~	~m~~	~M/C~	~м3/с~	~ градC~^	~~M~~	~~~ ~~~~M~~	~~~ ~~~M~~	~~~ ~~~~M~~~	.gr	~~~~ ~	~ ~~~г	1/c~~
								,	,	1-2-1		' -	, -
000101 000 0.0055600	1 T	7.0	0.15	6.00	0.1060	0.0	-1172.03	-2016.89			1.0	1.000) 0
000101 001 0.0042000	0 Т	6.0	0.18	2.50	0.0636	0.0	1031.36	666.19			1.0	1.000	0
000101 002 0.0024040	0 Т	8.0	0.15	6.00	0.1060	0.0	-999.29	-1857.13			1.0	1.000) 0
000101 002 0.0050400	1 T	7.0	0.15	6.00	0.1060	0.0	1096.12	2243.98			1.0	1.000	0
000101 002 0.0044560	2 T	8.0	0.15	6.00	0.1060	0.0	958.13	696.30			1.0	1.000	0
000101 002 0.0001728	3 Т	7.0	0.15	6.00	0.1060	0.0	886.44	803.36			1.0	1.000) 0
000101 600 0.0445000	9 П1	3.0				0.0	-1274.33	-1710.80	21.88	21.88	50 1.0	1.000	0
000101 601 0.3700000	5 П1	3.0				0.0	-1189.23	-1966.54	10.00	10.99	50 1.0	1.000	0
000101 601 0.1931600	6 П1	3.0				0.0	-1013.45	-1856.21	4.00	4.00	70 1.0	1.000	0
000101 602 0.0445000	6 П1	3.0				0.0	1369.18	2538.50	2.00	2.00	0 1.0	1.000) 0
0.0113000	2 П1	3.0				0.0	1163.56	2326.06	4.00	4.00	0 1.0	1.000	0
000101 603 0.1218000	3 П1	3.0				0.0	1216.19	2337.76	2.00	3.00	0 1.0	1.000) 0
000101 604 0.0445000	3 П1	3.0				0.0	636.78	317.98	2.00	2.00	0 1.0	1.000	0
0.0443000 000101 605 0.0666000	0 П1	3.0				0.0	902.43	707.57	4.00	5.00	0 1.0	1.000	0
0.0000000 000101 605 0.0858400	1 П1	3.0				0.0	1006.44	712.61	2.00	3.00	0 1.0	1.000	0
0.0050400 0.0050000 0.0050000	7 П1	3.0				0.0	-993.08	-1869.12	8.00	5.00	50 1.0	1.000) 0
0.0030000 000101 605 0.0050000	8 П1	3.0				0.0	1244.67	2337.64	2.00	3.00	0 1.0	1.000) 0
0.0030000 000101 605 0.0050000	9 П1	3.0				0.0	935.81	701.19	2.00	3.00	0 1.0	1.000	0
0.0050000		αП	имесь	0330									
000101 000 0.0348480	1 T	7.0	0.15	6.00	0.1060	0.0	-1172.03	-2016.89			1.0	1.000	0
000101 001 0.0094080	0 Т	6.0	0.18	2.50	0.0636	0.0	1031.36	666.19			1.0	1.000	0
000101 002 0.0157464	0 Т	8.0	0.15	6.00	0.1060	0.0	-999.29	-1857.13			1.0	1.000	0
000101 002 0.0313470	1 T	7.0	0.15	6.00	0.1060	0.0	1096.12	2243.98			1.0	1.000	0
000101 002 0.0277020	2 T	8.0	0.15	6.00	0.1060	0.0	958.13	696.30			1.0	1.000) 0
000101 600 0.0057400	9 П1	3.0				0.0	-1274.33	-1710.80	21.88	21.88	50 1.0	1.000) 0
000101 601	5 П1	3.0				0.0	-1189.23	-1966.54	10.00	10.99	50 1.0	1.000) 0
000101 601 0.0263380	6 П1	3.0				0.0	-1013.45	-1856.21	4.00	4.00	70 1.0	1.000	0
0.0203300 000101 602 0.0057400	6 П1	3.0				0.0	1369.18	2538.50	2.00	2.00	0 1.0	1.000) 0
0.0037400 000101 603 0.0207700	2 П1	3.0				0.0	1163.56	2326.06	4.00	4.00	0 1.0	1.000	0

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай

000101 6033 Π1 0.0207700	3.0	0.0	1216.19	2337.76	2.00	3.00	0 1.0 1.000 0
000101 6043 П1	3.0	0.0	636.78	317.98	2.00	2.00	0 1.0 1.000 0
0.0057400 000101 6050 Π1	3.0	0.0	902.43	707.57	4.00	5.00	0 1.0 1.000 0
0.0086200 000101 6051 Π1	3.0	0.0	1006.44	712.61	2.00	3.00	0 1.0 1.000 0
0.0108260	Примесь 0337						
000101 0001 T 0.2611700		0.1060 0.0	-1172.03	-2016.89			1.0 1.000 0
0.02011700 000101 0010 T 0.0222400	6.0 0.18 2.50	0.0636 0.0	1031.36	666.19			1.0 1.000 0
0.0222400 000101 0020 T 0.1297814	8.0 0.15 6.00	0.1060 0.0	-999.29	-1857.13			1.0 1.000 0
000101 0021 T	7.0 0.15 6.00	0.1060 0.0	1096.12	2243.98			1.0 1.000 0
0.0887778 000101 0022 T	8.0 0.15 6.00	0.1060 0.0	958.13	696.30			1.0 1.000 0
0.1317904 000101 0023 T	7.0 0.15 6.00	0.1060 0.0	886.44	803.36			1.0 1.000 0
0.0510286 000101 6009 Π1	3.0	0.0	-1274.33	-1710.80	21.88	21.88	50 1.0 1.000 0
0.0543000 000101 6015 Π1	3.0	0.0	-1189.23	-1966.54	10.00	10.99	50 1.0 1.000 0
0.7310000 000101 6016 П1	3.0	0.0	-1013.45	-1856.21	4.00	4.00	70 1.0 1.000 0
0.3791700 000101 6026 Π1	3.0	0.0	1369.18	2538.50	2.00	2.00	0 1.0 1.000 0
0.0543000 000101 6032 Π1	3.0	0.0	1163.56	2326.06	4.00	4.00	0 1.0 1.000 0
0.2017000 000101 6033 П1	3.0	0.0	1216.19	2337.76	2.00	3.00	0 1.0 1.000 0
0.2017000 000101 6043 Π1	3.0	0.0	636.78	317.98	2.00	2.00	0 1.0 1.000 0
0.0543000 000101 6050 Π1	3.0	0.0	902.43	707.57	4.00	5.00	0 1.0 1.000 0
0.0815000 000101 6051 Π1	3.0	0.0	1006.44	712.61	2.00	3.00	0 1.0 1.000 0
0.1182800	Примесь 1071						
000101 6001 Π1 0.0000210	3.0	0.0	-1400.48	-1827.18	307.23	204.75	50 1.0 1.000 0
0.0000210 000101 6002 Π1 0.0000760	3.0	0.0	-1160.59	-1853.35	47.23	31.49	50 1.0 1.000 0
000101 6003 П1	2.0	0.0	-1240.44	-1614.41	76.46	95.58	50 1.0 1.000 0
0.0000245 000101 6004 Π1	2.0	0.0	-1141.67	-1531.37	73.80	92.24	50 1.0 1.000 0
0.0000245 000101 6005 Π1	2.0	0.0	-1274.04	-1996.93	80.00	70.00	50 1.0 1.000 0
0.0000630 000101 6006 Π1	2.0	0.0	-1032.52	-1453.93	55.60	69.50	50 1.0 1.000 0
0.0000039 000101 6020 Π1	3.0	0.0	1095.63	2500.37	5.00	3.00	0 1.0 1.000 0
0.0000532 000101 6021 Π1	2.0	0.0	1512.71	2521.68	50.80	50.80	0 1.0 1.000 0
0.0000437 000101 6022 Π1	2.0	0.0	1296.56	2556.37	110.00	90.00	0 1.0 1.000 0
0.0000684 000101 6023 Π1	2.0	0.0	1309.86	2412.44	80.00	70.00	0 1.0 1.000 0
0.0000170 000101 6037 Π1	3.0	0.0	770.64	705.54	3.00	2.00	0 1.0 1.000 0
0.0000532 000101 6038 Π1	2.0	0.0	658.39	409.84	62.71	62.71	10 1.0 1.000 0
0.0000437 000101 6039 Π1	2.0	0.0	683.98	700.17	58.58	58.58	10 1.0 1.000 0
0.0000684 000101 6040 Π1	2.0	0.0	713.19	580.52	59.92	59.92	10 1.0 1.000 0
0.0000170							

^{4.} Расчетные параметры ${\tt Cm}, {\tt Um}, {\tt Xm}$

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 TOO "KazBeef LTD" Репродуктор $N^{0}N^{0}1,2,3$.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Группа суммации :6008=0301 Азота (IV) диоксид (Азота диоксид) (4)

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

0337 Углерод оксид (Окись углерода, Угарный газ) (584) 1071 Гидроксибензол (155)

		Источ	ники		I Их расче	 етные парам	
[омер	o Ko;	_		Тип	Cm	_	Xm
	- Объ.Пл				-[доли ПДК]-		'
	000101		0.149730		4.341862		13.3
	000101		0.044264		0.121797		34.2
	000101		0.069469		2.014461		13.3
4	000101	0021	0.105650	T	3.063621	0.59	13.3
5	000101	0022	0.104042	T	3.017007	0.59	13.3
6	000101	0023	0.011070	ΙT	0.320999	0.59	13.3
7	000101	6009	0.244840	П1	3.395251	0.50	17.1
8	000101	6015	2.135400	П1	29.612072	0.50	17.1
9	000101	6016	1.094310	П1	15.175043	0.50	17.1
10	000101	6026	0.244840	П1	3.395251	0.50	17.1
11	000101	6032	0.690880	П1	9.580590	0.50	17.1
12	000101	6033	0.690880	П1			17.1
13	000101	6043	0.244840	П1	3.395251	0.50	17.1
	000101				•		17.1
	000101						17.1
	000101		0.025000				17.1
	1000101		0.025000		•		17.1
	000101						17.1
	000101		0.002100		•		17.1
	000101				•		17.1
	000101		0.002445				11.4
	000101						11.4
	000101		0.006300		•		11.4
	000101		0.000385				11.4
	000101				•		17.1
	000101		0.004375				11.4
	000101 000101						11.4 11.4
					•		11.4
	000101 000101		0.005320				11.4
	1000101		0.004373				11.4
	1000101		0.000340				11.4
~~~	~~~~~~	~~~~~	~~~~~~~~	~~~~	~~~~~~~~~~	~~~~~~~	·~~~~~~
	Суммарн	ый Ма=	6.804008	(cvi	мма Мq/ПДК по	всем приме	есям)
		-			101.334854	_	,
	Среднев:	 звешен	ная опасная	 скоро	 сть ветра =	0.51 м,	/c

Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Группа суммации :6008=0301 Азота (IV) диоксид (Азота диоксид) (4)

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

0337 Углерод оксид (Окись углерода, Угарный газ) (584)

1071 Гидроксибензол (155)

### Фоновая концентрация не задана

Расчет по прямоугольнику 001 : 5500х7000 с шагом 500

Расчет по границе санзоны. Вся зона 002

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с

Средневзвешенная опасная скорость ветра Ucb=0.51 м/c

#### 6. Результаты расчета в виде таблицы.

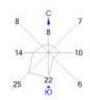
Город :031 Район им. Биржан Сал, с. Мамай.

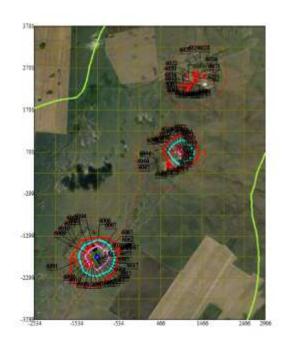
Объект :0001 ТОО "KazBeef LTD" Репродуктор  $N^{Q}N^{Q}1,2,3$ .

Группа суммации :6008=0301 Азота (IV) диоксид (Азота диоксид) (4)

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)




```
0337 Углерод оксид (Окись углерода, Угарный газ) (584)
                            1071 Гидроксибензол (155)
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X= 216, Y= 201
                    размеры: длина (по X) = 5500, ширина (по Y) = 7000, шаг сетки= 500
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Uмp) м/с
 Результаты расчета в точке максимума
          Координаты точки : X = -1034.0 \text{ м, } Y = -1799.0 \text{ м}
Максимальная суммарная концентрация | Cs= 7.4812231 доли ПДКмр|
   Достигается при опасном направлении 159 град.
                       и скорости ветра 0.71 м/с
Всего источников: 32. В таблице заказано вкладчиков не более чем с 95\% вклада
                             ____ВКЛАДЫ_ИСТОЧНИКОВ_
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | | ---- | Объ.Пл Ист. | ---- | b=C/M --- |
  1 | 000101 6016| Π1| 1.0943| 6.922732 | 92.5 | 92.5 | 6.3261156 | 2 | 000101 0020| Τ | 0.0695| 0.465874 | 6.2 | 98.8 | 6.7062016
                                                 98.8
                        B cymme = 7.388606
       Суммарный вклад остальных = 0.092618
                                                  1.2
7. Суммарные концентрации в узлах расчетной сетки.
     Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
     Группа суммации :6008=0301 Азота (IV) диоксид (Азота диоксид) (4)
                            0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                            0337 Углерод оксид (Окись углерода, Угарный газ) (584)
                            1071 Гидроксибензол (155)
         Параметры расчетного прямоугольника No 1 Координаты центра : X= 216 м; Y=
         Длина и ширина
                            : L=
                                   5500 м; В= 7000 м
      | Шаг сетки (dX=dY) : D=
                                   500 м
       Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с
       В целом по расчетному прямоугольнику:
 Безразмерная макс. концентрация ---> См =
                                             7.4812231
 Достигается в точке с координатами: Хм = -1034.0 м
    ( X-столбец 4, Y-строка 12) _{\rm YM} = -1799.0 м опасном направлении ветра : 159 град.
 При опасном направлении ветра :
  и "опасной" скорости ветра
                                : 0.71 м/с
9. Результаты расчета по границе санзоны.
              :031 Район им. Биржан Сал, с. Мамай.
              :0001 T00 "KazBeef LTD" Репродуктор №№1,2,3.
     Объект
     Группа суммации :6008=0301 Азота (IV) диоксид (Азота диоксид) (4)
                            0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                            0337 Углерод оксид (Окись углерода, Угарный газ) (584)
                           1071 Гидроксибензол (155)
     Расчет проводился по всей санитарно-защитной зоне N^{o} 2
     Расчетный шаг 50 м. Всего просчитано точек: 1257
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Ump) м/с
 Результаты расчета в точке максимума
                                        M, Y = -1620.1 M
Максимальная суммарная концентрация | Cs= 0.8668210 доли ПДКмр|
   Достигается при опасном направлении 244 град.
                       и скорости ветра 12.00 м/с
Всего источников: 32. В таблице заказано вкладчиков не более чем с 95\% вклада
                               _ВКЛАДЫ_ИСТОЧНИКОВ
                         Выброс |
|Hom.|
          Код
                  |Тип|
                                       Вклад
                                               |Вклад в%| Сум. %| Коэф.влияния |
```




Объ.Пл Ист.  M-(Mq) -	С[доли ПДК]	b=C/M
1  000101 6015  H1  2.1354	0.443074   51.1	51.1   0.207489997
2  000101 6016  H1  1.0943	0.353033   40.7	91.8   0.322607607
3  000101 0020  T   0.0695	0.032364   3.7	95.6   0.465875149
В сумме =	0.828471 95.6	
Суммарный вклад остальных =	0.038350 4.4	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4 ПК ЭРА v3.0, Модель: МРК-2014 6008 0301+0330+0337+1071

Макс концентрация 7.4812231 ГДРК достигается в точке x= -1034 y= -1799 При опасном направлении 159° и опасной скорости ветра 0.71 м/с Расчетный гримоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетной сетих 500 м, кончество расчетных точек 12°15 Расчёт на существующее положение.

Город :031 Район им. Биржан Сал, с. Мамай. Объект :0001 ТОО "Катвееб тыр" :0001 TOO "KazBeef LTD" Репродуктор №1,2,3.

Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

0333 Сероводород (Дигидросульфид) (518)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

Выброс	Тип	Н	D	Wo	V1	Т	Х1	Y1	X2	Y2 A	.lf	F	КР Д	[N
Объ.Пл Ист 1~~~1~~	M~~ ~	~m~~	~M/C~I	~м3/с~	~ I πnaπC~^	~~M~~	~~~ ~~~~m~~	~~~ ~~~~m~~	~~~ ~~~~M~~	~~~l mn l~~~	. ~~^	~~ ~,	~ ~~~п	1/0~~
-						1-1	1 1/1	1 22	1 141	1 - 5 - 1	'	'	1 ±	, 0
000101 0001	T	7.0	0.15	6.00	0.1060	0.0	-1172.03	-2016.89				1.0	1.000	0
0.0348480 000101 0010	т	6.0	0.18	2.50	0.0636	0.0	1031.36	666.19				1 0	1.000	0
0.0094080	Τ.	0.0	0.10	2.50	0.0050	0.0	1031.30	000.19				1.0	1.000	0
000101 0020	T	8.0	0.15	6.00	0.1060	0.0	-999.29	-1857.13				1.0	1.000	0
0.0157464 000101 0021	TT.	7.0	0.15	6.00	0.1060	0.0	1096.12	2243.98				1 0	1.000	. 0
0.0313470	1	7.0	0.13	0.00	0.1000	0.0	1000.12	2243.30				1.0	1.000	. 0
000101 0022	T	8.0	0.15	6.00	0.1060	0.0	958.13	696.30				1.0	1.000	0
0.0277020 000101 6009	п1	3.0				0.0	-1274.33	-1710.80	21.88	21.88	5.0	1.0	1.000	0
0.0057400	111	3.0				0.0	12,11.00	1710.00	21.00	21.00	00	1.0	1.000	. 0
000101 6015	П1	3.0				0.0	-1189.23	-1966.54	10.00	10.99	50	1.0	1.000	0
0.0696000 000101 6016	П1	3.0				0.0	-1013.45	-1856.21	4.00	4.00	70	1.0	1.000	0
0.0263380														
000101 6026 0.0057400	П1	3.0				0.0	1369.18	2538.50	2.00	2.00	0	1.0	1.000	0
0.0037400	П1	3.0				0.0	1163.56	2326.06	4.00	4.00	0	1.0	1.000	0
0.0207700														
000101 6033 0.0207700	П1	3.0				0.0	1216.19	2337.76	2.00	3.00	0	1.0	1.000	0
000101 6043	П1	3.0				0.0	636.78	317.98	2.00	2.00	0	1.0	1.000	0
0.0057400														
000101 6050 0.0086200	П1	3.0				0.0	902.43	707.57	4.00	5.00	0	1.0	1.000	0
000101 6051	П1	3.0				0.0	1006.44	712.61	2.00	3.00	0	1.0	1.000	0
0.0108260		_		0000										
000101 0003	т	-	имесь 0.025		0.0012	0.0	-1065.74	-1869.82				1.0	1.000	0
0.0000264														
000101 0004 0.0000264	Т	2.5	0.025	2.50	0.0012	0.0	-1060.26	-1874.75				1.0	1.000	0
000101 0011	Т	2.0	0.050	1.00	0.0020	0.0	1043.43	665.85				1.0	1.000	0
0.0000002														
000101 0014 0.0000264	Т	2.5	0.020	2.50	0.0008	0.0	911.44	488.19				1.0	1.000	0
000101 0015	Т	2.5	0.025	2.50	0.0012	0.0	911.28	499.64				1.0	1.000	0
0.0000528														
000101 6001 0.0000907	111	3.0				0.0	-1400.48	-1827.18	307.23	204.75	50	1.0	1.000	0
000101 6002	П1	3.0				0.0	-1160.59	-1853.35	47.23	31.49	50	1.0	1.000	0
0.0003283	 1	2 0				0 0	1040 44	1 (1 4 41	76.46	05 50	ΕO	1 0	1 000	. 0
000101 6003 0.0001056	111	2.0				0.0	-1240.44	-1614.41	76.46	95.58	50	1.0	1.000	0
000101 6004	П1	2.0				0.0	-1141.67	-1531.37	73.80	92.24	50	1.0	1.000	0
0.0001056 000101 6005	п1	2.0				0.0	-1274.04	-1996.93	80.00	70.00	EΛ	1 0	1 000	. 0
0.0002722	111	2.0				0.0	-12/4.04	-1990.93	80.00	70.00	50	1.0	1.000	0
000101 6006	П1	2.0				0.0	-1032.52	-1453.93	55.60	69.50	50	1.0	1.000	0
0.0000140	п1	15 0				0 0	1524 66	1402 10	400 00	40.22	EΛ	1 0	1 000	. 0
000101 6012 0.0900000	11.1	15.0				0.0	-1534.66	-1492.19	400.88	40.22	50	1.0	1.000	. 0
000101 6017	T	2.0	0.050	1.00	0.0020	0.0	-1057.56	-1867.00				1.0	1.000	0
0.0000010 000101 6018	п1	2.0				0.0	-1066.75	-1865.56	3.02	3 00	50	1 0	1.000	. 0
0.000101 8018	11.1	∠.∪				0.0	1000.73	1000.00	3.02	3.02	50	1.0	1.000	
000101 6020	П1	3.0				0.0	1095.63	2500.37	5.00	3.00	0	1.0	1.000	0
0.0002298														

000101 6021 П1	2.0	0.0	1512.71	2521.68	50.80	50.80	0 1.0 1.000 0
0.0001890	2.0	0.0	1312./1	2321.08	50.80	50.80	0 1.0 1.000 0
000101 6022 П1	2.0	0.0	1296.56	2556.37	110.00	90.00	0 1.0 1.000 0
0.0002955							
000101 6023 П1	2.0	0.0	1309.86	2412.44	80.00	70.00	0 1.0 1.000 0
0.0000734							
000101 6029 П1	15.0	0.0	1429.48	2778.69	150.00	15.00	5 1.0 1.000 0
0.0900000							
000101 6037 П1	3.0	0.0	770.64	705.54	3.00	2.00	0 1.0 1.000 0
0.0002298							
000101 6038 П1	2.0	0.0	658.39	409.84	62.71	62.71	10 1.0 1.000 0
0.0001890							
000101 6039 П1	2.0	0.0	683.98	700.17	58.58	58.58	10 1.0 1.000 0
0.0002955	0.0	0 0	710 10	500 50	F0 00	F0 00	10 1 0 1 000 0
000101 6040 П1	2.0	0.0	713.19	580.52	59.92	59.92	10 1.0 1.000 0
0.0000734 000101 6046 Π1	15.0	0.0	403.40	467.46	20.01	300.00	0 1.0 1.000 0
0.0900000	13.0	0.0	403.40	407.40	20.01	300.00	0 1.0 1.000 0
000101 6052 T	2.0 0.050 0.500 0.0010	0.0	921.11	497.87			1.0 1.000 0
0.0000010	2.0 0.030 0.300 0.0010	0.0	721.11	457.07			1.0 1.000 0
000101 6053 П1	2.0	0.0	897.58	494.89	1.00	1.00	0 1.0 1.000 0
0.0001011		- • •	227.00			2.00	2 2.2 2.000 0

4. Расчетные параметры См, Им, Хм

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3.

| - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная |

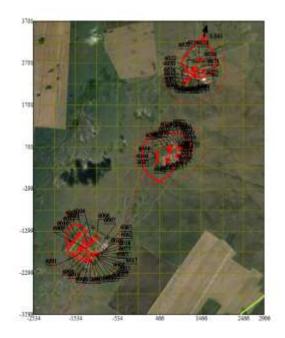
Сезон :ЗИМА для энергетики и ЛЕТО для остальных

Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) 0333 Сероводород (Дигидросульфид) (518)

концентрация См = См1/ПДК1 ++ Смn/ПДКn - Для линейных и площадных источников выброс является суммарным по											
					лок выорос нь. Попонноро Р		ларным по ј				
				-	и, с суммарны		l I				
			-	-	л, с суммарны ~~~~~~						
1			ники			етные парам					
Номер	l Koj	_ ` `		 Тип	Cm	Um Um	Xm				
	Объ.Пл				[доли ПДК]-						
	000101		'	l T	2.021041	0.59	13.3				
	1000101				0.051774		34.2				
	1000101				0.913226		13.3				
	1000101		'		1.817997		13.3				
	1000101				1.606602		13.3				
	000101			'	0.159196		17.1				
	000101		'		1.930318		17.1				
	000101						17.1				
	000101		'		•		17.1				
	000101		'		0.576044		17.1				
	000101			П1	0.576044	0.50	17.1				
12	000101	6043	0.011480	П1	0.159196	0.50	17.1				
13	000101	6050	0.017240	П1	0.239071	0.50	17.1				
14	000101	6051	0.021652	П1	0.300253	0.50	17.1				
15	000101	0003	0.003297	ΙT	0.069962	0.50	14.3				
16	000101	0004	0.003297	T	0.069962	0.50	14.3				
17	000101	0011	0.000030	T	0.001089	0.50	11.4				
18	000101	0014	0.003297	ΙT	0.069962	0.50	14.3				
19	000101	0015	0.006594	ΙT	0.139925	0.50	14.3				
20	000101	6001	0.011340	П1	0.157254	0.50	17.1				
21	000101	6002	0.041040	П1	0.569111	0.50	17.1				
22	000101	6003	0.013203	П1	0.471565	0.50	11.4				
23	000101	6004	0.013203	П1	0.471565	0.50	11.4				
24	000101	6005	0.034020	П1	1.215076	0.50	11.4				
25	000101	6006	0.001750	П1	0.062504	0.50	11.4				
26	000101	6012	11.250000	П1	3.649321	0.50	85.5				
27	000101	6017	0.000122	ΙT	0.004361		11.4				
28	000101	6018	0.012635	П1	0.451278	0.50	11.4				
29	000101	6020	0.028728	П1	0.398378	0.50	17.1				
	000101		'		•		11.4				
	000101		'		•		11.4				
	000101				0.327878		11.4				
	000101		'		•		85.5				
	1000101		'	'			17.1				
35	000101	6038	0.023625	П1	0.843803	0.50	11.4				


```
36 |000101 6039| 0.036936| Π1 | 1.319225 | 0.50 |
                                                          11.4
  37 |000101 6040| 0.009180| Π1 | 0.327878 | 0.50 | 38 |000101 6046| 11.250000| Π1 | 3.649321 | 0.50 |
                                                           11.4
                                                           85.5
  39 | 000101 6052 | 0.000122 | T | 0.004361 | 0.50 | 40 | 000101 6053 | 0.012635 | П1 | 0.451278 | 0.50 |
                                                           11.4
                                                          11.4
 Суммарный Мq= 34.689915 (сумма Мq/ПДК по всем примесям)
    Сумма См по всем источникам = 32.176216 долей ПЛК
 ______
    Средневзвешенная опасная скорость ветра = 0.52 м/с
5. Управляющие параметры расчета
    Город :031 Район им. Биржан Сал, с. Мамай.
           :0001 TOO "KazBeef LTD" Репродуктор N^01,2,3. :ЗИМА для энергетики и ЛЕТО для остальных
    Объект
    Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                        0333 Сероводород (Дигидросульфид) (518)
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 5500x7000 c шагом 500
    Расчет по границе санзоны. Вся зона 002
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0\,\mathrm{(Ump)} м/с
    Средневзвешенная опасная скорость ветра Ucв= 0.52 м/c
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
    Объект :0001 ТОО "КазВееf LTD" Репродуктор N^{o}N^{o}1,2,3.
    Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                        0333 Сероводород (Дигидросульфид) (518)
    Расчет проводился на прямоугольнике 1
    с параметрами: координаты центра X= 216, Y= 201
                 размеры: длина(по X)= 5500, ширина(по Y)= 7000, шаг сетки= 500
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
Результаты расчета в точке максимума
        Координаты точки : X= 966.0 м, Y= 701.0 м
Максимальная суммарная концентрация | Cs= 2.1518624 доли ПДКмр|
  Достигается при опасном направлении 241 град. и скорости ветра 0.60 м/с
Всего источников: 40. В таблице заказано вкладчиков не более чем с 95% вклада
                          ____ВКЛАДЫ_ИСТОЧНИКОВ
|----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|-----|----- b=C/М ---|
  1 | 000101 0022 | T | 0.0554 | 1.595940 | 74.2 | 74.2 | 28.8055058 | 2 | 000101 6046 | Π1 | 11.2500 | 0.495900 | 23.0 | 97.2 | 0.044080034
|-----|
             B cymme = 2.091841 97.2
      Суммарный вклад остальных = 0.060022
7. Суммарные концентрации в узлах расчетной сетки.
    Город :031 Район им. Биржан Сал, с. Мамай.
    Объект :0001 TOO "KazBeef LTD" Репродуктор №1,2,3.
    Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                        0333 Сероводород (Дигидросульфид) (518)
          Координаты центра : X= 216 м; Y=
        Длина и ширина : L=
                                5500 м; в= 7000 м |
      Шаг сетки (dX=dY) : D= 500 м
       Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
```

Скорость ветра: автоматический поиск опасной скорости от 0.5 до $12.0\,\mathrm{(Ump)}$ м/с




```
В целом по расчетному прямоугольнику:
  Безразмерная макс. концентрация ---> См = 2.1518624
 Стигается в точке с координатами: XM = 966.0 м (X-столбец 8, Y-строка 7) YM = 701.0 м При опасном направлении ветра : 241 град. и "опасной" скорости ветра : 0 60 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100
9. Результаты расчета по границе санзоны.
            Город :031 Район им. Биржан Сал, с. Мамай.
                                 :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
            Объект
            Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                                                                 0333 Сероводород (Дигидросульфид) (518)
            Расчет проводился по всей санитарно-защитной зоне № 2
            Расчетный шаг 50 м. Всего просчитано точек: 1257
            Фоновая концентрация не задана
            Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0(Ump) м/с
   Результаты расчета в точке максимума
                       Координаты точки : X= 1521.2 м, Y= 3292.4 м
  Максимальная суммарная концентрация | Cs= 0.8409212 доли ПДКмр|
       Достигается при опасном направлении 191 град.
                                                      и скорости ветра 0.82 м/с
Всего источников: 40. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                 ____ВКЛАДЫ_ИСТОЧНИКОВ_
                     Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
I Hom. I
 |----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|-----|----- b=C/M ---|
В сумме = 0.805159 95.7
Суммарный вклад остальных = 0.035762 4.3
```


Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4 ПК ЭРА v3.0, Модель: МРК-2014 6044 0330+0333



Макс концентрация 2.1518624 ПДК достигается в точке x= 966 y= 701 При опасном направлении 241° и опасной скорости ветра 0.6 м/с Расчетный прямоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетной сетки 500 м, количество расчетных точек 12°15 Расчёт на существующее положение.

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "КаzBeef LTD" Репродуктор $N^{Q}N^{Q}1,2,3$.

Группа суммации :__ПЛ=2902 Взвешенные частицы (116)

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства – известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

2920 Пыль меховая (шерстяная, пуховая) (1050*)

2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

2937 Пыль зерновая /по грибам хранения/ (487)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Признак источников "для зимы" - отрицательное значение высоты

	Тип	шІ	D	Wo	V1	TT.	X1	Y1	X2	Y2 A	lf F KP Ди
Выброс	1 1111	11	D	WO I	ν _⊥	1	VT I	11	AZ	12 5	тт г кт ди
Объ.Пл											
						~~~M~~	~~~   ~~~~M~~	~~~   ~~~~M~~	~~~   ~~~~M~~~	~~~ rp. ~~~	~~~~ ~~ ~~r/c~~
				2902			4470.00	0016 00			
000101 0001	Т	7.0	0.15	6.00	0.1060	0.0	-1172.03	-2016.89			3.0 1.000 0
0.0390000 000101 0020	π	2.0	0.15	6.00	0.1060	0.0	-999.29	-1857.13			3.0 1.000 0
0.0193800	_	2.0	0.13	0.00	0.1000	0.0	333.23	1037.13			3.0 1.000 0
000101 0021	T	8.0	0.15	6.00	0.1060	0.0	1096.12	2243.98			3.0 1.000 0
0.0039000											
000101 0022	Т	8.0	0.15	6.00	0.1060	0.0	958.13	696.30			3.0 1.000 0
0.0196800 000101 0023	т	7.0	0.15	6.00	0.1060	0.0	886.44	803.36			3.0 1.000 0
0.0076200	_	7.0	0.13	0.00	0.1000	0.0	000.44	003.30			3.0 1.000 0
000101 6057	П1	3.0				0.0	-993.08	-1869.12	8.00	5.00	50 3.0 1.000 0
0.0014200											
000101 6058	П1	3.0				0.0	1244.67	2337.64	2.00	3.00	0 3.0 1.000 0
0.0014200 000101 6059	п1	3.0				0.0	935.81	701.19	2.00	3.00	0 3.0 1.000 0
0.00101 0033	11.1	3.0				0.0	222.01	701.13	2.00	3.00	0 3.0 1.000 0
		Пр	имесь	2908							
000101 0001	T	7.0	0.15	6.00	0.1060	0.0	-1172.03	-2016.89			3.0 1.000 0
0.1552914	_	0 0	0 15	6 00	0 1060	0 0	000 00	1055 10			2 0 1 000 0
000101 0020 0.0778320	T	8.0	0.15	6.00	0.1060	0.0	-999.29	-1857.13			3.0 1.000 0
000101 0021	Т	7.0	0.15	6.00	0.1060	0.0	1096.12	2243.98			3.0 1.000 0
0.1112625											
000101 0022	T	8.0	0.15	6.00	0.1060	0.0	958.13	696.30			3.0 1.000 0
0.0983250	1	0 0				0 0	1156.05	0.001 4.4	0.00	0.00	50 2 0 1 000 0
000101 6014 0.0000320	111	2.0				0.0	-1156.25	-2001.44	2.00	2.00	50 3.0 1.000 0
000101 6047	П1	2.0				0.0	1041.02	682.06	1.00	1.00	0 3.0 1.000 0
0.0000008											
000101 6063	П1	2.0				0.0	-994.43	-1844.59	4.00	4.00	50 3.0 1.000 0
0.0000010 000101 6067	п1	2.0				0.0	1104.48	2244 02	2.00	2.00	0 2 0 1 000 0
0.000007	111	2.0				0.0	1104.40	2244.83	2.00	2.00	0 3.0 1.000 0
000101 6069	П1	2.0				0.0	971.16	702.24	2.00	2.00	0 3.0 1.000 0
0.0000100											
000101 6070	П1	2.0				0.0	893.37	806.61	2.00	2.00	0 3.0 1.000 0
0.0000047		Пn	101001	2909							
000101 6013	п1	2.0	имесь	2909		0.0	-1145.22	-2010.55	1.99	3.00	50 3.0 1.000 0
0.0080000		2.0				0.0	1110.00	2010.00	1.33	0.00	00 0.0 1.000 0
000101 6062	П1	2.0				0.0	-984.37	-1851.12	5.00	5.00	50 3.0 1.000 0
0.0070000											
000101 6066	П1	2.0				0.0	1104.74	2238.90	4.00	3.00	0 3.0 1.000 0
0.0070000 000101 6068	п1	2.0				0.0	971.70	717.07	3.00	4.00	0 3.0 1.000 0
0.0070000							5.1.10	/ • 0 /	3.00	1.00	2 0.0 2.000 0
		-	имесь	2920							
000101 6001	П1	3.0				0.0	-1400.48	-1827.18	307.23	204.75	50 3.0 1.000 0
0.0023016 000101 6002	п1	3.0				0.0	-1160.59	-1853.35	47.23	31 10	50 3.0 1.000 0
0.0083296	11.1	5.0				0.0	-1100.39	-1000.00	41.23	31.49	JU J.U 1.000 U



000101 6003 П1	2.0	0.0	-1240.44	-1614.41	76.46	95.58	50 3.0 1.000 0
0.0011736 000101 6004 Π1	2.0	0.0	-1141.67	-1531.37	73.80	92.24	50 3.0 1.000 0
0.0011736 000101 6005 Π1	2.0	0.0	-1274.04	-1996.93	80.00	70.00	50 3.0 1.000 0
0.0030240 000101 6006 Π1	2.0	0.0	-1032.52	-1453.93	55.60	69.50	50 3.0 1.000 0
0.0001568 000101 6020 Π1	3.0	0.0	1095.63	2500.37	5.00	3.00	0 3.0 1.000 0
0.0058307 000101 6021 Π1	2.0	0.0	1512.71	2521.68	50.80	50.80	0 3.0 1.000 0
0.0021000 000101 6022 Π1 0.0032832	2.0	0.0	1296.56	2556.37	110.00	90.00	0 3.0 1.000 0
0.0032832 000101 6023 Π1 0.0008160	2.0	0.0	1309.86	2412.44	80.00	70.00	0 3.0 1.000 0
0.0008160 000101 6037 Π1 0.0058307	3.0	0.0	770.64	705.54	3.00	2.00	0 3.0 1.000 0
0.0038307 000101 6038 Π1 0.0021000	2.0	0.0	658.39	409.84	62.71	62.71	10 3.0 1.000 0
0.0021000 000101 6039 Π1 0.0032832	2.0	0.0	683.98	700.17	58.58	58.58	10 3.0 1.000 0
0.0032832 000101 6040 Π1 0.0008160	2.0	0.0	713.19	580.52	59.92	59.92	10 3.0 1.000 0
	П						
 000101 6057 Π1 0.0008000	Примесь 2930 3.0	0.0	-993.08	-1869.12	8.00	5.00	50 3.0 1.000 0
0.0008000 000101 6058 Π1 0.0008000	3.0	0.0	1244.67	2337.64	2.00	3.00	0 3.0 1.000 0
	Примесь 2937						
000101 6007 Π1 1.122670	3.0	0.0	-995.66	-1747.02	12.32	18.48	50 3.0 1.000 0
000101 6008 Π1 0.0213300	3.0	0.0	-1287.79	-1872.58	16.30	16.30	50 3.0 1.000 0
000101 6024 П1 1.122670	3.0	0.0	1282.79	2338.73	4.00	3.00	0 3.0 1.000 0
000101 6025 П1 0.0213300	3.0	0.0	1283.40	2491.70	2.00	2.00	0 3.0 1.000 0
000101 6041 П1 1.118000	3.0	0.0	982.22	585.69	2.00	3.00	0 3.0 1.000 0
000101 6042 Π1 0.0213300	2.0	0.0	714.85	387.29	2.00	2.00	10 3.0 1.000 0

4. Расчетные параметры См, Им, Хм

Город :031 Район им. Биржан Сал, с. Мамай.

Объект :0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3.

Сезон :ЗИМА для энергетики и ЛЕТО для остальных Группа суммации :__ПЛ=2902 Взвешенные частицы (116)

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

2920 Пыль меховая (шерстяная, пуховая) (1050*)

2930 Пыль абразивная (Корунд белый, Монокорунд) (1027 * )

2937 Пыль зерновая /по грибам хранения/ (487)

- Для групп суммации выброс Mq = M1/ПДК1 ++ Mn/ПДКп, а суммарная   концентрация См = Cм1/ПДК1 ++ Cмn/ПДКп     - Для линейных и площадных источников выброс является суммарным по												
всей площади, а Ст - концентрация одиночного источника,												
расположенног	о в центре си	мметри	и, с суммарны	M Mic								
~~~~~~~~~~	~~~~~~~~	~~~~~	~~~~~~~~	~~~~~	~~~~	.~~~~~~						
Nct	очники	Их расчетные параметры										
Номер Код	Mq	Тип	Cm	Un	1	Xm						
-п/п- Объ.Пл Ист	.	-	-[доли ПДК]-	- [м/с	:] -	[м]						
1 000101 000	1 0.38858	3 T	33.804310	0.5	9	6.7						
2 000101 002	0.19442	4 T	16.913691	0.5	9	6.7						
3 000101 002	1 0.23032	5 T	20.036856	0.5	9	6.7						
4 000101 002	2 0.23601	0 T	20.531416	0.5	9	6.7						
5 000101 002	3 0.01524	0 T	1.325786	0.5	9	6.7						
6 000101 605	7 0.00444	0 П1	0.184711	0.5	0	8.5	Ī					


```
7 |000101 6058|
                      0.004440| П1 |
                                      0.184711 |
                                                   0.50
                                                               8.5
     |000101 6059|
                      0.002520| П1 |
                                      0.104836 |
                                                   0.50
                                                               8.5
     |000101 6014|
                      0.000064| П1 |
                                      0.006858 |
                                                   0.50
                                                               5.7
                    0.00000160| Π1 |
  10 1000101 60471
                                      0.000171 I
                                                   0.50
                                                               5.7
                    0.00000190| П1 |
  11 |000101 6063|
                                      0.000204 |
                                                   0.50
                                                               5.7
  12 |000101 6067|
                    0.00000130| П1 |
                                     0.000139 |
                                                  0.50 |
                                                               5.7
  13 |000101 6069|
                      0.000020| Π1 |
                                      0.002143 |
                                                   0.50
  14 |000101 6070|
                    0.00000930| П1 |
                                      0.000996 |
                                                   0.50 I
                                                               5.7
                    0.016000| П1 |
                                      1.714393 |
  15 | 1000101 6013|
                                                   0.50
                                                               5.7
                                                   0.50 i
  16 | 000101 6062|
                     0.014000| П1 |
                                      1.500094 I
                                                               5.7
                                     1.500094 |
                    0.014000| Π1 |
  17 |000101 6066|
                                                   0.50
                                                               5.7
  18 |000101 6068|
                     0.014000| П1 |
                                      1.500094 |
                                                   0.50
                                                               5.7
  19 | 000101 6001 |
                     0.004603| П1 |
                                      0.191501 I
                                                   0.50 I
                                                               8.5
                     0.016659| П1 | 0.693051 |
  20 |000101 6002|
                                                   0.50 |
                                                               8.5
  21 |000101 6003|
                     0.002347| П1 |
                                      0.251501 |
                                                   0.50
                    0.002347| П1 |
                                     0.251501 |
  22 |000101 6004|
                                                   0.50
                                                               5.7
  23 |000101 6005|
                     0.006048| П1 |
                                      0.648041 |
                                                   0.50
                                                               5.7
                                                   0.50
                     0.000314| П1 |
  24 | 000101 6006 |
                                      0.033602 |
                                                               5.7
                                                  0.50 |
  25 |000101 6020|
                     0.011661| П1 |
                                      0.485134 |
                                                               8.5
  26 |000101 6021|
                     0.004200| П1 |
                                      0.450028 |
                                                   0.50
                                                               5.7
                     0.006566| П1 |
  27 |000101 6022|
                                      0.703587 |
                                                   0.50 I
                                                               5.7
  28 |000101 6023|
                     0.001632| П1 |
                                      0.174868 |
                                                   0.50
                                                               5.7
  29 |000101 6037|
                      0.011661| П1 |
                                      0.485134 |
                                                   0.50
                                                               8.5
  30 |000101 6038|
                     0.004200| П1 | 0.450028 |
                                                   0.50 |
                                                               5.7
  31 |000101 6039|
                     0.006566| П1 |
                                      0.703587 |
                                                   0.50
                                                               5.7
  32 1000101 60401
                     0.001632| П1 |
                                      0.174868 I
                                                   0.50 I
                                                               5.7
  33 |000101 6007|
                     2.245340| N1 | 93.409904 |
                                                   0.50
                                                               8.5
  34 |000101 6008|
                      0.042660| П1 |
                                      1.774727 |
                                                   0.50
  35 |000101 6024|
                    2.245340| N1 | 93.409904 |
                                                   0.50 |
                                                               8.5
  36 |000101 6025|
                                      1.774727
                     0.042660| П1 |
                                                   0.50
                                                               8.5
                    2.236000| П1 |
  37 | 1000101 6041 |
                                     93.021347 I
                                                   0.50
                                                               8.5
                    0.042660| П1 | 4.571001 |
  38 | 000101 6042 |
                                                   0.50
     Суммарный Мq= 8.069178 (сумма Мq/ПДК по всем примесям)
     Сумма См по всем источникам = 392.969513 долей ПДК
    _____
     Средневзвешенная опасная скорость ветра = 0.52 м/с
5. Управляющие параметры расчета
    Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
    Объект
    Сезон
             :ЗИМА для энергетики и ЛЕТО для остальных
    Группа суммации :__ПЛ=2902 Взвешенные частицы (116)
                          2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                               пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                               клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                          2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                               цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
                               вращающихся печей, боксит) (495*)
                          2920 Пыль меховая (шерстяная, пуховая) (1050*)
                          2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)
                          2937 Пыль зерновая /по грибам хранения/ (487)
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 5500х7000 с шагом 500
    Расчет по границе санзоны. Вся зона 002
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (Ump) \, м/с
    Средневзвешенная опасная скорость ветра Ucb=0.52~\text{м/c}
6. Результаты расчета в виде таблицы.
    Город :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Репродуктор №1,2,3.
    Группа суммации :__ПЛ=2902 Взвешенные частицы (116)
                          2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                               пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                               клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                          2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                               цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
                               вращающихся печей, боксит) (495*)
                          2920 Пыль меховая (шерстяная, пуховая) (1050*)
                          2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)
```



```
2937 Пыль зерновая /по грибам хранения/ (487)
     Расчет проводился на прямоугольнике 1
     с параметрами: координаты центра X= 216, Y= 201
                   размеры: длина (по X) = 5500, ширина (по Y) = 7000, шаг сетки= 500
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) _{\rm M}/{\rm c}
 Результаты расчета в точке максимума
          Координаты точки : X= 966.0 м, Y= 701.0 м
Максимальная суммарная концентрация \overline{\mid \text{Cs=} 18.7515926} доли ПДКмр\mid
                                     Достигается при опасном направлении 239 град.
                      и скорости ветра 0.64 м/с
Всего источников: 38. В таблице заказано вкладчиков не более чем с 95% вклада
                            ____ВКЛАДЫ_ИСТОЧНИКОВ_
        Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
|----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|-----|----- b=C/M ---|
| 1 |000101 0022| T | 0.2360| 18.737909 | 99.9 | 99.9 | 79.3945541 |
 B cymme = 18.737909 99.9
       Суммарный вклад остальных = 0.013683
7. Суммарные концентрации в узлах расчетной сетки.
              :031 Район им. Биржан Сал, с. Мамай.
              :0001 TOO "KazBeef LTD" Репродуктор №№1,2,3.
     Объект
     Группа суммации :__ПЛ=2902 Взвешенные частицы (116)
                           2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                                пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                                клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                           2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                                цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
                                вращающихся печей, боксит) (495*)
                           2920 Пыль меховая (шерстяная, пуховая) (1050*)
                           2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)
                           2937 Пыль зерновая /по грибам хранения/ (487)
        Параметры расчетного прямоугольника No 1 201 | Координаты центра : X= 216 м; Y= 201 | Длина и ширина : L= 5500 м; B= 7000 м |
                                   5500 M; B= 7000 M
      | Шаг сетки (dX=dY) : D=
                                  500 м
       Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 \, (Ump) \, \text{м/c}
       В целом по расчетному прямоугольнику:
 Безразмерная макс. концентрация ---> См = 18.7515926
Достигается в точке с координатами: XM = 966.0 \text{ M} ( X-столбец 8, Y-строка 7) YM = 701.0 \text{ M} При опасном направлении ветра : 239 град.
 При опасном направлении ветра :
  и "опасной" скорости ветра
                               : 0.64 м/с
9. Результаты расчета по границе санзоны.
     Город :031 Район им. Биржан Сал, с. Мамай.
     Объект :0001 ТОО "KazBeef LTD" Репродуктор №1,2,3.
     Группа суммации :__ПЛ=2902 Взвешенные частицы (116)
                           2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                                пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,
                                клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)
                           2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль
                                цементного производства - известняк, мел, огарки, сырьевая смесь, пыль
                                вращающихся печей, боксит) (495*)
                           2920 Пыль меховая (шерстяная, пуховая) (1050^{\star})
                           2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)
                           2937 Пыль зерновая /по грибам хранения/ (487)
     Расчет проводился по всей санитарно-защитной зоне № 2
     Расчетный шаг 50 м. Всего просчитано точек: 1257
     Фоновая концентрация не задана
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
```

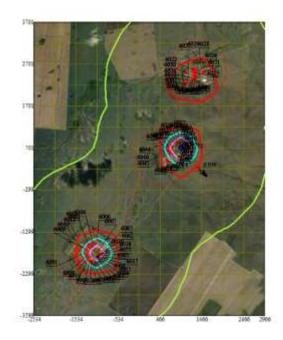

Скорость ветра: автоматический поиск опасной скорости от 0.5 до 12.0 (Uмp) м/с

Результаты расчета в точке максимума $\,$ ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= 1355.7 м, Y= 250.6 м

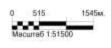
Максимальная суммарная концентрация | Cs= 0.9387575 доли ПДКМР|

Достигается при опасном направлении 312 град.

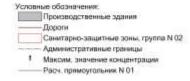
и скорости ветра 12.00 м/с


Всего источников: 38. В таблице заказано вкладчиков не более чем с 95% вклада ВКЛАДЫ ИСТОЧНИКОВ

Hom.	Код	Тип	Выброс		Вклад	Вклад в%	Сум. %	Коэф.влияния	- F
Of	ь.Пл Ист.	-	M- (Mq)	- -C	[доли ПДК]			b=C/M	
1 000	0101 6041	П1	2.2360) (0.904314	96.3	96.3	0.404433757	
			В сумме	=	0.904314	96.3			
C	уммарный	вклад	остальных	-	0.034444	3.7			



Город: 031 Район им. Биржан Сал, с. Мамай Объект: 0001 ТОО "KazBeef LTD" Репродуктор №№1,2,3 Вар.№ 4 ПК ЭРА v3.0, Модель: MPK-2014 __ПЛ 2902+2908+2909+2920+2930+2937



Макс концентрация 18.7515926 ГДК достигается в точке х= 966 у= 701 При опасном направлении 239° и опасной скорости ветра 0.64 м/с Расчетный примоугольник № 1, ширина 5500 м, высота 7000 м, шаг расчетной сетки 500 м, количество расчетных точек 12°15 Расчет на существующее положение.

Анализ результатов расчета показал, что максимальные приземные концентрации по всем веществам и суммациям, не оказывают существенного влияния на загрязнение атмосферы и, следовательно, величина выбросов этих веществ может быть принята в качестве НДВ.

Следовательно, в разработке мероприятий по снижению выбросов загрязняющих веществ в атмосферу нет необходимости.

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы, представлены в таблице 5.2.2 и 5.2.3.

Нормативы выбросов загрязняющих веществ в атмосферный воздух по (г/сек, т/год) представлены в таблице 5.2.4.

5.3 Мероприятия по предотвращению загрязнения атмосферного воздуха

По степени воздействия на организм человека выбрасываемые вещества подразделяются в соответствии с санитарными нормами на 4 класса опасности.

Для каждого из выбрасываемых веществ Минздравом разработаны и утверждены предельно допустимые концентрации содержания их в атмосферном воздухе для населенных мест (ПДК м.р., ПДК с.с. или ОБУВ).

Мероприятиями по охране окружающей среды является комплекс технологических, технических, организационных, социальных и экономических мер, направленных на охрану окружающей среды и улучшение ее качества.

К мероприятиям по охране окружающей среды относятся мероприятия:

- 1) направленные на обеспечение экологической безопасности;
- 2) улучшающие состояние компонентов окружающей среды посредством повышения качественных характеристик окружающей среды;
- 3) способствующие стабилизации и улучшению состояния экологических систем, сохранению биологического разнообразия, рациональному использованию и воспроизводству природных ресурсов;
- 4) предупреждающие и предотвращающие нанесение ущерба окружающей среде и здоровью населения;
- 5) совершенствующие методы и технологии, направленные на охрану окружающей среды, рациональное природопользование и внедрение международных стандартов управления охраной окружающей среды.

Мероприятия по снижению вредного воздействия на атмосферный воздух:

- -соблюдать правила техники безопасности при работе с механизмами;
- тщательную технологическую регламентацию проведения работ;
- организацию экологической службы надзора за выполнением проектных решений;
- организацию и проведение мониторинга загрязнения атмосферного воздуха;
- обязательное экологическое сопровождение всех видов деятельности;
- орошение открытых грунтов и разгружаемых сыпучих материалов при производстве работ;
 - укрывание грунта и сыпучих материалов при перевозке автотранспортом.

В числе мер по предотвращению и снижению влияния объекта на атмосферу на период проведения реконструкции предусматриваются следующие мероприятия:

- контроль соблюдения технологического регламента, технического состояния оборудования;
- контроль работы контрольно-измерительных приборов;
- ограничение работы автотранспорта, вплоть до запрета выезда на линии автотранспортных средств, с не отрегулированными двигателями;
 - сведение к минимуму движение транспорта по незащищенной поверхности.
 - запрещение сжигания отходов производства и мусора.

При соблюдении всех вышеизложенных условий воздействие на атмосферный воздух на территории проектируемого объекта будет незначительным и не повлечет за собой необратимых процессов.

ЭРА v3.0 Иваненко А.А. Перечень источников, дающих наибольшие вклады в уровень загрязнения

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD" Жилые дома

Код вещества / группы	Наименование вещества	Расчетная максим концентрация (общая доля ПДК	и без учета фона)	с макси	наты точек мальной ой конц.	наибо	ники, да льший вк концент	лад в	Принадлежность источника (производство, цех, участок
суммации		в жилой зоне	на границе санитарно -	зоне	на грани це СЗЗ	N NCT.		лада	
1	2.	3	защитной зоны	X/Y 5	X/Y 6	7	ЖЗ 8	C33	10
1	2		7ющее положение (2023 г	_	ю	/	8	9	10
			няющие веще						
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0463825/0.0092765		-100/113		0019	100		производство: Жилые дома
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.1037057/0.0518528		-100/113		0019	100		производство: Жилые дома
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0293705/0.1468524		-100/113		0019	100		производство: Жилые дома
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.6361884/0.1908565		-100/113		0019	100		производство: Жилые дома
2909	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)	0.0572955/0.0286478		-100/113		6060	100		производство: Жилые дома
	I- ()		ппы суммации		ı	1	1 400	ı	i
7 (31) 0301	Азота (IV) диоксид (0.1500882		-100/113		0019	100		производство:

ЭРА v3.0 Иваненко A.A.

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Таблица 5.2.2

Район им. Би	иржан Сал.	c.	Мамай.	TOO	"KazBeef	LTD"	Жилые	пома
--------------	------------	----	--------	-----	----------	------	-------	------

1	2	3	4	5	6	7	8	9	10
	Азота диоксид) (4)								Жилые дома
0330	Сера диоксид (Ангидрид								
	сернистый, Сернистый								
	газ, Сера (IV) оксид) (
	516)								
			Пыли:						
2908	Пыль неорганическая,	0.4076079		-100/113		0019	90		производство:
	содержащая двуокись								Жилые дома
	кремния в %: 70-20 (6060	10		производство:
	шамот, цемент, пыль								Жилые дома
	цементного производства								
	- глина, глинистый								
	сланец, доменный шлак,								
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (494)								
2909	Пыль неорганическая,								
	содержащая двуокись								
	кремния в %: менее 20 (
	доломит, пыль								
	цементного производства								
	- известняк, мел,								
	огарки, сырьевая смесь,								
	пыль вращающихся печей,								
	боксит) (495*)								

ЭРА v3.0 Иваненко A.A. Таблица 5.2.3

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD" Репродуктор NW1,2,3

Код	жан Сал, с. Мамай, 100 "Kazi 	• • • • • • • • • • • • • • • • • • • •	альная приземная	Коорши	наты точек	Испои	лики па	NIIII/A	Принадлежность
вещества	Наименование	концентрация (общая			наты точек мальной		лики, да пьший вк		источника
/ Вещества	вещества		1 / мг/м3		ой конц.		концент		(производство,
группы	Вещеетва	доли пдк	, MI / MO	приземи	on Rong.	marc.	концент	рацию	цех, участок)
= -		в жилой		D W4747707	на грани	N	° D.		Hex, yaderok)
суммации			на границе		на грани це СЗЗ	ист.	% BK	Лада	
		зоне	санитарно -	зоне	· ·	ист.	27410	ann	4
1		2	защитной зоны	X/Y	X/Y	7	жз	C33	1.0
1	2	3	4	5	6	/	8	9	10
			ующее положение (2023 г няющие веще						
0301	Азота (IV) диоксид (0.7145672/0.1429135		-501/	6015		53.7	производство:
0301	Азота (17) диоксид (0.714307270.1423133		-1620	0013		55.7	Репродуктор №3
	АЗОТА ДИОКСИД) (4)				1020	6016		43.6	производство:
						0010		43.0	Репродуктор №3
									(Ангар для с/
									техники)
0303	Аммиак (32)		0.0694072/0.0138814		618/1226	6039		63	производство:
0303	AMMUAR (32)		0.009407270.0138814		010/1220	0039		0.5	Производство. Репродуктор №2
									(Содержание
									КРС)
						6038		13.2	производство:
						0030		13.2	Репродуктор №2
									(Содержание
									(Содержание КРС)
						6037		12.5	производство:
						0037		12.5	Репродуктор №2
									(Содержание
									КРС)
0304	Азот (II) оксид (Азота		0.0580463/0.0232185		-501/	6015		53.7	производство:
0304	оксид) (6)		0.0300403/0.0232103		-1620	0013		33.7	Репродуктор №3
	оксид) (о)				1020	6016		43.6	производство:
						0010		43.0	Репродуктор №3
									(Ангар для с/
									техники)
0328	Углерод (Сажа, Углерод		0.1483128/0.0222469		-491/	6016		69.7	производство:
0320	черный) (583)		0.1403120/0.0222409		-4917 -1668	0010		09.7	производство: Репродуктор №3
	4ebumii (202)				-1000				(Ангар для с/
									техники)
						6015		30.2	производство:
						0013		30.2	производство: Репродуктор №3
0330	Cons Historian (Augustin		0.087139/0.0435695		-1068/	6015		53.8	Репродуктор №3 производство:
0330	Сера диоксид (Ангидрид		0.00/139/0.0433093	1	-1000/	0012		22.0	производство:

Таблица 5.2.3

ЭРА v3.0 Иваненко A.A.

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD" Репродуктор №№1,2,3

1	2	3	4	5	6	7	8	9	10
	сернистый, Сернистый				-2506				Репродуктор №3
	газ, Сера (IV) оксид) (0001		43.7	производство:
	516)								Репродуктор №3
0333	Сероводород (0.8255665/0.0066045		1510/	6029		94.2	производство:
	Дигидросульфид) (518)				3292				Репродуктор №1
									(Площадка
									буртования и
									компостирования
									навоза)
						6046		3.5	производство:
									Репродуктор №2
									(Площадка
									буртования и
									компостирования
									навоза)
0337	Углерод оксид (Окись		0.0799134/0.399567		-1068/	6015		61.6	производство:
	углерода, Угарный газ)				-2506				Репродуктор №3
	(584)					0001		35.7	производство:
									Репродуктор №3
0402	Бутан (99)		0.0389568/7.7913612		-738/	6064		50.1	производство:
					-2303				Репродуктор №3
									(Склад ГСМ)
						6065		49.9	производство:
									Репродуктор №3
									(Склад ГСМ)
0602	Бензол (64)		0.1053395/0.0316019		1355/250	0016		93	производство:
									Репродуктор №2
									(Склад ГСМ)
						6052		4.4	производство:
									Репродуктор №2
									(Склад ГСМ)
0616	Диметилбензол (смесь о-		0.3246552/0.064931		1266/	6054		95	производство:
	, м-, п- изомеров) (1142				Репродуктор №2
	203)								(Покрасочные
0.501					1055 (055	004.5		0.0	работы)
0621	Метилбензол (349)		0.0496928/0.0298157		1355/250	0016		93	производство:
									Репродуктор №2
									(Склад ГСМ)
						6052		4.4	производство:
									Репродуктор №2
									(Склад ГСМ)

Таблица 5.2.3

ЭРА v3.0 Иваненко A.A.

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Район им. Биржан Сал, с. Мамай, TOO "KazBeef LTD" Репродуктор NN1,2,3

1	2	3	4	5	6	7	8	9	10
0627	Этилбензол (675)		0.0412198/0.0008244		1355/250	0016		93	производство:
									Репродуктор №2
									(Склад ГСМ)
						6052		4.4	производство:
									Репродуктор №2
									(Склад ГСМ)
1246	Этилформиат (Муравьиной		0.0399617/0.0007992		618/1226	6039		63	производство:
	кислоты этиловый эфир)								Репродуктор №2
	(1486*)								(Содержание
									KPC)
						6038		13.2	производство:
									Репродуктор №2
									(Содержание
									KPC)
						6037		12.5	производство:
									Репродуктор №2
									(Содержание
1531			0 0011001/0 0000110		618/1226	6039		63	KPC)
1531	Гексановая кислота (0.0311281/0.0003113		018/1226	6039		63	производство:
	Капроновая кислота) (137)								Репродуктор №2
	137)								(Содержание КРС)
						6038		13.2	производство:
						0030		13.2	производство. Репродуктор №2
									(Содержание
									KPC)
						6037		12.5	производство:
									Репродуктор №2
									(Содержание
									KPC)
1849	Метиламин (0.0525812/0.0002103		618/1226	6039		63	производство:
	Монометиламин) (341)								Репродуктор №2
									(Содержание
									KPC)
						6038		13.2	производство:
									Репродуктор №2
									(Содержание
									KPC)
						6037		12.5	производство:
									Репродуктор №2
									(Содержание

Таблица 5.2.3

ЭРА v3.0 Иваненко A.A.

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD" Репродуктор №1,2,3

1	2	3	4	5	6	7	8	9	10
2732	Керосин (654*)		0.0424308/0.0509169		-501/ -1620	6015		51.9	КРС) производство: Репродуктор №3
					1020	6016		48.1	производство: Репродуктор №3 (Ангар для с/
2752	Уайт-спирит (1294*)		0.032043/0.032043		1266/ 1142	6054		96.3	техники) производство: Репродуктор №2 (Покрасочные работы)
2754	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные		0.0323039/0.0323039		1041/5	6053		60.5	производство: Репродуктор №2 (Склад ГСМ)
	C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)					0015		25.6	производство: Репродуктор №2 (Склад ГСМ)
						0014		13.3	производство: Репродуктор №2 (Склад ГСМ)
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских		0.1822624/0.0546787		-1068/ -2506	0001		99.8	производство: Репродуктор №3
2920	месторождений) (494) Пыль меховая (шерстяная, пуховая) (1050*)		0.1021449/0.0030643		595/2449	6020		76.7	производство: Репродуктор №1 (Содержание КРС)
						6022		15.3	производство: Репродуктор №1 (Содержание КРС)
						6021		6.7	производство: Репродуктор №1

Таблица 5.2.3

ЭРА v3.0 Иваненко A.A.

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD" Репродуктор №№1,2,3

1	2	3	4	5	6	7	8	9	10
2937	Пыль зерновая /по грибам хранения/ (487)		0.9047444/0.4523722		1412/327	6041		100	(Содержание КРС) производство: Репродуктор №2 (Ангар для переработки и хранение кормов)
	I	Гру	ппы суммации	1:	1/				1
01(03) 0303	Аммиак (32) Сероводород (Дигидросульфид) (518)		0.8861316		1510/ 3292	6029		3.6	производство: Репродуктор №1 (Площадка буртования и компостирования навоза) производство: Репродуктор №2 (Площадка буртования и компостирования
						6022		2.4	навоза) производство: Репродуктор №1 (Содержание КРС)
07(31) 0301	Азота (IV) диоксид (Азота диоксид) (4)		0.7879481		-501/ -1620	6015		52.4	производство: Репродуктор №3
0330	Сера диоксид (Ангидрид сернистый, Сернистый, Газ, Сера (IV) оксид) (516)				1020	6016		41.7	производство: Репродуктор №3 (Ангар для с/ техники)
						0020		2.6	производство: Репродуктор №3 (Ремонтная мастеркая (МТМ)
08(33) 0301	Азота (IV) диоксид (0.866821		-501/	6015		51.1	производство:
0330	Азота диоксид) (4) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (-1620	6016		40.7	Репродуктор №3 производство: Репродуктор №3 (Ангар для с/

Таблица 5.2.3

ЭРА v3.0 Иваненко A.A.

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD" Репродуктор №1,2,3

1	2	3	4	5	6	7	8	9	10
	516)								техники)
0337	Углерод оксид (Окись					0020		3.7	производство:
	углерода, Угарный газ)								Репродуктор №3
	(584)								(Ремонтная
1071	Гидроксибензол (155)								мастеркая (МТМ)
)
40 (34) 0330	Сера диоксид (Ангидрид		0.0901934		-1068/	6015		52	производство:
	сернистый, Сернистый				-2506				Репродуктор №3
	газ, Сера (IV) оксид) (0001		42.2	производство:
	516)								Репродуктор №3
1071	Гидроксибензол (155)					6009		2.2	производство:
									Репродуктор №3
41 (35) 0330	Сера диоксид (Ангидрид		0.087139		-1068/	6015		53.8	производство:
	сернистый, Сернистый				-2506				Репродуктор №3
	газ, Сера (IV) оксид) (0001		43.7	производство:
	516)								Репродуктор №3
0342	Фтористые газообразные								
	соединения /в пересчете								
	на фтор/ (617)								
42 (28) 0322	Серная кислота (517)		0.087139		-1068/	6015		53.8	производство:
0330	Сера диоксид (Ангидрид				-2506	0001		40.5	Репродуктор №3
	сернистый, Сернистый					0001		43.7	производство:
	газ, Сера (IV) оксид) (Репродуктор №3
44 (30) 0330	516) Сера диоксид (Ангидрид		0.8409212		1521/	6029		91.9	
44 (30) 0330	сера диоксид (Ангидрид сернистый, Сернистый		0.8409212		32.92	6029		91.9	производство:
	сернистыи, сернистыи газ, Сера (IV) оксид) (3292				Репродуктор №1 (Площадка
	133, сера (1V) оксид) (516)								буртования и
0333	Сероводород (компостирования
0333	Дигидросульфид) (518)								навоза)
	дигидросуньфиду (это)					6046		3.8	производство:
						0010		3.0	Репродуктор №2
									(Площадка
									буртования и
									компостирования
									навоза)
			Пыли:						,
2902	Взвешенные частицы (0.9387575		1355/250	6041		96.3	производство:
	116)								Репродуктор №2
2908	Пыль неорганическая,								(Ангар для
	содержащая двуокись								переработки и

ЭРА v3.0 Иваненко A.A.

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Таблица 5.2.3

Район им.	Биржан С	Сал, с	. Мамай	, TOO	"KazBeef	LTD"	Репродуктор	NºNº1.2	.3

1	2	3	4	5	6	7	8	9	10
	кремния в %: 70-20 (хранение
	шамот, цемент, пыль								кормов)
	цементного производства								
	- глина, глинистый								
	сланец, доменный шлак,								
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (494)								
2909	Пыль неорганическая,								
	содержащая двуокись								
	кремния в %: менее 20 (
	доломит, пыль								
	цементного производства								
	- известняк, мел,								
	огарки, сырьевая смесь,								
	пыль вращающихся печей,								
	боксит) (495*)								
2920	Пыль меховая (
	шерстяная, пуховая) (
	1050*)								
2930	Пыль абразивная (Корунд								
	белый, Монокорунд) (
	1027*)								
2937	Пыль зерновая /по								
	грибам хранения/ (487)								

ЭРА v3.0 Иваненко А.А. Таблица 5.2.4 Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD"

гаион им. виржан сал, с	Но-	Нормативы выбросов загрязняющих веществ						
	мер							
Производство	NC-	существующе						год
цех, участок	точ-	на 2023 год		на 2023-2	2032 год	нд	В	дос-
	ника							тиже
Код и наименование	выб-	r/c	т/год	r/c	т/год	r/c	т/год	RNH
загрязняющего вещества	poca							НДВ
1	2	3	4	5	6	7	8	9
				Организованные	источники			
(0301) Азота (IV) диок			(4)	ı	1	ſ		
Репродуктор №3	0001	0.00556		0.00556	0.152304	0.00556	0.152304	
Жилые дома	0019	0.005608	0.11976	0.005608	0.11976	0.005608	0.11976	
Репродуктор №3 (0020	0.002404	0.0687328	0.002404	0.0687328	0.002404	0.0687328	2023
Ремонтная мастеркая (
MTM))								
Репродуктор №1 (АБК)	0021	0.00504	0.094752	0.00504	0.094752	0.00504	0.094752	
Репродуктор №2 (0010	0.0042	0.005512	0.0042	0.005512	0.0042	0.005512	2023
Крематор)								
Репродуктор №2 (0022	0.004456	0.082496	0.004456	0.082496	0.004456	0.082496	2023
Ремонтная мастерская (
MTM))								
Репродуктор №2 (Баня)	0023	0.0001728	0.00136	0.0001728	0.00136	0.0001728	0.00136	
Пастбищные отгоны	0017	0.0013984	0.00774	0.0013984	0.00774	0.0013984	0.00774	
	0018	0.0013984	0.00774	0.0013984	0.00774	0.0013984	0.00774	
Площадка для	0024	0.000908	0.00942	0.000908	0.00942	0.000908	0.00942	2023
выращивания кукурузы								
(0304) Азот (II) оксид	. '	а оксид) (6)			1			1
Репродуктор №3	0001	0.0009035		0.0009035	0.0247494	0.0009035	0.0247494	
Жилые дома	0019	0.0009113	0.019461	0.0009113	0.019461	0.0009113	0.019461	
Репродуктор №3 (0020	0.00039065	0.01116908	0.00039065	0.01116908	0.00039065	0.01116908	2023
Ремонтная мастеркая (
MTM))								
Репродуктор №1 (АБК)	0021	0.000819	0.0153972	0.000819	0.0153972	0.000819	0.0153972	
Репродуктор №2 (0010	0.0006825	0.0008957	0.0006825	0.0008957	0.0006825	0.0008957	2023
Крематор)								
Репродуктор №2 (0022	0.0007241	0.0134056	0.0007241	0.0134056	0.0007241	0.0134056	2023
Ремонтная мастерская (

MTM))								1
Репродуктор №2 (Баня)	0023	0.00002808	0.000221	0.00002808	0.000221	0.00002808	0.000221	2023
Пастбищные отгоны	0017	0.00022724	0.00125775	0.00022724	0.00125775	0.00022724	0.00125775	2023
	0018	0.00022724	0.00125775	0.00022724	0.00125775	0.00022724	0.00125775	2023
Площадка для	0024	0.00014755	0.00153075	0.00014755	0.00153075	0.00014755	0.00153075	2023
выращивания кукурузы								
(0328) Углерод (Сажа, У	глерс	д черный) (583)					•
Репродуктор №2 (0010	0.0004	0.000525	0.0004	0.000525	0.0004	0.000525	2023
Крематор)								
(0330) Сера диоксид (Ан	гидри	д сернистый, С	ернистый газ,	Cepa (IV) окси	гд) (516)			
Репродуктор №3	0001	0.034848	0.9396	0.034848	0.9396	0.034848	0.9396	2023
Жилые дома	0019	0.031347	0.6696	0.031347	0.6696	0.031347	0.6696	2023
Репродуктор №3 (0020	0.0157464	0.45624	0.0157464	0.45624	0.0157464	0.45624	2023
Ремонтная мастеркая (
MTM))								
Репродуктор №1 (АБК)	0021	0.031347	0.5832	0.031347	0.5832	0.031347	0.5832	2023
Репродуктор №2 (0010	0.009408	0.012348	0.009408	0.012348	0.009408	0.012348	2023
Крематор)								
Репродуктор №2 (0022	0.027702	0.5103	0.027702	0.5103	0.027702	0.5103	2023
Ремонтная мастерская (
MTM))								
Пастбищные отгоны	0017	0.0112266	0.05832	0.0112266			0.05832	
	0018	0.0112266	0.05832	0.0112266		0.0112266	0.05832	
Площадка для	0024	0.00729	0.0729	0.00729	0.0729	0.00729	0.0729	2023
выращивания кукурузы								
(0333) Сероводород (Диг								
Репродуктор №3 (Склад	0003	0.000026376	0.0000020692	0.000026376	0.0000020692	0.000026376	0.0000020692	2023
FCM)								
	0004	0.000026376	0.0000041412	0.000026376		0.000026376	0.0000041412	
Репродуктор №2 (0011	0.00000024416	0.0000018004	0.00000024416	0.0000018004	0.00000024416	0.0000018004	2023
Крематор)								
Репродуктор №2 (Склад	0014	0.000026376	0.000002352	0.000026376	0.000002352	0.000026376	0.000002352	2023
ΓCM)								
	0015	0.000052752	0.0000039144	0.000052752	0.0000039144	0.000052752	0.0000039144	2023
(0337) Углерод оксид (О						1		
Репродуктор №3	0001	0.26117	3.02854	0.26117			3.02854	
Жилые дома	0019	0.0887778	1.8918	0.0887778	1.8918	0.0887778	1.8918	
Репродуктор №3 (0020	0.1297814	1.45919	0.1297814	1.45919	0.1297814	1.45919	2023
Ремонтная мастеркая (
MTM))								1
Репродуктор №1 (АБК)	0021	0.0887778	1.85258	0.0887778	1.85258	0.0887778	1.85258	2023

Крематорі 0 0 1.54567 0.1317904 1.54567 0.1317904 1.54567 2023 Ревродуктор № (ревоничная мастерская (МТМ) 0.023 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.03179484 0.305798 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
Репродуктор №2 (0022 0.1317904 1.54567 0.1317904 1.54567 0.1317904 1.54567 2023	Репродуктор №2 (0010	0.02224	0.02919	0.02224	0.02919	0.02224	0.02919	2023
Ремонтная мастерская (мгм) Репролуктор №2 (Ваня) 0023 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.305798 0.03179484 0.305798 0.305798 0.03179484 0.305798 0.305798 0.305798 0.305798 0.305798 0.305798 0.0579	1 1								
МЕМ)) Репродуктор №2 (Ваня) 0023 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 202 Пастбищные оттоны 0017 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 2023 Площадка для 0024 0.020446 0.30691 0.020446 0.30691 0.020466 0.02046 0	Репродуктор №2 (0022	0.1317904	1.54567	0.1317904	1.54567	0.1317904	1.54567	2023
Репродуктор №2 (Ваня) 0023 0.0510286 0.4018 0.0510286 0.4018 0.0510286 0.4018 2023 Пасотбинные отгоны 0017 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.035798 0.03179484 0.305798 0.035782 0.035782 0.035798 0.035798	Ремонтная мастерская (
Пастбищные отгоны 0017 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 2023 Площадка для 0024 0.020646 0.30691 0.020646 0.30691 0.020646 0.30691 2023 Вирашивания кукурузы (0415) Смесь утлеволородов предельных С1-С5 (1502*) Репродуктор №2 (Склад 0016 1.9732572 0.155641 1.9732572 0.05752 0.0729 0.05752 0.0729 0.05752 0.0729 0.05752 0.0729 0.05752 0.0729 0.05752 0.0729 0.05752 0.0729 0.00575 0.00575 0.00575 0.00575 0.00575 0.00575 0	MTM))								
10018 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 0.03179484 0.305798 2021	Репродуктор №2 (Баня)	0023	0.0510286	0.4018	0.0510286	0.4018	0.0510286	0.4018	2023
Площадка для О024 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О.30691 О.020646 О	Пастбищные отгоны	0017	0.03179484	0.305798	0.03179484	0.305798	0.03179484	0.305798	2023
выращивания кукурузы (0415) Смесь углеводородов предельных С1-С5 (1502*) 0.155641 1.9732572 0.155641 1.9732572 0.155641 2023 ГСМ) СМ 1.9732572 0.155641 1.9732572 0.155641 1.9732572 0.155641 2023 ГСМ) СМ 0.06 1.9732572 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0		0018	0.03179484	0.305798	0.03179484	0.305798	0.03179484	0.305798	2023
(0415) Смесь утлеводородов предельных C1-C5 (1502*) Репродуктор №2 (Склад 0016 1.9732572 0.155641 1.9732572 0.155641 1.9732572 0.155641 2023 СКМ (0416) Смесь утлеводородов предельных C6-C10 (1503*) Репродуктор №2 (Склад 0016 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.	Площадка для	0024	0.020646	0.30691	0.020646	0.30691	0.020646	0.30691	2023
Репродуктор №2 (Склад О016 1.9732572 0.155641 1.9732572 0.155641 1.9732572 0.155641 2023	выращивания кукурузы								
Репродуктор №2 (Склад О016 1.9732572 0.155641 1.9732572 0.155641 1.9732572 0.155641 2023	(0415) Смесь углеводоро	одов п	редельных С1-С	5 (1502*)					1
Репродуктор №2 (Склад ГСМ) 0016 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 2023 (Об.01) Пентилены (амилены - смесь изомеров) (460) 1.000729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.00529 0.00575 0.00529 0.00575 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.00084564 0.00084564<	Репродуктор №2 (Склад ГСМ)				1.9732572	0.155641	1.9732572	0.155641	2023
Репродуктор №2 (Склад ГСМ) 0016 0.7292916 0.057523 0.7292916 0.057523 0.7292916 0.057523 2023 (Об.01) Пентилены (амилены - смесь изомеров) (460) 1.000729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.0729 0.00575 0.00529 0.00575 0.00529 0.00575 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.00084564 0.00084564<	(0416) Смесь углеводоро	одов п	редельных С6-С	10 (1503*)			L		ı
Репродуктор №2 (Склад Соборование) Портору (Склад Соборо	Репродуктор №2 (Склад ГСМ)				0.7292916	0.057523	0.7292916	0.057523	2023
ГСМ) (0602) Бензол (64) Репродуктор №2 (Склад 0016 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 2023 ГСМ) (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) Репродуктор №2 (Склад 0016 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.0004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 0.0063272	(0501) Пентилены (амиле	эны -	смесь изомеров	(460)			<u> </u>		L
COM COMPANDED NOTE	Репродуктор №2 (Склад	0016	0.0729	0.00575	0.0729	0.00575	0.0729	0.00575	2023
Репродуктор №2 (Склад ГСМ) 0016 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 0.067068 0.00529 2023 ГСМ) (0616) Диметилбензол (Смесь о-, м-, п- изомеров) (203) Репродуктор №2 (Склад ГСМ) 0016 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.0004991 0.0084564 0.004991 0.00832772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 0.004991 0.0032772 <td>ГСМ)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ГСМ)								
ГСМ) (Об16) Диметилбензол (смесь о-, м-, п- изомеров) (203) Репродуктор №2 (Склад (Сбила (Сбила)) О016 (Об21) Метилбензол (349) Репродуктор №2 (Склад (Сбила (Сбила)) О016 (Об21) Метилбензол (349) Репродуктор №2 (Склад (Сбила)) О016 (Об27) Этилбензол (675) Репродуктор №2 (Склад (Сбила)) О016 (Об27) Обильская (Сбила) Обина (Сбила) Обина (Об27) Обильская (Сбила) Обина (Об27) Обильская (Сбила) Обина (Обильская) Обина (Об27) Обильская (Сбила) Обина (Обильская) Обина (Обильская) Обина (Обильская) Обильская (Обильская) Обина (Обильская) <td>(0602) Бензол (64)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(0602) Бензол (64)								
(0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) Репродуктор №2 (Склад ГСМ) 0016 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.00084564 0.000667 2023 (0621) Метилбензол (349) Репродуктор №2 (Склад ГСМ) 0016 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 2023 ГСМ) (0627) Этилбензол (675) Репродуктор №2 (Склад ГСМ) 0016 0.0017496 0.000138 0.0017496 0.000138 0.0017496 0.000138 0.0017496 0.000138 0.0017496 0.000138 0.0017496 0.000138 0.000736930	Репродуктор №2 (Склад	0016	0.067068	0.00529	0.067068	0.00529	0.067068	0.00529	2023
Репродуктор №2 (Склад ГСМ) 0.016 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.0084564 0.000667 0.00367 0.00367 0.00367 0.00367 0.00367 0.00367 0.00367 0.004991 0.004991 0.004991 0.004991 0.004991 0.004991 0.004991 0.0032772 0.004991 0.004991 0.0032772 0.004991 0.004991 0.004991 0.0032772 0.004991 0.004	TCM)								
ГСМ) (0621) Метилбензол (349) Репродуктор №2 (Склад роль в репродуктор №2 (Склад роль в репродуктор №2 (Склад роль в репродуктор №2 (Склад роль в репродуктор №2 (Склад роль в репродуктор №2 (Склад роль в репродуктор №3 (Склад роль в репродуктор №3 (Склад роль в регочете на С/ (Углеводороды предельные C12-C19 (В пересчете (10)) Репродуктор №3 (Склад роль №3 (Склад роль №3 (Склад роль №3 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №3 (Склад роль №3 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №3 (Склад роль №3 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №3 (Склад роль №4 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №2 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №2 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №2 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №2 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №2 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №2 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Репродуктор №2 (Склад роль в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10)) Олон в регочете на С/ (Углеводороды предельные С12-С19 (В пересчете (10))	(0616) Диметилбензол (с	смесь	о-, м-, п- изо	меров) (203)					•
(0621) Метилбензол (349) Репродуктор №2 (Склад СКЛад	Репродуктор №2 (Склад		i i	_	0.0084564	0.000667	0.0084564	0.000667	2023
Репродуктор №2 (Склад О016 0.0632772 0.004991 0.0632772 0.004991 0.0632772 0.004991 2023 ООД ООД ООД ООД ООД ООД ООД ООД ООД ОО	ГСМ)								
ГСМ) (0627) Этилбензол (675) Репродуктор №2 (Склад О016 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.000138 О.00017496 О.000138 О.00013940856 О.00138 О.00013940856 О.00138 О.0013940856 О.00139	(0621) Метилбензол (349	9)							•
(0627) Этилбензол (675) Репродуктор №2 (Склад ГСМ) 0016 0.0017496 0.000138 0.0017496 0.000138 0.0017496 0.000138 2023 ГСМ) (2754) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете (10)) Репродуктор №3 (Склад ГСМ) 0003 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.0007369308 0.009393624 0.0007369308 0.0007369308 0.0009393624 0.0007369308 0.0009393624 0.0007369308 0.0009393624 0.0007369308 0.0009393624 0.0007369308 0.0009393624 0.0006411996 0.0006411996 0.0006411996 0.0006411996 0.0006411996 0.0006411996 0.0006411996 0.0006411996 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648 0.000837648	Репродуктор №2 (Склад	0016	0.0632772	0.004991	0.0632772	0.004991	0.0632772	0.004991	2023
Репродуктор №2 (Склад О016 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.000	rcm)								
Репродуктор №2 (Склад О016 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.0017496 О.000138 О.000	(0627) Этилбензол (675)								•
(2754) Алканы C12-19 /В пересчете на C/ (Углеводороды предельные C12-C19 (В пересчете (10)) Репродуктор №3 (Склад ГСМ) 0003 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.009393624 0.0007369308 0.000737693 0.0007369308 0.0007369308 0.0007369308 0.0007369308 0.000737693 0.0007369308 0.0007369308 0.0007369308 0.0007369308 0.000737693 0.0007369308 0.0007369308 0.0007369308 0.0007369308 0.000737693 0.0007369308	Репродуктор №2 (Склад		0.0017496	0.000138	0.0017496	0.000138	0.0017496	0.000138	2023
Репродуктор №3 (Склад ГСМ) 0004 0.009393624 0.0014748588 0.009393624 0.0014748588 0.009393624 0.0014748588 0.009393624 0.0014748588 0.009393624 0.0014748588 0.009393624 0.0006411996 0.0006411996 0.0006411996 0.0006411996 0.0006411996 0.0008695584 0.0009393624 0.0008695584 0.000837648 0.009393624 0.000837648 0.000837648 0.009393624 0.000837648 0.0008	rcm)								
ГСМ) 0004 0.009393624 0.0014748588 0.009393624 0.0014748588 0.009393624 0.0014748588 2023 Репродуктор №2 (Крематор) Репродуктор №2 (Склад ГСМ) 0015 0.018787248 0.0013940856 0.018787248 0.0013940856 0.001394	(2754) Алканы С12-19 /в	в пере	счете на С/ (У	глеводороды пр	едельные С12-С	19 (в пересчет	e (10)		•
0004 0.009393624 0.0014748588 0.009393624 0.0014748588 2023 Репродуктор №2 (Крематор) Репродуктор №2 (Склад ГСМ) О015 0.018787248 0.0013940856 0.018787248 0.0013940856 0.0	Репродуктор №3 (Склад							0.0007369308	2023
Репродуктор №2 (0011 0.00008695584 0.0006411996 0.00008695584 0.0006411996 0.00008695584 0.0006411996 2023 (Крематор) №2 (Склад ГСМ) 0015 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 2023	ГСМ)								
Крематор) Репродуктор №2 (Склад 0014 0.009393624 0.000837648 0.009393624 0.000837648 0.009393624 0.000837648 2023 ГСМ) 0015 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 2023		0004	0.009393624	0.0014748588	0.009393624	0.0014748588	0.009393624	0.0014748588	2023
Крематор) Репродуктор №2 (Склад О014 0.009393624 0.000837648 0.009393624 0.000837648 0.009393624 0.000837648 2023 гСМ) О015 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 2023	Репродуктор №2 (0011	0.00008695584	0.0006411996	0.00008695584	0.0006411996	0.00008695584	0.0006411996	2023
TCM) 0015 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 2023	Крематор)								
FCM) 0015 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 0.018787248 0.0013940856 0.0013940856	Репродуктор №2 (Склад	0014	0.009393624	0.000837648	0.009393624	0.000837648	0.009393624	0.000837648	2023
	rcm)								
(2902) Взвешенные частицы (116)		0015	0.018787248	0.0013940856	0.018787248	0.0013940856	0.018787248	0.0013940856	2023
	(2902) Взвешенные части	ицы (1	16)						•

Репродуктор №3	0001	0.039	0.06	0.039	0.06	0.039	0.06	2023
Репродуктор №3 (0020	0.01938	0.03	0.01938	0.03	0.01938	0.03	2023
Ремонтная мастеркая (МТМ))								
Репродуктор №1 (АБК)	0021	0.0039	0.03	0.0039	0.03	0.0039	0.03	2023
Репродуктор №2 (0022	0.01968	0.015	0.01968	0.015	0.01968	0.015	2023
Ремонтная мастерская (МТМ))								
Репродуктор №2 (Баня)	0023	0.00762	0.06	0.00762	0.06	0.00762	0.06	2023
Пастбищные отгоны	0017	0.00405	0.021	0.00405	0.021	0.00405	0.021	2023
	0018	0.00405	0.021	0.00405	0.021	0.00405	0.021	2023
Площадка для	0024	0.0015	0.015	0.0015	0.015	0.0015	0.015	2023
выращивания кукурузы								
(2908) Пыль неорганичес	ская,	содержащая дву	окись кремния	в %: 70-20 (ша	мот, цемент, (4	94)		
Репродуктор №3	0001	0.1552914	3.92265		3.92265		3.92265	
Жилые дома	0019	0.1112625	2.45502	0.1112625	2.45502	0.1112625	2.45502	2023
Репродуктор №3 (0020	0.077832	2.49435	0.077832	2.49435	0.077832	2.49435	2023
Ремонтная мастеркая (МТМ))								
Репродуктор №1 (АБК)	0021	0.1112625	2.07	0.1112625	2.07	0.1112625	2.07	2023
Репродуктор №2 (0022	0.098325	1.81125	0.098325	1.81125	0.098325	1.81125	2023
Ремонтная мастерская (МТМ))								
Пастбищные отгоны	0017	0.0398475	0.207	0.0398475	0.207	0.0398475	0.207	2023
	0018	0.0398475	0.207	0.0398475	0.207	0.0398475	0.207	2023
Площадка для	0024	0.025875	0.25875	0.025875	0.25875	0.025875	0.25875	2023
выращивания кукурузы								
Итого по организованным источникам:	A	4.79646064	29.04091003	4.79646064	29.04091003	4.79646064	29.04091003	
			Неорганизон	ванные источнив	(N			
(0123) Железо (II, III)	ОКСИ	иды (в пересчет	е на железо)	(диЖелезо триок	сид, Железа(27	(4)		
Репродуктор №3 (6057	0.00407083333	0.003908	0.00407083333	0.003908	0.00407083333	0.003908	2023
Ремонтная мастеркая (
MTM))								
Репродуктор №1 (6058	0.00275	0.003934	0.00275	0.003934	0.00275	0.003934	2023
Ремонтная мастерская)								
Репродуктор №2 (6059	0.00275	0.003934	0.00275	0.003934	0.00275	0.003934	2023
Ремонтная мастерская (МТМ))								
(0143) Марганец и его с						•		
Репродуктор №3 (6057	0.00072083333	0.000692	0.00072083333	0.000692	0.00072083333	0.000692	2023

		ı	1	•		1	•	
Ремонтная мастеркая (МТМ))								
Репродуктор №1 (Ремонтная мастерская)	6058	0.00048055556	0.000566	0.00048055556	0.000566	0.00048055556	0.000566	2023
Репродуктор №2 (Ремонтная мастерская (МТМ))	6059	0.0004805556	0.000566	0.0004805556	0.000566	0.0004805556	0.000566	2023
(0214) Кальций дигидрон	ссид ((Гашеная извест	ъ, Пушонка) (3	304)	•			
Репродуктор №3	6002	0.000056	0.00000353	0.000056	0.00000353	0.000056	0.00000353	2023
Репродуктор №1 (Содержание КРС)	6020	0.0000583	0.00000294	0.0000583	0.00000294	0.0000583	0.00000294	2023
Репродуктор №2 (Содержание КРС)	6037	0.0000467	0.00000294	0.0000467	0.00000294	0.0000467	0.00000294	2023
(0301) Азота (IV) диоко	сид (А	Азота диоксид)	(4)					
Репродуктор №3 (Ремонтная мастеркая (МТМ))	6057	0.005	0.0072	0.005	0.0072	0.005	0.0072	2023
Репродуктор №1 (Ремонтная мастерская)	6058	0.005	0.0072	0.005	0.0072	0.005	0.0072	2023
Репродуктор №2 (Ремонтная мастерская (MTM))	6059	0.005	0.0072	0.005	0.0072	0.005	0.0072	2023
(0303) Аммиак (32)								
Репродуктор №3	6001 6002 6003 6004 6005 6006	0.005544 0.020064 0.0064548 0.0064548 0.016632 0.00084 0.0732	0.0795142656 0.2877659136 0.09257732352 0.09257732352 0.2385427968 0.012047616 3.62	0.005544 0.020064 0.0064548 0.0064548 0.016632 0.00084 0.0732	0.2877659136 0.09257732352 0.09257732352 0.2385427968 0.012047616 3.62	0.020064 0.0064548 0.0064548 0.016632 0.00084 0.0732	0.2877659136 0.09257732352 0.09257732352 0.2385427968 0.012047616 3.62	2023 2023 2023 2023 2023 2023
Репродуктор №1 (Содержание КРС)	6020	0.0140448	0.20143613952	0.0140448	0.20143613952	0.0140448	0.20143613952	
	6021 6022 6023	0.01155 0.0180576 0.004488	0.16565472 0.25898932224 0.0643686912	0.01155 0.0180576 0.004488		0.01155 0.0180576 0.004488	0.16565472 0.25898932224 0.0643686912	2023
Репродуктор №1 (Площадка буртования и компостирования навоза)	6029	0.0732	3.62	0.0732		0.0732	3.62	
Репродуктор №2 (Содержание КРС)	6037	0.0140448			0.20143613952		0.20143613952	
	6038	0.01155	0.16565472	0.01155	0.16565472	0.01155	0.16565472	2023

ИП Иваненко А.А.

1	Lannol	0.0100576	Lo 0500000004	0.0100576	La acasasasa4	0.0100576	0.000000004	Loooo
	6039 6040	0.0180576 0.004488	0.25898932224 0.0643686912	0.0180576	0.25898932224 0.0643686912	0.0180576	0.25898932224 0.0643686912	1
Репродуктор №2 (6046	0.004488	3.62	0.004488	3.62	0.0732	3.62	
Площадка буртования и	0010	0.0732	3.02	0.0732	3.02	0.0732	3.02	2025
компостирования								
навоза)								
(0304) Азот (II) оксид	(Азот	а оксид) (6)						1
Репродуктор №3 (6057	0.0008125	0.00117	0.0008125	0.00117	0.0008125	0.00117	2023
Ремонтная мастеркая (
MTM))								
Репродуктор №1 (6058	0.0008125	0.00117	0.0008125	0.00117	0.0008125	0.00117	2023
Ремонтная мастерская)								
Репродуктор №2 (6059	0.0008125	0.00117	0.0008125	0.00117	0.0008125	0.00117	2023
Ремонтная мастерская (
MTM))								
	(517)		· · · · · · · · · · · · · · · · · · ·		·			
Репродуктор №3 (6057	0.0000095	0.000003591	0.0000095	0.000003591	0.0000095	0.000003591	2023
Ремонтная мастеркая (
MTM))								
2		ульфид) (518)			,	ſ	1	
Репродуктор №3	6001		0.00130114253		0.00130114253		0.00130114253	
	6002	0.00032832	0.00470889677		0.00470889677	0.00032832		
	6003	0.000105624	0.00151490166		0.00151490166		0.00151490166	
	6004	0.000105624	0.00151490166		0.00151490166	0.000105624		
	6005 6006	0.00027216 0.000014	0.00390342758 0.0002007936	0.00027216	0.00390342758 0.0002007936	0.00027216 0.000014	0.00390342758 0.0002007936	
	6012	0.000014	4.45	0.000014	4.45	0.000014	4.45	
Репродуктор №3 (Склад	6017	0.0000009772	0.00001414	0.0000009772	0.00001414	0.0000009772	0.00001414	
ГСМ)	0017	0.0000009772	0.00001414	0.0000009772	0.00001414	0.0000009772	0.00001414	2023
i Cri)	6018	0.00010108	0.00004368	0.00010108	0.00004368	0.00010108	0.00004368	2023
Репродуктор №1 (6020	0.000229824	0.00329622774	0.000229824		0.000229824	0.00329622774	
Содержание КРС)								
, ,	6021	0.000189	0.0027107136	0.000189	0.0027107136	0.000189	0.0027107136	2023
	6022	0.000295488	0.00423800709	0.000295488	0.00423800709	0.000295488	0.00423800709	2023
	6023	0.00007344	0.00105330586	0.00007344	0.00105330586	0.00007344	0.00105330586	2023
Репродуктор №1 (6029	0.09	4.45	0.09	4.45	0.09	4.45	2023
Площадка буртования и								
компостирования								
навоза)								
Репродуктор №2 (6037	0.000229824	0.00329622774	0.000229824	0.00329622774	0.000229824	0.00329622774	2023
Содержание КРС)								
	6038	0.000189	0.0027107136	0.000189	0.0027107136	0.000189	0.0027107136	2023

	6039 6040	0.000295488 0.00007344	0.00423800709 0.00105330586		0.00423800709		0.00423800709	1
Репродуктор №2 (6046	0.0007344	4.45	0.0007344	4.45	0.00	4.45	
Площадка буртования и	0040	0.09	4.45	0.09	4.45	0.09	4.40	2023
компостирования								
навоза)								
Репродуктор №2 (Склад	6052	0.0000009772	0.000015064	0.0000009772	0.000015064	0.0000009772	0.000015064	2023
ГСМ)	0032	0.0000009112	0.00013004	0.0000009112	0.000013004	0.0000009112	0.000013004	2023
1 CH)	6053	0.00010108	0.0001092	0.00010108	0.0001092	0.00010108	0.0001092	2023
(0342) Фтористые газооб	бразны	е соединения /	в пересчете на	фтор/ (617)				
Репродуктор №3 (0.00016666667		0.00016666667	0.00016	0.00016666667	0.00016	2023
Ремонтная мастеркая (
MTM))								
Репродуктор №1 (6058	0.00011111111	0.00016	0.00011111111	0.00016	0.00011111111	0.00016	2023
Ремонтная мастерская)								
Репродуктор №2 (6059	0.00011111111	0.00016	0.00011111111	0.00016	0.00011111111	0.00016	2023
Ремонтная мастерская (
MTM))								
(0402) Бутан (99)								
Репродуктор №3 (Склад	6064	7.36522423284	0.0441913454	7.36522423284	0.0441913454	7.36522423284	0.0441913454	2023
ГСМ)								
	6065	7.36522423284	0.0441913454	7.36522423284	0.0441913454	7.36522423284	0.0441913454	2023
(0410) Метан (727*)								
Репродуктор №3	6001	0.026712	0.3831141888	0.026712	0.3831141888	0.026712	0.3831141888	2023
	6002	0.096672	1.3865084928	0.096672	1.3865084928	0.096672		
	6003	0.0311004	0.44605437696	0.0311004	0.44605437696	0.0311004		
	6004	0.0311004			0.44605437696	0.0311004		
	6005	0.080136		0.080136		0.080136		
	6006	0.00455	0.06525792	0.00455	0.06525792	0.00455		
Репродуктор №1 (Содержание КРС)	6020	0.0676704	0.97055594496	0.0676704	0.97055594496	0.0676704	0.97055594496	2023
	6021	0.05565	0.79815456	0.05565	0.79815456	0.05565	0.79815456	2023
	6022	0.0870048	1.24785764352	0.0870048	1.24785764352	0.0870048	1.24785764352	2023
	6023	0.021624	0.3101400576	0.021624	0.3101400576	0.021624	0.3101400576	2023
Репродуктор №2 (6037	0.0676704	0.97055594496	0.0676704	0.97055594496	0.0676704	0.97055594496	2032
Содержание КРС)								
	6038	0.05565	0.79815456	0.05565	0.79815456	0.05565	0.79815456	
	6039		1.24785764352		1.24785764352		1.24785764352	
	6040	0.021624		0.021624	0.3101400576	0.021624	0.3101400576	2023
(0415) Смесь углеводоро				•	•	•	•	, 7
Репродуктор №2 (Склад	6052	0.0730836	0.007897089	0.0730836	0.007897089	0.0730836	0.007897089	2023
TCM)								

	6053	0.04885774		0.04885774	0.0527826	0.04885774	0.0527826	2023
(0416) Смесь углеводоро								
Репродуктор №2 (Склад ГСМ)	6052	0.0270108	0.002918667	0.0270108	0.002918667	0.0270108	0.002918667	2023
	6053	0.01805722	0.0195078	0.01805722	0.0195078	0.01805722	0.0195078	2023
(0501) Пентилены (амиле	ены -	смесь изомеров	(460)					
Репродуктор №2 (Склад ГСМ)	6052	0.0027	0.00029175	0.0027	0.00029175	0.0027	0.00029175	2023
,	6053	0.001805	0.00195	0.001805	0.00195	0.001805	0.00195	2023
(0602) Бензол (64)		l	Į.			I.		1
Репродуктор №2 (Склад ГСМ)	6052	0.002484	0.00026841	0.002484	0.00026841	0.002484	0.00026841	2023
1 011/	6053	0.0016606	0.001794	0.0016606	0.001794	0.0016606	0.001794	2023
(0616) Диметилбензол (смесь	о-, м-, п- изо	меров) (203)					
Репродуктор №3 (Лакокрасочные работы)	6019	0.125	0.06075	0.125	0.06075	0.125	0.06075	2023
Репродуктор №1 (Покрасочные работы)	6036	0.0625	0.160515	0.0625	0.160515	0.0625	0.160515	2023
Репродуктор №2 (Склад ГСМ)	6052	0.0003132	0.000033843	0.0003132	0.000033843	0.0003132	0.000033843	2023
,	6053	0.00020938	0.0002262	0.00020938	0.0002262	0.00020938	0.0002262	2023
Репродуктор №2 (6054	0.125	0.043515	0.125	0.043515	0.125	0.043515	2023
Покрасочные работы)								
(0621) Метилбензол (349					1			1
Репродуктор №2 (Склад ГСМ)	6052	0.0023436	0.000253239	0.0023436	0.000253239	0.0023436	0.000253239	2023
	6053	0.00156674	0.0016926	0.00156674	0.0016926	0.00156674	0.0016926	2023
(0627) Этилбензол (675)								
Репродуктор №2 (Склад ГСМ)	6052	0.0000648	0.000007002	0.0000648	0.000007002	0.0000648	0.000007002	2023
	6053	0.00004332	0.0000468	0.00004332	0.0000468	0.00004332	0.0000468	2023
(1052) Метанол (Метилон	вый сп	ирт) (338)						
Репродуктор №3	6001	0.0002058	0.00295166592	0.0002058	0.00295166592	0.0002058	0.00295166592	2023
	6002	0.0007448	0.01068221952	0.0007448	0.01068221952	0.0007448	0.01068221952	2023
	6003	0.00023961	0.00343658246	0.00023961	0.00343658246	0.00023961	0.00343658246	2023
	6004		0.00343658246		0.00343658246		0.00343658246	
	6005				0.00885499776		0.00885499776	
	6006		0.00056222208		0.00056222208		0.00056222208	
Репродуктор №1 (6020	0.00052136	0.00747755366	0.00052136	0.00747755366	0.00052136	0.00747755366	2023
Содержание КРС)								
	6021	0.00042875	0.006149304	0.00042875		0.00042875	0.006149304 0.00961399757	
1	6022	0.0006/032	0.00961399757	0.0006/032	0.00961399757	0.0006/032	0.00901399/5/	12023

ИП Иваненко А.А.

Репродуктор №2 (6037 0.00052136 0.00747755366 0.00052136 0.00747755366 0.00052136 0.00747755366 0.001 Солержание КРС)	1		1			1		l	
Солержание КРС) 6038		6023							
6038 0.00042875 0.006149304 0.00042875 0.006149304 0.00042875 0.006149304 0.00042875 0.00616939757 0.0067032 0.0067032 0.00667032 0.00067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067032 0.0067035712 0.0067032 0.0067032 0.0067032 0.0067035712 0.0067032 0.0067032 0.0067035712 0.0067032 0.0067035712 0.0067032 0.0067032 0.0067035712 0.0067032 0.0067032 0.00670331568 0.0005521824 0.00670335 0.0006732 0.00670335 0.0006732 0.00670331568 0.00067032 0.00670331568 0.00067032 0.00670331568 0.00067032 0.00670331568 0.00067032 0.00670331568 0.00670331569 0.00670331569 0.0067032 0.00670331569 0.0067031569 0.00670331569 0		6037	0.00052136	0.00747755366	0.00052136	0.00747755366	0.00052136	0.00747755366	2023
6039 0.00067032 0.00061399757 0.00067032 0.00961399757 0.00067032 0.00961399757 0.00067032 0.00961399757 0.00067032 0.00961399757 0.00067032 0.00067032 0.0038944384 0.00338944384 0.0001666 0.00238944384 0.00348 0.0001666 0.00238944384 0.00348 0.0001666 0.00238944384 0.00348 0.0000666 0.0000667 0.00	Содержание КРС)		0 0004000	0 006140004	0.00040055	0 006140004	0.00040055	0 006140004	0000
1071 Гидроксибензол (155) 1071 Гидроксибензол (155) 1071 Гидроксибензол (155) 1071 Гидроксибензол (155) 1071 Гидроксибензол (155) 1071 Гидроксибензол (155) 1071 1071 Гидроксибензол (155) 1071									
(1071) Гидроксибензол (155) Репродуктор №3 6001 0.000021 0.0003011904 0.000021 0.0003011904 0.000021 0.0003011904 2023 6002 0.000076 0.0010900224 0.000075076 0.000076 0.000076 0.0010900224 0.000075 0.000076 0.000076 0.000077 0.0000									
Репродуктор №3 6001 0.00021 0.0003011904 0.000021 0.0003011904 0.000021 0.0003011904 0.000024 0.000076 0.0010900224 0.000076 0.0010900224 0.000076 0.0010900224 0.000076 0.0010900224 0.000076 0.0010900224 0.000076 0.0010900224 0.000076 0.000076 0.0010900224 0.000076 0.000076 0.0010900224 0.000076 0.000076 0.0000245 0.00035067168 0.0000345 0.000035067168 0.00000350 0.000035067168 0.000035067168 0.000035067168 0.000035067168 0.0000350 0.00005521824 0.000035067168 0.0000350 0.00005521824 0.000035067168 0.0000350 0.00005521824 0.000035067168 0.0000350 0.00005521824 0.000035067168 0.0000350 0.00005521824 0.0000350 0.00005521824 0.0000350 0.00005521824 0.0000350 0.00005521824 0.0000350 0.00005521824 0.0000350 0.00005218 0.0000520 0.000053000554 0.0000520 0.000053000554 0.000053000554 0.000053000554 0.000053000554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037164 0.00533020554 0.00037	(1001)		0.0001666	0.00238944384	0.0001666	0.00238944384	0.0001666	0.00238944384	2023
6002 0.000076 0.0010900224 0.000076 0.0010900224 0.00035067168 0.00002445 0.00035067168 0.00002445 0.00035067168 0.00002445 0.00035067168 0.00002445 0.00035067168 0.00002445 0.00035067168 0.00002445 0.00035067168 0.00002445 0.00035067168 0.00002445 0.000035067168 0.000035067168 0.00002445 0.00035067168 0.000035067168 0.00000350 0.00000350 0.000003512 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.0000035712 0.000063 0.000063712 0.000063 0.000063 0.000063712 0.000063 0.000065 0.000063 0.000063 0.000063 0.000063 0.000063 0.000063 0.000066 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000067 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.0			1 0 000001	0 0000011004	0 000001	I o ooooo11004I	0 000001	I o ooooo11004	Loooa
6003	Репродуктор №3								
6004 0.00002445 0.0003567168 0.0002445 0.0003567168 0.0003567168 0.0003567168 0.0003567168 0.0003567168 0.00003567168 0.00003567168 0.00003567168 0.00003567168 0.000003567 0.000003567 0.000003567 0.000003567 0.0000035712 0.000003567 0.000005521824 0.0000035521824 0.000003551824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.000005521824 0.00006524 0.00006524 0.00006524 0.00006524 0.00006524 0.00006524 0.00006524 0.00005521824									
6005									
Code Code									
Репродуктор №1 (6020 0.0000532 0.00076301568 0.0000632 0.00076301568 0.0000532 0.00076301568 0.203 Содержание КРС)									
Содержание КРС) 6021 0.00004375 0.00062748 0.00004375 0.00062748 0.00004375 0.00062748 0.00004375 0.00062748 0.0000684 0.000098102016 0.0000684 0.000098102016 0.0000684 0.000098102016 0.0000684 0.000098102016 0.0000684 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.0000684 0.00098102016 0.0000684 0.00098102016 0.0000684 0.00098102016 0.0000684 0.00098102016 0.0000684 0.00098102016 0.0000684 0.00098102016 0.0000684 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438204 0.0003104 0.00003104	D								
6021 0.00004375 0.00062748 0.00004375 0.00062748 0.00004375 0.00062748 0.00		6020	0.0000532	0.000/6301368	0.0000532	0.000/6301368	0.0000532	0.000/6301368	2023
6022 0.0000684 0.00098102016 0.0000684 0.00098102016 0.0000684 0.00098102016 0.000684 0.00098102016 2023 0.00007 0.0002438208 0.000017 0.00002438208 2023 0.000076301568 0.000017 0.0002438208 2023 0.00076301568 0.0000532 0.00076301568 0.0000532 0.00076301568 0.0006532 0.00076301568 0.0006532 0.00076301568 0.0006532 0.00076301568 0.0006532 0.00076301568 0.0006532 0.00076301568 0.0006532 0.0006548 0.0006532 0.0006548 0.00098102016 0.0006548 0.00098102016 0.0000654 0.00098102016 0.0000654 0.00098102016 0.0000654 0.00098102016 0.0000654 0.00098102016 0.0000654 0.00098102016 0.0000654 0.0000654 0.00098102016 0.0000654 0.0000654 0.00008102016 0.0000654 0.0000654 0.00098102016 0.0000654 0.0000655 0.0006554 0.0006554 0.0006554 0.0006554 0.0006554 0.0006554 0.0006554 0.0006554 0.0006554 0.0006554 0.0006554 0.0006554 0.0006655 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.0000665 0.0009576 0.000665 0.0009576 0.000665 0.0009576 0.000665 0.0000665 0.	содержание кРС)	6021	0 00004375	0 00062749	0 00004375	0 00062749	0 00004375	0 00062749	2023
Репродуктор №2 (6037 0.000017 0.0002438208 0.000017 0.0002438208 0.000017 0.0002438208 2023 0.00076301568 0.0000532 0.00076301568 0.0000532 0.00076301568 0.0000532 0.00076301568 0.0000532 0.00076301568 0.0000532 0.00076301568 0.0000532 0.00076301568 0.000062748 0.000062748 0.000062748 0.000062748 0.000062748 0.000062748 0.000062748 0.0000684 0.0000684 0.000088102016 0.0000684 0.000088102016 0.0000684 0.000088102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.0000684 0.00008102016 0.000081020 0.00008102									
Репродуктор №2 (Содержание КРС) 6038									
Содержание КРС) 6038	Pennonykmon №2 (
6038 0.00004375 0.00062748 0.00004375 0.00062748 0.00004375 0.00062748 0.00098102016 0.000062748 0.00098102016 0.0000684 0.000098102016 0.0000684 0.00098102016 0.0000684 0.000098102016 0.0000684 0.0000684 0.000098102016 0.0000684 0.0000688 0.000068 0.0000688 0.00000688 0.0000688 0.0000688 0.0000688 0.0000688 0.0000688 0.000068 0.0000688 0.00000688 0.0000688 0.0000688 0.0000688 0.0000688 0.0000688 0.000068 0.000068 0.000068 0.0000688 0.0000068 0.0000688 0.000068 0.000068		0037	0.0000552	0.00070301300	0.0000332	0.00070301300	0.0000332	0.00070301300	2023
6039 0.0000684 0.00098102016 0.0000684 0.00098102016 0.0000684 0.00098102016 0.0000684 0.000017 0.0002438208 2023 0.000017 0.0002438208 2023 0.000017 0.0002438208 2023 0.000017 0.0002438208 2023 0.000017 0.0002438208 2023 0.0000017 0.0002438208 2023 0.00000000000000000000000000000000	содержание кгсу	6038	0 00004375	0 00062748	0 00004375	0 00062748	0 00004375	0 00062748	2023
6040 0.000017 0.0002438208 0.000017 0.0002438208 2023 (1246) Этилформиат (Муравьиной кислоты этиловый эфир) (1486*) Репродуктор №3 6001 0.0003192 0.00457809408 0.0003192 0.00457809408 0.0003192 0.00457809408 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.001392 0.00457809408 0.00037164 0.00533020954 0.0037164 0.00533020954 0.00037164 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.0009576 0.00095380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.0009537696 0.000953769									
(Муравьиной кислоты этиловый эфир) (1486*) Репродуктор №3 6001 0.0003192 0.00457809408 0.0003192 0.00457809408 0.0003192 0.00457809408 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.00137164 0.00533020954 0.000037164 0.00533020954 0.00037164 0.00037164 0.00533020954 0.00037164 0.00037164 0.00533020954 0.00037164 0.00037164 0.00037164 0.00533020954 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.00006672 0.00096380928 0.0000665 0.0009537696 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.00053									
Репродуктор №3 6001 0.0003192 0.00457809408 0.0003192 0.00457809408 0.0003192 0.00457809408 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.000533020954 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.0009576 0.01373428224 0.0009576 0.0009576 0.01373428224 0.0009576 0.000957	(1246) Этилформиат (Мур								1
6002 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 0.0011552 0.01656834048 2023 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.00009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.0009576 0.00095776 0.					/	0.00457809408	0.0003192	0.00457809408	2023
6003 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 2023 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 2023 0.00037164 0.00533020954 0.00037164 0.00533020954 2023 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.0009576 0.01373428224 0.0009576 0.0009537696 0.0009576 0.0009537696 0.0									
6004 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 0.00037164 0.00533020954 2023 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 2023 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.023 0.0000672 0.00096380928 0.0000672 0.00096380928 0.023 0.0000672 0.0000655 0.000537696 0.000537696 0.000537696 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.000537696 0.000665 0.000537696 0.00002584 0.00002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00002584 0.00370607616 0.0002584 0.0002584 0.00370607616 0.0002584 0.000258		6003	0.00037164	0.00533020954	0.00037164	0.00533020954	0.00037164	0.00533020954	
6005 0.0009576 0.01373428224 0.0009576 0.01373428224 0.0009576 0.01373428224 2023 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 2023 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.0000672 0.00096380928 0.00096380928 0.00096380928 0.00096380928 0.00096380928 0.00096380928 0.00096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.0000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.0000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.000096380928 0.0000096380928 0.000096380928 0.0000096380928 0.0000096380928 0.0000096380928 0.0000096380928 0.0000096380928 0.0000096380928 0.000000665 0.0009537696 0.0000000000000000000000000000000000					0.00037164	0.00533020954			
Репродуктор №1 (Содержание КРС) 6021 0.00080864 0.01159783834 0.00080864 0.01159783834 0.00080864 0.01159783834 0.00080864 0.01159783834 2023 6021 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.00103968 0.01491150643 0.00103968 0.01491150643 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.001159783834 0.00080864 0.00080864 0.0		6005							
Содержание КРС) 6021 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.00103968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.000002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.0000002584 0.00000000000000000000000000000000000		6006	0.0000672	0.00096380928	0.0000672	0.00096380928	0.0000672	0.00096380928	2023
Содержание КРС) 6021 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.00103968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.000370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.000370607616 0.0002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.000002584 0.00002584 0.00002584 0.00002584 0.00002584 0.00002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.0000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.000002584 0.0000002584 0.0000002584 0.00000000000000000000000000000000000	Репродуктор №1 (6020	0.00080864	0.01159783834	0.00080864	0.01159783834	0.00080864	0.01159783834	2023
6022 0.00103968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643 2023 0.0002584 0.0002584 0.00370607616 0.0002584 0.00370607616 2023 0.0002584 0.00080864 0.01159783834 0.0008086	Содержание КРС)								
6023 0.0002584 0.00370607616 0.0002584 0.00370607616 0.0002584 0.00370607616 2023 Репродуктор №2 (Содержание КРС) 6038 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.0013968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643 2023		6021	0.000665	0.009537696	0.000665	0.009537696	0.000665	0.009537696	
Репродуктор №2 (6037 0.00080864 0.01159783834 0.00080864 0.01159783834 0.00080864 0.01159783834 2023 Ображение КРС) 6038 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 0.00103968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643		6022	0.00103968	0.01491150643	0.00103968	0.01491150643	0.00103968	0.01491150643	2023
Содержание KPC) 6038 0.000665 0.009537696 0.000665 0.009537696 0.009537696 0.000665 0.009537696 2023 6039 0.00103968 0.01491150643 0.00103968 0.01491150643 2023		6023	0.0002584	0.00370607616	0.0002584	0.00370607616	0.0002584	0.00370607616	2023
6038 0.000665 0.009537696 0.000665 0.009537696 0.000665 0.009537696 2023 0.00103968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643	Репродуктор №2 (6037	0.00080864	0.01159783834	0.00080864	0.01159783834	0.00080864	0.01159783834	2023
6039 0.00103968 0.01491150643 0.00103968 0.01491150643 0.00103968 0.01491150643 2023	Содержание КРС)								
$\begin{bmatrix} 6040 \end{bmatrix} = 0.0002584 \begin{bmatrix} 0.00370607616 \end{bmatrix} = 0.0002584 \begin{bmatrix} 0.003706076$									
		6040				0.00370607616	0.0002584	0.00370607616	2023
	(1314) Пропаналь (Пропи								
Репродуктор №3 6001 0.000105 0.001505952 0.000105 0.001505952 0.000105 0.001505952 2023	Репродуктор №3	6001	0.000105	0.001505952	0.000105	0.001505952	0.000105	0.001505952	2023

							_	
	6002	0.00038	0.005450112	0.00038		0.00038	0.005450112	
	6003	0.00012225	0.0017533584	0.00012225	0.0017533584	0.00012225	0.0017533584	2023
	6004	0.00012225	0.0017533584	0.00012225	0.0017533584	0.00012225	0.0017533584	2023
	6005	0.000315	0.004517856	0.000315	0.004517856	0.000315	0.004517856	
	6006	0.0000168	0.00024095232	0.0000168	0.00024095232	0.0000168	0.00024095232	2023
Репродуктор №1 (6020	0.000266	0.0038150784	0.000266	0.0038150784	0.000266	0.0038150784	2023
Содержание КРС)								
_	6021	0.00021875	0.0031374	0.00021875	0.0031374	0.00021875	0.0031374	2023
	6022	0.000342	0.0049051008	0.000342	0.0049051008	0.000342	0.0049051008	2023
	6023	0.000085	0.001219104	0.000085	0.001219104	0.000085	0.001219104	2023
Репродуктор №2 (6037	0.000266	0.0038150784	0.000266	0.0038150784	0.000266	0.0038150784	2023
Содержание КРС)								
_	6038	0.00021875	0.0031374	0.00021875	0.0031374	0.00021875	0.0031374	2023
	6039	0.000342	0.0049051008	0.000342	0.0049051008	0.000342	0.0049051008	2023
	6040	0.000085	0.001219104	0.000085	0.001219104	0.000085	0.001219104	2023
(1531) Гексановая кисло	ота (К	Сапроновая кисл	юта) (137)					1
Репродуктор №3	6001		0.00178304717	0.00012432	0.00178304717	0.00012432	0.00178304717	2023
	6002	0.00044992	0.00645293261	0.00044992	0.00645293261	0.00044992	0.00645293261	2023
	6003	0.000144744	0.00207597635	0.000144744	0.00207597635	0.000144744	0.00207597635	2023
	6004	0.000144744	0.00207597635	0.000144744	0.00207597635	0.000144744	0.00207597635	
	6005	0.00037296	0.0053491415	0.00037296		0.00037296		
	6006	0.0000392		0.0000392	0.00056222208	0.0000392	0.00056222208	2023
Репродуктор №1 (6020	0.000314944	0.00451705283	0.000314944	0.00451705283	0.000314944	0.00451705283	2023
Содержание КРС)								
,	6021	0.000259	0.0037146816	0.000259	0.0037146816	0.000259	0.0037146816	2023
	6022	0.000404928	0.00580763935	0.000404928	0.00580763935	0.000404928	0.00580763935	2023
	6023	0.00010064	0.00144341914	0.00010064	0.00144341914	0.00010064	0.00144341914	2023
Репродуктор №2 (6037	0.000314944	0.00451705283	0.000314944	0.00451705283	0.000314944	0.00451705283	2023
Содержание КРС)								
, , ,	6038	0.000259	0.0037146816	0.000259	0.0037146816	0.000259	0.0037146816	2023
	6039	0.000404928	0.00580763935	0.000404928		0.000404928		
	6040		0.00144341914	0.00010064	0.00144341914	0.00010064	0.00144341914	
(1707) Диметилсульфид	(227)		<u>l</u>		l .			1
Репродуктор №3	Ì 6001	0.00016128	0.00231314227	0.00016128	0.00231314227	0.00016128	0.00231314227	2023
	6002	0.00058368	0.00837137203	0.00058368	0.00837137203		0.00837137203	
	6003	0.000187776		0.000187776		0.000187776		
	6004	0.000187776	0.0026931585	0.000187776		0.000187776	0.0026931585	
	6005	0.00048384		0.00048384		0.00048384		
	6006	0.000056		0.000056		0.000056	0.0008031744	1
Репродуктор №1 (6020	0.000408576		0.000408576		0.000408576		
Содержание КРС)	0020		111000000000000000000000000000000000000	2.000100070		1.000100070	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
tratimation in the state of	6021	0.000336	0.0048190464	0.000336	0.0048190464	0.000336	0.0048190464	2023
I	1 0001			0.00000	1	0.00000	1 2 2 3 2 2 2 3 3 1 3 1	1 - 0 - 0

	6022	0.000525312	0.00753423483	0.000525312	0.00753423483	0.000525312	0.00753423483	
	6023	0.00013056	0.00187254374	0.00013056	0.00187254374	0.00013056	0.00187254374	2023
Репродуктор №2 (6037	0.000408576	0.00585996042	0.000408576	0.00585996042	0.000408576	0.00585996042	2023
Содержание КРС)								
	6038	0.000336	0.0048190464	0.000336	0.0048190464	0.000336	0.0048190464	2023
	6039	0.000525312	0.00753423483	0.000525312	0.00753423483	0.000525312	0.00753423483	2023
	6040	0.00013056	0.00187254374	0.00013056	0.00187254374	0.00013056	0.00187254374	2023
(1715) Метантиол (Метил	мерка	птан) (339)						
Репродуктор №3	6001	0.0000042	0.00000602381	0.00000042	0.00000602381	0.00000042	0.00000602381	2023
	6002	0.00000152	0.00002180045		0.00002180045	0.00000152	0.00002180045	2023
	6003	0.000000489	0.00000701343	0.000000489	0.00000701343	0.000000489	0.00000701343	
	6004		0.00000701343		0.00000701343		0.00000701343	
	6005	0.00000126	0.00001807142	0.00000126	0.00001807142	0.00000126	0.00001807142	2023
	6006	0.000000056	0.00000080317	0.000000056	0.00000080317	0.000000056	0.00000080317	2023
Репродуктор №1 (6020	0.000001064	0.00001526031	0.000001064	0.00001526031	0.000001064	0.00001526031	2023
Содержание КРС)								
	6021	0.000000875	0.0000125496	0.000000875	0.0000125496	0.000000875	0.0000125496	2023
	6022	0.000001368	0.0000196204	0.000001368	0.0000196204	0.000001368	0.0000196204	2023
	6023	0.0000034	0.00000487642	0.0000034	0.00000487642	0.0000034	0.00000487642	2023
Репродуктор №2 (6037	0.000001064	0.00001526031	0.000001064	0.00001526031	0.000001064	0.00001526031	2023
Содержание КРС)								
	6038	0.000000875	0.0000125496	0.000000875	0.0000125496	0.000000875	0.0000125496	2023
	6039	0.000001368	0.0000196204	0.000001368	0.0000196204	0.000001368	0.0000196204	2023
	6040	0.0000034	0.00000487642	0.0000034	0.00000487642	0.0000034	0.00000487642	2023
(1849) Метиламин (Моном	етила	мин) (341)	•					•
Репродуктор №3	6001	0.000084	0.0012047616	0.000084	0.0012047616	0.000084	0.0012047616	2023
	6002	0.000304	0.0043600896	0.000304	0.0043600896	0.000304	0.0043600896	2023
	6003	0.0000978	0.00140268672	0.0000978	0.00140268672	0.0000978	0.00140268672	2023
	6004	0.0000978	0.00140268672	0.0000978	0.00140268672	0.0000978	0.00140268672	2023
	6005	0.000252	0.0036142848	0.000252	0.0036142848	0.000252	0.0036142848	2023
	6006	0.00001092	0.00015661901	0.00001092	0.00015661901	0.00001092	0.00015661901	2023
Репродуктор №1 (6020	0.0002128	0.00305206272	0.0002128	0.00305206272	0.0002128	0.00305206272	2023
Содержание КРС)								
	6021	0.000175	0.00250992	0.000175	0.00250992	0.000175	0.00250992	2023
	6022	0.0002736	0.00392408064	0.0002736	0.00392408064	0.0002736	0.00392408064	2023
	6023	0.000068	0.0009752832	0.000068	0.0009752832	0.000068	0.0009752832	2023
Репродуктор №2 (6037	0.0002128	0.00305206272	0.0002128	0.00305206272	0.0002128	0.00305206272	2023
Содержание КРС)								
	6038	0.000175	0.00250992	0.000175	0.00250992	0.000175	0.00250992	2023
	6039	0.0002736	0.00392408064	0.0002736	0.00392408064	0.0002736	0.00392408064	
	6040	0.000068	0.0009752832	0.000068	0.0009752832	0.000068	0.0009752832	2023
(2752) Уайт-спирит (129	94*)							•

Репродуктор №3 (Лакокрасочные работы)	6019	0.0625	0.03475	0.0625	0.03475	0.0625	0.03475	2023
Репродуктор №1 (6036	0.0625	0.032815	0.0625	0.032815	0.0625	0.032815	2023
Покрасочные работы)	0030	0.0023	0.032013	0.0023	0.032013	0.0023	0.032013	2023
Репродуктор №2 (6054	0.0625	0.032815	0.0625	0.032815	0.0625	0.032815	2023
Покрасочные работы)	0034	0.0023	0.032013	0.0023	0.032013	0.0023	0.032013	2023
(2754) Алканы С12-19 /в	пере	CIIOMO US C/ (V		опопьино C12-C	19 /B HANACIJAH	10 (10)		1
Репродуктор №3 (Склад	6017	0.0003480228	0.00503586				0.00503586	SI 2023
FCM)								
	6018	0.03599892	0.01555632	0.03599892	0.01555632	0.03599892	0.01555632	
Репродуктор №2 (Склад ГСМ)	6052	0.0003480228	0.005364936	0.0003480228	0.005364936	0.0003480228	0.005364936	2023
	6053	0.03599892	0.0388908	0.03599892	0.0388908	0.03599892	0.0388908	2023
(2902) Взвешенные части	щы (1	16)						
Репродуктор №3 (6057	0.00142	0.0007668	0.00142	0.0007668	0.00142	0.0007668	2023
Ремонтная мастеркая (
MTM))								
Репродуктор №1 (6058	0.00142	0.0002556	0.00142	0.0002556	0.00142	0.0002556	5 2023
Ремонтная мастерская)								
Репродуктор №2 (6059	0.00126	0.0002268	0.00126	0.0002268	0.00126	0.0002268	3 2023
Ремонтная мастерская (
MTM))								
(2908) Пыль неорганичес								
Репродуктор №3	6014	0.000032	0.00001734	0.000032			0.00001734	2023
Жилые дома	6061	0.000024	0.000013	0.000024	0.000013	0.000024	0.000013	
Репродуктор №3 (6063	0.00000096	0.0000052	0.00000096	0.00000052	0.00000096	0.00000052	2 2023
Ремонтная мастеркая (
MTM))								
Репродуктор №1 (АБК)	6067	0.000000667	0.000000361	0.000000667	0.000000361	0.000000667	0.000000361	
Репродуктор №2 (6047	0.0000008	0.000000806	0.0000008	0.000000806	0.0000008	0.000000806	2023
Крематор)								
Репродуктор №2 (6069	0.00001	0.00000542	0.00001	0.00000542	0.00001	0.00000542	2 2023
Ремонтная мастерская (
MTM))								
Репродуктор №2 (Баня)	6070	0.00000467	0.000001294	0.00000467	0.000001294	0.00000467	0.000001294	
Пастбищные отгоны	6056	0.000001	0.0000003024	0.000001	0.0000003024	0.000001	0.0000003024	
Площадка для	6071	0.000001	0.00000058	0.000001	0.00000058	0.000001	0.00000058	2023
выращивания кукурузы]
(2909) Пыль неорганичес								
Репродуктор №3	6013	0.008	0.0095913	0.008		0.008	0.0095913	
Жилые дома	6060	0.008	0.009551	0.008	0.009551	0.008	0.009551	2023

6062	0.007	0.0189382	0.007	0.0189382	0.007	0.0189382	2023
6066	0.007	0.0095358	0.007	0.0095358	0.007	0.0095358	2023
6068	0.007	0.0283882	0.007	0.0283882	0.007	0.0283882	2023
			0.00333	0.0031768	0.00333	0.0031768	2023
						-	
6020	0.00583072	0.08362651853	0.00583072	0.08362651853	0.00583072	0.08362651853	2023
6037	0.00583072	0.08362651853	0.00583072	0.08362651853	0.00583072	0.08362651853	2023
				0.0117033984	0.000816	0.0117033984	2023
						1	
6057	0.0008	0.000432	0.0008	0.000432	0.0008	0.000432	2023
6058	0.0008	0.000144	0.0008	0.000144	0.0008	0.000144	2023
		110=1					
		, ,	1 1006	1 50066	1 10000	1 1 50066	10000
6024	1.12267	1.59966	1.12267	1.59966	1.12267	1.59966	2023
6025	0.02133	0.0215	0.02133	0.0215	0.02133	0.0215	2023
6041	1.118	1.59496	1.118	1.59496	1.118	1.59496	2023
6041	1.118	1.59496	1.118	1.59496	1.118	1.59496	2023
	6068 6055 6001 6002 6003 6004 6005 6006 6020 6021 6022 6023 6037 6038 6039 6040 (Kopy 6057	6066 0.007 6068 0.007 6068 0.007 6068 0.007 6068 0.007 6055 0.00333 6001 0.0023016 6002 0.0083296 6003 0.0011736 6004 0.0011736 6005 0.003024 6006 0.0001568 6020 0.00583072 6021 0.0021 6022 0.0032832 6023 0.000816 6037 0.00583072 6038 0.0021 6039 0.0032832 6040 0.000816 (Корунд белый, Монс 6057 0.0008	6066 0.007 0.0095358 6068 0.007 0.0283882 6055 0.00333 0.0031768 врстяная, пуховая) (1050*) 6001 0.0023016 0.03301046784 6002 0.0083296 0.11946645504 6003 0.0011736 0.01683224064 6004 0.0011736 0.01683224064 6005 0.003024 0.0433714176 6006 0.0001568 0.00224888832 6020 0.00583072 0.08362651853 6021 0.0021 0.03011904 6022 0.0032832 0.04708896768 6023 0.000816 0.0117033984 6037 0.00583072 0.08362651853 6038 0.0021 0.03011904 6039 0.0032832 0.04708896768 6039 0.000816 0.0117033984 (Корунд белый, Монокорунд) (1027* 6057 0.0008 0.000144 10 грибам хранения/ (487) 6057 0.0008 0.000144 10 грибам хранения/ (487) 6007 1.12267 1.59966 6008 0.02133 0.0215 6024 1.12267 1.59966	6066 0.007 0.0095358 0.007 6068 0.007 0.0283882 0.007 6055 0.00333 0.0031768 0.00333 РОСТЯНАЯ, ПУХОВАЯ) (1050*) 6001 0.0023016 0.03301046784 0.0023016 6002 0.0083296 0.11946645504 0.0083296 6003 0.0011736 0.01683224064 0.0011736 6004 0.0011736 0.01683224064 0.0011736 6005 0.003024 0.0433714176 0.003024 6006 0.0001568 0.00224888832 0.0001568 6020 0.00583072 0.08362651853 0.00583072 6021 0.0021 0.03011904 0.0021 6022 0.0032832 0.04708896768 0.0032832 6023 0.000816 0.0117033984 0.000816 6037 0.00583072 0.08362651853 0.00583072 6038 0.0021 0.03011904 0.0021 6039 0.0032832 0.04708896768 0.0032832 6040 0.000816 0.0117033984 0.000816 (Корунд белый, Монокорунд) (1027*) 6057 0.0008 0.00144 0.0008 10 грибам хранения/ (487) 6007 1.12267 1.59966 1.12267 6008 0.02133 0.0215 0.02133 6024 1.12267 1.59966 1.12267	6066	6066 0.007 0.0095358 0.007 0.0095358 0.007 6068 0.007 0.0283882 0.007 0.0283882 0.007 6055 0.00333 0.0031768 0.00333 0.0031768 0.00333 6001 0.0023016 0.03301046784 0.0023016 0.03301046784 0.0083296 0.11946645504 0.0083296 6003 0.0011736 0.01683224064 0.0011736 0.01683224064 0.0011736 0.0163224064 0.0011736 0.0163224064 0.0011736 0.0163224064 0.0011736 0.0163224064 0.0011736 0.0163224064 0.0011736 0.0163224064 0.0011736 0.0163224064 0.0011736 0.0163224064 0.0011736 0.00324 0.0433714176 0.003024 0.0433714176 0.003024 0.0433714176 0.003024 0.0433714176 0.0032832 0.0001568 0.00224888832 0.001568 0.00224888832 0.0001568 0.00224888832 0.0001568 0.00224888832 0.0001568 0.0032832 0.0001568 0.0032832 0.0001568 0.0032832 0.004708896768 <td> 6066 0.007 0.0095358 0.007 0.0095358 0.007 0.0095358 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.003301046784 0.0023016 0.03301046784 0.0083296 0.11946645504 0.0083296 0.11946645504 0.0083296 0.11946645504 0.0083296 0.11946645504 0.001736 0.01683224064 0.001736 0.01683224064 0.001736 0.01683224064 0.001736 0.01683224064 0.001736 0.003024 0.0433714176 0.003024 0.0433714176 0.003024 0.003024 0.0433714176 0.0003024 0.003024 0</td>	6066 0.007 0.0095358 0.007 0.0095358 0.007 0.0095358 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.007 0.0283882 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.00333 0.0031768 0.003301046784 0.0023016 0.03301046784 0.0083296 0.11946645504 0.0083296 0.11946645504 0.0083296 0.11946645504 0.0083296 0.11946645504 0.001736 0.01683224064 0.001736 0.01683224064 0.001736 0.01683224064 0.001736 0.01683224064 0.001736 0.003024 0.0433714176 0.003024 0.0433714176 0.003024 0.003024 0.0433714176 0.0003024 0.003024 0

Репродуктор №2 (6042	0.02133	0.0215	0.02133	0.0215	0.02133	0.0215	2023
Загрузка кормушек)								
Итого по неорганизованным		20.4331034794	43.5268533336	20.4331034794	43.5268533336	20.4331034794	43.5268533336	
источникам:								
Всего по объекту:		25.2295641194	72.5677633636	25.2295641194	72.5677633636	25.2295641194	72.5677633636	

5.4 Методы и средства контроля за состоянием воздушного бассейна

Согласно Экологическому Кодексу РК (глава 13, ст. 182) операторы объектов I и II категорий обязаны осуществлять производственный экологический контроль.

Производственный экологический контроль — система мер, осуществляемых природопользователем, для наблюдения за изменениями окружающей среды под влиянием хозяйственной деятельности предприятия и направлена на соблюдение нормативов по охране окружающей среды и соблюдению экологических требований.

Программа производственного экологического контроля ориентирована на организацию наблюдений, сбор данных, воздействия проведения анализа, оценки производственной деятельности на состояние окружающей среды целью принятия c предотвращению, загрязняющего своевременных ПО сокращению ликвидации воздействия данного вида деятельности на окружающую среду.

Основным направлением «Программы производственного экологического контроля» является обеспечение достоверной информацией o воздействии деятельности изменениях воздействия предприятия на окружающую возможных среду, неблагоприятных или опасных ситуациях.

Осуществление производственного экологического контроля является обязательным условием специального природопользования. Одним элементов производственного экологического производственный контроля является мониторинг, выполняемый ДЛЯ получения объективных данных с установленной периодичностью.

Производственный контроль должен осуществляться на источниках выбросов, которые вносят наибольший вклад в загрязнение атмосферы. Для таких организованных источников контроль рекомендуется проводить инструментальным или инструментально-лабораторным методом, с проведением прямых инструментальных замеров выбросов. Для неорганизованных источников – расчетный метод.

обобщенная Оперативная информация, полученная специалистами охраны окружающей среды в виде табличных данных, сопровождаемых пояснительным текстом, должна предоставляться ежеквартально до первого числа второго месяца за отчетным информационную уполномоченного кварталом систему органа области охраны окружающей среды в соответствии с приказом Министра экологии, геологии и природных Республики Казахстан OT 14.07.2021 Γ. No 250 «Об утверждении разработки производственного экологического контроля объектов программы ведения внутреннего учета, формирования и предоставления периодических отчетов по результатам производственного экологического контроля».

План-график контроля на предприятии за соблюдением нормативов допустимых выбросов на источниках выбросов расчетным методом приведен в таблице 5.4.1.

На участке будет осуществляться расчетным методом, т.е. будет проводиться операционный мониторинг (мониторинг производственного процесса). Операционный мониторинг представляет собой комплекс организационно-технических мероприятий, направленных на наблюдение за физическими химическими параметрами технологического состоянием процесса, работы оборудования техники. также строительных расходом материалов сырья ДЛЯ подтверждения того. что показатели производственной

деятельности находятся в диапазоне, который считается целесообразным для надлежащей проектной эксплуатации. Кроме того, мониторинг важен для гарантии предотвращения и минимизации перебоев в производственном процессе и их воздействии на окружающую среду в любой ситуации.

Сернистый газ, Сера (IV) оксид) (516)

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

N источ- ника	Производство, цех, участок.	Контролируемое вещество	Периодичность контроля	Норматив до выброс		Кем осуществляет	Методика проведе- ния
				r/c	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
0001	Репродуктор №3	Азота (IV) диоксид (Азота диоксид) (4)		0.00556	52.4385827		
		Азот (II) оксид (Азота оксид) (6)		0.0009035	8.52126969		
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0.034848	328.665419		
		Углерод оксид (Окись углерода, Угарный газ) (584)		0.26117	2463.19868		
		Взвешенные частицы (116)		0.039	367.824591		
		Пыль неорганическая, содержащая		0.1552914	1464.61527		
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,				MI	
		кремнезем, зола углей казахстанских месторождений) (494)	квартал			силами	HOH:
0003	Репродуктор №3 (Склад ГСМ)	Сероводород (Дигидросульфид) (518)		0.000026376	21.4928292	IMI	Расчетный метод
		Алканы С12-19 /в пересчете на С/ (Д	0.009393624	7654.5176	H	H
		Углеводороды предельные C12-C19 (в	ω α Ω			Ф	υ T
		пересчете на C); Растворитель РПК- 265П) (10)	Ω			00 CH	Рас
0004	Репродуктор №3 (Склад ГСМ)	Сероводород (Дигидросульфид) (518)		0.000026376	21.4928292	O	
		Алканы С12-19 /в пересчете на С/ (0.009393624	7654.5176		
		Углеводороды предельные C12-C19 (в					
		пересчете на C); Растворитель РПК- 265П) (10)					
0010	Репродуктор №2 (Крематор)	Азота (IV) диоксид (Азота диоксид) (4)		0.0042	66.0197776		
		Азот (II) оксид (Азота оксид) (6)		0.0006825	10.7282139		
		Углерод (Сажа, Углерод черный) (583)		0.0004	6.28759787		
		Сера диоксид (Ангидрид сернистый,		0.009408	147.884302		

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

Район и	м. Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
---------	-----------	------	----	--------	-----	----------	------

1	2	3	5	6	7	8	9
		Углерод оксид (Окись углерода,		0.02224	349.590442		
		Угарный газ) (584)					
0011	Репродуктор №2 (Сероводород (Дигидросульфид) (518)		0.00000024416	0.12434938		
	Крематор)						
		Алканы C12-19 /в пересчете на C/ (0.00008695584	44.2861421		
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
0014	Репродуктор №2 (Сероводород (Дигидросульфид) (518)		0.000026376	33.5828877		
	Склад ГСМ)						
		Алканы С12-19 /в пересчете на С/ (0.009393624	11960.3056		
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
0015	Репродуктор №2 (Сероводород (Дигидросульфид) (518)		0.000052752	42.9856584		
	Склад ГСМ)					7	
		Алканы С12-19 /в пересчете на С/ (L L	0.018787248	15309.0352	M M	н
		Углеводороды предельные С12-С19 (в	квартал			Ę	O H
		пересчете на С); Растворитель РПК-	Q d			ਹੋ	A A
		265Π) (10)	X B			MZ)Z
0016	Репродуктор №2 (Смесь углеводородов предельных C1-C5	ф	1.9732572	1607934.49	HPI	Расчетный метод
	Склад ГСМ)	(1502*)	ω			H O	Φ EH
		Смесь углеводородов предельных C6-C10	ත ස	0.7292916	594272.816	Д Н	۲. O
		(1503*)	\vdash			ν O	Ра
		Пентилены (амилены - смесь изомеров)		0.0729	59403.5202	ပိ	
		(460)					
		Бензол (64)		0.067068	54651.2386		
		Диметилбензол (смесь о-, м-, п-		0.0084564	6890.80834		
		изомеров) (203)					
		Метилбензол (349)		0.0632772	51562.2555		
		Этилбензол (675)		0.0017496	1425.68449		
0017	Пастбищные отгоны	Азота (IV) диоксид (Азота диоксид) (0.0013984	13.1888694		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00022724	2.14319128		
		Сера диоксид (Ангидрид сернистый,		0.0112266	105.882553		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.03179484	299.869847		
		Угарный газ) (584)					
		Взвешенные частицы (116)		0.00405	38.1971691		
		Пыль неорганическая, содержащая		0.0398475	375.817702		

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

1	2	3	5	6	7	8	9
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
0018	Пастбишные отгоны	Азота (IV) диоксид (Азота диоксид) (0.0013984	13.1888694		
0010	110010711411510 01101151	4)		0.0010301	10.1000031		
		Азот (II) оксид (Азота оксид) (6)		0.00022724	2.14319128		
		Сера диоксид (Ангидрид сернистый,		0.0112266	105.882553		
		Сернистый газ, Сера (IV) оксид) (516)		0.0112200	103.002333		
		=		0.03179484	299.869847		
		Углерод оксид (Окись углерода,		0.031/9464	299.009047		
		Угарный газ) (584)		0 00405	20 1051601		
		Взвешенные частицы (116)		0.00405	38.1971691		
		Пыль неорганическая, содержащая		0.0398475	375.817702		
		двуокись кремния в %: 70-20 (шамот,				Ž	
		цемент, пыль цементного производства	5			силами	Ħ
		- глина, глинистый сланец, доменный	квартал			27.	метод
		шлак, песок, клинкер, зола,	g G			0	Me
		кремнезем, зола углей казахстанских	저			MIZ	'Z
		месторождений) (494)	Д			Æ	Ħ
0019	Жилые дома	Азота (IV) диоксид (Азота диоксид) (ω	0.005608	19.0408737	0	Расчетный
		4)	o B B			E E	D.
		Азот (II) оксид (Азота оксид) (6)	\vdash	0.0009113	3.09414198	ω ω	Ра
		Сера диоксид (Ангидрид сернистый,		0.031347	106.432644	S	
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.0887778	301.42776		
		Угарный газ) (584)					
		Пыль неорганическая, содержащая		0.1112625	377.770187		
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
0020	Репродуктор №3 (Азота (IV) диоксид (Азота диоксид) (0.002404	22.673085		
3020	Ремонтная мастерская	4)		0.002404	22.073003		
	(MTM))	-'					
	(1111)	Азот (II) оксид (Азота оксид) (6)		0.00039065	3.68437632		
		Сера диоксид (Ангидрид сернистый,	1	0.0157464	148.510593	I	1

шлак, песок, клинкер, зола,

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

1	2	3	5	6	7	8	
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.1297814	1224.02027		
		Угарный газ) (584)					
		Взвешенные частицы (116)		0.01938	182.780528		
		Пыль неорганическая, содержащая		0.077832	734.064707		
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
021	Репродуктор №1 (АБК)	Азота (IV) диоксид (Азота диоксид) (0.00504	47.5342548		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000819	7.72431641		
		Сера диоксид (Ангидрид сернистый,		0.031347	295.646089		
		Сернистый газ, Сера (IV) оксид) (516)				Z	
		Углерод оксид (Окись углерода,	E	0.0887778	837.298923	E E	ㅂ
		Угарный газ) (584)	квартал			15%	O H
		Взвешенные частицы (116)	g Q	0.0039	36.7824591	ប៊	Me
		Пыль неорганическая, содержащая	Ä Ä	0.1112625	1049.36112	MZ	Σς
		двуокись кремния в %: 70-20 (шамот,	Д			HISI	IH
		цемент, пыль цементного производства	ω			Собственными	Расчетный метод
		- глина, глинистый сланец, доменный	හ හ හ			Д Н	S.
		шлак, песок, клинкер, зола,	\leftarrow			0	Ра
		кремнезем, зола углей казахстанских				ပိ	
		месторождений) (494)					
022	Репродуктор №2 (Азота (IV) диоксид (Азота диоксид) (0.004456	42.0263174		
	Ремонтная мастерская	4)					
	(MTM))						
		Азот (II) оксид (Азота оксид) (6)		0.0007241	6.82927657		
		Сера диоксид (Ангидрид сернистый,		0.027702	261.268636		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.1317904	1242.96795		
		Угарный газ) (584)					
		Взвешенные частицы (116)		0.01968	185.609947		
		Пыль неорганическая, содержащая		0.098325	927.342382		
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					1

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

1	2	3	5	6	7	8	9
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
023	Репродуктор №2 (Азота (IV) диоксид (Азота диоксид) (0.0001728	1.62974588		
	Баня)	4)					
		Азот (II) оксид (Азота оксид) (6)		0.00002808	0.26483371		
		Углерод оксид (Окись углерода,		0.0510286	481.271126		
		Угарный газ) (584)					
		Взвешенные частицы (116)		0.00762	71.8672663		
24	Площадка для	Азота (IV) диоксид (Азота диоксид) (0.000908	8.56371099		
	выращивания кукурузы	4)					
		Азот (II) оксид (Азота оксид) (6)		0.00014755	1.39160304		
		Сера диоксид (Ангидрид сернистый,		0.00729	68.7549043		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.020646	194.72068		
		Угарный газ) (584)					
		Взвешенные частицы (116)		0.0015	14.1470997	Z	
		Пыль неорганическая, содержащая	5	0.025875	244.037469	a M	Ħ
		двуокись кремния в %: 70-20 (шамот,	€			Ę	O
		цемент, пыль цементного производства	квартал				Me
		- глина, глинистый сланец, доменный	저			Собственными	Расчетный метод
		шлак, песок, клинкер, зола,	Д			1Hb	Ħ
		кремнезем, зола углей казахстанских	ත ස ස			0	e e
		месторождений) (494)				E C)	ja Pa
001	Репродуктор №3	Аммиак (32)	H	0.005544		0	P
		Сероводород (Дигидросульфид) (518)		0.00009072		ŭ	
		Метан (727*)		0.026712			
		Метанол (Метиловый спирт) (338)		0.0002058			
		Гидроксибензол (155)		0.000021			
		Этилформиат (Муравьиной кислоты		0.0003192			
		этиловый эфир) (1486*)		0 000105			
		Пропаналь (Пропионовый альдегид,		0.000105			
		Метилуксусный альдегид) (465)		0.00012432			
		Гексановая кислота (Капроновая		0.00012432			
		кислота) (137) Диметилсульфид (227)		0.00016128			
		диметилсульфид (227) Метантиол (Метилмеркаптан) (339)		0.00016128			
		Метиламин (Монометиламин) (341)		0.0000042			
		Пыль меховая (шерстяная, пуховая) (0.000084			
		1050*)		0.0023010			
002	Репродуктор №3	Кальций дигидроксид (Гашеная известь,		0.000056			

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

1	2	ай, TOO "KazBeef LTD" 3	5	6	7	8	9
		Пушонка) (304)					
		Аммиак (32)		0.020064			
		Сероводород (Дигидросульфид) (518)		0.00032832			
		Метан (727*)		0.096672			
		Метанол (Метиловый спирт) (338)		0.0007448			
		Гидроксибензол (155)		0.000076			
		Этилформиат (Муравьиной кислоты		0.0011552			
		этиловый эфир) (1486*)					
		Пропаналь (Пропионовый альдегид,		0.00038			
		Метилуксусный альдегид) (465)					
		Гексановая кислота (Капроновая		0.00044992			
		кислота) (137)					
		Диметилсульфид (227)		0.00058368			
		Метантиол (Метилмеркаптан) (339)		0.00000152			
		Метиламин (Монометиламин) (341)		0.000304			
		Пыль меховая (шерстяная, пуховая) (0.0083296		4	
		1050*)	н			силами	Hr.
6003	Репродуктор №3	Аммиак (32)	квартал	0.0064548		15	roj
		Сероводород (Дигидросульфид) (518)	d d	0.000105624			- Fe
		Метан (727*)	, B	0.0311004		Ş	74
		Метанол (Метиловый спирт) (338)	Д	0.00023961		<u> </u>	THE STATE OF THE S
		Гидроксибензол (155)		0.00002445		H	E 0
		Этилформиат (Муравьиной кислоты	හ ග ග	0.00037164		Собственными	Расчетный метод
		этиловый эфир) (1486*)				υ υ	Pa
		Пропаналь (Пропионовый альдегид,		0.00012225		Ö	
		Метилуксусный альдегид) (465)					
		Гексановая кислота (Капроновая		0.000144744			
		кислота) (137)					
		Диметилсульфид (227)		0.000187776			
		Метантиол (Метилмеркаптан) (339)		0.000000489			
		Метиламин (Монометиламин) (341)		0.0000978			
		Пыль меховая (шерстяная, пуховая) (0.0011736			
		1050*)					
5004	Репродуктор №3	Аммиак (32)		0.0064548			
		Сероводород (Дигидросульфид) (518)		0.000105624			
		Метан (727*)		0.0311004			
		Метанол (Метиловый спирт) (338)		0.00023961			
		Гидроксибензол (155)		0.00002445			
		Этилформиат (Муравьиной кислоты		0.00037164			
		этиловый эфир) (1486*)					

Пыль меховая (шерстяная, пуховая) (

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Пропаналь (Пропионовый альдегид,		0.00012225			
		Метилуксусный альдегид) (465)					
		Гексановая кислота (Капроновая		0.000144744			
		кислота) (137)					
		Диметилсульфид (227)		0.000187776			
		Метантиол (Метилмеркаптан) (339)		0.00000489			
		Метиламин (Монометиламин) (341)		0.0000978			
		Пыль меховая (шерстяная, пуховая) (0.0011736			
		1050*)					
005 Pe	епродуктор №3	Аммиак (32)		0.016632			
		Сероводород (Дигидросульфид) (518)		0.00027216			
		Метан (727*)		0.080136			
		Метанол (Метиловый спирт) (338)		0.0006174			
		Гидроксибензол (155)		0.0000174			
		Этилформиат (Муравьиной кислоты		0.0009576			
		этиловый эфир) (1486*)		0.0003370			
		Пропаналь (Пропионовый альдегид,		0.000315		Ž	
		пропаналь (пропионовый альдегид, Метилуксусный альдегид) (465)	E C	0.000313		пал	Ħ
			E O.	0.00037296		SZ	EH (I)
		Гексановая кислота (Капроновая	квартал	0.00037296		Собственными силами	Расчетный метод
		кислота) (137)		0.00048384		IMI	ž
		Диметилсульфид (227)	Д			H	E
		Метантиол (Метилмеркаптан) (339)	ර ස ස	0.00000126		G G	9
		Метиламин (Монометиламин) (341)		0.000252		GE	ر ت
		Пыль меховая (шерстяная, пуховая) (H	0.003024		90	Ď.
	0	1050*)				ŭ	
006 Pe	епродуктор №3	Аммиак (32)		0.00084			
		Сероводород (Дигидросульфид) (518)		0.000014			
		Метан (727*)		0.00455			
		Метанол (Метиловый спирт) (338)		0.0000392			
		Гидроксибензол (155)		0.00000385			
		Этилформиат (Муравьиной кислоты		0.0000672			
		этиловый эфир) (1486*)					
		Пропаналь (Пропионовый альдегид,		0.0000168			
		Метилуксусный альдегид) (465)					
		Гексановая кислота (Капроновая		0.0000392			
		кислота) (137)					
		Диметилсульфид (227)		0.000056			
		Метантиол (Метилмеркаптан) (339)		5.6e-8			
		Метиламин (Монометиламин) (341)	1	0.00001092			1

0.0001568

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

Район	· MN	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"	

	. Биржан Сал, с. Мамай,		_				
1	2	3	5	6	7	8	9
		1050*)					
6007	Репродуктор №3	Пыль зерновая /по грибам хранения/ (1.12267			
		487)					
6008	Репродуктор №3	Пыль зерновая /по грибам хранения/ (0.02133			
		487)					
6012	Репродуктор №3	Аммиак (32)		0.0732			
		Сероводород (Дигидросульфид) (518)		0.09			
6013	Репродуктор №3	Пыль неорганическая, содержащая		0.008			
		двуокись кремния в %: менее 20 (
		доломит, пыль цементного производства					
		- известняк, мел, огарки, сырьевая					
		смесь, пыль вращающихся печей,					
		боксит) (495*)					
6014	Репродуктор №3	Пыль неорганическая, содержащая		0.000032			
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства				Z	
		- глина, глинистый сланец, доменный	5			силами	Ħ
		шлак, песок, клинкер, зола,	квартал			[7]	Расчетный метод
		кремнезем, зола углей казахстанских	3ak				M
6045		месторождений) (494)				НЫМИ	Й
6017	Репродуктор №3 (Сероводород (Дигидросульфид) (518)	Д	0.0000009772	0.49768271	里	岩
	Склад ГСМ)	2 210 10 /	ත ස ස	0 000040000	177 046140	0 0	9
		Алканы C12-19 /в пересчете на C/ (0.0003480228	177.246142		້ວ
		Углеводороды предельные С12-С19 (в	\vdash			00 CO	Д
		пересчете на С); Растворитель РПК-				O	
C010	Down on Mag	265II) (10)		0.00010108			
6018	Репродуктор №3 (Склад ГСМ)	Сероводород (Дигидросульфид) (518)		0.00010108			
	СКЛАД I СМ)	Алканы C12-19 /в пересчете на C/ (0.03599892			
		Углеводороды предельные C12-C19 (в		0.03333032			
		пересчете на С); Растворитель РПК-					
		265П) (10)					
6019	Репродуктор №3 (Диметилбензол (смесь о-, м-, п-		0.125			
0019	Лакокрасочные	изомеров) (203)		0.123			
	работы)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	Paccara/	Уайт-спирит (1294*)		0.0625			
6020	Репродуктор №1 (Кальций дигидроксид (Гашеная известь,		0.0000583			
	Содержание КРС)	Пушонка) (304)		1.0000000			
		Аммиак (32)		0.0140448			
		Сероводород (Дигидросульфид) (518)		0.000229824			

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

1	. Биржан Сал, с. Мамай, 2	3	5	6	7	8	9
		Метан (727*)		0.0676704			-
		Метанол (Метиловый спирт) (338)		0.00052136			
		Гидроксибензол (155)		0.0000532			
		Этилформиат (Муравьиной кислоты		0.00080864			
		этиловый эфир) (1486*)					
		Пропаналь (Пропионовый альдегид,		0.000266			
		Метилуксусный альдегид) (465)		3.000200			
		Гексановая кислота (Капроновая		0.000314944			
		кислота) (137)		0.000311311			
		Диметилсульфид (227)		0.000408576			
		Метантиол (Метилмеркаптан) (339)		0.000400370			
		Метиламин (Монометиламин) (341)		0.0002128			
		Пыль меховая (шерстяная, пуховая) (0.00583072			
		1050*)		0.00383072			
6021	Репродуктор №1 (Аммиак (32)		0.01155			
0021	Содержание КРС)	AMMUAK (32)		0.01133			
	содержание кгс)	Сероводород (Дигидросульфид) (518)		0.000189		Z	
		Метан (727*)	E E	0.05565		дап	Ħ C
		метан (/2/^) Метанол (Метиловый спирт) (338)	квартал	0.00042875		CZ.	EH (I)
		Гидроксибензол (155)	а .a	0.00042875		Z	Ž
				0.00004373		PIM	й
		Этилформиат (Муравьиной кислоты	Д	0.000665		田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	胃
		этиловый эфир) (1486*)	8 8 Q	0.00001075		Φ B	e d
		Пропаналь (Пропионовый альдегид,		0.00021875		Собственными силами	Расчетный метод
		Метилуксусный альдегид) (465)	\vdash	0.000259		00	Сч
		Гексановая кислота (Капроновая		0.000259		O	
		кислота) (137)		0.000336			
		Диметилсульфид (227)		0.000336			
		Метантиол (Метилмеркаптан) (339)					
		Метиламин (Монометиламин) (341)		0.000175			
		Пыль меховая (шерстяная, пуховая) (0.0021			
	7 71 (1050*)		0.0100576			
022	Репродуктор №1 (Аммиак (32)		0.0180576			
	Содержание КРС)			0.000005100			
		Сероводород (Дигидросульфид) (518)		0.000295488			
		Метан (727*)		0.0870048			
		Метанол (Метиловый спирт) (338)		0.00067032			
		Гидроксибензол (155)		0.0000684			
		Этилформиат (Муравьиной кислоты		0.00103968			
		этиловый эфир) (1486*)					
	1	Пропаналь (Пропионовый альдегид,		0.000342			

Кальций дигидроксид (Гашеная известь,

6037

Репродуктор №2 (

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Метилуксусный альдегид) (465)					
		Гексановая кислота (Капроновая		0.000404928			
		кислота) (137)					
		Диметилсульфид (227)		0.000525312			
		Метантиол (Метилмеркаптан) (339)		0.000001368			
		Метиламин (Монометиламин) (341)		0.0002736			
		Пыль меховая (шерстяная, пуховая) (0.0032832			
		1050*)					
023	Репродуктор №1 (Аммиак (32)		0.004488			
023	Содержание КРС)	Individual (32)		0.004400			
	содержание кго	Сероводород (Дигидросульфид) (518)		0.00007344			
		Метан (727*)		0.021624			
		Метанол (Метиловый спирт) (338)		0.0001666			
		Гидроксибензол (155)		0.0001000			
		Этилформиат (Муравьиной кислоты		0.0002584			
		этиловый эфир) (1486*)		0.0002304			
		Пропаналь (Пропионовый альдегид,		0.000085		силами	
		Метилуксусный альдегид) (465)	a E	0.000003		пап	Ħ O
		Гексановая кислота (Капроновая	El Q	0.00010064		CZ	0
		кислота) (137)	квартал	0.00010004			×
		Диметилсульфид (227)		0.00013056		PIM	Ž
		диметилсульфид (227) Метантиол (Метилмеркаптан) (339)	М	0.00013030		H	H
		Метиламин (Монометиламин) (341)	ლ დ Q ₁	0.000068		Ф	4 6
		Пыль меховая (шерстяная, пуховая) (0.00008		Ö	Расчетный метод
		1050*)	\vdash	0.000818		Собственными	щ
024	Репродуктор №1 (Пыль зерновая /по грибам хранения/ (1.12267		O	
727	Ангар для	487)		1.12207			
	переработки и	107)					
	хранения кормов)						
025	репродуктор №1 (Пыль зерновая /по грибам хранения/ (0.02133			
J	Загрузка кормушек)	487)		0.02133			
029	Репродуктор №1 (Аммиак (32)		0.0732			
J	Площадка буртования	Individual (32)		0.0732			
	и компостирования						
	навоза)						
	павозај	Сероводород (Дигидросульфид) (518)		0.09			
036	Репродуктор №1 (Диметилбензол (смесь о-, м-, п-		0.0625			
000	Репродуктор №1 (Покрасочные работы)	диметилоензол (смесь о-, м-, п- изомеров) (203)		0.0625			
	покрасочные расоты)	изомеров) (203) Уайт-спирит (1294*)		0.0625			
		уаит-спирит (1294")		0.0025		1	

0.0000467

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

Район им.	. Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
-----------	----------	------	----	--------	-----	----------	------

1	2	3	5	6	7	8	9
	Содержание КРС)	Пушонка) (304)					
		Аммиак (32)		0.0140448			
		Сероводород (Дигидросульфид) (518)		0.000229824			
		Метан (727*)		0.0676704			
		Метанол (Метиловый спирт) (338)		0.00052136			
		Гидроксибензол (155)		0.0000532			
		Этилформиат (Муравьиной кислоты		0.00080864			
		этиловый эфир) (1486*)					
		Пропаналь (Пропионовый альдегид,		0.000266			
		Метилуксусный альдегид) (465)					
		Гексановая кислота (Капроновая		0.000314944			
		кислота) (137)					
		Диметилсульфид (227)		0.000408576			
		Метантиол (Метилмеркаптан) (339)		0.000001064			
		Метиламин (Монометиламин) (341)		0.0002128			
		Пыль меховая (шерстяная, пуховая) (0.00583072			
		1050*)				MT	_
6038	Репродуктор №2 (Аммиак (32)	la la	0.01155		613	10;
	Содержание КРС)		T d a			ΰ	1e1
	,	Сероводород (Дигидросульфид) (518)	квартал	0.000189		Собственными силами	Расчетный метод
		Метан (727*)	Д	0.05565		TPI TPI TPI TPI TPI TPI TPI TPI TPI TPI	PIŢ
		Метанол (Метиловый спирт) (338)	m m	0.00042875		H	E O
		Гидроксибензол (155)	d g	0.00004375		B E	74
		Этилформиат (Муравьиной кислоты	H	0.000665		บั	Рас
		этиловый эфир) (1486*)				000	
		Пропаналь (Пропионовый альдегид,		0.00021875			
		Метилуксусный альдегид) (465)					
		Гексановая кислота (Капроновая		0.000259			
		кислота) (137)					
		Диметилсульфид (227)		0.000336			
		Метантиол (Метилмеркаптан) (339)		0.000000875			
		Метиламин (Монометиламин) (341)		0.000175			
		Пыль меховая (шерстяная, пуховая) (0.0021			
		1050*)					
6039	Репродуктор №2 (Аммиак (32)		0.0180576			
	Содержание КРС)						
		Сероводород (Дигидросульфид) (518)		0.000295488			
		Метан (727*)		0.0870048			
		Метанол (Метиловый спирт) (338)		0.00067032			
		Гидроксибензол (155)		0.0000684			

ЭРА v3.0 Иваненко А.А. Таблица 5.4.1

План - график

1	2	3	5	6	7	8	9
		Этилформиат (Муравьиной кислоты		0.00103968			
		этиловый эфир) (1486*)					
		Пропаналь (Пропионовый альдегид,		0.000342			
		Метилуксусный альдегид) (465)					
		Гексановая кислота (Капроновая		0.000404928			
		кислота) (137)					
		Диметилсульфид (227)		0.000525312			
		Метантиол (Метилмеркаптан) (339)		0.000001368			
		Метиламин (Монометиламин) (341)		0.0002736			
		Пыль меховая (шерстяная, пуховая) (0.0032832			
		1050*)					
6040	Репродуктор №2 (Аммиак (32)		0.004488			
	Содержание КРС)	, ,					
		Сероводород (Дигидросульфид) (518)		0.00007344			
		Метан (727*)		0.021624			
		Метанол (Метиловый спирт) (338)		0.0001666			
		Гидроксибензол (155)		0.000017		силами	L-c
		Этилформиат (Муравьиной кислоты	L. C.	0.0002584		Eija	0
		этиловый эфир) (1486*)	T d			Č	Расчетный метод
		Пропаналь (Пропионовый альдегид,	квартал	0.000085		Ę	2
		Метилуксусный альдегид) (465)	m m			TI TI	遺
		Гексановая кислота (Капроновая		0.00010064		H	H
		кислота) (137)	හ අ ව			Собственными	Ψ.
		Диметилсульфид (227)	μ Η	0.00013056		50) a
		Метантиол (Метилмеркаптан) (339)		0.0000034		000	
		Метиламин (Монометиламин) (341)		0.000068			
		Пыль меховая (шерстяная, пуховая) (0.000816			
		1050*)					
6041	Репродуктор №2 (Пыль зерновая /по грибам хранения/ (1.118			
	Ангар для	487)					
	переработки и						
	хранение кормов)						
6042	Репродуктор №2 (Пыль зерновая /по грибам хранения/ (0.02133			
-	Загрузка кормушек)	487)					
6046	Репродуктор №2 (Аммиак (32)		0.0732			
	Площадка буртования	- (/					
	и компостирования						
	навоза)						
	,	Сероводород (Дигидросульфид) (518)		0.09			
6047	Репродуктор №2 (Пыль неорганическая, содержащая		0.0000008			

ЭРА v3.0 Иваненко А.А. Таблица 5.4.1

План - график

Район	им.	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"	
-------	-----	--------	------	----	--------	-----	----------	------	--

1	. Биржан Сал, с. Мамай 2	3	5	6	7	8	9
-	Крематор)	двуокись кремния в %: 70-20 (шамот,	-	, ,	,	•	,
	прематору	цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
6052	Репродуктор №2 (Сероводород (Дигидросульфид) (518)		0.0000009772	0.99541611		
0002	Склад ГСМ)	ocposodopod (diridpocytisting) (oro)		0.0000003772	0.33011011		
	010102 1 011,	Смесь углеводородов предельных С1-С5		0.0730836	74445.9611		
		(1502*)		0.070000	, , , , , , , , , , , , , , , , , , , ,		
		Смесь углеводородов предельных С6-С10		0.0270108	27514.3119		
		(1503*)					
		Пентилены (амилены - смесь изомеров)		0.0027	2750.33106		
		(460)					
		Бензол (64)		0.002484	2530.30457		
		Диметилбензол (смесь о-, м-, п-		0.0003132	2530.30457 319.038403		
		изомеров) (203)				MZ	<u></u>
		Метилбензол (349)	квартал	0.0023436	2387.28736	113	Расчетный метод
		Этилбензол (675)	rd a	0.0000648	66.0079454	ΰ	Te1
		Алканы C12-19 /в пересчете на C/ (ÇB 0	0.0003480228	354.510339	\$	7.F
		Углеводороды предельные C12-C19 (в	щ			TPD TPD	1BIÌ
		пересчете на С); Растворитель РПК-				E	E (1)
		265Π) (10)	Dag 3			B H	7 T
6053	Репродуктор №2 (Склад ГСМ)	Сероводород (Дигидросульфид) (518)	H	0.00010108	354.510339	3060	Ра
	, ,	Смесь углеводородов предельных С1-С5		0.04885774			
		(1502*)		0 01005700			
		Смесь углеводородов предельных C6-C10 (1503*)		0.01805722			
				0.001805			
		Пентилены (амилены - смесь изомеров) (460)		0.001803			
		Бензол (64)		0.0016606			
		Диметилбензол (смесь о-, м-, п-		0.0010000			
		изомеров) (203)		0.00020936			
		изомеров) (203) Метилбензол (349)		0.00156674			
		Этилбензол (675)		0.00138874			
		Алканы C12-19 /в пересчете на C/ (0.00004332			
		Углеводороды предельные C12-C19 (в		0.03333032			
		пересчете на С); Растворитель РПК-					
		265 _П) (10)					
	1	20011) (10)					

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

Район им	. Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"
----------	----------	------	----	--------	-----	----------	------

Раион им.	. Биржан Сал, с. Мамай,		<u> </u>			_	_
1	2	3	5	6	7	8	9
6054	Репродуктор №2 (Диметилбензол (смесь о-, м-, п-		0.125			
	Покрасочные работы)	изомеров) (203)					
		Уайт-спирит (1294*)		0.0625			
6055	Пастбищные отгоны	Пыль неорганическая, содержащая		0.00333			
		двуокись кремния в %: менее 20 (
		доломит, пыль цементного производства					
		- известняк, мел, огарки, сырьевая					
		смесь, пыль вращающихся печей,					
		боксит) (495*)					
6056	Пастбищные отгоны	Пыль неорганическая, содержащая		0.000001			
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)				Z	
6057	Репродуктор №3 (Железо (II, III) оксиды (в пересчете	5	0.00407083333		aM	Ħ
	Ремонтная мастеркая	на железо) (диЖелезо триоксид, Железа	квартал			27.	OH
	(MTM))	оксид) (274)	g a	0.004070833333 0.000720833333 0.005 0.0008125 0.0000095 0.000166666667			
		Марганец и его соединения (в	저	0.00072083333		MIZ	之
		пересчете на марганца (IV) оксид) (Д			HP 1	HP.
		327)	හ අ Q			0	ГЭГ
		Азота (IV) диоксид (Азота диоксид) (Q,	0.005		E C)	20 g
		4)	\vdash			õ	Pč
		Азот (II) оксид (Азота оксид) (6)				ŭ	
		Серная кислота (517)					
		Фтористые газообразные соединения /в		0.0001666667			
		пересчете на фтор/ (617)		0 00140			
		Взвешенные частицы (116)		0.00142			
		Пыль абразивная (Корунд белый,		0.0008			
6050	77.1	Монокорунд) (1027*)		0 00075			
6058	Репродуктор №1 (Железо (II, III) оксиды (в пересчете		0.00275			
	Ремонтная	на железо) (диЖелезо триоксид, Железа					
	мастерская)	оксид) (274)		0 00040055556			
		Марганец и его соединения (в		0.00048055556			
		пересчете на марганца (IV) оксид) (
		327)		0.005			
		Азота (IV) диоксид (Азота диоксид) (0.005			
		4)		0 0000105			
		Азот (II) оксид (Азота оксид) (6)		0.0008125			1

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

Район им	. Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"	
----------	----------	------	----	--------	-----	----------	------	--

	Биржан Сал, с. Мамай,		_				1
1	2	3	5	6	7	8	9
6059	Репродуктор №2 (Фтористые газообразные соединения /в пересчете на фтор/ (617) Взвешенные частицы (116) Пыль абразивная (Корунд белый, Монокорунд) (1027*) Железо (II, III) оксиды (в пересчете		0.00011111111 0.00142 0.0008 0.00275			
	Ремонтная мастерская (МТМ))	на железо) (диЖелезо триоксид, Железа оксид) (274) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327) Азота (IV) диоксид (Азота диоксид) (0.00048055556			
6060	Жилые дома	4) Азот (II) оксид (Азота оксид) (6) Фтористые газообразные соединения /в пересчете на фтор/ (617) Взвешенные частицы (116) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей,	з в квартал	0.0008125 0.000111111111 0.00126 0.008		Собственными силами	Расчетный метод
6061	Жилые дома	боксит) (495*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	1 pas	0.000024		Cofcrb	Pacy
6062	Репродуктор №3 (Ремонтная мастеркая (МТМ))	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства — известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)		0.007			
6063	Репродуктор №3 (Ремонтная мастеркая (МТМ))	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный		0.00000096			

ЭРА v3.0 Иваненко А.А. Таблица 5.4.1

План - график

Район	MM .	Биржан	Сал,	c.	Мамай,	TOO	"KazBeef	LTD"	

	. Биржан Сал, с. Мамай,		Т.	_	ı	T	
1	2	3	5	6	7	8	9
		шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)					
6064	Репродуктор №3 (Склад ГСМ)	Бутан (99)		7.36522423284			
6065	Репродуктор №3 (Склад ГСМ)	Бутан (99)		7.36522423284			
6066	Репродуктор №1 (АБК)	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)		0.007			
6067	Репродуктор №1 (АБК)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	квартал	0.00000667		и силами	метод
6068	Репродуктор №2 (Ремонтная мастерская (МТМ))	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства – известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)	1 pas B B B	0.007		Собственными	Расчетный метод
6069	Репродуктор №2 (Ремонтная мастерская (МТМ))	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		0.00001			
6070	Репродуктор №2 (Баня)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		0.00000467			

ЭРА v3.0 Иваненко A.A. Таблица 5.4.1

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

Район им. Биржан Сал, с. Мамай, ТОО "KazBeef LTD"

1	2	3	5	6	7	8	9
6071	Площадка для	Пыль неорганическая, содержащая		0.000001			
	выращивания кукурузы	двуокись кремния в %: 70-20 (шамот,				M	72
		цемент, пыль цементного производства	a E			IHE IZ	H FE
		- глина, глинистый сланец, доменный	a Cr			la k	0 H
		шлак, песок, клинкер, зола,	Д Д			E Z	счетнь метод
		кремнезем, зола углей казахстанских	H K			90	Ра
		месторождений) (494)				ပိ	

5.5. Оценка ожидаемого воздействия на воды

Хозяйственно-питьевое водоснабжение для работников и проиводственных объектов осущетвляется от существующих гидрологических скважин №№49-10э, 47-10э, 50-10э. Имеется дествующее разрешение на специальное водопользование №KZ25VTE00114299 Есиль 04-K-45/22 от $11.05.2022 \, \Gamma$.

Вода из скважин подается в резервуары чистой воды. Затем насосной станцией 2 подъема подается в наружную водопроводную сеть. Для обеззараживания подземной воды, имеется бактерицидные установки, которые установлены в помещении насосной станции 2 подъема.

Бактерицидная установка установлена непосредственно перед подачей воды в сеть потребителям, на напорном трубопроводе насосов.

Резервуары чистой воды (РЧВ) являются запасно-регулирующей емкостью для хозяйственно-питьевого-противопожарного водопровода.

Хозяйственно-бытовые сточные воды от административно-бытового комплекса вентпункта, ремонтной мастерской и здания отела отводятся в местные выгребы, $\mathbf{x}/\mathbf{6}$, объемом 3 \mathbf{m}^3 .

Сточная вода от столовой АБК сбрасывается в выгреб через жироуловитель. Производственные сточные воды от здания отела отводятся тоже в местные ж/б выгребы.

Сброс стоков осуществляется по раздельной канализации.

По мере накопления выгреб очищается и нечистоты вывозяться аценизаторской машиной в специальное отведенное место.

Сточных вод, непосредственно сбрасываемых в поверхностные и подземные водные объекты, предприятие не имеет.

На территории оросительной установки (участок для выращивания кукурузы) имеется металлический контейнер в которой установлен самодельная печь, работающая на твердом топливе для обогрева рабочих, которая распологается на территории водоохраной зоны и полосы реки Атан. В Заявлении о намечаемой деятельности было указана река Тассу. Река Атан начинается после слияния рек Тассу и Шат. В связи с этим, металлический контейнер расположен рядом с рекой Атан. На данный момент, на этот водный объект установлены границы и размеры водоохранной зоны и полосы. ТОО «КаzВeefLtd» был разработан проект по «Установлению границ водоохранных зон и полос реки Атан (правый берег) на рассматриваемом створе 5 км юго □западнее села Енбекшильдер, района Биржан Сал, Акмолинской области» и полученно согласование РГУ «Есильская бассейновая инспекция по регулированию использования и охране водных ресурсов КВР МЭПР РК» от 25.07.2023 №3Т-2023-01265783. Водоохраная зона реки Атан составляет 500-600 метров, ширина водоохраной полосы составляет 50 метров.

ТОО «KazBeefLtd» имеет разрешение на специальное водопользование на забор и (или) использование поверхностных вод с применением сооружений или технических устройств №KZ18VTE00178445 Серия: Есиль 04-K-48/23 от 31.05.2023 года выданным РГУ «Есильская бассейновая инспекция по регулированию использования и охране водных ресурсов Комитета по водным ресурсам Министерства экологии, геологии и природных ресурсов Республики Казахстан».

5.5.1. Воздействие на поверхностные и подзменые воды

Ближайший водный объект является озеро Мамай находится на расстоянии 3.0 км от репродуктора №3. Данный объект не входит в водоохранную зону и полосу водных объектов.

На территории оросительной установки (участок для выращивания кукурузы) имеется металлический контейнер в которой установлен самодельная печь, работающая на твердом топливе для обогрева рабочих, которая распологается на территории водоохраной зоны и полосы реки Атан.

Основным источником загрязнения на территории водосбора реки Атан являются смываемые вместе с водой во время таяния снега и ливневых дождей загрязняющие вещества природного и антропогенного происхождения. Выпусков промышленных и коммунальных сточных вод в реку Атан отсутствует.

Сбросы загрязняющих веществ в водные объекты отсутствуют.

5.5.2. Мероприятия по снижению воздействия на водные объекты

С целью снижения негативного воздействия на водные ресурсы проектными решениями предусматриваются следующие мероприятия:

внедрение технически обоснованных норм водопотребления;

сбор хозяйственно-бытовых стоков в специальный герметичный выгреб с последующей откачкой и вывозом специализированной организацией по договору;

складирование бытовых отходов в металлических контейнерах для сбора мусора;

заправка автотранспорта и спецтехники близлежайших АЗС;

ремонт автотранспорта и спецтехники на специальных отведенных промплощадках.

Предприятие не будет осуществлять сбросов производственных сточных вод непосредственно в подземные и поверхностные водные объекты прилегающей территории, поэтому прямого воздействия на поверхностные воды не окажет.

5.5.3. Методы и средства контроля за состоянием водных объектов

Организация экологического мониторинга поверхностных и подземных вод проектом не предусматривается.

5.5.4. Общие выводы

Деятельность не предполагает загрязнение токсичными компонентами поверхностных и подземных вод.

При реализации указанного проекта и выполнении предложенных мероприятий по охране поверхностных и подземных водных ресурсов ущерба водным источникам от объекта не ожидается.

5.6. Оценка ожидаемого воздействия на недра

Геологическая среда является системой чрезвычайной сложности и в сравнении с другими составляющими окружающей среды, обладает некоторыми особенностями, определяющими специфику геоэкологических прогнозов, важнейшими из которых являются:

- Необратимость процессов, вызванных внешними воздействиями (полная и частичная). О восстановлении состояния и структуры геологической среды после их нарушений можно говорить с определенной долей условности лишь по отношению к подземным водам, частично почвам.

- Инерционность, т. е. способность в течение определенного времени противостоять действию внешних факторов без существенных изменений своей структуры и состояния.
 - Разная по времени динамика формирования компонентов полихронности.

Породная компонента, сформировавшаяся, в основном, в течение многих миллионов лет находится, в равновесии (преимущественно статическом) с окружающей средой, газовая компонента более динамична, промежуточное положение занимают почвы.

- Низкая способность к саморегулированию или самовосстановлению по сравнению с биологической компонентой экосистем.

В результате техногенных воздействий на геологическую среду при производстве различных работ в ней происходят или могут происходить изменения, существенным образом меняющие ее свойства.

Оценка воздействия на геологическую среду базируется на требованиях к охране недр, включающих систему правовых, организационных, экономических, технологических и других мероприятий, направленных на сохранение свойств энергетического состояния верхних частей недр с целью предотвращения землетрясений, оползней, подтоплений, просадок грунтов.

При эксплуатации объекта каких-либо нарушений геологической среды не ожидается.

Технологические процессы в период эксплуатации установок не выходят за пределы территории предприятия, что исключает какое-либо негативное воздействие на компоненты окружающей среды.

5.7. Оценка ожидаемого воздействия на земельные ресурсы и почвы

5.7.1. Условия землепользования

Участок располагается на значительном удалении от жилых застроек. Строений и лесонасаждений, подлежащих сносу или вырубке, на отведенной территории нет.

На земельном участке предполагается антропогенный физический фактор воздействия, который характеризуется механическим воздействием на почво-грунты (движение автотранспорта и пр.).

Минимизация площади нарушенных земель будет обеспечиваться тем, что будет контролироваться режим землепользования и не допущения производства каких-либо работ за пределами установленных границ земельного участка.

5.7.2. Мероприятия по снижению воздействия на земельные ресурсы и почвы

Согласно статьи 238 Экологического кодекса РК физические и юридические лица при использовании земель не должны допускать загрязнение земель, захламление земной поверхности, деградацию и истощение почв.

При выполнении работ, с целью снижения негативного воздействия на почвенный покров необходимо предусмотреть следующие технические и организационные мероприятия:

- соблюдать нормы и правила строительства, включая соблюдение норм отвода земли и исключая нарушение почвенного покрова вне зоны отвода;
- исключить попадание в почвы отходов вредных материалов используемых в ходе строительных работ;
 - выполнить устройство гидроизоляции сооружений;

- складировать строительные отходы на специально оборудованных площадках, с последующим вывозом согласно заключенных договоров.

При выполнении строительных работ запрещается:

- нарушение растительного покрова и почвенного слоя за пределами отведенного земельного участка;

При эксплуатации объекта, с целью снижения негативного воздействия на почвенный покров необходимо:

- содержать занимаемый земельный участок в состоянии, пригодном для дальнейшего использования его по назначению;
- после завершения строительства выполнить на территории объекта планировочные работы, ликвидацию ненужных выемок и насыпей, организовать уборку строительного мусора и благоустройство земельного участка;
- обеспечить защиту земель от водной и ветровой эрозии, селей, оползней, подтопления, затопления, заболачивания, вторичного засоления, иссушения, уплотнения, загрязнения радиоактивными и химическими веществами, захламления, биогенного загрязнения, а также других негативных воздействий;
- обеспечить защиту земель от заражения карантинными объектами, чужеродными видами и особо опасными вредными организмами, не допускать их распространение, зарастание сорняками, кустарником и мелколесьем, а также не допускать другие виды ухудшения состояния земель;
- обеспечить складирование отходов производства и потребления в специально отведенных местах, с последующим вывозом согласно заключаемых договоров.

5.7.3. Методы и средства контроля за состоянием земельных ресурсов и почв

Организация мониторинга за состоянием земельных ресурсов и почв при реализации проектных решений не предусматривается.

5.7.4. Общие выводы

При оценке ожидаемого воздействия на земельные ресурсы и почвенный покров в части химического загрязнения прогнозируется, что при реализации проектных решений загрязнение земельных ресурсов и почв не ожидается. Загрязнение почвенного покрова отходами производства также не ожидается, в виду того, что отходы будут строго складироваться в специальных контейнерах, с недопущением разброса мусора по территории участка.

При эксплуатации объекта значительного воздействия на почво-грунты и земельные ресурсы не прогнозируется. При выполнении проектных решений и предложенных мероприятий по охране почвенного покрова ущерба не ожидается.

5.8. Оценка ожидаемых физических воздействий на окружающую среду

К физическим факторам, действующим на урбанизированных территориях, относятся шум, а также искусственные физические поля (вибрационные, электромагнитные, температурные). Источники шума и искусственных физических полей, с одной стороны, стохастически распределены по всей территории (транспортные магистрали, тепловые и электрические коммуникации и т.п.), а с другой – могут быть сосредоточены на ограниченных по площади участках в пределах городских территорий (крупное промышленное производство, ТЭЦ, телевизионные башни, железнодорожные

узлы и др.). В зависимости от этого потенциал воздействия источников шума и физических полей может изменяться в широких пределах и достигать значительных величин.

Физическое загрязнение связано с изменениями физических, температурно- энергетических, волновых и радиационных параметров внешней среды. Различают следующие виды физического загрязнения: тепловое, световое, электромагнитное, шумовое, вибрационное, радиактивное.

Температурное (тепловое) загрязнение. Важным метеоэлементом окружающей среды является температура, особенно в сочетании с высокой или очень низкой влажностью и скоростью ветра. Тепловое загрязнение определяется влиянием тепловых полей на окружающую среду. Отрицательное воздействие тепла обнаруживается путем повышения тепловых градиентов, что влечет за собой изменение энергетических процессов в компонентах окружающей среды.

Тепловое загрязнение на территории исследуемого объекта в основном связано с работой теплоэнергетических агрегатов. Выбросы тепла в окружающую среду достаточно быстро рассеиваются на большие пространства и не оказывают существенного влияния на экологическую обстановку прилегающих к исследуемому объекту территорий.

Электромагнитное загрязнение — изменение электромагнитных свойств окружающей среды. Естественными источниками такого загрязнения являются постоянное электрическое и магнитное поля Земли, радиоволны, генерируемые космическими источниками (Солнце, звезды), электрические процессы в атмосфере (разряды молний).

Искусственными источниками являются — высоковольтные линии электропередач, радиопередач, теле- и радиолокационные станции, электротранспорт, трансформаторные подстанции, бытовые электроприборы, компьютеры, СВЧ-печи, сотовые и радиотелефоны, спутниковая радиосвязь и т.п.

В период строительства и в период эксплуатации воздействие электромагнитных полей на компоненты окружающей среды будет незначительным. На объекте будет применяться электротехника современного качества, а также современные технологии, обеспеченные средствами защиты от электромагнитного излучения.

Для защиты работающего персонала от поражения электрическим током предусмотрено заземление и зануление металлических конструкций и электроустановок.

Световое загрязнение — нарушение естественной освещенности среды. Приводит к нарушению ритмов активности живых организмов. Использование на территории объекта современного светового оборудования исключает возможность светового загрязнения.

Для снижения светового воздействия необходимо: отключение неиспользуемой осветительной аппаратуры и уменьшение до минимального количества освещения в нерабочее время; правильное ориентирование световых приборов общего, дежурного, аварийного, охранного и прочего освещения; снижение уровня освещенности на участках временного пребывания людей.

Шумовое и вибрационное загрязнение. Шумовое загрязнение — раздражающий шум антропогенного происхождения, нарушающий жизнедеятельность живых организмов и человека. Основные источники шума на исследуемом объекте — производственное оборудование и транспорт. Вибрационное загрязнение — возникает в результате работы разных видов транспорта и вибрационного оборудования.

Максимальные уровни шума и вибрации от всего оборудования при работе не будут превышать предельно допустимых уровней, установленных Гигиеническими нормативами к

физическим факторам, оказывающим воздействие на человека, утвержденных приказом Министра здравоохранения Республики Казахстан № КР ДСМ-15 от 16.02.2022 г.

Для борьбы с шумом и вибрационными колебаниями предусматривается ряд мероприятий по ограничению шума и вибрации:

- использование строительных машин и оборудования, имеющих сертификаты соответствия и разрешенных к применению в РК;
- содержание оборудования в надлежащем порядке, своевременное проведение технического осмотра и ремонта, правильное осуществление монтажа вращающихся и движущихся деталей частей оборудования и тщательная их балансировка;
- поддержание в рабочем состоянии шумогасящих и виброизолирующих устройств основного технологического оборудования.
- применение эластичных амортизаторов, своевременное восстановление (замена) изношенных деталей;
 - обеспечение работающего персонала средствами индивидуальной защиты;
- прохождение работниками, занятыми при строительстве и эксплуатации объекта, медицинского осмотра;
 - сокращение времени пребывания в условиях шума и вибрации.

Радиационное загрязнение — превышение природного радиоактивного уровня среды. Радиационная безопасность персонала, населения и окружающей природной среды обеспечивается в соответствии с Законом Республики Казахстан «О радиационной безопасности населения» и с санитарными правилами № ҚР ДСМ-275/2020 от 15.12.2020 г. «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности».

На территории полигона источники радиационного излучения отсутствуют. Значение удельной эффективной активности намного ниже допустимых (для материалов I класса удельная эффективная активность Аэфф.м до 370 Бк/кг) и составляет 239 Бк/кг, что позволяет отнести продуктивную толщу по радиационно-гигиенической безопасности к строительным материалам I класса и определяет возможность ее использования при любых видах гражданского и промышленного строительства без ограничения. Наибольшими значениями радиоактивности (удельная эффективная активность естественных радионуклидов составила 213-263 Бк/кг) характеризуется юго-западная часть контрактной территории, где обнаженность гранитов наиболее лучшая.

Выводы. При соблюдении предусмотренных проектных решений вредные факторы физического воздействия на окружающую среду исключаются.

5.9. Оценка ожидаемого воздействия на растительный и животный мир

Рассматриваемая территория находится вне земель государственного лесного фонда и особо охраняемых природных территорий Республики Казахстан. Реликтовая растительность, а также растительность, занесенная в Красную Книгу РК, на исследуемой территории отсутствует. Также на территории намечаемой деятельности отсутствуют гнездовья редких птиц, а также животные занесенные в Красную Книгу РК.

Для минимизации негативного воздействия на объекты растительного и животного мира необходимо предусмотреть следующие мероприятия:

- не допускать расширения производственной деятельности за пределы отведенного земельного участка;
- строго соблюдать технологию ведения строительных работ и работ по производству щебня, использовать технику и оборудование с минимальным шумовым уровнем;
 - запрещать перемещение автотранспорта вне проезжих мест;
 - соблюдать установленные нормы и правила природопользования;
- проводить просветительскую работу экологического содержания в области бережного отношения и сохранения растительного и животного мира;
 - проводить озеленение и благоустройство территории предприятия.

Выводы. В целом воздействие намечаемой деятельности на природное состояние растительного и животного мира оценено как незначительное и не приведет к необратимым последствиям.

Так как количество и токсичность выбросов загрязняющих веществ объекта будет ниже допустимых нормативов, а сброс в окружающую среду не предусматривается, то дополнительное отрицательное воздействие на растительный и животный мир отсутствует.

При условии выполнения всех природоохранных мероприятий отрицательное влияние на растительный и животный мир исключается. Программа мониторинга за наблюдением растительного и животного мира не требуется.

5.10. Оценка ожидаемого воздействия на социально-экономическую среду

Прогноз социально-экономических последствий от деятельности предприятия — благоприятный. Проведение работ с соблюдением норм и правил техники безопасности, промышленной санитарии, противопожарной безопасности обеспечит безопасное проведение планируемых работ и не вызовет дополнительной, нежелательной нагрузки на социально-бытовую сферу.

6. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ В РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, В ТОМ ЧИСЛЕ ОТХОДОВ

6.1 Общие сведения

Образующиеся на предприятии отходы требуют для своей переработки специальных технологических процессов, не соответствующих профилю предприятия. Внедрение этих процессов на данном предприятии технически и экономически нецелесообразно.

Отходы должны периодически вывозиться на полигоны, а также сдаваться на переработку, утилизацию или обезвреживание специализированным предприятиям.

В периоды накопления отходов для сдачи на полигон или специализированные предприятия - переработчики предусматривается их временное накопление (хранение) на территории предприятия в специальных местах, в соответствии «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления» № ҚР ДСМ от 25.12.2020 г.

Образующиеся отходы будут временно храниться сроком не более 6 месяцев до их передачи третьим лицам, осуществляющим операции по утилизации, переработке, а также удалению отходов, не подлежащих переработке или утилизации (ст.320 Экологический Кодекс РК). В случае нарушения условий и сроков временного хранения отходов производства и потребления (но не более шести месяцев), установленных проектной документацией, такие отходы признаются размещенными с момента их образования.

Лица. осуществляющие операции управлению (Статья ЭК). ПО отходами обязаны выполнять соответствующие операции таким образом, чтобы не создавать угрозу причинения вреда жизни и (или) здоровью людей, экологического ущерба, и, в частности, без: 1) риска для вод, в том числе подземных, атмосферного воздуха, почв, животного и растительного мира; 2) отрицательного влияния на ландшафты особо природные территории.

Отходы подлежат временному складированию в специальных контейнерах на отведенных местах территории проведения проектных работ, с последующим вывозом согласно договору.

Содержание в чистоте и своевременная санобработка урн, мусорных контейнеров и площадок для размещения контейнеров, надзор за их техническим состоянием.

Предусматривается ежедневная уборка территории от мусора с последующим поливом.

После временного складирования и переработки все отходы вывозятся по договору в специализированным организациям.

При соблюдении всех предложенных решений и мероприятий образование и складирование отходов будет безопасным для окружающей среды.

Перечень отходов определен в соответствии со спецификой проведения работ, нормативными документами, действующими в РК, в соответствии с Классификатором отходов 6 августа 2021 года No 314.

В результате производственной деятельности предприятия образуются следующие виды отходов:

- смешанные коммунальные отходы;
- золошлак;
- отходы от красок и лаков;
- отходы сварки;
- отработанные моторные, трансмиссионные масла;
- отработанные масляные фильтры;
- отработанные шины;
- отработанные аккумуляторные батареи;
- промасленная ветошь;
- грунты пропитанные нефтью и мазутом;
- отработанные светодиодные лампы;
- отходы животноводства (трупы животных);
- фекалии животных, моча и навоз (включая использованную солому), жидкие стоки.

Смешанные коммунальные отходы – образуются в непроизводственной сфере деятельности персонала предприятия, а также при уборке помещений цехов и территории предприятия. Коммунальные отходы складируются в металлический контейнер и вывозятся сторонней организацией.

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №200301.

Состав отходов (%): бумага и древесина -60; тряпье -7; пищевые отходы -10; стеклобой -6; металлы -5; пластмассы -12.

Норма образования **коммунальных отходов** (m_1 , τ /год) определяется с учетом удельных санитарных норм образования бытовых отходов на промышленных предприятиях – (0.3 м^3 /год) на человека, списочной численности работающих на предприятии и средней плотности отходов, которая составляет 0.25 т/м^3 .

Расчетное годовое количество образующихся отходов составит:

$$M_{\text{обр}} = 0.3 \text{ м}^3$$
/год \times 150 чел \times 0.25 т/м $^3 =$ 11,25 т/год.

Золошлак — образуется при сжигании твердого топлива в печах. Представляет собой мелкодисперсный продукт от светло-серого до темно-серого цвета (в зависимости от количественного содержания частиц несгоревшего угля). По химическом у составу золошлак представлен оксидами кремния, алюминия, железа и кальция, на долю которых приходится до 95% массы материала. Из микроэлементов в золошлаках обнаруживаются бериллий, бор, молибден, скандий и др. Золошлак относится к IV классу опасности, не токсичен, не растворим в воде, не пожароопасен, не взрывоопасен. Золошлак складируется в металлический контейнер и используется на собственные нужды предприятия.

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: № 100101.

Норма образования шлака рассчитывается по формуле:

$${\rm M}_{\rm otx} = 0.01 \cdot {\rm B} \cdot {\rm A}_{\rm p} - {\rm N}_{\rm 3}$$
, т/год,
 $_{\rm \Gamma Дe} {\rm N}_{\rm 3} = 0.01 \cdot {\rm B} \cdot (\alpha \cdot {\rm A}_{\rm p} + {\rm q}_{\rm 4} \cdot {\rm Q}_{\rm T}/32680)$,

здесь α - доля уноса золы из топки, α =0,25, \mathbb{A}_p (зольность угля), \mathbb{q}_4 = потери тепла вследствие механической неполноты сгорания угля (7), $\mathbb{Q}_{\mathtt{T}}$ = теплота сгорания топлива в кДж/кг, 16120 кДж/кг - теплота сгорания условного топлива, \mathbb{B} - годовой расход угля, т/год.

 N_3 =0.01*51*(0.25*27.9+7*5200/32680)= 4.125 $M_{\rm otx}$ =0.01*51*27.9- 4.125 = 10.104 т/год (Кузнецкий уголь)

 N_3 =0.01*15*(0.25*42.3+7*3700/32680)= 1.705 $M_{\text{отx}}$ =0.01*15*42.3- 1.705 = 4.64 т/год (Экибазтуский уголь)

 N_3 =0.01*164*(0.25*22.5+7*5300/32680)= 11.09 $M_{\rm otx}$ =0.01*164*22.5- 11.09 = 25.81 т/год (Карагандинский уголь)

$$M_{\text{OTX}} = 4.125 + 1.075 + 25.81 = 31.0 \text{ TOHHa}$$

Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества образуется при выполнении окрасочных работ. Состав отхода (%): жесть – 94÷99, краска – 5÷1. Не пожароопасна, химически неактивна. Собирается на участке с твердым (водонепроницаемым) покрытием на территории строительной площадки для временного хранения сроком не более шести месяцев, по мере накопления осуществляется передача специализированным организациям. Эмаль, краска, лак, грунтовка - доставляется в жестяных банках, а растворители и уайт – спирит доставляется в стеклянных банках.

Согласно Классификатора отходов приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/ отходы имеют следующий код: № 080111^* .

Общий расход ЛКМ составляет -0.55 тонн. Масса краски в одной таре -0.003 т. Число тары: 0.55 т : 0.003 т = 183 шт. N=0.002*183+0.55*0.01=0.0421 т/год

Отходы сварки — представляет собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования. Размещаются в металлическом ящике, впоследствии будут сдаваться сторонней организацией. Согласно Классификатора отходов приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/ отходы имеют следующий код: № 120113.

Норма образования отхода составляет:

$$N = M_{oct} \cdot \alpha_{, T/\Gamma O J,}$$

где ${\rm M_{oct}}$ - фактический расход электродов, т/год; α - остаток электрода, α =0.015 от массы электрода.

$$N=1.0*0.015=0.015$$
 T/год

Отработанное моторное масло - образуется после истечения срока службы и вследствие снижения параметров качества при использовании в транспорте. Примерный химический состав (%): масло - 78, продукты разложения - 8, вода - 4, механические примеси - 3, присадки - 1, горючее - до 6. Общие показатели: вязкость - 36-94 мм ²/с (при 50°С); кислотное число - 0.14-1.19 мг КОН/г; смолы - 3.72-5.98; зольность - 0.28-0.60%; температура вспышки - 165-186°С. Временное накопление отработанного моторного масла осуществляется в герметичных емкостях с плотно закрывающейся крышкой. Отработанные моторные масла используются на предприятии для заполнения гидравлических систем.

Согласно Классификатора отходов приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/ отходы имеют следующий код: № $13.02.08^*$.

$$M_{\text{OTX}} = \sum N_i \cdot V_i \cdot k \cdot \rho \cdot L/L_H \cdot 10^{-3}$$

где N_i - количество автомашин i -ой марки, шт.; V_i - объем масла, заливаемого в машину i -ой марки при TO, π ; L - средний годовой пробег машины i -ой марки, тыс. км/год; Lн - норма пробега машины i -ой марки до замены масла, тыс. км; k - коэффициент полноты слива масла, k =0,9; P - плотность отработанного масла, P =0,9 кг/ π .

$$\mathbf{M}_{\text{отх}} = 45 * 10 * 0.9 * 0.9 * 15000/6000 * 10^{-3} = \mathbf{0.911}$$
 тонн/год

Отработанное трансмиссионное масло - образуется после истечения срока службы и вследствие снижения параметров качества при использовании в транспорте. Химический состав в %: масло – 78; продукты разложения – 8; вода – 4; маханические примеси – 3; присадки – 1; горючие – до 6. Общие показатели: вязкость – 36-94 мм2/с (при 50°С); кислотное число – 0.14-1.19 мг КОН/г; смолы – 3.72-5.98; зольность – 0.28-0.60%; температура вспышки – 165-186 °С. Временное накопление отработанного трансмиссионного масла осуществляется в герметичных емкостях с плотно закрывающейся крышкой. Отработанные масла используются на предприятии для заполнения гидравлических систем.

Согласно Классификатора отходов приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/ отходы имеют следующий код: № 130206^* .

$$\mathbf{M_{otx}} = 45 * 10 * 0.9 * 0.9 * 15000/6000 * 10^{-3} = \mathbf{0.911}$$
 тонн/год

Отработанные масляные фильтры

В процессе эксплуатации предприятия в год используется 80 штук масляных фильтров. Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №160107^{*}. Хранятся в металлических емкостях и сдаются сторонним организациям по мере накопления.

Расчет образования отработанных фильтров проведен в соответствии с нижеследующей моделью:

$$M = \frac{\sum n_i \times m_i}{10^3}$$

где,

 n_i — количество используемых фильтров і-марки, шт/год;

 m_i — масса одного фильтра і-той марки, кг.

M = 80*2,0/1000 = 0.16 тонн/год

Отработанные шины

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №160103. Хранятся специальном отведеном месте на территории предприятия и по мере накопления сдаются сторонним организациям.

Количество шин, шт., k = 500

Масса шины, кг, M = 50

Количество машин, шт., K = 45

Среднегодовой пробег машины, тыс. км, $\Pi_{cp} = 20$

Нормативный пробег шины, тыс. км, H = 20

Объем отработанных шин с металлическим кордом определяется по формуле:

$$M_{omx} = \Pi_{cp} * K * k * M / H * 10^{-6} = 20 * 45 * 500 * 50 / 20 * 10^{-6} = 1.125$$
 тонн/год

Отработанные аккумуляторные батареи

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №160601*. Хранятся в специальном отведенном месте и сдаются сторонним организациям в обмен на новые.

Методика разработки проектов нормативов предельного размещения отходов производства и потребления (приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п).

Число единиц аккумуляторов для i — ого автотранспотра, использованого в течение года, ni = 50

Средняя масса аккумулятора, mi = 30

Норматив зачета при сдаче (80-100%), a = 0.8

Срок фактической эксплуатации, t = 2

Объем отработанных аккумуляторов определяется по формуле:

$$N = ni * mi * a * 10^{-3} / t = 50 * 30 * 0.8 * 10^{-3} / 2 = 0.6$$
 тонн/год

Промасленная ветошь (отходы не указанные иначе). Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №150202*. Образуются при работе с техникой. Сжигаются в бытовых печах. Методика разработки проектов нормативов предельного размещения отходов производства и потребления (приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п).

Нормативное количество поступающей ветоши, т/год, $M_0 = 0.4$

Норматив содержания в ветоши масел, M = 0.12 · M_о

Норматив содержания в ветоши влаги, $W = 0.15 \cdot M_0$

$$N=M_0+M+W=0.4+0.006+0.0075=0.4135$$
 T/год

Грунты пропитанные нефтью и мазутом - образуется вследствие проливов мазута при перекачке его в резервуары и засыпке его песком. Состав (%): песок - 35-45; грунт - 35-45; мазут - до 30. Влажность - 15-90%. В условиях образования химически неактивен, пожароопасен. Обычно размещается в отдельных емкостях (бочках). Сдаются сторонним организациям.

Норма образования отхода принимается по факту. Объем отхода составляет — **2.0 тонны/год**.

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: $№130899^*$.

Фекалии животных, моча и навоз (включая использованную солому), жидкие стоки. Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №020106. Образуется при содержании КРС. На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

Объем образования навоза производится согласно методике «Порядок нормирования объемов образования и размещения отходов производства» РНД 03.1.0.3.01-96 (Алматы – 1996) по формуле:

 $M_{o\delta p} = (200*H*M_{_{^{9}KC}})/1000$

Где $M_{\text{обр}}$ - объем образования на предприятии отходов, т/г;

 $M_{
m экс}$ — экскрементов от одного животного, кг/сут;

Н – поголовье животных;

200 дней – стойловый период КРС.

 $M_{00p} = (200* (1500*55+1000*14)/1000 = 19 300 т/г (Репродуктор №3)$

 $M_{\text{обр}} = (200* (1000*55+250*14)/1000 = 11 700 т/г (Репродуктор №1)$

 $M_{\text{обр}} = (200* (1000*55+250*14)/1000 = 11 700 т/г (Репродуктор №2)$

Отходы животноводства (трупы животных). Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №020102. Образуется в результате падежа животных. Данный вид отхода сжигается в Крематоре ТП300-ЭД. Норма образования отхода принимается по факту. Объем отхода составляет – 80.0 тонн/год.

Лимит накопления отходов на период эксплуатации объекта

JIMMINI HAROHJICHUA UTAU	дов на период эксилу			
Наименование отходов	Объем накопленных	Лимит накопление,		
	отходов на	тонн/год		
	существующее			
	положение, тонн/год			
1	2	3		
Всего	42 827.3026	42 827.3026		
в том числе отходов производства	42 816.0526	42 816.0526		
отходов потребления	11.25	11.25		
	Опасные отходы			
Отходы от красок и лаков	0.0421	0.0421		
Отработанное моторное масло	0.911	0.911		
Отработанное трансмиссионное	0.911	0.911		
масло				
Отработанные масляные фильтры	0.16	0.16		
Отработанные аккумуляторные	0.6	0.6		
батареи				
Промасленная ветошь	0.4135	0.4135		
Грунты пропитанные нефтью и	2.0	2.0		
мазутом				
Н	е опасные отходы			
Смешанные коммунальные	11.25	11.25		
отходы				
Золошлак	31.0	31.		
Отходы сварки	0.015	0.015		
Отработанные шины	1.125	1.125		
Фекали животных, моча и навоз	42700.0	42700.0		
Отходы животноводства (трупы	80.0	80.0		
животных)				
	Зеркальные			
-	-	-		

Лимит захоронения отхолов на период эксплуатации объекта

лимит захоронения отходов на период эксплуатации ооъекта							
Наименование	Объем захороненных	Образование,	Лимит	Повторное	Передача		
отходов	отходов на	тонн/год	захоронения,	использование,	сторонним		
	существующее		тонн/год	переработка,	организациям,		
	положение, тонн/год			тонн/год	тонн/год		
1	2	3	4	5	6		
Всего	-	42 827.3026	-	42 812.822	26.8556		
в том числе отходов производства	-	42 816.0526	-	42 812.822	26.8556		
отходов потребления	-	11.25	-	-	11.25		
•		Опасные	отходы				
Отходы от красок и лаков	-	0.0421	-	-	0.0421		
Отработанное моторное масло	-	0.911	-	0.911	-		
Отработанное трансмиссионное масло	-	0.911	-	0.911	-		
Отработанные масляные фильтры	-	0.16	-	-	0.16		
Отработанные аккумуляторные батареи	-	0.6		-	0.6		
Промасленная ветошь	-	0.4135	-	-	0.4135		

Грунты	-	2.0	-	-	2.0		
пропитанные							
нефтью и мазутом							
		Не опасны	е отходы				
Смешанные	-	11.25	-	-	11.25		
коммунальные							
отходы							
Золошлак	=	31.0	-	31.0	=		
Отходы сварки	-	0.015	-	-	0.015		
Отработанные	-	1.125	-	-	1.125		
шины							
Фекали животных,	-	42700.0	-	42700.0	-		
моча и навоз							
Отходы	-	80.0	-	80.0	-		
животноводства							
(трупы животных)							
	Зеркальные						
-	-	-	-	-	-		

6.2. Управление отходами

Под управлением отходами понимаются операции, осуществляемые в отношении отходов с момента их образования до окончательного удаления.

К операциям по управлению отходами относятся:

- накопление отходов на месте их образования;
- сбор отходов;
- транспортировка отходов;
- восстановление отходов;
- удаление отходов;
- вспомогательные операции, выполняемые в процессе осуществления операций;
- проведение наблюдений за операциями по сбору, транспортировке, восстановлению и (или) удалению отходов;
- деятельность по обслуживанию ликвидированных (закрытых, выведенных из эксплуатации) объектов удаления отходов.

Накопление отходов.

Под накоплением отходов понимается временное складирование отходов в специально установленных местах.

Места накопления отходов предназначены для:

- временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям потвосстановлению или удалению;
- временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением, вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление.

Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

Сбор отходов

Под сбором отходов понимается деятельность по организованному приему отходов от физических и юридических лиц специализированными организациями в целях дальнейшего направления таких отходов на восстановление или удаление.

Операции по сбору отходов могут включать в себя вспомогательные операции по сортировке и накоплению отходов в процессе их сбора.

Лица, осуществляющие операции по сбору отходов, обязаны обеспечить раздельный сбор отходов в соответствии с требованиями настоящего Кодекса.

Под раздельным сбором отходов понимается сбор отходов раздельно по видам или группам в целях упрощения дальнейшего специализированного управления ими.

Транспортирование

Вывоз всех отходов будет производиться транспортными компаниями по договорам.

Используемый автотранспорт будет иметь разрешение для перевозки отходов.

Восстановление отходов

К операциям по восстановлению отходов относятся:

- подготовка отходов к повторному использованию;
- переработка отходов;
- утилизация отходов.

Подготовка отходов к повторному использованию включает в себя проверку состояния, очистку и (или) ремонт, посредством которых ставшие отходами продукция или ее компоненты подготавливаются для повторного использования без проведения какой-либо иной обработки.

Под переработкой отходов понимаются механические, физические, химические и (или) биологические процессы, направленные на извлечение из отходов полезных компонентов, сырья и (или) иных материалов, пригодных для использования в дальнейшем в производстве (изготовлении) продукции, материалов или веществ вне зависимости от их назначения, за исключением случаев, предусмотренных пунктом 4 настоящей статьи.

Под утилизацией отходов понимается процесс использования отходов в иных, помимо переработки, целях, в том числе в качестве вторичного энергетического ресурса для извлечения тепловой или электрической энергии, производства различных видов топлива, а также в качестве вторичного материального ресурса для целей строительства, заполнения (закладки, засыпки) выработанных пространств (пустот) в земле или недрах или в инженерных целях при создании или изменении ландшафтов.

Удаление отходов

Удалением отходов признается любая, не являющаяся восстановлением операция по захоронению или уничтожению отходов, включая вспомогательные операции по подготовке отходов к захоронению или уничтожению (в том числе по их сортировке, обработке, обезвреживанию).

Захоронение отходов – складирование отходов в местах, специально установленных для их безопасного хранения в течение неограниченного срока, без намерения их изъятия.

Уничтожение отходов – способ удаления отходов путем термических, химических или биологических процессов, в результате применения которого существенно снижаются объем и (или) масса и изменяются физическое состояние и химический состав отходов, но который не имеет в качестве своей главной цели производство продукции или извлечение энергии.

Вспомогательные операции при управлении отходами

К вспомогательным операциям относятся сортировка и обработка отходов.

Под сортировкой отходов понимаются операции по разделению отходов по их видам и (или) фракциям либо разбору отходов по их компонентам, осуществляемые отдельно или при накоплении отходов до их сбора, в процессе сбора и (или) на объектах, где отходы подвергаются операциям по восстановлению или удалению.

Под обработкой отходов понимаются операции, в процессе которых отходы подвергаются физическим, термическим, химическим или биологическим воздействиям, изменяющим характеристики отходов, в целях облегчения дальнейшего управления ими и которые осуществляются отдельно или при накоплении отходов до их сбора, в процессе сбора и (или) на объектах, где отходы подвергаются операциям по восстановлению или удалению.

Под обезвреживанием отходов понимается механическая, физико-химическая или биологическая обработка отходов для уменьшения или устранения их опасных свойств.

Основополагающее экологическое требование к операциям по управлению отходами Лица, осуществляющие операции по управлению отходами, обязаны выполнять соответствующие операции таким образом, чтобы не создавать угрозу причинения вреда жизни и (или) здоровью людей, экологического ущерба, и, в частности, без:

- риска для вод, в том числе подземных, атмосферного воздуха, почв, животного и растительного мира;
 - отрицательного влияния на ландшафты и особо охраняемые природные территории.

Государственная экологическая политика в области управления отходами основывается на следующих специальных принципах:

- иерархии;
- близости к источнику;
- ответственности образователя отходов;
- расширенных обязательств производителей (импортеров).

Образователи и владельцы отходов должны применять следующую иерархию мер по предотвращению образования отходов и управлению образовавшимися отходами в порядке убывания их предпочтительности в интересах охраны окружающей среды и обеспечения устойчивого развития Республики Казахстан:

- предотвращение образования отходов;
- подготовка отходов к повторному использованию;
- переработка отходов;
- утилизация отходов;
- удаление отходов.

6.3 Мероприятия по предотвращению загрязнения окружающей среды отходами производства и потребления

Мероприятия по снижению воздействия отходов производства на окружающую среду во многом дублируют мероприятия по охране почв, поверхностных и подземных вод и включают в себя решения по организации работ, обеспечивающих минимальное воздействие на окружающую среду.

Проектом предусматривается проведение комплекса мероприятий при временном складировании и хранении производственных и бытовых отходов с целью уменьшения и сокращения вредного влияния на окружающую среду.

Основными мероприятиями являются:

- тщательная регламентация проведения работ, связанных с загрязнением и нарушением рельефа;
 - -торганизация систем сбора, транспортировки и утилизации отходов;
 - ведение постоянных мониторинговых наблюдений.

Отходы, хранящиеся в производственных помещениях, должны быть защищены от влияния атмосферных осадков и не воздействать на почву, атмосферу, подземные и поверхностные воды. Их воздействие на окружающую среду может проявиться только при несоблюдении правил их сбора и хранения.

При необходимости, в процессе строительства и эксплуатации предприятия, с целью предупреждения или смягчения возможных экологических последствий образования и размещения отходов, будут предусмотрены и осуществлены дополнительные, соответствующие современному уровню и стадии производства инженерные и природоохранные мероприятия.

Перед началом строительных работ подрядной организацией необходимо заключить договора на вывоз и утилизацию отходов со специализированными предприятиями.

Рекомендации по временному хранению ТБО

Суточное хранение ТБО должно производиться в специальных закрытых контейнерах на асфальтированных и выгороженных площадках. Рекомендуется для сбора ТБО использование несменяемых контейнеров вместимостью 0,75 м³. Конструкция контейнера должна обеспечивать свободную мойку и дезинфекцию, при этом внутренняя поверхность должна быть гладкой, предотвращающей примерзание и прилипание отходов и мусора. Металлические контейнеры в летний период необходимо промывать не реже одного раза в 10 дней. По энтомологическим показаниям проводить дезинфекцию.

Влияние отходов производства и потребления будет минимальным при условии строгого выполнения проектных решений и соблюдения всех санитарно-эпидемиологических и экологических норм.

6.4. Общие выводы

Рассмотрев объект с точки зрения воздействия на окружающую среду отходов производства и потребления, можно сделать вывод, что образующиеся отходы не относятся к чрезвычайно опасным. В процессе эксплуатации будут образовываться отходы, которые допускаются к временному хранению (не более 6 месяцев) на территории объекта. Образующиеся отходы относятся к материалам твердых фракций.

По масштабам распространения загрязнения, воздействие отходов, образующихся в период эксплуатации, на компоненты природной среды относится к местному типу загрязнения. При условии строгого выполнения принятых проектных решений и соблюдения всех санитарно-эпидемиологических и экологических норм влияние отходов на компоненты окружающей среды будет незначительным.

Интенсивность воздействия минимальная, изменения природной среды не выходят за существующие пределы естественной природной изменчивости.

7. ОПИСАНИЕ ЗАТРАГИВАЕМОЙ ТЕРРИТОРИИ И УЧАСТКОВ, НА КОТОРЫХ МОГУТ БЫТЬ ОБНАРУЖЕНЫ ВЫБРОСЫ, СБРОСЫ И ИНЫЕ НЕГАТИВНЫЕ ВОЗДЕЙСТВИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, УЧАСТКОВ ИЗВЛЕЧЕНИЯ ПРИРОДНЫХ РЕСУРСОВ И ЗАХОРОНЕНИЯ ОТХОДОВ

Степень воздействия планируемых работ на атмосферный воздух является незначительной. Основной вклад в выбросы в атмосферу дают источники загрязняющих веществ, связанные с основными технологическими процессами. Вклад остальных источников незначителен. Предприятие не оказывает значительного влияния на качество атмосферного воздуха на границе СЗЗ и жилой зоны, нормативное качество воздуха обеспечивается.

Использование водных ресурсов будет осуществляться в рамках необходимой потребности. Сбросы производственных и хозяйственно-бытовых сточных вод в поверхностные и подземные водные источники исключается. Негативное воздействие на водные ресурсы отсутствует.

Предполагаемые к образованию отходы будут временно (не более 6 месяцев) храниться в специально отведенных организованных местах, а затем передаваться для дальнейшей утилизации, переработки или захоронения сторонним организациям согласно договоров.

На рассматриваемой территории дикие животные, гнездовья птиц и растения, занесенные в Красную книгу РК отсутствуют.

На рассматриваемой территории природные зоны, памятники истории и культуры, входящие в список охраняемых государством объектов отсутствуют.

Ввиду незначительности вклада объекта в общее состояние окружающей природной среды существенного воздействия на здоровье населения не ожидается.

8. ОПИСАНИЕ ВОЗМОЖНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

В соответствии данных заказщика другого места размещения объекта не рассматривалось.

Территория осуществления деятельности выбрана с учетом логистических ресурсов и производственной необходимости.

Реализация деятельности не нарушит существующего экологического равновесия, воздействие на все компоненты окружающей среды будет допустимым.

Под возможным рациональным вариантом осуществления деятельности понимается вариант осуществления деятельности, при котором соблюдаются в совокупности следующие условия, а именно:

- Отсутствием обстоятельств, влекущих невозможность применения данного варианта намечаемой деятельности.
- Все этапы деятельности, которые будут осуществлены в соответствии с проектом, соответствуют законодательству Республики Казахстан, в том числе и в области охраны окружающей среды.
- Принятые проектные решения полностью соответствуют заданных целей и соответствуют заявленным характеристикам объекта.

С экологической точки зрения преимуществом выбранной площадки является ее расположение на промышленно освоенной территории: земли не являются сельскохозяйственными; растительность и животный мир практически отсутствуют, редкие и охраняемые виды растений и животных, занесенных в Красную книгу отсутствуют.

Разработанные материалы подтверждают полное соответствие принятых решений нормативным требованиям законодательства Республики Казахстан, в том числе в области охраны окружающей среды: Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI ЗРК; Водный кодекс Республики Казахстан от 9 июля 2003 года, № 481-II ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.); Земельный Кодекс Республики Казахстан от 20 июня 2003 года, № 442-II ЗРК (с изменениями и дополнениями по состоянию на 06.07.2021 г.); Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI «О недрах и недропользовании» (с изменениями и дополнениями от 01.07.2021 г.); Кодекс Республики Казахстан от 07 июля 2020 № 360-VI «О здоровье народа и системе здравоохранения» (с изменениями по состоянию на 24.06.2021 г.).

Принят оптимальный вариант место размещения объекта и технологические решения организации производственного процесса.

Других альтернатив и вариантов для достижения целей намечаемой деятельности и вариантов ее осуществления у предприятия нет.

Таким образом, принятый вариант деятельности является рациональным, поскольку полностью обеспечивается доступность ресурсов, необходимых для осуществления намечаемой деятельности.

8.1. Отсутствие возможных нарушений прав и законных интересов населения затрагиваемой территории в результате осуществления намечаемой деятельности по данному варианту

Принятый вариант деятельности является рациональным, поскольку при его реализации полностью отсутствует возможность нарушений прав законных интересов населения затрагиваемой территории в результате осуществления намечаемой деятельности.

Ландшафтно-климатические условия и месторасположение территории исключают ее рентабельное использование, для каких либо хозяйственных целей, кроме реализации прямых целей.

Негативного воздействия на здоровье населения прилегающих территорий не ожидается. Незначительное воздействие на окружающую среду ожидается лишь на период эксплуатации объекта. Анализ воздействий и интегральная оценка позволяют сделать вывод, что при штатном режиме намечаемая деятельность не окажет значимого негативного воздействия на социально-экономическую среду, но будет оказывать положительное воздействие на большинство ее компонентов.

Таким образом, хозяйственная деятельность допустима и желательна, как экономически выгодная не только в местном, но также и в региональном масштабе.

В целях обеспечения гласности и всестороннего участия общественности в решении вопросов охраны окружающей среды, проект Отчета о возможных воздействиях подлежит вынесению на общественные слушания с участием представителей заинтересованных государственных органов и общественности.

При этом в целях обеспечения права общественности на доступ к экологической информации обеспечивается доступ общественности к копии отчета о возможных воздействиях. Проект отчета о возможных воздействиях доступен для ознакомления на интернет-ресурсах уполномоченного органа в области охраны окружающей среды и местного исполнительного органа.

Реализация проекта возможна только при получения одобрения деятельности со стороны общественности.

Таким образом, принятый вариант деятельности является рациональным, поскольку при его реализации полностью отсутствует возможность нарушений прав и законных интересов населения затрагиваемой территории в результате осуществления деятельности по данному варианту.

9. ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪЕКТАХ, КОТОРЫЕ МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

9.1. Жизнь и здоровье людей, условия их проживания и деятельности

Воздействие объекта на здоровье населения находится на низком уровне в связи со значительным удалением ближайших населенных пунктов от промплощадки деятельности.

Прогноз социально-экономических последствий от деятельности предприятия — благоприятный. Проведение работ по реализации намечаемой деяытельности с соблюдением норм и правил техники безопасности, промышленной санитарии, противопожарной безопасности обеспечит безопасное проведение планируемых работ и не вызовет дополнительной, нежелательной нагрузки на социально-бытовую сферу.

Анализ воздействия хозяйственной деятельности показывает, что деятельность положительно повлияет на социально-экономическую сферу путем организации рабочих мест, отчислениями в виде различных налогов.

Экономическая деятельность предприятия окажет прямое и косвенное благоприятное воздействие на финансовое положение области.

9.2. Биоразнообразие

В процессе эксплуатации объекта негативного воздействия на ландшафт территории не ожидается.

Рассматриваемая территория находится вне земель государственного лесного фонда и особо охраняемых природных территорий Республики Казахстан. Животные и растительность, занесенные в Красную книгу РК на рассматриваемой территории отсутствуют.

В целом воздействие намечаемой деятельности на природное состояние растительного и животного мира оценено как незначительное и не приведет к необратимым последствиям.

9.3. Земли и почвы

На земельном участке предполагается антропогенный физический фактор воздействия, который характеризуется механическим воздействием на почво-грунты (движение автотранспорта и пр.).

План организации рельефа участка принят с учетом прилегающей территории и решен исходя из условий разработки минимального объема земляных работ, обеспечения водоотвода с рельефа местности и защиты грунтов от замачивания и заболачивания.

При реализации деятельности значительного воздействия на почво-грунты и земельные ресурсы не прогнозируется. При выполнении проектных решений и предложенных мероприятий по охране почвенного покрова ущерба не ожидается.

9.4. Волы

Деятельность не предполагает загрязнение токсичными компонентами поверхностных и подземных вод.

При реализации указанного проекта и выполнении предложенных мероприятий по охране поверхностных и подземных водных ресурсов ущерба водным источникам от объекта не ожидается.

9.5. Атмосферный воздух

Технологические процессы, которые будут применяться как при эксплуатации объекта окажут определенное воздействие на состояние атмосферного воздуха непосредственно на территории размещения объекта. По масштабам распространения загрязнения атмосферного воздуха выбросы загрязняющих веществ в атмосферный воздух от источников загрязнения объектов деятельности относятся к локальному типу загрязнения.

Продолжительность воздействия выбросов от исследуемого объекта будет постоянной в период эксплуатации.

Интенсивность воздействия на атмосферный воздух находится в пределах допустимых норм, изменения природной среды не выходят за существующие пределы естественной природной изменчивости.

9.6. Сопротивляемость к изменению климата экологических и социально-экономических систем

На затрагиваемой территории все виды флоры и фауны приспособлены к значительным колебаниям температуры. Не наблюдается также изменений видового состава или деградации животных и растений. Поэтому общее экологическое состояние территории можно характеризовать, как устойчивое, а сопротивляемость к изменению климата – высокой.

Предприятие располагается на действующей промышленной площадке со сложившейся, устойчивой системой социально-экономических отношений, поэтому реализация намечаемой деятельности не приведет к изменению социально-экономических систем, соответственно сопротивляемость к изменению социально-экономической системы можно считать высокой.

9.7. Материальные активы, объекты историко-культурного наследия

Действующее производство является самоокупаемым и осуществляет инвестиции из собственных активов. Дополнительных инвестиций за счет бюджета административных и иных органов Республики Казахстан при осуществлении намечаемой деятельности не требуется.

На рассматриваемой территории природные зоны, памятники истории и культуры, входящие в список охраняемых государством объектов отсутствуют.

9.8. Взаимодействие затрагиваемых компонентов

Природно-территориальный комплекс — это совокупность взаимосвязанных природных компонентов на определенной территории, который формируется в течение длительного времени под влиянием внешних и внутренних процессов. В природном комплексе происходит постоянное взаимодействие природных компонентов, все они взаимосвязаны и влияют друг на друга. При изменении одного природного компонента меняется весь природный комплекс.

При реализации деятельности нарушения взаимодействия компонентов природной среды не предполагается.

10. ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ (ПРЯМЫХ И КОСВЕННЫХ, КУМУЛЯТИВНЫХ, ТРАНСГРАНИЧНЫХ, КРАТКОСРОЧНЫХ И ДОЛГОСРОЧНЫХ, ПОЛОЖИТЕЛЬНЫХ И ОТРИЦАТЕЛЬНЫХ) НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА КОМПОНЕНТЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ИНЫЕ ОБЪЕКТЫ

Согласно статьи 66, п.1 Экологического Кодекса Республики Казахстан от 2 января 2021 года № 400- VI ЗРК в процессе оценки воздействия на окружающую среду подлежат учету следующие виды воздействий:

- прямые воздействия воздействия, которые могут быть непосредственно оказаны основными и сопутствующими видами намечаемой деятельности;
- косвенные воздействия воздействия на окружающую среду и здоровье населения, вызываемые опосредованными (вторичными) факторами, которые могут возникнуть вследствие осуществления намечаемой деятельности;
- кумулятивные воздействия воздействия, которые могут возникнуть в результате постоянно возрастающих негативных изменений в окружающей среде, вызываемых в совокупности прежними и существующими воздействиями антропогенного или природного характера, а также обоснованно предсказуемыми будущими воздействиями, сопровождающими осуществление намечаемой деятельности.

К прямым воздействиям относятся воздействия, оказываемые непосредственно во время проведения тех или иных видов работ или технологических операций. Результатом прямого воздействия является изменение компонентов окружающей среды, которое является результатом прямых причинноследственных последствий взаимодействия между окружающей средой и результатами. Прямые воздействия являются наиболее очевидными и определяются количественно расчетным путем или в системе экспертных оценок. Оценка масштабов, продолжительности и интенсивности прямого воздействия проводится по утвержденным в РК методическим указаниям.

Косвенными показателями оценки загрязнения атмосферного воздуха являются интенсивные поступления атмосферных примесей в результате сухого осаждения на почвенный покров и водные объекты, а также в результате вымывания ее атмсферными осадками. Косвенными воздействиями на растительный и животный мир являются изменения среды обитания.

Кумулятивные воздействия — воздействия, которые могут возникнуть в результате постоянно возрастающих негативных изменений в окружающей среде, вызываемых в совокупности прежними и существующими воздействиями антропогенного или природного характера, а также обоснованно предсказуемыми будущими воздействиями, сопровождающими осуществление намечаемой деятельности.

Кумулятивное воздействие представляет собой комбинированное воздействие прошлых и настоящихвидов деятельности и деятельности, которую можно обоснованно предсказать на будущее. Эти видыдеятельности могут осуществляться во времени и пространстве и могут быть аддитивными или интерактивными/синергичными (например, снижение численности популяции моллюсков, обусловленное комбинированным воздействием выбросов нефти базой и операций судов). Кумулятивные воздействия являются одной из наиболее трудных категорий воздействий для их адекватной идентификации в процессе ОВОС. При попытках идентифицировать кумулятивные воздействия важно принимать во внимание как пространственные, так и временные аспекты, а также

идентифицировать другие виды деятельности, которые происходят или могут происходить на том же самом участке или в пределах той же самой территории.

Также согласно статье 66, п.5 ЭК в процессе проведения оценки воздействия на окружающую среду подлежат учету отрицательные и положительные эффекты воздействия на окружающую среду и здоровье населения.

Согласно вышеперечисленным критериям произведена оценка воздействия на компоненты окружающуй среды.

Реализация деятельности не приведет к деградации экологических систем, истощению природных ресурсов, включая дефицитные и уникальные природные ресурсы; не приведет к нарушению экологических нормативов качества окружающей среды; не приведет к ухудшению условий проживания людей и их деятельности, включая: состояние окружающей среды, влияющей на здоровье людей; посещение мест отдыха, туризма, культовых сооружений и иных объектов; заготовку природных ресурсов, использование транспортных и других объектов; осуществление населением сельскохозяйственной деятельности, народных промыслов или иной деятельности; не приведет к ухудшению состояния особо охраняемых территориий, природных оздоровительного, рекреационного и историко-культурного назначения и т.п.; не повлечет негативных трансграничных воздействий на окружающую среду; не приведет к потере биоразнообразия в части объектов растительного и животного мира или их сообществ, являющихся редкими или уникальными.

На основании вышеизложенного можно сделать вывод, что ожидаемое воздействие проектируемого объекта не приведет к ухудшению существующего состояния компонентов окружающей среды и оценивается как несущественное.

11. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, ВЫБОРА ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ

11.1 Обоснование предельных количественных и качественных показателей эмиссий в атмосферный воздух

При проведении расчетов выбросов загрязняющих веществ в атмосферу использованы исходные данные предприятия. Согласно «Методика определения нормативов эмиссий в окружающую среду» от 10 марта 2021 года № 63, максимальные разовые выбросы газо-воздушной смеси от двигателей передвижных источников (г/с) учитываются в целях оценки воздействия на атмосферный воздух, когда работа передвижных источников связана с их стационарным расположением.

Валовые выбросы от двигателей передвижных источников не нормируются и в общий объем выбросов вредных веществ не включаются. Количественные и качественные характеристики выбросов были определены в инвентаризации, согласно методик расчета выбросов вредных веществ, на основании следующих нормативных документов:

- 1. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2004.
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2004
- 3. Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2004.
- 4. Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.
- 5. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 6. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 7. Методика расчета нормативов выбросов от неорганизованных источников. Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 8. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005.
- 9. Методика определения нормативов эмиссий в окружающую среду. Приказ Министра охраны окружающей среды Республики Казахстан от 10.03.2021 г. № 63;
- 10. Методика расчета выбросов загрязняющих веществ в атмосферу из резервуаров. РНД 211.2.02.06-2009. Астана, 2004;
- 11.Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение №9 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Результаты расчетов величин выбросов загрязняющих веществ представлены в Приложении 1.

11.2. Физическое возлействие

Физическое воздействие намечаемой деятельности на компоненты природной среды не будет выходить за рамки предельно допустимых уровней, установленных гигиеническими нормативами Республики Казахстан к физическим факторам.

11.3 Выбор операций по управлению отходами

Согласно Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI ЗРК (статья 319) под управлением отходами понимаются операции, осуществляемые в отношении отходов с момента их образования до окончательного удаления.

К операциям по управлению отходами относятся:

- 1. Накопление отходов на месте их образования;
- 2. Сбор отходов;
- 3. Транспортировка отходов;
- 4. Восстановление отходов;
- 5. Удаление отходов;
- 6. Вспомогательные операции, выполняемые в процессе осуществления операций, предусмотренных подпунктами 1), 2), 4) и 5) настоящего пункта;
- 7. Проведение наблюдений за операциями по сбору, транспортировке, восстановлению и (или) удалению отходов;
- 8. Деятельность по обслуживанию ликвидированных (закрытых, выведенных из эксплуатации) объектов удаления отходов.

Под *накоплением* отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных в пункте 2 настоящей статьи, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления.

Сбор отходов — деятельность по организованному приему отходов от физических и юридических лиц специализированными организациями в целях дальнейшего направления таких отходов на восстановление или удаление. Операции по сбору отходов могут включать в себя вспомогательные операции по сортировке и накоплению отходов в процессе их сбора.

Под *транспортировкой* отходов понимается деятельность, связанная с перемещением отходов с помощью специализированных транспортных средств между местами их образования, накопления в процессе сбора, сортировки, обработки, восстановления и (или) удаления. Транспортировка отходов осуществляется с соблюдением требований Экологического Кодекса РК.

Восстановлением отходов признается любая операция, направленная на сокращение объемов отходов, главным назначением которой является использование отходов для выполнения какой-либо полезной функции в целях замещения других материалов, которые в противном случае были бы использованы для выполнения указанной функции, включая вспомогательные операции по подготовке данных отходов для выполнения такой функции, осуществляемые на конкретном производственном объекте или в определенном секторе экономики.

К операциям по восстановлению отходов относятся:

- 1) подготовка отходов к повторному использованию;
- 2) переработка отходов;
- 3) утилизация отходов.

Удалением отходов признается любая, не являющаяся восстановлением операция по захоронению или уничтожению отходов, включая вспомогательные операции по подготовке отходов к захоронению или уничтожению (в том числе по их сортировке, обработке, обезвреживанию).

Временное складирование отходов производится строго в специализированных местах, в ёмкостях или в специальных помещениях (металлических контейнерах) на специализированных площадках, что исключает загрязнение компонентов окружающей среды.

Настоящим проектом предусматривается полное соблюдение следующих мер:

- раздельный сбор отходов;
- использование специальных контейнеров или другой специальной тары для временного хранения отходов;
- содержать в чистоте контейнеры, площадки для контейнеров, близлежащую территорию, оборудовать контейнерные площадки в соответствии с санитарными нормами и правилами;
 - перевозка отходов на специально оборудованных транспортных средствах;
 - сбор, транспортировка и захоронение отходов производится согласно требованиям РК;
- организация производственной деятельности по строительству объекта с акцентом на ответственность подрядной строительной организации за нарушение техники безопасности и правил охраны окружающей среды;
 - отслеживание образования, перемещения и утилизации всех видов отходов;
- подрядная организация, в процессе строительства объекта, должна нести ответственность за сбор и утилизацию отходов, а также за соблюдение всех строительных норм и требований РК в области ТБ и ООС;
- проведение всех видов деятельности в соответствии с требованиями экологических положений Республики Казахстан и т.д.

Принятые проектными решениями мероприятия позволят минимизировать возможные воздействия на ОС и осуществлять деятельность в разрешенных законодательством РК пределах.

12. ОБОСНОВАНИЕ ПРЕДЕЛЬНОГО КОЛИЧЕСТВА НАКОПЛЕНИЯ ОТХОДОВ ПО ИХ ВИДАМ

В результате производственной деятельности предприятия образуются следующие виды отходов:

- смешанные коммунальные отходы;
- золошлак;
- отходы от красок и лаков;
- отходы сварки;
- отработанные моторные, трансмиссионные масла;
- отработанные масляные фильтры;
- отработанные шины;
- отработанные аккумуляторные батареи;
- промасленная ветошь;
- грунты пропитанные нефтью и мазутом;
- отработанные светодиодные лампы;
- отходы животноводства (трупы животных);
- фекалии животных, моча и навоз (включая использованную солому), жидкие стоки.

Смешанные коммунальные отходы – образуются в непроизводственной сфере деятельности персонала предприятия, а также при уборке помещений цехов и территории предприятия. Коммунальные отходы складируются в металлический контейнер и будут вывозятся сторонней организацией.

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №200301.

Состав отходов (%): бумага и древесина -60; тряпье -7; пищевые отходы -10; стеклобой -6; металлы -5; пластмассы -12.

Норма образования **коммунальных отходов** (m_1 , τ /год) определяется с учетом удельных санитарных норм образования бытовых отходов на промышленных предприятиях – (0.3 м^3 /год) на человека, списочной численности работающих на предприятии и средней плотности отходов, которая составляет 0.25 т/м^3 .

Расчетное годовое количество образующихся отходов составит:

$$M_{\text{обр}} = 0.3 \text{ м}^3$$
/год \times 150 чел \times 0.25 т/м $^3 =$ 11,25 т/год.

Золошлак — образуется при сжигании твердого топлива в печах. Представляет собой мелкодисперсный продукт от светло-серого до темно-серого цвета (в зависимости от количественного содержания частиц несгоревшего угля). По химическом у составу золошлак представлен оксидами кремния, алюминия, железа и кальция, на долю которых приходится до 95% массы материала. Из микроэлементов в золошлаках обнаруживаются бериллий, бор, молибден, скандий и др. Золошлак относится к IV классу опасности, не токсичен, не растворим в воде, не пожароопасен, не взрывоопасен. Золошлак складируется в металлический контейнер и используется на собственные нужды предприятия.

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: № 100101.

Норма образования шлака рассчитывается по формуле:

$$\begin{split} \mathbf{M}_{\text{отх}} &= 0.01 \cdot \mathbf{B} \cdot \mathbf{A}_{\text{p}} - \mathbf{N}_{\text{3}} \text{, т/год,} \\ _{\text{ГДе}} & \mathbf{N}_{\text{3}} &= 0.01 \cdot \mathbf{B} \cdot (\alpha \cdot \mathbf{A}_{\text{p}} + \mathbf{q}_{\text{4}} \cdot \mathbf{Q}_{\text{т}} / 32680) \text{,} \end{split}$$

здесь α - доля уноса золы из топки, α =0,25, A_p (зольность угля), q_4 = потери тепла вследствие механической неполноты сгорания угля (7), $Q_{\tt T}$ = теплота сгорания топлива в кДж/кг, 16120 кДж/кг - теплота сгорания условного топлива, B - годовой расход угля, т/год.

$$N_3$$
=0.01*51*(0.25*27.9+7*5200/32680)= 4.125 $M_{\rm otx}$ =0.01*51*27.9- 4.125 = 10.104 т/год (Кузнецкий уголь)

$$N_3$$
=0.01*15*(0.25*42.3+7*3700/32680)= 1.705 $M_{\rm otx}$ =0.01*15*42.3- 1.705 = 4.64 т/год (Экибазтуский уголь)

$$N_3$$
=0.01*164*(0.25*22.5+7*5300/32680)= 11.09 $M_{\text{отx}}$ =0.01*164*22.5- 11.09 = 25.81 т/год (Карагандинский уголь)

$$M_{\text{otx}} = 4.125 + 1.075 + 25.81 = 31.0$$
 Tohha

Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества образуется при выполнении окрасочных работ. Состав отхода (%): жесть – 94÷99, краска – 5÷1. Не пожароопасна, химически неактивна. Собирается на участке с твердым (водонепроницаемым) покрытием на территории строительной площадки для временного хранения сроком не более шести месяцев, по мере накопления осуществляется передача специализированным организациям. Эмаль, краска, лак, грунтовка - доставляется в жестяных банках, а растворители и уайт – спирит доставляется в стеклянных банках.

Согласно Классификатора отходов приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/ отходы имеют следующий код: № 080111^* .

Общий расход ЛКМ составляет -0.55 тонн. Масса краски в одной таре -0.003 т. Число тары: 0.55 т : 0.003 т = 183 шт. N=0.0002*183+0.55*0.01=0.0421 т/год

Отходы сварки — представляет собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования. Размещаются в металлическом ящике, впоследствии будут сдаваться сторонней организацией. Согласно Классификатора отходов приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/ отходы имеют следующий код: № 120113.

Норма образования отхода составляет:

$$N = M_{oct} \cdot \alpha_{, T/\Gamma O II}$$

где ${\rm M_{oct}}$ - фактический расход электродов, т/год; α - остаток электрода, α =0.015 от массы электрода.

$$N=1.0*0.015=0.015$$
 т/год

Отработанное моторное масло - образуется после истечения срока службы и вследствие снижения параметров качества при использовании в транспорте. Примерный химический состав (%): масло - 78, продукты разложения - 8, вода - 4, механические примеси - 3, присадки - 1, горючее - до 6. Общие показатели: вязкость - 36-94 мм ²/с (при 50°С); кислотное число - 0.14-1.19 мг КОН/г; смолы - 3.72-5.98; зольность - 0.28-0.60%; температура вспышки - 165-186°С. Временное накопление отработанного моторного масла осуществляется в герметичных емкостях с плотно закрывающейся крышкой. Отработанные моторные масла используются на предприятии для заполнения гидравлических систем.

Согласно Классификатора отходов приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/ отходы имеют следующий код: № 130208^* .

$$M_{orx} = \Sigma N_i \cdot V_i \cdot k \cdot \rho \cdot L/L_H \cdot 10^{-3}$$

где N_i - количество автомашин i -ой марки, шт.; V_i - объем масла, заливаемого в машину i -ой марки при TO, π ; L - средний годовой пробег машины i -ой марки, тыс. км/год; L + норма пробега машины i -ой марки до замены масла, тыс. км; k - коэффициент полноты слива масла, k =0,9; P - плотность отработанного масла, P =0,9 кг/ π .

$$\mathbf{M_{otx}} = 45 * 10 * 0.9 * 0.9 * 15000/6000 * 10^{-3} = \mathbf{0.911}$$
 тонн/год

Отработанное трансмиссионное масло - образуется после истечения срока службы и вследствие снижения параметров качества при использовании в транспорте. Химический состав в %: масло – 78; продукты разложения – 8; вода – 4; маханические примеси – 3; присадки – 1; горючие – до 6. Общие показатели: вязкость – 36-94 мм2/с (при 50°С); кислотное число – 0.14-1.19 мг КОН/г; смолы – 3.72-5.98; зольность – 0.28-0.60%; температура вспышки – 165-186 °С. Временное накопление отработанного трансмиссионного масла осуществляется в герметичных емкостях с плотно закрывающейся крышкой. Отработанные масла используются на предприятии для заполнения гидравлических систем.

Согласно Классификатора отходов приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/ отходы имеют следующий код: № 130206^* .

$$\mathbf{M_{otx}} = 45 * 10 * 0.9 * 0.9 * 15000/6000 * 10^{-3} = \mathbf{0.911}$$
 тонн/год

Отработанные масляные фильтры

В процессе эксплуатации предприятия в год используется 80 штук масляных фильтров. Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №160107^{*}. Хранятся в металлических емкостях и сдаются сторонним организациям по мере накопления.

Расчет образования отработанных фильтров проведен в соответствии с нижеследующей моделью:

$$M = \frac{\sum n_i \times m_i}{10^3}$$

где,

 n_i — количество используемых фильтров і-марки, шт/год;

 m_i — масса одного фильтра і-той марки, кг.

$$M = 80*2,0/1000 = 0.16$$
 тонн/год

Отработанные шины

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №160103. Хранятся специальном отведеном месте на территории предприятия и по мере накопления сдаются сторонним организациям.

Количество шин, шт., k = 500

Macca шины, кг, M = 50

Количество машин, шт., K = 45

Среднегодовой пробег машины, тыс. км, $\Pi_{cp} = 20$

Нормативный пробег шины, тыс. км, H = 20

Объем отработанных шин с металлическим кордом определяется по формуле:

$$M_{omx} = \Pi_{cp} * K * k * M / H*10^{-6} = 20 * 45* 500 *50 / 20*10^{-6} = 1.125$$
 тонн/год

Отработанные аккумуляторные батареи

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №160601^{*}. Хранятся в специальном отведенном месте и сдаются сторонним организациям в обмен на новые.

Методика разработки проектов нормативов предельного размещения отходов производства и потребления (приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п)

Число единиц аккумуляторов для i – ого автотранспотра, использованого в течение года, ni = 50

Средняя масса аккумулятора, mi = 30

Норматив зачета при сдаче (80-100%), a = 0.8

Срок фактической эксплуатации, t = 2

Объем отработанных аккумуляторов определяется по формуле:

$$N = ni * mi * a * 10^{-3} / t = 50 * 30 * 0.8 * 10^{-3} / 2 = 0.6$$
 тонн/год

Промасленная ветошь (отходы не указанные иначе). Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №160199. Образуются при работе с техникой. Сжигаются в бытовых печах. Методика разработки проектов нормативов предельного размещения отходов производства и потребления (приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п).

Нормативное количество поступающей ветоши, т/год, $\mathrm{M}_{\mathrm{o}} = 0.4$

Норматив содержания в ветоши масел, $M = 0.12 \cdot M_0$

Норматив содержания в ветоши влаги, $W = 0.15 \cdot M_0$

$$N=M_0+M+W=0.4+0.006+0.0075=0.4135$$
 т/год

Грунты пропитанные нефтью и мазутом - образуется вследствие проливов мазута при перекачке его в резервуары и засыпке его песком. Состав (%): песок - 35-45; грунт - 35-45; мазут - до 30. Влажность - 15-90%. В условиях образования химически неактивен, пожароопасен. Обычно размещается в отдельных емкостях (бочках). Сдаются сторонним организациям.

Норма образования отхода принимается по факту. Объем отхода составляет — 2.0 тонны/год.

Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №130899.

Фекалии животных, моча и навоз (включая использованную солому), жидкие стоки. Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №020106. Образуется при содержании КРС. На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

Объем образования навоза производится согласно методике «Порядок нормирования объемов образования и размещения отходов производства» РНД 03.1.0.3.01-96 (Алматы – 1996) по формуле:

$$M_{obp} = (200*H*M_{exc})/1000$$

Где $M_{\text{обр}}$ - объем образования на предприятии отходов, т/г;

 M_{3KC} – экскрементов от одного животного, кг/сут;

Н – поголовье животных;

200 дней – стойловый период КРС.

$$M_{\text{обр}} = (200* (1500*55+1000*14)/1000 = 19 300 т/г (Репродуктор №3)$$

$$M_{\text{обр}} = (200* (1000*55+250*14)/1000 = 11 700 т/г (Репродуктор №1)$$

$$M_{\text{обр}} = (200* (1000*55+250*14)/1000 = 11 700 т/г (Репродуктор №2)$$

Отходы животноводства (трупы животных). Согласно Классификатора отходов, приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 /21/, отходы имеют следующий код: №020102. Образуется в результате падежа животных. Данный вид отхода сжигается в Крематоре ТП300-ЭД. Норма образования отхода принимается по факту. Объем отхода составляет – 80.0 тонн/год.

Лимит накопления отходов на период эксплуатации объекта

Лимит накопления отхо	дов на период	(эксплуа	атации об	<u> эъекта</u>		
Наименование отходов	Объем нак	опленных	Лимит	накопление,		
	отходов	на	тонн/год			
	существующее					
	положение, тоні	н/год				
1	2		3			
Всего	42 827.3026		42 827.3026			
в том числе отходов производства	42 816.0526		42 816.0526			
отходов потребления	11.25		11.25			
	Эпасные отходы					
Отходы от красок и лаков	0.0421		0	.0421		
Отработанное моторное масло	0.911		0.911			
Отработанное трансмиссионное	0.911		(0.911		
масло						
Отработанные масляные фильтры	отры 0.16			0.16		
Отработанные аккумуляторные	0.6			0.6		
батареи						
Промасленная ветошь	0.4135		0.4135			
Грунты пропитанные нефтью и	2.0		2.0			
мазутом						
Н	е опасные отході	Ы				
Смешанные коммунальные	11.25		1	11.25		
отходы Золошлак	31.0			31.		
Отходы сварки	•		0.015			
Отработанные шины 1.125 2.200 0		`	1.125			
Фекали животных, моча и навоз	42700.0		42700.0			
Отходы животноводства (трупы	80.0			80.0		
животных)	<u> </u>					
Зеркальные						
-	-			-		

Лимит захоронения отходов на период эксплуатации объекта

Наименование	Объем захороненных	Образование,	Лимит	Повторное	Передача			
отходов	отходов на	тонн/год	захоронения,	использование,	сторонним			
	существующее		тонн/год	переработка,	организациям,			
	положение, тонн/год			тонн/год	тонн/год			
1	2	3	4	5	6			
Всего	-	42 827.3026	-	42 812.822	26.8556			
в том числе		42.016.0526		42.012.022	26.0556			
отходов	-	42 816.0526	-	42 812.822	26.8556			
производства								
отходов	-	11.25	-	-	11.25			
потребления								
Опасные отходы								
Отходы от красок и	-	0.0421	-	-	0.0421			
лаков								
Отработанное	-	0.911	-	0.911	-			
моторное масло								
Отработанное	-	0.911	-	0.911	-			
трансмиссионное								
масло								

Отработанные	-	0.16	-	-	0.16		
масляные фильтры							
Отработанные	-	0.6		-	0.6		
аккумуляторные							
батареи							
Промасленная	-	0.4135	-	-	0.4135		
ветошь							
Грунты	-	2.0	-	-	2.0		
пропитанные							
нефтью и мазутом							
Не опасные отходы							
Смешанные	-	11.25	-	-	11.25		
коммунальные							
отходы							
Золошлак	-	31.0	-	31.0	-		
Отходы сварки	-	0.015	-	-	0.015		
Отработанные	-	1.125	-	-	1.125		
шины							
Фекали животных,	-	42700.0	-	42700.0	-		
моча и навоз							
Отходы	-	80.0	-	80.0	-		
животноводства							
(трупы животных)							
Зеркальные							
-	-	-	-	-	-		

13. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ ОБЪЕМОВ ЗАХОРОНЕНИЯ ОТХОДОВ

Захоронение отходов в рамках деятельности не прогнозируется.

14. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ, ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВРЕДНЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ С РИСКАМИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ

14.1 Вероятность возникновения аварийных ситуаций

Главная задача в соблюдении безопасности работ заключается в правильном осуществлении всех технологических операций при строительстве комплекса, что предупредит риск возникновения возможных критических ошибок. Вероятность возникновения аварийных ситуаций используется для определения следующих явлений: потенциальных событий, операций, которые могут привести к аварийной ситуации, а также к вероятным катастрофическим воздействиям на окружающую среду;

- потенциальной величины или масштаба экологических последствий, которые могут быть причинены в случае наступления такого события.

Потенциальные опасности могут возникнуть в результате воздействия, как природных факторов, так и антропогенных. При возникновении чрезвычайной природной ситуации возникает опасность саморазрушения окружающей среды. Под природными факторами понимаются разрушительные явления, вызванные природно- климатическими причинами, которые не контролируются человеком. К природным факторам относятся:

- землетрясения;
- ураганные ветры;
- повышенные атмосферные осадки.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении о риске, связанном с природными факторами. Под антропогенными факторами понимаются быстрые разрушительные изменения окружающей среды, обусловленные деятельностью человека или созданных им технически устройств и производств. Как правило, аварийные ситуации возникают вследствие нарушения регламента работы оборудования или норм его эксплуатации. Возможные техногенные аварии при проведении работ строительству объекта связаны с автотранспортной техникой. Выезд транспорта в неисправном виде, или опрокидывание транспорта может привести к возникновению аварий и, как следствие, к утечке топлива. Утечка топлива может привести к загрязнению почвенно-растительного покрова, поверхностных и подземных вод горюче смазочными материалами. Площадь такого загрязнения небольшая. По литературным данным на ликвидацию аварий, связанных с технологическим процессом проведения работ, затрачивается много времени и средств (до 10%). Значительно легче предупредить аварию, чем ее ликвидировать. Поэтому при производстве планируемых работ необходимо уделять первоочередное внимание предупреждению аварий, а именно:

- монтажу, проверке и техническому обслуживанию всех видов оборудования, требуемых в соответствии с правилами техники безопасности и охраны труда;
 - обучению персонала и проведению практических занятий;
- осуществлению постоянного контроля за соблюдением стандартов безопасности труда, норм, правил и инструкций по охране труда;
 - обеспечению здоровых и безопасных условий труда;
 - повышению ответственности технического персонала.

14.2 Мероприятия по предотвращению, локализации и ликвидации возможных аварийных ситуаций

Для определения и предотвращения экологического риска необходимы:

- разработка специализированного плана аварийного реагирования по ограничению, ликвидации и устранению последствий возможной аварии;
- проведение исследований по различным сценариям развития аварийных ситуаций на различных производственных объектах;
 - обеспечение готовности систем извещения об аварийной ситуации;
- обеспечение объекта оборудованием и транспортными средствами по ограничению очага и ликвидации аварии;
 - обеспечение безопасности используемого оборудования;
- использование системы пожарной защиты, которая позволит осуществить своевременную доставку надлежащих материалов и оборудования, а также привлечение к работе необходимого персонала для устранения очага возникшего пожара на любом участке предприятия;
 - оказание первой медицинской помощи;
- обеспечение готовности обслуживающего персонала и технических средств к организованным действиям при аварийных ситуациях и предварительное планирование их действий.

Деятельность организаций и граждан, связанная с риском возникновения чрезвычайных ситуаций, подлежит обязательному страхованию. Организации, независимо от форм собственности и ведомственной принадлежности, представляют отчетность об авариях, бедствиях и катастрофах, приведших к возникновению чрезвычайных ситуаций, а специально уполномоченные государственные органы осуществляют государственный учет чрезвычайных ситуаций природного и техногенного характера.

14.3 Ответственность за нарушение законодательства в области чрезвычайных ситуаций природного и техногенного характера

Аварии, бедствия и катастрофы, приведшие к возникновению чрезвычайных ситуаций природного и техногенного характера, подлежат расследованию в порядке, установленном Правительством Республики Казахстан. В случае выявления противоправных действий или бездействия должностных лиц и граждан материалы расследования подлежат передаче в соответствующие органы для привлечения виновных к ответственности. Должностные лица и граждане, виновные в невыполнении или недобросовестном выполнении установленных нормативов, стандартов и правил, создании условий и предпосылок к возникновению аварий, бедствий и катастроф, непринятии мер по защите населения, окружающей среды и объектов хозяйствования от чрезвычайных ситуаций природного и техногенного характера и других противоправных действиях, несут дисциплинарную, административную, имущественную и уголовную ответственность, а организации — имущественную ответственность в соответствии с законодательством Республики Казахстан.

14.4 Возмещение ущерба, причиненного вследствие чрезвычайных ситуаций природного и техногенного характера

Ущерб, причиненный здоровью граждан вследствие чрезвычайных ситуаций техногенного характера, подлежит возмещению за счет юридических и физических лиц, являющихся ответственными за причиненный ущерб. Ущерб возмещается в полном объеме с учетом степени потери трудоспособности потерпевшего, затрат на его лечение, восстановление здоровья, ухода за больным, назначенных единовременных государственных пособий в соответствии с законодательством Республики Казахстан. Организации и граждане вправе требовать от указанных лиц полного возмещения имущественных убытков в связи с причинением ущерба их здоровью и имуществу, смертью из-за чрезвычайных ситуаций техногенного характера, вызванных деятельностью организаций и граждан, а также возмещения расходов организациям, независимо от их формы собственности, частным лицам, участвующим в аварийно-спасательных работах и ликвидации последствий чрезвычайных ситуаций.

Возмещение ущерба, причиненного вследствие чрезвычайных ситуаций природного характера здоровью и имуществу граждан, окружающей среде и объектам хозяйствования, производится в соответствии с законодательством Республики Казахстан. Организации и граждане, по вине которых возникли чрезвычайные ситуации техногенного характера, обязаны возместить причиненный ущерб земле, воде, растительному и животному миру (территории), включая затраты на рекультивацию земель и по восстановлению естественного плодородия земли.

14.5 Экстренная медицинская помощь при ликвидации чрезвычайных ситуаций природного и техногенного характера

При ликвидации чрезвычайных ситуаций природного и техногенного характера немедленно вводится в действие служба экстренной медицинской помощи, а при недостаточности, включаются медицинские силы и средства министерств, государственных комитетов, центральных исполнительных органов, не входящих в состав Правительства, и организаций. Проектируемый объект в силу его специфики нельзя отнести к разряду опасного производства.

Организации обязаны вести плановую подготовку рабочих и служащих, с целью дать каждому обучаемому определенный объем знаний и практических навыков по действиям и способам защиты в чрезвычайных ситуациях. Подготовка включает проведение регулярных занятий, учебных тревог и т. д.

15. ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ НА ПЕРИОД ЭКСПЛУАТАЦИИ ОБЪЕКТА МЕР ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ,

СМЯГЧЕНИЮ ВЫЯВЛЕННЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ

Одной из основных задач охраны окружающей среды является разработка и выполнение запроектированных природоохранных мероприятий.

При проведении работ, будет принят комплекс мер, обеспечивающих предотвращение и смягчение воздействия на природную среду. Так, согласно Приложению 4 к Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI ЗРК предприятием будет предусмотрено внедрение обязательных мероприятий, соответствующих данному виду деятельности по намечаемому строительству магистральной улицы общегородского значения:

- выполнение мероприятий, направленных на восстановление естественного природного плодородия, сохранение плодородного слоя почвы и использование его для благоустройства территории после окончания строительных работ;
- озеленение территорий административно-территориальных единиц, увеличение площадей зеленых насаждений.

В целом, природоохранные мероприятия можно разделить на ряд общеорганизационных и специфических мероприятий, направленных на снижение воздействия на конкретный компонент природной среды. Одним из наиболее значимых и необходимых требований для контроля воздействий и разработки конкретных мероприятий по их ограничению и снижению является производственный мониторинг окружающей среды, который предусматривает регистрацию возникающих изменений. Вовремя выявленные негативные изменения в природной среде позволят определить источник негативного воздействия и принять меры по его снижению.

Из общих организационных мероприятий, позволяющих снижать воздействие на компоненты природной среды, можно выделить следующие:

- Применение наиболее современных технологий и совершенствование технологического цикла;
- Соблюдение природоохранных требований законодательных и нормативных актов Республики Казахстан, а также внутренних документов и стандартов Компании;
- Наличие резервного оборудования в необходимом для соблюдения графика работ объеме иобеспечения быстрого реагирования в случае возникновения нештатной ситуации;
- Все оборудование должно надлежащим образом обслуживаться и поддерживаться в хорошем рабочем состоянии. Для этого должны постоянно находиться наготове соответствующий запас запчастей и опытный квалифицированный персонал.

15.1 Комплекс мероприятий по уменьшению выбросов в атмосферу

При организации деятельности необходимо осуществлять мероприятия и работы по охране окружающей среды, которые должны включать предотвращение потерь природных ресурсов, предотвращение или очистку вредных выбросов в атмосферу.

Для уменьшения загрязнения атмосферы, вод, почвы и снижения уровня шума необходимо выполнить следующие мероприятия:

- отрегулировать на минимальные выбросы выхлопных газов всех машин, механизм;
- организация системы упорядоченного движения автотранспорта;
- сокращение или прекращение работ при неблагоприятных метеорологических условиях.
- устранение открытого хранения и, погрузки и перевозки сыпучих материалов;
- завершение строительства уборкой и благоустройством территории;
- оснащение рабочих мест и стройплощадки инвентарем.

Строительные работы ведутся из готовых строительных материалов, что позволяет сократить количество временных источников загрязнения и минимизировать выбросы загрязняющих веществ. При соблюдении всех решений принятых в технологическом регламенте и всех предложенных мероприятий, негативного воздействия на атмосферный воздух в период строительства проектируемого объекта не ожидается.

15.2 Мероприятия по охране недр и подземных вод

Воздействие на геологическую среду и подземные воды являются тесно взаимоувязанными, в связи с чем комплекс мероприятий по минимизации данных воздействий корректно рассмотреть едино. Комплекс мероприятий по минимизации негативного воздействия предприятия на грунтовую толщу и подземные воды должен включать в себя меры по устранению последствий и локализацию возможных экзогенных геологических процессов, а также учитывать мероприятия по предотвращению загрязнения геологической среды и подземных вод.

С целью предотвращения загрязнения геологической среды и подземных вод в результате производственной деятельности предусматриваются следующие мероприятия:

- недопущение разлива ГСМ;
- регулярное проведение проверочных работ строительной техники и автотранспорта на исправность;
- недопущение к использованию при выполнении строительных работ неисправной и неотрегулированной техники;
- хранение отходов осуществляется только в стальных контейнерах, размещенных предварительно подготовленных площадках с непроницаемым покрытием;
 - соблюдение санитарных и экологических норм.

15.3 Мероприятия по предотвращению и смягчению воздействия отходов на окружающую среду

В целях минимизации возможного воздействия отходов на компоненты окружающей среды необходимо осуществлять ряд следующих мероприятий:

- раздельный сбор отходов;
- использование специальных контейнеров или другой специальной тары для временного хранения отходов;
- содержать в чистоте контейнеры, площадки для контейнеров, близлежащую территорию, оборудовать контейнерные площадки в соответствии с санитарными нормами и правилами;
 - перевозка отходов на специально оборудованных транспортных средствах;

- сбор, транспортировка и захоронение отходов производится согласно требованиям РК;
- организация производственной деятельности по строительству объекта с акцентом на ответственность подрядной строительной организации за нарушение техники безопасности и правил охраны окружающей среды;
 - отслеживание образования, перемещения и утилизации всех видов отходов;
- подрядная организация, в процессе строительства объекта, должна нести ответственность за сбор и утилизацию отходов, а также за соблюдение всех строительных норм и требований РК в области ТБ и ООС;
- проведение всех видов деятельности в соответствии с требованиями экологических положений Республики Казахстан и т.д.

Принятые проектными решениями природоохранные мероприятия позволяют минимизировать возможные воздействия на ОС и осуществлять деятельность в разрешенных законодательством РК пределах.

15.4 Мероприятия по снижению физических воздействий на окружающую среду

При соблюдении общих требований эксплуатации оборудования и соблюдении мер безопасности на рабочих местах, воздействие физических факторов оценивается в пространственном масштабе как локальное, во временном масштабе как постоянное и по величине воздействия как незначительное.

Физическое воздействие на окружающую среду в результате эксплуатации объекта можно оценить, как допустимые.

15.5 Мероприятия по охране почвенного покрова

В начале освоения необходимо строго следить за почвенно-плодородного слоя со всей застраиваемой и подлежащей планировочным работам территории для дальнейшего его использования при благоустройстве на месте строительства.

В качестве основных мероприятий по защите почв на рассматриваемом объекте следует предусмотреть следующее:

- сохранение плодородного слоя почвы и использование его для благоустройства территории после окончания строительных работ;
- запрещение передвижения техники и транспортных средств вне подъездных путей и внутрипостроечных дорог;
- не допускать захламления поверхности почвы отходами. Для предотвращения распространения отходов на рассматриваемом участке необходимо оснащение контейнерами для сбора мусора, а также установление урн, с последующим регулярным вывозом отходов в установленные места;
- запрещается закапывать или сжигать на участке и прилегающих к нему территориях образующийся мусор;
- для предотвращения протечек ГСМ от работающей техники и автотранспорта запрещается использовать в процессе работ неисправную и неотрегулированную технику;
 - недопустимо производить на участке мойку техники и автотранспорта.

Выполнение всех перечисленных мероприятий позволит предотвратить негативное воздействие на почвенный покров от строительно-монтажных работ.

15.6 Мероприятия по охране растительного покрова

Охрану растительного покрова обеспечивают мероприятия, направленные на охрану почв, снижающие выбросы в атмосферу, упорядочивающие обращение с отходами, а также обеспечивающие санитарно-гигиеническую безопасность.

В современном городе озеленение улиц предусматривается для создания комфортных условий для транзитного потока пешеходов, заботится о здоровье населения, а также выполняет чисто эстетические функции.

Основными функциями зеленых насаждений являются: улучшение санитарно-гигиенического состояния городской среды, создание комфортных условий для жителей прилегающих к улицам районов благодаря своим пыле, ветро- и шумозащитным качествам.

Для снижения негативных последствий проведения намечаемых работ необходимо строгое соблюдение технологического плана работ и использование специальной техники.

- В процессе проведения работ предусмотрен комплекс мероприятий, направленных на смягчение антропогенных воздействий:
 - сохранение, восстановление естественных форм рельефа;
 - своевременное проведение технического обслуживания и ремонтных работ.

При соблюдении всех правил эксплуатации, дополнительно отрицательного влияния на растительную среду проектируемый объект оказывать не будет.

Реализация подобных природоохранных мероприятий позволит значительно снизить неблагоприятные последствия от намечаемой строительной деятельности.

Таким образом, деятельность предприятия не окажет негативного влияния на растительный мир и растительный покров рассматриваемой территории.

15.7 Мероприятия по охране животного мира

Животный мир в районе действующего предприятия, несомненно, испытает антропогенную нагрузку в связи с проведением работ.

Для снижения негативного влияния на животный мир, проектом предусмотрено выполнение следующих мероприятий:

- соблюдение норм шумового воздействия и максимально возможное снижение шумового фактора на окружающую фауну;
- соблюдение норм светового воздействия и максимально возможное снижение светового фактора на окружающую фауну;
 - разработка строго согласованных маршрутов передвижения техники;
- ограждение территории, исключающее случайное попадание на площадку предпрятия животных;
- строгое запрещение кормление диких животных персоналом, а также надлежащее хранение отходов, являющихся приманкой для диких животных.

16. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА

Порядок проведения послепроектного анализа в соответствии с пунктом 3 статьи 78 Экологического кодекса Республики Казахстан определен приказом Министра экологии, геологии и природных ресурсов Республики Казахстан № 229 от 01.07.2021 г. «Об утверждении правил проведения послепроектного анализа и формы заключения по результатам послепроектного анализа».

Послепроектный анализ проводится составителем отчета о возможных воздействиях в целях подтверждения соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

В соответствии с пп. 1. п. 4 главы 2 «Правил проведения послепроектного анализа...», послепроектный анализ проводится при выявлении в ходе оценки воздействия на окружающую среду неопределенностей в оценке возможных существенных воздействий на окружающую среду и в случаях, если необходимость его проведения установлена и обоснована в отчете о возможных воздействиях на окружающую среду и в заключении по результатам оценки воздействия на окружающую среду.

В ходе оценки воздействия на окружающую среду неопределенностей в оценке возможных существенных воздействий на окружающую среду не выявлено. Так как объект располагается на действующем производстве и в пределах существующей площадки каких-либо существенных изменений в компонентах окружающей среды и социально-экономическом положении территории воздействия не произойдет. Само воздействие объекта оценивается, как допустимое.

В связи с тем, что настоящий проект характеризуется отсутствием выявленных неопределенностей в оценке возможных существенных воздействий проведение послепроектного анализа в рамках намечаемой деятельности не требуется.

17. ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ

В настоящем проекте проведен анализ возможных воздействий намечаемой деятельности на различные компоненты природной среды, определены их характеристики в периоды эксплуатации объекта.

Оценка воздействия на окружающую среду показывает, что эксплуатация объекта не окажет критического или необратимого воздействия на окружающую среду территории, которая окажется под воздействием намечаемой деятельности.

Проектом установлено, что в период деятельности будут преобладать воздействия низкой значимости. Воздействия высокой значимости не выявлены. Обоснования необходимости выполнения операций, влекущих необратимые воздействия, не требуется.

Предпосылок к потере устойчивости экологических систем района проведения планируемых работ не установлено. Ожидаемые воздействия не приведут к необратимым изменениям экосистем.

В сравнительном анализе потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери, в экологическом, культурном, экономическом и социальном контекстах нет необходимости.

18. СПОСОБЫ И МЕРЫ ВОССТАНОВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПО СЛУЧАЮ ПРЕКРАЩЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Прекращение деятельности не прогнозируется. Деятельность предполагается осуществлять в течении всего срока действия предприятия.

Причин, которые бы препятствовали осуществлению намечаемой деятельности не выявлено, кроме как не зависящих от действий и решений, т.е. обстоятельств непреодолимой силы, к которым относятся войны, наводнения, пожары, и прочие стихийные бедствия, забастовки, изменения действующего законодательства и т.п.

19. ОПИСАНИЕ МЕТОДОЛОГИИ ИССЛЕДОВАНИЙ И СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ СОСТАВЛЕНИИ ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

При составлении Отчета о возможных воздействиях, в ходе выполнения оценки воздействия на окружающую среду, были использованы следующие источники информации:

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK.
- 2. Водный кодекс Республики Казахстан от 9 июля 2003 года, № 481-II 3PK (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 3. Лесной Кодекс Республики Казахстан от 8 июля 2003 года, № 477-II 3PK (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 4. Земельный Кодекс Республики Казахстан от 20 июня 2003 года, № 442-II ЗРК (с изменениями и дополнениями по состоянию на 06.07.2021 г.).
- 5. Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI «О недрах и недропользовании» (с изменениями и дополнениями от 01.07.2021 г.);
- 6. Кодекс Республики Казахстан от 07 июля 2020 № 360-VI «О здоровье народа и системе здравоохранения» (с изменениями по состоянию на 24.06.2021 г.);
- 7. Закон Республики Казахстан «Об особо охраняемых природных территориях» от 7 июля 2006 года № 175- III ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 8. Закон Республики Казахстан от 26 декабря 2019 года № 288-VI «Об охране и использовании объектов историко-культурного наследия».
- 9. Закон Республики Казахстан «Об охране, воспроизводстве и использовании животного мира» от 9 июля 2004 года № 593-II, (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 10. Закон Республики Казахстан от 23 апреля 1998 года № 219-І «О радиационной безопасности населения» (с изменениями и дополнениями по состоянию на 25.02.2021 г.).
- 11. Закон Республики Казахстан от 16 июля 2001 года № 242-II «Об архитектурной, градостроительной и строительной деятельности в Республике Казахстан» (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 12. Приказ Министра энергетики Республики Казахстан от 15 июня 2018 года № 239 «Об утверждении Единых правил по рациональному и комплексному использованию недр» (с изменениями и дополнениями от 20.08.2021 г.).
- 13. Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучения (ОСП 72/87);
- 14. Санитарные правила СП 2.6.6.1168-02 «Санитарные правила обращения с радиоактивными отходами (СПОРО-2002)»;
- 15. Приказ Министра национальной экономики Республики Казахстан от 27 февраля 2015 года №155 «Об утверждении гигиенических нормативов «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности».
- 16. «Методические указания по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденную МООС РК приказом N270-о от 29.10.2010 г.
- 17. Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий. Приложение №18 к приказу МООС РК №100-п от 18.04.2008 (приложение № 12 к

приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221- ⊖).

- 18. Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу МОСиВР РК от 12.06.2014 г. №221-ө).
- 19. РНД 211.2.02.05-2004, Астана, 2004 г. «Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)».
- 20. РНД 03.1.0.3.01-96 «Порядок нормирования объемов образования и размещения отходов производства». 23. ГОСТ 17.5.3.04 83 Охрана природы. Земли. Общие требования к рекультивации земель.
- 21. ГОСТ 17.5.1.02 85 Охрана природы. Земли. Классификация нарушенных земель для рекультивации. 25. ГОСТ 32220-2013 «Вода питьевая, расфасованная в емкости. Общие технические условия».
- 22. ГОСТ 12.1.003-2014 «ССБТ. Шум. Общие требования безопасности». Введен на территории Республики Казахстан с 1 января 2016 года (Приложение к приказу Председателя Комитета технического регулирования и метрологии Министерство по инвестициям и развитию Республики Казахстан от 30 октября 2015 года № 217-од)
 - 23. СП РК 2.04-01-2017 «Строительная климатология» (с изменениями от 01.04.2019 г.).
- 24. «Гигиенические нормативы к физическим факторам, оказывающим воздействие на человека», утвержденные Приказом Министра национальной экономики РК от 28 февраля 2015 г. № 169.
- 25. «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления» от 25 декабря 2020 года № КР ДСМ-331/2020.
- 26. Приказ и.о. Министра здравоохранения Республики Казахстан от 11.01.2022 г. № ҚР ДСМ-2 «Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека».

20. ТРУДНОСТИ ПРИ ПРОВЕДЕНИИ ИССЛЕДОВАНИЙ

Трудности в подготовке отчета связаны с введением нового Экологического кодекса РК, 2021 г. и многочисленных подзаконных актов.

Требования к разработке отчета OBOC прописаны в статье 72 Экологического кодекса РК и Инструкции по проведению экологической оценки, 2021г.

Однако наполненность требуемых пунктов, и глубина проводимых исследований не прописаны соответствующими методическими документами.

Поэтому составители отчета ориентировалась на международный опыт, требования предыдущего законодательства и опыт разработки аналогичных отчетов.

21. КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ

Описание предполагаемого места осуществления намечаемой деятельности, план с изображением его границ.

TOO «KazBeef Ltd» является действующим предприятием.

Основным видом деятельности предприятия является животноводство: разведение крупного рогатого скота (КРС) породы Ангус и Герефорд.

Животноводческий комплекс расположен в Акмолинской области, район им.Биржан Сал, с. Мамай.

Все административные и производственные помещения Хозяйства расположены на трех площадках, расположенных в непосредственной близости друг от друга:

- Репродуктор № 1 выращивание КРС породы Герефорд со шлейфом (телятами);
- Репродуктор №2 выращивание КРС породы Ангус со шлейфом (телятами);
- Репродуктор №3 содержание КРС породы Герефорд и Ангус со шлейфом (телятами).

В состав предприятия входит:

- КПП;
- Площадки для сбора ТБО;
- Административно-бытовые корпуса;
- Ветеринарные пункты, изоляторы;
- Накопительные площадки, распределительные площадки;
- Загоны для откорма КРС;
- Предродовые загоны для КРС;
- Весовые;
- Автостоянки;
- Ангары для сельхозтехники;
- -Ремонтные мастерские (МТМ);
- Склады ГСМ (Репродуктор №№2,3) и автозаправочная газовая станция (репродуктор №3);
- Ангары для переработки и хранения кормов;
- Площадки открытого хранения сена, соломы, силоса и сенажа;
- Зерносклады;
- Баня (Репродуктор №2);
- Крематор (Репродуктор №2);
- Открытые каналы для удаления навоза;
- Открытые площадки для буртования навоза;
- Площадки для сухого навоза;
- Трансформаторные подстанции с дизельной электростанцией;
- Насосные станции с глубинной скважиной и подземным 100 м.куб. резервуаром хранения

воды;

- Жилые дома для рабочих;
- Пастбищные отгоны;
- Участок для выращивания кукурузы.

Площадь земельного участка репродуктора №1 составляет - 45,0 га.

Площадь земельного участка репродуктора №2 составляет - 51,6 га.

Площадь земельного участка репродуктора №3 составляет - 73,6 га.

Площадь земельного участка для выращивания кукурузы на силос – 240,0 га.

Описание затрагиваемой территории с указанием численности ее населения, участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой деятельности на окружающую среду, с учетом их характеристик и способности переноса в окружающую среду; участков извлечения природных ресурсов и захоронения отходов.

Ближайшим населенным пунктом является с. Мамай, расположенный в 1.5 километре от репродуктора №3 на юго-запад.

Ближайший водный объект является озеро Мамай находится на расстоянии 3.0 км от репродуктора №3. Данный объект не входит в водоохранную зону и полосу водных объектов.

На территории оросительной установки (участок для выращивания кукурузы) имеется металлический контейнер в которой установлен самодельная печь, работающая на твердом топливе для обогрева рабочих, которая распологается на территории водоохраной зоны и полосы реки Атан.

В результате производственной деятельности предприятия образуются следующие виды отходов: смешанные коммунальные отходы; золошлак; отходы от красок и лаков; отходы сварки; отработанные моторные, трансмиссионные масла; отработанные масляные фильтры; отработанные шины; отработанные аккумуляторные батареи; промасленная ветошь; грунты пропитанные нефтью и мазутом; отработанные светодиодные лампы; отходы животноводства (трупы животных); фекалии животных, моча и навоз (включая использованную солому), жидкие стоки.

Объект предполагает забор воды из поверхностных водных источников. Сбросов непосредственно в поверхностные и подземные водные объекты не предусматривается, поэтому прямого воздействия на водные ресурсы не оказывает. Также намечаемая деятельность не предполагает загрязнение токсичными компонентами подземных вод.

Предполагемые к образованию в результате деятельности предприятия будут накапливаться в специально отведенных местах и по мере накопления будут передаваться для дальнейшей утилизации, переработки или захоронения сторонним организациям (специализированные предприятия по переработке вторичного сырья и т.п.) согласно договоров.

Наименование инициатора намечаемой деятельности, его контактные данные.

Инициатор намечаемой деятельности: TOO «KazBeef LTD».

Адрес инициатора: Акмолинская область, район им. Биржан Сал, с. Мамай.

Краткое описание намечаемой деятельности.

Репродуктор № 3 - содержание КРС породы Герефорд и Ангус со шлейфом (телятами).

Репродуктор № 3 - 2500 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена

распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров
- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.
- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 —ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 3 тонны.

Также на территории откормочного комплекса в зимнее время содержаться лошади в количестве 35 голов. Они находятся в открытом загоне, отдельно от КРС.

Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (**зернодробилка**) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет 8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму, затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер).

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072. Время работы составляет 0,7 час/сут, 267 час/год.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора №3 — 19300 тонн. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

На репродукторе №3 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0) . Площадь бурта составляет $8000,0 \text{ м}^2$.

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток. При разложении навоза с площадки.

Ветеринарный пункт.

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, инженера, конференц зал на 20 мест, вип кабинет, столовая на 32 посадочных места, кухня, плита посудомоечная, 2 душевые, три туалета, кладовая, санузлы, помещения уборочного инвентаря, 2 комнатная квартира. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от электрокотла. В качестве аварийнного отопления в зимнее время предусмотрен самодельный котел, работающий на твердом топливе. Годовой расход угля: Кузнецкий бассейна, зольностью 27,9% — 45,0 тонн, Карагандинский бассейн (Шубаркульского месторождения), зольностью — 22,5% - 20 тонн и дрова 10 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 7,0 м, диаметром 0,15 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 65 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Автостоянка.

На открытой стоянке паркуется 10 единиц автотранспорта: КАМаз – 3 ед; колесный трактор – 7 ед;

Ангар для сельхозтехники.

В ангаре паркуются: КАМаз -2 ед; колесный трактор -6 ед, Уаз -3 ед., Газ-1 ед., Паз -1 ед. Ангар не отапливаемый.

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Заточный станок, с диаметром шлифовального круга 100 мм. Время работы 150 час/год.
- Сверлильный станок. Мощность 1,5 кВт. Время работы 150 час/год.
- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки МР-3 400 кг/год.
- Зарядка аккумуляторов. За год проводится зарядка 23 аккумуляторных батарей номинальной емкостью -60, 190, 55, 90, 60, 65, 75 А.ч. Максимально за один раз заряжаются 2 аккумулятора.

В ремонтной мастерской (МТМ) установлен самодельный котел (строительство дополнительных помещений не производилось). Годовой расход угля: Карагандинский бассейн (Шубаркульского месторождения), зольностью -22,5% -20 тонн и Экибастузского угля, зольностью 42,3% -15 тонн и дрова 5 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 8,0 м, диаметром 0,15 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 35 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 1,0 м.

Золошлак складируется в контейнере.

Склад ГСМ.

На складе ГСМ установлено 3 наземных резервуара: из них 2 по $V=7~{\rm M}^3$ и 1 по $10~{\rm M}^3$ для хранения дизельного топлива. Годовой объем дизельного топлива составляет $150~{\rm tohh}$.

Для уменьшения потерь нефтепродуктов в резервуарах от «больших» и «малых» дыханий предусмотрены дыхательных клапаны повышенного давления. Дыхательные клапаны резервуаров расположены на высоте 2,5, диаметр 0,025м.

Для отпуска нефтепродуктов установлена однорукавная топливораздаточная колонка. Производительностью $50\ \mathrm{л/мин}$.

Подача топлива к ТРК осуществляется насосом перекачки (с двумя сальниковыми уплотнениями) – 1 шт.

На территории ГСМ имеется АГЗС предназначена для заправки автомобилей.

Газозаправочный модуль $V=10~\text{m}^3$ (1~шт) надземного исполнения для предназначен для приема, хранения и заправки сжиженным углеводородным газом (СУГ).

АГЗС состоит из таких основных узлов и систем:

- Сосуд для хранения СУГ;
- Насосная установка;

- Топливозаправочная колонки для выдачи СУГ;
- Шаровые краны;
- Дифференциальный байпасный клапан;
- Клапан предохранительный.

Сосуд СУГ (аппарат емкостной для сжиженного пропана и бутана), предназначен для приема, хранения и выдачи СУГ при температуре от -40 до +50 оС.

Сосуд изготовлен как горизонтальный цилиндрический аппарат с двумя эллиптическими днищами, установленный на две опоры. Резервуар изготовлен как горизонтальный цилиндрический аппарат с двумя эллиптическими днищами, установленный на две опоры.

Насосная установка для перекачки СУГ. Насос приводится в движение электродвигателем во взрывозащищенном исполнении. Для передачи движения от двигателя к насосу применяется специальная искробезопасная муфта. Паровая фаза СУГ, выделяющаяся в трубопроводе перед насосом (в фильтре) отводится в полость паровой фазы резервуара. Топливозаправочная колонки для выдачи СУГ. Топливозаправочная колонка состоит из гидравлической части, которая крепится к нижней части несущей стойки, и блока индикации с электронным счетчиком, который крепится в верхней части несущей стойки. Жидкая фаза СУГ от насосной установки подводится к оборудованию гидравлической части колонки, состоящей из сепаратора с фильтром и обратным клапаном, поршневого измерительного прибора, дифференциального клапана и предохранительной или разрывной муфты. Фильтр улавливает механические примеси из закачиваемого топлива. В сепараторе происходит отделение паровой фазы СУГ для предотвращения попадания ее в измеритель. Паровая фаза СУГ сбрасывается через запорный клапан в резервуар. Жидкая фаза СУГ после сепаратора через обратный клапан поступает в измерительный прибор, дифференциальный клапан, и через смотровой индикатор, предохранительную или разрывную муфту в шланг и раздаточный пистолет.

Раздаточный шланг применен стандартной длины 4 м. На одном конце шланга имеется резьбовая втулка для раздаточного крана, а на втором — резьбовая втулка для соединения с предохранительной или разрывной муфтой.

Топливораздаточный кран - элемент топливораздаточной колонки, через который осуществляется заправка автомобиля.

Присоединительный наконечник топливораздаточного крана оснащен резиновой манжетой, которая обеспечивает плотное соединение крана с горловиной топливного бака автомобиля. На топливораздаточной кране имеется защитная оболочка из пластмассы, которая предохраняет обслуживающий персонал от переохлаждения металла.

топливного При заправке бака автомобиля после подсоединения топливораздаточного баку автомобиля производится крана К нажатие кнопки топливораздаточной колонке. Происходит вначале автоматическое зануление счетчика затем включается электродвигатель насосной установки.

Годовой объем поступаемого газа для заправки автотранспорта составляет 40 тонн.

На территории откормочного комплекса производятся покрасочные работы. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 60 кг (для замазки соединения сварных швов)
- Эмаль ПФ 115 − 150 кг (белый, черный)
- Уайт спирит растворитель 1 кг.

Репродуктор № 1 - выращивание КРС породы Герефорд со шлейфом (телятами);

Репродуктор №1 - 1250 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров
- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.
- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 –ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 2,5 тонны. Источником выделения является узел пересыпки реагента. Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (зернодробилка) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет 8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму, затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер).

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072. Время работы составляет 0,2 час/сут, 66 час/год.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора №1 − 11700 тонн. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

На репродукторе №1 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0) . Площадь бурта составляет $8000,0 \, \text{м}^2$.

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток.

Ветеринарный пункт

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, инженера, конференц зал на 20 мест, вип кабинет, столовая на 32 посадочных места, кухня, плита посудомоечная, 2 душевые, три туалета, кладовая, санузлы, помещения уборочного инвентаря, 2 комнатная квартира. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от самодельного котла, работающего на твердом топливе. Годовой расход угля Карагандинский бассейн (Шубаркульского месторождения), зольностью –

22,5%-40,0 тонн и дрова 10 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 7,0 м, диаметром 0,15 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 40 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Автостоянка.

На открытой стоянке паркуются 3 трактора, KAMa3 - 3 ед работающих на дизельном топливе.

Ангар для сельхозтехники.

В ангаре паркуются спецтехника (трактора, Камаз), работающих на дизельном топливе.

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Заточный станок, с диаметром шлифовального круга 100 мм. Время работы 50 час/год.
- Сверлильный станок. Мощность 1,5 кВт. Время работы 50 час/год.
- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки MP-3 200 кг/год, MP-4 -200 кг/г.
- Зарядка аккумуляторов. За год проводится зарядка 23 аккумуляторных батарей номинальной емкостью 60, 190, 55, 90, 60, 65, 75 А.ч. Максимально за один раз заряжаются 2 аккумулятора.

Отопление Ремонтной мастерской осуществляется от электрокотла.

На территории откормочного комплекса производятся покрасочные работы. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 26 кг (для замазки соединения сварных швов)
- Эмаль ПФ 115 − 141,4 кг (белый, черный)
- Уайт спирит растворитель 1 кг.

Репродуктор № 2 - выращивание КРС породы Герефорд со шлейфом (телятами);

Репродуктор № 2 - 1250 голов.

Племенные коровы предназначаются для совершенствования пород и выращивания высокоценного племенного молодняка крупного рогатого скота. Содержание маточного поголовья группами по 250 голов, беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков. Выращивание телят — на подсосе до 7-8 месяцев с использованием пастбищного выпаса в летнее время. Искусственное осеменение производится на зимний отел — февраль-март. Для деления КРС по возрастным группам предусмотрена распределительная площадка. беспривязное, на глубокой подстилке в загонах оборудованными трехсторонними навесами от ветра и осадков.

Накопительная и распределительная площадки служат для деления КРС по возрастным группам. В изоляторе содержат животных в случае их болезни.

Здание отелочной разделено на секции. Максимальная вместимость отелочной – 72 головы:

- отела и санитарной обработки коров
- содержания глубокостельных коров. Здесь коровы содержаться в течении 5-ти дней до отела.

- содержания новотельных коров с подсосными телятами. Здесь коровы содержаться в течении 3-5-ти дней после отела.
 - группового содержания коров с телятами. Коровы находятся в течении 15-17 –ти дней.

После этого сформированную группу переводят в загоны маточного поголовья. Отелочная оснащена автопоилками, кормушками.

Для дезинфекции предродового загона откормочного комплекса используется «пушонка» (гашеная известь). Расход «пушонки» в год 2,5 тонны. Источником выделения является узел пересыпки реагента. Склады кормов на предприятии размещены в самостоятельной зоне. Хранение сена и соломы предусмотрено на специальной площадке.

Ангар для переработки и хранения кормов. Линия приготовления рассыпного корма (**зернодробилка**) производительностью 10 тонн/час размещается в ангаре. Режим работы составляет 8 час/сут, 400 час/год. Зерно, ссыпается в завальную яму, затем всасыванием под вакуумом поступает в дробильное отделение, где происходит дробление зерна, после чего попадает в выходную трубу (бункер).

Пылеочистная установка отсутствует.

Хранение зерна предусмотрено в ангаре. Годовой проход зерна через склад составляет 4000,0 тонн. Зерно на склад завозится автотранспортом, грузоподъемностью 10 тонн.

Кормление КРС предусматривается два раза в день. Для кормления КРС в каждом загоне предусмотрены бетонные кормушки, расположенные вдоль загона. Для стока жидкостей после промывки и дезинфекции в дне кормушки предусмотрены отверстия. К каждом загоне на бетонной площадке установлены автопоилки с подогревом воды.

Температура воды для поения КРС +8...+12 градусов Цельсия, телят +14...+16 градусов

Цельсия. Для загрузки кормов предусмотрены технологические кормовые проезды.

Загрузка кормушек осуществляется специальной техникой - Миксер Botex 4072. Время работы составляет 0,2 час/сут, 66 час/год.

Содержание КРС предусмотрено на подстилках, которая ежедневно заменяется свежей подстилкой виде мелко размолотой соломы или камыша. Хранение соломы/камыша для подстилки предусмотрено на площадках рядом с кормами. Ежедневно производится зачистка загонов содержания КРС.

Предприятием предусмотрено механическое удаление и транспортирование навоза и подстилок. Вывоз навоза из загонов осуществляется Камазом и трактором Джондир 6930. Время работы трактора для загрузки навоза в Камаз составляет 8,0 час/сут, 573 час/год.

На существующее положение вывоз навоза осуществляется с распределительных площадок (загонов) с периода (май-сентябрь месяц) на поля в качестве органического удобрения. Объем вывозимого навоза на поля в качестве органического удобрения с репродуктора №2 − 11700 тонн. Вывоз навоза на существующие площадки временного хранения буртования и компостирования навоза не производится.

На репродукторе №2 имеется существующая площадка временного хранения буртования и компостирования навоза. На площадках хранится ранее вывозимый навоз с распределительных площадок (загонов). Размер бурта навоза в плане (длина-80,0, ширина 100, высота 2,0) . Площадь бурта составляет $8000,0 \, \text{м}^2$.

Бурт навоза устроен из водонепроницаемой площадки. Днище лагуны и открытого канала для навоза выполнено в виде противофильтрационного экрана. Конструктивные решения противофильтрационного устройства выполнены из естественных водоупорных материалов: подстилающий и защитный слой из утрамбованного грунта (дресва, глинистые грунты, 100 мм).

Так как навоз и урина в холодный период года не разлагаются, расчет выполнен для теплого периода года, суммарная продолжительность дней составит при этом 214 суток.

Ветеринарный пункт.

Предназначен для осмотра поступающих на откорм и отправляемых на убой животных, проведения профилактических и ветеринарных мероприятий, ветеринарной обработки животных (вакцинация, массовые диагностические исследования, обеззараживание, расчистка копыт и проведение лечебных процедур), а также амбулаторного и стационарного лечения животных. Здание ветпункта не отапливаемое.

Крематор ТП300-ЭД.

Крематор ТП300-ЭД предназначен для термического уничтожения падежа животных.

Утилизация посредством сжигания является одним из наиболее простых и действенных способов обеспечения санитарной чистоты в местах появления биологических отходов.

Технические характеристики крематора:

- максимальная загрузка 300 кг;
- наличие огнеупорной прокладки;
- температурные свойства прокладки 1650° C;
- средний расход топлива 3,5-5 л/час;
- время сжигания при полной загрузке 5-7 часов;
- электричество 220 B/20 A/ 50 Гц;
- температура горения -760° C 870° C

Технологическая схема работы крематора:

- загрузка;
- процесс сжигания;
- остывание пепла;
- очистка камеры.

Годовое количество трупов животных, сжигаемых в крематоре, составляет 80,0 тонн. Расход дизельного топлива 2520,0 л/год (2,1 тонн/год).

Время работы крематора 7 час/сут, 360,0 час/год.

Источником загрязнения является дымовая труба высотой 6,0 м и диаметром 0,18 м.

Крематор установлен на бетонной площадке под навесом. Предусмотрено ограждение площадки установления крематора размером 9х9 м вокруг крематора. Также предусмотрены ворота и проезд.

Для хранения дизельного топлива предусмотрен топливный бак объемом $0,1\,\mathrm{m}^3$. Выброс загрязняющих веществ при хранении топлива осуществляется через дыхательный клапан высотой $0,8\,\mathrm{m}$, диаметром $0,05\,\mathrm{m}$.

Зола от очистки камеры крематора складируется в закрытом контейнере.

КПП. При въезде на территорию комплекса предусмотрен контрольно-пропускной пункт. В состав КПП входит проходная и помещение охраны. Отопление КПП электрическое.

Административно-бытовые помещения.

Здание АБК одноэтажное, отдельно стоящее. В состав помещения АБК входят: кабинет директора с переговорной, бухгалтерия, кабинеты зоотехников, технологов, агрономов, две спальни с санузлами, буфет на 24 посадочных места, кладовая, санузлы, помещения уборочного инвентаря. Все помещения оснащены мебелью и оборудованы в соответствии с назначением.

Отопление АБК осуществляется от электрокотла.

Автостоянка.

На открытой стоянке паркуется 4 спец. сельхозтехники (трактора), работающие на дизельном топливе.

Ангар для сельхозтехники.

В ангаре паркуются: Уаз – 1 ед., Ваз-21214 – 1 ед., трактор - 2 ед.

Ремонтная мастерская.

В ремонтной мастерской установлено следующее оборудование:

- Газовая сварка с использованием кислородных баллонов. Годовой расход 20 шт/год.
- Электродуговая сварка. Годовой расход электродов марки МР-3, МР-4 по 200 кг/год.
- Токарный станок. Время работы 50 час/год.

Отопление МТМ осуществляется от самодельного котла, работающего на твердом топливе. Годовой расход угля: Карагандинский бассейн (Шубаркульского месторождения), зольностью – 22,5% – 35 тонн и дрова 5 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 8,0 м, диаметром 0,15 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 35 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2.0 м.

Золошлак складируется в контейнере.

Склад ГСМ.

На складе ГСМ установлено 4 наземный резервуар 1 шт V=50 м 3 (д/т), 3 шт V= 8 м 3 (из них 2 шт — диз.топлива, 1 — шт — бензин). Годовое поступление дизельного топлива 160 тонн, бензина 12,0 тонн.

Для уменьшения потерь нефтепродуктов в резервуарах от «больших» и «малых» дыханий предусмотрены дыхательных клапаны повышенного давления. Дыхательные клапаны резервуаров расположены на высоте 2,5, диаметр 0,025м.

Для отпуска нефтепродуктов установлена двухрукавная топливораздаточная колонка. Производительностью $50 \, \text{л/мин}$.

Подача топлива к ТРК осуществляется насосом перекачки (с двумя сальниковыми уплотнениями) — $1\,\mathrm{mt}$.

Основными источниками загрязнения атмосферного воздуха на складе ГСМ являются:

На территории откормочного комплекса производятся покрасочные работы. Лакокрасочные работы необходимы для защиты металла от коррозии.

Годовой расход лакокрасочного материала составляет:

- Грунтовка БС 26 кг (для замазки соединения сварных швов)
- Эмаль ПФ 115 141,4 кг (белый, черный)
- Уайт спирит растворитель 1 кг.

Баня.

Отопление бани осуществляется от самодельного котла, работающего на дровах. Годовой расход дров 20 тонн. Время работы котла 365 дней в году, 6,0 ч/сутки. Источником загрязнения атмосферы является дымовая труба высотой 7,0 м, диаметром 0,15 м.

Золошлак складируется в контейнере.

Жилые дома.

В 2018 году предприятие приобрело 3 жилых дома, для работников работающих вахтовым методом.

В одном из домов имеется котел длительного горения, который отапливает 3 дома. Отопление жилых домов осуществляется от котла Теплос (котел долгового горения), работающего на твердом топливе. Годовой расход угля: Карагандинский бассейн (Шубаркульского месторождения), зольностью – 22,5% – 40 тонн, Кузнецкий бассейна, зольностью 27,9% – 6,0 тонн. Время работы котла 215 дней в году, 24,0 ч/сутки (зимний период). Источником загрязнения атмосферы является дымовая труба высотой 4,5 м, диаметром 0,25 м.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 46 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Пастбищные отгоны.

Отопление передвижных бытовых вагончиков (10 шт) в весенне-осенний период на пастбищных отгонах осуществляется бытовыми печами (2 шт).

Годовой расход угля Карагандинского бассейна (Шубаркульского месторождения), зольностью — 22,5% для каждого передвижного вагончика составляет - 4 тн/год, дров —7 тн/год. Время работы одной бытовой печи: 12 час/сут, 1440 час/год. Источником загрязнения является дымовая труба, высотой 3,0 м, диаметром 0,15 м каждая.

Уголь хранится в огражденном с 3-х сторон площадке. Годовой завоз угля на склад составляет 8 тонн. Завоз угля осуществляется автотранспортом по мере необходимости. Размер склада 2х3 м, высота 2,0 м.

Золошлак складируется в контейнере.

Участок для выращивания кукурузы.

На территории площадки имеется металлический контейнер в которой установлен самодельная печь, работающая на твердом топливе для обогрева рабочих.

Годовой расход угля Карагандинского бассейна (Шубаркульского месторождения), зольностью -22,5% - 5 тн/год, дров - 5 тн/год. Время работы печи: 12 час/сут, 2760 час/год. Источником загрязнения является дымовая труба высотой 4,0 м, диаметром 0,15 м.

Уголь доставляется в мешках по мере необходимости.

Золошлак складируется в контейнере.

На территории Хозяйств (1,2,3) для аварийного электроснабжения объектов установлены дизель-генераторы, согласно «Методике расчета выбросов 3В в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004» выбросы загрязняющих веществ аварийных ДЭС не подлежат нормированию.

Краткое описание существенных воздействий намечаемой деятельности на окружающую среду, включая воздействия на следующие природные компоненты и иные объекты.

Воздействие объекта на здоровье населения находится на низком уровне в связи со значительным удалением ближайших населенных пунктов от деятельности предприятия. Прогноз социально-экономических последствий от деятельности предприятия – благоприятный.

Рассматриваемая территория находится вне земель государственного лесного фонда и особо охраняемых природных территорий Республики Казахстан. Животные и растительность, занесенные в Красную книгу РК на рассматриваемой территории отсутствуют. В целом воздействие намечаемой деятельности на природное состояние растительного и животного мира оценено как незначительное и не приведет к необратимым последствиям.

При реализации намечаемой деятельности значительного воздействия на почво-грунты и земельные ресурсы не прогнозируется. Воздействие носит допустимый характер.

Объект предполагает забор воды из поверхностных водных источников. Сбросов непосредственно в поверхностные и подземные водные объекты не предусматривается, поэтому прямого воздействия на водные ресурсы не оказывает.

Интенсивность воздействия на атмосферный воздух находится в пределах допустимых норм, изменения природной среды не выходят за существующие пределы естественной природной изменчивости.

Предприятие располагается на действующей промышленной площадке со сложившейся, устойчивой системой социально-экономических отношений, поэтому реализация намечаемой деятельности не приведет к изменению социально-экономических систем, соответственно сопротивляемость к изменению социально-экономической системы можно считать высокой.

Природные зоны, памятники истории и культуры, входящие в список охраняемых государством объектов на рассматриваемой территории отсутствуют.

При реализации намечаемой деятельности нарушения взаимодействия компонентов природной среды не предполагается.

Информация о предельных количественных и качественных показателях эмиссий, физических воздействий на окружающую среду, предельном количестве накопления отходов, а также их захоронения, если оно планируется в рамках намечаемой деятельности.

На территории площадки на период эксплуатации объекта имеется 67 неорганизованных источника выброса и 18 организованных источника выброса загрязняющих веществ в атмосферу.

В выбросах в атмосферу на период эксплуатации объекта содержится 39 загрязняющих вещества: железо оксид, марганец и его соединения, кальций дигидроксид, азот диоксид, аммиак, азот оксид, серная кислота, углерод, сера диоксид, сероводород, углерод оксид, фтористые газообразные соединения, бутан, метан, смесь углеводородов предельных С1-С5, смесь углеводородов предельных С6-С10, пентилены, бензол, диметилбензол, метилбензол, этилбензол, метанол, гидроксибензол, этилформиат, пропаналь, гексановая кислота, диметисульфид, метантиол, метиламин, уайт-спирит, алканы С12-19, бензин, керосн, взвешенные частицы, пыль неорганическая: 70-20% SiO², пыль неорганическая менее 20% двуокиси кремния, пыль меховая, пыль абразивная, пыль зерновая.

Общий валовый выброс загрязняющих веществ на период эксплуатации с учетом передвижных источников составит – 82,82778582362 т/г, без учета передвижных источников составит - 72.5677633636 т/г.

Физическое воздействие намечаемой деятельности на компоненты природной среды не будет выходить за рамки предельно допустимых уровней, установленных гигиеническими нормативами Республики Казахстан к физическим факторам.

В результате производственной деятельности предприятия образуются следующие виды отходов: смешанные коммунальные отходы; золошлак; отходы от красок и лаков; отходы сварки; отработанные моторные, трансмиссионные масла; отработанные масляные фильтры; отработанные шины; отработанные аккумуляторные батареи; промасленная ветошь; грунты пропитанные нефтью и мазутом; отработанные светодиодные лампы; отходы животноводства (трупы животных); фекалии животных, моча и навоз (включая использованную солому), жидкие стоки.

Информация: о вероятности возникновения аварий и опасных природных явлений, характерных соответственно для намечаемой деятельности и предполагаемого места ее осуществления; о возможных существенных вредных воздействиях на окружающую среду, связанных с рисками возникновения аварий и опасных природных явлений; о мерах по предотвращению аварий и опасных природных явлений и ликвидации их последствий, включая оповещение населения.

В целом, предприятие не относятся к категории опасных экологических видов деятельности. Анализ сценариев наиболее вероятных аварийных ситуаций констатирует возможность возникновения локальной по характеру аварии, которая не приведет к катастрофическим или необратимым последствиям. Своевременное применение мероприятий по локализации и ликвидации последствий аварийных ситуаций позволит дополнительно уменьшить их возможные негативные влияния на окружающую среду, снизить уровни экологического риска.

Краткое описание мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду.

Основные мероприятия по снижению или исключению воздействий:

- обеспечение технологического контроля за соблюдением технологии производственного процесса и технологическими характеристиками оборудования;
- организация системы упорядоченного движения автотранспорта и техники на территории объекта;
 - контроль за объемами водопотребления и водоотведения;
- организация системы сбора и хранения отходов, образующихся при строительстве объекта, а также при его эксплуатации;
- содержание отведенного земельного участка в состоянии, пригодном для дальнейшего использования его по назначению;
 - проведение озеленения и благоустройства территории предприятия;
 - экологическое сопровождение всех видов производственной деятельности;
- проведение просветительской работы экологического содержания в области бережного отношения и сохранения атмосферного воздуха, водных объектов, почв и земельных ресурсов, растительного и животного мира.

Краткое описание мер по компенсации потерь биоразнообразия.

Принятые проектные решения по реализации намечаемой деятельности не приведут к потере биоразнообразия и исчезновению отдельных видов представителей флоры и фауны.

Краткое описание возможных необратимых воздействий намечаемой деятельности на окружающую среду.

Оценка воздействия на окружающую среду показывает, что при эксплуатации объектов не окажет критического или необратимого воздействия на окружающую среду территории, которая окажется под воздействием намечаемой деятельности. Предпосылок к потере устойчивости экологических систем района проведения планируемых работ не установлено. Ожидаемые воздействия не приведут к необратимым изменениям экосистем.

Краткое описание способов и мер восстановления окружающей среды в случаях прекращения намечаемой деятельности.

При прекращении намечаемой деятельности будут проведены следующие мероприятия: разбор и вывоз в разрешенные места оборудования.

Список источников информации, полученной в ходе выполнения оценки воздействия на окружающую среду.

Источники информации: действующие экологические, санитарно-гигиенические и другие нормы и правила Республики Казахстан; методологическая документация, действующая на территории Республики Казахстан; общедоступные источники информации в интернет-ресурсах официальных сайтов соответствующих ведомств, а также данные сайтов https://ecogosfond.kz/; https://www.kazhydromet.kz/ru/; https://stat.gov.kz/; https://adilet.zan.kz/rus; https://www.gov.kz/memleket/entities/aqmola-zerendy?lang=ru;

https://www.gov.kz/memleket/entities/aqmola-upr?lang=ru; https://ecoportal.kz/.

ПРИЛОЖЕНИЯ

Приложение 1

Расчет валовых выбросов на период эксплуатации Источник загрязнения: 6001, Ворота Источник выделения: 6001 01, Содержание КРС в изоляторе

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = **3984**

Способ содержания животных: в помещении, оборудованном местными отсосами

Коэффициент эффективности местных отсосов, от 0 до 1, KOTS = 0.9

Выбросы пыли , не уловленной местным отсосом ,будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=400

Macca животного, кг, M = 210

Примесь: 0303 Аммиак (32)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=6.6 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6.6\cdot 210\cdot 400/10^8=0.005544$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.005544\cdot 3984\cdot 3600/10^6=0.0795142656$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.108}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.108} \cdot \mathbf{210} \cdot \mathbf{400}/10^8 = \mathbf{0.00009072}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00009072\cdot 3984\cdot 3600/10^6=0.00130114253$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 210\cdot 400/10^8=0.026712$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.026712\cdot 3984\cdot 3600/10^6=0.3831141888$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.245 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.245\cdot 210\cdot 400/10^8=0.0002058$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0002058\cdot 3984\cdot 3600/10^6=0.00295166592$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.025}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 210\cdot 400/10^8=0.000021$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000021\cdot 3984\cdot 3600/10^6=0.0003011904$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.38}\cdot 210\cdot 400/10^8=\mathbf{0.0003192}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0003192\cdot 3984\cdot 3600/10^6=0.00457809408$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.125}\cdot \mathbf{210}\cdot \mathbf{400}/10^8=\mathbf{0.000105}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000105\cdot 3984\cdot 3600/10^6=0.001505952$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.148}\cdot \mathbf{210}\cdot \mathbf{400}/10^8=\mathbf{0.00012432}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00012432\cdot 3984\cdot 3600/10^6=0.00178304717$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.192}\cdot \mathbf{210}\cdot \mathbf{400}/10^8=\mathbf{0.00016128}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00016128\cdot 3984\cdot 3600/10^6=0.00231314227$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 210\cdot 400/10^8=0.00000042$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000042\cdot 3984\cdot 3600/10^6=0.00000602381$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.1} \cdot 210 \cdot 400 / 10^8 = \mathbf{0.000084}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000084\cdot 3984\cdot 3600/10^6=0.0012047616$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 3 С учетом поправочных коэффициентов и эффективности местных отсосов, $QI = QI \cdot KOTS + 0.4 \cdot (1-KOTS) = 3 \cdot 0.9 + 0.4 \cdot (1-0.9) = 2.74$

Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=2.74\cdot 210\cdot 400/10^8=$

0.0023016

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0023016\cdot 3984\cdot 3600/10^6=0.03301046784$

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.005544	0.0795142656
0333	Сероводород (Дигидросульфид) (518)	0.00009072	0.00130114253
0410	Метан (727*)	0.026712	0.3831141888
1052	Метанол (Метиловый спирт) (338)	0.0002058	0.00295166592
1071	Гидроксибензол (155)	0.000021	0.0003011904
1246	Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)	0.0003192	0.00457809408
1314	Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)	0.000105	0.001505952
1531	Гексановая кислота (Капроновая кислота) (137)	0.00012432	0.00178304717
1707	Диметилсульфид (227)	0.00016128	0.00231314227
1715	Метантиол (Метилмеркаптан) (339)	0.00000042	0.00000602381
1849	Метиламин (Монометиламин) (341)	0.000084	0.0012047616
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0023016	0.03301046784

Источник загрязнения: 6002, Ворота

Источник выделения: 6002 02, Содержание КРС в предродовом загоне

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = **3984**

Способ содержания животных: в помещении, оборудованном местными отсосами

Коэффициент эффективности местных отсосов, от 0 до 1, KOTS = 0.9

Выбросы пыли , не уловленной местным отсосом ,будут умножаться на $0.4\,$

Тип животного: Бык, корова

Количество голов в помещение (на площадке), $N={f 500}$

Macca животного, кг, M = 608

<u>Примесь: 0303 Аммиак (32)</u>

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{6.6}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6.6\cdot 608\cdot 500/10^8=6.6\cdot

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.020064\cdot 3984\cdot 3600/10^6=0.2877659136$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

0.00032832

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00032832\cdot 3984\cdot 3600/10^6=0.00470889677$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 608\cdot 500/10^8=0.096672$

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot 3600/10^{6}=0.096672\cdot 3984\cdot 3600/10^{6}=1.3865084928$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.245} \cdot 608 \cdot 500 / 10^8 = \mathbf{0.0007448}$

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot3600/10^{6}=0.0007448\cdot3984\cdot3600/10^{6}=0.01068221952$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.025}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 608\cdot 500/10^8=0.000076$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000076\cdot 3984\cdot 3600/10^6=0.0010900224$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot 608 \cdot 500 / 10^8 = \mathbf{0.0011552}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0011552\cdot 3984\cdot 3600/10^6=0.01656834048$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.125 Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.125 \cdot 608 \cdot 500 / 10^8 = 0.0039$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.00038 \cdot 3984 \cdot 3600 / 10^6 = 0.005450112$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.148 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.148\cdot 608\cdot 500/10^8=0.00044992$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00044992\cdot 3984\cdot 3600/10^6=0.00645293261$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.192} \cdot 608 \cdot 500/10^8 = \mathbf{0.00058368}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00058368\cdot 3984\cdot 3600/10^6=0.00837137203$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 608\cdot 500/10^8=0.00000152$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000152\cdot 3984\cdot 3600/10^6=0.00002180045$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.1} \cdot 608 \cdot 500 / 10^8 = \mathbf{0.000304}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000304\cdot 3984\cdot 3600/10^6=0.0043600896$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3

С учетом поправочных коэффициентов и эффективности местных отсосов, $\mathit{QI} = \mathit{QI} \cdot$

 $KOTS + 0.4 \cdot (1-KOTS) = 3 \cdot 0.9 + 0.4 \cdot (1-0.9) = 2.74$

Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=2.74\cdot 608\cdot 500/10^8=0.0083296$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0083296\cdot 3984\cdot 3600/10^6=0.11946645504$

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.020064	0.2877659136
0333	Сероводород (Дигидросульфид) (518)	0.00032832	0.00470889677
0410	Метан (727*)	0.096672	1.3865084928
1052	Метанол (Метиловый спирт) (338)	0.0007448	0.01068221952
1071	Гидроксибензол (155)	0.000076	0.0010900224
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.0011552	0.01656834048
	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.00038	0.005450112
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.00044992	0.00645293261
1707	Диметилсульфид (227)	0.00058368	0.00837137203
1715	Метантиол (Метилмеркаптан) (339)	0.00000152	0.00002180045
1849	Метиламин (Монометиламин) (341)	0.000304	0.0043600896
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0083296	0.11946645504

Источник загрязнения: 6002, Ворота Источник выделения: 6002 03, Узел пересыпки гашеной извести

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Известь молотая

Примесь: 0214 Кальций дигидроксид (Гашеная известь, Пушонка) (304)

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.6

Доля пылевой фракции в материале (табл.1), KI = 0.07

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.05

Суммарное количество перерабатываемого материала, $\tau/$ час, G=0.12

Высота падения материала, м, GB = 0.2

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot G$

 $10^6 \cdot B / 3600 = 0.07 \cdot 0.05 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.12 \cdot 10^6 \cdot 0.4 / 3600 = 0.000056$

Время работы узла переработки в год, часов, RT2 = 25

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $\cdot RT2 = 0.07 \cdot 0.05 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.12 \cdot 0.4 \cdot 25 = 0.00000353$

Максимальный разовый выброс , г/сек, G = 0.000056

Валовый выброс , т/год , M = 0.00000353

Итого выбросы от источника выделения:

	±		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0214	Кальций дигидроксид (Гашеная известь, Пушонка) (304)	0.000056	0.00000353

Источник загрязнения: 6003, Накопительная площадка Источник выделения: 6003 04, Содержание КРС в накопительной площадке

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм.

Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов

Республики Казахстан от 12.06.2014 г. № 221-Г

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = 3984

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=200

Macca животного, кг, M = 489

Примесь: 0303 Аммиак (32)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 6.6

Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6.6\cdot 489\cdot 200/10^8=$

0.0064548

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0064548\cdot 3984\cdot 3600/10^6=0.09257732352$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.108}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.108\cdot 489\cdot 200}/10^8=\mathbf{0.000105624}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000105624\cdot 3984\cdot 3600/10^6=0.00151490166$

<u>Примесь: 0410 Метан (727*)</u>

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 489\cdot 200/10^8=0.0311004$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.0311004 \cdot 3984 \cdot 3600 / 10^6 = 0.44605437696$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.245 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.245\cdot 489\cdot 200/10^8=0.00023961$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00023961\cdot 3984\cdot 3600/10^6=0.00343658246$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.025 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 489\cdot 200/10^8=0.00002445$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00002445\cdot 3984\cdot 3600/10^6=0.00035067168$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot 489 \cdot 200/10^8 = \mathbf{0.00037164}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00037164\cdot 3984\cdot 3600/10^6=0.00533020954$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.125 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.125\cdot 489\cdot 200/10^8=0.00012225$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00012225\cdot 3984\cdot 3600/10^6=0.0017533584$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.148\cdot 489\cdot 200/10^8=0.000144744$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000144744\cdot 3984\cdot 3600/10^6=0.00207597635$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.192 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.192\cdot 489\cdot 200/10^8=0.192$

0.000187776

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000187776\cdot 3984\cdot 3600/10^6=0.0026931585$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 489\cdot 200/10^8=0.000000489$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000000489\cdot 3984\cdot 3600/10^6=0.00000701343$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.1} \cdot 489 \cdot 200 / 10^8 = \mathbf{0.0000978}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000978\cdot 3984\cdot 3600/10^6=0.00140268672$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1.2\cdot 489\cdot 200/10^8=0.0011736$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0011736\cdot 3984\cdot 3600/10^6=0.01683224064$

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0064548	0.09257732352
0333	Сероводород (Дигидросульфид) (518)	0.000105624	0.00151490166
0410	Метан (727*)	0.0311004	0.44605437696
1052	Метанол (Метиловый спирт) (338)	0.00023961	0.00343658246
1071	Гидроксибензол (155)	0.00002445	0.00035067168
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.00037164	0.00533020954
	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.00012225	0.0017533584
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.000144744	0.00207597635
1707	Диметилсульфид (227)	0.000187776	0.0026931585
1715	Метантиол (Метилмеркаптан) (339)	0.000000489	0.00000701343
1849	Метиламин (Монометиламин) (341)	0.0000978	0.00140268672
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0011736	0.01683224064

Источник загрязнения: 6004, Распределительная площадка Источник выделения: 6004 05, Содержание КРС в распределительной площадке Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = 3984

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=200

Macca животного, кг, M = 489

Примесь: 0303 Аммиак (32)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = $\mathbf{6.6}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{6.6\cdot489\cdot200}/10^8=\mathbf{6.6\cdot489\cdot200}$

0.0064548

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0064548\cdot 3984\cdot 3600/10^6=0.09257732352$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.108}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.108\cdot 489\cdot 200}/10^8=\mathbf{0.000105624}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000105624\cdot 3984\cdot 3600/10^6=0.00151490166$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 489\cdot 200/10^8=0.0211004$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0311004\cdot 3984\cdot 3600/10^6=0.44605437696$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.245\cdot 489\cdot 200}/10^8=\mathbf{0.00023961}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00023961\cdot 3984\cdot 3600/10^6=0.00343658246$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.025}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 489\cdot 200/10^8=0.00002445$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00002445\cdot 3984\cdot 3600/10^6=0.00035067168$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{489} \cdot \mathbf{200} / \mathbf{10}^8 = \mathbf{0.38} \cdot \mathbf{10} / \mathbf{0.00}$

0.00037164

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00037164\cdot 3984\cdot 3600/10^6=0.00533020954$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.125\cdot 489\cdot 200}/10^8=\mathbf{0.00012225}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00012225\cdot 3984\cdot 3600/10^6=0.0017533584$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.148} \cdot \mathbf{489} \cdot \mathbf{200}/10^8 = \mathbf{0.000144744}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000144744\cdot 3984\cdot 3600/10^6=0.00207597635$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.192}\cdot \mathbf{489}\cdot \mathbf{200}/10^8=\mathbf{0.000187776}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000187776\cdot 3984\cdot 3600/10^6=0.0026931585$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 489\cdot 200/10^8=0.000000489$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000000489\cdot 3984\cdot 3600/10^6=0.00000701343$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = 0.1 \cdot 489 \cdot 200/10^8 = 0.000070$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000978\cdot 3984\cdot 3600/10^6=0.00140268672$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1.2\cdot 489\cdot 200/10^8=0.0011736$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0011736\cdot 3984\cdot 3600/10^6=0.01683224064$

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0064548	0.09257732352
0333	Сероводород (Дигидросульфид) (518)	0.000105624	0.00151490166
0410	Метан (727*)	0.0311004	0.44605437696
1052	Метанол (Метиловый спирт) (338)	0.00023961	0.00343658246
1071	Гидроксибензол (155)	0.00002445	0.00035067168
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.00037164	0.00533020954

	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.00012225	0.0017533584
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.000144744	0.00207597635
1707	Диметилсульфид (227)	0.000187776	0.0026931585
1715	Метантиол (Метилмеркаптан) (339)	0.000000489	0.00000701343
1849	Метиламин (Монометиламин) (341)	0.0000978	0.00140268672
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0011736	0.01683224064

Источник загрязнения: 6005, Загон КРС Источник выделения: 6005 06, Загон для откорма КРС

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = **3984**

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=1200

Macca животного, кг, M = 210

<u>Примесь: 0303 Аммиак (32)</u>

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 6.6 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6.6\cdot 210\cdot 1200/10^8=0.016632$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.016632\cdot 3984\cdot 3600/10^6=0.2385427968$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.108}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.108} \cdot 210 \cdot 1200/10^8 = \mathbf{0.00027216}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00027216\cdot 3984\cdot 3600/10^6=0.00390342758$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 31.8 Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 31.8 \cdot 210 \cdot 1200 / 10^8 = 0.090426$

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot 3600/10^{6}=0.080136\cdot 3984\cdot 3600/10^{6}=1.1493425664$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.245} \cdot 210 \cdot 1200 / 10^8 = \mathbf{0.0006174}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0006174\cdot 3984\cdot 3600/10^6=0.00885499776$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.025}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.025} \cdot 210 \cdot 1200 / 10^8 = \mathbf{0.000063}$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot 210 \cdot 1200/10^8 = \mathbf{0.0009576}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0009576\cdot 3984\cdot 3600/10^6=0.01373428224$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.125} \cdot 210 \cdot 1200 / 10^8 = \mathbf{0.000315}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000315\cdot 3984\cdot 3600/10^6=0.004517856$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.148} \cdot 210 \cdot 1200 / 10^8 = \mathbf{0.00037296}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00037296\cdot 3984\cdot 3600/10^6=0.0053491415$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.192} \cdot 210 \cdot 1200/10^8 = \mathbf{0.00048384}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00048384\cdot 3984\cdot 3600/10^6=0.00693942682$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 210\cdot 1200/10^8=0.00000126$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000126\cdot 3984\cdot 3600/10^6=0.00001807142$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.1} \cdot 210 \cdot 1200 / 10^8 = \mathbf{0.000252}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000252\cdot 3984\cdot 3600/10^6=0.0036142848$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1.2\cdot 210\cdot 1200/10^8=1.2$

0.003024

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.003024\cdot 3984\cdot 3600/10^6=0.003024$

0.0433714176

NTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.016632	0.2385427968
0333	Сероводород (Дигидросульфид) (518)	0.00027216	0.00390342758
0410	Метан (727*)	0.080136	1.1493425664
1052	Метанол (Метиловый спирт) (338)	0.0006174	0.00885499776
1071	Гидроксибензол (155)	0.000063	0.0009035712
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.0009576	0.01373428224
	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.000315	0.004517856
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.00037296	0.0053491415
1707	Диметилсульфид (227)	0.00048384	0.00693942682
1715	Метантиол (Метилмеркаптан) (339)	0.00000126	0.00001807142
1849	Метиламин (Монометиламин) (341)	0.000252	0.0036142848
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.003024	0.0433714176

Источник загрязнения: 6006, Загон лошадей Источник выделения: 6006 07, Содержание лошадей в загоне

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = **3984**

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Лошадь

Количество голов в помещение (на площадке), N=35

Масса животного, кг, M = 400

Примесь: 0303 Аммиак (32)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=6 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6\cdot 400\cdot 35/10^8=0.00084$ Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00084\cdot 3984\cdot 3600/10^6=0.012047616$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=0.1 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.1\cdot 400\cdot 35/10^8=0.1$

0.000014

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000014\cdot 3984\cdot 3600/10^6=0.0002007936$

Примесь: 0410 Метан (727*)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=32.5 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=32.5\cdot 400\cdot 35/10^8=0.00455$

Валовый выброс, т/год (4.2), $_{-}M_{-} = _{-}G_{-} \cdot _{-}T_{-} \cdot 3600 / 10^{6} = 0.00455 \cdot 3984 \cdot 3600 / 10^{6} = 0.06525792$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.28}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.28 \cdot 400 \cdot 35 / 10^8 = \mathbf{0.0000392}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000392\cdot 3984\cdot 3600/10^6=0.00056222208$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.0275}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0275\cdot 400\cdot 35/10^8=0.00000385$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000385\cdot 3984\cdot 3600/10^6=0.00005521824$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.48}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N/10^8 = 0.48 \cdot 400 \cdot 35/10^8 = \mathbf{0.0000672}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000672\cdot 3984\cdot 3600/10^6=0.00096380928$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.12}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = 0.12 \cdot 400 \cdot 35/10^8 = 0.000460$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000168\cdot 3984\cdot 3600/10^6=0.00024095232$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.28}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.28 \cdot 400 \cdot 35 / 10^8 = \mathbf{0.0000392}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000392\cdot 3984\cdot 3600/10^6=0.00056222208$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.4}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.4} \cdot 400 \cdot 35/10^8 = \mathbf{0.000056}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000056\cdot 3984\cdot 3600/10^6=0.0008031744$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0004Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.0004 \cdot 400 \cdot 35 / 10^8 = 0.0004 \cdot 400 \cdot 400 \cdot 35 / 10^8 = 0.0004 \cdot 400$

0.00000056

0.00000080317

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.078Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.078\cdot 400\cdot 35/10^8=$ 0.00001092

Валовый выброс, т/год (4.2), $_{-}M_{-}=G \cdot T \cdot 3600/10^{6}=0.00001092 \cdot 3984 \cdot 3600/10^{6}=0.00001092$ 0.00015661901

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 2.8С учетом поправочных коэффициентов , $QI = 0.4 \cdot QI = 0.4 \cdot 2.8 = 1.12$ Максимальный разовый выброс, г/с (4.1), $G = QI \cdot M \cdot N/10^8 = 1.12 \cdot 400 \cdot 35/10^8 = 1.1$

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot T\cdot 3600/10^{6}=0.0001568\cdot 3984\cdot 3600/10^{6}=0.0001568$ 0.00224888832

NTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.00084	0.012047616
0333	Сероводород (Дигидросульфид) (518)	0.000014	0.0002007936
0410	Метан (727*)	0.00455	0.06525792
1052	Метанол (Метиловый спирт) (338)	0.0000392	0.00056222208
1071	Гидроксибензол (155)	0.00000385	0.00005521824
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.0000672	0.00096380928
	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.0000168	0.00024095232
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.0000392	0.00056222208
1707	Диметилсульфид (227)	0.000056	0.0008031744
1715	Метантиол (Метилмеркаптан) (339)	5.6e-8	0.00000080317
1849	Метиламин (Монометиламин) (341)	0.00001092	0.00015661901
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0001568	0.00224888832

Источник загрязнения: 6007, Ворота Источник выделения: 6007 08, Завальная яма

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.7

Доля пылевой фракции в материале (табл.1), KI = 0.01

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, $\tau/$ час, G=10

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.6

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot K1$

 $10^6 \cdot B / 3600 = 0.01 \cdot 0.03 \cdot 2 \cdot 0.1 \cdot 0.4 \cdot 0.7 \cdot 10 \cdot 10^6 \cdot 0.6 / 3600 = 0.028$

Время работы узла переработки в год, часов, RT2 = 400

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $\cdot RT2 = 0.01 \cdot 0.03 \cdot 1.4 \cdot 0.1 \cdot 0.4 \cdot 0.7 \cdot 10 \cdot 0.6 \cdot 400 = 0.0282$

Максимальный разовый выброс , г/сек, G=0.028

Валовый выброс , т/год , M = 0.0282

Итого выбросы от источника выделения:

	Код	Наименование ЗВ	Выброс г/с	Выброс т/год
293	37	Пыль зерновая /по грибам хранения/ (487)	0.028	0.0282

Источник загрязнения: 6007, Ворота Источник выделения: 6007 08, Зернодробилка

Список литературы:

- 1. Инструкция о порядке составления отчетов об охране воздушного бассейна по форме 2-ТП (воздух) на предприятия отрасли хлебопродуктов Республики Казахстан, Алматы, "Астык", 1994 г.
- 2. Инструкция N 9-12/87 о порядке составления отчетов об охране воздушного бассейна по форме $2-T\Pi$ (воздух) на предприятиях по хранению и переработке зерна, ВНИИЗ ВНПО "Зернопродукт", М., 1988 г.

Тип производства, PR =**Элеваторы**

Расход воздуха, тыс.куб.м/ч, Q = 3.000

Время работы аспирационной сети, час/сут, S = 8

Общее время работы аспирационной сети, час/год, $_{T_{-}}$ = 400

Годовой период работы асп. сети, сут/год, $T = T_{-}/S_{-} = 400/8 = 50$

Общее количество оборудования входящего в данную асп. сеть, шт, TOTAL = 3

Тип аспирируемого оборудования, $AS = {\sf Башмаки}$ норий

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, $\bf Z$ = $\bf 2$

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, Z = Z.

$ASNUM = 2 \cdot 1 = 2$

Сумма всех концентраций в асп. сети, г/м3, $\mathbf{ZTOTAL} = \mathbf{ZTOTAL} + \mathbf{Z} = \mathbf{0} + \mathbf{2} = \mathbf{2}$

Тип аспирируемого оборудования, $AS = \Pi$ оворотные круги

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, $\bf Z$ = $\bf 0.6$

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, Z = Z.

$ASNUM = 0.6 \cdot 1 = 0.6$

Сумма всех концентраций в асп. сети, r/м3, ZTOTAL = ZTOTAL + Z = 2 + 0.6 = 2.6

Тип аспирируемого оборудования, $AS = \mathbf{C}\mathbf{б}\mathbf{p}\mathbf{a}\mathbf{c}\mathbf{ы}\mathbf{B}\mathbf{a}\mathbf{ю}\mathbf{щ}\mathbf{u}\mathbf{e}$ коробки

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, $\bf Z$ = 1.3

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, $\mathbf{Z} = \mathbf{Z} \cdot$

$ASNUM = 1.3 \cdot 1 = 1.3$

Сумма всех концентраций в асп. сети, г/м3, ZTOTAL = ZTOTAL + Z = 2.6 + 1.3 = 3.9 Расчетная концентрация в асп. сети, г/м3, Z = ZTOTAL/ASTOTAL = 3.9/3 = 1.3 Конц. пыли в воздухе, отходящем от асп. сети (ф-ла 4.5), г/м3, Z = 1.300

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Кол-во пыли, отходящей от оборудования асп. сети, г/с, $_G_=Q\cdot Z/3.6=3\cdot 1.3/3.6=1.0833$

Кол-во пыли, отходящей от оборудования асп. сети (ф-ла 4.4), т/год, $_M_=0.001$ ·

$T \cdot Q \cdot Z \cdot _S_{_} = 0.001 \cdot 50 \cdot 3 \cdot 1.3 \cdot 8 = 1.56$

Кол-во выбрасываемой в атмосферу пыли, г/с, G=1.0833

Кол-во выбрасываемой в атмосферу пыли, т/год, M=1.56

: OTOTN

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	1.0833	1.56

Источник загрязнения: 6007, Ворота Источник выделения: 6007 10, Ангар для хранения зерна

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.7

Поверхность пыления в плане, м2, F = 70

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q$

 $F = 2 \cdot 0.1 \cdot 0.4 \cdot 1.45 \cdot 0.7 \cdot 0.002 \cdot 70 = 0.01137$

Время работы склада в году, часов, RT = 400

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1.4 \cdot 0.1 \cdot 0.4 \cdot 1.45 \cdot 0.7 \cdot 0.002 \cdot 70 \cdot 400 \cdot 0.0036 = 0.01146$

Максимальный разовый выброс , г/сек, G = 0.01137

Валовый выброс , т/год , M = 0.01146

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	0.01137	0.01146

Источник загрязнения: 6008, Миксер Botex 4072 Источник выделения: 6008 11, Загрузка кормушек

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 2

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.8

Доля пылевой фракции в материале (табл.1), KI = 0.01

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G=10

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.7), $B=\mathbf{0.4}$

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.01 \cdot 0.03 \cdot 2 \cdot 0.1 \cdot 0.4 \cdot 0.8 \cdot 10 \cdot 10^6 \cdot 0.4 / 3600 = 0.02133$

Время работы узла переработки в год, часов, RT2 = 400

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$ $\cdot RT2 = 0.01 \cdot 0.03 \cdot 1.4 \cdot 0.1 \cdot 0.4 \cdot 0.8 \cdot 10 \cdot 0.4 \cdot 400 = 0.0215$ Максимальный разовый выброс , г/сек, G = 0.02133 Валовый выброс , т/год , M = 0.0215

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	0.02133	0.0215

Источник загрязнения: 6009, Трактор Источник выделения: 6009 12, Загрузка навоза в Камаз

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

ИТОГО

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0445	0.0052712
0304	Азот (II) оксид (Азота оксид) (6)	0.00723	0.00085657
0328	Углерод (Сажа, Углерод черный) (583)	0.00911	0.0008791
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00574	0.0006552
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0543	0.007528
2732	Керосин (654*)	0.01358	0.0016235

Источник выделения: 6012, Открытая площадка навоза Источник выделения: 6012 15, Открытая площадка навоза

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип хранилища: Навозохранилище от КРС

Время работы хранилища, час/год , $_{\rm T}$ = 5136

Оборот навоза, м3/год , SV = 16053.7

Макс. единовременный объем хранения, м3 , SVMAX = 6000

Примесь: 0303 Аммиак (32)

Удельный выброс, r/c на м3 навоза , Q = 0.0000122

Валовый выброс, т/год (4.5) , _M_ = V * Q * _T_ * 3600 / 10 ^ 6 = 16053.7 * 0.0000122 * 5136 * 3600 / 10 ^ 6 = 3.62

Максимальный разовый выброс, г/с (4.6) , _G_ = Q * VMAX = 0.0000122 * 6000 = 0.0732

Примесь: 0333 Сероводород (Дигидросульфид) (528)

Удельный выброс, r/c на м3 навоза , Q = 0.000015

Валовый выброс, т/год (4.5) , $\underline{\rm M}_{-}$ = V * Q * $\underline{\rm T}_{-}$ * 3600 / 10 ^ 6 = 16053.7 * 0.000015 * 5136 * 3600 / 10 ^ 6 = 4.45

Максимальный разовый выброс, r/c (4.6) , $_{G}$ = Q * VMAX = 0.000015 * 6000 = 0.09

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0732	3.62
0333	Сероводород (Дигидросульфид) (518)	0.09	4.45

Источник загрязнения: 0001, Дымовая труба Источник выделения: 0001 16, Самодельный котел

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, $K3 = \Box$ рова

Расход топлива, $\tau/$ год, BT = 10

Расход топлива, r/c, BG = 13

Марка топлива, $M = \Box$ рова

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), $QR = \mathbf{2446}$

Пересчет в МДж, $QR = QR \cdot 0.004187 = 2446 \cdot 0.004187 = 10.24$

Средняя зольность топлива, % (прил. 2.1), AR = 0.6

Предельная зольность топлива, % не более (прил. 2.1), AIR = 0.6

Среднее содержание серы в топливе, % (прил. 2.1), $SR = \mathbf{0}$

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0}$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN=30

Фактическая мощность котлоагрегата, кВт, QF = 30

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0121

Коэфф. снижения выбросов азота в рез-те техн. решений, $\pmb{B} = \pmb{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0121$

 $(30/30)^{0.25} = 0.0121$

Выброс окислов авота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 10 \cdot 10$

 $10.24 \cdot 0.0121 \cdot (1-0) = 0.00124$

Выброс окислов азота, г/с (ϕ -ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 13 \cdot 13$

 $10.24 \cdot 0.0121 \cdot (1-0) = 0.00161$

Выброс азота диоксида (0301), т/год, $_{-}M_{-}=0.8\cdot MNOT=0.8\cdot 0.00124=0.000992$

Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.00161=0.001288$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_{-}M_{-}=0.13\cdot MNOT=0.13\cdot 0.00124=0.0001612$ Выброс азота оксида (0304), г/с, $_G_ = 0.13 \cdot MNOG = 0.13 \cdot 0.00161 = 0.0002093$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=2

Тип топки: Шахтная топка с наклонной решеткой

Потери тепла от химической неполноты сгорания, % (табл. 2.2), $Q3=\mathbf{2}$

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

10.24 = 20.5

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot BT \cdot$

 $10 \cdot 20.5 \cdot (1-2/100) = 0.2009$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 13 \cdot 20.5 \cdot (1-2/100) = 0.26117$

Примесь: 2902 Взвешенные частицы (116)

Коэффициент (табл. 2.1), F = 0.005

Тип топки: Слоевые топки бытовых теплогенераторов

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 10 \cdot 0.6 \cdot 0.005 = 0.03$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_ = BG \cdot A1R \cdot F = 13 \cdot 0.6 \cdot 0.005 = 0.039$

Вид топлива, КЗ = Твердое (уголь, торф и др.)

Расход топлива, т/год, BT = 45

Расход топлива, г/с, BG = 2.42

Месторождение, M = Кузнецкий бассейн

Марка угля (прил. 2.1), MYI = OC промпродукт

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5200

Пересчет в МДж, $QR = QR \cdot 0.004187 = 5200 \cdot 0.004187 = 21.77$

Средняя зольность топлива, % (прил. 2.1), AR = 27.9

Предельная зольность топлива, % не более (прил. 2.1), AIR = 27.9

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.8

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0.8}$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $\mathit{QN}=30$

Фактическая мощность котлоагрегата, кВт, QF = 30

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.132

Коэфф. снижения выбросов азота в рез-те техн. решений, $\pmb{B} = \pmb{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.132 \cdot (30/30)^{0.25} = 0.132$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 45 \cdot 21.77 \cdot 0.122 \cdot (1.0) = 0.4202$

 $21.77 \cdot 0.132 \cdot (1-0) = 0.1293$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 2.42 \cdot 21.77 \cdot 0.132 \cdot (1-0) = 0.00695$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.1293 = 0.10344$

Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.00695=0.00556$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.1293=0.016809$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.00695=0.0009035$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), $NSO2 = \mathbf{0.1}$

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, $\tau/\text{год}$ (ф-ла 2.2), $_M_=0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT$

 $= 0.02 \cdot 45 \cdot 0.8 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 45 = 0.648$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 2.42 \cdot 0.8 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 2.42 = 0.034848$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=8 Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3=2 Коэффициент, учитывающий долю потери тепла, R=1 Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO=Q3\cdot R\cdot QR=2\cdot 1\cdot 21.77=43.5$ Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001\cdot BT\cdot CCO\cdot (1-Q4/100)=0.001\cdot 45\cdot 43.5\cdot (1-8/100)=1.8009$ Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001\cdot BG\cdot CCO\cdot (1-Q4/100)=0.001\cdot 2.42\cdot 43.5\cdot (1-8/100)=0.0968484$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F=0.0023 Тип топки: С неподвижной решеткой и ручным забросом топлива Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=45\cdot 27.9\cdot 0.0023=2.88765$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot AIR\cdot F=2.42\cdot 27.9\cdot 0.0023=0.1552914$

Вид топлива, K3 = Твердое (уголь, торф и др.) Расход топлива, $\tau/\text{год}$, BT = 20 Расход топлива, r/с, BG = 1.07 Месторождение, M = Карагандинский бассейн Марка угля (прил. 2.1), MYI = K,K2,концентрат Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5300 Пересчет в МДж, QR = $QR \cdot 0.004187$ = 5300 \cdot 0.004187 = 22.19 Средняя зольность топлива, % (прил. 2.1), AR = 22.5 Предельная зольность топлива, % не более (прил. 2.1), AIR = 22.5 Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.81 Предельное содержание серы в топливе, % не более (прил. 2.1), SIR = 0.81

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 30 Фактическая мощность котлоагрегата, кВт, QF = 30 Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.132 Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0 Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.132 \cdot (30/30)^{0.25} = 0.132$ Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 20 \cdot 22.19 \cdot 0.132 \cdot (1-0) = 0.0586$ Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 1.07 \cdot 22.19 \cdot 0.132 \cdot (1-0) = 0.003134$ Выброс азота диоксида (0301), т/год, $M = 0.8 \cdot MNOT = 0.8 \cdot 0.0586 = 0.04688$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.0586=0.007618$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.003134=0.00040742$

Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.003134=0.0025072$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), $NSO2 = \mathbf{0.1}$

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 20 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 20 = 0.2916$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$

 $= 0.02 \cdot 1.07 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 1.07 = 0.0156006$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\it Q4=7$

Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

22.19 = 44.4

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_ = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot BT$

 $20 \cdot 44.4 \cdot (1-7 / 100) = 0.82584$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 1.07 \cdot 44.4 \cdot (1-7/100) = 0.04418244$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 20 \cdot 22.5 \cdot 0.0023 = 1.035$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=1.07\cdot 22.5\cdot 0.0023=$

0.0553725

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00556	0.152304
0304	Азот (II) оксид (Азота оксид) (6)	0.0009035	0.0247494
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.034848	0.9396
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.26117	3.02854
2902	Взвешенные частицы (116)	0.039	0.06
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.1552914	3.92265

Источник выделения: 6013, Пылящая поверхность Источник выделения: 6013 17, Открытый склад угля

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Поверхность пыления в плане, м2, F=10

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.005

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q$

 $\cdot F = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 10 = 0.000725$

Время работы склада в году, часов, RT = 5160

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1.4 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 10 \cdot 5160 \cdot 0.0036 = 0.00943$

Максимальный разовый выброс , г/сек, G = 0.000725

Валовый выброс , т/год , M = 0.00943

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), $K3=\mathbf{2}$

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G=8

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), $\boldsymbol{B} = \boldsymbol{0.6}$

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 8 \cdot 10^6 \cdot 0.6 / 3600 = 0.008$

Время работы узла переработки в год, часов, RT2 = 8

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.03 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 8 \cdot 0.6 \cdot 8 = 0.0001613$

Максимальный разовый выброс , г/сек, G=0.008

Валовый выброс , т/год , M = 0.0001613

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в	0.008	0.0095913
	%: менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль		
	вращающихся печей, боксит) (495*)		

Источник загрязнения: 6014, Пылящая поверхность Источник выделения: 6014 18, Металлический контейнер

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих

материалов

Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.6

Доля пылевой фракции в материале (табл.1), KI = 0.06

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, т/час, G = 0.08

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), $B=\mathbf{0.5}$

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.08 \cdot 10^6 \cdot 0.5 / 3600 = 0.000032$

Время работы узла переработки в год, часов, RT2 = 215

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$ $\cdot RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.08 \cdot 0.5 \cdot 215 = 0.00001734$ Максимальный разовый выброс , г/сек, G = 0.000032 Валовый выброс , т/год , M = 0.00001734

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.000032	0.00001734
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6015, Автотранспорт Источник выделения: 6015 22, Открытая автостоянка

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

OTOTN

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.37	0.40136
0304	Азот (II) оксид (Азота оксид) (6)	0.0601	0.065221
0328	Углерод (Сажа, Углерод черный) (583)	0.05357	0.06472
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0696	0.04978
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.731	0.48748
2732	Керосин (654*)	0.1274	0.1139

Источник загрязнения: 0019, Дымовая труба Источник выделения: 0019 19, Котел Теплос

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива

в котлах производительностью до 30 т/час

вид топлива, КЗ = Твердое (уголь, торф и др.)

Расход топлива, T/год, BT = 40

Расход топлива, г/с, BG = 2.15

Месторождение, M = Карагандинский бассейн

Марка угля (прил. 2.1), *MYI* = **K,K2,концентрат**

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5300

Пересчет в МДж, $QR = QR \cdot 0.004187 = 5300 \cdot 0.004187 = 22.19$

Средняя зольность топлива, % (прил. 2.1), AR = 22.5

Предельная зольность топлива, % не более (прил. 2.1), AIR = 22.5

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.81

Предельное содержание серы в топливе, % не более (прил. 2.1), SIR = 0.81

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 60

Фактическая мощность котлоагрегата, кВт, QF = 60

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.1469

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.1469 \cdot (60/60)^{0.25} = 0.147$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 40 \cdot 22.19 \cdot 0.147 \cdot (1-0) = 0.1305$

Выброс окислов азота, г/с (Φ -ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 2.15 \cdot$

 $22.19 \cdot 0.147 \cdot (1-0) = 0.00701$ Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.1305 = 0.1044$

Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.00701=0.005608$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.1305=0.016965$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.00701=0.0009113$

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)</u>

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), $NSO2 = \mathbf{0.1}$

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, $\tau/$ год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT - 0.02 \cdot 40 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 40 = 0.5832$

 $= 0.02 \cdot 40 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 40 = 0.5832$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ = $0.02 \cdot 2.15 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 2.15 = 0.031347$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\it Q4=7$

Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

22.19 = 44.4

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_ = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot$

 $40 \cdot 44.4 \cdot (1-7 / 100) = 1.65168$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 2.15 \cdot 44.4 \cdot (1-7/100) = 0.0887778$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 40 \cdot 22.5 \cdot 0.0023 = 2.07$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=2.15\cdot 22.5\cdot 0.0023=$

0.1112625

Вид топлива, КЗ = Твердое (уголь, торф и др.)

Расход топлива, T/год, BT = 6

Расход топлива, г/с, BG = 0.32

Месторождение, M = **Кузнецкий бассейн**

Марка угля (прил. 2.1), MYI = OC промпродукт

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5200

Пересчет в МДж, $QR = QR \cdot 0.004187 = 5200 \cdot 0.004187 = 21.77$

Средняя зольность топлива, % (прил. 2.1), AR = 27.9

Предельная зольность топлива, % не более (прил. 2.1), AIR = 27.9

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.8

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0.8}$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $QN = \mathbf{60}$

Фактическая мощность котлоагрегата, кВт, QF = 60

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.1469

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.1469 \cdot (60/60)^{0.25} = 0.147$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 6$

 $21.77 \cdot 0.147 \cdot (1-0) = \mathbf{0.0192}$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.32 \cdot 0.147 \cdot (1.0)$

 $21.77 \cdot 0.147 \cdot (1-0) = 0.001024$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.0192 = 0.01536$

Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.001024=0.0008192$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_{-}M_{-}=0.13 \cdot MNOT=0.13 \cdot 0.0192=0.002496$

Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.001024=0.00013312$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.1

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_=0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT$

 $= 0.02 \cdot 6 \cdot 0.8 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 6 = 0.0864$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ = $0.02 \cdot 0.32 \cdot 0.8 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 0.32 = 0.004608$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\it Q4=8$

Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 21.77 = 43.5$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_{-}M_{-}=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100)=0.001 \cdot 6$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100)=0.001 \cdot 0.32$

 $\cdot 43.5 \cdot (1-8 / 100) = 0.0128064$

 $\cdot 43.5 \cdot (1-8 / 100) = 0.24012$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M = BT \cdot AR \cdot F = 6 \cdot 27.9 \cdot 0.0023 = 0.38502$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=0.32\cdot 27.9\cdot 0.0023=$

0.0205344

MTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.005608	0.11976
0304	Азот (II) оксид (Азота оксид) (6)	0.0009113	0.019461
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.031347	0.6696
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0887778	1.8918
2908	Пыль неорганическая, содержащая двуокись кремния в	0.1112625	2.45502
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник выделения: 6060, Пылящая поверхность Источник выделения: 6060 19, Открытый склад угля

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Поверхность пыления в плане, м2, F = 10

Коэфф., учитывающий профиль поверхности складируемого материала, K6=1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q=0.005

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q$ $\cdot F = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 10 = 0.000725$

Время работы склада в году, часов, RT = 5160

Валовый выброс пыли при хранении, т/год (1), $\textit{MC} = \textit{K3SR} \cdot \textit{K4} \cdot \textit{K5} \cdot \textit{K6} \cdot \textit{K7} \cdot \textit{Q} \cdot \textit{F} \cdot \textit{RT} \cdot$

 $0.0036 = 1.4 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 10 \cdot 5160 \cdot 0.0036 = 0.00943$

Максимальный разовый выброс , г/сек, G = 0.000725

Валовый выброс , $\tau/$ год , M = 0.00943

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, $G=\mathbf{8}$

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.6

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G$.

 $10^6 \cdot B / 3600 = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 8 \cdot 10^6 \cdot 0.6 / 3600 = 0.008$

Время работы узла переработки в год, часов, RT2 = 6

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.03 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 8 \cdot 0.6 \cdot 6 = 0.000121$

Максимальный разовый выброс , г/сек, G=0.008

Валовый выброс , т/год , M = 0.000121

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в	0.008	0.009551
	%: менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль		
	вращающихся печей, боксит) (495*)		

Источник загрязнения: 6061, Пылящая поверхность Источник выделения: 6061 21, Металлический контейнер

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих

материалов Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.6

Доля пылевой фракции в материале (табл.1), KI = 0.06

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, т/час, G = 0.05

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), $B=\mathbf{0.6}$

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G$

 $10^6 \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.05 \cdot 10^6 \cdot 0.6 / 3600 = 0.000024$

Время работы узла переработки в год, часов, RT2 = 215

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.05 \cdot 0.6 \cdot 215 = 0.000013$

Максимальный разовый выброс , г/сек, G = 0.000024

Валовый выброс , т/год , M = 0.000013

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.000024	0.000013
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6016, Ворота Источник выделения: 6016 23, Автотранспорт

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 № $100-\pi$

итого выбросы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.19316	2.268504
0304	Азот (II) оксид (Азота оксид) (6)	0.0313893	0.3686319
0328	Углерод (Сажа, Углерод черный) (583)	0.046797	0.400919
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.026338	0.253079
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.37917	2.35474
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00608	0.03625
	углерод/ (60)		
2732	Керосин (654*)	0.07589	0.60603

Источник загрязнения: 0020, Дымовая труба Источник выделения: 0020 29, Самодельный котел

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

 $\pi.2$. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 $\tau/$ час

Вид топлива, K3 = Дрова

Расход топлива, T/год, BT = 5

Расход топлива, г/с, BG = 6.46

Марка топлива, $M = \Box$ рова

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 2446

Пересчет в МДж, $QR = QR \cdot 0.004187 = 2446 \cdot 0.004187 = 10.24$

Средняя зольность топлива, % (прил. 2.1), AR = 0.6

Предельная зольность топлива, % не более (прил. 2.1), AIR = 0.6

Среднее содержание серы в топливе, % (прил. 2.1), $SR = \mathbf{0}$

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0}$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 20

Фактическая мощность котлоагрегата, кВт, QF = 20

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0105

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0105 \cdot (20/20)^{0.25} = 0.0105$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 5$

 $10.24 \cdot 0.0105 \cdot (1-0) = 0.000538$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 6.46 \cdot C$

$10.24 \cdot 0.0105 \cdot (1-0) = 0.000695$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.000538=0.0004304$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.000695=0.000556$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.000538=0.00006994$ Выброс авота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.000695=0.00009035$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=2

Тип топки: Шахтная топка с наклонной решеткой

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

10.24 = 20.5

Выбросы окиси углерода, т/год (ф-ла 2.4), $_{-}M_{-}=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100)=0.001 \cdot 5$

 $\cdot 20.5 \cdot (1-2 / 100) = 0.10045$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_ = 0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 6.46$ $\cdot 20.5 \cdot (1-2/100) = 0.1297814$

Примесь: 2902 Взвешенные частицы (116)

Коэффициент (табл. 2.1), F = 0.005

Тип топки: Слоевые топки бытовых теплогенераторов

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 5 \cdot 0.6 \cdot 0.005 = 0.015$

Выброс твердых частиц, г/с (ф-ла 2.1), $G_- = BG \cdot A1R \cdot F = 6.46 \cdot 0.6 \cdot 0.005 = 0.01938$

Вид топлива, КЗ = Твердое (уголь, торф и др.)

Расход топлива, T/год, BT = 20

Расход топлива, г/с, BG = 1.08

Месторождение, M = Карагандинский бассейн

Марка угля (прил. 2.1), MYI = K, K2, концентрат

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5300

Пересчет в МДж, $QR = QR \cdot 0.004187 = 5300 \cdot 0.004187 = 22.19$

Средняя зольность топлива, % (прил. 2.1), AR = 22.5

Предельная зольность топлива, % не более (прил. 2.1), AIR = 22.5

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.81

Предельное содержание серы в топливе, % не более (прил. 2.1), SIR = 0.81

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN=20

Фактическая мощность котлоагрегата, кВт, QF = 20

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.1254

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.1254$ · $(20/20)^{0.25} = 0.1254$

 $22.19 \cdot 0.1254 \cdot (1-0) = 0.0557$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 1.08$

 $22.19 \cdot 0.1254 \cdot (1-0) = 0.003005$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.0557 = 0.04456$

Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.003005=0.002404$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.0557=0.007241$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.003005=0.00039065$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), $NSO2 = \mathbf{0.1}$

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 20 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 20 = 0.2916$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ = $0.02 \cdot 1.08 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 1.08 = 0.0157464$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\it Q4=7$

Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3=2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

22.19 = 44.4

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_ = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot BT$

 $20 \cdot 44.4 \cdot (1-7 / 100) = 0.82584$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 1.08 \cdot 44.4 \cdot (1-7/100) = 0.04459536$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_{M}$ = $BT \cdot AR \cdot F = 20 \cdot 22.5 \cdot 0.0023 = 1.035$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=1.08\cdot 22.5\cdot 0.0023=0.05589$

Вид топлива, K3 =Твердое (уголь, торф и др.)

Расход топлива, T/год, BT = 15

Расход топлива, г/с, BG = 0.8

Месторождение, M = 3кибастузский бассейн в целом

Марка угля (прил. 2.1), *MYI* = **ССР**

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 3700

Пересчет в МДж, $QR = QR \cdot 0.004187 = 3700 \cdot 0.004187 = 15.49$

Средняя зольность топлива, % (прил. 2.1), AR = 42.3

Предельная зольность топлива, % не более (прил. 2.1), AIR = 42.3

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.56

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0.56}$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 20

Фактическая мощность котлоагрегата, кВт, QF = 20

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.1254

Коэфф. снижения выбросов азота в рез-те техн. решений, ${\pmb B}={\pmb 0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.1254 \cdot (20/20)^{0.25} = 0.1254$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 15 \cdot 15.49 \cdot 0.1254 \cdot (1-0) = 0.02914$

Выброс окислов авота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.8 \cdot 15.49 \cdot 0.1254 \cdot (1-0) = 0.001554$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.02914=0.023312$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.001554=0.0012432$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.02914=0.0037882$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.001554=0.00020202$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 15 \cdot 0.56 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 15 = 0.16464$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ = $0.02 \cdot 0.8 \cdot 0.56 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 0.8 = 0.0087808$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\it Q4=7$

Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 15.49 = 31$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 10^{-100}$

 $15 \cdot 31 \cdot (1-7 / 100) = 0.43245$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 0.8 \cdot 31 \cdot (1-7/100) = 0.023064$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=15\cdot 42.3\cdot 0.0023=1.45935$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=0.8\cdot 42.3\cdot 0.0023=0.077832$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.002404	0.0687328
0304	Азот (II) оксид (Азота оксид) (6)	0.00039065	0.01116908
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0157464	0.45624
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1297814	1.45919
2902	Взвешенные частицы (116)	0.01938	0.03
2908	Пыль неорганическая, содержащая двуокись кремния в	0.077832	2.49435
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6057, Ворота Источник выделения: 6057 24, Заточной станок

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных

выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Заточные станки, с диаметром шлифовального круга – 100 мм Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_T_=$

150

Число станков данного типа, шт., $_KOLIV_ = 1$

Число станков данного типа, работающих одновременно, шт., $NSI=\mathbf{1}$

Примесь: 2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

Удельный выброс, г/с (табл. 1), GV = 0.004

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.2 \cdot 0.004 \cdot 150 \cdot 1 / 10^6 = 0.000432$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NS1 = 0.2 \cdot 0.004 \cdot 1 = 0.0008$

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1), GV = 0.006

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.2 \cdot 0.006 \cdot 150$

 $\cdot 1 / 10^6 = 0.000648$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NSI = 0.2 \cdot 0.006 \cdot 1 = 0.0012$

MTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.0012	0.000648
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0008	0.000432

Источник загрязнения: 6057, Ворота Источник выделения: 6057 25, Сверлильный станок

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных

выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей

Вид станков: Сверлильные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_T_=$ **150**

Число станков данного типа, шт., $_KOLIV_ = 1$

Число станков данного типа, работающих одновременно, шт., $NSI=\mathbf{1}$

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 4), GV = 0.0011

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2Валовый выброс, т/год (1), $_M_=3600 \cdot KN \cdot GV \cdot _T_ \cdot KOLIV / 10^6 = 3600 \cdot 0.2 \cdot 0.0011 \cdot$

$150 \cdot 1 / 10^6 = 0.0001188$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NSI = 0.2 \cdot 0.0011 \cdot 1 = 0.00022$

MTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.00022	0.0001188

Источник загрязнения: 6057, Ворота Источник выделения: 6057 26, Газовая сварка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных

выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8

Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси

Расход сварочных материалов, кг/год, B = 600

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 1.5

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 15

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B / 10^6 = 0.8 \cdot 15 \cdot 600 / 10^6 = 0.0072$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX/3600 = 0.8 \cdot 15 \cdot$ 1.5 / 3600 = 0.005

<u>Примесь: 0304 Азот (II) оксид (Азота оксид) (6)</u>

Валовый выброс, т/год (5.1), $_M_=KNO \cdot GIS \cdot B / 10^6 = 0.13 \cdot 15 \cdot 600 / 10^6 = 0.00117$ Максимальный из разовых выброс, г/с (5.2), $_{G_{-}}$ = KNO · GIS · BMAX/3600 = 0.13 · 15 ·

1.5 / 3600 = 0.0008125

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.005	0.0072
0304	Азот (II) оксид (Азота оксид) (6)	0.0008125	0.00117

Источник загрязнения: 6057, Ворота Источник выделения: 6057 27, Электродуговая сварка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005 РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами Электрод (сварочный материал): MP-3 Расход сварочных материалов, кг/год, B=400 Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX=1.5 Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), GIS=11.5 в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа</u> оксид) (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 9.77 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 9.77 \cdot 400/10^6 = 0.003908$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 9.77 \cdot 1.5/3600 = 0.00407083333$

<u>Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)</u>

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS=1.73 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6=1.73 \cdot 400/10^6=0.000692$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600=1.73 \cdot 1.5/3600=0.00072083333$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.4 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 0.4 \cdot 400/10^6 = 0.00016$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 0.4 \cdot 1.5/3600 = 0.00016666667$

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо)	0.00407083333	0.003908
	(диЖелезо триоксид, Железа оксид) (274)		
0143	Марганец и его соединения (в пересчете на марганца	0.00072083333	0.000692
	(IV) оксид) (327)		
0342	Фтористые газообразные соединения /в пересчете на	0.00016666667	0.00016
	фтор/ (617)		

Источник выделения: 6062, Пылящая поверхность Источник выделения: 6062 30, Открытый склад угля

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих

материалов

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Поверхность пыления в плане, м2, F = 20

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.005

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q$

 $F = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 20 = 0.00145$

Время работы склада в году, часов, RT = 5160

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1.4 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 20 \cdot 5160 \cdot 0.0036 = 0.01885$

Максимальный разовый выброс , г/сек, G = 0.00145

Валовый выброс , т/год , M = 0.01885

Материал: Уголь

Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G=7

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.6

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot K1$

 $10^6 \cdot B / 3600 = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 7 \cdot 10^6 \cdot 0.6 / 3600 = 0.007$

Время работы узла переработки в год, часов, RT2=5 Валовый выброс пыли при переработке, т/год (1), $MC=K1\cdot K2\cdot K3SR\cdot K4\cdot K5\cdot K7\cdot G\cdot B\cdot KT2=0.03\cdot 0.02\cdot 1.4\cdot 1\cdot 0.01\cdot 0.5\cdot 7\cdot 0.6\cdot 5=0.0000882$ Максимальный разовый выброс , г/сек, G=0.007 Валовый выброс , т/год , M=0.0000882

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в	0.007	0.0189382
	%: менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль		
	вращающихся печей, боксит) (495*)		

Источник загрязнения: 6063, Пылящая поверхность Источник выделения: 6063 31, Металлический контейнер

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.6

Доля пылевой фракции в материале (табл.1), KI = 0.06

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, т/час, G = 0.002

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), $B=\mathbf{0.6}$

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.002 \cdot 10^6 \cdot 0.6 / 3600 = 0.00000096$

Время работы узла переработки в год, часов, RT2 = 215

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.002 \cdot 0.6 \cdot 215 = 0.00000052$

Максимальный разовый выброс , г/сек, G = 0.00000096

Валовый выброс , т/год , M = 0.00000052

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.00000096	0.00000052
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 0003, Дыхательный клапан Источник выделения: 0003 32, Емкость объемом 10 м3 для дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Нефтепродукт, NP = Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 3.14

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 25

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 2.6

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 25

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=12

Коэффициент (Прил. 12), KNP = 0.0029

Режим эксплуатации: "мерник", ССВ - отсутствуют

Объем одного резервуара данного типа, м3, VI = 10

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.9

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.63

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год (Прил. 13), GHRI = 0.22

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.22 \cdot 0.0029 \cdot 1 = 0.000638$

Коэффициент , KPSR = 0.63

Коэффициент, KPMAX = 0.9

Общий объем резервуаров, м3, V=10

Cymma Ghri*Knp*Nr, GHR = 0.000638

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.14 \cdot 0.9 \cdot 12 / 12 = 0.00$

3600 = 0.00942

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^6 + GHR = (1.9 \cdot 25 + 2.6 \cdot 25) \cdot 0.9 \cdot 10^{-6} + 0.000638 = 0.000739$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 99.72 \cdot 0.000739 / 100 = 0.0007369308$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 99.72 \cdot 0.00942/100 = 0.009393624$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

0.000026376

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000026376	0.0000020692
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.009393624	0.0007369308
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения: 0004, Дыхательный клапан Источник выделения: 0004 33, Емкость объемом 7 м3 для дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Нефтепродукт, $NP = \mathbf{Д}$ изельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 3.14

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 50

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 2.6

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL =

30

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=12

Коэффициент (Прил. 12), KNP = 0.0029

Режим эксплуатации: "мерник", ССВ - отсутствуют

Объем одного резервуара данного типа, м3, VI = 7

Количество резервуаров данного типа, NR = 2

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.9

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.63

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год (Прил. 13), GHRI = 0.22

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.22 \cdot 0.0029 \cdot 2 = 0.001276$

Коэффициент , KPSR = 0.63

Коэффициент, KPMAX = 0.9

Общий объем резервуаров, м3, V=14

Сумма Ghri*Knp*Nr, GHR = 0.001276

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.14 \cdot 0.9 \cdot 12 / 3.14 \cdot 0.9 \cdot 12$

3600 = 0.00942

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^6 + GHR = (1.9 \cdot 50 + 2.6 \cdot 50) \cdot 0.9 \cdot 10^{-6} + 0.001276 = 0.001479$

Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 99.72 \cdot 0.001479 / 100 = 0.0014748588$ Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.00942 / 100 =$ 0.009393624

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 0.28 \cdot 0.001479 / 100 = 0.0000041412$ Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G/100 = 0.28 \cdot 0.00942/100 =$

0.000026376

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000026376	0.0000041412
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.009393624	0.0014748588
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения: 6017, Горловина бензобака Источник выделения: 6017 34, ТРК

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт: Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, r/м3 (Прил. 12), CMAX = 3.14

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 93.75

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, r/m3 (Прил. 15), CAMOZ = 1.6

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 93.75

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3 (Прил. 15), CAMVL = 2.2

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $\textit{GB} = NN \cdot \textit{CMAX}$

 $\cdot VTRK / 3600 = 1 \cdot 3.14 \cdot 0.4 / 3600 = 0.000349$

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ +$

 $CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 93.75 + 2.2 \cdot 93.75) \cdot 10^{-6} = 0.000356$

Удельный выброс при проливах, г/м3, J=50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot$

 $(QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (93.75 + 93.75) \cdot 10^{-6} = 0.00469$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.000356 + 0.00469 = 0.00505

Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 99.72\cdot 0.00505/100 = 0.00503586$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 99.72\cdot 0.000349/100 = 0.0003480228$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

0.000009772

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.0000009772	0.00001414
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.0003480228	0.00503586
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения: 6018, Сальниковое уплотнение Источник выделения: 6018 35, Насос перекачки дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя сальниковыми уплотнениями вала

Удельный выброс, кг/час (табл. 8.1), Q = 0.13

Общее количество аппаратуры или средств перекачки, шт., NI=1

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI=1

Время работы одной единицы оборудования, час/год, $_T_=120$ Максимальный из разовых выброс, г/с (8.1), $G=Q\cdot NN1/3.6=0.13\cdot 1/3.6=0.0361$ Валовый выброс, т/год (8.2), $M=(Q\cdot N1\cdot T)/1000=(0.13\cdot 1\cdot 120)/1000=0.0156$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 99.72\cdot 0.0156/100 = 0.01555632$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 99.72\cdot 0.0361/100 = 0.03599892$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 0.28\cdot 0.0156/100 = 0.00004368$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 0.28\cdot 0.0361/100 = 0.00004368$

0.00010108

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00010108	0.00004368
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.03599892	0.01555632
	предельные С12-С19 (в пересчете на С); Растворитель		

Источник загрязнения: 6058, Горловина шланга Источник выделения: 6058 36, Закачка газа в резервуар

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196 Выбросы от АГНС

Плотность газа при температуре воздуха, кг/м3, RO = 0.6

Площадь сечения выходного отверстия, м2, F = 0.02

Напор, под которым газ выходит из отверстия, мм. вод. ст, $H={\bf 5}$

Общее количество заправленных баллонов (сливаемых цистерн), шт., N=20

Количество одновременно заправляемых баллонов (сливаемых цистерн), шт., $NI=\mathbf{1}$

Максимальная продолжительность работы в течении 20 минут, в мин., TN=2

Время истечения газа из контрольного крана баллона или из продувной свечи, с, $TAU=\mathbf{30}$

Коэффициент истечения газа (с. 21), MU = 0.62 Ускорение свободного падения, м/с2, G = 9.8

Примесь: 0402 Бутан (99)

Максимальный разовый выброс, г/с (7.2.1), $_G_=MU\cdot RO\cdot N1\cdot F\cdot \sqrt{2\cdot G\cdot H}\cdot TN/20\cdot 10^3=0.62\cdot 0.6\cdot 1\cdot 0.02\cdot 9.8994949\cdot 2/20\cdot 10^3=7.36522423284$

Валовый выброс, т/год (7.2.2), $_M_=((_G_/(TN/20))\cdot TAU\cdot N\cdot 10^{-6})/N1=((7.3652242328/22/20))\cdot 30\cdot 20\cdot 10^{-6})/1=0.0441913454$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0402	Бутан (99)	7.36522423284	0.0441913454

Источник загрязнения: 6058, Горловина шланга Источник выделения: 6058 36, Закачка газа в резервуар

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196 Выбросы от АГНС

Плотность газа при температуре воздуха, кг/м3, RO = 0.6

Площадь сечения выходного отверстия, м2, F = 0.02

Напор, под которым газ выходит из отверстия, мм. вод. ст, $H={\bf 5}$

Общее количество заправленных баллонов (сливаемых цистерн), шт., $N={f 20}$

Количество одновременно заправляемых баллонов (сливаемых цистерн), шт., $NI=\mathbf{1}$

Максимальная продолжительность работы в течении 20 минут, в мин., TN=2

Время истечения газа из контрольного крана баллона или из продувной свечи, с,

TAU = 30

Коэффициент истечения газа (с. 21), MU = 0.62

Ускорение свободного падения, м/c2, G = 9.8

Примесь: 0402 Бутан (99)

Максимальный разовый выброс, г/с (7.2.1), $_G_=MU\cdot RO\cdot N1\cdot F\cdot \sqrt{2\cdot G\cdot H}\cdot TN/20\cdot 10^3=0.62\cdot 0.6\cdot 1\cdot 0.02\cdot 9.8994949\cdot 2/20\cdot 10^3=7.36522423284$

Валовый выброс, т/год (7.2.2), $_M_=((_G_/(TN/20))\cdot TAU\cdot N\cdot 10^{-6})/N1=((7.3652242328))$

 $/(2/20)) \cdot 30 \cdot 20 \cdot 10^{-6}) / 1 = 0.0441913454$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0402	Бутан (99)	7.36522423284	0.0441913454

Источник загрязнения: 6019, Окрашенная поверхность Источник выделения: 6019 38, Покрасочный пост

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.06

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,

MS1 = 1

Марка ЛКМ: Грунтовка ГФ-021

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.06 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.06 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.06 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.06 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.06 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.06 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.06 \cdot 100 \cdot 1$ 0.027

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6)=1$ $45 \cdot 100 \cdot 100 / (3.6 \cdot 10^{6}) = 0.125$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.15

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,

MS1 = 1

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.15 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.00$

0.03375

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6)=1$ · $45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0625$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_{-}M_{-}=MS\cdot F2\cdot FPI\cdot DP\cdot 10^{-6}=0.15\cdot 45\cdot 50\cdot 100\cdot 10^{-6}=0.15\cdot 10^{-6}=0.1$ 0.03375

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 1$ · $45 \cdot 50 \cdot 100 / (3.6 \cdot 10^{6}) = 0.0625$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.001

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI=0.04

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.001 \cdot 100 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.001$

MTOPO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.125	0.06075
2752	Уайт-спирит (1294*)	0.0625	0.03475

Источник загрязнения: 6020, Ворота Источник выделения: 6020 39, Отелочное отделение

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = **3984**

Способ содержания животных: в помещении, оборудованном местными отсосами

Коэффициент эффективности местных отсосов, от 0 до 1, KOTS = 0.9

Выбросы пыли , не уловленной местным отсосом ,будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=350

Macca животного, кг, M = 608

Примесь: 0303 Аммиак (32)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = **6.6** Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6.6\cdot 608\cdot 350/10^8=0.0140448$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0140448\cdot 3984\cdot 3600/10^6=0.20143613952$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.108}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.108}\cdot\mathbf{608}\cdot\mathbf{350}/10^8=\mathbf{0.108}$

0.000229824

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000229824\cdot 3984\cdot 3600/10^6=0.00329622774$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 608\cdot 350/10^8=0.0676704$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0676704\cdot 3984\cdot 3600/10^6=0.97055594496$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.245 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.245\cdot 608\cdot 350/10^8=0.00052136$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00052136\cdot 3984\cdot 3600/10^6=0.00747755366$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.025}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 608\cdot 350/10^8=0.0000532$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000532\cdot 3984\cdot 3600/10^6=0.00076301568$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot 608 \cdot 350/10^8 = \mathbf{0.00080864}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00080864\cdot 3984\cdot 3600/10^6=0.01159783834$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.125}\cdot 608\cdot 350/10^8=\mathbf{0.000266}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000266\cdot 3984\cdot 3600/10^6=0.0038150784$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.148} \cdot 608 \cdot 350 / 10^8 = \mathbf{0.000314944}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000314944\cdot 3984\cdot 3600/10^6=0.00451705283$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.192} \cdot 608 \cdot 350/10^8 = \mathbf{0.000408576}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000408576\cdot 3984\cdot 3600/10^6=0.00585996042$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 608\cdot 350/10^8=0.0005$

0.000001064

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000001064\cdot 3984\cdot 3600/10^6=0.00001526031$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.1} \cdot 608 \cdot 350/10^8 = \mathbf{0.0002128}$

Валовый выброс, т/год (4.2), $_{M_{-}}=_{G_{-}}\cdot_{_{-}}T_{_{-}}\cdot 3600/10^{6}=0.0002128\cdot 3984\cdot 3600/10^{6}=0.00305206272$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3

С учетом поправочных коэффициентов и эффективности местных отсосов, $\mathit{QI} = \mathit{QI} \cdot$

 $KOTS + 0.4 \cdot (1-KOTS) = 3 \cdot 0.9 + 0.4 \cdot (1-0.9) = 2.74$

Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=2.74\cdot 608\cdot 350/10^8=0.00583072$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00583072\cdot 3984\cdot 3600/10^6=0.08362651853$

NTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0140448	0.20143613952
0333	Сероводород (Дигидросульфид) (518)	0.000229824	0.00329622774
0410	Метан (727*)	0.0676704	0.97055594496
1052	Метанол (Метиловый спирт) (338)	0.00052136	0.00747755366
1071	Гидроксибензол (155)	0.0000532	0.00076301568
1246	Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)	0.00080864	0.01159783834
1314	Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)	0.000266	0.0038150784
1531	Гексановая кислота (Капроновая кислота) (137)	0.000314944	0.00451705283
1707	Диметилсульфид (227)	0.000408576	0.00585996042
1715	Метантиол (Метилмеркаптан) (339)	0.000001064	0.00001526031
1849	Метиламин (Монометиламин) (341)	0.0002128	0.00305206272
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.00583072	0.08362651853

Источник загрязнения: 6020, Ворота Источник выделения: 6020 40, Узел пересыпки гашенной извести

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Известь молотая

Примесь: 0214 Кальций дигидроксид (Гашеная известь, Пушонка) (304)

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.6

Доля пылевой фракции в материале (табл.1), KI = 0.07

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.05

Суммарное количество перерабатываемого материала, т/час, G = 0.125

Высота падения материала, м, GB = 0.2

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot K1$

 $10^6 \cdot B / 3600 = 0.07 \cdot 0.05 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.125 \cdot 10^6 \cdot 0.4 / 3600 = 0.0000583$

Время работы узла переработки в год, часов, RT2 = 20

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $\cdot RT2 = 0.07 \cdot 0.05 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.125 \cdot 0.4 \cdot 20 = 0.00000294$

Максимальный разовый выброс , г/сек, G = 0.0000583

Валовый выброс , т/год , M = 0.00000294

Итого выбросы от источника выделения:

	<u> </u>		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0214	Кальций дигидроксид (Гашеная известь, Пушонка) (304)	0.0000583	0.00000294

Источник вагрязнения: 6021, Распределительная площадка Источник выделения: 6021 41, Распределительная площадка

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу

от объектов 4 категории, п.4. От животноводческих комплексов и звероферм.

Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = 3984

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=350

Macca животного, кг, M = 500

Примесь: 0303 Аммиак (32)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=6.6 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6.6\cdot 500\cdot 350/10^8=0.01155$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.01155\cdot 3984\cdot 3600/10^6=0.16565472$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.108}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.108} \cdot \mathbf{500} \cdot \mathbf{350} / 10^8 = \mathbf{0.000189}$

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot 3600/10^{6}=0.000189\cdot 3984\cdot 3600/10^{6}=0.0027107136$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 500\cdot 350/10^8=0.05565$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.05565\cdot 3984\cdot 3600/10^6=0.79815456$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.245 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.245\cdot 500\cdot 350/10^8=0.00042875$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00042875\cdot 3984\cdot 3600/10^6=0.006149304$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.025 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 500\cdot 350/10^8=0.00004375$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00004375\cdot 3984\cdot 3600/10^6=0.00062748$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot 500 \cdot 350/10^8 = \mathbf{0.00665}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000665\cdot 3984\cdot 3600/10^6=0.009537696$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.125 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.125\cdot 500\cdot 350/10^8=0.00021875$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00021875\cdot 3984\cdot 3600/10^6=0.0031374$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.148} \cdot \mathbf{500} \cdot \mathbf{350}/10^8 = \mathbf{0.000259}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000259\cdot 3984\cdot 3600/10^6=0.0037146816$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = 0.192 \cdot 500 \cdot 350/10^8 = \mathbf{0.000336}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000336\cdot 3984\cdot 3600/10^6=0.0048190464$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 500\cdot 350/10^8=0.000000875$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000000875\cdot 3984\cdot 3600/10^6=0.0000125496$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.1} \cdot 500 \cdot 350 / 10^8 = \mathbf{0.000175}$

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot 3600/10^{6}=0.000175\cdot 3984\cdot 3600/10^{6}=0.00250992$

Примесь: 0380 Углерод диоксид

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 1908 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1908\cdot 500\cdot 350/10^8=3.339$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=3.339\cdot 3984\cdot 3600/10^6=47.8892736$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1.2\cdot 500\cdot 350/10^8=0.0021$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0021\cdot 3984\cdot 3600/10^6=0.0021$

0.03011904

Код	Наименование 3В	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.01155	0.16565472
0333	Сероводород (Дигидросульфид) (518)	0.000189	0.0027107136
0410	Метан (727*)	0.05565	0.79815456
1052	Метанол (Метиловый спирт) (338)	0.00042875	0.006149304
1071	Гидроксибензол (155)	0.00004375	0.00062748
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.000665	0.009537696
	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.00021875	0.0031374
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.000259	0.0037146816
1707	Диметилсульфид (227)	0.000336	0.0048190464
1715	Метантиол (Метилмеркаптан) (339)	0.000000875	0.0000125496
1849	Метиламин (Монометиламин) (341)	0.000175	0.00250992
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0021	0.03011904

Источник загрязнения: 6022, Загон для КРС Источник выделения: 6022 42, Содержание КРС в загоне

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = 3984

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=450

Macca животного, кг, M = 608

Примесь: 0303 Аммиак (32)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 6.6 Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 6.6 \cdot 608 \cdot 450 / 10^8 = 0.0180576$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0180576\cdot 3984\cdot 3600/10^6=0.25898932224$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.108 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.108\cdot 608\cdot 450/10^8=0.000005400$

0.000295488

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000295488\cdot 3984\cdot 3600/10^6=0.00423800709$

<u>Примесь: 0410 Метан (727*)</u>

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N / 10^8 = 31.8 \cdot 608 \cdot 450 / 10^8 = 0.00700.48$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0870048\cdot 3984\cdot 3600/10^6=1.24785764352$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.245\cdot 608\cdot 450/10^8=0.00067032$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00067032\cdot 3984\cdot 3600/10^6=0.00961399757$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.025 Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = 0.025 \cdot 608 \cdot 450/10^8 = 0.0000004$

0.0000684

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000684\cdot 3984\cdot 3600/10^6=0.00098102016$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=0.38 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.38\cdot 608\cdot 450/10^8=0.38$

0.00103968

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00103968\cdot 3984\cdot 3600/10^6=0.01491150643$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.125} \cdot 608 \cdot 450/10^8 = \mathbf{0.000342}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000342\cdot 3984\cdot 3600/10^6=0.0049051008$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.148\cdot 608\cdot 450/10^8=0.000404928$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000404928\cdot 3984\cdot 3600/10^6=0.00580763935$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.192} \cdot 608 \cdot 450 / 10^8 = \mathbf{0.000525312}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000525312\cdot 3984\cdot 3600/10^6=0.00753423483$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 608\cdot 450/10^8=0.00001368$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000001368\cdot 3984\cdot 3600/10^6=0.0000196204$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.1 \cdot 608 \cdot 450 / 10^8 = \mathbf{0.0002736}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0002736\cdot 3984\cdot 3600/10^6=0.00392408064$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1.2\cdot 608\cdot 450/10^8=0.0032832$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0032832\cdot 3984\cdot 3600/10^6=0.04708896768$

MTOTO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0180576	0.25898932224
0333	Сероводород (Дигидросульфид) (518)	0.000295488	0.00423800709
0410	Метан (727*)	0.0870048	1.24785764352
1052	Метанол (Метиловый спирт) (338)	0.00067032	0.00961399757
1071	Гидроксибензол (155)	0.0000684	0.00098102016
1246	Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)	0.00103968	0.01491150643
1314	Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)	0.000342	0.0049051008
1531	Гексановая кислота (Капроновая кислота) (137)	0.000404928	0.00580763935
1707	Диметилсульфид (227)	0.000525312	0.00753423483
1715	Метантиол (Метилмеркаптан) (339)	0.000001368	0.0000196204
1849	Метиламин (Монометиламин) (341)	0.0002736	0.00392408064
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0032832	0.04708896768

Источник загрязнения: 6023, Загон для быков Источник выделения: 6023 43, Содержание быков в загоне

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = 3984

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=100

Macca животного, кг, M = 680

Примесь: 0303 Аммиак (32)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=6.6 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6.6\cdot 680\cdot 100/10^8=0.004488$

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot 3600/10^{6}=0.004488\cdot 3984\cdot 3600/10^{6}=0.0643686912$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.108}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.108}\cdot \mathbf{680}\cdot \mathbf{100}/10^8=\mathbf{0.00007344}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00007344\cdot 3984\cdot 3600/10^6=0.00105330586$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 680\cdot 100/10^8=0.021624$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.021624\cdot 3984\cdot 3600/10^6=0.3101400576$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.245} \cdot 680 \cdot 100 / 10^8 = \mathbf{0.0001666}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0001666\cdot 3984\cdot 3600/10^6=0.00238944384$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.025}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.025} \cdot 680 \cdot 100/10^8 = \mathbf{0.000017}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000017\cdot 3984\cdot 3600/10^6=0.0002438208$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot 680 \cdot 100/10^8 = \mathbf{0.0002584}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0002584\cdot 3984\cdot 3600/10^6=0.00370607616$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.125} \cdot 680 \cdot 100 / 10^8 = \mathbf{0.000085}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000085\cdot 3984\cdot 3600/10^6=0.001219104$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.148 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.148\cdot 680\cdot 100/10^8=0.0040064$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00010064\cdot 3984\cdot 3600/10^6=0.000144341914$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.192 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.192\cdot 680\cdot 100/10^8=0.00013056$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00013056\cdot 3984\cdot 3600/10^6=0.00187254374$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 680\cdot 100/10^8=0.0000034$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000034\cdot 3984\cdot 3600/10^6=0.00000487642$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = **0.1** Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.1\cdot 680\cdot 100/10^8=0.1$

0.000068

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot 3600/10^{6}=0.000068\cdot 3984\cdot 3600/10^{6}=0.0009752832$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $G=QI\cdot M\cdot N/10^8=1.2\cdot 680\cdot 100/10^8=1.2$

0.000816

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot 3600/10^{6}=0.000816\cdot 3984\cdot 3600/10^{6}=0.0117033984$

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.004488	0.0643686912
0333	Сероводород (Дигидросульфид) (518)	0.00007344	0.00105330586
0410	Метан (727*)	0.021624	0.3101400576
1052	Метанол (Метиловый спирт) (338)	0.0001666	0.00238944384
1071	Гидроксибензол (155)	0.000017	0.0002438208
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.0002584	0.00370607616
	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.000085	0.001219104
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.00010064	0.00144341914
1707	Диметилсульфид (227)	0.00013056	0.00187254374
1715	Метантиол (Метилмеркаптан) (339)	0.00000034	0.00000487642
1849	Метиламин (Монометиламин) (341)	0.000068	0.0009752832
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.000816	0.0117033984

Источник загрязнения: 6007, Ворота Источник выделения: 6007 08, Завальная яма

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.7

Доля пылевой фракции в материале (табл.1), KI = 0.01

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G=10

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.6

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.01 \cdot 0.03 \cdot 2 \cdot 0.1 \cdot 0.4 \cdot 0.7 \cdot 10 \cdot 10^6 \cdot 0.6 / 3600 = 0.028$

Время работы узла переработки в год, часов, RT2 = 400

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $\cdot RT2 = 0.01 \cdot 0.03 \cdot 1.4 \cdot 0.1 \cdot 0.4 \cdot 0.7 \cdot 10 \cdot 0.6 \cdot 400 = 0.0282$

Максимальный разовый выброс , г/сек, G=0.028

Валовый выброс , т/год , M = 0.0282

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	0.028	0.0282

Источник загрязнения: 6007, Ворота Источник выделения: 6007 08, Зернодробилка

Список литературы:

- 1. Инструкция о порядке составления отчетов об охране воздушного бассейна по форме 2-ТП (воздух) на предприятия отрасли хлебопродуктов Республики Казахстан, Алматы, "Астык", 1994 г.
- 2. Инструкция N 9-12/87 о порядке составления отчетов об охране воздушного бассейна по форме $2-T\Pi$ (воздух) на предприятиях по хранению и переработке зерна, ВНИИЗ ВНПО "Зернопродукт", М., 1988 г.

Тип производства, PR =**Элеваторы**

Расход воздуха, тыс.куб.м/ч, Q = 3.000

Время работы аспирационной сети, час/сут, S = 8

Общее время работы аспирационной сети, час/год, $_{T_{-}}$ = 400

Годовой период работы асп. сети, сут/год, $T = T_{-}/S_{-} = 400/8 = 50$

Общее количество оборудования входящего в данную асп. сеть, шт, TOTAL = 3

Тип аспирируемого оборудования, $AS = {\sf Башмаки}$ норий

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, $\bf Z$ = $\bf 2$

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, $\mathbf{Z} = \mathbf{Z}$.

$ASNUM = 2 \cdot 1 = 2$

Сумма всех концентраций в асп. сети, r/м3, ZTOTAL = ZTOTAL + Z = 0 + 2 = 2

Тип аспирируемого оборудования, $AS = \Pi$ оворотные круги

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, $\bf Z$ = $\bf 0.6$

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, Z = Z.

$ASNUM = 0.6 \cdot 1 = 0.6$

Сумма всех концентраций в асп. сети, г/м3, ZTOTAL = ZTOTAL + Z = 2 + 0.6 = 2.6

Тип аспирируемого оборудования, $AS = \mathbf{C}\mathbf{б}\mathbf{p}\mathbf{a}\mathbf{c}\mathbf{ы}\mathbf{b}\mathbf{a}\mathbf{ю}\mathbf{щ}\mathbf{u}\mathbf{e}$ коробки

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, $\bf Z$ = 1.3

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, $\mathbf{Z} = \mathbf{Z} \cdot \mathbf{ASNUM} = \mathbf{1.3} \cdot \mathbf{1} = \mathbf{1.3}$

Сумма всех концентраций в асп. сети, г/м3, ZTOTAL = ZTOTAL + Z = 2.6 + 1.3 = 3.9 Расчетная концентрация в асп. сети, г/м3, Z = ZTOTAL/ASTOTAL = 3.9/3 = 1.3 Конц. пыли в воздухе, отходящем от асп. сети (ф-ла 4.5), г/м3, Z = 1.300

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Кол-во пыли, отходящей от оборудования асп. сети, г/с, $_G_=Q\cdot Z/3.6=3\cdot 1.3/3.6=1.0833$

Кол-во пыли, отходящей от оборудования асп. сети (ф-ла 4.4), т/год, $_M_=0.001 \cdot T \cdot Q \cdot Z \cdot S = 0.001 \cdot 50 \cdot 3 \cdot 1.3 \cdot 8 = 1.56$

Кол-во выбрасываемой в атмосферу пыли, г/с, G=1.0833

Кол-во выбрасываемой в атмосферу пыли, $\tau/$ год, M=1.56

: OTOTN

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	1.0833	1.56

Источник загрязнения: 6007, Ворота Источник выделения: 6007 10, Ангар для хранения зерна

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.7

Поверхность пыления в плане, м2, F = 70

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q$

 $\cdot F = 2 \cdot 0.1 \cdot 0.4 \cdot 1.45 \cdot 0.7 \cdot 0.002 \cdot 70 = 0.01137$

Время работы склада в году, часов, RT = 400

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1.4 \cdot 0.1 \cdot 0.4 \cdot 1.45 \cdot 0.7 \cdot 0.002 \cdot 70 \cdot 400 \cdot 0.0036 = 0.01146$

Максимальный разовый выброс , г/сек, G=0.01137

Валовый выброс , т/год , M = 0.01146

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	0.01137	0.01146

Источник загрязнения: 6008, Миксер Botex 4072 Источник выделения: 6008 11, Загрузка кормушек

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих

материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 2

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.8

Доля пылевой фракции в материале (табл.1), KI = 0.01

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, $\tau/$ час, G=10

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.01 \cdot 0.03 \cdot 2 \cdot 0.1 \cdot 0.4 \cdot 0.8 \cdot 10 \cdot 10^6 \cdot 0.4 / 3600 = 0.02133$

Время работы узла переработки в год, часов, RT2 = 400

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $\cdot RT2 = 0.01 \cdot 0.03 \cdot 1.4 \cdot 0.1 \cdot 0.4 \cdot 0.8 \cdot 10 \cdot 0.4 \cdot 400 = 0.0215$

Максимальный разовый выброс , г/сек, G=0.02133

Валовый выброс , т/год , M = 0.0215

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	0.02133	0.0215

Источник загрязнения: 6009, Трактор Источник выделения: 6009 12, Загрузка навоза в Камаз

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

ИТОГО ВЫБРОСЫ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0445	0.0052712
0304	Азот (II) оксид (Азота оксид) (6)	0.00723	0.00085657
0328	Углерод (Сажа, Углерод черный) (583)	0.00911	0.0008791
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.00574	0.0006552
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0543	0.007528
2732	Керосин (654*)	0.01358	0.0016235

Источник выделения: 6012, Открытая площадка навоза Источник выделения: 6012 15, Открытая площадка навоза

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221- Γ .0732

Примесь: 0333 Сероводород (Дигидросульфид) (528)

Удельный выброс, г/с на м3 навоза , Q = 0.000015 Валовый выброс, т/год (4.5) , _M_ = V * Q * _T_ * 3600 / 10 ^ 6 = 16053.7 * 0.000015 * 5136 * 3600 / 10 ^ 6 = 4.45

Максимальный разовый выброс, r/c (4.6) , $_{G}$ = Q * VMAX = 0.000015 * 6000 = 0.09

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0732	3.62
0333	Сероводород (Дигидросульфид) (518)	0.09	4.45

Источник загрязнения: 0021, Дымовая труба Источник выделения: 0021 52, Самодельный котел

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

 $\pi.2$. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, $K3 = \Box$ рова

Расход топлива, T/год, BT = 10

Расход топлива, r/c, BG = 1.3

Марка топлива, M = Дрова

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 2446

Пересчет в МДж, $QR = QR \cdot 0.004187 = 2446 \cdot 0.004187 = 10.24$

Средняя зольность топлива, % (прил. 2.1), AR = 0.6

Предельная зольность топлива, % не более (прил. 2.1), AIR = 0.6Среднее содержание серы в топливе, % (прил. 2.1), $SR = \mathbf{0}$ Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR=\mathbf{0}$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN=30

Фактическая мощность котлоагрегата, кВт, QF = 30

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), $K\!NO=0.0121$

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (OF/ON)^{0.25} = 0.0121$ · $(30/30)^{0.25} = 0.0121$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 10 \cdot 10$ $10.24 \cdot 0.0121 \cdot (1-0) = 0.00124$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 1.3 \cdot 1.$ $10.24 \cdot 0.0121 \cdot (1-0) = 0.000161$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.00124 = 0.000992$ Выброс азота диоксида (0301), г/с, $_G_ = 0.8 \cdot MNOG = 0.8 \cdot 0.000161 = 0.0001288$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_ = 0.13 \cdot MNOT = 0.13 \cdot 0.00124 = 0.0001612$ Выброс азота оксида (0304), г/с, $_G_ = 0.13 \cdot MNOG = 0.13 \cdot 0.000161 = 0.00002093$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=2

Тип топки: Шахтная топка с наклонной решеткой

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = O3 \cdot R \cdot OR = 2 \cdot 1$ 10.24 = 20.5

Выбросы окиси углерода, т/год (ф-ла 2.4), $_{-}M_{-}=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100)=0.001 \cdot$ $10 \cdot 20.5 \cdot (1-2/100) = 0.2009$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 1.3$ $20.5 \cdot (1-2 / 100) = 0.026117$

Примесь: 2902 Взвешенные частицы (116)

Коэффициент (табл. 2.1), F = 0.005

Тип топки: Слоевые топки бытовых теплогенераторов

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 10 \cdot 0.6 \cdot 0.005 = 0.03$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_{_} = BG \cdot A1R \cdot F = 1.3 \cdot 0.6 \cdot 0.005 = 0.0039$

Вид топлива, КЗ = Твердое (уголь, торф и др.)

Расход топлива, $\tau/$ год, BT = 40

Расход топлива, г/с, BG = 2.15

месторождение, M = Карагандинский бассейн

Марка угля (прил. 2.1), MYI = K, K2, концентрат

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5300

Пересчет в МДж, $QR = QR \cdot 0.004187 = 5300 \cdot 0.004187 = 22.19$

Средняя зольность топлива, % (прил. 2.1), AR = 22.5

Предельная зольность топлива, % не более (прил. 2.1), AIR = 22.5

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.81

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0.81}$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 30

Фактическая мощность котлоагрегата, кВт, $QF = \mathbf{30}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.132

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.132 \cdot (30/30)^{0.25} = 0.132$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 40 \cdot 22.19 \cdot 0.132 \cdot (1-0) = 0.1172$

Выброс окислов авота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 2.15 \cdot 22.19 \cdot 0.132 \cdot (1-0) = 0.0063$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.1172=0.09376$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.0063=0.00504$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.1172=0.015236$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.0063=0.000819$

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)</u>

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), $NSO2 = \mathbf{0.1}$

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 40 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 40 = 0.5832$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ = $0.02 \cdot 2.15 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 2.15 = 0.031347$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\it Q4=7$

Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), $Q3=\mathbf{2}$

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

22.19 = 44.4

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_ = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot BT$

$40 \cdot 44.4 \cdot (1-7 / 100) = 1.65168$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100)=0.001 \cdot 2.15 \cdot 44.4 \cdot (1-7/100)=0.0887778$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=40\cdot 22.5\cdot 0.0023=2.07$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=2.15\cdot 22.5\cdot 0.0023=$

0.1112625

NTOPO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00504	0.094752
0304	Азот (II) оксид (Азота оксид) (6)	0.000819	0.0153972
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.031347	0.5832
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0887778	1.85258
2902	Взвешенные частицы (116)	0.0039	0.03
2908	Пыль неорганическая, содержащая двуокись кремния в	0.1112625	2.07
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6066, Пылящая поверхность Источник выделения: 6066 53, Открытый склад угля

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3=2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Поверхность пыления в плане, м2, F=10

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.005

Максимальный разовый выброс пыли при хранении, г/с (1), $\mathit{GC} = \mathit{K3} \cdot \mathit{K4} \cdot \mathit{K5} \cdot \mathit{K6} \cdot \mathit{K7} \cdot \mathit{Q}$

 $F = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 10 = 0.000725$

Время работы склада в году, часов, RT = 5160

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1.4 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 10 \cdot 5160 \cdot 0.0036 = 0.00943$

Максимальный разовый выброс , г/сек, G = 0.000725

Валовый выброс , $\tau/$ год , M = 0.00943

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G=7

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.6

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 7 \cdot 10^6 \cdot 0.6 / 3600 = 0.007$

Время работы узла переработки в год, часов, RT2 = 6

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.03 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 7 \cdot 0.6 \cdot 6 = 0.0001058$

Максимальный разовый выброс , г/сек, G=0.007

Валовый выброс , т/год , M = 0.0001058

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в	0.007	0.0095358
	%: менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль		
	вращающихся печей, боксит) (495*)		

Источник загрязнения: 6067, Пылящая поверхность Источник выделения: 6067 54, Металлический контейнер

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), $\mathit{K1} = 0.06$

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, т/час, G = 0.002

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^{6} \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.5 \cdot 0.002 \cdot 10^{6} \cdot 0.5 / 3600 = 0.000000667$

Время работы узла переработки в год, часов, RT2 = 215

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.5 \cdot 0.002 \cdot 0.5 \cdot 215 = 0.000000361$

Максимальный разовый выброс , г/сек, G = 0.000000667

Валовый выброс , т/год , M = 0.00000361

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.000000667	0.000000361
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6032, Спецтехника Источник выделения: 6032 55, Открытая стоянка

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

итого выбросы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.1218	0.171088
0304	Азот (II) оксид (Азота оксид) (6)	0.0198	0.0278018
0328	Углерод (Сажа, Углерод черный) (583)	0.01958	0.020268
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.02077	0.024708

	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.2017	0.24756
2732	Керосин (654*)	0.03923	0.04905

Источник загрязнения: 6033, Ворота Источник выделения: 6033 56, Автотранспорт

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

ИТОГО ВЫБРОСЫ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.1218	0.197408
0304	Азот (II) оксид (Азота оксид) (6)	0.0198	0.0320788
0328	Углерод (Сажа, Углерод черный) (583)	0.01958	0.025924
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.02077	0.03006
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.2017	0.29816
2732	Керосин (654*)	0.03923	0.05868

Источник загрязнения: 6058, Ворота Источник выделения: 6058 57, Заточной станок

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Заточные станки, с диаметром шлифовального круга – 100 мм Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_T_- = 50$

Число станков данного типа, шт., $_KOLIV_=1$

Число станков данного типа, работающих одновременно, шт., $NSI=\mathbf{1}$

Примесь: 2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

Удельный выброс, г/с (табл. 1), GV = 0.004

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.2 \cdot 0.004 \cdot 50$ \cdot 1 / $10^6 = 0.000144$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NSI = 0.2 \cdot 0.004 \cdot 1 = 0.0008$

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1), GV = 0.006

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.2 \cdot 0.006 \cdot 50$

 $\cdot 1 / 10^6 = 0.000216$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NSI = 0.2 \cdot 0.006 \cdot 1 = 0.0012$

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.0012	0.000216
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0008	0.000144

Источник загрязнения: 6058, Ворота Источник выделения: 6058 58, Сверлильный станок

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных

выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей

Вид станков: Сверлильные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_T_=$ **50**

Число станков данного типа, шт., $_KOLIV_ = 1$

Число станков данного типа, работающих одновременно, шт., NSI=1

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, r/c (табл. 4), GV = 0.0011

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.2 \cdot 0.0011 \cdot 50 \cdot 1 / 10^6 = 0.0000396$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NS1 = 0.2 \cdot 0.0011 \cdot 1 = 0.00022$

итого:

72 \	-	D	7 ()
Koo	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.00022	0.0000396

Источник загрязнения: 6058, Ворота Источник выделения: 6058 59, Сварочный пост

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при сварочных работах (по величинам удельных

выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8

Коэффициент трансформации оксидов азота в NO, $K\!N\!O = \mathbf{0.13}$

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): MP-3

Расход сварочных материалов, кг/год, B = 200

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 1

Удельное выделение сварочного аэрозоля,

r/kr расходуемого материала (табл. 1, 3), GIS = 11.5

в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа</u> оксид) (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 9.77 Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 9.77 \cdot 200 / 10^6 = 0.001954$ Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 9.77 \cdot 1 / 3600 = 0.00271388889$

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS=1.73 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6=1.73 \cdot 200/10^6=0.000346$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600=1.73 \cdot 1/3600=0.00048055556$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.4 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 0.4 \cdot 200/10^6 = 0.00008$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 0.4 \cdot 1/3600 = 0.00011111111$

Вид сварки: Ручная дуговая сварка сталей штучными электродами Электрод (сварочный материал): MP-4 Расход сварочных материалов, кг/год, B=200 Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX=1 Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), GIS=11 в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)</u>

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 9.9 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 9.9 \cdot 200/10^6 = 0.00198$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 9.9 \cdot 1/3600 = 0.00275$

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS=1.1 Валовый выброс, т/год (5.1), $_M_=GIS\cdot B/10^6=1.1\cdot 200/10^6=0.00022$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS\cdot BMAX/3600=1.1\cdot 1/3600=0.00030555556$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), GIS = 0.4 Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 0.4 \cdot 200 / 10^6 = 0.00008$ Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 0.4 \cdot 1 / 3600 = 0.00011111111$

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси Расход сварочных материалов, кг/год, B=600

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 1.5

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ,

r/кг расходуемого материала (табл. 1, 3), GIS = 15

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B / 10^6 = 0.8 \cdot 15 \cdot 600 / 10^6 = 0.0072$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 15 \cdot 1.5 / 3600 = 0.005$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO \cdot GIS \cdot B/10^6 = 0.13 \cdot 15 \cdot 600/10^6 = 0.00117$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO \cdot GIS \cdot BMAX/3600 = 0.13 \cdot 15 \cdot 15/3600 = 0.000135$

1.5 / 3600 = 0.0008125

MTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо)	0.00275	0.003934
	(диЖелезо триоксид, Железа оксид) (274)		
0143	Марганец и его соединения (в пересчете на марганца	0.00048055556	0.000566
	(IV) оксид) (327)		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.005	0.0072
0304	Азот (II) оксид (Азота оксид) (6)	0.0008125	0.00117
0342	Фтористые газообразные соединения /в пересчете на	0.00011111111	0.00016
	фтор/ (617)		

Источник загрязнения: 6036, Окрашенная поверхность Источник выделения: 6036 64, Покрасочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.026

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,

MS1 = 0.5

Марка ЛКМ: Грунтовка ГФ-021 Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2=45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 10^6 = 0.026 \cdot 45 \cdot 100 \cdot 10^6 = 0.026 \cdot 100 \cdot 10^6 = 0.026 \cdot 100 \cdot 10^6 = 0.026 \cdot 100 \cdot 10^6 = 0.026 \cdot 100 \cdot 100 \cdot 10^6 = 0.026 \cdot 100 \cdot$ 0.0117

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.5$ $\cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 10^{6}) = 0.0625$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.1414

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,

MS1 = 1

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 10^{-6} =$ 0.031815

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6)=1$ · $45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0625$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 10^{-6} =$ 0.031815

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6)=1$ · $45 \cdot 50 \cdot 100 / (3.6 \cdot 10^{6}) = 0.0625$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.001

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.2

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^6 = 0.001 \cdot 100 \cdot 100 \cdot 100 \cdot 10^{-6}$ = 0.001

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2$ $\cdot 100 \cdot 100 \cdot 100 / (3.6 \cdot 10^{6}) = 0.055555555556$

MTOPO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0625	0.160515
2752	Уайт-спирит (1294*)	0.0625	0.032815

Источник загрязнения: 6037, Ворота

Источник выделения: 6037 65, Содержание КРС в отелочном отделении

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = **3984**

Способ содержания животных: в помещении, оборудованном местными отсосами

Коэффициент эффективности местных отсосов, от 0 до 1, KOTS = 0.9

Выбросы пыли , не уловленной местным отсосом ,будут умножаться на $0.4\,$

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=350

Macca животного, кг, M = 608

Примесь: 0303 Аммиак (32)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = **6.6** Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=6.6\cdot 608\cdot 350/10^8=0.0140448$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0140448\cdot 3984\cdot 3600/10^6=0.20143613952$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.108 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.108\cdot 608\cdot 350/10^8=0.000229824$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000229824\cdot 3984\cdot 3600/10^6=0.00329622774$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 608\cdot 350/10^8=0.0676704$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0676704\cdot 3984\cdot 3600/10^6=0.97055594496$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.245}\cdot 608\cdot 350/10^8=\mathbf{0.00052136}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00052136\cdot 3984\cdot 3600/10^6=0.00747755366$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.025 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 608\cdot 350/10^8=0.0000532$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000532\cdot 3984\cdot 3600/10^6=0.00076301568$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot 608 \cdot 350/10^8 = \mathbf{0.00080864}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00080864\cdot 3984\cdot 3600/10^6=0.01159783834$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.125}\cdot 608\cdot 350/10^8=\mathbf{0.000266}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000266\cdot 3984\cdot 3600/10^6=0.0038150784$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.148\cdot 608\cdot 350/10^8=0.000314944$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000314944\cdot 3984\cdot 3600/10^6=0.00451705283$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.192 \cdot 608 \cdot 350 / 10^8 = 0.00400576$

0.000408576

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000408576\cdot 3984\cdot 3600/10^6=0.00585996042$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 608\cdot 350/10^8=0.00001064$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000001064\cdot 3984\cdot 3600/10^6=0.00001526031$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N/10^8 = 0.1 \cdot 608 \cdot 350 / 10^8 = \mathbf{0.0002128}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.0002128 \cdot 3984 \cdot 3600 / 10^6 = 0.00305206272$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3

С учетом поправочных коэффициентов и эффективности местных отсосов, QI = QI.

 $KOTS + 0.4 \cdot (1-KOTS) = 3 \cdot 0.9 + 0.4 \cdot (1-0.9) = 2.74$

Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=2.74\cdot 608\cdot 350/10^8=2.74\cdot 608\cdot 50/10^8=2.74\cdot 608\cdot 50/10^8=2.74\cdot 608\cdot 50/10^8=2.74\cdot 608\cdot 600/10^8=2.74\cdot 600/10^8=2.74\cdot 600/10^8=2.74\cdot 600/10^8=2.74\cdot 600/10^8=2.74\cdot 600/10^8=2.74\cdot 600/10^$

0.00583072

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00583072\cdot 3984\cdot 3600/10^6=0.08362651853$

NTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0140448	0.20143613952
0333	Сероводород (Дигидросульфид) (518)	0.000229824	0.00329622774
0410	Метан (727*)	0.0676704	0.97055594496
1052	Метанол (Метиловый спирт) (338)	0.00052136	0.00747755366
1071	Гидроксибензол (155)	0.0000532	0.00076301568
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.00080864	0.01159783834
	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.000266	0.0038150784
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.000314944	0.00451705283
1707	Диметилсульфид (227)	0.000408576	0.00585996042
1715	Метантиол (Метилмеркаптан) (339)	0.00001064	0.00001526031
1849	Метиламин (Монометиламин) (341)	0.0002128	0.00305206272
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.00583072	0.08362651853

Источник загрязнения: 6037, Ворота Источник выделения: 6037 66, Узел пересыпки гашенной извести

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Известь молотая

Примесь: 0214 Кальций дигидроксид (Гашеная известь, Пушонка) (304)

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.6

Доля пылевой фракции в материале (табл.1), KI = 0.07

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.05

Суммарное количество перерабатываемого материала, т/час, G = 0.1

Высота падения материала, м, GB = 0.2

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.07 \cdot 0.05 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.1 \cdot 10^6 \cdot 0.4 / 3600 = 0.0000467$

Время работы узла переработки в год, часов, RT2 = 25

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $\cdot RT2 = 0.07 \cdot 0.05 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.1 \cdot 0.4 \cdot 25 = 0.00000294$

Максимальный разовый выброс , г/сек, G = 0.0000467

Валовый выброс , т/год , M = 0.00000294

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0214	Кальций дигидроксид (Гашеная известь, Пушонка) (304)	0.0000467	0.00000294

Источник загрязнения: 6038, Распределительная площадка Источник выделения: 6038 67, Содержание КРС в распределительной площадке Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу

от объектов 4 категории, п.4. От животноводческих комплексов и звероферм.

Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = 3984

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=350

Macca животного, кг, M = 500

Примесь: 0303 Аммиак (32)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{6.6}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{6.6} \cdot \mathbf{500} \cdot \mathbf{350}/10^8 = \mathbf{6.6} \cdot \mathbf{500}/10^8 = \mathbf{6.6}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.01155\cdot 3984\cdot 3600/10^6=0.16565472$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.108 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.108\cdot 500\cdot 350/10^8=0.000$

0.000189

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000189\cdot 3984\cdot 3600/10^6=0.0027107136$

Примесь: 0410 Метан (727*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 500\cdot 350/10^8=$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.05565\cdot 3984\cdot 3600/10^6=0.79815456$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.245\cdot 500\cdot 350/10^8=0.00042875$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00042875\cdot 3984\cdot 3600/10^6=0.006149304$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.025 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 500\cdot 350/10^8=0.00004375$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00004375\cdot 3984\cdot 3600/10^6=0.00062748$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.38\cdot 500\cdot 350/10^8=0.000665$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000665\cdot 3984\cdot 3600/10^6=0.009537696$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.125}\cdot \mathbf{500}\cdot \mathbf{350}/10^8=\mathbf{0.00021875}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00021875\cdot 3984\cdot 3600/10^6=0.0031374$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.148 Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.148 \cdot 500 \cdot 350 / 10^8 = 0.00250$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000259\cdot 3984\cdot 3600/10^6=0.0037146816$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.192 \cdot 500 \cdot 350 / 10^8 = \mathbf{0.000336}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000336\cdot 3984\cdot 3600/10^6=0.0048190464$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 500\cdot 350/10^8=0.000000875$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000000875\cdot 3984\cdot 3600/10^6=0.0000125496$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = $\mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_$ = $QI \cdot M \cdot N / 10^8$ = $\mathbf{0.1} \cdot \mathbf{500} \cdot \mathbf{350} / 10^8$ =

0.000175

Валовый выброс, т/год (4.2), $_{-}M_{-}=_{-}G_{-}\cdot_{-}T_{-}\cdot 3600/10^{6}=0.000175\cdot 3984\cdot 3600/10^{6}=0.00250992$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1.2\cdot 500\cdot 350/10^8=1.2$

0.0021

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0021\cdot 3984\cdot 3600/10^6=0.0021$

0.03011904

итого:

Код	Наименование 3В	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.01155	0.16565472
0333	Сероводород (Дигидросульфид) (518)	0.000189	0.0027107136
0410	Метан (727*)	0.05565	0.79815456
1052	Метанол (Метиловый спирт) (338)	0.00042875	0.006149304
1071	Гидроксибензол (155)	0.00004375	0.00062748
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.000665	0.009537696
	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный	0.00021875	0.0031374
	альдегид) (465)		
1531	Гексановая кислота (Капроновая кислота) (137)	0.000259	0.0037146816
1707	Диметилсульфид (227)	0.000336	0.0048190464
1715	Метантиол (Метилмеркаптан) (339)	0.000000875	0.0000125496
1849	Метиламин (Монометиламин) (341)	0.000175	0.00250992
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0021	0.03011904

Источник загрязнения: 6039, Загон для КРС Источник выделения: 6039 68, Содержание КРС в загоне

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов

Республики Казахстан от 12.06.2014 г. № 221-Г

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = **3984**

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=450

Macca животного, кг, M = 608

Примесь: 0303 Аммиак (32)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = $\mathbf{6.6}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{6.6\cdot608\cdot450}/10^8=\mathbf{6.6\cdot608\cdot450}$

0.0180576

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0180576\cdot 3984\cdot 3600/10^6=0.25898932224$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.108 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.108\cdot 608\cdot 450/10^8=0.108$

0.000295488

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000295488\cdot 3984\cdot 3600/10^6=0.00423800709$

<u>Примесь: 0410 Метан (727*)</u>

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 608\cdot 450/10^8=0.0870048$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0870048\cdot 3984\cdot 3600/10^6=1.24785764352$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.245}\cdot 608\cdot 450/10^8=\mathbf{0.00067032}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00067032\cdot 3984\cdot 3600/10^6=0.00961399757$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.025 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 608\cdot 450/10^8=0.0000684$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000684\cdot 3984\cdot 3600/10^6=0.00098102016$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N / 10^8 = \mathbf{0.38} \cdot 608 \cdot 450 / 10^8 = \mathbf{0.34} \cdot 608 \cdot 408 / 10^8 = \mathbf{0.34} \cdot 608 \cdot 408 / 10^8 = \mathbf{0.34} \cdot 608 / 10^8 = \mathbf{0.34$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00103968\cdot 3984\cdot 3600/10^6=0.01491150643$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.125} \cdot 608 \cdot 450 / 10^8 = \mathbf{0.000342}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000342\cdot 3984\cdot 3600/10^6=0.0049051008$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.148} \cdot 608 \cdot 450 / 10^8 = \mathbf{0.000404928}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000404928\cdot 3984\cdot 3600/10^6=0.00580763935$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = $\mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.192\cdot 608\cdot 450/10^8=0.192$

0.000525312

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000525312\cdot 3984\cdot 3600/10^6=0.00753423483$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 608\cdot 450/10^8=0.00001368$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000001368\cdot 3984\cdot 3600/10^6=0.0000196204$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3B, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.1} \cdot 608 \cdot 450 / 10^8 = \mathbf{0.0002736}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0002736\cdot 3984\cdot 3600/10^6=0.00392408064$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1.2\cdot 608\cdot 450/10^8=0.0032832$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0032832\cdot 3984\cdot 3600/10^6=0.04708896768$

NTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0180576	0.25898932224
0333	Сероводород (Дигидросульфид) (518)	0.000295488	0.00423800709
0410	Метан (727*)	0.0870048	1.24785764352
1052	Метанол (Метиловый спирт) (338)	0.00067032	0.00961399757
1071	Гидроксибензол (155)	0.0000684	0.00098102016
1246	Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)	0.00103968	0.01491150643
1314	Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)	0.000342	0.0049051008
1531	Гексановая кислота (Капроновая кислота) (137)	0.000404928	0.00580763935
1707	Диметилсульфид (227)	0.000525312	0.00753423483
1715	Метантиол (Метилмеркаптан) (339)	0.000001368	0.0000196204
1849	Метиламин (Монометиламин) (341)	0.0002736	0.00392408064
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.0032832	0.04708896768

Источник загрязнения: 6040, Загон для быков Источник выделения: 6040 69, Содержание быков в загоне

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип комплекса: Животноводческий

Количество часов работы в год, $_{T_{-}}$ = 3984

Способ содержания животных: на открытом воздухе

Выбросы пыли будут умножаться на 0.4

Тип животного: Бык, корова

Количество голов в помещение (на площадке), N=100

Macca животного, кг, M = 680

Примесь: 0303 Аммиак (32)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = $\mathbf{6.6}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{6.6\cdot680\cdot100}/10^8=\mathbf{6.6\cdot680\cdot100}$

0.004488

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.004488\cdot 3984\cdot 3600/10^6=0.0643686912$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.108}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.108} \cdot \mathbf{680} \cdot \mathbf{100}/10^8 = \mathbf{0.00007344}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00007344\cdot 3984\cdot 3600/10^6=0.00105330586$

Примесь: 0410 Метан (727*)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 31.8 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=31.8\cdot 680\cdot 100/10^8=0.021624$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.021624\cdot 3984\cdot 3600/10^6=0.3101400576$

Примесь: 1052 Метанол (Метиловый спирт) (338)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.245}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.245} \cdot 680 \cdot 100 / 10^8 = \mathbf{0.0001666}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0001666\cdot 3984\cdot 3600/10^6=0.00238944384$

Примесь: 1071 Гидроксибензол (155)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.025}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.025\cdot 680\cdot 100/10^8=0.000017$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000017\cdot 3984\cdot 3600/10^6=0.0002438208$

Примесь: 1246 Этилформиат (Муравьиной кислоты этиловый эфир) (1486*)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.38}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI \cdot M \cdot N/10^8 = \mathbf{0.38} \cdot 680 \cdot 100/10^8 = \mathbf{0.0002584}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.0002584 \cdot 3984 \cdot 3600 / 10^6 = 0.00370607616$

Примесь: 1314 Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.125}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.125} \cdot 680 \cdot 100 / 10^8 = \mathbf{0.000085}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000085\cdot 3984\cdot 3600/10^6=0.001219104$

Примесь: 1531 Гексановая кислота (Капроновая кислота) (137)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.148}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = \mathbf{0.148} \cdot 680 \cdot 100 / 10^8 = \mathbf{0.00010064}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00010064\cdot 3984\cdot 3600/10^6=0.00144341914$

Примесь: 1707 Диметилсульфид (227)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.192}$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=\mathbf{0.192}\cdot \mathbf{680}\cdot \mathbf{100}/10^8=\mathbf{0.00013056}$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00013056\cdot 3984\cdot 3600/10^6=0.00187254374$

Примесь: 1715 Метантиол (Метилмеркаптан) (339)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI = 0.0005 Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=0.0005\cdot 680\cdot 100/10^8=0.0000034$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000034\cdot 3984\cdot 3600/10^6=0.00000487642$

Примесь: 1849 Метиламин (Монометиламин) (341)

Удельное выделение 3В, 10^{-6} г/с на 1ц.живой массы (табл.4.1), $QI = \mathbf{0.1}$ Максимальный разовый выброс, г/с (4.1), $_G_ = QI \cdot M \cdot N / 10^8 = 0.1 \cdot 680 \cdot 100 / 10^8 = 0.00068$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000068\cdot 3984\cdot 3600/10^6=0.0009752832$

Примесь: 2920 Пыль меховая (шерстяная, пуховая) (1050*)

Удельное выделение ЗВ, 10^{-6} г/с на 1ц.живой массы (табл.4.1), QI=3 С учетом поправочных коэффициентов , $QI=0.4\cdot QI=0.4\cdot 3=1.2$ Максимальный разовый выброс, г/с (4.1), $_G_=QI\cdot M\cdot N/10^8=1.2\cdot 680\cdot 100/10^8=0.000816$

Валовый выброс, т/год (4.2), $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000816\cdot 3984\cdot 3600/10^6=0.0117033984$

итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.004488	0.0643686912
0333	Сероводород (Дигидросульфид) (518)	0.00007344	0.00105330586
0410	Метан (727*)	0.021624	0.3101400576
1052	Метанол (Метиловый спирт) (338)	0.0001666	0.00238944384
1071	Гидроксибензол (155)	0.000017	0.0002438208
1246	Этилформиат (Муравьиной кислоты этиловый эфир)	0.0002584	0.00370607616

	(1486*)		
1314	Пропаналь (Пропионовый альдегид, Метилуксусный альдегид) (465)	0.000085	0.001219104
			0.001.110.110.11
1531	Гексановая кислота (Капроновая кислота) (137)	0.00010064	0.00144341914
1707	Диметилсульфид (227)	0.00013056	0.00187254374
1715	Метантиол (Метилмеркаптан) (339)	0.00000034	0.00000487642
1849	Метиламин (Монометиламин) (341)	0.000068	0.0009752832
2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.000816	0.0117033984

Источник загрязнения: 6041, Ворота Источник выделения: 6041 70, Завальная яма

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих

материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.7

Доля пылевой фракции в материале (табл.1), KI = 0.01

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, $\tau/$ час, G=10

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot K1$

 $10^6 \cdot B / 3600 = 0.01 \cdot 0.03 \cdot 2 \cdot 0.1 \cdot 0.4 \cdot 0.7 \cdot 10 \cdot 10^6 \cdot 0.5 / 3600 = 0.02333$

Время работы узла переработки в год, часов, RT2 = 400

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.01 \cdot 0.03 \cdot 1.4 \cdot 0.1 \cdot 0.4 \cdot 0.7 \cdot 10 \cdot 0.5 \cdot 400 = 0.0235$

Максимальный разовый выброс , г/сек, G=0.02333

Валовый выброс , $\pi/\text{год}$, M = 0.0235

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	0.02333	0.0235

Источник загрязнения: 6041, Ворота Источник выделения: 6041 71, Дробилка

Список литературы:

1. Инструкция о порядке составления отчетов об охране воздушного бассейна по форме 2-ТП (воздух) на предприятия отрасли хлебопродуктов Республики Казахстан, Алматы, "Астык", 1994 г.

2. Инструкция N 9-12/87 о порядке составления отчетов об охране воздушного бассейна по форме $2-T\Pi$ (воздух) на предприятиях по хранению и переработке зерна, ВНИИЗ ВНПО "Зернопродукт", М., 1988 г.

Тип производства, PR = Элеваторы

Расход воздуха, тыс.куб.м/ч, Q = 3.000

Время работы аспирационной сети, час/сут, $_S_=8$

Общее время работы аспирационной сети, час/год, $_T_=400$

Годовой период работы асп. сети, сут/год, $T = T_{-}/S_{-} = 400/8 = 50$

Общее количество оборудования входящего в данную асп. сеть, шт, TOTAL = 3

Тип аспирируемого оборудования, $AS = \mathsf{Башмаки}$ норий

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, $\bf Z$ = $\bf 2$

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, Z = Z.

$ASNUM = 2 \cdot 1 = 2$

Сумма всех концентраций в асп. сети, г/м3, ZTOTAL = ZTOTAL + Z = 0 + 2 = 2

Тип аспирируемого оборудования, $AS = \mathbf{\Pi}$ оворотные круги

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, ${\bf Z}$ = ${\bf 0.6}$

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, Z = Z.

$ASNUM = 0.6 \cdot 1 = 0.6$

Сумма всех концентраций в асп. сети, r/m3, ZTOTAL = ZTOTAL + Z = 2 + 0.6 = 2.6

Тип аспирируемого оборудования, $AS = \mathbf{C}\mathbf{б}\mathbf{p}\mathbf{a}\mathbf{c}\mathbf{ы}\mathbf{b}\mathbf{a}\mathbf{ю}\mathbf{щ}\mathbf{u}\mathbf{e}$ коробки

Количество оборудования данного типа в асп. сети, шт, ASNUM = 1

Конц. пыли в воздухе, отходящем от оборудования данного типа (табл. 4), г/м3, $\bf Z$ = 1.3

Концентрация пыли от данного оборудования с учетом его кол-ва, г/м3, $\mathbf{Z} = \mathbf{Z} \cdot$

$ASNUM = 1.3 \cdot 1 = 1.3$

Сумма всех концентраций в асп. сети, г/м3, ZTOTAL = ZTOTAL + Z = 2.6 + 1.3 = 3.9 Расчетная концентрация в асп. сети, г/м3, Z = ZTOTAL/ASTOTAL = 3.9/3 = 1.3 Конц. пыли в воздухе, отходящем от асп. сети (ф-ла 4.5), г/м3, Z = 1.300

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Кол-во пыли, отходящей от оборудования асп. сети, г/с, $_G_=Q\cdot Z/3.6=3\cdot 1.3/3.6=1.0833$

Кол-во пыли, отходящей от оборудования асп. сети (ф-ла 4.4), т/год, $_M_=0.001$.

$T \cdot Q \cdot Z \cdot S = 0.001 \cdot 50 \cdot 3 \cdot 1.3 \cdot 8 = 1.56$

Кол-во выбрасываемой в атмосферу пыли, г/с, G=1.0833

Кол-во выбрасываемой в атмосферу пыли, τ /год, M=1.56

: OTOTN

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	1.0833	1.56

Источник загрязнения: 6041, Ворота Источник выделения: 6041 72, Ангар для хранения зерна

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.7

Поверхность пыления в плане, м2, F = 70

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q$

 $F = 2 \cdot 0.1 \cdot 0.4 \cdot 1.45 \cdot 0.7 \cdot 0.002 \cdot 70 = 0.01137$

Время работы склада в году, часов, RT = 400

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1.4 \cdot 0.1 \cdot 0.4 \cdot 1.45 \cdot 0.7 \cdot 0.002 \cdot 70 \cdot 400 \cdot 0.0036 = 0.01146$

Максимальный разовый выброс , г/сек, G=0.01137

Валовый выброс , т/год , M = 0.01146

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	0.01137	0.01146

Источник загрязнения: 6042, Миксер Botex Источник выделения: 6042 73, Загрузка кормушек

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих

материалов

Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/ (487)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.4

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 2

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.8

Доля пылевой фракции в материале (табл.1), KI = 0.01

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G=10

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.01 \cdot 0.03 \cdot 2 \cdot 0.1 \cdot 0.4 \cdot 0.8 \cdot 10 \cdot 10^6 \cdot 0.4 / 3600 = 0.02133$

Время работы узла переработки в год, часов, RT2 = 400

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.01 \cdot 0.03 \cdot 1.4 \cdot 0.1 \cdot 0.4 \cdot 0.8 \cdot 10 \cdot 0.4 \cdot 400 = 0.0215$

Максимальный разовый выброс , г/сек, G=0.02133

Валовый выброс , $_{\rm T}/_{\rm FOQ}$, M=0.0215

Итого выбросы от источника выделения:

JII OI O	Bhopoeh of Merodilina Bhaesteilmi.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2937	Пыль зерновая /по грибам хранения/ (487)	0.02133	0.0215

Источник загрязнения: 6009, Трактор Источник выделения: 6009 12, Загрузка навоза в Камаз

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 № $100-\pi$

итого выбросы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0445	0.0052712
0304	Азот (II) оксид (Азота оксид) (6)	0.00723	0.00085657
0328	Углерод (Сажа, Углерод черный) (583)	0.00911	0.0008791
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.00574	0.0006552
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0543	0.007528

2732 Керосин (654*) 0.01358 0.0016235

Источник выделения: 6012, Открытая площадка навоза Источник выделения: 6012 15, Открытая площадка навоза

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории, п.4. От животноводческих комплексов и звероферм. Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Тип хранилища: Навозохранилище от КРС Время работы хранилища, час/год , _T_ = 5136 Оборот навоза, м3/год , SV = 16053.7

Макс. единовременный объем хранения, м3 , SVMAX = 6000

Примесь: 0303 Аммиак (32)

Удельный выброс, г/с на м3 навоза , Q = 0.0000122 Валовый выброс, т/год (4.5) , _M_ = V * Q * _T_ * 3600 / 10 ^ 6 = 16053.7 * 0.0000122 * 5136 * 3600 / 10 ^ 6 = 3.62 Максимальный разовый выброс, г/с (4.6) , _G_ = Q * VMAX = 0.0000122 * 6000 = 0.0732

Примесь: 0333 Сероводород (Дигидросульфид) (528)

Удельный выброс, r/c на м3 навоза , Q = 0.000015

Валовый выброс, т/год (4.5) , $\underline{\rm M}_{-}$ = V * Q * $\underline{\rm T}_{-}$ * 3600 / 10 ^ 6 = 16053.7 * 0.000015 * 5136 * 3600 / 10 ^ 6 = 4.45

Максимальный разовый выброс, r/c (4.6) , $_{G_{-}}$ = Q * VMAX = 0.000015 * 6000 = 0.09

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0303	Аммиак (32)	0.0732	3.62
0333	Сероводород (Дигидросульфид) (518)	0.09	4.45

Источник загрязнения: 0010, Дымовая труба Источник выделения: 0010 78, Крематор ТМ300-ЭД

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива

п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, T/год, BT = 2.1

Расход топлива, r/c, BG = 1.6

Марка топлива, M = Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, % (прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более (прил. 2.1), AIR = 0.025

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более (прил. 2.1), SIR = 0.3

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 70

Фактическая мощность котлоагрегата, кВт, QF = 70

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), $K\!NO=0.0767$

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0767 \cdot (70/70)^{0.25} = 0.0767$

Выброс окислов авота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 2.1 \cdot 42.75 \cdot 0.0767 \cdot (1-0) = 0.00689$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 1.6 \cdot 42.75 \cdot 0.0767 \cdot (1-0) = 0.00525$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.00689=0.005512$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.00525=0.0042$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.00689=0.0008957$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.00525=0.0006825$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.02 Содержание сероводорода в топливе, % (прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_=0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT$ = $0.02 \cdot 2.1 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 2.1 = 0.012348$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ = $0.02 \cdot 1.6 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 1.6 = 0.009408$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $Q4=\mathbf{0}$ Тип топки: Камерная топка

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R=0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100)=0.001 \cdot 2.1 \cdot 13.9 \cdot (1-0/100)=0.02919$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 1.6 \cdot 13.9 \cdot (1-0/100) = 0.02224$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент (табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 2.1 \cdot 0.025 \cdot 0.01 = 0.000525$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG \cdot AIR \cdot F = 1.6 \cdot 0.025 \cdot 0.01 = 0.0004$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0042	0.005512
0304	Азот (II) оксид (Азота оксид) (6)	0.0006825	0.0008957
0328	Углерод (Сажа, Углерод черный) (583)	0.0004	0.000525
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.009408	0.012348
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.02224	0.02919

Источник загрязнения: 0011, Дыхательный клапан Источник выделения: 0011 79, Емкость для хранения дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Нефтепродукт, NP = Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C=3.14

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ =

1.05

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 2.6 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 1.05

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=0.1

Коэффициент (Прил. 12), KNP = 0.0029

Режим эксплуатации: "мерник", ССВ - отсутствуют

Объем одного резервуара данного типа, м3, VI = 0.1

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: В - Узкие бензиновые фракции, ароматические углеводороды, керосин, топлива и др. при T превышающей 30 гр.C по сравнению с окр. воздухом Конструкция резервуаров: Наземный вертикальный

Значение Крмах для этого типа резервуаров (Прил. 8), KPM = 1

Значение Крsr для этого типа резервуаров (Прил. 8), KPSR = 0.7

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, $\tau/$ год (Прил. 13), **GHRI = 0.22**

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.22 \cdot 0.0029 \cdot 1 = 0.000638$

Коэффициент , KPSR = 0.7

Коэффициент, KPMAX = 1

Общий объем резервуаров, м3, V=0.1

Сумма Ghri*Knp*Nr, GHR = 0.000638

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC/3600 = 3.14 \cdot 1 \cdot 0.1/2000$

3600 = 0.0000872

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^6 + GHR = (1.9 \cdot 1.05 + 2.6 \cdot 1.05) \cdot 1 \cdot 10^{-6} + 0.000638 = 0.000643$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

0.00008695584

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.28\cdot 0.000643/100=0.0000018004$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.28\cdot 0.0000872/100=0.0000872$

0.00000024416

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000024416	0.0000018004
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00008695584	0.0006411996
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения: 6047, Пылящая поверхность Источник выделения: 6047 80, Металлический контейнер

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=0.1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.6

Доля пылевой фракции в материале (табл.1), KI = 0.06

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, т/час, G=0.002

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.002 \cdot 10^6 \cdot 0.5 / 3600 = 0.0000008$

Время работы узла переработки в год, часов, RT2 = 400

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.6 \cdot 0.002 \cdot 0.5 \cdot 400 = 0.000000806$

Максимальный разовый выброс , г/сек, G=0.0000008

Валовый выброс , т/год , M = 0.00000806

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.0000008	0.000000806
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		

шлак, песок, клинкер, зола, кремнезем, зола углей	
казахстанских месторождений) (494)	

Источник вагрязнения: 6050, Трактора Источник выделения: 6050 81, Трактора

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 № $100-\pi$

итого выбросы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0666	0.108
0304	Азот (II) оксид (Азота оксид) (6)	0.01083	0.01755
0328	Углерод (Сажа, Углерод черный) (583)	0.01367	0.01832
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.00862	0.012634
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0815	0.1233
2732	Керосин (654*)	0.0204	0.0303

Источник загрязнения: 6051, Ворота Источник выделения: 6051 82, Сельхозтехника

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

ИТОГО ВЫБРОСЫ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.08584	0.480132
0304	Азот (II) оксид (Азота оксид) (6)	0.0139415	0.07802145
0328	Углерод (Сажа, Углерод черный) (583)	0.01983	0.08216
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.010826	0.0515618
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.11828	0.42829
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.001733	0.004511
2732	Керосин (654*)	0.028	0.1214

Источник загрязнения: 0022, Дымовая труба Источник выделения: 0022 85, Самодельный котел

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.2. Расчет выбросов вредных веществ при сжигании топлива

в котлах производительностью до 30 т/час

Вид топлива, $K3 = \Box$ рова

Расход топлива, T/год, BT=5

Расход топлива, г/с, BG = 6.56

Марка топлива, M = Дрова

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 2446

Пересчет в МДж, $QR = QR \cdot 0.004187 = 2446 \cdot 0.004187 = 10.24$

Средняя зольность топлива, % (прил. 2.1), AR = 0.6

Предельная зольность топлива, % не более (прил. 2.1), AIR = 0.6

Среднее содержание серы в топливе, % (прил. 2.1), $SR = \mathbf{0}$

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0}$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN=30

Фактическая мощность котлоагрегата, кВт, $QF = \mathbf{30}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0121

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0121 \cdot (30/30)^{0.25} = 0.0121$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 5$

 $10.24 \cdot 0.0121 \cdot (1-0) = 0.00062$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 6.56 \cdot 10.24 \cdot 0.0121 \cdot (1-0) = 0.000813$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.00062=0.000496$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.000813=0.0006504$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.00062=0.0000806$ Выброс авота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.000813=0.00010569$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $Q4=\mathbf{2}$

Тип топки: Шахтная топка с наклонной решеткой

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

10.24 = 20.5

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 5$

 $\cdot 20.5 \cdot (1-2/100) = 0.10045$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 6.56 \cdot 20.5 \cdot (1-2/100) = 0.1317904$

Примесь: 2902 Взвешенные частицы (116)

Коэффициент (табл. 2.1), F = 0.005

Тип топки: Слоевые топки бытовых теплогенераторов

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 5 \cdot 0.6 \cdot 0.005 = 0.015$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=6.56\cdot 0.6\cdot 0.005=0.01968$

Вид топлива, КЗ = Твердое (уголь, торф и др.)

Расход топлива, T/rog, BT = 35

Расход топлива, г/с, BG = 1.9

Месторождение, *М* = **Карагандинский бассейн**

Марка угля (прил. 2.1), MYI = K, K2, концентрат

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5300

Пересчет в МДж, $QR = QR \cdot 0.004187 = 5300 \cdot 0.004187 = 22.19$

Средняя зольность топлива, % (прил. 2.1), AR = 22.5

Предельная зольность топлива, % не более (прил. 2.1), AIR = 22.5

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.81

Предельное содержание серы в топливе, % не более (прил. 2.1), SIR = 0.81

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN=30

Фактическая мощность котлоагрегата, кВт, $QF = \mathbf{30}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.132

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.132 \cdot (20.420)^{0.25}$

 $(30/30)^{0.25} = 0.132$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 35 \cdot B$

 $22.19 \cdot 0.132 \cdot (1-0) = 0.1025$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 1.9 \cdot 1.$

 $22.19 \cdot 0.132 \cdot (1-0) = 0.00557$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.1025 = 0.082$

Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.00557=0.004456$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_M_ = 0.13 \cdot MNOT = 0.13 \cdot 0.1025 = 0.013325$

Выброс азота оксида (0304), г/с, $_G_ = 0.13 \cdot MNOG = 0.13 \cdot 0.00557 = 0.0007241$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.1

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT$

 $= 0.02 \cdot 35 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 35 = 0.5103$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$

 $= 0.02 \cdot 1.9 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 1.9 = 0.027702$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\it Q4=7$

Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

22.19 = 44.4

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot$

 $35 \cdot 44.4 \cdot (1-7 / 100) = 1.44522$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 1.9$

 $44.4 \cdot (1-7 / 100) = 0.0784548$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 35 \cdot 22.5 \cdot 0.0023 = 1.81125$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG \cdot A1R \cdot F = 1.9 \cdot 22.5 \cdot 0.0023 = 0.098325$

MTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.004456	0.082496
0304	Азот (II) оксид (Азота оксид) (6)	0.0007241	0.0134056
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.027702	0.5103
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1317904	1.54567
2902	Взвешенные частицы (116)	0.01968	0.015
2908	Пыль неорганическая, содержащая двуокись кремния в	0.098325	1.81125
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6059, Ворота Источник выделения: 6059 83, Токарный станок

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей Вид станков: Токарные станки и автоматы малых и средних размеров

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_T_=$ **50**

Число станков данного типа, шт., $_KOLIV_ = 1$

Число станков данного типа, работающих одновременно, шт., NSI=1

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 4), GV = 0.0063

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.2 \cdot 0.0063 \cdot 50 \cdot 1 / 10^6 = 0.0002268$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NSI = 0.2 \cdot 0.0063 \cdot 1 = 0.00126$

NTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.00126	0.0002268

Источник загрязнения: 6059, Ворота Источник выделения: 6059 84, Сварочный пост

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005 Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13 РАСЧЕТ выбросов ЗВ от сварки металлов Вид сварки: Ручная дуговая сварка сталей штучными электродами Электрод (сварочный материал): MP-3 Расход сварочных материалов, кг/год, B = 200

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 1

Удельное выделение сварочного аэрозоля,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 11.5 в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа</u>

оксид) (274) Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 9.77 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 9.77 \cdot 200/10^6 = 0.001954$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 9.77 \cdot 1/3600 = 0.001954$

0.00271388889

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1.73 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 1.73 \cdot 200/10^6 = 0.000346$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 1.73 \cdot 1/3600 = 0.00048055556$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.4 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 0.4 \cdot 200/10^6 = 0.00008$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 0.4 \cdot 1/3600 = 0.000111111111$

Вид сварки: Ручная дуговая сварка сталей штучными электродами Электрод (сварочный материал): MP-4 Расход сварочных материалов, кг/год, B=200 Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX=1 Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), GIS=11 в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа</u> оксид) (274)

Удельное выделение загрязняющих веществ,

r/кг расходуемого материала (табл. 1, 3), GIS = 9.9

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 9.9 \cdot 200 / 10^6 = 0.00198$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 9.9 \cdot 1/3600 =$

0.00275

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), GIS = 1.1

Валовый выброс, т/год (5.1), $M = GIS \cdot B / 10^6 = 1.1 \cdot 200 / 10^6 = 0.00022$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 1.1 \cdot 1/3600 =$

0.00030555556

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

r/кг расходуемого материала (табл. 1, 3), GIS = 0.4

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 0.4 \cdot 200 / 10^6 = 0.00008$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 0.4 \cdot 1/3600 =$

0.00011111111

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси

Расход сварочных материалов, кг/год, B=600

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 1.5

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 15

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B / 10^6 = 0.8 \cdot 15 \cdot 600 / 10^6 = 0.0072$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 15 \cdot 1.5 / 3600 = 0.005$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO \cdot GIS \cdot B/10^6 = 0.13 \cdot 15 \cdot 600/10^6 = 0.00117$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO \cdot GIS \cdot BMAX/3600 = 0.13 \cdot 15 \cdot 1.5/3600 = 0.0008125$

POTOTO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо)	0.00275	0.003934
	(диЖелезо триоксид, Железа оксид) (274)		
0143	Марганец и его соединения (в пересчете на марганца	0.00048055556	0.000566
	(IV) оксид) (327)		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.005	0.0072
0304	Азот (II) оксид (Азота оксид) (6)	0.0008125	0.00117

0342	Фтористые газообразные соединения /в пересчете на	0.00011111111	0.00016
	фтор/ (617)		

Источник выделения: 6068, Пылящая поверхность Источник выделения: 6068 86, Открытый склад угля

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Уголь

Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3=2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Поверхность пыления в плане, м2, F=30

Коэфф., учитывающий профиль поверхности складируемого материала, K6=1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.005

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q$

 $F = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 30 = 0.002175$

Время работы склада в году, часов, RT = 5160

Валовый выброс пыли при хранении, т/год (1), $\textit{MC} = \textit{K3SR} \cdot \textit{K4} \cdot \textit{K5} \cdot \textit{K6} \cdot \textit{K7} \cdot \textit{Q} \cdot \textit{F} \cdot \textit{RT} \cdot$

 $0.0036 = 1.4 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 30 \cdot 5160 \cdot 0.0036 = 0.0283$

Максимальный разовый выброс , г/сек, G = 0.002175

Валовый выброс , $\tau/год$, M = 0.0283

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G=7

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.7), $B=\mathbf{0.6}$

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 7 \cdot 10^6 \cdot 0.6 / 3600 = 0.007$

Время работы узла переработки в год, часов, RT2 = 5

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $\cdot RT2 = 0.03 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 7 \cdot 0.6 \cdot 5 = 0.0000882$

Максимальный разовый выброс , г/сек, G=0.007

Валовый выброс , т/год , M = 0.0000882

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в	0.007	0.0283882
	%: менее 20 (доломит, пыль цементного производства -		
	известняк, мел, огарки, сырьевая смесь, пыль		
	вращающихся печей, боксит) (495*)		

Источник загрязнения: 6069, Пылящая поверхность Источник выделения: 6069 87, Металлический контейнер

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих

материалов

Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=0.1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.06

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, $\tau/$ час, G = 0.03

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.5 \cdot 0.03 \cdot 10^6 \cdot 0.5 / 3600 = 0.00001$

Время работы узла переработки в год, часов, RT2 = 215

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.5 \cdot 0.03 \cdot 0.5 \cdot 215 = 0.00000542$

Максимальный разовый выброс , г/сек, G=0.00001

Валовый выброс , т/год , M = 0.00000542

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.00001	0.00000542
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 0014, Дыхательный клапан Источник выделения: 0014 88, Дыхательный клапан

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Нефтепродукт, NP = Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 3.14

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 50

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 2.6

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL =

50

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=12

Коэффициент (Прил. 12), KNP = 0.0029

Режим эксплуатации: "мерник", ССВ - отсутствуют

Объем одного резервуара данного типа, м3, VI = 50

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), $\mathit{KPM} = 0.9$

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.63

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, $\tau/$ год (Прил. 13), **GHRI = 0.22**

$GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.22 \cdot 0.0029 \cdot 1 = 0.000638$

Коэффициент , KPSR = 0.63

Коэффициент, KPMAX = 0.9

Общий объем резервуаров, м3, V=50

Cymma Ghri*Knp*Nr, GHR = 0.000638

3600 = 0.00942

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^6 + GHR = (1.9 \cdot 50 + 2.6 \cdot 50) \cdot 0.9 \cdot 10^{-6} + 0.000638 = 0.00084$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 99.72 \cdot 0.00084/100 = 0.000837648$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 99.72 \cdot 0.00942/100 = 0.000837648$

0.009393624

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.28\cdot 0.00084/100=0.000002352$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.00942 / 100 =$

0.000026376

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000026376	0.000002352
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.009393624	0.000837648
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник вагрязнения: 0015, Дыхательный клапан Источник выделения: 0015 89, Дыхательный клапан

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Нефтепродукт, $NP = \mathbf{Д}$ изельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 3.14

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 15

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 2.6

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, $BVL = \frac{1}{2}$

15

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=12

Коэффициент (Прил. 12), KNP = 0.0029

Режим эксплуатации: "мерник", ССВ - отсутствуют

Объем одного резервуара данного типа, м3, VI = 8

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), $\mathit{KPM} = \mathbf{0.9}$

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.63

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год (Прил. 13), GHRI = 0.22

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.22 \cdot 0.0029 \cdot 1 = 0.000638$

Коэффициент , KPSR = 0.63

Коэффициент, KPMAX = 0.9

Общий объем резервуаров, м3, V=8

Сумма Ghri*Knp*Nr, GHR = 0.000638

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.14 \cdot 0.9 \cdot 12 / 3.14 \cdot 0.9 \cdot 12$

3600 = 0.00942

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^6 + GHR = (1.9 \cdot 15 + 2.6 \cdot 15) \cdot 0.9 \cdot 10^{-6} + 0.000638 = 0.000699$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 99.72 \cdot 0.000699/100 = 0.0006970428$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 99.72 \cdot 0.00942/100 = 0.0006970428$

0.009393624

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.28 \cdot 0.000699/100 = 0.0000019572$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.28 \cdot 0.00942/100 = 0.0000019572$

0.000026376

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000026376	0.0000019572
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.009393624	0.0006970428
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник вагрязнения: 0015, Дыхательный клапан Источник выделения: 0015 89, Дыхательный клапан

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Нефтепродукт, NP = Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C=3.14

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 15

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 2.6

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, $BVL = \frac{1}{2}$

15

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=12

Коэффициент (Прил. 12), KNP = 0.0029

Режим эксплуатации: "мерник", ССВ - отсутствуют

Объем одного резервуара данного типа, м3, VI = 8

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.9

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.63

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год (Прил. 13), GHRI = 0.22

$GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.22 \cdot 0.0029 \cdot 1 = 0.000638$

Коэффициент , KPSR = 0.63

Коэффициент, KPMAX = 0.9

Общий объем резервуаров, м3, V=8

Cymma Ghri*Knp*Nr, GHR = 0.000638

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.14 \cdot 0.9 \cdot 12 / 3.14 \cdot 0.9 \cdot 12$

3600 = 0.00942

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (1.9 \cdot 15 + 2.6 \cdot 15) \cdot 0.9 \cdot 10^{-6} + 0.000638 = 0.000699$

<u>Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), ${\it CI}=99.72$

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 99.72 \cdot 0.000699/100 = 0.0006970428$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 99.72 \cdot 0.00942/100 = 0.0006970428$

0.009393624

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.28 \cdot 0.000699/100 = 0.0000019572$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.28 \cdot 0.00942/100 = 0.0000019572$

0.000026376

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000026376	0.0000019572
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.009393624	0.0006970428

Источник вагрязнения: 0016, Дыхательный клапан Источник выделения: 0016 91, Дыхательный клапан

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

NP = Бензины автомобильные высокооктановые (90 и выше)

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 972

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 780

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, $BOZ = \mathbf{6}$

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 1100

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, $BVL = \mathbf{6}$

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/4, VC=12

Коэффициент (Прил. 12), KNP = 1

Режим эксплуатации: "мерник", ССВ - отсутствуют

Объем одного резервуара данного типа, м3, VI = 8

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: A - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), $\mathit{KPM} = \mathbf{0.9}$

Значение Крsr для этого типа резервуаров (Прил. 8), KPSR = 0.63

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год (Прил. 13), GHRI = 0.22

$GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.22 \cdot 1 \cdot 1 = 0.22$

Коэффициент , KPSR = 0.63

Коэффициент, KPMAX = 0.9

Общий объем резервуаров, м3, V=8

Сумма Ghri*Knp*Nr, GHR = 0.22

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 972 \cdot 0.9 \cdot 12 / 12$

3600 = 2.916

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^6 + GHR = (780 \cdot 6 + 1100 \cdot 6) \cdot 0.9 \cdot 10^{-6} + 0.22 = 0.23$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 67.67

Валовый выброс, т/год (5.2.5), $_{-}M_{-}=CI\cdot M/100=67.67\cdot 0.23/100=0.155641$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=67.67\cdot 2.916/100=$

1.9732572

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс (Прил. 14), CI = 25.01

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 25.01 \cdot 0.23 / 100 = 0.057523$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100=25.01 \cdot 2.916/100=$

0.7292916

Примесь: 0501 Пентилены (амилены - смесь изомеров) (460)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.5

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 2.5 \cdot 0.23 / 100 = 0.00575$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 2.5 \cdot 2.916 / 100 =$

0.0729

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.3

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 2.3 \cdot 0.23 / 100 = 0.00529$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 2.3 \cdot 2.916 / 100 =$

0.067068

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.17

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=2.17\cdot 0.23/100=0.004991$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=2.17\cdot 2.916/100=0.0632772$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.29 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 0.29\cdot 0.23/100 = 0.000667$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 0.29\cdot 2.916/100 = 0.0084564$

Примесь: 0627 Этилбензол (675)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 0.06\cdot 0.23/100 = 0.000138$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 0.06\cdot 2.916/100 = 0.06$

0.0017496

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	1.9732572	0.155641
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.7292916	0.057523
0501	Пентилены (амилены - смесь изомеров) (460)	0.0729	0.00575
0602	Бензол (64)	0.067068	0.00529
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0084564	0.000667
0621	Метилбензол (349)	0.0632772	0.004991
0627	Этилбензол (675)	0.0017496	0.000138

Источник загрязнения: 6052, Горловина баков Источник выделения: 6052 92, ТРК

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт: Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.14

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 100 Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, r/м3 (Прил. 15), CAMOZ = 1.6

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 100 Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3 (Прил. 15), CAMVL = 2.2 Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX$

 \cdot *VTRK* / 3600 = 1 \cdot 3.14 \cdot 0.4 / 3600 = 0.000349

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 100 + 2.2 \cdot 100) \cdot 10^{-6} = 0.00038$

Удельный выброс при проливах, г/м3, J=50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot$

 $(QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (100 + 100) \cdot 10^{-6} = 0.005$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.00038 + 0.005 = 0.00538

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

0.0003480228

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 0.28 \cdot 0.00538 / 100 = 0.000015064$

0.000009772

Нефтепродукт:Бензины автомобильные высокооктановые (90 и более)

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, r/м3 (Прил. 12), CMAX = 972

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, $\mathit{QOZ} = 11$

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, r/м3 (Прил. 15), *CAMOZ* = **420**

Количество отпускаемого нефтепродукта в весенне-летний период, м3, $\mathit{QVL} = 11$

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3 (Прил. 15), CAMVL = 515

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN=1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX$

 $\cdot VTRK / 3600 = 1 \cdot 972 \cdot 0.4 / 3600 = 0.108$

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $\textit{MBA} = (\textit{CAMOZ} \cdot \textit{QOZ} +$

 $CAMVL \cdot QVL) \cdot 10^{-6} = (420 \cdot 11 + 515 \cdot 11) \cdot 10^{-6} = 0.01029$

Удельный выброс при проливах, r/m3, J=125

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot$

 $(QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 125 \cdot (11 + 11) \cdot 10^{-6} = 0.001375$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.01029 + 0.001375 = 0.01167

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 67.67

Валовый выброс, т/год (5.2.5), $_{-}M_{-}=CI\cdot M/100=67.67\cdot 0.01167/100=0.007897089$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 67.67 \cdot 0.108 / 100 =$

0.0730836

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 25.01 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 25.01\cdot 0.01167/100 = 0.002918667$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 25.01\cdot 0.108/100 = 0.0270108$

Примесь: 0501 Пентилены (амилены - смесь изомеров) (460)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.5 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 2.5\cdot 0.01167/100 = 0.00029175$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 2.5\cdot 0.108/100 = 0.0027$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.3 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 2.3\cdot 0.01167/100 = 0.00026841$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 2.3\cdot 0.108/100 = 0.002484$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.17 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=2.17\cdot 0.01167/100=0.000253239$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=2.17\cdot 0.108/100=0.0023436$

Примесь: 0627 Этилбензол (675)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.06\cdot 0.01167/100=0.000007002$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.06\cdot 0.108/100=0.0000648$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.29 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.29\cdot 0.01167/100=0.000033843$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.29\cdot 0.108/100=0.0003132$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.0000009772	0.000015064
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.0730836	0.007897089
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.0270108	0.002918667
0501	Пентилены (амилены - смесь изомеров) (460)	0.0027	0.00029175
0602	Бензол (64)	0.002484	0.00026841
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0003132	0.000033843
0621	Метилбензол (349)	0.0023436	0.000253239
0627	Этилбензол (675)	0.0000648	0.000007002
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.0003480228	0.005364936
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения: 6053, Насос Источник выделения: 6053 93, Насос перекачки топлива

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Бензины автомобильные высокооктановые (90 и выше)

Тип нефтепродукта и средняя температура жидкости: Газ, бензин и жидкости с температурой кипения <120 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя сальниковыми уплотнениями вала

Удельный выброс, кг/час (табл. 8.1), $Q = \mathbf{0.26}$

Общее количество аппаратуры или средств перекачки, шт., NI=1

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI=1

Время работы одной единицы оборудования, час/год, $_T_=300$

Максимальный из разовых выброс, г/с (8.1), $G = Q \cdot NN1/3.6 = 0.26 \cdot 1/3.6 = 0.0722$

Валовый выброс, т/год (8.2), $M = (Q \cdot N1 \cdot T_{-})/1000 = (0.26 \cdot 1 \cdot 300)/1000 = 0.078$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 67.67

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=67.67\cdot 0.078/100=0.0527826$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 67.67 \cdot 0.0722 / 100 =$

0.04885774

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 25.01

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 25.01 \cdot 0.078 / 100 = 0.0195078$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 25.01 \cdot 0.0722 / 100 =$

0.01805722

Примесь: 0501 Пентилены (амилены - смесь изомеров) (460)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.5

Валовый выброс, т/год (5.2.5), $_{M_{-}}$ = $CI \cdot M / 100 = 2.5 \cdot 0.078 / 100 = 0.00195$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 2.5 \cdot 0.0722 / 100 =$

0.001805

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.3

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 2.3 \cdot 0.078/100 = 0.001794$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 2.3 \cdot 0.0722 / 100 =$

0.0016606

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 2.17

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 2.17 \cdot 0.078 / 100 = 0.0016926$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 2.17 \cdot 0.0722 / 100 =$

0.00156674

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.29 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.29\cdot 0.078/100=0.0002262$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.29\cdot 0.0722/100=0.00020938$

Примесь: 0627 Этилбензол (675)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 0.06\cdot 0.078/100 = 0.0000468$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 0.06\cdot 0.0722/100 = 0.00004332$

Расчет выбросов от теплообменных аппаратов и средств перекачки Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя сальниковыми уплотнениями вала

Удельный выброс, кг/час (табл. 8.1), Q = 0.13

Общее количество аппаратуры или средств перекачки, шт., NI=1

Одновременно работающее количество аппаратуры или средств перекачки, шт., $NNI = \mathbf{1}$

Время работы одной единицы оборудования, час/год, $_T_=300$ Максимальный из разовых выброс, г/с (8.1), $G=Q\cdot NN1/3.6=0.13\cdot 1/3.6=0.0361$ Валовый выброс, т/год (8.2), $M=(Q\cdot N1\cdot _T_)/1000=(0.13\cdot 1\cdot 300)/1000=0.039$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100 = 99.72\cdot 0.039/100 = 0.0388908$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100 = 99.72\cdot 0.0361/100 = 0.03599892$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

0.00010108

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28 Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.28\cdot 0.039/100=0.0001092$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.28\cdot 0.0361/100=0.0001092$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00010108	0.0001092
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.04885774	0.0527826
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.01805722	0.0195078
0501	Пентилены (амилены - смесь изомеров) (460)	0.001805	0.00195
0602	Бензол (64)	0.0016606	0.001794
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00020938	0.0002262
0621	Метилбензол (349)	0.00156674	0.0016926
0627	Этилбензол (675)	0.00004332	0.0000468
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.03599892	0.0388908
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения: 6054, Окрашенная поверхность Источник выделения: 6054 94, Покрасочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.026

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,

MS1 = 1

Марка ЛКМ: Грунтовка ГФ-021

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.026 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.0117$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 1 \cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.125$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.1414

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, $MSI=\mathbf{1}$

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1414 \cdot 10^{-6} = 0$

0.031815

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 1 \cdot 45 \cdot 50 \cdot 100/(3.6 \cdot 10^6) = 0.0625$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.1414 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.031815$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 1 \cdot 45 \cdot 50 \cdot 100/(3.6 \cdot 10^6) = 0.0625$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.001

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,

MS1 = 0.2

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^6 = 0.001 \cdot 100 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.001$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 100 \cdot (3.6 \cdot 10^6) = 0.05555555556$

MTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.125	0.043515
2752	Уайт-спирит (1294*)	0.0625	0.032815

Источник загрязнения: 0023, Дымовая труба Источник выделения: 0023 95, Самодельный котел

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.2. Расчет выбросов вредных веществ при сжигании топлива

в котлах производительностью до 30 т/час

Вид топлива, $K3 = \Box$ рова

Расход топлива, $\tau/$ год, BT = 20

Расход топлива, г/с, BG = 2.54

Марка топлива, $M = \Box$ рова

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 2446

Пересчет в МДж, $QR = QR \cdot 0.004187 = 2446 \cdot 0.004187 = 10.24$

Средняя зольность топлива, % (прил. 2.1), AR = 0.6

Предельная зольность топлива, % не более (прил. 2.1), AIR = 0.6

Среднее содержание серы в топливе, % (прил. 2.1), $SR = \mathbf{0}$

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0}$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $QN=\mathbf{6}$

Фактическая мощность котлоагрегата, кВт, $QF = \mathbf{6}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0083

Коэфф. снижения выбросов азота в рез-те техн. решений, $\pmb{B} = \pmb{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0083 \cdot (6/6)^{0.25} = 0.0083$

 $10.24 \cdot 0.0083 \cdot (1-0) = 0.0017$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 2.54 \cdot 10^{-2}$

 $10.24 \cdot 0.0083 \cdot (1-0) = 0.000216$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.0017=0.00136$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.000216=0.0001728$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.0017=0.000221$ Выброс авота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.000216=0.00002808$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=2 Тип топки: Шахтная топка с наклонной решеткой

Потери тепла от химической неполноты сгорания, % (табл. 2.2), $Q3 = \mathbf{2}$

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

10.24 = 20.5

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100)=0.001 \cdot 20 \cdot 20.5 \cdot (1-2/100)=0.4018$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 2.54 \cdot 20.5 \cdot (1-2/100) = 0.0510286$

Примесь: 2902 Взвешенные частицы (116)

Коэффициент (табл. 2.1), F = 0.005

Тип топки: Слоевые топки бытовых теплогенераторов

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 20 \cdot 0.6 \cdot 0.005 = 0.06$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG \cdot A1R \cdot F = 2.54 \cdot 0.6 \cdot 0.005 = 0.00762$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0001728	0.00136
0304	Азот (II) оксид (Азота оксид) (6)	0.00002808	0.000221
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0510286	0.4018
2902	Взвешенные частицы (116)	0.00762	0.06

Источник загрязнения: 6070, Пылящая поверхность Источник выделения: 6070 96, Металлический контейнер

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.7

Доля пылевой фракции в материале (табл.1), KI = 0.06

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, т/час, G = 0.01

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.7 \cdot 0.01 \cdot 10^6 \cdot 0.5 / 3600 = 0.00000467$

Время работы узла переработки в год, часов, RT2 = 110

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.7 \cdot 0.01 \cdot 0.5 \cdot 110 = 0.000001294$

Максимальный разовый выброс , г/сек, G = 0.00000467

Валовый выброс , т/год , M = 0.000001294

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.00000467	0.000001294
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 0017, Дымовая труба Источник выделения: 0017 97, Бытовая печь

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, Каз9КО9КСП, 1996 г.

п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, КЗ = Дрова

Расход топлива, т/год, BT = 7

Расход топлива, г/с, BG = 1.35

Марка топлива, $M = \Box$ рова

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 2446

Пересчет в МДж, $QR = QR \cdot 0.004187 = 2446 \cdot 0.004187 = 10.24$

Средняя зольность топлива, % (прил. 2.1), AR = 0.6

Предельная зольность топлива, % не более (прил. 2.1), A1R = 0.6

Среднее содержание серы в топливе, % (прил. 2.1), $SR = \mathbf{0}$

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0}$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $QN=\mathbf{6}$

Фактическая мощность котлоагрегата, кВт, $QF = \mathbf{6}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0083

Коэфф. снижения выбросов азота в рез-те техн. решений, B=0 Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO=KNO\cdot (QF/QN)^{0.25}=0.0083\cdot (6/6)^{0.25}=0.0083$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 7 \cdot 10.24 \cdot 0.0083 \cdot (1-0) = 0.000595$

Выброс окислов авота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 1.35 \cdot 10.24 \cdot 0.0083 \cdot (1-0) = 0.0001147$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.000595=0.000476$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.0001147=0.00009176$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.000595=0.00007735$ Выброс авота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.0001147=0.000014911$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=2 Тип топки: Шахтная топка с наклонной решеткой

Потери тепла от химической неполноты сгорания, % (табл. 2.2), O3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 10.24 = 20.5$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 7 \cdot 20.5 \cdot (1-2/100) = 0.14063$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 1.35 \cdot 20.5 \cdot (1-2/100) = 0.0271215$

Примесь: 2902 Взвешенные частицы (116)

Коэффициент (табл. 2.1), F = 0.005

Тип топки: Слоевые топки бытовых теплогенераторов

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=7\cdot 0.6\cdot 0.005=0.021$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=1.35\cdot 0.6\cdot 0.005=0.00405$

Вид топлива, КЗ = Твердое (уголь, торф и др.)

Расход топлива, T/год, BT=4

Расход топлива, г/с, BG = 0.77

Месторождение, M = Карагандинский бассейн

Марка угля (прил. 2.1), MYI = K, K2, концентрат

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5300

Пересчет в МДж, $QR = QR \cdot 0.004187 = 5300 \cdot 0.004187 = 22.19$

Средняя зольность топлива, % (прил. 2.1), AR = 22.5

Предельная зольность топлива, % не более (прил. 2.1), AIR = 22.5

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.81

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0.81}$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $\mathit{QN}=\mathbf{6}$

Фактическая мощность котлоагрегата, кВт, $QF = \mathbf{6}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.1023

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.1023 \cdot (6/6)^{0.25} = 0.1023$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 4$

 $22.19 \cdot 0.1023 \cdot (1-0) = 0.00908$

Выброс окислов авота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.77 \cdot 22.19 \cdot 0.1023 \cdot (1-0) = 0.001748$

Выброс авота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.00908=0.007264$ Выброс авота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.001748=0.0013984$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.00908=0.0011804$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.001748=0.00022724$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), $NSO2 = \mathbf{0.1}$

Содержание сероводорода в топливе, % (прил. 2.1), $H2S=\mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_=0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 4 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 4 = 0.05832$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ = $0.02 \cdot 0.77 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 0.77 = 0.0112266$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\emph{Q4}=7$

Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

22.19 = 44.4

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 4 \cdot 44.4 \cdot (1-7/100) = 0.165168$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 0.77 \cdot 44.4 \cdot (1-7/100) = 0.03179484$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 4 \cdot 22.5 \cdot 0.0023 = 0.207$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=0.77\cdot 22.5\cdot 0.0023=$

0.0398475

MTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0013984	0.00774
0304	Азот (II) оксид (Азота оксид) (6)	0.00022724	0.00125775
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0112266	0.05832
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.03179484	0.305798
2902	Взвешенные частицы (116)	0.00405	0.021
2908	Пыль неорганическая, содержащая двуокись кремния в	0.0398475	0.207

%: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Источник загрязнения: 0017, Дымовая труба Источник выделения: 0017 97, Бытовая печь

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, K3 = Дрова

Расход топлива, $\tau/$ год, BT=7

Расход топлива, г/с, BG = 1.35

Марка топлива, $M = \Box$ рова

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 2446

Пересчет в МДж, $QR = QR \cdot 0.004187 = 2446 \cdot 0.004187 = 10.24$

Средняя зольность топлива, % (прил. 2.1), AR = 0.6

Предельная зольность топлива, % не более (прил. 2.1), A1R = 0.6

Среднее содержание серы в топливе, % (прил. 2.1), $SR = \mathbf{0}$

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0}$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $QN=\mathbf{6}$

Фактическая мощность котлоагрегата, кВт, $QF = \mathbf{6}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0083

Коэфф. снижения выбросов азота в рез-те техн. решений, $B=\mathbf{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0083 \cdot (6/6)^{0.25} = 0.0083$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 7 \cdot T$

 $10.24 \cdot 0.0083 \cdot (1-0) = 0.000595$

Выброс окислов авота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 1.35 \cdot 10.24 \cdot 0.0093 \cdot (1.0) = 0.0001447$

 $10.24 \cdot 0.0083 \cdot (1-0) = 0.0001147$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.000595=0.000476$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.0001147=0.00009176$

<u>Примесь: 0304 Азот (II) оксид (Азота оксид) (6)</u>

Выброс авота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.000595=0.00007735$ Выброс авота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.0001147=0.000014911$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=2

Тип топки: Шахтная топка с наклонной решеткой

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

10.24 = 20.5

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 7 \cdot 20.5 \cdot (1-2/100) = 0.14063$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 1.35 \cdot 20.5 \cdot (1-2/100) = 0.0271215$

Примесь: 2902 Взвешенные частицы (116)

Коэффициент (табл. 2.1), F = 0.005

Тип топки: Слоевые топки бытовых теплогенераторов

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 7 \cdot 0.6 \cdot 0.005 = 0.021$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=1.35\cdot 0.6\cdot 0.005=0.00405$

Вид топлива, КЗ = Твердое (уголь, торф и др.)

Расход топлива, т/год, BT = 4

Расход топлива, г/с, BG = 0.77

Месторождение, M = Карагандинский бассейн

Марка угля (прил. 2.1), *MYI* = **K,K2,концентрат**

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5300

Пересчет в МДж, $QR = QR \cdot 0.004187 = 5300 \cdot 0.004187 = 22.19$

Средняя зольность топлива, % (прил. 2.1), AR = 22.5

Предельная зольность топлива, % не более (прил. 2.1), AIR = 22.5

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.81

Предельное содержание серы в топливе, % не более (прил. 2.1), SIR = 0.81

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $\mathit{QN}=\mathbf{6}$

Фактическая мощность котлоагрегата, кВт, $QF = \mathbf{6}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.1023

Коэфф. снижения выбросов азота в рез-те техн. решений, $\pmb{B} = \pmb{0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.1023 \cdot (6/6)^{0.25} = 0.1023$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 4$

 $22.19 \cdot 0.1023 \cdot (1-0) = 0.00908$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.77 \cdot 22.10 \cdot 0.1023 \cdot (1.0) = 0.001748$

 $22.19 \cdot 0.1023 \cdot (1-0) = 0.001748$

выброс авота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.00908 = 0.007264$

Выброс азота диоксида (0301), г/с, $_G_ = 0.8 \cdot MNOG = 0.8 \cdot 0.001748 = 0.0013984$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.00908=0.0011804$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.001748=0.00022724$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.1

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_=0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT$

 $= 0.02 \cdot 4 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 4 = 0.05832$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 0.77 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 0.77 = 0.0112266$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=7 Тип топки: С неподвижной решеткой и ручным забросом топлива

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3=2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

22.19 = 44.4

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 4 \cdot 44.4 \cdot (1-7/100) = 0.165168$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 0.77 \cdot 44.4 \cdot (1-7/100) = 0.03179484$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=4\cdot 22.5\cdot 0.0023=0.207$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=0.77\cdot 22.5\cdot 0.0023=$

0.0398475

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0013984	0.00774
0304	Азот (II) оксид (Азота оксид) (6)	0.00022724	0.00125775
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0112266	0.05832
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.03179484	0.305798
2902	Взвешенные частицы (116)	0.00405	0.021
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.0398475	0.207

Источник загрязнения: 6055, Пылящая поверхность Источник выделения: 6055 99, Открытый склад угля

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Поверхность пыления в плане, м2, F=6

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.005

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q$

 $\cdot F = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 6 = 0.000435$

Время работы склада в году, часов, RT = 2880

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1.4 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.005 \cdot 6 \cdot 2880 \cdot 0.0036 = 0.00316$

Максимальный разовый выброс , г/сек, G = 0.000435

Валовый выброс , т/год , M = 0.00316

Материал: Уголь

<u>Примесь: 2909 Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 4

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 4 \cdot 10^6 \cdot 0.5 / 3600 = 0.00333$

Время работы узла переработки в год, часов, RT2 = 2

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $\cdot RT2 = 0.03 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 4 \cdot 0.5 \cdot 2 = 0.0000168$

Максимальный разовый выброс , г/сек, G = 0.00333

Валовый выброс , т/год , M = 0.0000168

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2909	Пыль неорганическая, содержащая двуокись кремния в	0.00333	0.0031768

%: менее 20 (доломит, пыль цементного производства -	
известняк, мел, огарки, сырьевая смесь, пыль	
вращающихся печей, боксит) (495*)	

Источник загрязнения: 6056, Пылящая поверхность Источник выделения: 6056 100, Металлический контейнер

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 0.1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.06

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, т/час, G = 0.003

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.5 \cdot 0.003 \cdot 10^6 \cdot 0.5 / 3600 = 0.000001$

Время работы узла переработки в год, часов, RT2 = 120

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.5 \cdot 0.003 \cdot 0.5 \cdot 120 = 0.0000003024$

Максимальный разовый выброс , г/сек, G=0.000001

Валовый выброс , т/год , M = 0.000003024

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.000001	0.0000003024
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 0024, Дымовая труба Источник выделения: 0024 101, Самодельная печь

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКС Π , 1996 г.

п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, $K3 = \Box$ рова

Расход топлива, T/год, BT = 5

Расход топлива, r/c, BG = 0.5

Марка топлива, $M = \Box$ рова

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 2446

Пересчет в МДж, $QR = QR \cdot 0.004187 = 2446 \cdot 0.004187 = 10.24$

Средняя зольность топлива, % (прил. 2.1), AR = 0.6

Предельная зольность топлива, % не более (прил. 2.1), AIR = 0.6

Среднее содержание серы в топливе, % (прил. 2.1), $SR = \mathbf{0}$

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0}$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $QN=\mathbf{6}$

Фактическая мощность котлоагрегата, кВт, $QF=\mathbf{6}$

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0083

Коэфф. снижения выбросов азота в рез-те техн. решений, ${\it B}={\bf 0}$

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0083 \cdot (6/6)^{0.25} = 0.0083$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 5$

$10.24 \cdot 0.0083 \cdot (1-0) = 0.000425$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.5 \cdot 10^{-2}$

 $10.24 \cdot 0.0083 \cdot (1-0) = 0.0000425$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.000425=0.00034$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.0000425=0.000034$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.000425=0.00005525$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.0000425=0.000005525$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $\it Q4=2$

Тип топки: Шахтная топка с наклонной решеткой

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 2

Коэффициент, учитывающий долю потери тепла, R=1

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1 \cdot 1$

10.24 = 20.5

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 5$

 $\cdot 20.5 \cdot (1-2 / 100) = 0.10045$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 0.5 \cdot 20.5 \cdot (1-2/100) = 0.010045$

Примесь: 2902 Взвешенные частицы (116)

Коэффициент (табл. 2.1), F = 0.005


```
Тип топки: Слоевые топки бытовых теплогенераторов
Выброс твердых частиц, т/год (ф-ла 2.1), \_M\_=BT \cdot AR \cdot F = 5 \cdot 0.6 \cdot 0.005 = 0.015
Выброс твердых частиц, г/с (ф-ла 2.1), \_G\_=BG\cdot A1R\cdot F=0.5\cdot 0.6\cdot 0.005=0.0015
Вид топлива, K3 = Твердое (уголь, торф и др.)
Расход топлива, T/год, BT=5
Расход топлива, г/с, BG = 0.5
Месторождение, M = Карагандинский бассейн
Марка угля (прил. 2.1), MYI = K, K2, концентрат
Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 5300
Пересчет в МДж, QR = QR \cdot 0.004187 = 5300 \cdot 0.004187 = 22.19
Средняя зольность топлива, % (прил. 2.1), AR = 22.5
Предельная зольность топлива, % не более (прил. 2.1), AIR = 22.5
Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.81
```

Предельное содержание серы в топливе, % не более (прил. 2.1), $SIR = \mathbf{0.81}$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

```
Номинальная тепловая мощность котлоагрегата, кВт, QN=\mathbf{6}
Фактическая мощность котлоагрегата, кВт, QF = \mathbf{6}
Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.1023
Коэфф. снижения выбросов азота в рез-те техн. решений, B=\mathbf{0}
Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), KNO = KNO \cdot (OF/ON)^{0.25} = 0.1023.
(6/6)^{0.25} = 0.1023
Выброс окислов азота, т/год (ф-ла 2.7), MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 5
22.19 \cdot 0.1023 \cdot (1-0) = 0.01135
Выброс окислов азота, г/с (ф-ла 2.7), MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.5 \cdot 10^{-5}
22.19 \cdot 0.1023 \cdot (1-0) = 0.001135
Выброс азота диоксида (0301), т/год, _{M_{-}} = 0.8 \cdot MNOT = 0.8 \cdot 0.01135 = 0.00908
Выброс азота диоксида (0301), г/с, \_G\_=0.8 \cdot MNOG=0.8 \cdot 0.001135=0.000908
```

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_M_ = 0.13 \cdot MNOT = 0.13 \cdot 0.01135 = 0.0014755$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.001135=0.00014755$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Доля окислов серы, связываемых летучей золой топлива (п. 2.2), $NSO2 = \mathbf{0.1}$

Содержание сероводорода в топливе, % (прил. 2.1), $H2S = \mathbf{0}$

Выбросы окислов серы, т/год (ф-ла 2.2), $_{-}M_{-}=0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT$ $= 0.02 \cdot 5 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 5 = 0.0729$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ $= 0.02 \cdot 0.5 \cdot 0.81 \cdot (1-0.1) + 0.0188 \cdot 0 \cdot 0.5 = 0.00729$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=7Тип топки: С неподвижной решеткой и ручным забросом топлива Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3=2Коэффициент, учитывающий долю потери тепла, R=1Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 2 \cdot 1$ 22.19 = 44.4

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 5 \cdot 44.4 \cdot (1-7/100) = 0.20646$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 0.5 \cdot 44.4 \cdot (1-7/100) = 0.020646$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Коэффициент (табл. 2.1), F = 0.0023

Тип топки: С неподвижной решеткой и ручным забросом топлива

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=5\cdot 22.5\cdot 0.0023=0.25875$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=0.5\cdot 22.5\cdot 0.0023=0.025875$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000908	0.00942
0304	Азот (II) оксид (Азота оксид) (6)	0.00014755	0.00153075
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.00729	0.0729
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.020646	0.30691
2902	Взвешенные частицы (116)	0.0015	0.015
2908	Пыль неорганическая, содержащая двуокись кремния в	0.025875	0.25875
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6071, Пылящая поверхность Источник выделения: 6071 102, Металлический контейнер

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Зола

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 5.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 2

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=0.1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.06

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.04

Суммарное количество перерабатываемого материала, т/час, G = 0.003

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot$

 $10^6 \cdot B / 3600 = 0.06 \cdot 0.04 \cdot 2 \cdot 0.1 \cdot 0.01 \cdot 0.5 \cdot 0.003 \cdot 10^6 \cdot 0.5 / 3600 = 0.000001$

Время работы узла переработки в год, часов, RT2 = 230

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.06 \cdot 0.04 \cdot 1.4 \cdot 0.1 \cdot 0.01 \cdot 0.5 \cdot 0.003 \cdot 0.5 \cdot 230 = 0.00000058$

Максимальный разовый выброс , г/сек, G = 0.000001

Валовый выброс , т/год , M = 0.00000058

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.000001	0.00000058
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Приложение 2

КАЗАКСТАН РЕСПУБЛИКАСЫ ЭНЕРГЕТИКА МИНИСТРЛІГІ

«КАЗГИДРОМЕТ» ШАРУАШЫЛЫК ЖҮРГІЗУ КҰҚЫҒЫНДАҒЫ РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК КӘСІПОРНЫ

МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ КАЗАХСТАН

РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ НА ПРАВЕ ХОЗЯЙСТВЕННОГО ВЕДЕНИЯ «КАЗГИДРОМЕТ»

010000, Астана засшем, Мэнгілік Ел дангылы, 11/1., тел.; 8 (7172) 79-83-93, 79-83-84, факс: 8 (7172) 79-83-44, kazmeteo argmail.com 06-09 /247 No 25 01 201

2019

010000, город Астана, проспект Мангілік Ел, 11/1, тел.: 8 (7172) 79-83-93, 79-83-84, фикс: 8 (7172) 79-83-44, kazmeteo a gmail.com

> Акмола областы Көкшетау қаласы «Иваненко» ЖК

ҚМЖ болжанатын, Қазақстан қалаларына қатысты 22.01.2019 жылғы хатқа

«Қазгидромет» PMK. Сіздін хатыңызға сәйкес, колайсыз метеорологиялық жағдайлар (ҚМЖ) Қазақстан Республикасының төменде көрсетілген елді-мекендері:

- 1. Астана қаласы
- 2. Алматы каласы
- 3. Ақтөбе қаласы
- 4. Атырау қаласы
- 5. Ақтау қаласы
- Ақсу қаласы
- Жаңа Бұқтырма кенті
- 8. Ақсай қаласы
- 9. Балкаш каласы
- 10. Қарағанды қаласы
- 11. Жаңаөзен қаласы
- 12. Қызылорда қаласы
- 13. Павлодар қаласы
- 14. Екібастуз қаласы
- 15. Петропавл каласы
- 16. Риддер қаласы
- 17. Тараз қаласы
- 18. Теміртау қаласы
- 19. Өскемен қаласы
- 20. Орал қаласы
- 21. Көкшетау қаласы
- 22. Қостанай қаласы
- 23. Семей қаласы
- 24. Шымкент қаласы бойынша

метеожағдайлар (яғни қолайсыз метеорологиялык жағдай кутіледі (күтілмейді) деп) болжанады.

Бас директордын бірінші орынбасары

Simp

М. Абдрахметов

Т. Масалимова 001 8 8 (17772) 79 83 95

Приложение 3

Приложение 4

Номер: KZ30VWF00093417 Дата: 05.04.2023

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ
ЭКОЛОГИЯ
ЖӘНЕ ТАБИГИ РЕСУРСТАР
МИНИСТРЛІГІ
ЭКОЛОГИЯЛЫҚ РЕТТЕУ ЖӘНЕ
БАҚЫЛАУ КОМИТЕТІНІҢ АҚМОЛА
ОБЛЫСЫ БОЙЫНША ЭКОЛОГИЯ
ДЕПАРТАМЕНТІ РЕСПУБЛИКАЛЫҚ
МЕМЛЕКЕТТІК МЕКЕМЕСІ

РЕСПУБЛИКАНСКОЕ
ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
«ДЕПАРТАМЕНТ ЭКОЛОГИИ ПО
АКМОЛИНСКОЙ ОБЛАСТИ
КОМИТЕТА ЭКОЛОГИЧЕСКОГО
РЕГУЛИРОВАНИЯ И КОНТРОЛЯ
МИНИСТЕРСТВА ЭКОЛОГИИ И
ПРИРОДНЫХ РЕСУРСОВ
РЕСПУБЛИКИ КАЗАХСТАН»

020000, Көкшетау қ., Пушканы көшесі, 23 тел.: +7 /7162/ 76-10-20 е-mail: akmola-ecodep@ecogeo.gov.kz 020000, г. Кокшетау, ул.Пушкина, 23 гел.: +7 /7162/ 76-10-20 e-mail: akmola-ecodep@ecogeo.gov.kz

> TOO «KazBeef Ltd» (КазБиф Лтд)

Заключение

об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействия намечаемой деятельности

На рассмотрение представлены:

 Заявление о намечаемой деятельности; (перечисление комплектности представленных материалов)

Материалы поступили на рассмотрение: № KZ13RYS00355060 от 20.02.2023г.

(Дата, номер входящей регистрации)

Общие сведения

ТОО «KazBeef Ltd» является действующим предприятием и расположена в Акмолинской области, район им. Биржан Сал, с. Мамай. Основным видом деятельности предприятия является животноводство: разведение крупного рогатого скота (КРС) породы Ангус и Герефорд. ТОО «KazBeef Ltd» разрабатывает корректировку проекта НДВ в связи с уменьшением объема содержания КРС с 8 тыс.голов до 5 тыс. голов и изменением объема сжигания угля.

Согласно раздела 2 приложения 1 к Экологическому кодексу РК, данная деятельность подлежит скринингу согласно п.п.10.3.3. - по разведению крупного рогатого скота (1500 голов и более).

В административном отношении данный объект расположен в Акмолинской области, район им.Биржан Сал, с. Мамай. Ближайшая жилая зона находится на расстоянии 1,5 км от репродуктора №3 в юго-западном направлении. Также имеется оросительная установка для полива кукурузы расположена рядом с рекой Тассу.

Краткое описание намечаемой деятельности

Все административные и производственные помещения хозяйства расположены на трех площадках, расположенных в непосредственной близости друг от друга: - Репродуктор № 1 - выращивание КРС породы Герефорд со шлейфом (телятами); - Репродуктор №2 - выращивание КРС породы Ангус со шлейфом (телятами); - Репродуктор №3 - содержание КРС. породы Герефорд и Ангус со шлейфом (телятами); В составе действующих комплексов предусмотрено: КПП 2. площадка для сбора ТБО 3. Административно - бытовой корпус 4. ветеринарный пункт, изолятор 5. накопительная площадка, распределительная площадка 6. загон для откорма КРС 7. предродовой загон для КРС 8. весовая 9. автостоянка 10. Ангар для сельхозтехники 11. ремонтная мастерская 12. склад ГСМ и установка газоправочная моноблочная 13. ангар для переработки и хранения кормов 14. площадка открытого хранения сена, соломы, силоса и сенажа 15. пастбищные отгоны 16. Зерносклад 17. Баня 18. Крематор 19. открытый канал для удаления навоза 20. открытая площадка для буртования навоза 21. площадка для сухого навоза 22. трансформаторная подстанция с дизельной электростанцией 23.насосная станция с глубинной скважиной и подземным 100 м.куб. резервуаром хранения воды На территории оросительной установки имеется металлический контейнер в которой установлен самодельная печь, работающая на твердом топливе для обогрева рабочих.

Краткая характеристика компонентов окружающей среды

Согласно заявления:

Целевое назначение земельных участков: содержание и выращивание крупно рогатого скота. Площадь земельного участка репродуктора №1 составляет 45,0 га. Площадь земельного участка репродуктора №2 составляет 51,6 га. Площадь земельного участка репродуктора №3 составляет 73,6 га. Площадь земельного участка для выращивания кукурузы на силос — 240,0 га.

Водоснабжение промплощадок осуществляется от существующих скважин: Репродуктор №1 скважина №49-10э, Репродуктор №2 скважина №47-10э, Репродуктор №3 скважина №50-10э. Общий квартальный забор воды от скважин составляет — 8,5 тыс.м3. Имеется разрешение на специальное водопользование №КZ25VTE00114299 Есиль 04-К-45/22 от 11.05.2022г. Ближайший водный объект является озеро Мамай находится на расстоянии 3.0 км от репродуктора №3. На расстоянии 300 метров от реки Тассу имеется оросительная установка для полива кукурузы. Разработка проекта по установлению водоохранных зон и полос не требуется. Таким образом, объекты расположены за пределами водоохраной зоны, засорение и загрязнения водного объекта не предусматривается. Угроза загрязнения подземных и поверхностных вод в процессе проведения работ на объекте сведена к минимуму, учитывая особенности технологических операций, не предусматривающих образование производственных стоков.

Редкие и исчезающие растения, занесенные в Красную книгу, в районе расположения объекта не наблюдаются. Естественные пищевые и лекарственные

Бул кумит КР 2003 мълдын 7 кинтирынцивы «Электронды кумит жэне электронды сандық қол кою» туралы заңның 7 бабы, 1 тарматына сойкес қағаз бетіндегі заңмен тең. Электрондық құмит мүм ейселек іст тексере азасыл. Данный документ сотласын мүм сіт тексере азасыл. Данный документ сотласын мүм сіт тағын 7 38% кол 7 занара 2005 года төб ба электронном документе сотласын баспрасын ранизинчен документу на бумами посителе. Электронный документ оформиронан на портале www.elicense.kz. Проверять подлинисть электронного документя вы можете на портале www.elicense.kz.

растения отсутствуют. Территория предприятия не относится к ООПТ и государственному лесному фонду.

Использование объектов животного мира района при реализации проектных решений не предусматривается. Непосредственно около объекта животные отсутствуют в связи с техногенной освоенной территорией и близостью действующего объекта с жилым массивом.

В результате обследования предприятия было выявлено, что загрязняющие атмосферный воздух вещества, образующиеся в процессе производственной деятельности отводятся через 25 организованных и 77 неорганизованных источников. В выбросах в атмосферу содержатся следующие загрязняющие вещества: диоксид серы, оксид углерода, диоксид азота, оксид азота, аммиак, толуол, ксилол, сероводород, формальдегид, этилбензол, керосин, сажа, пыль неорганическая:70-20% двуокиси кремния, пыль неорганическая ниже 20% двуокиси кремния, хлорэтилен, Бутан-1-ол, 2-Этоксиэтанол, сольвент нафта, пыль зерновая кремния, пыль меховая, фтористые газообразные соединения, фториды неорганические плохо растворимые, железо оксид, марганец и его соединения, метан, метанол, пропиональдегид, гексановая кислота, диметилсульфид, метантиол, метиламин, фенол, углеводороды предельные С12-19, бутан. Валовый выброс загрязняющих веществ составит - 160,68759 т/год.

В процессе эксплуатации предприятия образуются следующие виды отходов: смешанные коммунальные отходы — 30,0 т/г, золошлак — 90 тонн, отходы от красок и лаков - 0,08 тонн, отходы сварки — 0,06 тонн, навоз от КРС: репродуктор №1 составит — 16500 тонн, репродуктор №2 составит — 16500 тонн, отработанные моторные, трансмиссионные и смазочные масла — 5,0 тонн, отработанные масляные фильтры — 0,2 тонны, отработанные шины — 3,0 тонны, отработанные аккумуляторы — 1,0 тонна, промасленная ветошь — 0,5 тонн, грунты пропитаны нефтью и мазутом — 2,0 тонны, отработанные светодиодные лампы — 0,2 тонны, отходы животноводства (трупы животных) — 80,0 тонн. Образующиеся отходы будут временно храниться сроком не более 6 месяцев до их передачи третьим лицам, осуществляющим операции по утилизации, переработке, а также удалению отходов, не подлежащих переработке или утилизации.

Сбросы сточных вод на поверхностные и подземные воды не предусматривается.

Согласно Приложения 2 Экологического кодекса Республики Казахстан и Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду, утвержденной Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246 данный вид намечаемой деятельности относится к объектам II категории.

Выводы о необходимости или отсутствия необходимости проведения обязательной оценки воздействия на окружающую среду: возможные воздействия намечаемой деятельности на окружающую среду, предусмотренные п.25 Главы 3 «Инструкции по организации и проведению экологической оценки» (утв. приказом Министра экологии, геологии и природных ресурсов РК от 30.07.2021 г. №280,

Бұл құжат ҚР 2003 жылдың 7 кантарындағы «Электронды құжат және электронды саңдық қол қою» туралы заңның 7 бабы, 1 тарматына сойкес қағаз бетіндегі заңмен тең

далее – Инструкция) прогнозируются. Воздействие на окружающую среду при реализации намечаемой деятельности приведет к случаям, предусмотренным в п.29, п.30 Главы 3 Инструкции:

- 1. в черте населенного пункта или его пригородной зоны;
- оказывает воздействие на компоненты природной среды, важные для ее состояния или чувствительные к воздействиям вследствие их экологической взаимосвязи с другими компонентами (например, водно-болотные угодья, водотоки или другие водные объекты, горы, леса);
- создает риски загрязнения земель или водных объектов (поверхностных и подземных) в результате попадания в них загрязняющих веществ;
- включает лесопользование, использование нелесной растительности, специальное водопользование, пользование животным миром, использование невозобновляемых или дефицитных природных ресурсов, в том числе дефицитных для рассматриваемой территории;
- приводит к образованию опасных отходов производства и (или) потребления.

<u>Таким образом, необходимо проведение обязательной оценки воздействия на</u> окружающую среду.

Руководитель К. Бейсенбаев

Исп.: С. Пермякова Тел.: 76-10-19

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ
ЭКОЛОГИЯ
ЖӘНЕ ТАБИГИ РЕСУРСТАР
МИНИСТРЛІГІ
ЭКОЛОГИЯЛЫҚ РЕТТЕУ ЖӘНЕ
БАҚЫЛАУ КОМИТЕТІНІҢ АҚМОЛА
ОБЛЫСЫ БОЙЫНША ЭКОЛОГИЯ
ДЕПАРТАМЕНТІ РЕСПУБЛИКАЛЫҚ
МЕМЛЕКЕТТІК МЕКЕМЕСІ

РЕСПУБЛИКАНСКОЕ
ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
«ДЕПАРТАМЕНТ ЭКОЛОГИИ ПО
АКМОЛИНСКОЙ ОБЛАСТИ
КОМИТЕТА ЭКОЛОГИЧЕСКОГО
РЕГУЛИРОВАНИЯ И КОНТРОЛЯ
МИНИСТЕРСТВА ЭКОЛОГИИ И
ПРИРОДНЫХ РЕСУРСОВ
РЕСПУБЛИКИ КАЗАХСТАН»

020000, Кокшетау к., Пушкина кошесі, 23 тел.: +7 /7162/ 76-10-20 e-mail: akmoln-ecodep@ecopen.gov.kz 020000, г. Кокшетау, ул.Пушкана, 23 тел.: +7 /7162/ 76-10-20 e-mail: akmola-ecodep@ecogeo.gov.kz

> TOO «KazBeef Ltd» (КазБиф Лтд)

Заключение

об определении сферы охвата оценки воздействия на окружающую среду

На рассмотрение представлены:

1. Заявление о намечаемой деятельности;

(перечисление комплектности представленных материалов)

Материалы поступили на рассмотрение: № KZ13RYS00355060 от $20.02.2023 \Gamma$

(Дата, номер входящей регистрации)

Краткая характеристика компонентов окружающей среды

Согласно заявления:

Целевое назначение земельных участков: содержание и выращивание крупно рогатого скота. Площадь земельного участка репродуктора №1 составляет 45,0 га. Площадь земельного участка репродуктора №2 составляет 51,6 га. Площадь земельного участка репродуктора №3 составляет 73,6 га. Площадь земельного участка для выращивания кукурузы на силос — 240,0 га.

Водоснабжение промплощадок осуществляется от существующих скважин: Репродуктор №1 скважина №49-10э, Репродуктор №2 скважина №47-10э, Репродуктор №3 скважина №50-10э. Общий квартальный забор воды от скважин составляет — 8,5 тыс.м3. Имеется разрешение на специальное водопользование №КZ25VTE00114299 Есиль 04-К-45/22 от 11.05.2022г. Ближайший водный объект является озеро Мамай находится на расстоянии 3.0 км от репродуктора №3. На расстоянии 300 метров от реки Тассу имеется оросительная установка для полива кукурузы. Разработка проекта по установлению водоохранных зон и полос не требуется. Таким образом, объекты расположены за пределами водоохраной зоны, засорение и загрязнения водного объекта не предусматривается. Угроза загрязнения подземных и поверхностных вод в процессе проведения работ на

да кужит КР 2003 жылдың 7 қыттарындағы «Электронды күжит және электронды сандық қол коло» туралы электың 7 байы, 1 тарматына сәйкес қағаз бетіндегі эленен тең

объекте сведена к минимуму, учитывая особенности технологических операций, не предусматривающих образование производственных стоков.

Редкие и исчезающие растения, занесенные в Красную книгу, в районе расположения объекта не наблюдаются. Естественные пищевые и лекарственные растения отсутствуют. Территория предприятия не относится к ООПТ и государственному лесному фонду.

Использование объектов животного мира района при реализации проектных решений не предусматривается. Непосредственно около объекта животные отсутствуют в связи с техногенной освоенной территорией и близостью действующего объекта с жилым массивом.

В результате обследования предприятия было выявлено, что загрязняющие атмосферный воздух вещества, образующиеся в процессе производственной деятельности отводятся через 25 организованных и 77 неорганизованных источников. В выбросах в атмосферу содержатся следующие загрязняющие вещества: диоксид серы, оксид углерода, диоксид азота, оксид азота, аммиак, толуол, ксилол, сероводород, формальдегид, этилбензол, керосин, сажа, пыль неорганическая:70-20% двуокиси кремния, пыль неорганическая ниже 20% двуокиси кремния, хлорэтилен, Бутан-1-ол, 2-Этоксиэтанол, сольвент нафта, пыль зерновая кремния, пыль меховая, фтористые газообразные соединения, фториды неорганические плохо растворимые, железо оксид, марганец и его соединения, метан, метанол, пропиональдегид, гексановая кислота, диметилсульфид, метантиол, метиламин, фенол, углеводороды предельные С12-19, бутан. Валовый выброс загрязняющих веществ составит - 160,68759 т/год.

В процессе эксплуатации предприятия образуются следующие виды отходов: смешанные коммунальные отходы — 30,0 т/г, золошлак — 90 тонн, отходы от красок и лаков - 0,08 тонн, отходы сварки — 0,06 тонн, навоз от КРС: репродуктор №1 составит — 16500 тонн, репродуктор №2 составит — 16500 тонн, отработанные моторные, трансмиссионные и смазочные масла — 5,0 тонн, отработанные масляные фильтры — 0,2 тонны, отработанные шины — 3,0 тонны, отработанные аккумуляторы — 1,0 тонна, промасленная ветошь — 0,5 тонн, грунты пропитаны нефтью и мазутом — 2,0 тонны, отработанные светодиодные лампы — 0,2 тонны, отходы животноводства (трупы животных) — 80,0 тонн. Образующиеся отходы будут временно храниться сроком не более 6 месяцев до их передачи третьим лицам, осуществляющим операции по утилизации, переработке, а также удалению отходов, не подлежащих переработке или утилизации.

Сбросы сточных вод на поверхностные и подземные воды не предусматривается.

Выводы

В отчете о возможных воздействиях предусмотреть:

 Согласно письма РГУ «Есильская бассейновая инспекция по регулированию использования и охране водных ресурсов» за № 18-12-04-08/453-И от 27.03.2023 года объект располагается на территории водоохранной зоны и полосы реки Тассу. В этой связи, для проведения работ

里海峡

үжит КР 2003 жылдын 7 кинтирындагы «Электронды күжит және электронды сандық қол қою» туралы заңның 7 байы, 1 тармағына сәйкес аяғат бетіндегі заңнын тең

вблизи реки Тассу необходимо получить согласование с Инспекцией в соответствии с пунктом 2 статьи 120 Водного кодекса РК, а также соблюдать требования ст.224, 223 Экологического Кодекса РК (далее - Кодекс).

- 2. Согласно заявления о намечаемой деятельности на объекте образуются опасные отходы. Согласно п.1 статьи 336 Экологического кодекса РК субъекты предпринимательства для выполнения работ (оказания услуг) по переработке, обезвреживанию, утилизации и (или) уничтожению опасных отходов обязаны получить лицензию на выполнение работ и оказание услуг в области охраны окружающей среды по соответствующему подвиду деятельности согласно требованиям Закона Республики Казахстан «О разрешениях и уведомлениях». Исходя из этого, при дальнейшем разработки проектных материалов необходимо представить лицензию предприятия на проведение вышеуказанных работ либо представить договор со специализированной организацией имеющей лицензию для проведения операций с опасными отходами.
- В целях исключения негативного влияния на земельные ресурсы при проведении работ соблюдать требования ст.238 Кодекса.
- 4. При дальнейшей разработки проектных материалов указать классификацию отходов в соответствии с Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 «Об утверждении Классификатора отходов».
- Предусмотреть мероприятие по посадке зеленых насаждений согласно Приложения 4 к Кодексу с указанием количества насаждений (в шт.) и площади озеленения (в га);
- Необходимо предусмотреть раздельный сбор с обязательным указанием срока хранения и передачи отходов, согласно статьи 320 Кодекса.
- Предусмотреть проведение работ по пылеподавлению согласно п.1 Приложения 4 к Кодексу.
- Предусмотреть природоохранные мероприятия в соответствии с Приложением 4 Кодекса в части охрана атмосферного воздуха, охраны земель, обращения с отходами, охраны водных ресурсов и прибрежной зоны, охраны растительного и животного мира.
- При проведении работ учитывать розу ветров по отношению к ближайшему населенному пункту.

Учесть замечания и предложения от заинтересованных государственных органов:

 ГУ «Управление природных ресурсов и регулирования природопользования по Акмолинской области»:

В соответствии с приложением 4 Экологического кодекса Республики Казахстан ТОО «KazBeef Ltd» необходимо предусмотреть мероприятия по снижению негативного воздействия на флору и фауну на территории антропогенного воздействия.

Согласно статьи 319 Экологического кодекса Республики Казахстан необходимо разработать план управления отходами.

РГУ «Есильская бассейновая инспекция по регулированию использования и охране водных ресурсов»:

Согласно предоставленных географических координат: река Тассу района Биржан Сал Акмолинской области находится ориентирочно на расстоянии около 400 м (координаты 52°39′13,24" 71°16′21,12") и около 50 м (координаты 52°44′25,44" 71°26′10,81"), т.е. в пределах водоохранной зоны и полосы,

На данный момент, на этот водный объект не установлены границы и размеры водоохранной зоны и полосы.

Согласно п.1-2 ст.43 Земельного Кодекса РК, предоставление земельных участков, расположенных в пределах пятисот метров от береговой линии водного объекта, осуществляется после определения границ водоохранных зон и полос, а также установления режима их хозяйственного использования, за исключением земель особо охраняемых природных территорий и государственного лесного фонда.

Согласно Правил установления водоохранных зон и полос, утвержденных Приказом Министра сельского хозяйства Республики Казахстан от 18 мая 2015 года № 19-1/446, заказчиками проектов водоохранных зон и полос являются местные исполнительные органы, а по отдельным водным объектам (или их участкам) выступают также физические и юридические лица, заинтересованные в необходимости установления водоохранных зон и полос по конкретному объекту.

На основании вышеизложенного, Инспекция сообщает Вам, что рассмотрение данного вопроса будет возможным, после установления водоохранной зоны и полосы на реку Тассу района Биржан Сал Акмолинской области.

Также, сообщаем, что предоставленные Вами географические координаты не соответствуют существующему место расположению предприятия.

Руководитель К. Бейсенбаев

Исп.: С.Пермякова Тел.: 76-10-19

Руководитель департамента

Бейсенбаев Кадырхан Киикбаевич

Приложение 6 «Утверждаю» Директор ТОО «KazBeef LTD» Айсабаева Е.Е. « » 2023 г.

ПЛАН МЕРОПРИЯТИЙ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ НА ПЕРИОД 2023-2032 гг.

Наименование предприятия: TOO «KazBeef LTD»

Наименование объекта: TOO «KazBeef LTD»

			OO «IXazbe														
								К	алендар	ный пл	ан дості	іжения ;	установ	ленных	показат	елей	
№ п/п	Мероприятие по соблюдению нормативов	Объект / источник эмиссии	Показатель (нормативы эмиссий)	Обоснование	Текущая величина			на коне ц 3 год а 2025 г.	на коне ц 4 год а 2026 г.	на коне ц 5 год а 2027 г.	на коне ц 6 год а 2028 г.	на коне ц 7 год а 2029 г.	на коне ц 8 год а 2030 г.	на коне ц 9 год а 2031 г.	на коне ц 9 год а 2032 г.	Срок выполнен ия	Объем финанс ирован ия, тыс. тенге
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 Охрана атмосферного воздуха																
1	Проведение мониторинга атмосферного воздуха на границе СЗЗ	-	-	Соблюдение требований статьи 198 об атмосферном воздухе и его охране	-	-	-	-	-	-	-	-	-	-	-	2023-2032.г.	200,0
2	Проведение мониторинга атмосферного воздуха на источниках выбросах	-	-	Соблюдение требований статьи 198 об атмосферном воздухе и его охране	-	-	-	-	-	-	-	-	-	-	-	2024-2032.г.	200,0
	<u>. </u>				2	Охрана	водн	ых ресур	сов								

Проект отчета о возможных воздействиях для действующего предприятия TOO «KazBeef Ltd» Акмолинская область, район им. Биржан Сал, с. Мамай

1	Проведение производственно го экологического контроля путём мониторингового исследования за состоянием подземных вод	1 раз в год на скважинах наблюдения по плану ПЭК	-	Приложение 4 к Экологическому кодексу Республики Казахстан от 2 января 2021 года №400 -VI	-	-	-	-	-	-	-	-	-	-	-	2024-2032 г.	200,0
	Τ	1		3 Охрана	от воздей	ствия і	на при	орежны	е водны	е экосис	темы		1	1	ı	T	
1	Не предусмотрено	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	4 Охрана земель																
1	Проведение производственно го экологического контроля путём мониторингового исследования за состоянием почвенного покрова	По плану ПЭК	-	Приложение 4 к Экологическому кодексу Республики Казахстан от 2 января 2021 года №400 -VI	-	-	-	-	-	-	-	-	-	-	-	2024-2032 г.	50,0
						5 (Эхрана	недр									
_	Не предумотрено	-	-	-	-	-	-	-	ı	-	-	-	-	-		-	-
	1				б Охрана	животі	юго и	растите.	льного м	иира	T				T		T
1	Озеленение территории предприятия и границы СЗЗ, высадка зеленых насаждений	Граница СЗЗ	120,0 га	Приложение 4 к Экологическому кодексу Республики Казахстан от 2 января 2021 года №400 -VI	-	-	раниц СЗЗ 10%	Граница С33 10%	Граница СЗЗ 10%	Граница СЗЗ 10%	раница С33 10%	Уход за зелены ми насаж дения ми	Уход за зелены ми насаж дения ми	Уход за зелены ми насаж дения ми	Уход за зелены ми насаж дения ми	2024-2032 г. г	200,0
					7 (отходам									
1	Передача отходов	Территория предприятия	Отходы производ	Приложение 4 к Экологическому	-	26.855 6	26.85 56	26.85 56	26.85 56	26.85 56	26.85 56	26.85 56	26.85 56	26.85 56	26.85 56	2023-2032 г. г	На основа

	производства и потребления специализиров анным организациям			кодексу Республики Казахстан от 2 января 2021 года №400 -VI					200200 5								нии договор а
	8 Радиационная, биологическая и химическая безопасность																
1	Не предусмотрено	-	-	-	ı	-	-	1	-	-	-	ı	ı	ı	-	-	-
				9 Внедрение с	систем упр	авлени	я наи.	пучших	безопас	ных тех	нологий						
1	Не предусмотрено	-	-	-	-	-	•	•	-	-	-	ı	-	-	-	-	-
				10 Научно-ис	следовател	њские,	изысь	ательсь	сие и дру	угие раз	работки						
1	Не предусмотрено	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Всего:	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	850,0

План мероприятий по управлению отходами

No	Наименование	Ожидаемые результаты	Форма завершения	Сроки	Ответственные за	Ориентировочная	Источники							
-, -	мероприятий	(показатель результата)	1 opu ouzepzienim	исполнения	исполнение	стоимость	финансирования							
1	2	3	4	5	6	7	8							
			ммы: постепенное сок	пашение объема		,	0							
	Цель Программы: постепенное сокращение объема образуемых отходов Задача 1: Надлежащая утилизация отходов производства и потребления.													
			ие экологической безог											
1	Сбор,	Качественный показатель:	Предотвращение	2023 - 2032гг.	Руководитель	2023 - 2032 гг. –	Собственные							
	транспортировка и	Выполнение законодательных	загрязнения земель		предприятия	500 000,0 тенге	средства							
	утилизация отходов	требований/ 100%												
	производства и	Исключение												
	потребления	несанкционированного												
		загрязнения окружающей												
		среды.												
		Передача отходов в												
		специализированные компании												
		на утилизацию.												
		Уменьшение объема												
		накопления отходов.												
		Количественный показатель:												
		Отходы, подлежащие												
		дальнейшей передаче, будут												
		переданы на утилизацию/ 100%.	<u> </u> птимизация существук		man ranna arvarann									
3	Оптимизация	Улучшение контроля	Отчёт по опасным	2023 - 2032гг	Руководитель	Не требуется	Собственные							
3	системы учёта и	реализации программы/ 100 %	отходам;	2023 - 203211		пе требуется								
	контроля	Обеспечение соблюдения	Заключение		предприятия		средства							
	образования,	требований законодательства	договоров со											
	движения отходов	РК в области обращения с	специализированным											
	на всех этапах	отходами/ 100 %	и организациями на											
	жизненного цикла	откодами тоо / о	вывоз и утилизацию											
	жизненного дика		отходов											
4	Сортировка	Упрощения процессов	Предотвращение	2023 - 2032гг.	Руководитель	Не требуется	Собственные							
	отходов по физико-	хранения, очистки, переработки	загрязнения земель		предприятия		средства							
	химическим	и/или удаления, экономия	1		1 1		1 , ,							
	свойствам.	ресурсов, удешевление												
	Несовместимых	мероприятий по утилизации												
	отходов приводит к	отходов/ 100 %												
	дополнительной													

	переработке, а											
	также общему											
	удорожанию											
	проводимых											
	мероприятий,											
	потребуется											
	проведение											
	лабораторных											
	анализов											
	Задача 3: Минимизация образования отходов производства и потребления											
5	Использование	Уменьшение объема	Предотвращение	2023 - 2032гг.	Руководитель	Не требуется	Собственные					
	малоотходных или	накопления отходов 100 %	загрязнения земель		предприятия		средства					
	безотходных											
	технологий											
6	Защита земель от	Уменьшение объема	Охрана земельных	2023 - 2032гг.	Руководитель	Не требуется	Собственные					
	загрязнения	накопления отходов/ 100 %	ресурсов		предприятия		средства					
	отходами											
	производства и											
	потребления,											
	химическими и											
	другими вредными											
	веществами											