Расчеты количества выбросов загрязняющих веществ в атмосферу

При строительстве проектируется использовать следующие материалы и осуществить объем работ:

Наименование	Ед. изм.	Объем
Вынимаемый грунт	м3	10510
Обратная засыпка	м3	31377,5
Щебень	м3	3341,6
ПГС	м3	7959
Электроды Э42	Т	0,304
Проволока для сварки	КГ	10,8
Эмаль ПФ-115	Т	0,19
Уайт-спирит	Т	0,03
Площадь гидроизоляции	м2	810
Отбойные молотки	час/период	16
Компрессор с ДВС	час/период	755
Котел битумный	час/период	17
Передвижная электростанция	час/период	728

При строительстве будет использоваться готовый привозной бетон, готовый привозной раствор цемента.

Потребность в основных строительных машинах, механизмах, оборудовании и специальных установках

№	Наименование	
п.п	Панженование	
1	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 0,4 до 0,5 м ³	
2	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 0,5 до 0,65 м ³	
3	Катки дорожные самоходные на пневмоколесном ходу массой 30т	
4		
	Бульдозеры-рыхлители на гусеничном ходу, легкого класса мощностью свыше 66 до 96 кВт	
5	Краны-манипуляторы, грузоподъемность 16 т	
6	Катки дорожные самоходыне гладкие массой 13 т	
7	Автопогрузчики, грузоподъемкость 5 т	
8	Автогрейдеры среднего типа мощностью от 88,9 до 117,6 кВт	
9	Погрузчики одноковшовые универсальные фронтальные пневмоколесные грузоподъемностью 3 т	

2.5.1. Расчет источников выбросов загрязняющих веществ в атмосферу на период строительства

Источник №6001

Выбросы от работы автотранспорта

Расчет проведен согласно Приложению № 3 к <u>приказу</u> Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года № 100-п, применительно к расчетам выбросов от карьерного транспорта. В

соответствии с п.19 приказа Министра ООС от 16.04.2012 г №110-Ө максимальные разовые выбросы ГВС от двигателей передвижных источников (г/с) учитываются в целях оценки воздействия на атмосферный воздух. Валовые выбросы от двигателей передвижных источников (т/период) не нормируются.

$$Mi(\Gamma/ce\kappa) = q*N/3.6$$

q- удельный усредненный выброс i-го загрязняющего вещества автомобилей j-марки с учетом различных режимов работы двигателя, кг/ч,

N- наибольшее количество одновременно работающих автомобилей јмарки в течение часа.

Максимальный разовый выброс диоксида серы (SO_2) , при работе двигателей автомобилей, рассчитывается по формуле:

 $Mi(\Gamma/ce\kappa) = 0.02*Bчаc*Sr/3.6$

Вчас- часовой расход топлива всей техникой, одновременно работающей на данном участке, кг/час.

Sr- % содержание серы – 0,3 %.

Суммарные выбросы оксидов азота разделяются на диоксид и оксид азота согласно формулам

 $M_{NO2}=M_{NOx}*0.8$

 $M_{NO}=M_{NOx}*0.65*(1-0.13)$

Удельные выбросы загрязняющих веществ дизельными двигателями автомобилей

Загрязняющие	Удельные усредненные выбросы ЗВ с	
вещества	учетом работы двигателей при различных	
	режимах (q1 _{ij}), кг/ч	
Оксид углерода,	0,339	
CO		
Оксиды азота, NOх	1,018	
Углеводороды, СН	0,106	
Сажа, С	0,030	

Расчет:

q- из таблицы, N - 2 ед.

Вчас- 21 кг/час

Наименование	Максимально-разовый выброс,
	г/сек
Оксид углерода, СО	0,188
Оксиды азота, NOх	0,566
В том числе	
NO2	0,4528
NO	0,07358
Углеводороды, СН	0,059
Сажа, С	0,0167

Диоксид серы	0,035

Выбросы от данного источника не нормируются, рассчитаны для комплексной оценки воздействия предприятия на прилегающую территорию.

Источник №6002 Выбросы пыли при автотранспортных работах

Количество пыли, выделяемое автотранспортом в пределах строительной площадки, рассчитываем согласно методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение №8 к приказу Министра охраны окружающей среды Республики Казахстан от 12. 06. 2014г. №221-ө):

$$\mathbf{Q}_{\text{сек}} = (\mathbf{C}_1 * \mathbf{C}_2 * \mathbf{C}_3 * \mathbf{N} * \mathbf{L} * \mathbf{q}_1 * \mathbf{C}_6 * \mathbf{C}_7)/3600 + \mathbf{C}_4 * \mathbf{C}_5 * \mathbf{C}_6 * \mathbf{q}_2 * \mathbf{F}_0 * \mathbf{n}, \ \Gamma/\text{сек},$$

$$\mathbf{Q}_{\text{год}} = (\mathbf{C}_1 * \mathbf{C}_2 * \mathbf{C}_3 * \mathbf{N} * \mathbf{L} * \mathbf{q}_1 * \mathbf{C}_6 * \mathbf{C}_7) + \mathbf{C}_4 * \mathbf{C}_5 * \mathbf{C}_6 * \mathbf{q}_2 * \mathbf{F}_0 * \mathbf{n}, \ \mathsf{T}/\mathsf{период},$$

где: C_1 -коэффициент, учитывающий среднюю грузоподъёмность единицы автотранспорта, т-1,0;

 C_2 - коэффициент, учитывающий среднюю скорость передвижения транспорта на стройплощадке, км/час - 0,6;

 C_3 - коэффициент, учитывающий состояние автодорог – 0,1;

 C_4 - коэффициент, учитывающий профиль поверхности материала на платформе определяемый как соотношение $C_4 = F_{\text{факт}}/F_0$ - 1,3;

 $F_{\text{факт}}$ – фактическая площадь поверхности материала на платформе, м²;

 F_0 – средняя площадь платформы, M^2 ;

С₅ - коэффициент, учитывающий скорость обдува материала - 1,0;

 C_6 - коэффициент, учитывающий влажность поверхностного слоя - 0,1;

N - число ходов (туда и обратно в пределах строительной площадки) всего автотранспорта в час - 2;

L – среднее расстояние транспортировки в пределах площадки, км - 0,01;

 q_1 - пылевыделение в атмосферу на 1 км пробега - 1450 г;

 q^{1}_{2} - пылевыделение с единицы фактической поверхности материала на платформе, г/м²*сек-0,002;

n - число автомашин, работающих на площадке -3;

 C_7 – коэффициент, долю пыли, уносимой в атмосферу, и равный 0,01.

$$\boldsymbol{Q_{ce\kappa}} = (1,0*0,6*0,1*2*0,01*1450*0,1*0,01)/3600 + 1,3*1,0*0,1*0,002*14*3$$

= 0,00000048 + 0,01092 г/сек = 0,01092 г/сек

$$\mathbf{Q}_{\text{год}} = (1,0*0,6*0,1*2*0,01*1450*0,1*0,01) + 1,3*1,0*0,1*0,002*14*3$$

= 0,00174+0,01092 г/сек = 0,01266 т/период

Источник №6003

Сварочные работы

В целом на площадке будет израсходовано:

= 400000 nm more experience experience.		
Электроды Э42	Т	0,304
Проволока для сварки	КГ	11

Расчет ВВВ произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)», Астана 2004 г.

Электроды марки Э42

В целом на площадке будет израсходовано 304 кг электродов марки Э-42. Расход электродов 0,5 кг/час.

Расчет применим к электроду марки АНО-6.

Расчет ВВВ произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)», Астана 2004 г.

Оксиды железа (0123):

Мсек =
$$14,97$$
 г/кг * $0,5$ кг/час / $3600 = 0,0021$ г/с.

Мгод = 14,97 г/кг*
$$304/1000000 = 0,00455$$
 т/период.

Оксиды марганца (0143):

$$Mcek = 1.73 * 0.5 / 3600 = 0.00024 r/c.$$

$$M$$
год = 1,73 * 304 /1000000 = 0,00053 т/ период.

Выбросы составят:

Наименование вещества	Выбросы	
	г/сек	т/период
Железо оксид	0,0021	0,00455
Оксиды марганца	0,00024	0,00053

Сварочная проволока

Сварка производится в среде углекислого газа проволокой. Расход проволоки составляет — 10.8 кг/период.

Оксиды железа (0123):

Мсек = 7,67 г/кг * 0,05 кг/час /
$$3600 = 0,0001$$
 г/с.

Мгод = 7,67 г/кг*
$$10,8/1000000 = 0,000083$$
 т/ период.

Оксиды марганца (0143):

$$Mcek = 1.9 * 0.05 / 3600 = 0.000026 r/c.$$

$$M$$
год = 1,9 * 10,8/1000000 = 0,00002 т/ период.

Пыль неорганическая (2908):

$$Mcek = 0.43 * 0.05 / 3600 = 0.000006 r/c.$$

$$M$$
год = 0,43 * 10,8/ $1000000 = 0,000005$ т/ период.

Выбросы по проволоку составят:

Наименование	Выбросы	
вещества	г/сек	т/период
Железо оксид	0,0001	0,000083
Оксиды марганца	0,00026	0,00002
Пыль неорганическая	0,000006	0,00005

Выбросы по источнику составят:

Наименование ЗВ	z/c	т/период
Железо оксид	0,0022	0,004633
Оксиды марганца	0,000266	0,00055
Пыль неорганическая	0,000006	0,000005

Источник №6004 Окрасочные работы

При покраске используются:

Эмаль ПФ-115	Т	0,19
Уайт-спирит	Т	0,03

Расчет выбросов произведен «Методики расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004».

Эмаль пентафталевая ПФ-115

Расход эмали-ПФ 115 - 0,19 т/период, 1,5 кг/час, 0,42 г/с.

Состав краски ПФ-115:

Сухой остаток -55%;

Летучая часть – 45% в том числе;

Ксилол – 50%;

Уайт-спирит – 50%.

Окраска металлических изделий производится краскопультом. При окраске краскопультом в атмосферу выделяется 30% красочного аэрозоля и 25% растворителей. При сушке окрашенных изделий в атмосферу выделяется 75% ВВВ.

Взвешенные частицы:

Мсек=
$$0,42 *0,55*0,3=0,0693$$
 г/сек Мгод= $0,19 *0,3*0,55=0,03135$ т/ период.

Ксилол:

При окраске: Мсек=0,42*0,45*0,5*0,25=0,0236 г/сек При сушке: Мсек=0,42*0,45*0,5*0,75=0,071 г/сек Мгод=0,19*0,45*0,5*1=0,04275 т/ период.

Уайт-спирит:

При окраске: Мсек=0,42*0,45*0,5*0,25=0,0236 г/сек При сушке: Мсек=0,42*0,45*0,5*0,75=0,071 г/сек Мгод=0,19*0,45*0,5*1=0,04275 т/ период.

Выбросы по эмали составят:

Выоросы по эмали составит.		
Наименование	Выбросы	
вещества	г/сек	т/период
Взвешенные вещества	0,0693	0,03135
Ксилол	0,071	0,04275
Уайт-спирит	0,071	0,04275

Розлив уайт-спирита предварительное обезжиривание поверхностей, промывка инвентаря — 0.03 т, 0.2 кг/час, 0.06 г/с. Учтено 100 % испарения. Уайт-спирит:

Мсек =
$$0.06$$
 г/с Мгод = 0.03 т/год.

Так как покраска и сушка не производится одновременно, то максимально-разовые выбросы принимаются при сушке.

Выбросы по источнику составят:

Наименование ЗВ	г/сек	т/период.
Уайт-спирит	0,131	0,07275
Ксилол	0,071	0,04275
Взвешенные вещества	0,0693	0,03135

Источник №6005 Выемка грунта

Расчет выбросов загрязняющих веществ произведен по методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение №8 к приказу Министра охраны окружающей среды Республики Казахстан от 12.04.2014г. №221—ө), 24. Выбросы при выемочно-погрузочных работах:

При работе экскаваторов пыль выделяется, главным образом, при погрузке материала в автосамосвалы.

$$Q2 = \frac{P1*P2*P3*P4*P5*P6*B1*G*10^6}{3600}$$

- где, P1 доля пылевой фракции в породе; определяется путем промывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм (P1=k1)-0.03;
- P2 доля переходящей в аэрозоль летучей пыли с размером частиц 0-50 мкм по отношению ко всей пыли в материале (предполагается, что не вся летучая пыль переходит в аэрозоль). Уточнение значения P2 производится отбором запыленного воздуха на границах пылящего объекта при скорости ветра, 2 м/с, дующего в направлении точки отбора пробы (P2 = k2 из таблицы 1) -0,01;
- P3 коэффициент, учитывающий скорость ветра в зоне работы экскаватора. Берется в соответствии с таблицей 2 согласно приложению к настоящей Методике (P3 = k3) 1,2;
- Р4 коэффициент, учитывающий влажность материала и, принимаемый в соответствии с таблицей 4 согласно приложению к настоящей Методике (P4=k4) –0,1;
- G количество перерабатываемой породы т/ч;
- В' коэффициент, учитывающий высоту пересыпки 0,6.

- P5 коэффициент, учитывающий крупность материала и принимаемый в соответствии с таблицей 7 согласно приложению к настоящей Методике (P5 = k5)-0,7;
- Р6 коэффициент, учитывающий местные условия и принимаемый в соответствии с таблицей 3 согласно приложению к настоящей Методике (P6=k6)-1;

Объем вынимаемого грунта $10510 \text{ м}^3*1,9 = 19969 \text{ т}$

Пыль неорганическая:
$$70-20\%$$
 двуокиси кремния (2908) Q2 сек = $(0.03*0.01*1.2*0.1*0.7*1.0*0.6*15*10^6)/3600 = 0.063$ г/с Q2 пер. = $0.03*0.01*1.2*0.1*0.7*1.0*0.6*19969 = 0.3$ т/период

Источник №6006 Обратная засыпка грунта

Расчет выбросов загрязняющих веществ произведен по методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение №8 к приказу Министра охраны окружающей среды Республики Казахстан от 12.04.2014г. №221—ө), 24. Выбросы при выемочно-погрузочных работах:

При работе экскаваторов пыль выделяется, главным образом, при погрузке материала в автосамосвалы.

$$Q2 = \frac{P1*P2*P3*P4*P5*P6*B1*G*10^6}{3600}$$

- где, P1 доля пылевой фракции в породе; определяется путем промывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм (P1=k1)-0,03;
- P2 доля переходящей в аэрозоль летучей пыли с размером частиц 0-50 мкм по отношению ко всей пыли в материале (предполагается, что не вся летучая пыль переходит в аэрозоль). Уточнение значения P2 производится отбором запыленного воздуха на границах пылящего объекта при скорости ветра, 2 м/с, дующего в направлении точки отбора пробы (P2 = k2 из таблицы 1) -0,01;
- P3 коэффициент, учитывающий скорость ветра в зоне работы экскаватора. Берется в соответствии с таблицей 2 согласно приложению к настоящей Методике (P3 = k3) 1,2;
- Р4 коэффициент, учитывающий влажность материала и, принимаемый в соответствии с таблицей 4 согласно приложению к настоящей Методике (P4=k4) –0,1;
- G количество перерабатываемой породы т/ч;
- B' коэффициент, учитывающий высоту пересыпки 0,4.
- P5 коэффициент, учитывающий крупность материала и принимаемый в соответствии с таблицей 7 согласно приложению к настоящей Методике (P5 = k5)-0,7;

Р6 - коэффициент, учитывающий местные условия и принимаемый в соответствии с таблицей 3 согласно приложению к настоящей Методике (P6=k6)-1,0;

Объем обратной засыпки грунта 31377,5 $M^3*1,9 = 59617,25$ т

Пыль неорганическая: 70-20% двуокиси кремния (2908)

Q2 cek = $(0.03*0.01*1.2*0.1*0.7*1.0*0.4*15*10^6)/3600 = 0.042 \text{ r/c}$

Q2 пер. = 0.03*0.01*1.2*0.1*0.7*1.0*0.4*59617.25 = 0.6 т/период

Источник №6007 Прием инертных материалов

На участке будет производиться хранение материалов:

	·· · I ··· ·	
Щебень	3341,6 м ³	9022,32 т
ПГС	7959 m^3	20693,4 т

Выгрузка щебня

Грузооборот щебня за период строительства -9022,32 т (5,0 т/час).

Производим расчет пыли как о т неорганизованных источников выбросов, согласно Приложение №11к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п.

Максимальный объем пылевыделений от выгрузки сырья рассчитывается по формуле:

$$\begin{aligned} &\textit{Mcex} = \frac{\textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B} \times \textit{Guac} \times 10^6}{3600} : \\ &\textit{M20d} = \textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B}' \times \textit{G20d} \end{aligned} :$$

где:

 k_1 – весовая доля пылевой фракции в материале – 0,06;

 k_2 – доля пыли (от всей массы пыли), переходящая в аэрозоль – 0,03;

 k_3 – коэффициент, учитывающий местные метеоусловия – 1,2;

 k_4 — коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования — 1,0;

При учитывании местных условий, степень защищённости узла от внешних воздействий и условий пылеобразования инертных материалов имеет коэффициент 1,0 открытый узел, с 4 сторон.

 k_5 – коэффициент, учитывающий влажность материала – 0,6;

 k_7 – коэффициент, учитывающий крупность материала – 0,5;

 k_8 — поправочный коэффициент для различных материалов в зависимости от типа грейфера — 1

 k_9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 - свыше 10 т. В остальных случаях k9=1;

В' - коэффициент, учитывающий высоту пересыпки – 0,6;

Gчас – производительность узла пересыпки, т/час;

Gгод – производительность узла пересыпки, т/год;

Пыль неорганическая: 20-70% двуокиси кремния (2908)

 $\mathbf{Q}_{\text{cek}} = (0.06*0.03*1.2*1*0.5*0.6*1*0.2*0.6*5.0*10^6) / 3600 = \mathbf{0.108} \text{ r/cek}$

 $\mathbf{Q}_{\text{пер.}} = 0.06*0.03*1.2*1*0.5*0.6*1*0.2*0.6*9022.32 = \mathbf{0.7}$ т/период.

Выгрузка ПГС

Грузооборот ПГС за период строительства – 20693,4 т (5,0 т/час).

Производим расчет пыли как о т неорганизованных источников выбросов, согласно Приложение №11к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п.

Максимальный объем пылевыделений от выгрузки сырья рассчитывается по формуле:

$$\begin{aligned} &\textit{Mcex} = \frac{\textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B}' \times \textit{Guac} \times 10^6}{3600} : \\ &\textit{M2od} = \textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B}' \times \textit{G2od} \end{aligned} :$$

где:

 k_1 – весовая доля пылевой фракции в материале – 0,03;

 k_2 – доля пыли (от всей массы пыли), переходящая в аэрозоль – 0,04;

 k_3 – коэффициент, учитывающий местные метеоусловия – 1,2;

 k_4 — коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования — 1;

При учитывании местных условий, степень защищённости узла от внешних воздействий и условий пылеобразования инертных материалов имеет коэффициент 1 покрываемости узла, с 4 сторон.

 k_5 – коэффициент, учитывающий влажность материала – 0,5;

 k_7 – коэффициент, учитывающий крупность материала – 0,5;

 k_8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера – 1;

 k_9 — поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала — 0.1;

B' - коэффициент, учитывающий высоту пересыпки – 0,6;

Gчас – производительность узла пересыпки, т/час;

Gгод – производительность узла пересыпки, т/год;

Пыль неорганическая: 20-70% двуокиси кремния (2908)

$$\mathbf{Q}_{\text{сек}} = (0.03*0.04*1.2*1.0*0.5*0.5*1.0*0.1*0.6*5.0*10^6)/3600 = \mathbf{0.03}$$
 г/сек $\mathbf{Q}_{\text{пер.}} = 0.03*0.04*1.2*1.0*0.5*0.5*1.0*0.1*0.6*20693.4= \mathbf{0.45}$ т/период.

С учетом одновременного проведения земляных работ выбросы по источнику составят:

Наименование вешества	г/сек	т/период
Пыль неорганическая: 20-70% двуокиси кремния (2908)	0,138	1,15

Источник №6008 Гидроизоляция

Расчет выбросов загрязняющих веществ произведен по методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение №11 к приказу

Министра охраны окружающей среды Республики Казахстан от 18. 04 2008г. №100 –п).

Масса выделяющихся загрязняющих веществ из открытых поверхностей, в т.ч. смазанных форм для заливки, определяется в зависимости от количества испаряющейся жидкости и составляет:

$$Mce\kappa = q \times S$$
, Γ/c ,

где: q — удельный выброс загрязняющего вещества, г/с \square м², для нефтяных масел - 0,0139.

S — площадь обработанной за 20 мин поверхности или свободная поверхность испаряющейся жидкости, M^2 .

$$Mnepuo\partial = \frac{Mce\kappa \times T \times 3600}{10^6}$$
, т/период,

где T — "чистое" время нанесения смазки или время "работы" открытой поверхности, ч/год.

Площадь покрытия гудроном составит 810 м² /60=13,5

Выбросы углеводородов составят:

Источник №6009 Работы с отбойным молотком

При строительстве используются отбойные молотки.

Общее время работы – 16 час/период.

При работе отбойного молотка в атмосферный воздух выделяется пыль неорганическая с содержанием SiO2 20-70% (2908).

Расчет выбросов загрязняющих веществ выполнен по «Методике расчета нормативов выбросов от неорганизованных источников» Приложение № 13 к Приказу Министра охраны окружающей среды РК от 18 апреля 2008 года № 100-п.

Максимально-разовое выделение пыли определяется по формуле:

Мсек =
$$n*z$$
 (1- n)/3600, Γ /сек

где:

n – количество единовременно работающих станков;

z – количество пыли, выделяемое одним станком, 360 г/ч,

 η – эффективность системы пылеочистки, в долях,0.

Т - время работы в период.

n – количество дней работы.

Расчет выбросов пыли неорганической с содержанием SiO2 20-70 % (2908):

Мсек =
$$4*360*(1-0)/3600 = 0,4$$
 г/сек;
Мгод= $360*16*(1-0)/10^6 = 0,00576$ т/пер.

Источник №0001 Компрессор с ДВС

На площадке будет использоваться передвижной компрессор с ДВС, время работы -755 час/период, мощностью 29 кВт.

Расчет потребляемого топлива:

$$M = 220*29/1000 = 6,38 \text{ кг/час}$$
 6,38 кг/час*755= 4816,9 кг/год

Максимальный секундный выброс определяется по формуле:

$$M=(1/3600)*e*P,\Gamma/c$$

Где: Р = 29 кВт - максимальная эксплуатационная мощность

е - выброс вредного вещества на единицу полезной работы стационарной дизельной установки, г/КВт*ч

1/3600 — коэффициент пересчета часов в секунды

Валовый выброс определяем по формуле:

$$W=(1/1000)* q*G, т/период$$

Где: q (г/кг.топл) - выброс загрязняющих веществ, приходящихся на 1кг дизельного топлива

G (т) - расход дизтоплива дизельгенератором

1/1000 - перевод кг в т.

При мощности 29 кВт, устройство относится к группе A - малой мощности.

Расчетные максимально-разовые выбросы.

т ас тетные макенмально разовые выоросы.							
Наименование вещества	Удельный выброс, е, г/кВт*ч	Секундный выброс, г/с					
Оксид углерода	7,2	0,06					
Окислы азота в т.ч.	10,3	0,083					
Диоксид азота		0,066					
Оксид азота		0,011					
Углеводороды	3,6	0,029					
Сажа	0,7	0,0056					
Диоксид серы	1,1	0,0089					
Формальдегид	0,15	0,0012					
Бенз(а)пирен	1,3*10 ⁻⁵	0,0000001					

Расчет годовых выбросов от компрессора:

1 асчет годовых	асчет годовых выоросов от компрессора.						
Расход	Наименование	Удельный выброс, q,	Валовый выброс,				
дизтоплива, G,т	вещества	г/кг топл	т/период				
4,8169	Оксид углерода	30	0,14				
	Азота оксиды в т.ч.	43	0,21				
	Азота диоксид		0,168				
	Азота оксид		0,0273				
	Углеводороды	15	0,072				
	Сажа	3	0,014				
	Диоксид серы	4,5	0,022				
	Формальдегид	0,6	0,003				
	Бенз(а)пирен	0,000055	0,00000026				

Объем отработавших газов определен в соответствии с приложением к вышеуказанной «Методике...» и составит:

$$Q = \frac{8,72*10^{-3}*B}{Y/(1+T/273)}$$
, где

Y- удельный вес отработавших газов при температуре 0^{0} C, можно принимать $1.31~{\rm kr/}~{\rm M}^{3}$

Т- температура отработавших газов, К

В- часовой расход топлива

$$Q = 8.72*10^{-3}*6.38/1.31/[1+(450+273)/273] = 0.15 \text{ m}^3/\text{c}$$

Источник №0002 Битумный котел

В период строительства будет использоваться передвижной битумный котел, работающий на дизельном топливе.

Расчет проведен согласно «Методике расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе от асфальтобетонных заводов (Приложению № 3 к приказу Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года № 100-п).

Продукты сгорания удаляются через дымовую трубу высотой 3 метров и диаметром 0,1 м.

При сжигании топлива:

На период строительства битумный котел будет работать -17 час/период. Расход дизтоплива на 1 м3 составляет 0,24 кг или 0,24 х 30 = 7,2 кг/ч или 7,2 х 1000/3600 = 2 г/с

Расход дизтоплива битумного котла за период равен: 7,2*17/1000=0,1224 т/пер. Расчетные характеристики топлива:

 $Q_{H}^{p} = 10180 \text{ Ккал/кг } (42,62 \text{ Мдж/кг})$

Объем продуктов сгорания на выходе из дымовой трубы, м3/с:

$$V \!\!=\!\! 7,\! 2*16,\! 041*(273+300)/273*3600 \!\!=\!\! 0,\! 067$$

Т-температура уходящих газов на выходе из трубы - 300 °C

Расчет выбросов загрязняющих веществ (оксиды серы, углерода и азота, твердые частицы) выполняются согласно формулам.

Валовый выброс твердых частиц (*золы твердого топлива - сажа*) рассчитывают по формуле:

$$M_{TB} = cod = g_T \times m \times \chi \times (1 - \frac{\eta_T}{100}), m / cod,$$

$$M_{\it TB}$$
год=0,025*0,1224*0,01*(1-0/100) = **0,0000306** т/пер

где: g_T - зольность топлива в % (дизтопливо - 0,025 %);

m - количество израсходованного топлива т/пер:

 χ - безразмерный коэффициент дизтопливо – 0,01;

 η_T - эффективность золоуловителей по паспортным данным установки, 0.

Максимально разовый выброс рассчитывают по формуле:

$$M_{TB}ce\kappa = \frac{M_{TB} 2o\partial \times 10^6}{3600 \times n \times T_3}, \epsilon/ce\kappa,$$

 $M_{\rm TB}$ сек =0,0000306*1000000/3600*17 = **0,0005** г/сек

Валовый выброс *ангидрида сернистого* в пересчете на SO_2 (сера диоксид) рассчитывают по формуле:

$$M_{SO2} cod = 0.02 \times B \times S^P \times (1 - \eta'_{SO2}) \times (1 - \eta''_{SO2}), m/cod,$$

$$M_{SO2}$$
 $zod = 0.02*0.1224*0.3*(1-0.02)(1-0) = 0.00072$ т/пер

где: B - расход жидкого топлива, т/пер;

 S^{p} - содержание серы в топливе, 0,3 %

 η'_{so2} - доля ангидрида сернистого, связываемого летучей золой топлива (при сжигании дизтоплива $\eta'_{so2}=0{,}02$);

 η''_{so2} - доля ангидрида сернистого, улавливаемого в золоуловителе. Для сухих золоуловителей принимается равной 0.

Максимально разовый выброс определяется по формуле:

$$M_{so_2}ce\kappa = \frac{M_{so_2} zo\partial \cdot 10^6}{3600 \cdot n \cdot T_3}$$
, $z/ce\kappa$

$$M_{so}$$
, $ce\kappa = 0.00072*1000000/3600*17 = 0.0119 r/ce\kappa$

Валовый выброс *оксидов азота* (в пересчете на NO_2) [5], выбрасываемых в атмосферу, рассчитывают по формуле:

$$M_{NO2} = 0.001 \times B \times Q_H^P \times K_{NO2} \times (1 - \beta), m = 0.001 \times B \times Q_H^P \times K_{NO2} \times (1 - \beta), m = 0.001 \times B \times Q_H^P \times K_{NO2} \times (1 - \beta), m = 0.001 \times B \times Q_H^P \times K_{NO2} \times (1 - \beta), m = 0.001 \times B \times Q_H^P \times K_{NO2} \times (1 - \beta), m = 0.001 \times B \times Q_H^P \times K_{NO2} \times (1 - \beta), m = 0.001 \times B \times Q_H^P \times K_{NO2} \times (1 - \beta), m = 0.001 \times Q_H^P \times Q_H^P$$

где B - расход топлива т/период.

$$M_{NO2}$$
год=0,001 * 0,1224 * 42,62*0,08* (1-0) = **0,00042** т/пер

Максимально разовый выброс рассчитывают по формуле:

$$M_{NO_2}ce\kappa = \frac{M_{NO_2}zoo\times 10^6}{3600\times n\times T_3}$$
, $z/ce\kappa$

$$M_{NO}$$
, $cek = 0.00042*1000000/3600*17 = 0.0069 r/cek$

Тогда диоксид азота: Мсек=0,00552 г/сек

$$M_{\text{год}} = 0,000336$$
 т/пер

Оксид азота: М_{сек}=0,000897 г/сек

$$M_{\text{год}} = 0,0000546$$
 т/пер

Валовый выброс оксида углерода рассчитывают по формуле:

$$M_{co} z o \partial = 0.001 \times C_{co} \times B \times \left(1 - \frac{g_4}{100}\right), m/z o \partial,$$

$$M_{co}$$
год=0,001*13,85*0,1224= **0,0017** т/пер

где C_{co} - выход оксида углерода при сжигании топлива, кг/т жидкого топлива, рассчитывается по формуле:

$$C_{CO} = g_3 \times R \times Q_H^P$$
, $\kappa \Gamma / T$
 $C_{CO} = 0.5*0.65*42.62=13.85 \ \kappa \Gamma / T$

где: g_3 - потери теплоты вследствие химической неполноты сгорания топлива, % (ориентировочно для дизтоплива $g_3 = 0.5$ %);

- R коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива, обусловленный наличием в продуктах неполного сгорания оксида углерода (для дизтоплива R=0.65);
- g_4 потери теплоты вследствие механической неполноты сгорания топлива, % (ориентировочно для мазута $g_4=0$ %).

Максимально разовый выброс определяется по формуле:

$$M_{co}ce\kappa = \frac{M_{co} zod \times 10^6}{3600 \times n \times T_3} , z/ce\kappa$$

 M_{CO} ce $\kappa = 0.0017*1000000/3600*17 =$ **0.0277** $r/ce<math>\kappa$

При хранении битума:

 $p_{\text{жп}}$ - плотность битума — 0,95 т/м3;

Минимальная температура жидкости – 100°C;

Максимальная температура жидкости – 140° C;

m – молекулярная масса битума, 187;

 V^{max} — максимальный объем ПВС, вытесняемой из резервуаров во время его закачки, 12 м3/час;

В – грузооборот, т/период;

 K^{max} , K^{cp} – опытные коэффициенты, 0,90 и 0,63;

Коб – коэффициент оборачиваемости, 2,50;

 $P^{\text{max}} = 19,91$ $P^{\text{min}} = 4,26$ — давление насыщенных паров жидкости при

максимальной и минимальной температуре жидкости;

 $K_{\text{в}}$ = опытный коэффициент;

Максимальный выброс углеводорода:

 $M=0,445*19,91*187*0,90*1*12/10^{2*}(273+140) = 0,0433 \text{ г/сек};$

Валовый выброс углеводорода:

 $G=0,160*(19,91*1+4,26)*187*0,63*2,50*0,1224/10^4*0,95*(546+140+100)=0,000019$ т/год.

Выбросы по источнику составят:

Наименование	Выбросы			
вещества	г/сек	т/год		
Сажа	0,0005	0,0000306		
Сера диоксид	0,0119	0,00072		
Азота диоксид	0,00552	0,000336		
Азота оксид	0,000897	0,0000546		
Оксид углерода	0,0277	0,0017		
Углеводород	0,0433	0,000019		

Источник №0003 <u>Передвижная электростанция</u>

При строительстве используется передвижная электростанция, мощностью 4 кВт. Расход топлива составляет 0,9 л/час. Отвод выхлопных газов производится по трубе на высоту 2,5 м, диаметром трубы 0,05м. Максимальное время работы передвижной электростанции 728 часов в

период. Расход топлива составит: 0.9 л/час*0.769*728 = 503.85 кг/период, 0.0041526 т/период.

Расчет выбросов произведен согласно «Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004».

Максимальный секундный выброс определяется по формуле:

$$M=(1/3600)*e*P,r/c$$

Где: Р= 4 кВт - максимальная эксплуатационная мощность

е - выброс вредного вещества на единицу полезной работы стационарной дизельной установки, г/КВт*ч

1/3600 — коэффициент пересчета часов в секунды

Валовый выброс определяем по формуле:

$$W=(1/1000)* q*G, т/год$$

Где: q (г/кг.топл) - выброс загрязняющих веществ, приходящихся на 1кг дизельного топлива

G (т) - расход дизтоплива дизельгенератором

1/1000 - перевод кг в т.

При мощности 4 кВт дизельгенератор относится к группе А (маломощные, быстроходные и повышенной быстроходности).

Расчеты годовые выбросы от дизельгенератора

Расход	Наименование	Удельный выброс,	Валовый выброс,
дизтоплива,	вещества	q, г/кг топл	т/период
G,T			
0,50385	Оксид углерода	30	0,015
	Окислы азота в т.ч.	43	0,022
	Диоксид азота		0,0176
	Азота оксид		0,00286
	Углеводороды	15	0,0076
	Сажа	3,0	0,0015
	Диоксид серы	4,5	0,00227
	Формальдегид	0,6	0,0003
	Бенз(а)пирен	5,5*10-5	0,000000028

Расчетные максимально-разовые выбросы от лизельгенератора

The letting makenmasine paseble biopeen of discipline parepar							
Наименование	Удельный	выброс,	е, Секун,	дный выброс, г/с			
вещества	г/кВт*ч						
Оксид углерода	7	7,2		0,008			
Окислы азота в т.ч.	1	0,3		0,0114			
Диоксид азота	8	3,2		0,0091			
Азота оксид	1	.,4		0,0015			
Углеводороды	3	3,6		0,004			
Сажа),7		0,00078			
Диоксид серы	1	.,1		0,0012			

Формальдегид	0,15	0,00017
Бенз(а)пирен	1,3*10-5	0,00000014

Объем отработавших газов определен в соответствии с приложением к вышеуказанной «Методике...» и составит:

$$Q = \frac{8,72*10^{-3}*B}{Y/(1+T/273)}$$
, где

Y- удельный вес отработавших газов при температуре 0^{0} C, можно принимать $1.31~{\rm kr/}~{\rm m}^{3}$

Т- температура отработавших газов, К

В- часовой расход топлива

$$Q = \frac{8,72*10^{-3}*0,6921}{1,31/[1+723/273]} = 0,017 \text{ m}^3/\text{c}$$

Виды и объемы образования отходов Система управления отходами на период строительства

Объемы образования отходов определены согласно Приложению №16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п «Методика разработки проектов нормативов предельного размещения отходов производства и потребления».

На период строительства:

В результате деятельности образуются следующие виды отходов:

- твердые бытовые отходы персонала;
- производственные отходы.

Смешанные коммунальные отходы

Норма образования отходов составляет 0,3 м³ на человека в год. Количество персонала – 69 человек. Период строительства составляет 4 месяца.

Бытовые отходы персонала строительства складируются в металлические контейнеры и вывозятся на полигон бытовых отходов.

Твердо-бытовые отходы включают: полиэтиленовые пакеты, пластиковые бутылки, пластмасса, бумага, картон, стекло и т.п., сгораемые (бумага, картон, пластмасса) и не сгораемые бытовые отходы. Агрегатное состояние - твердые вещества. Не растворяются в воде. Пожароопасные, не токсичные, не взрывобезопасные.

Класс опасности - IV, малоопасные отходы.

Код отхода -200301.

Твердые бытовые отходы складируются в специальные контейнеры, размещаемые на площадке с твердым покрытием и по мере накопления вывозятся на полигон ТБО.

<u>Отходы от красок и лаков, содержащие органические растворители</u> <u>или другие опасные вещества</u>

Расчёт образования пустой тары произведён по «Методике разработки проектов нормативов предельного размещения отходов производства и потребления», утверждённой Приказом МООС РК № 100-п от 18.04.2008 г.

Норма образования отхода определяется по формуле:

N =
$$\Sigma M_i \cdot n + \Sigma M_{\kappa i} \cdot \alpha_i$$
, $T/\Gamma O \Pi$,

где: M_i – масса i -го вида тары, т/год;

n — число видов тары;

 $M_{\kappa i}$ – масса краски в i-ой таре, т/год;

 α_i — содержание остатков краски в i -той таре в долях от $M_{\kappa i}$ (0.01-0.05).

№	Наименование продукта ЛКМ	Масса поступив- ших ЛКМ, т	Масса тары Мі, т (пустой)	Кол-во тары, п	Масса краски в таре Мкі, т	аі содержание остатков краски в таре в долях от Mki (0,01-0,05)	Норма отхода тары из- под ЛКМ, т
1	2	3	4	5	6	7	8
1	Эмали	0,19	0,0005	20	0,0095	0,01	0,0119
		0,19					0,0119

Всего за период проведения строительства планируется к образованию **0,0119 тонны** пустой тары из-под ЛКМ.

Класс опасности - III, отходы умеренно опасные.

Код отхода -080111*

Тара из-под краски складируются в специальные контейнеры, размещаемые, на площадке с твердым покрытием и по мере накопления передаются специализированным организациям по приему данных видов отходов.

Отходы сварки

При строительстве планируется использовать 0,304 т электродов. Расчет образования огарков сварочных электродов производится по формуле «Методики разработки проектов нормативов предельного размещения отходов производства и потребления» (Приложение 16 к Приказу МООС РК № 100-п от 18.04.2008 г.).

Норма образования огарков электродов составляет:

$$N = M_{\text{ост}} \cdot \alpha$$
, $T/\Gamma O J$,

где: $M_{\text{ост}}$ – расход электродов, т/год;

 α – остаток электрода, α =0.015 от массы электрода.

Количество образующихся огарков электродов при строительстве составит

$$0,304*0,015=0,00456$$
 т/период

Физическая характеристика отходов: - не растворим в воде, взрыво и

пожаробезопасны. Химический состав: - железо 96-97%, обмазка (типа $Ti(CO_3)_2$) - 2-3%; прочее - 1%. Агрегатное состояние - твердые вещества.

Класс опасности - IV, малоопасные отходы.

Код отхода – 12 01 13.

Огарки сварочных электродов складируются в специальные контейнеры, размещаемые, на площадке с твердым покрытием и по мере накопления передаются специализированным организациям по приему данных видов отходов.

Смешанные отходы строительства и сноса

Ориентировочное образование строительного мусора, согласно сметной документации составляет — 34,54 т/период.

Состав %: аморфная стеклофаза: SiO2, Al2O3, Na2O3, K2O - 72.78; Mg - 1.82; P2O5 - 0.27, Ca - 16.52, Fe2O3 - 3.1, TiO2 - 0.47, нефтепродукты - 0,48; прочие - 4,56. Агрегатное состояние - твердые вещества. Слабо растворяемые в воде. Пажаро и взрывобезопасные. Некоррозионноопасные.

Класс опасности – IV, малоопасные отходы.

Код отхода -170904.

Строительный мусор складируется на отведенной площадке и по мере накопления строительный мусор вывозится на полигон ТБО.

Нормативы размещения отходов производства и потребления, образуемых на этапе строительства

Таблица 5.1.2

Наименование отходов	Гру ппа	Подгр уппа	Код	Количество образования, т/период	Количество накопления, т/период
1	2	3	4	5	6
Всего				36,28146	0
Смешанные коммунальные отходы	20	20 03	20 03 01	1,725	0
Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества	08	08 01	08 01 11*	0,0119	0
Отходы сварки	12	12 01	12 01 13	0,00456	0
Смешанные отходы строительства и сноса	17	17 09	17 09 04	34,54	