

Государтсвенная лицензия №02194P от 03.07.2020 г.

Отчет о возможных воздействиях к «Плану горных работ на добычу никель-кобальтовых руд месторождения Шандашинское в Актюбинской области открытым способом»

Исполнитель:

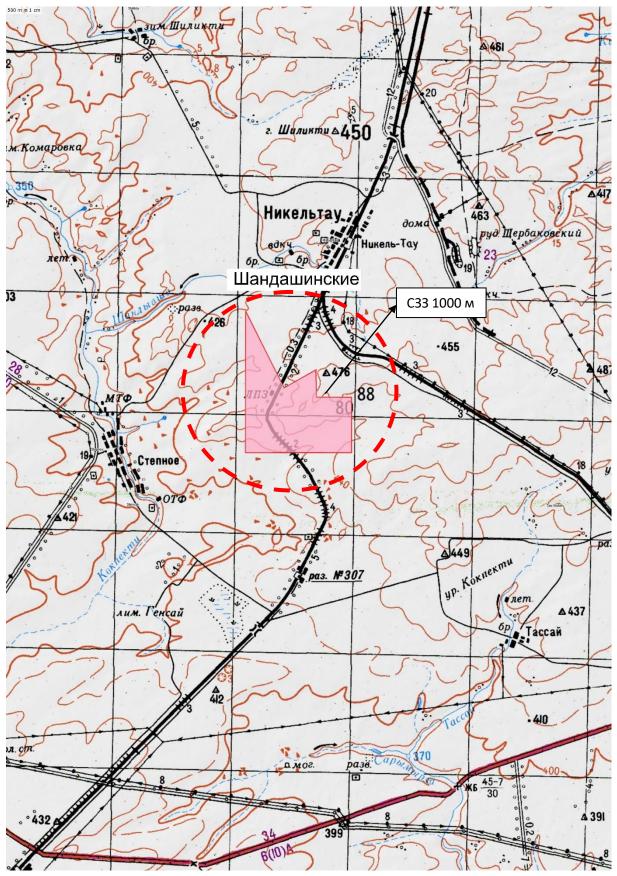
Директор

TOO «Eco Project Company»

Мұратов Д. Е.

1. Описание предполагаемого места осуществления намечаемой деятельности, его координаты, определенные согласно геоинформационной системе, с векторными файлами;

Шандашинское месторождение было открыто в 1933 году при проведении геологосъемочных работ масштаба 1:200000 геологами Казгеолтреста (Цибульчик М.А. и др.), в 1937-40 годах месторождение было подвергнуто более детальным геологоразведочным работам, проводимых Актюбинской КГРП треста «Уралцветметразведка».


В 1975-76 годах Кимперсайской ГРП Кимперсайского рудоуправления проводились геологоразведочные работы на Шандашинском месторождении — Центральной и Северной залежах.

Район работ находится в юго-западной части Кимперсайского ультраосновного массива, который является самым крупным на Южном Урале.

В административном отношении район работ расположен на территории Хромтауского района Актюбинской области.

Географические координаты центра месторождения: $50^{\circ}20'$ - северной широты; $58^{\circ}14'$ - восточной долготы.

Месторождение никель-кобальтовых руд «Шандашинское» входит в состав месторождение никель-кобальтовых руд в Актюбинской области. Ближайшая станция Никельтау расположен на расстояние 3,5 км с северной стороны. Координаты расположения горного отвода: 1) 50° 21'30, 00° с.ш., 58° 13' 0, 00° в.д., 2) 50° 21' 0, 00° с.ш., 58° 13' 0, 00° в.д., 3) 50° 21' 0, 00° с.ш., 58° 14' 0, 00° в.д., 4) 50° 20' 0, 00° с.ш., 58° 14' 0, 00° в.д., 5) 50° 20' 0, 00° с.ш., 58° 11' 0, 00° в.д., 6) 50° 22' 33, 47° с.ш., 58° 11' 0, 00° в.д., 7) 50° 21' 10, 00° с.ш., 58° 12' 0, 00° в.д., 8) 50° 21'30, 00° с.ш., 58° 13' 0, 00° в.д. Выдано заключение по признанию производственной деятельности субъектов ПИД, связанной с недропользованием, №38 от 7.02.2023 года.

Ст. Никельтау расположен на расстояние 3,5 км.

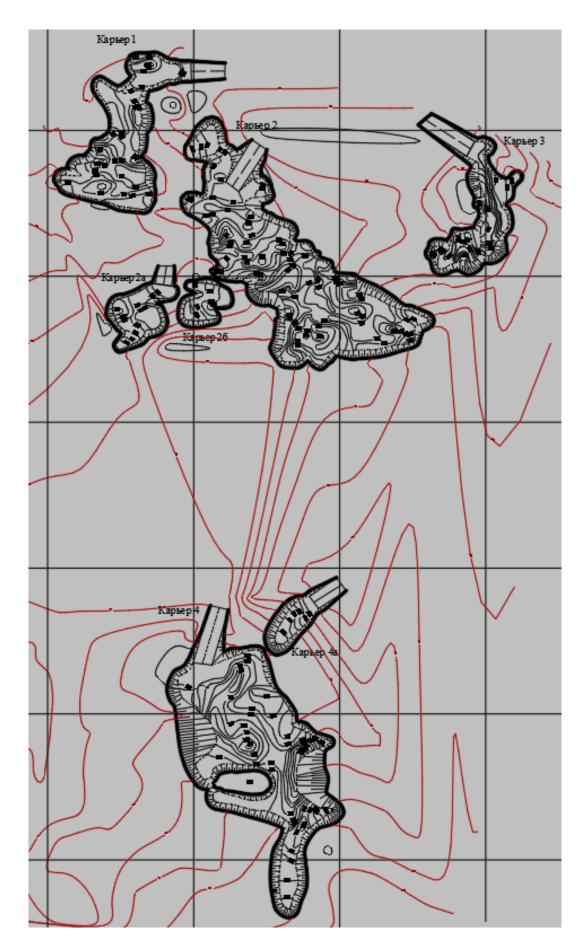


Рисунок 3.1 – План карьера на конец отработки

2. Описание состояния окружающей среды на предполагаемой затрагиваемой территории на момент составления отчета (базовый сценарий).

Деятельность планируется осуществлять в Хромтауском районе, были проведены лабораторные исследования, выявлены следующие фоновые загрязнения ОС на планируемом участке: 1) Почва – каштановое, типичная для данного региона. Усредненные фоновые показатели: Азот аммонийный – 51 млн-1, влажность 1.1%, РН -7,12, кадмий -8,3 мг/кг, кобальт -9,1 мг/кг, марганец -1,6 мг/ кг, медь -4,2 мг/кг, нефтепродукты -0.25 мг/кг, никель -3.8 мг/кг, нитраты солевой вытяжки -4.1 млн-1, гумус -0.9%, свинец -21.3 мг/кг, сульфат ионы в водной вытяжке -0.46 ммоль в 100г.почвы, хлорид ионы в водной вытяжки -0.2 ммоль в 100 г почвы, хром (VI) -1.7 мг/кг, цинк - 21,2 мг/кг. Отсутствуют нормы для вышеупомянутых показателей, за исключением свинца норма 32 мг/кг. 2) Вода – объект не входит в водоохранную зоны, однако были отобраны пробы с ближайшей речки. Усредненные фоновые показатели: РН норма 6-9, факт 7.81. Азот аммонийный – норма 2 мг/л, факт 1.85. Нитриты – норма 0,08мг/л, факт 0,048. Нитраты – норма 45 мг/л, факт 12,5. БПК 5 – норма 6 мг О2 на л., факт 2.9, ХПК – норма не более 30 мг О2 на л., факт 20,4. Нефтепродукты – норма 0.1 мг/л, факт 0.021 мг/л. Свинец – норма 0.03 мг/л, факт – 0,009. Отсутствуют превышения гигиенических норм. 3) Воздух. Усредненные фоновые показатели: CO – норм 5мг/м3, факт 1.2. NO – норм 0.4 мг/м3, факт -0.1. NO2 — норм 0.2 мг/м3, факт 0.05. SO2 — норм 0.5 мг/м 3, факт 0.1. C – норм 0.15 мг/м3, факт 0.025 мг/м3. C12-19 – норм 1 мг/м3, факт 0.5. NH3 – норм 0.2 мг/м3, факт 0.05 . CH2O - норм 0.05 мг/м3, факт 0.0015 . H2S - норм 0.008 мг/м3, 0.004 .CH4S - Hopm 0.006 Mг/м3, факт 0.003 мг/м3. Пыль -0.5 Mг/м3, факт 0.15. 4) Дозиметрия установленный норматив 0.2 мкЗв/ч, факт 0.18. 5) Физ факторы. Шум - установленный норматив 80 дБ, факт 67,2 дБ. Вибрация – установленный норматив 107 дБ, факт 103,2 дБ. На предполагаемых участках отсутствуют исторические загрязнения, до изучения не требуется.

Растительный мир и почва.

Исследумая территория (100x100m) залеж, степь постепенно востанавливается. Проективное покрытие 60/30. Перевыпас.

Названия видов приведены по сводке Черепанова. Семейства и роды перечисляются в порядке системы Энглера.О каждом виде приводится следующая информация:

жизненная форма; тип ареала и экологическая группа; экологическая приуроченность; хозяйственное значение.

CEM. 1. CHENOPODIACEAE

- 1. Atriplextatarica L. Лебеда татарская, каз. алабота. Однолетник. Терофит.
- Мезоксерофит. Понтическо-центрально-азиатский. Сорный. Поедается.
- 2. A. patula L. Л. Раскидистая. Однолетник. Терофит. Мезофит. Голарктический. Сорный.
- 3. Chenodium album L. Марь белая, каз. Ала-бота. Однолетник. Терофит. Ксеромезофит. Голарктический космополит. Сорный.
- 4. Kochia prostrata (L.) Schrad. Кохия простертая, каз. изень Полукустарничек. Хамефит. Ксерофит. Средиземноморский. Кормовой.

- 1. Ambrosia artemisiifolia L. Амброзия полыннолистная. Однолетник. Терофит. Ксеромезофит. Злостный сорняк.
- 2. Achillea micrantha Willd. Тысячелестник мелкоцветковый. Многолетник. Корневишный. Гемикриптофит. Ксерофит. Понтический. Эфирно-масличный. Поедается.
- 3. Acroptilon repens (L.) DS. Горчак ползучий, каз. Кокре. Многолетник. Корневищный. Гемикриптофит. Ксерофит. Центрально азиатский. Сорный. Ядовитый.
- 4. Artemisia absinthium L. П. горькая, каз. Ермень. Многолетник. Гемикриптофит. Мезоксерофит. Голарктический. Эфирно-масличный. Лекарственный
- 5.ArtemisiaLessingiana Bess. П. Лессинга. Полукустарничек. Хамефит. Эвксерофит. Южно-уральский.
- 6.Artemisialerchiana Web. exStechm. П. Лерха, каз.Ак жусан. Полукустарничек. Хамефит. Эвксерофит. Прикаспийский. Кормовое. Эфирно-масличный.
- 7. Artemisia Dracunculus L.— П.Эстрагон, каз. Саралжин, ширальджин. Многолетник. Корневищный. Гемикриптофит. Мезоксерофит. Голарктический. Эфирно-масличный. Сорный.
- 8. Artemisiaabrotanum L. Полынь лечебная, чилижная. Полукустарник. Хамефит. Гигромезофит. Средиземноморский. Масличное. Лечебный. Сорный.
- 9. Carduus acanthoides L. Чертополох колючий. Двулетник. Гемикриптофит. Ксерофит. Понтический.
- 10. Cichorium inthybus L. Цикоркий обыкновенный. Многолетник. Корневишний. Гемикриптофит. Ксерофит. Голарктический. Медонос. Лекарственный.
- 11. Echinops meyeri (DC.) Jijin Мордовник Мейера . Многолетник. Стержнекорневой. Гемикриптофит. Ксерофит. Восточно-средиземноморский.
- 12. Scorzonera ensifolia Bieb. Козелец мичелистный. Многолетник. Корнеотпрысковый. Гемикриптофит. Мезоксерофит. Средиземноморский.
- 13. Sonchus arvensis L. Осот полевой. Многолетник. Корневищный. Гемикриптофит. Ксеромезофит. Голарктический. Сорный.
- 14. Taraxacum officinale Wigg. Одуванчик лекарственный .Многолетник.
- Стержнекорневой. Гемикриптофит. Мезофит. Голарктический. Кормовой.Лекарственный. Медонос.
- 15.T.serotinum(Waldst.Et Kit.)Poir.-О.Поздний.Многолетник.Гемикриптофит. Мезофит. Средиземномрский.Кормовой. Лекарственный. Медонос.
- 16. Tragopogon orientalis L. Козлобородинок восточный. Двулетник. Гемикриптофит. Ксеромезофит. Понтический. Кормовой.
- 17. Xanthium strumarium L. Дурнишник обыкновенный, каз. ошаган Однолетник. Терофит. Ксерофит. Голарктический. Лекарственный.

CEM. 3. ACERACEAE

1. Acernegundo L. Клен ясенелистый. Дерево. Фанерофит. Мезоксерофит. Палеарктический. Декоративный, технический.

CEM.2. AMARANTHACEAE

- 1. Aanthus blitoides S, Wats.-Щирица жминдовая. Однолетник. Терофит. Ксеромезофит. Голарктический. Сорный.
- 2.A.Retroflexus L. Щирица запрокинутая. Однолетник. Терофит. Ксеромезофит. Голарктический. Сорный, кормовой.

CEM. 4. APIACEAE

- 1. Eryngium campestre L .- Синеголовник полевой. Многолетник. Стержнекорневой. Гемикриптофит. Ксеромезофит. Палеарктический. Сорный.
- 2.Е. planum L. Синеголовник плосколистный, каз. Шайтан келмес. Многолетник. Стержнекорневой. Гемикриптофит. Мезоксирофит. Палеарктический. Сорный.

3. Ferula caspica Bieb. - Ферула каспийская. Многолетник. Стержнекорневой. Гемикриптофит. Мезоксирофит. Поедается овцами. Пустынно-степной.

CEM. 5. BORAGINACEAE

1. Lappula patula (Lehm) Menyharth – Липучка пониклая, раскидистая Однолетник. Терофит. Ксерофит. Средиземноморский. Сорный.

CEM. 6. BRASSICACEAE

- 1. Alyssum desertorum Stapf. (A.turkestanicum reqel et Schmalh) Бурачок пустынный.
- Однолетник. Терофит. Ксеромезофит. Средиземноморский. Центрально-азиатский.
- 2.Barbarea vulqaris R.Br. Сурепка обыкновенная.Многолетник. Корнеотпрысковый. Гемикриптофит. Мезофит. Европейский. Сорный.
- 3. Crambe tataria Sebeok Катран татарский. Многолетник. Стержнекорневой. Гемикриптофит. Мезоксерофит. Понтический. Медонос.
- 4. Descurainia sophia (L.) Webb ex Prantl. Дескурения Софьи. Однолетник. Терофит. Ксеромезофит. Евро-азиатский. Сорный.
- 5. L.meyeri Claus Клоповник Мейера. Полукустарник. Хамефит. Ксерофит. Приволжский эндем.
- 6.Thlaspi arvense L. Ярутка полевая. Однолетник. Терофит. Мезофит. Голарктический. Сорный.

CEM. 7. CANNABACEAE

1. Cannabisruberalis Fanisch - Конопля сорная. Однолетник. Терофит. Ксеромезофит. Понтический. Сорный.

CEM. 8. CARYOPHYLLACEAE

1. Gypsophilapaniculata L.–К. метельчатый, каз. Аккангбак.

Многолетник.Стержнекорневой.Гемикриптофит.Мезоксерофит.Понтический

2.S.parviflora (Chrh.)Pers-.м Смолевка мелкоцветковая. Двулетник. Стержнекорневой. Гемикриптофит. Мезоксерофит.

CEM. 9. CONVOLVULACEAE

1. Convolvulus arvensis L. – Вьюнок полевой, каз. Ширмаук. Многолетник. Корневищный. Геофит. Мезофит. Голарктический. Поедается. Медонос. Ядовитый.

CEM. 10. ELAEGNACEAE

1. Elaeagnus angustifolia L. — Лох узколистный, каз. джида, жиде. Кустарник. Фанерофит. Ксерофит. Средиземноморский. Декоративный.

CEM. 11. EUPHORBIACEAE

1.E.uralensis Fisch. ex Link–M. Уральский.Многолетник.Корнеотпрысковый. Гемикриптофит.Ксеромезофит.Восточно-понтический. Сорный.

CEM. 12. FABACEAE

- 1. Caragana Frutex (L.) С. Koch. К. Кустарниковая. Кустарник. Фанрофит. Мезоксерфит. Палеарктический. Медонос. Декоративный.
- 2.Goebelia alopecuroides Bunge (Vexibia alopecuroides L. (Bunge))— Гебелия лисохвостовидная,каз. Ақ мия.Многолетник.Корнеотпрыскной.

Гемикриптофит. Ксеромезофит. Средиземноморский. Сорный Лекарственный. Ядовитый.

3. Lathyruspratensis L. — Чина луговая. Многолетник. Корневищный. Гемикриптофит. Мезофит. Голарктический. Кормовой.

- 4. Medicago falcate L. каз. сарбас жоңышқа. Многолетник. Стержнекорневой. Гемикриптофит. Ксеромезофит. Палеарктический. Кормовой.
- 5. Vicia cracca L.—Горошек мышиный. Многолетник. Корневищный. Гемикриптофит. Эвмезофит. Голарктический. Кормовой. Медонос. Сорный.

CEM. 13. LAMIACEAE

- 1.Leonurus cardiaca L.— Пустырник сердечный Многолетник. Корневищный. Гемикриптофит. Ксеромезофит. Европейский. Лекарственный. Медонос. Сорный.
- 2.Phlomis pungens willd. Зопник колючий. Многолетник. Кустарниковый. Гемикриптофит. Мезоксерофит. Понтический.
- 3.Ph. Tuberose L. 3. Клубненосный. Многолетник. Клубнекорневой. Гемикриптофит. Ксеромезофит. Понтический. Медонос. Лекарственный.
- 4. Salvia stepposa Shost. Шалфей степной Многолетник. Стержнекорневой. Гемикриптофит. Мезоксерофит. Понтический. Медонос. Эфирно-масличный.
- 5.Т.marschallianus Willd. Чабрец.Маршалла. Полукустарничек. Хамефит. Мезоксерофит. Бореальный. Эфирно-масличный. Лекарственный.

CEM. 14. LILIACEAE

- 1. Tulipabiebersteiniana Schult. Et Schult.-Тюльпан Биберштейна, каз. Байшешек. Многолетник. Луковичный геофит. Ксеромезофит. Понтический.
- 2.T.schrenkii Regel-T.Шренка, каз. Кызгалдак. Многолетник. Луковичный геофит. Ксеромезофит. Понтический.
- 3.Ornithogalum fishcheranum Krasch.-Птицемлечник Фишера.Многолетник. Луковичный геофит. Ксеромезофит. Нижневолжеский.
- 4. Asparagus offmalis L.- Спаржа лекарственная, каз.итшу. Многолетник. Корневищный. Гемикриптофит. Мезоксерофит. Лугово-степной. Голарктический. Декоративный. Пищевой.

CEM. 15. LIMONIACEAE

- 1. Limonium caspium (Willd.) Gams-Кермек каспийский. Многолетник. Стержнекорневой. Гемикриптофит. Ксерофит. Понтический. Дубитель.
- 2.L.gmelinii (Willd) О.Кuntze- К.Гмелина, каз. Томар бояу. Многолетник. Стержнекорневой. Гемикриптофит. Ксерофит. Понтический. Дубитель.

CEM. 16. PLANTAGINACEAE

- 1. Plantago. media L. Подорожник средний. Многолетник. Гемикриптофит. Ксеромезофит. Евро-сибирский. Поедается.
- 2.Р. stepposa Kuprian. –(Р. urvillei Opiz) П. Степной. Многолетник. Гемикриптофит. Ксеромезофит. Понтический.

CEM. 17. POACEAE

- 1. Agropyron desertorum (Fisch. ex Link) Schult. Житняк пустынный, каз. Жолеркек. Многолетник. Рыхлодерновичный. Гемикриптофит. Эвксерофит. Понтический. Кормовой.
- 2.A.Pectinatum (Bieb.) Beauv. Ж.Гребневидный, каз. Еркекбидайық Многолетник.

Дерновичный. Гемикриптофит. Мезоксерофит. Понтический. Кормовой.

- 3. Alopecurus prantensis L. Лисохвост луговой, каз. қоянқұйрық.
- Многолетник. Корневищный. Гемикриптофит. Эвмезофит. Европейский. Кормовой.
- 4. Avena Fatua L. Овсюг, каз. Карасулы. Однолетник. Терофит. Мезофит. Голарктический. Сорный.
- 5. Elytrigiarepens (L.) Nevski Пырей ползучий, каз. жатаганбидайек

- Многолетник. Корневищный. Гемикриптофит. Эвмезофит. Голарктический. Кормовой. Сорный.
- 6. Eremopyrumorientale (L.) Jaub.etSpach— Мортуквосточный. Однолетник. Терофит. Ксеромезофит. Понтический. Кормовой.
- 7. Festucapratensis Hurd. Овсянницалуговая. Многолетник. Рыхлодерновой. Гемикриптофит. Мезофит. Бореальный. Кормовой.
- 8. Poa bulbosa L. Мятлик луковичный, каз. Конурбас. Многолетник. Рыхлодерновый. Гемикриптофит. Ксеромезофит. Евро-сибирский. Кормовой.
- 9.Р. pratensis L. М.луговойказ. шалгындык, котырбасшоп. Многолетник. Корневищный. Гемикриптофит. Эвмезофит. Голарктический. Кормовой.
- 10. Stipa capillata L. Ковыль волосатик, тырса-каз.кылканселеу, садакбоз Многолетник. Плотнодерновинный. Гемикриптофит. Эвксерофит. Понтический. Кормовой.
- 11.S.Lessingiana Trin. etRupr. К.Лессинга, каз. бетегебоз. Многолетник. Плотнодерновинный. Гемикриптофит. Эвксерофит. Понтический. Кормовой.
- 12.S.реппаta L. К.перистый, каз. Кумыздыкбоз. Многолетник. Плотнодерновинный. Гемикриптофит. Мезоксерофит. Понтический. Кормовой.

CEM. 18. POLYGONACEAE

1.R. confertus Willd. – Щавель .Конский. каз. ат кунак. Многолетник. Гемикриптофит. Мезофит. Голарктический. Дубитель. Лекарственный. Кормовой. Сорный.

CEM. 19. ROSACEAE

- 1.Р. biturca L. Лапчатка. Вильчатая. Многолетник. Корневищный. Гемикриптофит. Ксерофит. Сибирский. Медонос. Сорный.
- 2.Р. reptans L. Л. Ползучая. Многолетник. Корневищный. Гемикриптофит. Мезофит. Евразийский. Лекарственный.
- 3. Spiraea crenata L. Спирея городчатая. Кустарник. Фанерофит. Ксеромезофит. Сарматский. Медонос. Декоративный.

CEM. 20. SOLANAEAE

1. Hyosciamus niger L. — Белена черная, каз. Караминдуана. Двулетник. Гемикриптофит. Ксеромезофит. Евро-азиатский. Ядовитый. Лекарственный.

CEM. 21. ULMACEAE

- 1. Ulmus laevis Pall. Вяз гладкий. Дерево. Фанерофит. Мезофит. Палеарктический. Декоративный.
- 2.U. pumila L. В. Карликовый, мелколистный, каз. Карағаш. Дерево. Фанерофит. Ксерофит. Декоративный. Мелиорат.

CEM. 22. URTICACEAE

- 1. Urtica dioica L. Крапива двудомная, каз. Кшткан. Многолетник. Корневищный. Гемикриптофит. Мезофит. Голарктический. Сорный. Кормовой. Пищевой.
- В изучаемом районе зарегистрировано 77 видов цветковых растений, относящихся к 22 семействам.

Наибольшее количество видов относятся к Asteraceae — 17 видов, Poaceae—12 видов, Brassicaceae — 6, Fabaceae — 5, Lamiaceae-5 видов, Chenopodiaceae —4вида, Rosaceae-3 вида, Аріасеае-3 вида, а остальные семейств содержат по 1-2 вида.

На территории расположения объектов и ближлежащих территории к объектам, почвы относятся к каштановому типу почвы.

Каштановые почвы — почвы, распространённые в условиях сухих степей умеренного пояса.

Морфологический состав почв следующий:

А — гумусовый горизонт мощностью 15-30 см, буровато-темно-серый или серый с каштановым оттенком, пороховато-зернистой или комковатой структуры, в светло-каштановых почвах — бесструктурный;

В1 — переходный гумусовый горизонт мощностью 10-25 см,

более яркой коричневой или бурой окраски, плотнее предыдущего, крупнокомковатой структуры;

B2 — переходный горизонт, неравномерно окрашен, на буром фоне пятна и потеки гумуса, комковато-призматической структуры;

ВСК(СК) — иллювиально-карбонатный горизонт мощностью 40-50 см, желтоватобурый или желтый с выделениями карбонатов в виде белоглазки, ореховатопризматической структуры, плотный, могут быть кротовины; с глубиной плотность и количество карбонатов уменьшаются;

СС — материнская порода с выделениями гипса, начинается с глубины 110-200 см, значительно рыхлее и влажнее предыдущего; гипс в виде прожилок, мелкокристаллических легких стяжений, плотных крупнокристаллических друз; выделения легкорастворимых солей появляются с глубины 150-200 см.

Сформировались на сухих степных участках в условиях недостаточного увлажнения и бедной растительности. Основным критерием для разграничения каштановых почв является степень их гумусованности. Гумусовый горизонт достигает до 30 см, содержание гумуса в них составляет 1,3—2,9%. Тип каштановых почв разделяют на три подтипа: Светло-каштановые: гумусовый горизонт мощностью до 15-18 см, светло-серокоричневый, чешуйчато-слоеватой непрочной структуры или бесструктурный, рыхлый; в целинном состоянии сверху обособляется слитная, пористая, хрупкая корочка, толщиной 3-8 см. Содержание гумуса в верхнем горизонте — 1,5-2,5%, реакция слабощелочная, книзу становится щелочной. Емкость поглощения невысокая (15-25 мг-экв на 100 г почвы), в составе поглощенных оснований от 3 до 15% приходится на натрий. Несолонцеватые разности светло-каштановых почв встречаются редко. В солонцеватых светло-каштановых почвах отмечается некоторое накопление кремнезема в горизонте А, полуторных окислов и илистой фракции в горизонте В.

Каштановые: гумусовый горизонт мощностью 20-25 см, буровато- или коричневосерый, комковато-порошистой структуры. Каштановые почвы глинистого и суглинистого механического состава В верхнем горизонте содержат 2,5-4,0% гумуса, легкосуглинистого и супесчаного — 1,5-2,5%. В составе гумуса содержится примерно равное количество фульвокислот и гуминовых кислот, нередко фульвокислоты преобладают над гуминовыми кислотами. Емкость поглощения — 20-30 мг-экв на 100 г почвы, в составе обменных оснований 85-97% приходится на кальций и магний и 3-15% — на натрий. Реакция верхних горизонтов нейтральная или слабощелочная (рНН2О 7,2-7,6) и щелочная в нижних горизонтах. В несолонцеватых разностях каштановых почв отсутствует дифференциация профиля по содержанию илистых частиц и полуторных окислов. Каштановые почвы используются под пастбища, сенокосы и пашни. Из сельскохозяйственных культур возделываются прежде всего пшеница, кукуруза, просо, подсолнечник и др. Почвы нуждаются в мероприятиях по накоплению и сохранению

влаги, а также во внесении органических и минеральных удобрений.

Тёмно-каштановые: гумусовый горизонт мощностью (20) 25-40 см, буроватый или коричневато-темно-серый, пороховато-мелкозернистой структуры. Темно-каштановые глинистые, тяжелосуглинистые и суглинистые почвы содержат в верхних 15 см до 3,5-5% гумуса, легкосуглинистые и супесчаные разности — 2,5-3%. Реакция почв нейтральная в верхнем горизонте и слабощелочная и щелочная ниже по профилю, емкость обмена — 25-35 мг-экв на 100 г почвы; в составе обменных оснований преобладают кальций и магний. Валовой химический состав однороден по профилю.

Генетическими и зональными особенностями каштановых почв являются не промывной тип водного режима, недостаток продуктивной влаги, солонцеватость и комплексность почвенного покрова. Почвообразующие породы каштановых почв представлены главным образом карбонатными отложениями, среди которых преобладают лёссовидные суглинки, лёссы, карбонатные песчаные суглинки, карбонатные пески и супеси, аллювий. Каштановые почвы содержат карбонаты и в большинстве случаев гипс в нижней части профиля; наличие легкорастворимых солей обусловливает солонцеватость каштановых почв. Верхний (гумусовый) горизонт каштановых почв имеет каштановый цвет (до глубины 13—25 см); структура его комковато-зернистая или комковатопылеватая. Поглощающий комплекс в основном насыщен кальцием (до 70—80%), магнием (15— 30%). Водорастворимых солей в не солонцеватых каштановых почвах до 0,2-0,3%, в солнцеватых до 0,2-0,3% — в верхней части и 0,5-2% — на глубине 120— 170 см. По механическому составу каштановые почвы подразделяются на глинистые, тяжело суглинистые, средне суглинистые, легко суглинистые, супесчаные и песчаные. Солонцеватые отличаются плохими физическими свойствами: быстро разрушающейся структурой, низкой скважностью и водопроницаемостью. Реакция каштановых почв обычно нейтральная или слабощелочная (рН 7,0—7,5).

Водные ресурсы

Река Кокпекты берет начало в 2км от п. Акжар, при слиянии с р. Куагаш образует р. Жаксы-Каргалы. Длина реки 39 км, площадь водосбора 511км2, общее падение 60м, средний уклон 1,5%.

Расстояние от устья,км	Абсолютная отметка,м	Уклон,%
39	390	0,4
30	386	1,9
23	373	1,6
12	355	2,1
0	330	

Основной приток – р. Шандаша (п.бю., 18-й км, длина 12км)

Водосбор представляет равнину, сложенную в основом суглинками и расчлененную неглубокими балками и оврагами. Растительность степная с редким кустарником. Около трети площади водосбора занимают пахотные земли.

Долина реки шириной 0,1-0,4км, в нижнем течении от 0,5 до 1,5км. Сколные долины высотой от 5-8 до 10-15м при крутизне 15-300, в верхней части реки местами каменистые (выходы коренных прод).

Пойма прерывистая, ровная, луговая (в приустьевом участке встречаются небольшие группы деревьв), шириной от 100-120 м в среднем течении и до 200-250м в нижнем, используется под выпасы, сенокосы и огороды.

Русло извилистое, хорошо разработанное, шириной до с. Степное 15-20 м, ниже и до устья 30-60 м, у с. Троицкого-80м. От истока до потока в это время также кое-где прерывается высохшим участками русла. Ширина реки в межень в верхнем течении 4-10 м, в нижнем-15-25м, преобладающие глубины на плесах 1-2м (табл.119), на перекатах 0,1-0,3м. Скорости течения на мелководных участках достигают 0,4-0,5м/сек, песках не более 0,1-0,2м/сек. В среднем течении в русле имеется несколько осередков, на 20-18м км оно разветвляется на 3-5 рукавов, образуя небольшие острова и каменистые косы. Общий объем воды в плесах летом составляет около 20тыс.м³.

Сведения об основных плесах

Местоположение	Длина м	Средняя	Средняя	Наибольшая	Объем воды	
плеса (км от		ширина м			тыс,м3	
устаья)						
29	60	15	1,0	1,2	0,9	
27	150	12	0,9	3,4	1,6	
13	110	11	2,7	3,3	3,3	
9	125	15	2,1	2,5	3,9	
6	130	18	1.8	2,0	4,2	
4	35	30	1,7	2,0	1,8	

Прибрежная часть плесов закрыта зарослями тростника, кустарником и отдельными деревьями.

Дно плесов ровное, глинистое и суглинистое, набольшинстве перекатов каменистое. Берега русла высотой 1-3 м, в нижнем течении местами до 6-10 м, крутые.

Водный режим реки не изучался. По сообщениям местных жителей, река в верховьях летом ежегодно пересыхает, а с 30-го км и до устья сток воды в этот период прерывается лишь на отдельных коротких участках.

В многоводную весну 1957 г. уровень воды в реке поднимался на 3,5 м. Весенний ледоход бывает не ежегодно, на излучинах русла образуются кратковременные заторы льда. Зимой толщина льда в плесах достигает 1 м, местами образуются наледи.

Вода реки в весенний период имеет хорошо выраженный гидрокарбонатный характер, мине-рализацию 200-300 мг/л и жесткость 2,0-3,0 мг-экв (мягкая), пригодна для питья. Летом вода (в плесах) становится хлоридной с преоб-ладанием ионов Na среди катионов, значительно более минерализованной (от 850 мг/л до 4 г/кг Река Кокпекты у с. Степного (25-й км от устья), умеренно или очень жесткой и удо-влетворительной, а в отдельных местах непригод-ной для питья.

Река используется местным населением для бытовых нужд, водопоя скота и полива огородов.

Водопой скота производится из пруда, созданного в 1961 г. на 38-м км от устья. Пруд имеет длину 1 км, ширину 25-40 м, глубину 0,6-1,5 м, объем 16 тыс. м $^{\circ}$.

Плотина земляная длиной 60 м, шириной 3 м, высотой 2,5 м; напор воды при обследовании составлял 1 м. Второй пруд может быть устроен на участке реки у с. Троиц-кого.

Река Кызылкайын — берет начало в Хромтауском районе, в окрестностях ст. Никельтау. Один из притоках реки Орь. Водоохранная зона реки составляет 100 метров.

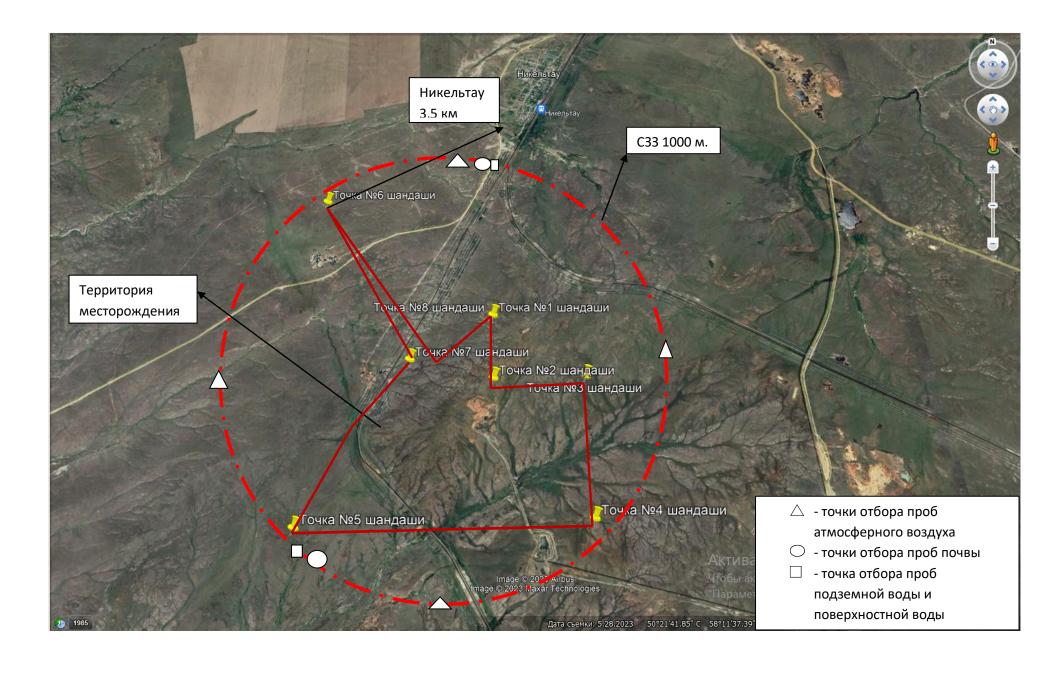
Водосбор представляет равнину, сложенную в основом суглинками и расчлененную неглубокими балками и оврагами. Растительность степная с редким кустарником. Около трети площади водосбора занимают пахотные земли.

Подземные воды

Основными источниками питания грунтовых вод являются инфильтрация атмосферных осадков и паводковых вод, снеготалые воды, а также подпитывание их из водоносных комплексов альб-сеноманских, реже юрских отложений в местах пересечения долинами рек сводов поднятий куполов.

Режим грунтовых вод аллювиальных отложений находится в тесной взаимосвязи с режимом поверхностных вод. Максимальный уровень наблюдается в апреле-мае в период паводка с постепенным спадом до июля-августа и незначительным подъемом осенью.

Минерализация воды в зоне интенсивного водообмена колеблется в пределах 0,3-1,0 г/л. По химическому составу они относятся к гидрокарбонатным или смешанным хлоридно-гидрокарбонатным магниевым.


3. Описание изменений окружающей среды, которые могут произойти в случае отказа от начала намечаемой деятельности, соответствующее следующим условиям:

1. Представить предложения по организации мониторинга и контроля за состоянием атмосферного воздуха, водных ресурсов, почвы.

Периодичность отбора проб:

$N_{\underline{0}}$	Компоненты мониторинга	Периодичность
Π/Π		
1	Мониторинг эмиссий	Ежеквартально
2	Мониторинг атмосферного воздуха	Ежеквартально
3	Мониторинг почвенного порова	Ежеквартально
4	Мониторинг подземных вод	Ежеквартально
5	Мониторинг растительности и животного мира	Ежеквартально

Более детально описывается в соответствующих разделах, ниже предоставлена карта предположительного точек отбора проб.

2. Придерживаться границ оформленного земельного участка и не допускать устройства стихийных свалок мусора и строительных отходов.

Работы будет проводиться исключительно на территоиях отведенных земельным государственным Актом. В проекте предложены меры по недопущению стихийных свалок и строительных отходов, а именно:

- 1) Строгое соблюдение мер указанных в программе управления отходами, в части выявления отходов, сбора, накопления и передачи отходов производства и потребления.
- 2) В случаи обнаружения стихийных(безхозных) свалок за территории производственный площадки, сообщить в соответствующие органы о наличие таких свалок.
- 3) Учитывать требования Земельного кодекса по содержанию земельного участка и требования Экологического Кодекса в части управления отходами.
- 3. Управление отходами должно осуществляться в соответствии с принципом иерархии, установленным ст.329 Экологического Кодекса Республики Казахстан (далее Кодекс).

Проектом приняты следующая иерархия мер по предотвращению образования отходов и управлению образовавшимися отходами в порядке убывания их предпочтительности в интересах охраны окружающей среды и обеспечения устойчивого развития:

- 1) предотвращение образования отходов; В целях сокращения количество образования отходов, проектом предложено:
- Эксплуатировать технологические оборудования в соответствие с правилами эксплуатации. Правильное, плановое ведение работ на технологических оборудованиях, автотранспортах сократить образования отходов производства.
- Строго соблюдать технический регламент разработки месторожедения, сократить образования вскрышных парод.
 - 2) подготовка отходов к повторному использованию;
- -На предприятия образуются производственные и потребительские отходы, все отходы накапливаются в специльно отведенное место после по мере накопления сдается на утилизацию в подрядную организацию, которая в свою очередь проведеть процесс утилизации отходов, к примеру: отработанные масла, путем сепарации и регенерации свойтсв отработанных масел, масла прошедшие отработки направляются для розничной продажи. Собранные путем раздельного сбора отходов макулатуры и пластмассы передается организациям по выпуску туалетных бумаг, одноразовых пакетов и т.д.
 - 3) переработка отходов;
- На предприятие не проводятся работы по переработки отходов производства и потребления. Все накопленные отходы передаются стороненним компаниям для осуществления вышеуказанной процедуры.
 - 4) утилизация отходов;
- На предприятие не проводятся работы по переработки отходов производства и потребления. Все накопленные отходы передаются стороненним компаниям для осуществления вышеуказанной процедуры.
 - 5) удаление отходов.
- На предприятие не проводятся работы по переработки отходов производства и потребления. Все накопленные отходы передаются стороненним компаниям для осуществления вышеуказанной процедуры.
- 4. Физические и юридические лица при использовании земель не должны допускать загрязнение земель, захламление земной поверхности, деградацию и истощение почв, а также обязаны обеспечить снятие и сохранение плодородного слоя почвы, согласно требованиям ст. 238 Экологического кодекса РК.

Проектом предусмотрено срезка и складирование ПСП в специально отведенном отвале. После завершения разработки карьера, отвал ПСП будет использован для рекультивации нарушенных земель.

5. Разработать план действий при аварийных ситуациях по недопущению и (или) ликвидации последствии загрязнения окружающей среды (загрязнении земельных

ресурсов, атмосферного воздуха и водных ресурсов) по отдельности.

Внутри месторождение разрабатано типовой план ликвидации аварий и план действий при чрезвычайных ситуациях согласно требованиям органов ДЧС.

Описание по недопущению аварийных ситуации, указаны в отчете ООВВ.

6. Ввиду того, что планируемый вид деятельности относится к экологически опасным (п.1 Приказа и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 27 июля 2021 года № 271 «Об утверждении Перечня экологически опасных видов хозяйственной и иной деятельности»), необходимо предусмотреть наличие договора об обязательном экологическом страховании согласно ст.129 Кодекса.

Экологическое страхование будет приобретено перед началом деятельности, а именно в 2024 году. Договор об обязательно страхование будет предоставлено при составления отчета по Отчету ООВВ.

7. При определении целей, на которые будут использованы подземные воды, учесть требование п. 6 ст. 224 Кодекса: использование подземных вод питьевого качества для нужд, не связанных с питьевым и (или) хозяйственно-питьевым водоснабжением, не допускается, за исключением случаев, предусмотренных Водным кодексом Республики Казахстан и Кодексом Республики Казахстан "О недрах и недропользовании".

Согласно плану горных работ, территория, где будет распологаться карьер, отсутсвует подземная вода питьевого качества, для целей пользования питьевого и хозяйственно-питьевого водоснабжения проектом предусмотрено, привозная бутилированная вода, на данным этапе проектирования.

8. Если при проведении операций по недропользованию происходит незапроектированное вскрытие подземного водного объекта, недропользователь обязан незамедлительно принять меры по охране подземных водных объектов в порядке, установленном водным законодательством Республики Казахстан, и сообщить об этом в уполномоченные государственные органы в области охраны окружающей среды, использования и охраны водного фонда, по изучению недр, государственный орган в сфере санитарно-эпидемиологического благополучия населения согласно требованиям п. 4 ст. 225 Кодекса.

Указанные требования ст. 225 Кодекса буде соблюдаться, так же необходимо отметить, что ранее данные участки уже проводились работы по разведки, и залежей подземных вод питьевого качества не были обнаружены.

9. Предусмотреть мероприятия по внедрению и совершенствование технических и технологических решений позволяющих снижение негативного воздействия на окружающую среду согласно приложения 4 к Экологическому кодексу РК.

В качестве снижения негативного воздейтсивя на окружающую среду планом предусмотрено:

- Создание пруда-испарителя, в качетсве конечного водоприемника, с гидроизоляцией основания пруда.
- Проведение работ по пылеподавления с помощью поливомоечных машин предусмотренных ПГР.
- Строгое соблюдение регламента работ и технологии разработки месторождения.

10. Необходимо предусмотреть возможность использования/передачи вскрышной породы с целью снижения объема захоронения с учетом требования пункта 6 приказа и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 9 августа 2021 года № 318 «Об утверждении Правил разработки программы управления отходами».: Программа разрабатывается в соответствии с принципом иерархии и должна содержать сведения об объеме и составе образуемых и (или) получаемых от третьих лиц отходов, способах их накопления, сбора, транспортировки, обезвреживания, восстановления и удаления, а также описание предлагаемых мер по сокращению образования отходов, увеличению доли их повторного использования, переработки и утилизации.

Для реализации вышеуказанной цели, а именно: использование вскрышной пароды или его передачи необходимо получить в органе национального центра качества

сертификат соответствие, для применения вскрышной породы при строительстве дорог зданий и сооружений. В этой связи, в план природоохранных мероприятий разрабатываемый в последующих стадиях получения разрешения на воздействия, необходимо включить мероприятие по определению пригодности вскрышной породы при строительстве дорог и зданий и сооружений. В случаи соответствие в программу управления отходами, будет внесено корректировка по повторному использованию отходов вскрышной породы в строительстве.

11. Согласно пп. 5 п. 1 Инструкции необходимо указать информацию о показателях объектов, необходимых для осуществления намечаемой деятельности, включая их мощность, габариты (площадь занимаемых земель, высота), другие физические и технические характеристики, влияющие на воздействия на окружающую среду; сведения о производственном процессе, в том числе об ожидаемой производительности предприятия, его потребности в энергии, природных ресурсах, сырье и материалах; указать размер санитарно-защитной зоны. Кроме того, необходимо указать параметры карьера и прудов-испарителей (ширина, длина, глубина), включая показатели противофильтрационных экранов, отвалов и др. объектов горного производства.

Планом предусмотрено максимальная добыча руды 25 тыс. тонн/год. Сантарно защитная зона составляет 1000 м согласно пп.11, п. 11, раздела №3, приложения №1 к правилам по установлению СЗЗ СП «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» КР-ДСМ-2 от 11.01.2022 г., отвалы, хвостохранилища и шламонакопители при добыче цветных металлов СЗЗ составляет 1000м.

Сведения о производственном процессе:

Анализ геологических, инженерно-геологических, географо-экономических, климатических и технологических сведений о рассматриваемых месторождениях, а так же имеющийся предварительный опыт производства горных работ позволяет прогнозировать следующие горнотехнические условия их разработки:

- 1. Малая мощность покрывающих пород, а так же наличие раннее вскрытых карьерных полей создают благоприятные условия для освоения запасов месторождений открытым способом с малыми объемами горно-капитальных работ.
- 2. Физико-механическая характеристика руды и вмещающих пород исключает необходимость применения каких-либо специальных методов их предварительной подготовки к производству выемочно-погрузочных работ. Более подробная характеристика вмещающих пород и руд месторождения приводятся в таблице 3.1.

Таблица 3.1 Физико-механические характеристики руд и пород

№ п/п	Показатели	Ново-Шандашинское месторождение					
		Вскрышные породы	Руда				
1	Объемный вес, т/м ³	1,7	сыр. – 1,68; сух. – 1,14				
2	Влажность, %	31,9	31,9				
3	Коэффициент крепости по Протодъяконову	0,6-1,0	0,5-1,5				
4	Коэффициент разрыхления	1,3	1,3				

3. Горнотехнические условия отработки месторождения простые. Вскрышные породы и руды представлены: рыхлыми песками верхнего мела, щебнистыми глинами,

глинами коры выветривания, полуразрушенными (выветрелыми) серпентинитами. Все указанные горные породы разрабатываются прямой экскавацией, без применения буровзрывных работ.

- 4. Свойства горных пород, повышенная влажность горной массы, жесткие климатические условия, а также масштабы предстоящей деятельности обуславливают применение цикличной технологии производства вскрышных и добычных работ с использованием экскаваторов в комплексе с автомобильным транспортом. Наиболее рациональным в этих условиях является следующий состав технических средств комплексной механизации основных производственных процессов:
- Гидравлический экскаватор, Doosan DX 700LC с вместимостью ковша 4,5 м³ в исполнении «обратная лопата»;
 - Карьерный автосамосвал LGMG MT60 грузоподъемностью 45 т;
- вспомогательное оборудование: бульдозеры типа Shantui SD32, автобус типа КамАЗ-4208, поливооросительная машина типа КМ-600 на базе КАМАЗ-53228, топливозаправщик, Автогрейдер типа XCMG GR215A, фронтальный погрузчик XCMG LW800Кс ковшом емкостью 4,5 м³,автомобиль скорой помощи на базе УАЗ.

В случае производственной необходимости указанные модели оборудования могут быть заменены на аналогичные по типоразмеру. При этом не должно быть допущено нарушение требований безопасности и ухудшение проектных технико-экономических показателей.

3.2 Границы и параметры карьера

Отработку запасов месторождений предусматривается вести открытым способом. Основой для оконтуривания карьера послужила каркасная и блочная модели месторождения.

Проектирование карьера осуществлялось в геоинформационной системе Micromine 2020. В данной программе реализована возможность 3D моделирования рудных тел, определение и оконтуривание границ карьера, проектирование схемы вскрытия, определение погоризонтных объемов руды и вскрышных пород, расчет коэффициента вскрыши, проектирование отвалов.

При соблюдении оптимальных технологических и безопасных условий отработки обеспечивается устойчивость бортов карьера. Параметры уступов и бортов приняты на основании инженерно-геологической характеристики пород и руд с учетом «Методических рекомендаций по технологическому проектированию горнодобывающих предприятий открытым способом разработки».

При построении карьера были учтены следующие конструктивные параметры:

- 1. Высота уступа равна 10 м, углы откоса уступов в их предельном положении равно 45°;
 - 2. Ширина предохранительной бермы равна 8м;
- 3. Продольный уклон транспортной бермы 80-100‰, ширина транспортной бермы для двухполосного движения автосамосвалов г/п 45 т 20м,. При однополосном движении 15м;

На рисунке 3.1 представлен план карьера на конец отработки, оконтуривание которого произведено с учетом указанных выше положений, требований Норм технологического проектирования, а также данных топографической карты поверхности. Проектирование карьера и определение объемов горной массы в его контурах произведено в программе Micromine.

Рассчитано погоризонтное количество пород, удаляемых из карьеров. Конструктивные элементы, принятые при проектировании карьера приведены в таблице 3.2. Параметры карьера приведены в таблице 3.3.

Таблица 3.2 Параметры конструктивных элементов карьеров

Параметрыуступов	Значение
Высотауступа, м	10
Уголоткосауступа, град	45°
Ширина предохранительной бермы на остальных горизонтах, м	8
Генеральный угол борта карьера, град	22°

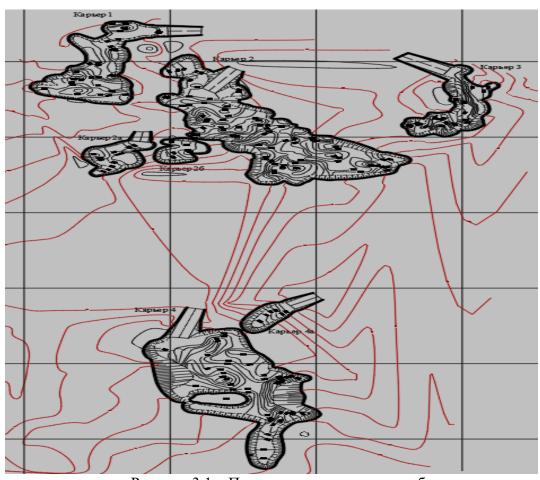


Рисунок 3.1 – План карьера на конец отработки

Таблица 3.3 Параметры карьеров месторождения

Haynyayanayyayanayyaynan	En more		Возражана се поменения						
Наименованиепараметров	Ед. изм.	№ 1	№ 2	№2a	№26	№3	№4	№4a	Всегопоместорождению
1	2	3	4	5	6	7	8	9	10
Размерыпоповерхности:									
Длина	M	215	425	130	75	240	440	135	
Ширина	M	100	125	80	50	80	155	45	
Отметкидна	M	408	406	413	416	408	407	416	
Глубина (от максимальной отметки поверхности)	М	16,5	25,5	13	9	22	25	16	
Промышленныезапасы:									
Балансовойсыройруды	тыс. т	85,5	305,3	22	11,6	33,9	245,5	8	711,8
Балансовойсыройруды	тыс. м ³	50,9	181,7	13,1	6,9	20,2	146,1	4,8	423,7
Плотностьсыройруды	T/M ³	1,68	1,68	1,68	1,68	1,68	1,68	1,68	1,68
Естественнаявлажностьруды	%	31,90	31,90	31,90	31,90	31,90	31,90	31,90	31,90
Балансовойсухойруды	тыс. т	58,2	207,9	15,0	7,9	23,1	167,2	5,4	484,7
<i>Вилинеовонеукопруды</i>	тыс. м ³	51,1	182,4	13,1	6,9	20,3	146,7	4,8	425,2
Среднее содержание никеля в сухой руде	%	1,47	1,42	1,13	1,21	1,27	1,36	1,26	1,38
Среднее содержание кобальта в сухой руде	%	0,039	0,046	0,08	0,036	0,04	0,043	0,044	0,045
Объемвскрышныхпород	тыс.м ³	76	187	17	10	72	183	18	562
Потери	%	6,5	6,7	12,1	12,7	12,1	8,4	14	7,9
Разубоживание	%	18,9	15,2	13,7	13,2	11,6	14,5	15,7	15,1

3.3 Проверка устойчивости бортов карьера

В соответствии с Правилами обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы, при ведении горных работ должен осуществляться контроль за состоянием бортов, траншей, уступов, откосов и отвалов. В случае обнаружения признаков сдвижения пород работы прекращаются и принимаются меры по обеспечению их устойчивости. Работы допускается возобновить с разрешения технического руководителя организации по утвержденному им проекту организации работ.

Периодичность осмотров и инструментальных наблюдений по наблюдениям за деформациями бортов, откосов, уступов и отвалов объектов открытых горных работ устанавливается технологическим регламентом.

При проектировании карьера, высота и угол откоса уступов, а также ширина предохранительных берм принимались в соответствии с Методическими рекомендациями по технологическому проектированию горнодобывающих предприятий открытым способом разработки.

В дальнейшем, при разработке месторождения, необходимо проведение изысканий и исследований для уточнения коэффициента запаса устойчивости. При эксплуатации карьера следует регулярно проводить маркшейдерские наблюдения с целью предупреждения возможных деформаций на участках работ.

3.4 Определение потерь и разубоживания руд

Определение объемов эксплуатационных запасов и содержания в них полезного компонента должно быть произведено на основе указанных выше параметров промышленных запасов с учетом величины неизбежных потерь и разубоживания руд при их выемке на контактах рудных тел с породами в процессе эксплуатации карьеров.

Под выемочной единицей принимается наименьший экономически и технологически оптимальный участок месторождения с достоверным подсчетом исходных запасов руды, отработка которого осуществляется единой системой разработки и технологической схемой выемки, по которому может быть осуществлен наиболее точный отдельный учет добычи рудной массы по количеству и содержанию в ней металла (полезного компонента).

Параметры выемочной единицы выбраны из условия выполнения требований предусматривающих:

относительную однородность геологических условий;

возможность отработки запасов единой системой разработки;

достаточную достоверность определения запасов;

возможность первичного учета извлечения полезных ископаемых.

Исходя, из принятой системы отработки и схемы подготовки, выемочной единицей данным проектом принимается карьер.

Параметры (длина и ширина) выемочной единицы определяется конечным контуром карьера.

При определении нормативов потерь и разубоживания по карьерам Кара-Обинского и Ново-Шандашинского месторождений в качестве основы были приняты показатели, рассчитанные С. Придворовым и Институтом Гипроникель и приведённые в следующих проектах:

- Кызыл-Каинский рудник. Карьеры №28-29-30. Корректировка рабочего проекта, п. Батамшинский, 1992 г.
- Кызыл-Каинский рудник. Степнинский карьер. Рабочий проект, Ленинград, 1991 г.
 - Щербаковский рудник. Ново-Шандашинский карьер, п. Батамшинский, 1994г.

Расчеты были выполнены в соответствии с «Методическими рекомендациями по расчету нормативных и определению фактических размеров потерь и разубоживания на рудниках комбината «Южуралникель» института «Унипромедь» от 1983 г.

В последующем, при проведении эксплуатационной разведки и сгущении разведочной сети по отдельным профилям, нормативы могут быть пересчитаны.

Основные параметры расчетов нормативов потерь и разубоживания по карьерам Ново-Шандашинского месторождения приводится в таблицах 3.4.

Таблица 3.4 Основные параметры расчета нормативов потерь и разубоживания по Шандашинскому месторождению

Карьеры	Блоки	C, %	т, м	в, %	a ₆ , %	μ	P ₃ , %	$\Pi_{\scriptscriptstyle 3},\%$	K _p	Кп	Р _{общ.}	П _{общ.}
1	1	1,47	3,85	0,45	0,80	0,67	12,57	11,29	1,5	0,58	18,9	6,5
2	3-4	1,42	5,38	0,45	0,80	0,74	11,05	9,88	1,38	0,68	15,2	6,7
2,	5	1,14	3,15	0,45	0,80	1,67	13,7	12,1	1	1	13,7	12,1
26	6	1,21	3,48	0,45	0,80	1,25	13,2	12,7	1	1	13,2	12,7
	7	1,28	2,41	0,45	0,80	1,03	13,6	12,1	1	1	13,6	12,1
3	8	1,30	4,14	0,45	0,80	0,97	10,6	9,46	1,03	0,96	10,9	9,1
	9	1,23	3,76	0,45	0,80	1,17	11,1	9,9	1	1	11,1	9,9
4	12, 12a, 13	1,36	6,47	0,45	0,80	0,83	11,8	10,6	1,23	0,79	14,5	8,4
4a	14	1,26	2,97	0,45	0,80	1,09	15,7	14,0	1	1	15,7	14,0

В таблицах для расчета Потерь и Разубоживания приняты следующие показатели:

 P_{K} – разубоживание конструктивное, %;

С – содержание Ni в руде, %;

аб – бортовое содержание Ni, %;

в – содержание Ni в разубоживающей породе, %;

т – средняя мощность рудного тела, м;

μ – коэффициент, характеризующий оптимальное соотношение потерь и разубоживания на границе отработки рудного тела;

 P_{3} – разубоживание эксплуатационное, %;

 Π_{2} – потери эксплуатационные, %;

Р общ. – разубоживание общее, %;

 $K_{\rm II}$ – коэффициент потерь;

K_p – коэффициент разубоживания.

Таким образом, в среднем по Ново-Шандашинскому месторождению -7.9%, 15.1%.

3.5 Обоснование выемочной единицы

Согласно «Единым правилам по рациональному и комплексному использованию недр», выемочная единица - наименьший экономически и технологически оптимальный участок месторождения с достоверным подсчетом исходных запасов (блок, панель, лава, часть уступа), отработка которого осуществляется единой системой разработки и технологической схемы выемки, по которому может быть осуществлен наиболее точный отдельный учет добычи по количеству и качеству полезного ископаемого.

Морфология залегания рудных тел, система разработки и технология ведения горных работ на каждом из горизонтов являются едиными для всего месторождения и практически не меняется по мере развития карьера.

В связи с этим, в условиях открытой разработки месторождения, горизонт - как выемочная единица соответствует определению и функциям минимального участка и отвечает всем требованиям Единых правил, предъявляемым к выемочной единице, т.к.:

- это единственная экономически и технологически обоснованная проектом оптимальная горногеометрическая единица;
- в границах горизонта проведен достоверный подсчет исходных запасов руды;
- отработка горизонтов осуществляется единой системой разработки и технологической схемы выемки;
- по горизонтам может быть осуществлен точный отдельный учет добычи рудной массы по количеству и содержанию в нем полезного компонента.

Учитывая данные условия разработки месторожденияШандашинское, в качестве выемочной единицы принимается горизонт.

3.6 Режим работы и производительность предприятия

Планом горных работ принимается круглосуточный режим горных работ - 2 смены по 12 часов в сутки с перерывом на обед 1час, 365 дней в году.

Метод работы — вахтовый. Продолжительность вахты — 15 рабочих дней. Расчет производительности оборудования и технико-экономические показатели производились на 340-280 рабочих дня в году при продолжительности суток — 22 часа.

Производительность предприятия по добыче составляет 25тыс.т/год.

3.7 Календарный график горных работ

Календарный график горных работ на отработку месторождений Шандашинскоесоставлен на 21года, с учетом подготовительного периода (2023-2025), в данный период будут произведены работы по заверочному бурению, проведены технологические исследования, проектные работы, а также строительство необходимой инфраструктуры.

Общая производительность карьеров по добыче руды составит 25 тыс.т в год в период 2026-2038гг которая будет достигнута на второй год отработки, с 2039г по 2043г. производительность составит 100 тыс.т в год. Для обеспечения заданной производительности составлен календарный график горных работ на 18 лет.

При его разработке на основе результатов анализа были учтены следующие условия: погоризонтное распределение запасов руд по количеству и качеству; рациональная очередность отработки эксплуатационных запасов с позиции обеспечения относительно среднего качества руды для обеспечения равномерности переработки.

В общем, для извлечения промышленных запасов в объеме 772,2тыс.т необходимо попутно извлечь 526.1 тыс.м³ вскрышных пород. При этом средний коэффициент вскрыши составит $0.7 \, \mathrm{m}^3/\mathrm{T}$.

В таблице 3.5 приведен календарный график разработки месторождения.

Согласно разработанному плану, горные работы начинаются в 2026 году с вскрышных работ, при этом на первый год отработки запланирована добыча руды в объеме 15тыс.т.

На второй год отработки (2027 г.) запланирован выход на производственную мощность 25тыс.т/год по руде, при это с учетам значительного объема вскрышных пород производятся опережающие работы по вскрышы на верхних горизонтах.

В последующие годы развитие горных работ осуществляется по аналогичному принципу. Промежуточное положение карьеров уточняется с учетом текущих условий.

КАЛЕНДАРНЫЙ ПЛАН ГРАФИК РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ ПО ГОДАМ

			Подготов	вительный	период *					Промы	шленная р	разработка	а месторо:	ждений				
Год отработки	ед. изм	Всего	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
			1 год	2 год	3 год	4 год	5 год	6 год	7 год	8 год	9 год	10 год	11 год	12 год	13 год	14 год	15 год	16 год
Горная масса	Тонны	1 655 960				57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500
1 орная масса	Объём	985 690				34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226
	Тонны	711 800				13 827	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046
	Объём	423 690				8 230	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718
Геологические	Ni, %	0.94				0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
запасы	Ni, T	6 689				130	217	217	217	217	217	217	217	217	217	217	217	217
	Co, %	0.031				0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
	Со, т	218.12				4.2	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
Потери	%	7.90				7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90
Разубоживание	%	15.10				15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10
	Тонны	772 165				15 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000
	Объём	459 622				8 928	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881
Промышленные	Ni, %	0.80				0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
запасы	Ni, T	6 160.44				119.7	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5
	Co, %	0.026				0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Со, т	200.88				3.9	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
Вскрыша	Тонны	883 795				42 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500
Бемрыша	Объём	526 069				25 298	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345
Коэф.вкер.	T/T	1.1				2.8	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
поэф.вкер.	м3/т	0.7				1.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8

^{*}Подготовительный период включает заверочное бурение, технологическое исследование руд на обогатимость, проектно-изыскательные работы, строительство инфраструктуры.

Параметры пруда испарителя: ширина – 100 метров, длина – 100 метров, глубина (высота гребенки) – 3 метра. Основание пруда будет изолирована глининым замком площад глиненного замка составляет 10000 м2.

Отвалообразование. На предприятия вскрышные породы будут размещаться на площади 34,1 тыс.м2.

Более детальное описание указано в соответствующих разделах отчета ОВВ.

12. Согласно п. 1 ст. 358 Кодекса, управление отходами горнодобывающей промышленности должно осуществляться в соответствии с принципом иерархии, включая сокращение количества образуемых отходов и переработку отходов.

Для реализации вышеуказанной цели, а именно: использование вскрышной пароды или его передачи необходимо получить в органе национального центра качества сертификат соответствие, для применения вскрышной породы при строительстве дорог зданий и сооружений. В этой связи, в план природоохранных мероприятий разрабатываемый в последующих стадиях получения разрешения на воздействия, необходимо включить мероприятие по определению пригодности вскрышной породы при строительстве дорог и зданий и сооружений. В случаи соответствие в программу управления отходами, будет внесено корректировка по повторному использованию отходов вскрышной породы в строительстве.

13. В отчете о возможных воздействиях (далее — Отчет) необходимо указать объемы образования всех видов отходов, а также предусмотреть альтернативные методы использования отходов.

Сведения указаны в разделе «Обоснование предельных количественных и качественных показателей эмиссий, физических воздействий на окружающую среду, выбора операций по управлению отходами».

14. Необходимо предоставить информацию о наличии/отсутствии подземных питьевых вод на проектируемом участке с согласованием проектных решений с уполномоченным органом по изучению и использованию недр (ст. 58, 59 Водного кодекса РК).

Гидрогеологические условия месторождения простые. Подземные воды приурочены к трещиноватым выщелоченным разрушенным серпентинитам. Глубина залегания их колеблется от 7 до 13-15 м.

Судя по геологическому разрезу, глубине залегания рудных тел, географическому местоположению месторождения на Шандашинском месторождении будут обводнены карманообразные участки, составляющие от общего объема рудного тела 10-15%.

В процессе отработки месторождения возможны небольшие оползни глинистых пород в местах, где они подстилаются песчаными образованиями, насыщенными водой.

15. Предусмотреть внедрение мероприятий согласно Приложения 4 к Кодексу, а также предлагаемые меры по предупреждению, исключению и снижению возможных форм неблагоприятного воздействия на окружающую среду, а также по устранению его последствий: охрана атмосферного воздуха; охрана от воздействия на водные экосистемы; охрана водных объектов; охрана земель; охрана животного и растительного мира; обращение с отходами; радиационная, биологическая и химическая безопасность; внедрение систем управления и наилучших безопасных технологий.

Все указанные требования по ППМ будет рассмотрены в последующим стадии согласования, а именно при получении разрешения на воздействия.

16. Согласно Заявления намечаемая деятельность сопровождается водопритоками. Не представлено подробное конструктивное описание пруда—накопителя. Согласно статьи 222 Кодекса, лица, использующие накопители сточных вод и (или) искусственные водные объекты, предназначенные для естественной биологической очистки сточных вод, обязаны принимать необходимые меры по предотвращению их воздействия на окружающую среду, а также осуществлять рекультивацию земель после прекращения их эксплуатации. Создание новых (расширение действующих) накопителей-испарителей допускается по разрешению местных исполнительных органов областей, городов республиканского значения, столицы при невозможности других способов утилизации образующихся сточных вод или предотвращения образования сточных вод в технологическом процессе, которая должна быть обоснована при проведении оценки

воздействия на окружающую среду. Проектируемые (вновь вводимые в эксплуатацию) накопители-испарители сточных вод должны быть оборудованы противофильтрационным экраном, исключающим проникновение загрязняющих веществ в недра и подземные воды. Определение и обоснование технологических и технических решений по предварительной очистке сточных вод до их размещения в накопителях осушествляются при проведении оценки воздействия на окружающую среду. Представить подробное описание процесса очистки, эффективность, характеристику сточных вод до и после очистки.

Согласно п. 10 ст. 222 Экологического кодекса РК, запрещается сброс сточных вод без предварительной очистки, за исключением сбросов шахтных и карьерных вод горнометаллургических предприятий в пруды-накопители и (или) пруды-испарители, а также вод, используемых для водяного охлаждения, в накопители, расположенные в системе замкнутого (оборотного) водоснабжения.

Согласно п.4 ст. 222 Кодекса пруды-накопители/пруды-испарители должны быть противофильтрационным исключающим экраном, проникновение загрязняющих веществ в недра и подземные воды. Пруды-накопители/пруды-испарители предназначены для накопления и испарения воды (карьерной, шахтной), откуда не предусматривается их сброс или дальнейшее использование, и тем более фильтрация в окружающую среду. Таким образом, при сбросе шахтных и карьерных вод в прудынакопители/пруды-испарители, оснащенные противофильтрационной (водонепроницаемой) защитой, исключается их фильтрация, приводящая к загрязнению различных компонентов окружающей среды (недр, подземных вод, почвенных ресурсов). С целью оценки степени воздействия на окружающую среду и контроля миграции (поступления) в окружающую среду загрязняющих веществ, содержащиеся в указанных сточных водах, необходимо их нормирование и мониторинг.

Учитывая требования, вышеуказанных статей Экологического кодекса, при дальнейшим проектировании (разработка рабочего проекта) пруда-испарителя, необходимо предусмотреть гидроизоляция дна путем применения норм и требования СНИП РК, при созвание пруда испарителя.

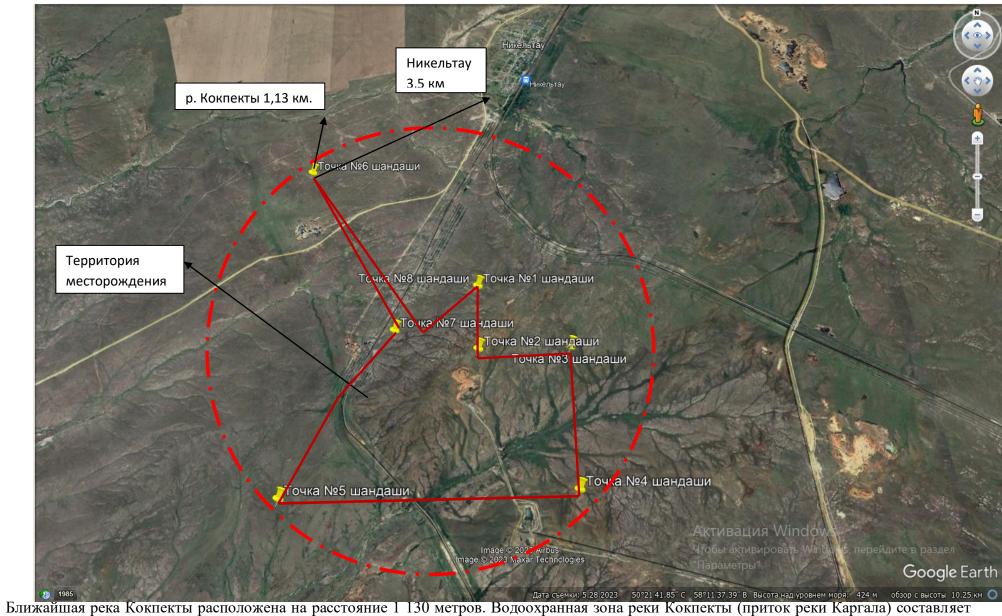
Так же проектом предусмотрены устройство сети наблюдательных скважин, которые будут мониториться 3 раза в году (весеннее-летний-осенний периоды).

Согласно п. 74 Правил определения нормативов эмиссий №63 от 10.03.2023 г. Если конечным водоприемником сточных вод является накопитель замкнутого типа, то есть когда нет открытых водозаборов воды на орошение или не осуществляются сбросы части стоков накопителя в водные объекты и земную поверхность, и других производственных и технических нужд, расчет допустимой концентрации производится по формуле:

$$Cдc = Cфакт$$
, (18)

где Сфакт – фактический сброс загрязняющих веществ после очистных сооружений, мг/л.

Накопитель в таком случае используется как накопитель-испаритель сточных вод. Краткая характеристика сточных вод


Данные по сточным водам приняты на основании отобранных со скважин подземных вод. Данные по характеристики сточных вод предоставлены следующими показателями:

Наименование ЗВ	Концентрация мг/л
Азот аммонийный (NH_4^+)	4,35
Нитриты (NO ₂)	0,423
Нитраты (NO ₃)	1,65
Сульфаты (SO ₄ ²⁻)	1605,2
Хлориды (Cl ⁻)	2350
Гидрокарбонаты (НСО ₃)	340

Натрий (Na, суммарно)	1800
Магний (Mg, суммарно)	193,8
Калий (К)	31,4
Кальций (Са)	440
СПАВ	0,187
ХПК	21,2
Нефтепродукты	0,055
Взвещенные вещества	1250
медь	0,0031
Свинец	0,0029
Фенолы	0,0005
Фосфаты	0,213
Бор	0,772
Цинк	0,0005
Кадмий	0,0002
Железо общее	0,06
Никель	0,0035
Кобальт	0,0015

Параметры пруда испарителя: ширина – 100 метров, длина – 100 метров, глубина (высота гребенки) – 3 метра. Основание пруда будет изолирована глининым замком площад глиненного замка составляет 10000 м2.

17. Представить ситуационную карту-схему расположения объекта, отношение его к водным объектам, жилым застройкам (Приложение 1 к «Правилам оказания государственных услуг в области охраны окружающей среды» от 2 июня 2020 года N^2 130).

100 метров. Утверждены постановлением Акимата Актюбинской области №60 от 06.03.2013 года.

18. Согласно п.7 Правил проведения общественных слушаний, утвержденными приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 3 августа 2021 года № 286, общественные слушания по документам, намечаемая деятельность по которым может оказывать воздействие на территорию более чем одной административно-территориальной единицы (областей, городов республиканского значения, столицы, районов, городов областного, районного значения, сельских округов, поселков, сел), проводятся на территории каждой такой административно-территориальной единицы. В этой связи необходимо проведение общественных слушаний в ближайших к объекту населенных пунктах.

Ближайщим населенным пунктом месторожению является ст. Никельтау (центр сельского округа) на расстояние 3,5 км.

19. Необходимо детализировать информацию по описанию технических и технологических решений для намечаемой деятельности.

Преоставлено в соответствующих разделах по описание технологии.

20. Включить информацию о гидроизоляционном устройстве территории планируемого объекта. Согласно Приложения 4 Экологического кодекса, необходимо предусмотреть мероприятию по предотвращению загрязнения недр при проведении работ по захоронении вредных отходов и отходов производства. На основании вышеизложенного, для обеспечения защиты подземных вод, почвенного покрова в качестве изолирующего слоя для накопительной емкости, прудотстойников, поля фильтрации и септика предусмотреть в проекте геопленку, слой бентомата.

Указанные требования по устройству гидроизоляционного слоя предоставлены в проектных решениях, согласно СПИН РК. Так же стоить отметить, что после согласования ПГР будут разработаны рабочие проекты по строительству вспомогательных производств, где будет более детально указано о мерах гидроизоляции технологических площадок.

21. Предусмотреть выполнение экологических требований по защите атмосферного воздуха - проведение работ по пылеподавлению.

Проектом предусмотрены работы по пылеподавлению отвалов и внутрикарьерных дорог, так же стоить отметить, что для реализации указанных целей предусмотрено ПГР поливомечная машина.

22. Отсутствуют сведения о конечном приемнике сточных вод. Указать конечный приемник и соответствие отводимых сточных вод экологическим требованиям конечного водоприемника сточных вод согласно требованиям п. 58 Методики №63.

Конечный водоприемник является пруд испаритель. Расчеты сбросов предоставлены в соответствующим разделе и были предложены нортивы сбросов ЗВ.

23. Необходимо предусмотреть возможность использования/передачи вскрышной породы с целью снижения объема захоронения с учетом требования пункта 6 приказа и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 9 августа 2021 года № 318 «Об утверждении Правил разработки программы управления отходами».: Программа разрабатывается в соответствии с принципом иерархии и должна содержать сведения об объеме и составе образуемых и (или) получаемых от третьих лиц отходов, способах их накопления, сбора, транспортировки, обезвреживания, восстановления и удаления, а также описание предлагаемых мер по сокращению образования отходов, увеличению доли их повторного использования,

переработки и утилизации.

Для реализации вышеуказанной цели, а именно: использование вскрышной пароды или его передачи необходимо получить в органе национального центра качества сертификат соответствие, для применения вскрышной породы при строительстве дорог зданий и сооружений. В этой связи, в план природоохранных мероприятий разрабатываемый в последующих стадиях получения разрешения на воздействия, необходимо включить мероприятие по определению пригодности вскрышной породы при строительстве дорог и зданий и сооружений. В случаи соответствие в программу управления отходами, будет внесено корректировка по повторному использованию отходов вскрышной породы в строительстве.

24. Необходимо привести описание работ по рекультивации месторождения указав этапы, сроки и основные работы. В соответствии со ст. 238 Экологического Кодекса РК (далее — Кодекса), представить планируемые мероприятия и проектные решения в зоне воздействия по снятию, транспортировке и хранению плодородного слоя почвы и вскрышных пород, по сохранению почвенного покрова на участках, не затрагиваемых непосредственной деятельностью, по восстановлению нарушенного почвенного покрова и приведению территории в состояние, пригодное для первоначального или иного использования (техническая и биологическая рекультивация).

Биологические и техническое рекультивации буде произведено на конеч разработки месторождения 2039 и 2041 гг. В первый год будет предусмотрено техническое рекультивация участка, на последующие года будут проводиться посадка житняка и других сеянцев.

Технический этап рекультивации.

Настоящим планом предусматривается проведение технического этапа	рекульти
вации в следующем составе:	
□ очистка территории от мусора;	

		-	•	=
🗆 грубая зас	сыпка	и планир	овк	а горизонтальных участков;

□ чистовая планировка и прикатывание рекультивируемых площадок. Работы по техническому этапу рекультивации проводятся в теплое время года.

Предусматривается работа по техническому этапу рекультивации площадок производить в 1 смену, продолжительностью 8 часов.

Планировочные работы рекомендуется выполнять только на площадях, нарушенных и «не забронированных» под какие-либо объекты.

Чистовая планировка — окончательное выравнивание поверхности, которое сводится к исправлению микрорельефа и перемещению незначительных объемов пород.

В период технической рекультивации предусматривается выполнение работ по влагонакоплению, что удачно сочетается с работами по противоэрозийному (ветровая и водная эрозия) устройству территории.

Так, задержание водных потоков на откосах и склонах способствует поглощению грунтом влаги, которая впоследствии используется растениями. Одновременно с этим исключается усиление водных потоков, предотвращая разрушение поверхности.

Как известно, большое влияние на задержание талых вод и дождевых (ливневых) осадков и последующее поглощение их почвогрунтом, оказывает совокупность неровностей в виде валов и понижений, устраиваемых на поверхности. Эффективность поглощения влаги значительно увеличивается также при глубоко разрыхленной поверхности.

На рекультивируемой поверхности должен быть создан вало- и микрорельеф.

Технические мероприятия по улучшению водно-питьевого режима и противоэрозионному устройству территории должны складываться из системы валов, ограничивающих площадь с одинаковыми отметками. Склоны, расположенные различно в отношении сторон света, получают неодинаковый запас влаги: южные склоны — меньше, северные - больше. При этом необходимо учитывать направление господствующих ветров.

Биологический этап рекультивации.

Завершающим этапом восстановления нарушенных земель является проведение биологического этапа рекультивации. Работы по биологическому восстановлению земель, ведутся для создания растительных сообществ декоративного и озеленительного назначения.

Биологический этап начинается после окончания технического этапа и проводится с целью создания на подготовленной в ходе проведения технического этапа поверхности корнеобитаемого слоя, предотвращающего эрозию почв, снос мелкозема с восстановленной поверхности.

Выполнение биологического этапа рекультивации позволяет снизить выбросы пыли в атмосферу и улучшить микроклимат района.

Для разработки наиболее эффективных и рациональных методов рекультивации нарушенного ландшафта большое значение имеет знание процессов их естественной эволюции, в частности восстановление растительного покрова.

Работы, входящие в состав биологического этапа рекультивации, должны проводиться с учетом рекомендаций по зональной агротехнике. Своевременная и качественная обработка почвы способствует приданию почве надлежащего агрофизического состояния, тщательному очищению от сорняков, накоплению и сбережению влаги. Безотвальное рыхление необходимо проводить в августе месяце с расчетом прохождения в более глубокие слои почвы выпадающих осенних осадков.

Посев многолетних трав предусматривается на горизонтальной поверхности рекультивируемых участков.

Травы быстрее, чем деревья и кустарники закрепляют рыхлые породы и предотвращают процессы их смыва и развеивания. Лучше всего с этим справляются злаково-бобовые травосмеси. Более устойчивые урожаи и наиболее полное агротехническое воздействие трав на почву достигается при совместном посеве рыхлокустовых и корневищных злаковых и бобовых со стержневой корневой системой.

При наличии в травосмеси только одних рыхлокустовых трав, травостой быстро изреживается вследствие малого сопротивления корней, в то же время корневищные растения имеют хорошо развитую мочковатую корневую систему, увеличивают упругость дернового покрова, а бобовые травы с мощной стрежневой системой связывают верхние горизонты почвы с нижними, оказывают наибольшее сопротивление механическому воздействию дождевой воды.

В качестве мелиоративных культур предусматриваются многолетние травы, образующие мощную надземную массу. Главное преимущество этих культур, что они произрастают на этих территориях. Для гарантированного успеха планируется активное сотрудничество с региональными агростанциями для проведения квалифицированной помощи в восстановлении по восстановлению флоры участка.

25. Предусмотрено использование привозной воды из ближайших населенных

пунктов. В случае необходимости предусмотреть обязательное наличие разрешения на специальное водопользование (статья 66 Водного кодекса Республики Казахстан).

В случаи изменения источника водоснабжения, будут проведены работы по своевренному оформлению разрешение на спецводопльзования. Однако стоить отметить, что источники подземных вод предназначенных для питьевого назначения не обнаружены на территории контрактной территории.

26. Согласно п.2 статьи 238 Экологического Кодекса недропользователи при проведении операций по недропользованию, а также иные лица при выполнении строительных и других работ, связанных с нарушением земель, обязаны:1) содержать занимаемые земельные участки в состоянии, пригодном для дальнейшего использования их по назначению;2) до начала работ, связанных с нарушением земель, снять плодородный слой почвы и обеспечить его сохранение и использование в дальнейшем для целей рекультивации нарушенных земель; 3) проводить рекультивацию нарушенных земель.

Указанные требования будут соблюдены при дальнейшей эксплуатации контрактной территории.

27. При расположении объектов в одной контрактной территории и при единой области воздействия рассмотреть единым проектом ОВОС.

Объекты располежены на разных контрактных территориях, в связи с чем проект OBOC разработан для вышеуказанной контрактной территории.

4. Информацию о категории земель и целях использования земель в ходе строительства и эксплуатации объектов, необходимых для осуществления намечаемой деятельности;

Участки предназначены для добычи никель-кобальтовой руды, площадь испрашиваемого земельного отвода составляет 932,6 га, сроки использование земли приняты согласно заключению №38 от 7.02.2023 гг. на 15 лет, данные указаны согласно необходимого для реализации проекта земельного отвода.

- 5. Информацию о показателях объектов, необходимых для осуществления намечаемой деятельности, включая их мощность, габариты (площадь занимаемых земель, высота), другие физические и технические характеристики, влияющие на воздействия на окружающую среду; сведения о производственном процессе, в том числе об ожидаемой производительности предприятия, его потребности в энергии, природных ресурсах, сырье и материалах;
- 5.1 Информацию о показателях объектов, необходимых для осуществления намечаемой деятельности, мощность и габариты производства, другие физические и технические характеристики, влияющие на воздействия на окружающую среду.

Горнотехнические условия разработки месторождения

Анализ геологических, инженерно-геологических, географо-экономических, климатических и технологических сведений о рассматриваемых месторождениях, а так же имеющийся предварительный опыт производства горных работ позволяет прогнозировать следующие горнотехнические условия их разработки:

- 1. Малая мощность покрывающих пород, а так же наличие раннее вскрытых карьерных полей создают благоприятные условия для освоения запасов месторождений открытым способом с малыми объемами горно-капитальных работ.
- 2. Физико-механическая характеристика руды и вмещающих пород исключает необходимость применения каких-либо специальных методов их предварительной подготовки к производству выемочно-погрузочных работ. Более подробная характеристика вмещающих пород и руд месторождения приводятся в таблице 3.1.

Таблица 3.1 Физико-механические характеристики руд и пород

№ п/п	Показатели	Ново-Шанда месторож	
		Вскрышные породы	Руда
1	Объемный вес, т/м ³	1,7	сыр. – 1,68; cyx. – 1,14
2	Влажность, %	31,9	31,9
3	Коэффициент крепости по Протодъяконову	0,6-1,0	0,5-1,5
4	Коэффициент разрыхления	1,3	1,3

- 3. Горнотехнические условия отработки месторождения простые. Вскрышные породы и руды представлены: рыхлыми песками верхнего мела, щебнистыми глинами, глинами коры выветривания, полуразрушенными (выветрелыми) серпентинитами. Все указанные горные породы разрабатываются прямой экскавацией, без применения буровзрывных работ.
- 4. Свойства горных пород, повышенная влажность горной массы, жесткие климатические условия, а также масштабы предстоящей деятельности обуславливают применение цикличной технологии производства вскрышных и добычных работ с использованием экскаваторов в комплексе с автомобильным транспортом. Наиболее рациональным в этих условиях является следующий состав технических средств комплексной механизации основных производственных процессов:
- Гидравлический экскаватор, Doosan DX 700LC с вместимостью ковша 4,5 м³ в исполнении «обратная лопата»;

- Карьерный автосамосвал LGMG MT60 грузоподъемностью 45 т;
- вспомогательное оборудование: бульдозеры типа Shantui SD32, автобус типа КамАЗ-4208, поливооросительная машина типа КМ-600 на базе КАМАЗ-53228, топливозаправщик, Автогрейдер типа XCMG GR215A, фронтальный погрузчик XCMG LW800Кс ковшом емкостью 4,5 м³,автомобиль скорой помощи на базе УАЗ.

В случае производственной необходимости указанные модели оборудования могут быть заменены на аналогичные по типоразмеру. При этом не должно быть допущено нарушение требований безопасности и ухудшение проектных технико-экономических показателей.

3.2 Границы и параметры карьера

Отработку запасов месторождений предусматривается вести открытым способом. Основой для оконтуривания карьера послужила каркасная и блочная модели месторождения.

Проектирование карьера осуществлялось в геоинформационной системе Micromine 2020. В данной программе реализована возможность 3D моделирования рудных тел, определение и оконтуривание границ карьера, проектирование схемы вскрытия, определение погоризонтных объемов руды и вскрышных пород, расчет коэффициента вскрыши, проектирование отвалов.

При соблюдении оптимальных технологических и безопасных условий отработки обеспечивается устойчивость бортов карьера. Параметры уступов и бортов приняты на основании инженерно-геологической характеристики пород и руд с учетом «Методических рекомендаций по технологическому проектированию горнодобывающих предприятий открытым способом разработки».

При построении карьера были учтены следующие конструктивные параметры:

- 1. Высота уступа равна 10 м, углы откоса уступов в их предельном положении равно 45° ;
 - 2. Ширина предохранительной бермы равна 8м;
- 3. Продольный уклон транспортной бермы 80-100‰, ширина транспортной бермы для двухполосного движения автосамосвалов г/п 45 т 20м,. При однополосном движении 15м;

На рисунке 3.1 представлен план карьера на конец отработки, оконтуривание которого произведено с учетом указанных выше положений, требований Норм технологического проектирования, а также данных топографической карты поверхности. Проектирование карьера и определение объемов горной массы в его контурах произведено в программе Micromine.

Рассчитано погоризонтное количество пород, удаляемых из карьеров. Конструктивные элементы, принятые при проектировании карьера приведены в таблице 3.2. Параметры карьера приведены в таблице 3.3.

Параметры конструктивных элементов карьеров

Таблица 3.2

Параметрыуступов	Значение
Высотауступа, м	10
Уголоткосауступа, град	45°
Ширина предохранительной бермы на остальных горизонтах, м	8
Генеральный угол борта карьера, град	22°

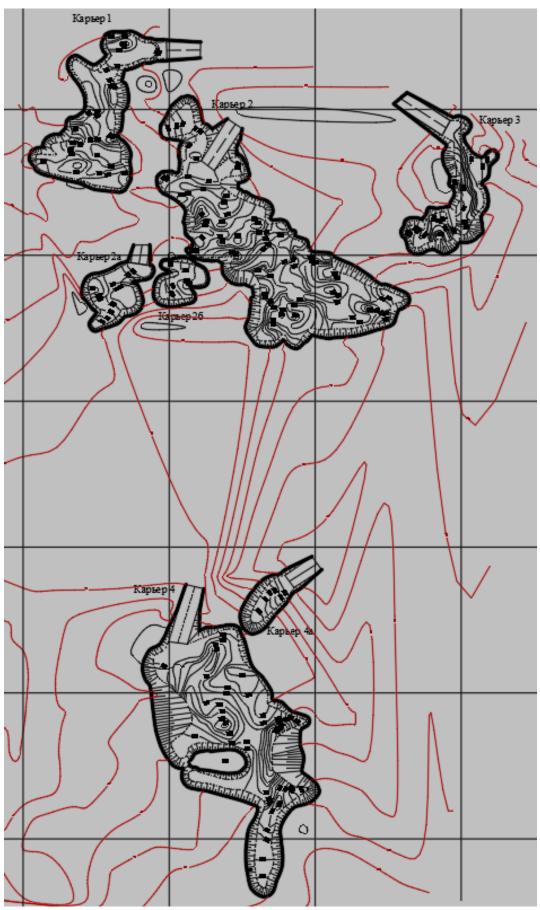


Рисунок 3.1 – План карьера на конец отработки

Параметры карьеров Шандашинского месторождения

Таблица 3.3

Havnesvanavvanavanavana	Ед. изм.			Всегопоместорождению					
Наименованиепараметров	Ед. изм.	№ 1	№ 2	№2a	№2б	№3	№4	№4a	Бсегопоместорождению
1	2	3	4	5	6	7	8	9	10
Размерыпоповерхности:									
Длина	M	215	425	130	75	240	440	135	
Ширина	M	100	125	80	50	80	155	45	
Отметкидна	M	408	406	413	416	408	407	416	
Глубина (от максимальной отметки поверхности)	M	16,5	25,5	13	9	22	25	16	
Промышленныезапасы:									
Балансовойсыройруды	тыс. т	85,5	305,3	22	11,6	33,9	245,5	8	711,8
валансовоисыроируды	тыс. м ³	50,9	181,7	13,1	6,9	20,2	146,1	4,8	423,7
Плотностьсыройруды	T/M^3	1,68	1,68	1,68	1,68	1,68	1,68	1,68	1,68
Естественнаявлажностьруды	%	31,90	31,90	31,90	31,90	31,90	31,90	31,90	31,90
Балансовойсухойруды	тыс. т	58,2	207,9	15,0	7,9	23,1	167,2	5,4	484,7
Былинеовоне ухонруды	тыс. м ³	51,1	182,4	13,1	6,9	20,3	146,7	4,8	425,2
Среднее содержание никеля в сухой руде	%	1,47	1,42	1,13	1,21	1,27	1,36	1,26	1,38
Среднее содержание кобальта в сухой руде	%	0,039	0,046	0,08	0,036	0,04	0,043	0,044	0,045
Объемвскрышныхпород	тыс.м ³	76	187	17	10	72	183	18	562
Потери	%	6,5	6,7	12,1	12,7	12,1	8,4	14	7,9
Разубоживание	%	18,9	15,2	13,7	13,2	11,6	14,5	15,7	15,1

3.3 Проверка устойчивости бортов карьера

В соответствии с Правилами обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы, при ведении горных работ должен осуществляться контроль за состоянием бортов, траншей, уступов, откосов и отвалов. В случае обнаружения признаков сдвижения пород работы прекращаются и принимаются меры по обеспечению их устойчивости. Работы допускается возобновить с разрешения технического руководителя организации по утвержденному им проекту организации работ.

Периодичность осмотров и инструментальных наблюдений по наблюдениям за деформациями бортов, откосов, уступов и отвалов объектов открытых горных работ устанавливается технологическим регламентом.

При проектировании карьера, высота и угол откоса уступов, а также ширина предохранительных берм принимались в соответствии с Методическими рекомендациями по технологическому проектированию горнодобывающих предприятий открытым способом разработки.

В дальнейшем, при разработке месторождения, необходимо проведение изысканий и исследований для уточнения коэффициента запаса устойчивости. При эксплуатации карьера следует регулярно проводить маркшейдерские наблюдения с целью предупреждения возможных деформаций на участках работ.

3.4 Определение потерь и разубоживания руд

Определение объемов эксплуатационных запасов и содержания в них полезного компонента должно быть произведено на основе указанных выше параметров промышленных запасов с учетом величины неизбежных потерь и разубоживания руд при их выемке на контактах рудных тел с породами в процессе эксплуатации карьеров.

Под выемочной единицей принимается наименьший экономически и технологически оптимальный участок месторождения с достоверным подсчетом исходных запасов руды, отработка которого осуществляется единой системой разработки и технологической схемой выемки, по которому может быть осуществлен наиболее точный отдельный учет добычи рудной массы по количеству и содержанию в ней металла (полезного компонента).

Параметры выемочной единицы выбраны из условия выполнения требований предусматривающих:

относительную однородность геологических условий;

возможность отработки запасов единой системой разработки;

достаточную достоверность определения запасов;

возможность первичного учета извлечения полезных ископаемых.

Исходя, из принятой системы отработки и схемы подготовки, выемочной единицей данным проектом принимается карьер.

Параметры (длина и ширина) выемочной единицы определяется конечным контуром карьера.

При определении нормативов потерь и разубоживания по карьерам Кара-Обинского и Ново-Шандашинского месторождений в качестве основы были приняты показатели, рассчитанные С. Придворовым и Институтом Гипроникель и приведённые в следующих проектах:

- Кызыл-Каинский рудник. Карьеры №28-29-30. Корректировка рабочего проекта, п. Батамшинский, 1992 г.
 - Кызыл-Каинский рудник. Степнинский карьер. Рабочий проект, Ленинград, 1991

- Щербаковский рудник. Шандашинский карьер, п. Батамшинский, 1994г.

Расчеты были выполнены в соответствии с «Методическими рекомендациями по расчету нормативных и определению фактических размеров потерь и разубоживания на рудниках комбината «Южуралникель» института «Унипромедь» от 1983 г.

В последующем, при проведении эксплуатационной разведки и сгущении разведочной сети по отдельным профилям, нормативы могут быть пересчитаны.

Основные параметры расчетов нормативов потерь и разубоживания по карьерам Ново-Шандашинского месторождения приводится в таблицах 3.4.

Таблица 3.4 Основные параметры расчета нормативов потерь и разубоживания по Ново-Шандашинскому месторождению

Карьеры	Блоки	С, %	т, м	в, %	a ₆ , %	μ	P ₃ , %	П _э , %	Kp	Kn	Р _{общ.}	П _{общ.}
1	1	1,47	3,85	0,45	0,80	0,67	12,57	11,29	1,5	0,58	18,9	6,5
2	3-4	1,42	5,38	0,45	0,80	0,74	11,05	9,88	1,38	0,68	15,2	6,7
2,	5	1,14	3,15	0,45	0,80	1,67	13,7	12,1	1	1	13,7	12,1
26	6	1,21	3,48	0,45	0,80	1,25	13,2	12,7	1	1	13,2	12,7
	7	1,28	2,41	0,45	0,80	1,03	13,6	12,1	1	1	13,6	12,1
3	8	1,30	4,14	0,45	0,80	0,97	10,6	9,46	1,03	0,96	10,9	9,1
	9	1,23	3,76	0,45	0,80	1,17	11,1	9,9	1	1	11,1	9,9
4	12, 12a, 13	1,36	6,47	0,45	0,80	0,83	11,8	10,6	1,23	0,79	14,5	8,4
4a	14	1,26	2,97	0,45	0,80	1,09	15,7	14,0	1	1	15,7	14,0

В таблицах для расчета Потерь и Разубоживания приняты следующие показатели:

 P_{κ} – разубоживание конструктивное, %;

С – содержание Ni в руде, %;

аб – бортовое содержание Ni, %;

в – содержание Ni в разубоживающей породе, %;

т – средняя мощность рудного тела, м;

 μ — коэффициент, характеризующий оптимальное соотношение потерь и разубоживания на границе отработки рудного тела;

 P_{3} – разубоживание эксплуатационное, %;

 Π_{3} – потери эксплуатационные, %;

Р общ. – разубоживание общее, %;

 K_{Π} – коэффициент потерь;

K_p – коэффициент разубоживания.

Таким образом, в среднем по Ново-Шандашинскому месторождению -7.9%, 15.1%.

3.5 Обоснование выемочной единицы

Согласно «Единым правилам по рациональному и комплексному использованию недр», выемочная единица - наименьший экономически и технологически оптимальный участок месторождения с достоверным подсчетом исходных запасов (блок, панель, лава, часть уступа), отработка которого осуществляется единой системой разработки и технологической схемы выемки, по которому может быть осуществлен наиболее точный отдельный учет добычи по количеству и качеству полезного ископаемого.

Морфология залегания рудных тел, система разработки и технология ведения горных работ на каждом из горизонтов являются едиными для всего месторождения и практически не меняется по мере развития карьера.

В связи с этим, в условиях открытой разработки месторождения, горизонт - как выемочная единица соответствует определению и функциям минимального участка и отвечает всем требованиям Единых правил, предъявляемым к выемочной единице, т.к.:

- это единственная экономически и технологически обоснованная проектом оптимальная горногеометрическая единица;
- в границах горизонта проведен достоверный подсчет исходных запасов руды;
- отработка горизонтов осуществляется единой системой разработки и технологической схемы выемки;
- по горизонтам может быть осуществлен точный отдельный учет добычи рудной массы по количеству и содержанию в нем полезного компонента.

Учитывая данные условия разработки месторожденияШандашинское, в качестве выемочной единицы принимается горизонт.

3.6 Режим работы и производительность предприятия

Планом горных работ принимается круглосуточный режим горных работ - 2 смены по 12 часов в сутки с перерывом на обед 1 час, 365 дней в году.

Метод работы — вахтовый. Продолжительность вахты — 15 рабочих дней. Расчет производительности оборудования и технико-экономические показатели производились на 340-280 рабочих дня в году при продолжительности суток — 22 часа.

Производительность предприятия по добыче составляет 25тыс.т/год.

3.7 Календарный график горных работ

Календарный график горных работ на отработку месторождений Шандашинскоесоставлен на 21года, с учетом подготовительного периода (2023-2025), в данный период будут произведены работы по заверочному бурению, проведены технологические исследования, проектные работы, а также строительство необходимой инфраструктуры.

Общая производительность карьеров по добыче руды составит 25 тыс.т в год в период 2026-2038гг которая будет достигнута на второй год отработки, с 2039г по 2043г. производительность составит 100 тыс.т в год. Для обеспечения заданной производительности составлен календарный график горных работ на 18 лет.

При его разработке на основе результатов анализа были учтены следующие условия: погоризонтное распределение запасов руд по количеству и качеству; рациональная очередность отработки эксплуатационных запасов с позиции обеспечения относительно среднего качества руды для обеспечения равномерности переработки.

В общем, для извлечения промышленных запасов в объеме 772,2тыс.т необходимо попутно извлечь 526.1 тыс.м³ вскрышных пород. При этом средний коэффициент вскрыши составит $0.7 \, \mathrm{m}^3/\mathrm{T}$.

В таблице 3.5 приведен календарный график разработки месторождения.

Согласно разработанному плану, горные работы начинаются в 2026 году с вскрышных работ, при этом на первый год отработки запланирована добыча руды в объеме 15тыс.т.

На второй год отработки (2027 г.) запланирован выход на производственную мощность 25тыс.т/год по руде, при это с учетам значительного объема вскрышных пород производятся опережающие работы по вскрышы на верхних горизонтах.

В последующие годы развитие горных работ осуществляется по аналогичному принципу. Промежуточное положение карьеров уточняется с учетом текущих условий.

КАЛЕНДАРНЫЙ ПЛАН ГРАФИК РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ ПО ГОДАМ

			Подготов	вительный	период *					Промы	шленная р	разработка	а месторо:	ждений				
Год отработки	ед. изм	Всего	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
			1 год	2 год	3 год	4 год	5 год	6 год	7 год	8 год	9 год	10 год	11 год	12 год	13 год	14 год	15 год	16 год
Горная масса	Тонны	1 655 960				57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500	57 500
1 орная масса	Объём	985 690				34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226	34 226
	Тонны	711 800				13 827	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046	23 046
	Объём	423 690				8 230	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718	13 718
Геологические	Ni, %	0.94				0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
запасы	Ni, T	6 689				130	217	217	217	217	217	217	217	217	217	217	217	217
	Co, %	0.031				0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
	Со, т	218.12				4.2	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
Потери	%	7.90				7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90
Разубоживание	%	15.10				15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10	15.10
	Тонны	772 165				15 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000	25 000
	Объём	459 622				8 928	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881
Промышленные	Ni, %	0.80				0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
запасы	Ni, T	6 160.44				119.7	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5	199.5
	Co, %	0.026				0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Со, т	200.88				3.9	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
Вскрыша	Тонны	883 795				42 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500	32 500
Бемрыша	Объём	526 069				25 298	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345
Коэф.вкер.	T/T	1.1				2.8	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
поэф.вкер.	м3/т	0.7				1.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8

^{*}Подготовительный период включает заверочное бурение, технологическое исследование руд на обогатимость, проектно-изыскательные работы, строительство инфраструктуры.

6. Описание планируемых к применению наилучших доступных технологий – для объектов I категории, требующих получения комплексного экологического разрешения в соответствии с пунктом 1 статьи 111 Кодексом

Согласно требованию п. 6 ст. 418 ЭК РК, подведомственная организация уполномоченного органа в области охраны окружающей среды, осуществляющая функции Бюро по наилучшим доступным техникам, обеспечивает разработку справочников по наилучшим доступным техникам по всем областям применения наилучших доступных техник до 1 июля 2023 года.

Учитывая вышеуказанные требования, то есть ввиду отсутствия на данный момент справочника НДТ. Обоснование планируемой деятельности к применению НДТ не возможно.

7. Описание работ по постутилизации существующих зданий, строений, сооружений, оборудования и способов их выполнения, если эти работы необходимы для целей реализации намечаемой деятельности;

На предполагаемой территории размещения объектов отсутствуют: существующие зданий, строений, сооружений, оборудования. Проведение пост утилизации не требуется.

Информацию об ожидаемых видах, характеристиках и количестве эмиссий в окружающую среду, иных негативных антропогенных воздействиях на окружающую среду, связанных со строительством и эксплуатацией объектов для осуществления рассматриваемой деятельности, включая воздействие на воды, атмосферный воздух, почвы, недра, а также вибрации, шумовые, электромагнитные, тепловые и радиационные воздействия;

КРАТКАЯ ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

Предусматривается добыча руды по 25 тыс. тонн в год в период 2026-2038 гг. Площадь горного отвода — 932,6 га. Основное направление добычи никеля-кобольтовой руды.

2024-2025 гг.

Источник №3001 — Силовой привод буровой установки. Необходимо для определения места началы разработки карьера.

Источник №3002 — Дизельная электростанция для выработки электроэнергии. Для дополнительной выработки электроэнергии в случаи необходимости.

Источник №6101 — Снятие ПРС и другие земельные работы по подготовки площадки. Необходимо выполнить, перед проведнием работ по доизучение и определения началы участки разработки карьера.

Источник №6102 – Емкость для ГСМ. Предназначено для хранения дизельного топлива.

Источник №6103 — сварочные работы. Необходимы для выполнения текущих ремонтных работ в случаи необходимости.

Буровой станок DML или аналог (Источник 6104.01)

Для бурения скважин приняты: буровой станок **DML** (или другая аналогичная техника).

Время работы бурового станка 3000 часов в год.

Для снижения выбросов в атмосферу буровой станок оборудован пылесборником сухого типа, а также системой водяного пылеподавления в летний период.

При производстве буровых работ в атмосферу выбрасывается пыль неорганическая с содержанием двуокиси кремния менее 20%.

Буровой станок DMLили аналог (Источник 6105.01)

Для бурения скважин приняты: буровой станок **DML**(или другая аналогичная техника).

Время работы бурового станка 3000 часов в год.

Для снижения выбросов в атмосферу буровой станок оборудован пылесборником сухого типа, а также системой водяного пылеподавления в летний период.

При производстве буровых работ в атмосферу выбрасывается пыль неорганическая с содержанием двуокиси кремния менее 20%.

Максимальный объем выбросов ЗВ в период эксплуатации без учета автотранспорта составит 11.18759113 тонн/год.

***Примичание: аварийные выбросы не выявлены.

2026-2038 гг.

Снятие ПСП, погрузка на автотранспорт, транспортировка, разгрузка на отвале (6001.01)

Время работы бульдозера составляет 1000 ч/год.

Объем погружаемого материала – 73 600 м3/год.

Транспортируется 45 тонным автосамосвалом.

Загрязняющим веществом является пыль неорганическая 70-20% SiO2.

Объем пересыпаемого материала составит

Сдувание с отвала ПРС (Источник 6002.01)

Площадь хранения породы на отвале составляет 5000 м2.

Загрязняющим веществом является пыль неорганическая 70-20% SiO2.

Погрузка вскрышной породы в автотранспорт, транспортировка на отвал, разгрузка, формирование отвала, статистическое хранение (Источник 6003.01)

Объем вскрышной породы — 42500 т/год или 25298 м3/год в 2026 г., 32500 т/год или 19345 м3/год — 2027-2038 гг.

Площадь склада -34,1 тыс.м2.

Время работы бульдозера составляет 1000 ч/год.

Загрязняющим веществом является пыль неорганическая 70-20% SiO2.

Погрузка руды экскаватором (Источник 6004.01)

Погрузка руды в автосамосвалы производится экскаватаром.

Объем перегружаемого материала — на 2026 год — 8,929 тыс.м3/год., на 2027-2038 гг. — 14,881 тыс.м3/год (согласно календарному плану горных работ).

Загрязняющим веществом является пыль неорганическая менее 20% SiO2.

Транспортировка горной массы (Источник 6005.01)

Перевозка вмещающей породы производится автосамосвалами.

Загрязняющим веществом является пыль неорганическая менее 20% SiO2.

Разгрузка самосвалов руды (Источник 6006.01)

Разгрузка руды производиться автосамосвалами.

Объем перегружаемого материала — на 2026 год — 15,000 тыс.т/год., на 2027-2038 гг — 25,0 тыс.т/год. (согласно календарному плану горных работ).

Загрязняющим веществом является пыль неорганическая менее 20% SiO2.

Формирование перегрузочного рудного склада бульдозером (Источник 6007.01)

Время работы бульдозера составляет 1000 ч/год.

Загрязняющим веществом является пыль неорганическая менее 20% SiO2.

Склад перегрузочного рудного склада (Источник 6008.01)

Площадь хранения руды составляет 7 800 м2.

Площадь хранения руды составляет 7 800 м2.

Загрязняющим веществом является пыль неорганическая менее% SiO2.

Погрузка руды (Источник 6008.02)

Объем перегружаемого материала — на 2026 год — 15,000 тыс.т/год., на 2027-2038 гг — 25,0 тыс.т/год. (согласно календарному плану горных работ).

Загрязняющим веществом является пыль неорганическая менее 20% SiO2.

Укладка щебеночного покрытия (переработанная вскрыша) (Источник 6009.01)

Крупность материала до 20 мм 75 000 тыс.тонн.

Крупность мастериала от 20 мм 75 000 тыс.тонн.

Сварочные работы (Источник 6010)

Сварка производится электродами MP-3 -3500 кг/год, УОНИ13/55 -19000 кг/год, T-590 -1000 кг/год, ДС-2 -1000 кг/год, УОНИ 13/45 -5000 кг/год и УОНИ 13/65 -500 кг/год. Также проводяться работы по газовой резки металла с временим работы 1200 часов год.

Хранение ГСМ (6011)

Хранение ДТ O3-500 м3/год, $B\Pi - 500$ м3/год.

При производстве в атмосферу выбрасываются оксид железа, марганец и его соединения, хром шестивалентный, азота диоксид и азот оксид, углерод оксид, фтористые газообразные соединения, фториды неорганические плохо растворимые, пыль неорганическая с содержанием двуокиси кремния в 70-20%, пыль неорганическая менее-20%.

С учетом существующих объемов работ, расчетный объем выбросов загрязняющих веществ в атмосферу от источников выбросов ЗВ в атмосферу составляет в целом по производственной базе из них:

Максимальный объем выбросов ЗВ в период эксплуатации без учета автотранспорта составит 137.3519172 тонн/год.

***Примичание: аварийные выбросы не выявлены.

КРАТКАЯ ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ ВОДНЫХ ОБЪЕКТОВ

В процессе производственной деятельности будут образовываться хозяйственно-бытовые, производственные и ливневые стоки.

Согласно ст. 213 ЭК РК (далее - статья):

- 1. Под сбросом загрязняющих веществ (далее сброс) понимается поступление содержащихся в сточных водах загрязняющих веществ в поверхностные и подземные водные объекты, недра или на земную поверхность.
 - 2. Под сточными водами понимаются:
- 1) воды, использованные на производственные или бытовые нужды и получившие при этом дополнительные примеси загрязняющих веществ, изменившие их первоначальный состав или физические свойства;
- 2) дождевые, талые, инфильтрационные, поливомоечные, дренажные воды, стекающие с территорий населенных пунктов и промышленных предприятий;
- 3) подземные воды, попутно забранные при проведении операций по недропользованию (карьерные, шахтные, рудничные воды, пластовые воды, добытые попутно с углеводородами).
 - 3. Не являются сбросом:
- 1) закачка пластовых вод, добытых попутно с углеводородами, морской воды, опресненной воды, технической воды с минерализацией 2000 мг/л и более в целях поддержания пластового давления;
- 2) закачка в недра технологических растворов и (или) рабочих агентов для добычи полезных ископаемых в соответствии с проектами и технологическими регламентами, по которым выданы экологические разрешения и положительные заключения экспертиз, предусмотренных законами Республики Казахстан;
- 3) отведение вод, используемых для водяного охлаждения, в накопители, расположенные в системе замкнутого (оборотного) водоснабжения;
 - 4) отведение сточных вод в городские канализационные сети.

Нормативы допустимого сброса в таких случаях не устанавливаются.

На основании вышеизложенного, проведен анализ на виды сточных вод, подлежащие нормированию и не подлежащие нормированию.

В процессе эксплуатации все стоки, образованные на территории производственного объекта, будут собираться в ЗУМП-ах и с помощью насоса направляться на водосборник (пруд испаритель).

Параметры пруда испарителя: ширина — 100 метров, длина — 100 метров, глубина (высота гребенки) — 3 метра. Основание пруда будет изолирована глининым замком площад глиненного замка составляет 10000 м2.

6.1 Прогнозируемый водоприток в карьер «Центральный»

Обводнение проектируемых карьеров при производстве работ будет происходить за счет атмосферных осадков,главным образом, зимних в виде снега и частично осенними моросящими дождями, а так же за счет небольшого количества подземных вод, т. е. при отработке месторождения открытым способом приток воды в проектируемые карьеры будет происходить за счет:

- ливневых осадков;
- снеготалых вод;
- подземных вод.

6.1.1 Расчетводопритока в карьеры за счет ливневых осадков

Нормальный приток дождевых вод будет значительно ниже ливневого водопритока, поэтому расчет произведен из возможно максимального, определяемого интенсивностью ливневого дождя.

Приток ливневых вод в карьер определяется по формуле:

$$Q_{n} = \frac{\lambda \cdot F_{s} \cdot y \cdot N}{t_{n}},$$

где Q_{π} - объем ливневого водопритока, м³/час;

 λ - коэффициент поверхностного стока, принимаемый для рыхлых пород равным 0,4;

 F_b - площадь водосбора. Площадь водосбора принимается равной площади карьера по верху, $\,{\rm M}^2;$

у - коэффициент простираемости ливневого дождя, составляет 1,0.

N - суточное количество ливневых осадков, по данным метеостанции 0,00099м

тл − длительность выпадения ливня, 24 часа.

Результаты вычислений ожидаемых водопритоков в проектируемые карьеры на конец их отработки за счет ливневых осадков представлены в таблице 6.4.

6.1.2 Расчетводопритока в карьеры за счет снеготаяния

Приток талых вод в карьеры определяется по формуле

$$Q_c = \frac{\alpha \cdot \beta \cdot m_c \cdot F}{t_c},$$

где Q_c - приток снеготалых вод, $M^3/\text{сут}$;

 α - коэффициент поверхностного стока, принимаемый для рыхлых пород равным 0,4;

 β - коэффициент, учитывающий степень удаления снега из карьера в процессе вскрышных и добычных работ, $\beta=0.2$;

m_c - годовое количество твердых осадков по данным метеостанции 0,13 м;

F - Площадьснегосбора, равная площади карьера по верху, M^2

 t_c - продолжительность интенсивного снеготаяния, сут. По данным метеостанции t_c = 25 суток.

Результаты вычислений ожидаемых водопритоков в проектируемые карьеры на конец их отработки за счет снеготаяния представлены в таблице 8.4.

6.1.3 Расчет водопритока в карьеры за счет подземных вод

По данным геологоразведочных работ подземные воды преимущественно безнапорные, имеют свободную поверхность, глубина их залегания в зависимости от рельефа местности составляет 12-20 м.

Величина водопритока в проектируемый карьер за счет подземных вод определяется фильтрационными свойствами вмещающих пород, слагающих борта карьера.

Расчетная формула для определения притока за счет подземных вод имеет вид:

$$Q_{II} = \frac{1,36 \cdot K \cdot H^2}{\lg R_{III} - \lg r_0},$$

где Q_{Π} - приток подземных вод в карьер, м³/сутки;

К - коэффициент фильтрации водоносного горизонта, 0,1 м/сут;

Н - средняя мощность водоносного горизонта, м.

 $R_{\text{пр}}$ - приведенный радиус влияния водоотлива, м.

$$R_{\text{np}} = 1.5 \cdot \sqrt{a \cdot t}$$
, M

где а - коэффициент уровнепроводности, определяемый из зависимости:

$$a = \frac{\mathbf{k} \cdot \mathbf{H}}{u}$$
, $\mathbf{M}^2/\mathbf{cyr}$,

где и - коэффициент водоотдачи вмещающих пород.

Специальные исследования по определению водоотдачи вмещающих пород не проводились. С достаточной для практики точностью значение водоотдачи массива трещиноватых пород может быть принято равным μ =0,01. Указанное значение несколько завышено, но оно создает определенный запас надежности прогноза водопритока.

Значение t с достаточной для расчетов точностью принимается равным времени эксплуатации карьера.

 r_{o} – приведенный радиус "большого колодца", м.

В расчетах карьер рассматривается как "большой колодец", длина окружности которого равна периметру карьера в средней его части P_{cp} (таблица 6.2).

Радиус такой окружности определяется по формуле:

$$r_o = \frac{P_{cp}}{2\pi}$$
, M

Результаты вычислений по формуле приведены в таблице 6.3.

Результаты вычислений ожидаемых водопритоков в проектируемые карьеры за счет подземных вод на конец их отработки представлены в таблице 6.4.

Сводные данные по расчету водопритоков за счет подземных вод

Таблица 6.3

	Средняя		емя		Коэф.	Радиусбольшогоколодца,	Приведенный
карьер	мощность	отра	ботки	Периметр карьера в	уровнепроводности,	M	радиусвлияния
	водоносного	кары	epa, t	средней его части,	$\mathbf{k} \cdot \mathbf{H}$	P	водоотлива, м
	горизонта, м (Н)	лет	суток	P_{cp}	$a = \frac{\mathbf{k} \cdot \mathbf{H}}{\mu}, _{\mathbf{M}^2/\mathbf{cyr}}$	$r_o = \frac{cp}{2\pi}$	$R_{np} = 1.5 \cdot \sqrt{a \cdot t}$
				Ново- Шанда	шинскоеместорождени	e	
4	18	0,2	73	683,4	180	108,8	171,9
4a	9	0,05	18,3	104,4	90	16,6	60,8
1	9	0,09	32,9	441,6	90	70,3	81,6
2	17	0,3	109,5	868,1	170	138,2	204,7
2a	5	0,01	3,7	105,8	50	16,8	20,3
26	2	0,02	7,3	91,1	20	14,5	18,1
3	13	0,03	11	282,4	130	45,0	56,6

Возможные водопритоки в проектируемые карьеры на конец их отработки за счет различных источников

	Водопритоки, (Q)										
Карьер		ивневыхосад ков	Засчет	снеготаяни я	Засчетп	одземныхво д	Общийводоприток , $(Q_{\text{общ}})$				
	м ³ /сут	м ³ /час	м ³ /сут	м ³ /час	м ³ /сут м ³ /час		м ³ /сут	м ³ /час			
		Ново-Ш	Іандаши	нскоеместор	ождение						
4	19,2 0,8			0,8	220,8	9,2	259,2	10,8			
4a	1,92	0,08	2,16	0,09	19,2	0,8	23,28	0,97			
1	7,2	0,3	7,2	0,3	170,4 7,1		184,8	7,7			
2	19,2	0,8	19,2	0,8	230,4	9,6	268,8	11,2			
2a	2,4	0,1	2,4	0,1	43,2	1,8	48	2			
26	1,44	0,06	1,44	0,06	4,8	0,2	7,68	0,32			
3	7,2	0,3	7,2	0,3	230,4 9,6		244,8	10,2			

6.2 Расчет и выбор оборудования для карьерной водоотливной установки

Гидрогеологические условия района месторождений простые и не создадут особых затруднений при их отработке.

Ожидаемые максимально-возможные общие водопритоки вкарьеры не превысят 35 $\,\mathrm{m}^3$ /час. Фактические водопритоки в действующие карьеры, находящиеся в аналогичных гидрогеологических условиях, не превышают 40-60 $\,\mathrm{m}^3$ /час.

Осушение проектируемых карьеров производится с помощью открытого водоотлива параллельно с горными работами. Для этой цели целесообразно использовать передвижные насосные установки. Чтобы избежать затопление карьеров в период снеготаяния и ливневых дождей, необходимо предусмотреть наличие резервных насосных установок для откачки воды из карьеров в соответствии с ожидаемыми водопритоками.

Расчет насосной установки производится для максимального общего водопритока карьера.

Производительность насоса рассчитывается из условия, что насос должен откачивать суточный нормальный приток воды в карьер не более чем за 20 часов работы в сутки.

Тогда производительность насоса может быть определена по формуле:

$$Q_{\text{Hac}} = \frac{24 \cdot Q_{\sum}}{20}, \text{ M}^{3}/\text{q}$$

Как видно из таблицы 8.4 максимальный общий водоприток в карьер составляет 34,1 м 3 /час, тогда $Q_{\text{нас}}$ =40,9 м 3 /час.

Манометрический напор при работе на сеть должен быть равен геофизической высоте $H_{\scriptscriptstyle \Gamma}$

$$H_{\Gamma} = H_{\kappa} + h_{\Pi p} - h_{Bc}, M$$

где $H_{\text{\tiny K}}$ – максимальная глубина карьера до разрабатываемого горизонта, 35 м;

 $h_{\text{пр}}$ - превышение труб на сливе относительно борта карьера;

 $h_{\text{пр}} = 1 \div 1,5$ м, принимаем $h_{\text{пр}} = 1,2$ м;

 h_{BC} - высота всасывания относительно насосной установки, $h_{BC} = 3$ м.

Тогда, $H_r = 35+1,2-3=33 \text{ м}$

Ориентировочный напор H_o , который должен создавать насос при минимально необходимой производительности должен находиться в пределах:

$$H_0=(1,05\div1,18) H_\Gamma=1,1\cdot33=36 M$$

Расчетные показатели производительности и напора определяются на период завершения отработки карьера, т.е. при достижении максимальной глубины 35 м от поверхности.

Ha основании расчетных показателей $(Q_{\text{Hac}},$ H_o) ПО индивидуальным проектом характеристикам данным предусмотрена насосная станция передвижных насосных установок типа 3К-6 (К80-50-200) производительностью до 50 м³/час. Одна насосная установка рабочая для постоянного водоотлива и водоотлива ливневых вод, вторая - резервная. При необходимости обе насосные установки (рабочая и резервная) могут работать параллельно на общий трубопровод. Характеристика принятого насоса приведена на рис. 8.1

При известных характеристиках насоса и геодезической высоте водоотлива экономически выгоден трубопровод, имеющий минимальную стоимость в пределах возможных вариантов диаметра водоводов.

Трубопроводная система рассчитана, применительно к насосу К80-50-200, работающего постоянно.

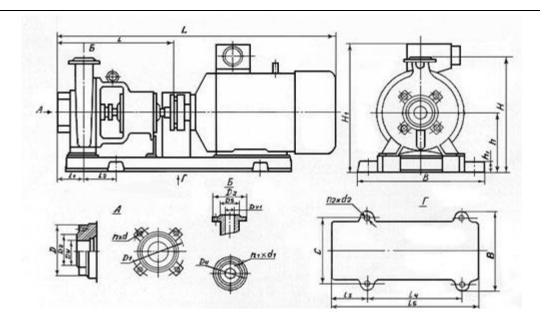
Внутренний диаметр нагнетательного трубопровода определяется по формуле:

$$d_{\cdot} = \sqrt{\frac{4 \cdot Q_{\text{\tiny HAC}}}{\pi \cdot v}}, M$$

где $Q_{\text{нас}}$ - производительность насоса, $50 \text{ м}^3/\text{ч} = 50/3600 = 0,01 \text{ м}^3/\text{c}$;

v - наивыгоднейшая скорость движения воды в трубопроводе, м/с (принят в пределах 1,5 и 2,5 м/с).

Результаты вычислений по формуле сведены в таблицу 6.5.


Таблица 6.5 Расчетные диаметрытрубопровода

Т		трубопр $= \sqrt{\frac{4}{4}}$	й диамет ровода $\frac{Q_{\text{hac}}}{v \cdot v}$, м	•	Принятыйтрубопровод							
Типнасоса	прі	искоро	стиводы	ι:	Диаметр	трубы, мм	толщинастенкитр					
	1,5)	и/c	2,5	м/с	наружный	внутренний	убы, мм					
	\mathcal{M}	мм	М	мм								
K80-50-200 (3K-6)	0,09	90	0,07	70	89	81	4					

Таблицапараметров

Tyranganzanya	Параметр	ынасоса	Понум марутам рамая	Haarara phayy a 1	Mayyyaary anya aa		
Типоразмернасо са	Подача, м ³ /ч	Напор, м	Допуст. кавитац. запас, м, не более	(об/мин)	Мощностьдвиг-ля, кВт		
К80-50-200	50	50	3,5	48(2900)	15		

Габаритныйчертеж

Таблицагабаритныхразмеров

Twwwnantanwaasa		Всась	ывающ	ийпатр	Напорныйпатрубок								
Типоразмернасоса	Dy	D	\mathbf{D}_1	\mathbf{D}_2	d	n	Dy ₁	D ₃	D ₄	D 5	n ₁	d ₁	
К80-50-200	80	190	160	138	M16	4	50	160	125	102	4	18	

	Двига	гель																Массанасоса,	Macca
Типоразмернасоса	Типо-	Мощ-	L	l	l ₁	l2	l 3	l ₄	l 5	H	H1	h	h ₁	B	d ₂	C	n ₂	массанасоса, кг	агрегата,
	размер	ть, кВт																KI	КГ
К80-50-200	АИР160S2	15	1120	485	100	98	160	600	886	430	455	230	40	458	24	380	4	56	235

Таблица перевода старых и новых марок насосов типа К

с 1973 года	с 1982 года	с 1990 года
3К-6	К-45/55	К80-50-200

Рисунок 6.1 - Характеристика насоса

Для сбора воды на нижнем горизонте оборудуется специальный водосборник-зумф. Действительный полезный объем водосборника определяется условиями размещения в нем насосной станции и трехчасовой работой насоса. Полная глубина водосборника принимается равным 4 м, максимальный уровень воды на 0.5 м ниже отметки дна карьера, перепад между верхним и допустимым нижним уровнями воды -1-2 м.

Транспортировка воды из зумпфа карьера на поверхность и далее в прудиспаритель осуществляется по трубопроводу, проложенному по нерабочему борту карьера. В процессе эксплуатации насосная установка в водосборнике меняет свое местоположение, соответственно меняется высота подачи и длина трубопровода.

Слив откачиваемой воды из карьеров 4, 4а, 1, 2, 2а, 2б, 3 - в пруд-испаритель №4 расположенный на западе от Ново-Шандашинского месторождения (таблица 6.6).

Местоположение прудов-испарителей определено с учетом рельефа местности.

Нагнетательный трубопровод от карьера до пруда-испарителя прокладывается из

труб диаметром 133х4 мм.

В пределах карьера для облегчения перемещений става и насосов применяются гибкие шланги внутренним диаметром 125 мм.

Электронасосный агрегат с необходимой арматурой и пусковым электрооборудованием смонтирован на салазках.

Для защиты электрооборудования от атмосферных атмосферных осадков предусмотрен съемный кожух.

Автоматизация насосных станций обеспечивает автоматическое управление рабочими насосами в зависимости от уровня воды в водосборнике, а также автоматическое включение резервного насоса при аварийной остановке рабочего и возможность дистанционного управления и контроля работы с передачей сигналов на пульт диспетчера рудника. Постоянный обслуживающий персонал не предусматривается.

Заливка насоса осуществляется с помощью погружного электронасоса типа ГНОМ 10-10, который также может быть использован для откачки местных скоплений воды.

Данные о потребности труб для строительства водовода приведены в таблице 6.6.

Таблица 6.6 Ланные о потребности труб для строительства водовода

-	данные о потреоно	сти труб дл	я строительства	водовода	
		Годы	Длинатрубо	Общаядлинатру	
Карьер	Пруд-испаритель	отработки			бопровода*, м
	13	карьера	Наповерх-	В карьере,	оспровода , м
			ности, м	M	
	Ново-Ш	Гандашинско	еместорождение		
4		8	300	150	540
4a	<u>№</u> 4	8	350	50	480
<i>№</i> 1	л <u>ч</u> 4 (расположенный на западе	8	260	130	468
№2	от месторождения)	8	300	50	420
№2a		8	100	50	180
№26	№26		185	30	258
3		8	600	70	804

^{* -} общая длина трубопровода принята с коэффициентом запаса 1,2.

6.3 Защита карьеров от поверхностных вод

Для защиты карьеров от притока поверхностных вод в период весеннего снеготаяния и после ливней необходимо устройство нагорных канав. Сечение канавы рассчитывается по максимальному притоку и доступной скорости течения воды в ней.

Нагорная канава проектируется с таким расчетом, чтобы она ограждала все поле карьера от поверхностных вод в течение всего периода его эксплуатации.

Трасса нагорной канавы должна проходить под углом к горизонталям поверхности, чтобы был естественный уклон дна канавы, обеспечивающий быстрый отвод поверхностных вод за пределы карьеров.

В связи с тем, что в районе работ в зимнее время наблюдаются частые бураны, то для исключения снежных заносов карьеров необходимо предусмотреть снегозадерживающие ограждения.

Определение нормативов сбросов ЗВ.

Согласно п. 10 ст. 222 Экологического кодекса РК, запрещается сброс сточных вод без предварительной очистки, за исключением сбросов шахтных и карьерных вод горнометаллургических предприятий в пруды-накопители и (или) пруды-испарители, а также вод, используемых для водяного охлаждения, в накопители, расположенные в системе замкнутого (оборотного) водоснабжения.

Согласно п.4 ст. 222 Кодекса пруды-накопители/пруды-испарители должны быть оборудованы противофильтрационным экраном, исключающим проникновение загрязняющих веществ в недра и подземные воды. Пруды-накопители/пруды-испарители предназначены для накопления и испарения воды (карьерной, шахтной), откуда не предусматривается их сброс или дальнейшее использование, и тем более фильтрация в окружающую среду. Таким образом, при сбросе шахтных и карьерных вод в прудынакопители/пруды-испарители, оснащенные противофильтрационной (водонепроницаемой) защитой, исключается их фильтрация, приводящая к загрязнению различных компонентов окружающей среды (недр, подземных вод, почвенных ресурсов). С целью оценки степени воздействия на окружающую среду и контроля миграции (поступления) в окружающую среду загрязняющих веществ, содержащиеся в указанных сточных водах, необходимо их нормирование и мониторинг.

Учитывая требования, вышеуказанных статей Экологического кодекса, при дальнейшим проектировании (разработка рабочего проекта) пруда-испарителя, необходимо предусмотреть гидроизоляция дна путем применения норм и требования СНИП РК, при созвание пруда испарителя.

Так же проектом предусмотрены устройство сети наблюдательных скважин, которые будут мониториться 3 раза в году (весеннее-летний-осенний периоды).

Согласно п. 74 Правил определения нормативов эмиссий №63 от 10.03.2023 г. Если конечным водоприемником сточных вод является накопитель замкнутого типа, то есть когда нет открытых водозаборов воды на орошение или не осуществляются сбросы части стоков накопителя в водные объекты и земную поверхность, и других производственных и технических нужд, расчет допустимой концентрации производится по формуле:

$$Cдc = Cфакт$$
, (18)

где Сфакт – фактический сброс загрязняющих веществ после очистных сооружений, ${\rm M}{\rm \Gamma}/{\rm n}.$

Накопитель в таком случае используется как накопитель-испаритель сточных вод. Краткая характеристика сточных вод

Данные по сточным водам приняты на основании отобранных со скважин подземных вод. Данные по характеристики сточных вод предоставлены следующими показателями:

Наименование ЗВ	Концентрация мг/л
Азот аммонийный (NH_4^+)	4,35
Нитриты (NO ₂)	0,423
Нитраты (NO ₃)	1,65
Сульфаты (SO ₄ ²⁻)	1605,2
Хлориды (Cl ⁻)	2350
Гидрокарбонаты (НСО ₃)	340
Натрий (Na, суммарно)	1800
Магний (Mg, суммарно)	193,8
Калий (К)	31,4
Кальций (Са)	440
СПАВ	0,187
ХПК	21,2

Нефтепродукты	0,055
Взвещенные вещества	1250
медь	0,0031
Свинец	0,0029
Фенолы	0,0005
Фосфаты	0,213
Бор	0,772
Цинк	0,0005
Кадмий	0,0002
Железо общее	0,06
Никель	0,0035
Кобальт	0,0015

Объем сбросов ЗВ за год составит ориентировочно 20 000 м3/год или 0,02 млн.м3/год.

Характеристика сбросов загрязняющих веществ по предприятию на 2026-2038 гг.

Наименование за-		Cy	ществующее поло	эжение*		Норм	Нормативы сбросов, г/ч, и лимиты сбросов, т/год, за-грязняющих веществ					
грязняющего ве- щества	-	ц сточ- х вод	концентрация	сброс		<u> </u>	од сточ- их вод	допустим ая	сброс		иже-н	
	м ³ /ч	тыс. м ³ /год	на выпуске, — мг/ дм ³	г/ч	т/год	м ³ /ч	тыс. м ³ /год	концентр ацияна выпуске, мг/ дм ³	г/ч	т/ год	Год достиже-ния ПДС	
Азот аммонийный (NH ₄ ⁺)	0	0	0	0		0 10,85	20	4,35	47,1975	0,087	2026-2038	
Нитриты (NO ₂)			0	0		0		0,423	4,58955	0,00846	2026-2038	
Нитраты (NO ₃)			0	0		0		1,65	17,9025	0,033	2026-2038	
Сульфаты (SO ₄ ²⁻)			0	0		0		1605,2	17416,42	32,104	2026-2038	
Хлориды (Cl ⁻)			0	0		0		2350	25497,5	47	2026-2038	
Гидрокарбонаты (HCO ₃)			0	0		0		340	3689	6,8	2026-2038	
Натрий (Na, суммарно)			0	0		0		1800	19530	36	2026-2038	
Магний (Mg, суммарно)			0	0		0		193,8	2102,73	3,876	2026-2038	
Калий (К)			0	0		0		31,4	340,69	0,628	2026-2038	
Кальций (Са)			0	0		0		440	4774	8,8	2026-2038	
СПАВ			0	0		0		0,187	2,02895	0,00374	2026-2038	
ХПК			0	0		0		21,2	230,02	0,424	2026-2038	
Нефтепродукты			0	0		0		0,055	0,59675	0,0011	2026-2038	
Взвещенные вещества			0	0		0		1250	13562,5	25	2026-2038	

	1	I				7	1		ı		20212000
медь			0	() ()		0,0031	0,033635	6,2E-05	2026-2038
Свинец			0	() ()		0,0029	0,031465	5,8E-05	2026-2038
Фенолы			0	() ()		0,0005	0,005425	0,00001	2026-2038
Фосфаты			0	() ()		0,213	2,31105	0,00426	2026-2038
Бор			0	() ()		0,772	8,3762	0,01544	2026-2038
Цинк			0	() ()		0,0005	0,005425	0,00001	2026-2038
Кадмий			0	() ()		0,0002	0,00217	4E-06	2026-2038
Железо общее			0	() ()		0,06	0,651	0,0012	2026-2038
Никель			0	() ()		0,37975	4,1202875	0,0076	2026-2038
Кобальт			0	() ()		0,16275	1,7658375	0,00326	2026-2038
Всего:			0	() ()			87232,47775	160,786	

В рамках соблюдения требований Экологического кодекса, в целях недопущения и своевременного выявления негативного воздействия, проектом предусмотрено установка сети наблюдательных скважин, по данным которых будет определена фактическая спетень воздействия на подземные воды.

Краткая характеристика образования отходов производства и потребления

В процессе производства и потребления будут образовываться отходы производства, отходы производства будут образовываться:

В процессе эксплуатации месторождении основным отходом образования является вскрышная порода:

 $2026 \, \Gamma$. $-42,500 \, \text{тыс.т/год}$,

2027-2038 гг. -32,500 тыс.т/год,

Вскрышные породы будут размещения в специально отведенное место для вскрышных пород.

Сбор и накопление отходов

Сбор и накопление отходов производства осуществляется на открытых площадках предприятия.

Техногенные минеральные образования

Вскрышные породы (нетоксичные)

Образуются при добыче руды открытым способом.

По мере образования нетоксичные породы, образуемые на промплощадке размещаются в отвале вскрышных пород (нетоксичных).

Размещение вскрышных пород предусматривается на внешних отвалах, а также часть вскрыши будет размещена во внутренних отвалах, в пространстве отработанных карьеров. Вскрышные породы месторождения представлены глинистыми породами.

С площадок, на которых размещаются отвалы месторождения, предварительно удаляется почвенный слой.

Общий объем размещаемых в отвале приведен в таблице 4.1.

Таблица 4.1 Объемы вскрышных пород в отвале

	1 1 '		
Породы	Целик, тыс.м.куб	Остаточный коэффициент разрыхления	Объем в отвале, тыс.м.куб
Вскрыша во внешних отвалах	291,0	1,2	349,2
Вскрыша во внутренних отвалах	235,1	1,2	282,0
Всего	526,1		631,3

Внешние отвалы вскрышных пород отсыпается в один ярус, высота отвала 15м. Показатели работы внешнего отвального хозяйства приведены в таблице 4.2.

Таблица 4.2 Показатели работы внешнего отвального хозяйства

No	Наименование показателей	Ед. изм.	Значение
1	Объем вскрышных пород	тыс. м ³	349,2
2	Геометрическая емкость отвала:	тыс. м ³	349,2
3	Занимаемая площадь	тыс.м ²	34,1
4	Количество ярусов	ШТ	1
5	Высота первого	M	15
7	Продольный наклон въезда на отвал	0/00	80
8	Ширина въезда	M	20
9	Угол откоса ярусов	град	35

При данных объемах складирования пород в отвал, а также вследствие применения автомобильного транспорта целесообразно принять бульдозерную технологию отвалообразования. Бульдозерный отвал состоит из трех участков равной длине по фронту разгрузки. На первом участке ведется разгрузка, на втором — планировочные работы, третий участок резервный. По мере развития горных работ назначение участков меняется.

Формирование отвалов осуществляется бульдозерами типа ShantuiSD32, либо аналогичными, технические характеристики бульдозера приведены в таблице 4.3.

Таблица 4.3 Технические характеристики бульдозера ShantuiSD32

Характеристики	ед.	параматеры			
Ширина отвала	M	4.03			
Высота отвала	M	1.72			
Максимальная высота подъема	MM	1560			
Максимальная глубина выемки	MM	560			
Призма волочения	м3	11.7			
Максимальная передняя скорость	км/ч	11.5			
Максимальная передняя скорость	км/ч	13.5			
Номинальная мощность	кВт (320 л.с.)	235			
Дельный расход топлива	г/кВт·ч	245			
Модель двигателя	Cummins NTA855-C360	Cummins NTA855-C360 («Камминс»)			

Сменная производительность бульдозера рассчитана по формуле:

$$\Pi_{\rm\scriptscriptstyle CM} = rac{3600 \! imes \! V \! imes \! K_{\scriptscriptstyle y} \! imes \! K_{\scriptscriptstyle n} \! imes \! K_{\scriptscriptstyle B} \! imes \! T_{\scriptscriptstyle {
m CM}}}{T_{\scriptscriptstyle u} \! imes \! K_{\scriptscriptstyle p}}, {\scriptstyle M}^3 \, / \, {\it cmehy}$$

где Тсм - продолжительность рабочей смены, 11 ч;

V- объем грунта в разрыхленном состоянии, перемещаемый бульдозером на отвал, ${\rm m}^3$;

Ку - коэффициент, учитывающий уклон на участке работы бульдозера, 0,95;

Кп – коэффициент учитывающий потери,0,9;

КВ – коэффициент использования бульдозера во времени, 0,8;

Кр – коэффициент разрыхления грунта, 1,5;

Тц – продолжительность одного цикла, сек.

Продолжительность одного цикла работы бульдозера:

$$T_{u} = \frac{J_{1}}{V_{1}} + \frac{J_{2}}{V_{2}} + \frac{J_{1} + J_{2}}{V_{3}} + t_{n} + 2t_{p}, M^{3} / c$$
мену

где Ј1 - расстояние набора породы, 3 м;

J2 - расстояние перемещения породы, 3 м;

V1 - скорость перемещения при наборе породы, 3 м/с;

V2 - скорость движения бульдозера с грунтом, 3,2 м/с;

V3 - скорость холостого хода бульдозера, 3,6 м/с;

tп - время переключения скоростей, 2 c;

tр - время одного разворота бульдозера, 10 c.

Результаты расчета приведены в таблице 4.4.

Инвентарный парк на отвалообразовании с учетом обслуживания склада руды составит 2 бульдозера.

Объем, площадь отвала пустых пород, длина фронта разгрузки автосамосвалов и производительность бульдозера рассчитаны согласно утвержденным в Республике Казахстан Методическим рекомендациям по технологическому проектированию горнодобывающих предприятий открытым способом разработки.

Формирование отвалов при бульдозерном отвалобразовании осуществляют двумя способами - периферийным и площадным. Отсыпку отвалов производят послойно высотой по 5 м в слое.

При периферийном отвалообразовании автосамосвалы разгружаются по периферии отвального фронта в непосредственной близости от верхней бровки отвального откоса или под откос. Часть породы в этом случае сталкивается бульдозером под откос.

При площадном отвалообразовании разгрузка породы из самосвалов производится по всей площади отвала или на значительной части его, а затем бульдозером планируют отсыпной слой породы, укатываемый катками, после чего цикл повторяется.

Более экономичным способом формирования является периферийный (рис. 4.1), при котором меньше объем планировочных работ. В связи с вышеизложенным в проекте принят периферийный способ отвалообразования.

Показатели	Оδозначение	Количество,м
Расстояние от верхней бровки отвала до места разгрузки автосамосвала, м	Α	5-8
Расстояние от проезжей части автодороги до места разгрузки автосамосвала, м	В	20-300
Ширина проезжей части автодороги, м	C	20
Длина фронта разгрузки (планировки), м	L_{ϕ}	200-400
Высота яруса отвала, м	Н	10 м и более

Рисунок 4.1. Схема бульдозерного отвалообразования

Таблица 4.4

D		
Результаты пасчета	приведены бульдозерного	отванооооразования
1 co yaibi aibi pac icia	приведены оульдозерного	o i bullo o o puso bullini

				re	зультат	ы расч	era npi	тведени	ы бульд	цозерно	DIO OTB	алооор	азовані	ия	
Показатели	03. 113.14	Всего	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
TIONASAI CJIN	ед. изм.	Beero	4 год	5 год	6 год	7 год	8 год	9 год	10 год	11 год	12 год	13 год	14 год	15 год	16 год
Руда	м3	459 622	8 928	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881	14 881
Производительность бульдозера	м3/см	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189
Кол-во смен в году	см/год	710	710	710	710	710	710	710	710	710	710	710	710	710	710
Расчетное количество бульдозеров	ед.		0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Сумарное время работы	ч/год		31	51	51	51	51	51	51	51	51	51	51	51	51
Расход топлива (235 кВт)	г/кВт·ч	245	245	245	245	245	245	245	245	245	245	245	245	245	245
Расход топлива	т/год	91	1.8	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Вскрыша	м3	526 069	25 298	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345	19 345
Производительность бульдозера	м3/см	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189	3 189
Кол-во смен в году	см/год	710	710	710	710	710	710	710	710	710	710	710	710	710	710
Расчетное количество бульдозеров	ед.		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Сумарное время работы	ч/год		87	67	67	67	67	67	67	67	67	67	67	67	67
Расход топлива (235 кВт)	г/кВт·ч	245	245	245	245	245	245	245	245	245	245	245	245	245	245
Расход топлива	т/год	104	5.0	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
Расчетное количество бульдозеров	ед.		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Принятое количество бульдозеров	ед.		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Сумарное время работы	ч/год		118	118	118	118	118	118	118	118	118	118	118	118	118
Расход топлива	т/год		6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8

Технологический процесс периферийного бульдозерного отвалообразования приавтомобильном транспорте состоит из трех операций: разгрузки автосамосвалов, планировки отвальной бровки и устройстве автодорог.

Отвальные дороги профилируются бульдозером и укатываются катком без дополнительного покрытия.

В настоящем проекте схема развития отвальных дорог принята кольцевая.

Автосамосвалы должны разгружать породу, не доезжая задним ходом 3-4 м до бровки отвального уступа. Необходимо обязательно обустроить ограничитель для автосамосвалов при движении задним ходом к бровке отвала. В качестве ограничителя используют валик породы, оставляемый на бровке отвала. Размер его по высоте 1.5 м и по ширине 3-5 м (рисунок 4.2).

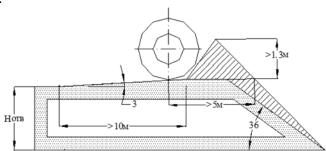


Рисунок 4.2. Схема разгрузочной площадки отвала

Разгрузка машин может быть произведена на любом участке отвальной бровки. Для этого лишь требуется, чтобы место разворота машин было расчищено бульдозером от крупных кусков породы.

Общая длина фронта отвального тупика, включая длину фронта разгрузочной, планируемой и резервной площадок должна быть не менее 180 м.

Возведение отвала, сдвигание под откос выгруженной породы и планировка отвальной бровки осуществляется с помощью бульдозера (Рисунок 4.3).



Рисунок 4.3. Формирование разгрузочной площадки отвала бульдозером

Для планировки отвальной бровки, бульдозер должен быть снабжен поворотным лемехом, установленным под углом 45° или 67° к продольной оси бульдозера. При планировании породы на высоких отвалах лемех обычно устанавливается перпендикулярно оси трактора, так как, в этом случае, нет надобности делать набор высоты отвала.

В процессе формирования отвалов в зоне работы бульдозера и разгрузки автосамосвалов производится водяное орошение специально оборудованными поливочными машинами.

Воздействие на водные ресурсы

Ближайшая река Кокпекты имеет водоохранную зону не менее 100м, согласно постановлению Акима Актюбинской области №60 от 6.03.2013 года. Объект расположен на расстояние 1,13 км от реки.

При реализации намечамой деятельности воздействие на водные ресурсы не ожидаются. Ливневые и талые воды будут организованно собираться с площадки территории по ливневой канализации и направляются в пруд испаритель.

Все вышеуказанные, меры направлены на искючения воздейсвия на поверхностные и подземные воды.

Воздействие на атмосферный воздух.

Воздействие на атмосферный воздух осуществляется в следствие проведение производственного процесса добычи.

В последствие в атмосферный воздух выбрасываються загрязняющие вещесва: азот оксид, азот диоксид, пыль неорганическая и др.ЗВ.

Проведен расчет рассеивания источников загрязнения атмосферного воздуха результаты прироложены отдельным файлом. По результатам расчета рассеивания воздействия на атмосферный воздух будет ограничен пределами установленных СЗЗ. По проведенному расчету рассеиванию ЗВ при эксплуатации превышения ПДК на населенном пункте не обнаружено.

В качестве мероприй по уменьшение воздействия на атмосферный воздух предлагается:

• Проведение работ по озеленение территории СЗЗ.

Ожидаемое воздействие на геологическую среду

Воздействие на недра при проведении основного комплекса проектируемых работ исключено. Будет очень незначительным ввиду того, что почти весь технологический цикл протекает на небольшой глубине и с соблюдением техники и технологии добычи ТПИ.

Ожидаемое воздействие на почвы

Период строительства.

Осуществление работ по строительству неизбежно приведет к нарушению почвенного покрова участка работ. К факторам негативного потенциального воздействия на почвенный покров при строительстве проектируемого объекта относятся: зъятие земель для строительства;

- нарушение и повреждение земной поверхности, механические нарушения почвенногопокрова;
- дорожная дегрессия;
- нарушения естественных форм рельефа;
- загрязнение промышленными, строительными и хозяйственно-бытовыми отхолами.

Снятие почвенно-растительного слоя. Почвенно-растительный слой средней толщиной 20см срезается и перемещается во временный отвал, где будет храниться до проведения рекультивационный и ликвидационных работ.

При прокладке внеплощадочных коммуникаций, строительстве автодорог, обустройстве основных и вспомогательных площадных сооружений, будет оказано механическое воздействие на почвенно- растительный покров. При передвижении строительной техники в пределах строительной полосы возможно частичное или полное уничтожение почвенного покрова. На территории с нарушенным почвенным покровом не исключено развитие процессов ветровой и водной эрозии почв.

Загрязнение почвенного покрова может произойти в результате спровоцированной строительными работами вторичной миграции загрязняющих веществ, уже присутствующих в почвенном покрове и геологической среде, а также в результате рассредоточенного (с атмосферными выпадениями) или сосредоточенного (разливы, утечки и т.п.) поступления ЗВ в ходе осуществления подготовительных, строительномонтажных и сопутствующих работ.

Сколько-нибудь значимого дополнительного воздействия со стороны строительных площадок на почвенный покров и земли прилегающих территорий (возрастание фитотоксичности, сброс загрязняющих веществ в грунтовые воды и др.) не ожидается.

Период эксплуатации

Возможными факторами воздействия на почвенный покров при эксплуатации будут являться:

- загрязнение горюче-смазочными материалами;
- загрязнение производственными и твердыми бытовыми отходами.

Повторное механическое воздействие будет вызвано работами по устранению антропогенных форм рельефа, удалению с территории участка мусора, отходов и т.п. Степень обусловленных этими работами нарушений будет зависеть от тщательности при их проведении, а также своевременности устранения возможных загрязнений и, как ожидается, не превысит уровня предшествующих воздействий. Наибольшую опасность в этом отношении представляет загрязнение почв углеводородами, степень проявления которого будет зависеть от конкретных условий:

- реального объема разлитых ГСМ;
- генетических свойств почв, определяющих характер ответных реакций на воздействие;
- □ оперативности действий по устранению последствий аварии.

При реализации проектных решений воздействие на почвенный покров будет связано с физическими и химическим факторами антропогенной деградации.

Воздействие физических факторов в большей степени характеризуется механическим воздействием на почвенный покров (движение автотранспорта, строительно-

монтажные работы).

К химическим факторам воздействия можно отнести: перенос загрязняющих веществ в почвенные экосистемы бытовыми и производственными отходами, при аварийных (случайных) разливах ГСМ.

Основными видами нарушений почв при проведении проектируемых работ являются механические нарушения вследствие передвижения автомобильной техники.

Механические нарушения почв, сопровождаемые резким снижением их устойчивости к действию природных факторов, в дальнейшем становятся первопричиной дефляции, эрозии, плоскостного смыва и т.д. Степень изменения свойств почв находится в прямой зависимости от их удельного сопротивления, глубины разрушения профиля, перемещения и перемешивания почвенных горизонтов. При этом очень важное значение имеют показатели механического состава, влажности, содержания водопрочных агрегатов и высокомолекулярных соединений.

Степень проявления деградации почв зависит от типа техногенного воздействия, как прямого, так и опосредованного. Наибольшая степень деградации почвенного покрова территории при осуществлении работ по проекту ожидается на первоначальном этапе в результате физического воздействия на почвы, связанного с механическими нарушениями почвенного покрова при сооружении г компрессорной установки и движении автотранспорта. В результате механического нарушения формируются почвы с изменёнными морфологическими, химическими и биологическими свойствами. На сильно нарушенных участках содержание гумуса и питательных элементов в почвах уменьшается в два раза, усиливаются процессы засоления и карбонатизации.

Выбросы загрязняющих веществ. Химическое загрязнение почв возможно также в результате газопылевых осаждений из атмосферы. Источниками этого вида загрязнения могут служить выхлопные газы транспортной техники и пр. Выбросы загрязняющих веществ будут иметь место на территории площадок, но этот вид воздействия на этапе эксплуатации можно оценить, как незначительный. Выбросы загрязняющих веществ от двигателей автотранспорта, а также пыление дорог будут оказывать влияние на почвенный покров вдоль трасс автомобильных дорог. Однако, значительного воздействия на почвенный покров этот фактор не окажет. Случайные утечки ГСМ. Проектные решения исключают загрязнения почвенного покрова от случайных утечек ГСМ на этапе эксплуатации. В штатном режиме во избежание попадания топлива на подстилающую поверхность, разработаны соответствующие мероприятия. Принятые проектные решения, а также предусмотренные мероприятия, позволят исключить воздействие утечек ГСМ на почвы в период эксплуатации. Следовательно, на этапе эксплуатации не ожидается воздействия разливов ГСМ на почвенный покров.

Ожидаемое воздействие на растительный мир, связанное со строительством иэксплуатацией Период строительства

Стадия строительства, связанная с безвозвратным и временным отчуждением земельных участков для реализации проектных решений по строительству отдельных участков (а значит, уничтожением мест обитания растений) окажет наиболее существенное негативное воздействие на растительность. Сильная деградация природных экосистем наблюдается при механическом воздействии, связанном со строительными работами. Особенно отрицательно этот фактор сказывается на состоянии почв и растительного покрова.

На состояние растительности в процессе строительства и эксплуатации объектов

оказывают влияние следующие факторы:

- механическое воздействие при проведении строительных работ;
- химическое воздействие, произведенное вследствие выбросов загрязняющих веществ в атмосферный воздух.

Механическое воздействие связано с уничтожением растительного покрова при планировании территории под строительство, проведением сплошных отсыпок. Серьезные воздействия на растительный покров также может вызвать внедорожный проезд строительной техники и автотранспорта. Неорганизованное складирование твердых отходов строительства также может привести к уничтожение растительного покрова.

Растительный покров территории при строительстве проектируемых объектов в различной степени будет трансформирован. В основном это транспортный (дорожная сеть) фактор трансформации - преимущественно с полным уничтожением растительного покрова по трассам беспорядочной сети автодорог без покрытия.

Дорожная сеть является линейно-локальным видом воздействия, характеризующимся полным уничтожением растительности по трассам автодорог или колеям несанкционированных, временных дорог, запылением и загрязнением выхлопными газами растений вдоль трасс.

Химическое воздействие на растительность происходит как путем прямого их воздействия на растительность, так и путем косвенного воздействия через почву. Кроме того, могут возникнуть косвенные воздействия в связи с загрязнением атмосферного воздуха иразмещением коммунальных и промышленных отходов.

Химическое воздействие на растительный покров возможно при нарушении правил хранения горючемазочных материалов и заправки техники, использовании неисправных землеройных машин, проведении обслуживания и ремонта техники вне специально оборудованных площадок.

Химическое загрязнение растительности в процессе строительных работ будет в основном от автотранспорта – выбросы азотистых и углеродных соединений.

<u>Период эксплуатации</u>

В период эксплуатации объекта непосредственно территория будет лишена растительного покрова.

Проектными решениями предусмотрены такие элементы благоустройства, как озеленение свободных от застройки и инженерных сетей, для обеспечения нормальных санитарно- гигиенических условий.

По периметру участков предусмотрено ограждение. Для обеспечения подъезда транспорта и пожарных машин, запроектирована внутриплощадочная дорога с разворотной площадкой, увязанная с существующими дорогами и площадками, как в плановом, так и высотном отношении. На въездах устанавливаются ворота.

Воздействие на растительность в период эксплуатации будет выражаться лишь в вероятности прямого или опосредованного воздействия на растительность прилегающих территорий.

Существенный риск воздействия на растительность прилегающих территорий в первую очередь связан с особенностями эксплуатации объекта и опасностью загрязнения почв прилегающих территориях различными веществами.

Воздействия на растительность, связанные с качеством воздуха, на стадии эксплуатации будут аналогичны для стадии строительства.

Ожидаемое воздействие на животный мир, связанное со строительством и эксплуатацией объекта

<u>Период строительства</u>

Воздействие на животный мир в период строительства будет обусловлено природными иантропогенными факторами.

Природные факторы. К природным факторам относятся климатические условия, характеризующиеся колебаниями температуры воздуха, интенсивные процессы дефляции и т.д. Влияние изменения природных условий сказывается на численности и видовом разнообразии животных. Одни животные вытесняются и гибнут, для других складываются благоприятные условия.

Антропогенные факторы. Антропогенное воздействие осуществляется в ходе любой хозяйственной деятельности, связанной с природопользованием. Наиболее сильное и действенное влияние техногенных факторов обычно испытывают пресмыкающиеся. Представители этой группы животных тесно привязаны к участку своего обитания и в период экстремальных ситуаций не способны избежать влияния каких-либо внешних воздействий путем миграций на дальние расстояния.

Наиболее существенное влияние на животных могут оказать следующие виды подготовительных и текущих работ:

- изъятие земель (утрата мест обитания);
- проведение земляных строительных работ;
- использование дорог и внедорожное использование транспортных средств;
- производственный шум, искусственное освещение, служащей факторамибеспокойства для мно- гих видов птиц и млекопитающих;
- складирование вспомогательного оборудования;
- загрязнение территории нефтепродуктами и тяжелыми металлами, химреагентами, промышленно-бытовыми отходами, выбросами токсичных веществ;

Воздействие на животный мир при строительных работах приводит к временной или постоянной утрате мест обитания популяций животных, причиняет беспокойство и физический ущерб живым организмам вследствие повышения уровня шума, искусственного освещения.

В результате изъятия земель для строительства объектов и сооружений происходит сокращение кормовой базы, ведущее к перестройке структуры зооценоза.

Основным, негативно влияющим на состояние животного мира процессом, является «фактор беспокойства», вызванный присутствием работающей техники и людей.

В период проведения строительных работ некоторые виды, вследствие фактора беспокойства, будут вытеснены с прилежащей территории. Шум, производимый строительной техникой, выбросы загрязняющих веществ в атмосферу при работе автотранспорта, незнакомые запахи и присутствие людей, будут служить отпугивающим фактором для животных. Во многих случаях это является даже положительным фактором, т.к. заставит животных держаться на безопасном расстоянии от техники и персонала, работающего на объекте строительства.

Период эксплуатации

Негативного воздействия на наземных животных в связи с утратой мест обитания настадии эксплуатации не предполагается.

Воздействия, связанные с фактором беспокойства, будут аналогичны таким воздействиям на стадии строительства. Источниками постоянного шума автотранспорт. оборудование При соблюдении технологическое звукового давления расчетный уровень шума показателей за территориями технологических площадок не будет превышать установленных нормативов, а интенсивность движения автомобильного транспорта в период эксплуатации будет значительно ниже, чем при строительстве.

На стадии эксплуатации прямого воздействия на птиц и млекопитающих не ожидается. Факторы беспокойства будут такими же, как на стадии строительства. При этом площадь, на которой воздействие может проявляться, существенно снизится. Дальнейших утрат (после окончания строительства) территорий местообитаний на стадии эксплуатации не предполагается.

Ожидаемое воздействие вибрации, шумовых, электромагнитных, тепловых и радиационных воздействий, связанных со строительством и эксплуатацией объекта

Период строительства

Проектируемые работы по строительству создадут определенное беспокойство живым организмам, вследствие повышения уровня шума, вибрации, искусственного освещения, движения автотранспорта и физической активности персонала.

Из физических факторов воздействия на окружающую среду и людей в период проведения работ можно выделить:

- воздействие шума;
- воздействие вибрации;
- электромагнитное излучение.

строительстве проектируемых объектов источниками шумового Шум. воздействия здоровье людей, непосредственно принимающих участие планировочных работах, а также на флору и фауну, являются строительные машины и автотранспорт. Интенсивность внешнего шума зависит от типа оборудования, его рабочего органа, вида привода, режима работы и расстояние от места работы. Снижение уровня звука от источников при беспрепятственном распространении происходит примерно нВ 3дб при каждом двукратном увеличении расстояния, снижение пиковых уровней звука происходит примерно на 6 дб. Поэтому с увеличением расстояния происходит постепенное снижение среднего уровня звука. При удалении от источника шума на расстоянии до двухсот метров происходит быстрое затухание шума, при дальнейшем увеличении расстояние снижения уровня звука происходит медленнее. Также следует учитывать изменение уровня звука в зависимости от направления и скорости ветра, характера и состояния прилегающей территории, рельефа территории.

Проектными решениями предусмотрены строительные машины, которые обеспечивают уровень звука на рабочих местах, не превышающий 80 дБ, согласно требованиям ГОСТа 12.1.003-83 «ССБТ.

Шум. Общие требования безопасности». Шумовые характеристики оборудования должны быть указаны в их паспортах.

Вибрация. По своей физической природе вибрация тесно связана с шумом. Вибрация представляет собой колебания твердых тел или образующихся их частиц. В отличие от звука вибрации воспринимаются различными органами и частями тела. При низкочастотных колебаниях вибрации воспринимаются отолитовым и вестибулярным аппаратом человека, нервными окончаниями кожного покрова, а вибрация высоких частот воспринимаются подобно шуму, приводит к снижению производительности труда, нарушает деятельность центральной и вегетативной нервной системы, приводит к заболеваниям сердечно- сосудистой системы. Вибрации возникают главным образом, вследствие вращательного и поступательного движения неуравновешенных масс двигателя и механических систем машин. Борьба с вибрационными колебаниями заключается в снижении уровня вибрации самого источника возбуждения. Для снижения вибрации, которая может возникнуть при работе строительной техники и транспорта, предусмотрено: установка гибких связей, упругих прокладок и пружин, сокращение времени пребывания в условиях вибрации; применение средств индивидуальной защиты.

Уровни вибрации при строительстве (в пределах, не превышающих 62Гц, согласно

ГОСТ 12.1.012-90) не могут причинить вреда здоровью человека и негативно отразиться на состоянии фауны.

Электромагнитное излучение. Линии электропередач со своими подстанциями создают в окружающем пространстве электромагнитное поле, напряженность которого снижается по мере удаления от источников.

Источниками электромагнитных полей объекта - являются трансформаторные подстанции, машины, механизмы, высоковольтные линии и средства связи.

При проведении проектируемых работ предусмотрено использование оборудования и транспорта, эксплуатация которых обеспечит уровень шума, вибрации и электромагнитного излучения в пределах, установленных санитарными нормами РК.

Период эксплуатации

Источниками шума и вибрации на терретории являются:

- насосное оборудование;
- автотраспорт.

Оценка ожидаемых на рабочих местах уровней шума и вибрации будет приниматься на основании технической документации на оборудование, в которой будут указаны сведения о производимых шуме и вибрации, и расчетах уровня шума и вибрации на рабочих местах.

Первым уровнем обеспечения шумовой и вибрационной безопасности на производстве является снижение шума и вибрации в источнике, т.е. в конструкции применяемых машин и оборудования.

Для электрических приводов машин предусмотрено применение демпферов и гасителей, позволяющих существенно уменьшить амплитуды колебаний на резонансных частотах, которые машина проходит при наборе оборотов до выхода на номинальный режим.

Снижение шума в источнике реализовано за счет применения "нешумных" материалов, использования в конструкции встроенных глушителей и шумозащитных кожухов, обеспечения необходимой точности балансировки вращающихся и неуравновешенных частей.

Второй уровень обеспечения шумовой и вибрационной безопасности реализован за счет снижения шума и вибрации на путях их распространения от источника до рабочего места - применена установка машин на фундаменты, виброизоляторы, усиленные перекрытия. Полы, на которых размещаются рабочие места, динамически не связаны с фундаментом.

Снижение шума на пути его распространения осуществляется акустическими средствами — звукоизолирующими и звукопоглощающими перегородками, виброизоляцией, демпфированием, установкой глушителей, и планировочными решениями - рациональной планировкой производственных помещений, рациональным размещением оборудования и рабочих мест, транспортных потоков.

Третий уровень технического обеспечения шумовой и вибрационной безопасности состоит в использовании средств индивидуальной защиты (СИЗ), обеспечивая защиту работающих непосредственно рабочем месте в сложившихся условиях шумовой и вибрационной нагрузки — виброзащитная обувь, антивибрационные рукавицы, противошумные наушники.

Также применены организационные мероприятия, состоящие в сокращении времени воздействия шума и вибрации на работающего в течение смены.

Источниками электромагнитных полей на компрессорной установки являются трансформаторные подстанции, машины, механизмы, высоковольтные линии и средства связи. Уровень напряженности электромагнитного по- ля в рабочих зонах производственных зданий и на прилегающих территориях соответствует установленным требованиям: СТ РК 1151-2002 «Электромагнитные поля радиочастот. Допустимые уровни и требования к проведению контроля»; «Предельно допустимые уровни (ПДУ)

воздействия электриче- ских полей диапазона частот 0,06-30,0 МГЦ №.02.021-94».

Таким образом, эксплуатация компрессорной установки не окажет сверхнормативного акустического воздействия на ближайшие территории, подлежащие санитарно- гигиеническому нормированию.

Радиационная обстановка

Согласно закону РК от 23.04.1998 г. № 219-I «О радиационной безопасности населения» (с изменениями и дополнениями по состоянию на 14.05.2020 г.), при планировании и принятии решений в области обеспечения радиационной безопасности при проектировании новых объектов, должна проводиться оценка радиационной безопасности.

В соответствии с нормативными требованиями было проведено радиационное обследование площадки проектируемого объекта.

Оценка уровня радиоактивного загрязнения площадки под объектом была осуществлена в целях:

- оценки уровня радиоактивного загрязнения для принятия решения о возможностиразмещения проектируемого объекта;
- организации безопасных условий труда в период строительства и эксплуатации проектируемого объекта;
- обеспечения своевременного вмешательства в случае обнаружения превышенияустановленных радиационно-гигиенических нормативов;
- соблюдения действующих норм по ограничению облучения персонала и населения отприродных и техногенных источников ионизирующего облучения.

В соответствии с действующими методическими рекомендациями и регламентом радиационного контроля, исследовался такой радиационный фактор как мощность экспозиционной и эквивалетной дозы гаммы-излучения на территории с целью выявления участков с аномальными значениями гамма- фона и неучтенных источников ионизирующего излучения.

Поверхностных радиоционных аномалий на территории не выявлено. По результатам гамма съемки на участке выявлено, что мощность гаммы-излучения не превышает допустимое значение - локальные радиационные аномалии обследованной территории отсутствуют. Максимальное значение мощности дозы гамма излучения в точках с максимальными показаниями поискового прибора 0,17мкЗв/ч. Превышений мощности дозы гаммы излученийна участке не зафиксировано.

Фактор ионизирующих излучений в производственном процессе отсутствует.

Радиационное обследование территории позволяет сделать общее заключение: обследуемый участок для размещения компрессорной установки соответствует санитарно-гигиеническим требованиям по ионизирующему излучению, радоновому излучению, по электромагнитному излучению с точки зрения воздействия на жилую зону.

Проведения противорадиационных мероприятий не требуется.

9) Информацию об ожидаемых видах, характеристиках и количестве отходов, которые будут образованы в ходе строительства и эксплуатации объектов в рамках намечаемой деятельности, в том числе отходов, образуемых в результате осуществления постутилизации существующих зданий, строений, сооружений, оборудования.

Существующие здания, строения, сооружения, оборудования отсутсвует.

Металлолом (лом черного металлолома)

Норма образования лома при ремонте автотранспорта рассчитывается по формуле: $N = n \cdot \alpha \cdot M[13,15]$, $_{T/TOД}$,

где n - число единиц конкретного вида транспорта, использованного в течение года; α - нормативный коэффициент образования лома (для легкового транспорта α =0,016, для грузового транспорта α =0,016, для строительного транспорта α =0,0174); M - масса металла (т) на единицу автотранспорта (для легкового транспорта M =1,33, для грузового транспорта M =4,74, для строительного транспорта M =11,6).

N грузовой автотранспорт = 20 * 0.016 * 4,74 = 1,52 т

N строительный автотранспорт = 20 * 0.0174 * 11,6 = 4,04 т

N легковой автотранспорт = 10 * 0.016 * 1,33 = 0,21 т

Учитывая все, в год образуется 5,77 тонн металлолома.

Бытовые отходы

Норма образования бытовых отходов (m_1 , τ /год) определяется с учетом удельных санитарных норм образования бытовых отходов на промышленных предприятиях – 0,3 м 3 /год на человека, списочной численности работающих на ТЭЦ и средней плотности отходов, которая составляет 0,25 т/м 3 .

Мобр =
$$100$$
 чел * $0.3 * 0.25 = 7.5$ т/год

В составе ТБО имеются отходы запрещенные принимать для захоронения на полигонах согласно ЭК РК статьи 351, такие как бумага и картон, стеклобой, пищевые отходы, пластмасса.

Морфологический состав ТБО принят в соответствии с приказом Министра охраны окружающей среды РК от 12 июня 2014 года №221 приложение 11 таблица 1.

Пищевые отходы

Составляет 40% от всего ТБО М пищевые отходы = 7.5*40/100 = 3 тонн

Бумага и картон

Составляет 33% от всего ТБО М бумага, картон = 7,5 * 33/100 = 2,475 тонн

Стеклобой

Составляет 2% от всего ТБО М Стеклобой = 7.5 * 2/100 = 0.15 тонн

Пластмасса

Составляет 3% от всего ТБО М Стеклобой = 7.5 * 3/100 = 0.225 тонн

Смешанные ТБО(Коммунальные отходы)

Составляет 22% от всего ТБО М Стеклобой = 7.5 * 22/100 = 1,65 тонн

Огарки сварочных электродов

«Методика разработки проектов нормативов предельного размещения отходов производства и потребления» приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18 » 04 2008г. № 100-п.

Объем образования огарков сварочных электродов рассчитывается по формуле:

$$M_{oбp}=M*\dot{\alpha}$$
 т/период,

где:

M — фактический расход электродов, т/период $\acute{\alpha}$ - доля электрода в остатке, равна 0,015 $M_{oбp}$ =26*0,015=**0,39** т/период

Отходы офисной техники

Согласно ожидаемому количество образования отходе при плановом ежегодном ремонте составит 1 т\год.

Отработанные шины

Расчет объемов образования отходов выполнен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления" утвержденных приказом Министра охраны окружающей среды РК от 18 апреля 2008 г. №100-п

Образование отработанных автомобильных шин рассчитывается по формуле:

Мотх = $0.001 \cdot \Pi$ ср · K · k · M / H, (т/год), где: K – количество автомашин, шт.; k – количество шин, установленных на автомашине, шт.; M – масса шины (принимается в зависимости от марки шины), кг; Пср – среднегодовой пробег автомобиля, тыс. км; H – нормативный пробег шины, тыс. км.

$$Motx = 0.001 * 40 * 20 * 4 * 80 / 30 = 8.53$$
 тонн

Ветошь промасленная

Расчет объемов образования отходов выполнен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления" утвержденных приказом Министра охраны окружающей среды РК от 18 апреля 2008 г. №100-п.

Нормативное количество отхода определяется исходя из поступающего количества ветоши (M_0 , т/год), норматива содержания в ветоши масел (M) и влаги (W): $N = M_0 + M + W$, т/год, где, $M = 0.12 \cdot M_0$, $W = 0.15 \cdot M_0$.

Количество промасленной ветоши составляет:

$$H = 3 + 0.12 * 3 + 0.15 * 3 = 3.81$$
 TOHH

Отработанные ртутьсодержащие лампы

Расчет норматива образования отходов выполнен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления" утвержденных приказом Министра охраны окружающей среды РК от 18 апреля 2008 г. №100-п.

Норма образования отработанных ламп (N) рассчитывается по формуле:

$$N=n imes (T \ / \ T_p),$$
 шт/год $M=N imes m,$ т/год

где n – количество работающих ламп данного типа по проекту, шт;

 T_p – ресурс времени работы ламп, принят по паспорту, ч (для ламп типа ЛБ равен 4800-15000 ч, для ламп типа ДРЛ равен 6000-15000 ч);

Т – фактическое время работы ламп, ч/год;

т – масса одной лампы, т.

$$N = 200 \times (4800 / 7000) = 137$$
 шт/год $M = 137 \times 0,00021 = 0,029$ т/год

Отработанные масла

Количество отработанного масла может быть определено также по формуле: $N = (N_b + N_d) \cdot 0.25$, где 0.25 - доля потерь масла от общего его количества; N_d - нормативное количество израсходованного моторного масла при работе транспорта на дизельном топливе, $N_d = Y_d \cdot H_d \cdot \rho$ (здесь: Y_d - расход дизельного топлива за год, м 3 , H_d - норма расхода масла, 0.032 л/л расхода топлива; ρ - плотность моторного масла, 0.930 т/м 3); N_b - нормативное количество израсходованного моторного масла при работе транспорта на бензине, $N_b = Y_b \cdot H_b \cdot \rho$ (здесь: Y_b - расход бензина за год, м 3 ; H_b - норма расхода масла, 0.024 л/л расхода топлива).

расход дизельного топлива — 250 т/год. Nd = 250 * 0.032 * 0.93 = 7.44

Отработанное трансмиссионное масло

Нормативное количество отработанного масла (N, т/год) определяется также по формуле: $N = (T_6 + T_{\pi}) \cdot 0.30$, где $T_6 = Y_6 \cdot H_6 \cdot 0.885$, $T_{\pi} = Y_{\pi} \cdot H_{\pi} \cdot 0.885$ (здесь: $H_6 = 0.003$ л/л расхода топлива, $H_{\pi} = 0.004$ л/л топлива, 0.885 - плотность трансмиссионного масла, т/м 3).

Количество израсходованного трансмиссионного масла составляет: 7,5 т/год. Расчет объема образования отработанного трансмиссионного масла: $N=7,5\cdot 0.3=2,25$ т/год.

Отработанное специальное масло

Количество отработанного масла определяется по формуле: $M = Mc \cdot 0.9 \cdot n$, (т/год), где количество отхода определяется, исходя из количества масла, залитого в картеры техники Mc, коэффициента слива масла -0.9. периодичности замены масла -n раз в год.

Количество израсходованного специального масла составляет 3 т/год. Расчет объема образования отработанного специального масла: N=0.9*3*1=2.7 т/год.

N = 7.44 + 2,25 + 2,7 = 12.39 т/год.

Отработанные фильтры

Промасленные фильтры образуются вследствие эксплуатации транспорта. Расчет объемов образования отходов выполнен согласно п. 3.6 п. 14 (Отработанные промасленные фильтры) «Методических рекомендаций по оценке объемов образования отходов производства и потребления». Москва, 2003 г.

Объем образования промасленных фильтров рассчитывается по формуле:

$$\mathbf{M}\boldsymbol{\phi} = \mathbf{N}\boldsymbol{\phi} \cdot \mathbf{n} \cdot \mathbf{m}\boldsymbol{\phi} \cdot \mathbf{K}\mathbf{\pi}\mathbf{p} \cdot \mathbf{L}\boldsymbol{\phi} / \mathbf{H}\boldsymbol{\phi} \cdot \mathbf{10-3}.$$
 (т/год),

где Nф – количество фильтров установленных на 1-м автомобиле, шт.; n – количество автомобилей данной модели;

тф – масса фильтра данной модели, г;

Кпр – коэффициент, учитывающий наличие механических примесей, (1.1–1.5);

 $L \varphi$ – среднегодовой пробег единицы автотранспорта с фильтром данной модели, тыс. км или моточас

Нф – нормативный пробег 5 тыс. км

Расчет образования автомобильных фильтров

$$\mathbf{M}\phi = 2 * 50 * 1,4 * 1,3 * 20 / 5 * 0,001 = 0,728$$

Отработанные аккумуляторы

Расчет объемов образования отходов выполнен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления" утвержденных приказом Министра охраны окружающей среды РК от 18 апреля 2008 г. N=100-п

Норма образования отходов определяется по формуле:

 $M = \Sigma ni \cdot mi \cdot \alpha \cdot 10^{-3} / t$, (т/год), где ni -количество аккумуляторов, шт.; mi -средняя масса аккумулятора, кг; $\alpha -$ норма зачета при сдаче (80 %); t -срок фактической эксплуатации (2 года для автотранспорта).

$$M = 20 * 46 * 0.8 * 10^{-3} / 2 = 0.368$$

Итоговая таблица. Классификация отходов на период экплуатации

No	Вид отхода	Код отхода	Количество т/год						
п/п									
	Неопасный список								
1	Коммунальные отходы	200301	1,65						
2	Стеклобой	200102	0,15						
3	Пищевые отходы	200108	3						
4	Отходы офисной техники	200136	1						
5	Огарки сварочных электродов	170407	0,39						
6	Металлолом	160117	5,77						
7	Макулатура	200101	2,475						
8	Автошины	160103	8,53						
9	Пластмасса	200139	0,225						
Опасный список									
12	Отработанные	200121	0,029						
	ртутьсодержащие лампы								
13	Отработанные фильтры		0,728						
	(масляные, топливные	150202							
	фильтры, воздушные)								
14	Отработанные масла	130206	12,39						
15	Отработанные аккумуляторы	160601	0,368						
16	Ветошь промасленная	150202	3,81						

Описание возможных вариантов осуществления намечаемой деятельности с учетом ее особенностей и возможного воздействия на окружающую среду, включая:

1) Добыча никеля кобальтовых руд. Имеется два вида добыча: открытый и закрытый. Закрытый способ добычи принимается в случаи глубокого залегания руды. Связано со строительством шахты, штолен и т.д. Открытый способ добычи принимается в случаи неглубокого залегания минерала. В данном случаи, залегания руды никелькобальтовых считается неглубоким. В связи, с чем применяется метод разработки месторождения открытым способом.

Практикой отработки карьеров предыдущими годами установлено, что при бортах карьеров более 40°, и сложенных увлажненными глинистыми массами, в течение некоторого времени развивается их оползание. Появляется неустойчивость вскрышных пород (угол естественного откоса 25-40°), особенно охр (с углом естественного откоса 25°). Охры и нонтрониты дают обычно вывалы, особенно по тектоническим «зеркалам» скольжения.

Коэффициент крепости руд зависит от литологической разности, слагающий руду. По шкале проф. Протодьяконова колеблется от 1,0-5. Наибольший выход крупнообломочного материала (5-6 см.) дают выщелоченные и слабононтронизированные серпентиниты. Объемный вес пород коры выветривания 1,72-1,73. Коэффициент разрыхления руд составляет от 1,63 до 1,70.Глубина залегания рудных тел от поверхности земли колеблется от 1,0 до 36.0 м. Горнотехнические условия месторождения благоприятны для открытой отработки.

Вся площадь месторождения разбурена по сети 25х25 скважинами колонкового бурения. Геологическое строение месторождения, морфология рудных тел и условия их залегания, вещественный состав руд изучены с достаточной полнотой. Балансовые руды месторождения полностью оконтурены на флангах и на глубину.

Анализ геологических, инженерно-геологических, географо-экономических, климатических и технологических сведений о рассматриваемом месторождении, а также существующее состояние горных работ позволяют прогнозировать следующие горнотехнические условия его разработки:

- 1. Разведанные руды месторождения имеют небольшую глубину залегания от дневной поверхности и это является определяющим фактором для разработки его открытым способом.
 - 2. По гидрогеологическим условиям оба месторождения относится к простым.
- 3. Горнотехнические условия отработки месторождения простые. Вскрышные породы и руды представлены: рыхлыми песками верхнего мела, щебнистыми глинами, глинами коры выветривания, полуразрушенными (выветрелыми) серпентинитами. Все указанные горные породы разрабатываются прямой экскавацией, без применения буровзрывных работ.
- 4. Свойства горных пород и руд, условия их залегания, климатические условия и масштабы предстоящей деятельности обуславливают применение цикличной технологии производства вскрышных и добычных работ с использованием гидравлических экскаваторов в комплексе с автомобильным транспортом. В этих условиях предполагается следующий состав технических средств комплексной механизации основных производственных процессов:
- Гидравлический экскаватор, Doosan DX 700LC с вместимостью ковша $4.5~{\rm m}^3$ в исполнении «обратная лопата»;
 - Карьерный автосамосвал LGMG MT60грузоподъемностью 45 т;

- вспомогательное оборудование: бульдозеры типа Shantui SD32, автобус типа КамАЗ-4208, поливооросительная машина типа КМ-600 на базе КАМАЗ-53228, топливозаправщик, Автогрейдер типа XCMG GR215A, фронтальный погрузчик XCMG LW800Кс ковшом емкостью 4,5 м³,автомобиль скорой помощи на базе УАЗ.

В случае производственной необходимости указанные модели оборудования могут быть заменены на аналогичные по типоразмеру. При этом не должно быть допущено нарушение требований безопасности и ухудшение проектных технико-экономических показателей.

ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪЕКТАХ, КОТОРЫЕ МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМНАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Основными объектами природной и социально-экономичекой среды, которые могут быть подвержены воздействиям при строительстве и эксплуатации являются следующие компоненты:

Социально-экономические:

- жизнь и здоровье людей;
- условия проживания населения;
- экономические интересы сообщества;
- землепользование;
- транспортная инфраструктура;
- объекты научного и духовного значения (памятники истории
- и культуры, археологические объекты, заповедные территории, природные феномены).

Природные:

- атмосферный воздух (загрязненность газами, пылью, уровень шума);
- водные ресурсы (загрязненность подземных вод);
- земельные ресурсы, почва;
- биологические ресурсы (растения, животные).

Жизнь и (или) здоровье людей, условия их проживания и деятельности

Разрабатываемый проект воздействия строительства и эксплуатации проектируемого объекта направлены на оценку риска здоровье и безопасность населения.

Воздействия на местное население могут быть оказаны в связи с загрязнением атмосферного воздуха, акустическим воздействием и вибрацией при проведении строительных работ, а также на этапе эксплуатации объектов в рамках намечаемой деятельности. Однако в связи с нахождением производственных объектов назначительном расстоянии от населенных пунктов значимого воздействия на здоровье и безопасность местного населения не ожидается. В границах санитарно-защитной зоны территории жилой застройки отсутствуют.

Строительная площадка и производственные объекты представляют риск в том случае, если доступ населения к ним не контролируется надлежащим образом. Участок строительства расположен на достаточном расстоянии от населенных пунктов и, таким образом, данный объект не будут представлять непосредственной угрозы для постоянно проживающего в этих населенных пунктах жителей.

Оценка ожидаемых на рабочих местах уровней шума и вибрации будет приниматься на основании технической документации на оборудование, в которой будут указаны сведения о производимых шуме и вибрации, и расчетах уровня шума и вибрации на рабочих местах.

Негативного воздействия на здоровье населения прилегающих территорий не ожидается в связи со значительным удалением участка планируемых работ от населенных пунктов. Ожидается положительное воздействие за счет улучшения здоровья членов семей местных специалистов, задействованных на строительных работах в связи с ростом доходов.

Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)

Строительства площадок реализуется на территории, преобразованной в результате хозяйственной деятельности. С намечаемой деятельностью не связан спектр воздействий, в зону влияния которых попадают чувствительные компоненты природной среды — местообитания ценных видов птиц, млекопитающих. На

исследуемой территории (в районе реализации строительства) не выявлено местообитаний ценных видов птиц, млекопитающих.

На участке строительства отсутствуют объекты историко-культурного наследия, месторождения полезных ископаемых.

Воздействие на растительность в период эксплуатации будет выражаться лишь в вероятности прямого или опосредованного воздействия на растительность прилегающих территорий. Существенный риск воздействия на растительность прилегающих территорий в первую очередь связан с особенностями эксплуатации объекта, в целях уменьшения воздействия предусматривается строительства автодороги, который позволить исключить стехийное езду по территории, что положительно повлияет на рост и сохранения растительности, в данной территории отсутсвует краснокнижные и лекарственные растения.

Стадия строительства, связанная с безвозвратным и временным отчуждением земельных участков для реализации проектных решений по строительству (а значит, уничтожением мест обитания растений) окажет наиболее существенное негативное воздействиена растительность.

Сильная деградация природных экосистем наблюдается при механическом воздействии, связанном со строительными работами. Особенно отрицательно этот фактор сказывается на состоянии почв и растительного покрова.

В период эксплуатации объекта непосредственно территория будет лишена растительного покрова.

Основным, негативно влияющим на состояние животного мира процессом, является

«фактор беспокойства», вызванный присутствием работающей техники и людей. В период проведения строительных работ некоторые виды, вследствие фактора беспокойства, будут вытеснены с прилежащей территории. Шум, производимый строительной техникой, выбросы загрязняющих веществ в атмосферу при работе автотранспорта, незнакомые запахи и присутствие людей, будут служить отпугивающим фактором для животных. Во многих случаях это является даже положительным фактором, т.к. заставит животных держаться на безопасном расстоянии от техники и персонала, работающего на объектах строительства.

Размещения объекта не окажет влияние на пути миграции птиц, так как объекты расположена на значительном расстояние от водохранилище.

***Примичание: на территориях где будут размещены производственные площадка, в ходе проведения обследования территории не были обнаружены зимовки, норы и гнезды, где могли бы проживать животные. Соответственно реализация проекта не окажет влияние на животный мир, в связи с отсутсвием их постоянного размещения.

Тем не менее, в случае выявления в ходе реализации проекта значимых воздействий на виды растений и животных, в рамках Плана сохранения биоразнообразия будут разработаны мероприятия по недопущению суммарных потерь биологического разнообразия, а в случае идентификации критических местообитаний – обеспечения прироста биоразнообразия.

Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации);

Основными объектами воздействия строительства и эксплуатации объектов являются земли и почвы участка строительства.

До реализации Проекта изымаемый под размещение объекта участок представлял собой пустой земельный участок. Хозяйственный ущерб от изъятия земель незначителен, участок не исползовался. Территории постоянного или временного проживания населения в границах земельного участка, отводимого под

строительство, а также в границах СЗЗ объекта, отсутствуют. Реализация Проекта не приведет к необходимости переселения жителей.

Согласно классификации по целевому назначению и разрешенному использованию участок строительства не попадает в зону приоритетного природопользования, на нем отсутствуют объекты историко-культурного наследия, месторождения полезных ископаемых.

Сильная деградация природных экосистем наблюдается при механическом воздействии, связанном со строительными работами. Особенно отрицательно этот фактор сказывается на состоянии почв и растительного покрова, в зонах где будет проходить строительства.

Сколько-нибудь значимого дополнительного воздействия со стороны строительных площадок на почвенный покров и земли прилегающих территорий (возрастание фитотоксичности, сброс загрязняющих веществ в грунтовые воды и др.) не ожидается.

Исходя из природных особенностей территории не ожидается значительного воздействия земляных работ на почвенно-растительный покров и грунты и активизации неблагоприятных геологических процессов — подтопления и заболачивания территории.

Воды (в том числе гидроморфологические изменения, количество и качество вод)

Проведение работ на этой площади не будет оказывать на водные объекты влияния. Воздействия от этого вида хозяйственной деятельности может быть оценено с позиции рационального водопотребления и водоотведения, возможного загрязнения существующих на ограниченном участке техногенных вод, временных водотоков и водосборной площади в случае аварийной ситуации.

Потенциальное воздействие планируемых работ может оказываться на геологическую среду в отношении развития неблагоприятных экзогенных геологических процессов, которые в результате проведения полевых могут быть усилены или спровоцированы и на подземные воды первого от поверхности водоносного горизонта.

Основными источниками потенциального воздействия на геологическую среду и подземные воды при проведении строительных работ будут являться транспорт и спецтехника. Одним из потенциальных источников воздействия на подземные воды (их загрязнения) могут быть утечки топлива и масел в местах скопления и заправки спецтехники и автотранспорта в период работ.

В этой связи в целях недопушения загрязнения подземных и поверхностных вод, необходимо соблюдать и выполнять своевремнное ТО автотранспортных средсв. Транспорт должен размещаться на изолированной площадке, замена масла в период строительства и заправка должно осуществляться в специализированных местах. На период эксплуатации загрязнения подземных и поверхностных вод не ожидается.

Атмосферный воздух (в том числе риски нарушения экологических нормативов его качества, целевых показателей качества, а при их отсутствии ориентировочно безопасных уровней воздействия на него)

Атмосферный воздух является основным объектом окружающей среды, на который окажет воздействие намечаемая деятельность строительства и эксплуатации.

Качество атмосферного воздуха, как одного из основных компонентов природной среды, является важным аспектом при оценке воздействия

проектируемого объекта на окружающую среду и здоровье населения.

Факторами воздействия на объект природной среды — атмосферный воздух - являются выбросы загрязняющих веществ от стационарных и передвижных источников в период строительства и эксплуатации объектов. Источниками выбросов ЗВ в атмосферу является работа строительных машин, оборудования в период строительства и работа производственных объектов в период эксплуатации.

Загрязненность атмосферного воздуха химическими веществами может влиять на состояние здоровья населения, на животный и растительный мир прилегающей территории. Воздействие на атмосферный воздух намечаемой деятельности оценивается с позиции соответствия законодательным и нормативным требованиям, предъявляемым к качеству воздуха.

На данной стадии выполнения отчета, когда имеются только общие предварительные технические решения, возможно получение только ориентировочных значений показателей, которые будут уточняться на последующих стадиях проектирования — при разработке рабочего проекта.

Для оценки уровня загрязнения атмосферного воздуха от источников выбросов при реализации проекта приняты следующие критерии: максимально-разовые концентрации (ПДК м.р.). Согласно санитарным нормам РК, на границе СЗЗ и в жилых районах приземная концентрация ЗВ не должна превышать 1ПДК. Согласно результатом расчета рассеивания концентрация ЗВ на границе СЗЗ не превышает 1 ПДК, в населенном пункте не превышает 0,1-0,7 ПДК.

ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ (ПРЯМЫХ И КОСВЕННЫХ, КУМУЛЯТИВНЫХ, ТРАНСГРАНИЧНЫХ, КРАТКОСРОЧНЫХ И ДОЛГОСРОЧНЫХ, ПОЛОЖИТЕЛЬНЫХ И ОТРИЦАТЕЛЬНЫХ) НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА КОМПОНЕНТЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ИНЫЕ ОБЪЕКТЫ

Возможные существенные воздействия намечаемой детельности, возникающие в результате строительства и эксплуатации объектов, предназначенных для осуществления намечаемой деятельности.

Возможные существенные воздействия на атмосферный воздух

Прямое воздействие

Прямое воздействие на атмосферный воздух будет связано с непосредственным выбросом загрязняющих веществ в атмосферный воздух. Прямое воздействие также будет связано с возможностью трансформации некоторых загрязняющих веществ за счет образования групп суммации, распада вещест или способностью давать новые вещества при взаимодействии с другими вещества, что будет влиять на качество воздуха в пределах области воздействия проектируемого объекта(ограничивается границей СЗЗ).

Источники прямого воздействия на атмосферный воздух на период строительства:

Земляные работы, пересыпка пылящих материалов, сварочные работы, лакокрасочные работы, транспортные работы.

<u>Источники прямого воздействия на атмосферный воздух на период эксплуатации:</u> Дроильные и магнитные работы.

Пространственные, временные параметры и параметры интенсивности воздействия

В соответствии с действующими в РК «Методическими указаниями по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденную МООС РК приказом N270-о от 29.10.2010 г., прямое воздействие оценивается по пространственным, временным параметрам и его интенсивности, вытекающих из принятых технических решений.

Воздействие на атмосферный воздух оценивается:

При строительно-монтажных работах:

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01- 1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – продолжительный (3) продолжительность воздействия от 3-х месяцев до 1 года.

интенсивность воздействия (обратимость изменения) – незначительный (1) – изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Таким образом, воздействие проектируемых объектов на атмосферный воздух на период строительства будет лежать в диапазоне средней значимости, согласно таблице 7.1.1.1.

Таблица 7.1.1.1 Оценка воздействия проектируемых работ на атмосферный воздух на период строительства

boshyk na nepnod erponrenberba				
Показатели воздействия	Б	Масштаб воздействия (рейтинг		
	алл	относительного воз- действия и нарушения)		
Пространственный масштаб]	точечный		
воздеиствия				
Временной масштаб воздействия	3	продолжительный		
Интенсивность воздействия]	незначительный		
Интегральная оценка	3	Воздействие низкой значимости		

При интегральной оценке воздействия «воздействие низкой значимости» - изменения среды в рамках естественных изменений (кратковременные и обратимые).

Среда возвращается к нормальным уровням на следующий год после происшествия.

Интегральная оценка воздействия составит 3 баллов — воздействие низкой значимости.

Эксплуатация

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01-1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – постоянное воздействие (5) продолжительность воздействия более 3-ех лет.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Таким образом, воздействие проектируемых объектов на атмосферный воздух на период эксплуатации будет лежать в диапазоне средней значимости, согласно таблице 7.1.1.2.

Таблица 7.1.1.2 Оценка воздействия проектируемых работ на атмосферный

воздух напериод эксплуатации

Показатели воздействия	Б	Масштаб воздействия (рейтинг
	алл	относительного воз- действия и нарушения)
Пространственный масштаб воздействия	1	Локальное воздействие
Временной масштаб воздействия	5	Многолетнее (постоянное) воздействие
Интенсивность воздействия	1	Незначительное воздействие
Интегральная оценка	5	Воздействие низкой значимости

При интегральной оценке воздействия «воздействие низкой значимости» - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Интегральная оценка воздействия составит 5 балла – воздействие низкой значимости.

Воздействие на атмосферный воздух характеризуется как долгосрочное, так как прогнозируемый срок эксплуатации проектируемого объекта составляет 20 лет и более.

Анализ принятых в проекте решений, подтвержденных расчетами, показал, что реализация намеченного строительства проектируемых объектов не повлечет за собой существенного ухудшения состояния окружающей природной среды.

Трансграничное воздействие

Трансграничное воздействие на атмосферный воздух при строительстве и эксплуатации объекта отсутствует.

Возможные существенные воздействия шума, вибрации

<u>Прямое воздействия</u>

На период строительства источникам шума, вибрации являются источники постоянного шума (ДЭС, компрессоры, передвижные, сварочные агрегаты и т.д.) и периодического (автотранспорт, строительная техника) шума. На период эксплуатации источниками шума и вибрации являются насосное оборудование; компрессорное оборудование.

На период эксплуатации источниками шума и вибрации на площадке являются дробилки, сепарации оборудование работающие постоянно.

Проектной документацией предусмотрено использование арматуры и предохранительных клапанов, шумовые характеристики которых не превышают установленных нормативных значений по шуму для рабочей зоны и жилой застройки. Анализ результатов представленных расчетов показал, что при круглосуточном режиме эксплуатации проектируемых объектов основного производства уровни звукового давления в рабочей зоне, на границе СЗЗ предприятия и на границе ближайшей жилой застройки не превысят нормативных значений.

К косвенным воздействиям за пределами проектной площадки могут быть отнесены

следующие виды воздействий:

Стадия строительства:

- освещение и визуальные воздействия за пределами территории строительства;
- шумовое воздействие, создаваемое движением транспорта в ходе строительства.

Стадия эксплуатации:

- освещение и визуальные воздействия за пределами территории площадок;
- шумовое воздействие, создаваемое в результате работы объектов площадок.

Выполненный в проектных материалах анализ характеристик оборудования показывает, что как на стадии строительства, так и на стадии эксплуатации, на границе ближайших селитебных территорий уровни шума не превысят нормативных уровней, установленных дляселитебных территорий.

Комплекс технических и организационных мероприятий позволит обеспечить нормативный уровень шума на рабочих местах и территории строительных и промышленных площадок.

Проектируемый объект не будет оказывать влияния на формирование уровня шума как на границе СЗЗ, так и жилой зоне.

<u>Пространственные, временные параметры и параметры интенсивности прямого</u> воздействия

В соответствии с действующими в РК «Методическими указаниями по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденными МООС РК приказом N270-о от 29.10.2010 г., прямое воздействие оценивается по пространственным, временным параметрам и его интенсивности, вытекающих из принятых технических решений.

Воздействие физических факторов (шум, вибрация) на окружающую среду оценивается:

Строительство

При строительстве проектируемых объектов при соблюдении технологического регламента, техники безопасности, запланированных технологий и мероприятий, масштаб воздействия физических факторов на окружающую среду можно оценить как:

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01- 1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – продолжительный (3) продолжительность воздействия от 3-х месяцев до 1 года.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Интенсивность воздействия физических факторов на окружающую среду - «низкой воздействие» - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Таким образом, воздействие физических факторов на окружающую среду на период строительства будет лежать в диапазоне средней значимости, согласно таблицы 7.1.4.1.

Таблица 7.1.4.1 Оценка воздействия физических факторов на период строительства

Показатели воздействия	I	Масштаб воздействия (рейтинг
	алл	относительного воз- действия и нарушения)
Пространственный масштаб		точечный
воздействия		
Временной масштаб воздействия	ĺ ,	продолжительный
Интенсивность воздействия		незначительный
Интегральная оценка	í	Воздействие низкой значимости

При интегральной оценке воздействия *«воздействие низкой значимости»* - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Интегральная оценка воздействия составит *3 балла – воздействие низкой* значимости.

Эксплуатация

Предусмотренные проектные решения, а также комплекс мероприятий, заложенный в проекте, позволяют утверждать, что воздействие физических факторов на окружающую среду в процессе эксплуатации проектируемых объектов, можно оценить как: пространственный масштаб воздействия - точечный (1) — площадь воздействия 0.01-1 км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – постоянное воздействие (5) продолжительность воздействия более 3-ех лет.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Интенсивность воздействия физических факторов на окружающую среду - «низкое воздействие» - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Таким образом, воздействие физических факторов на окружающую среду на период эксплуатации будет лежать в диапазоне средней значимости, согласно таблицы 7.1.4.2.

Таблица 7.1.4.2 Оценка воздействия физических факторов на период

эксплуатации

Показатели воздействия	Б алл	Масштаб воздействия (рейтинг относительного воз- действия и нарушения)
Пространственный масштаб воздействия	1	Локальное воздействие
Временной масштаб воздействия	5	Многолетнее (постоянное) воздействие
Интенсивность воздействия	1	Незначительное воздействие
Интегральная оценка	5	Воздействие низкой значимости

При интегральной оценке воздействия *«воздействие низкой значимости»* - широкий диапазон, начиная от порогового значения, ниже которого воздействие является низким, до уровня, почти нарушающего узаконенный предел.

Интегральная оценка воздействия составит *5 баллов* – *воздействие низкой значимости*.

Трансграничное воздействие

Трансграничное воздействие физических факторов при строительстве и эксплуатацииобъекта отсутствует.

Возможные существенные воздействия на поверхностные и подземные воды

Прямое воздействие

К прямым воздействиям на поверхностные и подземные воды относятся те воздействия, которые оказывают непосредственное влияние на режим и качество поверхностных и подземных вод. Прямое воздействие - когда техногенная деятельность приводит к изменениям в водоносных горизонтах, которые используются или могут быть использованы в будущем для добычи подземных вод в указанных выше целях, а также гидравлически связанных с ними смежных водоносных горизонтов.

Основными видами прямых антропогенных нагрузок на водные ресурсы являются: использование воды на хозяйственно — питьевые нужды населения, ее использование в сельском хозяйстве и в промышленности, а также сброс сточных вод от различных хозяйствующих предприятий и жилищно-коммунального комплекса.

Прямые воздействия на поверхностные и по дземные воды в рамках строительства и эксплуатации отсутствуют, так как все образуемые сточные воды будут направлены в пруд испаритель, дно которого устроена противофильтрационным экраном предотвращяющий проникновение воды в подземные воды. Хозяйственные сточные воды по мере накопления будут направлены на договорной основе близрасположенный КОС г. Хромтау.

Косвенное воздействие

К косвенным воздействиям относятся те воздействия, которые оказывают влияние на водные ресурсы при техногенной деятелности, не связанной с непосредственным отбором подземных вод или сбросом вод в недра. Поступление вод в водоносный горизонт прифильтрационных утечках из водонесущих коммуникаций.

Косвенные источники загрязнения подземных вод на период строительства:

- фильтрационные утечки из системы сбора и утилизации стоков;
- возможные утечки топлива и масел от техники в местах скопления автотранспорта. Косвенные источники загрязнения подземных вод *на период эксплуатации:*
 - фильтрационные утечки из водонесущих коммуникаций.

<u>Пространственные, временные параметры и параметры интенсивности прямого</u> воздействия

В соответствии с действующими в РК «Методическими указаниями по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденную МООС РК приказом N270-о от 29.10.2010 г., прямое воздействие оценивается по пространственным, временным параметрам и его интенсивности, вытекающих из принятых технических решений.

<u>Пространственные, временные параметры и параметры интенсивности прямого</u> воздействия

Строительство

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01-1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия — продолжительный (3) продолжительность воздействия от 3-х месяцев до 1 года.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Интенсивность воздействия на подземные воды будет - «низкое воздействие» - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Таким образом, воздействие проектируемых объектов на подземные воды на период строительства будут лежать в диапазоне низкой значимости, согласно таблице 7.1.5.1.

Таблица 7.1.5.1 Оценка воздействия проектируемых работ на подземные воды на период строительства

Показатели воздействия	Б	Масштаб воздействия (рейтинг относительного воз- действия и			
	алл	нарушения)			
Пространственный масштаб воздействия	1	точечный			
Временной масштаб воздействия	3	продолжительный			
Интенсивность воздействия	1	незначительный			
Интегральная оценка	3	Воздействие низкой значимости			

При интегральной оценке воздействия *«воздействие низкой значимости»* - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Интегральная оценка воздействия составит *3 балла – воздействие низкой значимости*.

Эксплуатация

При эксплуатации проектируемых объектов при соблюдении технологического регламента, техники безопасности, запланированных технологий и мероприятий, масштаб воздействия на поверхностные и подземные воды можно оценить как:

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01-1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – постоянное воздействие (5) продолжительность воздействия более 3-ех лет.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Интенсивность воздействия на подземные воды будет - «низкое воздействие» - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Таким образом, воздействие проектируемых объектов на подземные воды на период эксплуатации будут лежать в диапазоне низкой значимости, согласно таблицы 7.1.5.2.

Таблица 7.1.5.2 Оценка воздействия проектируемых работ на подземные воды на период эксплуатации

Показатели воздействия	Б	Масштаб воздействия (рейтинг
	алл	относительного воз- действия и нарушения)
Пространственный масштаб	1	Локальное воздействие
воздействия		
Временной масштаб воздействия	5	Многолетнее (постоянное) воздействие
Интенсивность воздействия	1	Незначительное воздействие
Интегральная оценка	5	Воздействие низкой значимости

При интегральной оценке воздействия *«воздействие низкой значимости»* - широкий диапазон, начиная от порогового значения, ниже которого воздействие является низким, до уровня, почти нару- шающего узаконенный предел.

Интегральная оценка воздействия составит *5 баллов* – *воздействие низкой значимости*.

Трансграничное воздействие

Трансграничное воздействие на подземные воды при строительстве и эксплуатацииобъекта отсутствует.

Возможные существенные воздействия на недра

Прямое воздействие

На период строительства

Воздействия на недра и связанные со строительством развития экзогенных геологических процессов не ожидается. На период строительства работы по подготовке и обустройству площадки будут связаны с воздействием, главным образом, на поверхностный слой землии будут распространяться по глубине: движение техники.

На период эксплуатации

Прямые воздействия на недра на период эксплуатации отсутствуют.

Косвенное воздействие

На период строительства и эксплуатации проектируемого объекта, с учетом предусмотренных мероприятий, воздействия на геологическую среду (недра) не ожидается. Согласно принятым проектным решениям при эксплуатации проводится сбор и утилизация всех видов сточных вод и отходов, в соответствии с требованиями РК в области ОЗТОС, что минимизирует их возможное воздействие на дневную поверхность и недра. Других источнтков воздействия намечаемой деятельности на недра не ожидается.

Таким образом, на период строительства и эксплуатации объекта, воздействия на геологическую среду (недра) *не ожидается*.

Пространственные, временные параметры и параметры интенсивности прямоговоздействия

Строительство

На период строительства объекта ожидаются следующие показатели воздействия на недра:

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01-1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – продолжительный (3) продолжительность воздействия от 3-х месяцев до 1 года.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Интенсивность воздействия на недра оценивается как «незначительная» - изменения в природной среде приводят к значительным нарушениям компонентов природной среды и/или экосистемы. Отдельные компоненты природной среды теряют способность к самовосстановлению.

Таким образом, воздействие проектируемых работ на недра на период строительства будет лежать в диапазоне *низкой* значимости, согласно таблицы 7.1.6.1.

Таблица 7.1.6.1 Оценка воздействия проектируемых работ на недра на период строительства

- F		
Показатели воздействия	Б	Масштаб воздействия (рейтинг
	алл	относительного воз- действия и нарушения)
Пространственный масштаб	1	точечный
воздействия		
Временной масштаб воздействия	3	продолжительный
Интенсивность воздействия	1	незначительный
Интегральная оценка	3	Воздействие низкой значимости

При интегральной оценке воздействия «воздействие низкой значимости» последствия воздей- ствия испытываются, но величина воздействия достаточно низка, а также находится в пределах допустимых стандартов или рецепторы имеют низкую чувствительность/ценность.

Эксплуатация

Воздействие на недра на период эксплуатации объекта отсутствует.

<u>Трансграничное воздействие</u>

Трансграничное воздействие на недра при строительстве и эксплуатации объекта отсутствует.

Возможные существенные воздействия на земельные ресурсы

Прямое воздействие

Прямое воздействие на земельные ресурсы при строительстве и эксплуатации проектируемого объекта заключается в изъятии земель под строительство.

Косвенное воздействие

Косвенное влияние распространяется на значительно большие расстояния и проявляется в осаждениях газов, пыли и химических веществ, деформации поверхности, повреждении растительного покрова, снижении продуктивности сельскохозяйственных угодий, животноводства, изменении химического состава и динамики движения поверхностных и грунтовых вод.

Земли малопригодны для использования в сельскохозяйственном обороте. Ландшафтноклиматические условия и месторасположение территории исключают ее рентабельное использование, для каких либо хозяйственных целей, кроме реализации прямых целей производства. При этом деятельность предприятия позволяет в какой-то мере улучшить транспортную инфраструктуру окрестностей контрактной территории.

В связи с вышесказанным, можно сделать вывод, что существенных воздействий на земельные ресурсы в результате намечаемой деятельности, не предвидется.

<u>Трансграничное воздействие</u>

Трансграничное воздействиена земли при строительстве и эксплуатации объекта отсутствует.

Возможное существенное воздействие на ландшафты

В результате отвода земель под строительство объекта часть проектируемых сооружений (например, объекты транспорта) непосредственно затронут периферию жилых зон. Однако, в совокупности это не приведет к существенной трансформации и фрагментации местного ландшафта.

В результате строительства объекта краткосрочные (в период строительства) и долгосрочные отрицательные визуальные воздействия на ландшафты будут несущественными для местного населения, поскольку объекты строительства расположены вне зон прямой видимости со стороны ближайших жилых и рекреационных территорий.

Таким образом, реализация проектных решений не окажет существенных воздействий на ландшафты.

Возможные существенные воздействия на почвенный покров

Прямое воздействие

<u>Прямое воздействие на почвенный покров при строительстве проектируемых объектов:</u>

- изъятие земель для строительства;
- нарушение и повреждение земной поверхности, механические нарушенияпочвенного покрова;
- дорожная дегрессия;
- нарушения естественных форм рельефа.

<u>Прямое воздействие на почвенный покров при эксплуатации проектируемых объектов:</u>

- механическое воздействие на почвенный покров (движение автотранспорта, строительно монтажные работы).
- Степень обусловленных этими работами нарушений будет зависеть от тщательности при их проведении, а также своевременности устранения возможных загрязнений и, как ожидается, не превысит уровня предшествующих воздействий.

Косвенное воздействие

<u>Косвенное воздействие на почвенный покров при строительстве проектируемых объектов:</u>

• сокращение пастбищных площадей в результате строительства дорог;

<u>Косвенное воздействие на почвенный покров при эксплуатации проектируемых</u> объектов:

• отсутсвует.

<u>Пространственные, временные параметры и параметры интенсивности прямого</u> воздействия

В соответствии с действующими в РК «Методическими указаниями по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденную МООС РК приказом N270-о от 29.10.2010 г., прямое воздействие оценивается по пространственным, временным параметрам и его интенсивности, вытекающих из принятых технических решений.

Воздействие на почвенный покров оценивается:

Строительство

При строительстве проектируемых объектов при соблюдении технологического регламента, техники безопасности, запланированных технологий и мероприятий, масштаб воздействияна почвенный покров можно оценить, как:

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01-1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – продолжительный (3) продолжительность воздействия от 3-х месяцев до 1 года.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Таким образом, воздействие проектируемых объектов на почвенный покров на период строительства будут лежать в диапазоне средней значимости, согласно таблице 7.1.9.1.

Таблица 7.1.9.1 Оценка воздействия проектируемых работ на почвенный покров напериод строительства

Показатели воздействия	Б	Масштаб воздействия (рейтинг
	алл	относительного воз- действия и нарушения)
Пространственный масштаб	1	точечный
воздействия		
Временной масштаб воздействия	3	продолжительный
Интенсивность воздействия	1	незначительный
Интегральная оценка	3	Воздействие низкой значимости

При интегральной оценке воздействия *«воздействие низкой значимости»* - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Интегральная оценка воздействия составит *3 балла – воздействие низкой значимости*.

Эксплуатация

Учитывая компенсационные мероприятия по восстановлению почво-растительного порова (озеленение территории), воздействие на почвенный покров при эксплуатации ожидается незначительное.

Масштаб воздействия на почвенный покров на период эксплуатации можно оценить, как:

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01- 1 км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – постоянное воздействие (5) продолжительность воздействия более 3-ех лет.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Таким образом, воздействие проектируемых объектов на почвенный покров на период эксплуатации будут лежать в диапазоне низкой значимости, согласно таблицы 7.1.9.2.

Таблица 7.1.9.2 Оценка воздействия проектируемых работ на почвенный покров на период эксплуатации

Показатели воздействия	Б	Масштаб воздействия (рейтинг
	алл	относительного воз- действия и нарушения)
Пространственный масштаб	1	Локальное воздействие
воздействия		
Временной масштаб воздействия	5	Многолетнее (постоянное) воздействие
Интенсивность воздействия	1	Незначительное воздействие
Интегральная оценка	5	Воздействие низкой значимости

При интегральной оценке воздействия *«воздействие низкой значимости»* - широкий диапазон, начиная от порогового значения, ниже которого воздействие является низким, до уровня, почти нарушающего узаконенный предел.

Интегральная оценка воздействия составит *5 баллов – воздействие низкой значимости*.

Трансграничное воздействие

Трансграничное воздействиена почвы при строительстве и эксплуатации объекта отсутствует.

Возможные существенные воздействия на животный мир

Воздействия на животный мир, связанные со строительством и эксплуатацией объекта, квалифицируются как прямые и косвенные. Прямые воздействия приводят к постоянной и/или временной утрате мест обитания, фрагментации среды обитания, блокированию или изменению маршрутов миграции животных. Косвенные воздействия проявляются через загрязнение атмосферного воздуха, почв, нарушение и снижение доступности мест битания, звукового давления (воздействия шума) за территориями технологических площадок.

Прямое воздействие

<u>Прямое воздействие на животный мир при строительстве проектируемого</u> объекта:

- изменение среды обитания;
- проведение земляных строительных работ.

Прямое воздействие на животный мир при эксплуатации проектируемого объекта:

• нарушение и повреждение земной поверхности, механические нарушения почвенного покрова;

• сокращение пастбищных площадей в результате строительства дорог.

Косвенное воздействие

<u>Косвенное воздействие на животный мир при строительстве проектируемого</u> объекта:

- загрязнение растительности, почвенного покрова в результате осаждения атмосферных примесей за пределами проектной площадки;
- производственный шум, искусственное освещение, служащей факторами беспокойства для многих видов птиц и млекопитающих.

<u>Косвенное воздействие на животный мир при эксплуатации проектируемых</u> объектов:

- химическое воздействие на почвенный покров.
- использование дорог и внедорожное использование транспортных средств;
- производственный шум, искусственное освещение, служащей факторами беспокойства для многих видов птиц и млекопитающих.

<u>Пространственные, временные параметры и параметры интенсивности прямого</u> воздействия

В целом на стадии строительства и эксплуатации проектируемого объекта при соблюдении технологического регламента, техники безопасности, запланированных технологий и мероприятий, не предвидится сильного воздействия на животный мир. Комплекс мероприятий, предусмотренный во время проведения проектируемых работ в значительной мере смягчит возможные негативные последствия.

Строительство

При строительстве проектируемых объектов при соблюдении технологического регламента, техники безопасности, запланированных технологий и мероприятий, масштаб воздействия на животный мир можно оценить, как пространственный масштаб воздействия - точечный

(1) – площадь воздействия 0.01-1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – продолжительный (3) продолжительность воздействия от 3-х месяцев до 1 года.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Интенсивность воздействия на животный мир будет «низкое» - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Таким образом, воздействие проектируемых объектов на животный мир на период строительства будут лежать в диапазоне низкой значимости, согласно таблице 7.1.10.1.

Таблица 7.1.10.1 Оценка воздействия проектируемых работ на животный мир на период строительства

Показатели воздействия		Б	Масштаб воздействия (рейтинг
	алл		относительного воз- действия и нарушения)
Пространственный масштаб		1	точечный
воздействия			
Временной масштаб воздействия		3	продолжительный
Интенсивность воздействия		1	незначительный
Интегральная оценка		3	Воздействие низкой значимости

При интегральной оценке воздействия *«воздействие низкой значимости»* - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Интегральная оценка воздействия составит *3 балла – воздействие низкой значимости*.

Эксплуатация

Масштаб воздействия на животный мир на период эксплуатации можно оценить, как:

Пространственный масштаб воздействия (границы воздействия) будет «локальное воздействие» - площадь воздействия до 1,0 км².

Временной масштаб воздействия будет - «многолетнее (постоянное) воздействие» - воздействие отмечается от 3 лет и более.

Интенсивность воздействия на животный мир будет - «незначительное воздействие» - изменения в природной среде не превышают существующие пределы природной изменчивости.

Таким образом, воздействие проектируемых объектов на животный мир на период эксплуатации будут лежать в диапазоне низкой значимости, согласно таблицы 7.1.10.2.

Таблица 7.1.10.2 Оценка воздействия проектируемых работ на животный мир

на период эксплуатации

Показатели воздействия	Б	Масштаб воздействия (рейтинг
	алл	относительного воздействия
		и нарушения)
Пространственный масштаб воздействия	1	Локальное воздействие
Временной масштаб воздействия	4	Многолетнее (постоянное) воздействие
Интенсивность воздействия	1	Незначительное
Интегральная оценка	4	Воздействие низкой значимости

При интегральной оценке воздействия *«воздействие низкой значимости»* последствия воздействия испытываются, но величина воздействия достаточно низка, а также находится в пределах допустимых стандартов или рецепторы имеют низкую чувствительность/ценность.

Интегральная оценка воздействия составит *4 балла – воздействие низкой* значимости.

<u>Трансграничное воздействие</u>

Трансграничное воздействие на животный мир при строительстве и эксплуатации объектаотсутствует.

Возможные существенные воздействия на растительнось

Воздействия на растительный мир, связанные со строительством объекта, квалифицируются как прямые и косвенные: прямые воздействия приводят к постоянной и/или временной утрате местообитаний, к гибели или повреждению отдельных растений, фрагментации среды.

Прямое воздействие

<u>Прямое воздействие на растительность при строительстве проектируемого</u> объекта:

- изменение среды обитания;
- механические нарушения растительного покрова в связи с проведение земляныхстроительных работ.

<u>Прямое воздействие на растительность при эксплуатации проектируемого объекта:</u>

- нарушение и повреждение земной поверхности, механические нарушенияпочвенного покрова;
- сокращение площадей растительности в результате строительства дорог.

Косвенное воздействие

<u>Косвенное воздействие на растительность при строительстве проектируемого</u> объекта:

• загрязнение растительности, почвенного покрова в результате осаждения атмосферных примесей за пределами проектной площадки;

<u>Косвенное воздействие на растительный мир при эксплуатации проектируемого</u> объекта:

• использование дорог и внедорожное использование транспортных средств; <u>Пространственные, временные параметры и параметры интенсивности прямого</u> <u>воздействия</u>

В целом на стадии строительства и эксплуатации проектируемого объекта при соблюдении технологического регламента, техники безопасности, запланированных технологий и мероприятий, не предвидится сильного воздействия на растительный покров. Комплекс мероприятий, предусмотренный во время проведения проектируемых работ в значительной мере смягчит возможные негативные последствия.

Строительство

При строительстве проектируемых объектов при соблюдении технологического регламента, техники безопасности, запланированных технологий и мероприятий, масштаб воздействия на растительный покров можно оценить, как:

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01-1км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – продолжительный (3) продолжительность воздействия от

3-х месяцев до 1 года.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Интенсивность воздействия физических факторов на окружающую среду - «низкой воздействие» - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Таким образом, воздействие проектируемых объектов на растительный покров на период строительства будут лежать в диапазоне средней значимости, согласно таблице 7.1.11.1.

Таблица 7.1.11.1 Оценка воздействия проектируемых работ на растительный покров на период строительства

nonpob na nepnog esponsenberba				
Показатели воздействия	Балл Масштаб воздействия (рейтинг относительного			
		воздействия и нарушения)		
Пространственный масштаб воздействия	1	точечный		
Временной масштаб воздействия	3	продолжительный		
Интенсивность воздействия	1	незначительный		
Интегральная оценка	3	Воздействие низкой значимости		

При интегральной оценке воздействия *«воздействие низкой значимости»* - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Интегральная оценка воздействия составит *3 балла – воздействие низкой значимости*.

<u>Эксплуатация</u>

Учитывая компенсационные возможности почвенно-растительного покрова и при соблюдении предусмотренных мероприятий по его восстановлению, воздействие на растительный покров при эксплуатации, будет незначительное и прогнозируется в дальнейшем не критическим.

Масштаб воздействия на растительный покров на период эксплуатации можно оценить, как:

пространственный масштаб воздействия - точечный (1) – площадь воздействия 0.01- 1 км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта.

временной масштаб воздействия – постоянное воздействие (5) продолжительность воздействия более 3-ех лет.

интенсивность воздействия (обратимость изменения) — незначительный (1) — изменение среды превышают естественные флуктуации, но среда полностью восстанавливается.

Интенсивность воздействия физических факторов на окружающую среду - «низкое воздействие» - изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Таким образом, воздействие проектируемых объектов на растительный покров на период эксплуатации будут лежать в диапазоне низкой значимости, согласно таблице 7.1.11.2.

Таблица 7.1.11.2 Оценка воздействия проектируемых работ на растительный

покров напериод эксплуатации

Показатели воздействия	Балл	Масштаб воздействия (рейтинг относительного		
		воз- действия и нарушения)		
Пространственный масштаб воздействия	1	Локальное воздействие		
Временной масштаб воздействия	5	Многолетнее (постоянное) воздействие		
Интенсивность воздействия	1	Незначительное воздействие		
Интегральная оценка	5	Воздействие низкой значимости		

При интегральной оценке воздействия *«воздействие низкой значимости»* - широкий диапазон, начиная от порогового значения, ниже которого воздействие является низким, до уровня, почти нарушающего узаконенный предел.

Интегральная оценка воздействия составит *5 баллов – воздействие низкой значимости*.

Трансграничное воздействие

Трансграничное воздействие при строительстве и штатной эксплуатации объектаотсутствует.

Влияние на растительный мир при строительстве и эксплуатации будет носить местный характер и не приведет к каким-либо трансграничным воздействиям.

Таким образом, трансграничных воздействий на растительный мир при реализациипроекта строительства не предвидится.

Комплексная оценка воздействия на окружающую среду при строительстве иэксплуатации

В данном разделе дается комплексная оценка воздействия рассматриваемого проекта на все компоненты окружающей природной среды.

Современный общественный менталитет сформировал представления о том, что одним из важнейших моментов воздействия на окружающую среду является его минимальность, не ведущая к значимому ухудшению существующего положения ни для одного элемента экосистемы.

В связи с этим, при характеристике воздействия на окружающую среду основное внимание уделяется негативным последствиям, для оценки которых разработан ряд количественных характеристик, отражающих эти изменения.

Как показывает практика, наиболее приемлемым для решения задач оценки воздействия на природную среду представляется использование трех основных показателей: пространственного и временного масштабов воздействия и его величины (интенсивности).

Интенсивность воздействия имеет пять градаций, которые выражают следующие типы:

незначительная (1) — изменения среды не выходят за пределы естественных флуктуаций;

слабая (2)- изменения среды превышают естественные флуктуации, но среда полностьювосстанавливается;

умеренная (3) - изменения среды превышают естественные флуктуации, но способность к полному восстановлению поврежденных элементов сохраняется частично;

сильная (4) – изменения среды значительны, самовосстановление затруднено;

экстремальная (5) — воздействие на среду приводит к ее необратимым изменениям, самовосстановление невозможно.

Пространственный масштаб воздействия. Эта категория оценки воздействия на окружающую природную среду имеет пять градаций:

точечный (1) – площадь воздействия менее 1 Га (0,01 км2) для площадных объектов или в границах зоны отчуждения для линейных, но на удалении менее 10 м от линейного объекта:

локальный (2) - площадь воздействия 0,01-1 км2 для площадных объектов или в границах зоны отчуждения для линейных, но на удалении 10-100 м от линейного объекта;

ограниченный (3) - площадь воздействия 1-10 км2 для площадных объектов или на удалении

100-1000 м от линейного объекта;

территориальный (4) - площадь воздействия 10-100 км2 для площадных объектов или на удалении 1-10 км от линейного объекта;

региональный (5) - площадь воздействия более 100 км2 для площадных объектов или менее 100 км от линейного объекта.

Временной масштаб воздействия. Данная категория оценки имеет пять градаций:

кратковременный (1) – длительность воздействия менее 10 суток;

временный (2) – от 10 суток до 3-х месяцев; продолжительный (3) - от 3-х месяцев до 1 года;

многолетний (4) – от 1 года до 3 лет;

постоянный (5) – продолжительность воздействия более 3 лет.

Эти критерии используются для оценки воздействия проектируемых работ по каждому природному ресурсу.

В предыдущих разделах дана характеристика природных сред территории строительства и описаны все возможные потенциальные воздействия при строительстве и эксплуатации проектируемого объекта.

В данном разделе дается комплексная экологическая оценка воздействия работ.

Комплексная оценка воздействия на природные среды осуществляется по следующим критериям: величина воздействия, зона влияния и продолжительность воздействия.

Проведенные исследования и наблюдения, проведенные в процессе реализации данного отчета, позволили сделать выводы по поводу воздействия проводимой деятельности на основные компоненты окружающей среды.

Атмосферный воздух.

Валовый выброс загрязняющих веществ в атмосферу при строительстве проектируемого объекта составит:

Выполненные расчеты показали, что ни одного из рассматриваемых ингредиентов, не превышают нормируемых критериев.

В целом, воздействие на атмосферный воздух от намечаемой хозяйственной деятельности при строительстве оценивается следующим образом: пространственный масштаб воздействия – точечный (1 балл): временной масштаб – продолжительный (3 балла); интенсивность воздействия (обратимость воздействия) – незначительный (1 балл).

Интегральная оценка выражается 3 баллами – воздействие низкое.

В целом, воздействие на атмосферный воздух от намечаемой хозяйственной деятельности при эксплуатации оценивается следующим образом: пространственный масштаб воздействия – точечный (1 балл): временной масштаб – постоянный (5 балла); интенсивность воздействия (обратимость воздействия) – незначительный (1 балл).

Интегральная оценка выражается 5 баллами – воздействие низкое.

Грунтовые воды. В целом, воздействие на подземных (грунтовых) вод от намечаемой хозяйственной деятельности при строительстве оценивается следующим образом: пространственный масштаб воздействия — точечный (1 балл): временной масштаб — продолжительный (3 балла); интенсивность воздействия (обратимость воздействия) — незначительный (1 балл).

Интегральная оценка выражается 3 баллами – воздействие низкое.

Территория проектируемого объекта не имеет постоянных естественных водных объектов, поэтому воздействие на поверхностные воды при строительстве и эксплуатации проектируемого объекта не рассматривается.

Почва. Основное нарушение и разрушение почвогрунтов будет происходить при строительстве. После окончания строительства техногенное воздействие на почвы будет минимальным.

При условии проведения комплекса природоохранных мероприятий, соблюдения технологического регламента, при отсутствии аварийных ситуаций воздействие эксплуатации проектируемого объекта.

В целом, воздействие на состояние почвенного покрова, при соблюдении природоохранных требований, с учетом уже антропогенно-трансформированной предыдущей деятельности при строительстве оценивается следующим образом: пространственный масштаб воздействия — точечный (1 балл): временной масштаб — продолжительный (3 балла); интенсивность воздействия (обратимость воздействия) — незначительный (1 балл).

Интегральная оценка выражается 3 баллами – воздействие низкое.

Воздействия на животный и растительный мир, недра на эти компоненты природной среды воздействия не будет от проектируемого объекта.

Отходы. Воздействие на окружающую среду отходов, которые будут образовываться в процессе производственных работ на объекта, будет сведено к минимуму, при условии соблюдения правил сбора, складирования, вывоза, всех видов отходов по договору(за исключением вскрышной породы).

В целом, воздействие отходов от намечаемой хозяйственной деятельности при

строительстве оценивается следующим образом: пространственный масштаб воздействия – точечный (1 балл): временной масштаб – продолжительный (3 балла); интенсивность воздействия (обратимость воздействия) – незначительный (1 балл).

Интегральная оценка выражается 3 баллами – воздействие низкое.

Растительность. Механическое воздействие на растительный покров будет значительным в периоды строительства. При эксплуатации объекта воздействия на растительность не оказывает.

В целом же воздействие на состояние почвенно-растительного покрова может быть оценено как воздействие низкое.

Животный мир. В период проведения проектируемых работ часть территории будет изъята из площади возможного обитания животных. Однако, вследствие небольших размеров изымаемых и нарушаемых земель, с одной стороны и, крайней малой плотности заселения территории месторождения представителями животного мира, с другой, изъятие земель не может существенно повлиять на численность видов, качество их среды обитания.

Постоянное присутствие людей, работающая техника и передвижение автотранспорта окажет несколько более серьезное воздействие, чем вышерассмотренное. Некоторые виды, вследствие фактора беспокойства, уже были вытеснены с территории месторождения и района работ. При реализации проекта (активизации присутствия человека), может возрасти численность вытесненных особей с площади работ, у других, возможно некоторое сокращение численности (ландшафтные виды птиц, степной хорь, хищные).

На участках с нарушенным почвенно-растительным покровом произойдет резкое сокращение численности пресмыкающихся (ящерицы, змеи) и некоторых надземно гнездящихся птиц.

Вместе с тем хозяйственная деятельность не внесет существенных изменений в представленных большинства видов животных, районе жизнедеятельность месторождения, природно-ландшафтном аналогичен так как В отношении прилегающим территориям, и вытеснение их с ограниченного участка может быть легко компенсировано на другом.

Исследования показывают, что многочисленные грунтовые дороги, которые образуются при проведении работ, нередко являются основными вторичными местообитаниями, которые в очень большой степени облегчают возможность более быстрой концентрации поселений грызунов и расселения песчанок на окружающей территории.

Необходима своевременная рекультивация земли на участках, где поверхностный слой грунта был разрушен или есть проливы нефтепродуктов.

На основной части территории воздействие на фауну незначительно или отсутствует.

Что же касается воздействия на животный мир планируемого проекта, то ввиду незначительной площади территории, некоторое негативное воздействие будет отмечаться лишь на ограниченных участках, где непосредственно будут проводиться работы. На прилежащих участках, в силу существования у животных индивидуальных и популяционных механизмов адаптации, имеющиеся здесь фаунистические комплексы животных не претерпят заметных изменений.

В целом же воздействие на состояние животного мира может быть оценено как возлействие низкое.

Недра. Отсутствует.

Оценка возможного физического воздействия на окружающую среду. Производственная и другая деятельность человека приводит не только к химическому загрязнению биосферы. Все возрастающую роль в общем потоке негативных антропогенных воздействий приобретает влияние физических факторов на биосферу.

Последнее связано с изменением физических параметров окружающей среды, то есть с их отклонением от параметров естественного фона. В настоящее время наибольшее внимание привлекают изменения электромагнитных и вибро-акустических условий в зоне работ.

Производственный шум

Нормативные документы устанавливают определенные требования к методам измерений и расчетов интенсивности шума в местах нахождения людей, допустимую интенсивность фактора и зависимость интенсивности от продолжительности воздействия шума. В соответствии с нормами для рабочих мест, в производственных помещениях считается допустимой шумовая нагрузка 80дБ. Поэтому при разработке проекта на строительство объекта эти требования учтены.

Уровни шума должны быть рассмотрены исходя из следующих критериев:

- Защита слуха.
- Помехи для речевого общения и для работы. Нормы, правила и стандарты.

ГОСТ 12.1.003-2014 + Дополнение №1 "Система стандартов безопасности труда. Шум. Общие требования безопасности". Гигиенические нормативы к физическим факторам, оказывающим воздействие на человека, Утвержденные Приказом Министра национальной экономики Республики Казахстан от 28 февраля 2015 года № 169. Звуковое давление 20 log (р/р0) в дБ, где:

р – измеренное звуковое давление в паскалях

р0 – стандартное звуковое давление, равное 2*10-5

паскалей.

Уровень звуковой 10 log (W/W0) в дБ, где:

мощности W — звуковая мощность в ваттах

W0 – стандартная звуковая мощность, равная 10-12 ватт.

Допустимые уровни шума на рабочих местах.

Предельно допустимые уровни звукового давления на рабочих местах и эквивалентные уровни звукового давления на объектах приведены в таблице.

Таблица - Предельно допустимые уровни шума на рабочих местах Рабочее место Уровн ового давления в дБ с частотой Эквивал. уровни звук. давл. (дБ(A)) октавного диапазона в центре (Гц) 25 50 00 000 000 000 000 3 50 Творческая деятельность; 5 0 8 4 9 руководящая работа; проектирование и пункт оказания первой помощи. Высококвалифи-60 9 5 2 9 0 8 0 цированная работа, требующая концентраций; административная работа. Рабочие места в 65 3 4 0 5 операторных, из 4 которых осуществляется визуальный контроль и телефонная связь; кабинет руководителя работ. Работа, требующая концентрации; 75 3 0 8 6 4 работа с повышенными требованиями к визуальному контролю производственного процесса. 80 Все виды работ 5 7 8 5 3 9 (кроме перечисленных выше и аналогичных) на постоянных рабочих местах внутри и снаружи помещений. Допустимо для 85 9 2 8 объектов и 6 0 6 4 оборудования со значительным уровнем шума. Требуется снижение уровня шума. Выпускные 135 отверстия аварийной

Примечание: требуется снижение шума для объектов и оборудования со значительнымуровнем шума.

Для источников периодического шума на протяжении 8 часов используются следующиезначения, эквивалентные 85 дБА представленные в таблице.

Таблица - Максимальный уровень звукового давления при работе оборудования

Время работы	Максимальный уровень звукового давления			
оборудования	при работе оборудования			
8 часов	85 дБ(А)			
4 часа	88 дБ(А)			
2 часа	91 дБ(А)			
1 час	94 дБ(А)			

Шум от автотранспорта

вентиляции.

Внешний шум автомобилей принято измерять в соответствии с ГОСТ 19358-85. Допустимые уровни внешнего шума автомобилей, действующие в настоящее время, применительно к условиям строительных работ, составляют: грузовые автомобили с полезной массой свыше 3,5т создают уровень звука — 89 дБ(A); грузовые —дизельные автомобили с двигателем мощностью 162 кВт и выше — 91 дБ(A).

В настоящее время средний допустимый уровень звука на дорогах различного назначения, в том числе местного, составляет 73 дБ(A). Эта величина зависит от ряда факторов, в том числе от технического состояния транспорта, дорожного покрытия, интенсивности движения, времени суток, конструктивных особенностей дорог и др.

В условиях транспортных потоков планируемых при проведении строительных работ, будут преобладать кратковременные маршрутные линии. Использование автотранспорта для обеспечения работ, перевозки персонала, технических грузов и др. с учетом создания звуковых нагрузок, не будет превышать допустимых нормированных шумов — $80~\mathrm{д} \mathrm{G}(\mathrm{A})$, а использование мероприятий по минимизации шумов при работах на месторождении, даст возможность значительно снизить последние.

Снижение звукового давления на производственном участке может быть достигнуто при разработке специальных мероприятий по снижению звуковых нагрузок. К мероприятиям такого характера относятся: оптимизация и регулирование транспортных потоков; уменьшение, по мере возможности, движения грузовых автомобилей большой грузоподъемности; создание дорожных обходов; снижение звуковой нагрузки в вахтовом поселке; возведение звукоизолирующего ограждения вокруг дизель электростанции в вахтовом поселке; оптимизация работы технологического оборудования, буровых установок, использование звукопоглощающих материалов и индивидуальных средств защиты от шума.

Однако уже на расстоянии нескольких сотен метров источники шума не оказывают негативного воздействия на население и обслуживающий персонал.

Электромагнитные излучения

Источниками электромагнитных полей являются атмосферное электричество, космические лучи, излучение солнца, а также искусственные источники: различные генераторы, трансформаторы, антенны, лазерные установки, микроволновые печи, мониторы компьютеров и т.д. На предприятиях источниками электромагнитных полей промышленной частоты являются высоковольтные линии электропередач (ЛЭП), измерительные приборы, устройства защиты и автоматики, соединительные шины и др.

На территории располагаются установки, агрегаты, которые являются источниками электромагнитных излучений промышленной частоты. К ним относятся электродвигатели, линии электрокоммуникаций, электрооборудование строительных механизмов и автотранспортных средств. Требования к условиям труда работающих, подвергающихся в процессе трудовой деятельности воздействиям непрерывных магнитных полей (МП) частотой 50 Гц устанавливаются нормативным документом Санитарные правила

«Санитарно-эпидемиологические требования к радиотехническим объектам», Утверждены приказом Министра здравоохранения Республики Казахстан от 23 апреля 2018 года № 188.

Оценка воздействия МП на человека производится на основании двух параметров - интенсивности и времени (продолжительности) воздействия.

Интенсивность воздействия МП определяется напряженностью (H) или магнитной индукцией (B) (их эффективными значениями). Напряженность МП выражается в А/м (кратная величина кА/м); магнитная индукция в Тл (дольные величины мТл, мкТл, нТл).

Индукция и напряженность МП связаны следующим соотношением: $B = \mu 0$. H, где $\mu 0 = 4\pi$. 10-7 Гн/м — магнитная постоянная. Если B измеряется в мкТл, то 1 (A/м) \approx 1,25 (мкТл).

Продолжительность воздействия (Т) измеряется в часах (ч).

Предельно допустимые уровни (ПДУ) МП устанавливаются в зависимости от времени пребывания персонала для условий общего (на все тело) и локального (на конечности) воздействия.

Таблица - Допустимые уровни МП в зависимости от времени пребывания

персонала

Время пребывания	Допустимые уровни МП, Н(А/м)/В(мкТл)			
(ч)	общем	локальном		
≤1	1600/2000	6400/8000		
2	800/1000	3200/4000		
4	400/500	1600/2000		
8	80/100	800/1000		

Обеспечение защиты работающих от неблагоприятного влияния МП осуществляется путем проведения организационных и технических мероприятий.

Для воздушных линий электропередачи (ЛЭП) устанавливаются защитные зоны, размеры которых в зависимости от напряжения ЛЭП составляют:

Напряжение, кВ	<20	35	110	150-220	330-500	750	1150
Размер охранной зоны, м	10	15	20	25	30	4()	55

Указанные расстояния считаются в обе стороны ЛЭП от проекции крайних проводов.В пределах защитных зон от электромагнитного загрязнения запрещается:

- размещать жилые и общественные здания, площадки для стоянки и остановки всех видов транспорта, машин и механизмов;
 - устраивать всякого рода свалки;
- устраивать спортивные площадки, площадки для игр, стадионы, рынки, проводить любые мероприятия, связанные с большим скоплением людей, не занятых выполнением разрешенных в установленном порядке работ.

Используемые проектом электрические установки, устройства и электрические коммуникации, а также предусмотренные организационно-технические мероприятия обеспечивают необходимые допустимые уровни воздействия электромагнитных излученийна работающих.

Вибрации

Вибрацию вызывают неуравновешенные силовые воздействия, возникающие при работеразличных машин и механизмов.

В зависимости от источника возникновения выделяют три категории вибрации:

- транспортная;
- транспортно технологическая;
- технологическая.

Минимизация вибраций в источнике производится на этапе проектирования, и в период эксплуатации. При выборе машин и оборудования для проектируемого объекта, следует отдавать предпочтение кинематическим и технологическим схемам, которые исключают или максимально снижают динамику процессов, вызываемых ударами, резкими ускорениями и т.д. Также для снижения вибрации необходимо устранение резонансных режимов работы оборудования, то есть выбор режима работы при тщательном учете собственных частотмашин и механизмов.

В целом возможного физического воздействия на окружающую среду в процессе строительства, при соблюдении проектных природоохранных требований, можно оценить: пространственный масштаб воздействия — точечный (1 балл): временной масштаб — продолжительный (3 балла); интенсивность воздействия (обратимость воздействия) — незначительный (1 балл).

Интегральная оценка выражается 3 баллами – воздействие низкое.

Для комплексной оценки воздействия на окружающую среду был выявлен ряд

возможных источников воздействия. Произведена оценка с точки зрения экологического воздействия и значимости этого экологического воздействия. Дана характеристика источников потенциального воздействия на окружающую среду. Учтена чувствительность компонентов окружающей среды. Произведен прогноз дальнейшего воздействия.

Установленные критерии воздействия намечаемой деятельности на окружающую среду позволили классифицировать величину воздействия на компоненты окружающей среды как незначительную.

Анализируя вышеперечисленные категории воздействия на окружающую среду, можно сделать общий вывод, что общий уровень ожидаемого экологического воздействия допустимо принять как: «низкое» изменения среды в рамках естественных изменений (кратковременные и обратимые). Среда возвращается к нормальным уровням на следующий год после происшествия.

Оценка воздействия на культурно-бытовые, социально-экономические условия и здоровье населения.

С точки зрения воздействия на социально-экономические условия района можно констатировать, что возможность нежелательной дополнительной нагрузки на социально-бытовую инфраструктуру населенных пунктов района будет отсутствовать.

С учетом санитарно-эпидемиологической ситуации в районе будут предусмотрены необходимые меры для обеспечения нормальных санитарно-гигиенических условий работыи проживания населения.

Вопросы оказания неотложной медицинской помощи предполагается решать на базе проектируемых местных медицинских учреждений. Обязательным, так же, является организация связи и транспорта для оказания неотложной медицинской помощи. Создание дополнительных высокооплачиваемых рабочих мест увеличит поступления в местные бюджеты за счет отчисления налогов. Кроме того, можно ожидать определенного оживления местного товарооборота в местах проживания привлекаемого производственного персонала.

С точки зрения воздействия на экономическую ситуацию в области в целом, основной экономический эффект будет связан с дальнейшим экономическим развитием района.

Дополнительная антропогенная нагрузка не приведет к существенному ухудшению существующего состояния природной среды, при условии соблюдения технологических дисциплин и соблюдения природоохранного законодательства Республики Казахстан.

СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ ФАКТОРЫ

Для каждого компонента социально - экономической среды уровни значимых площадных, временных воздействий и воздействий интенсивности дифференцируются по градациям. Для оценки всей совокупности последствий намечаемой деятельности на социальные и экономические условия, принимается 5 - ти уровневая градация (с 1 до 5 баллов, с отрицательным и положительным знаком, ранжирующая как отрицательные, так и положительные факторы воздействия. Балл «0» проявляется в том случае, когда отрицательные воздействия компенсируются тем же уровнем положительных воздействий).

Таблица 16.9 – Определение интегрированного воздействия на социально-экономическую сферу

Категор	ии воздействия,	балл	Интегральна		Категории начимости
Пространственн ый масштаб	Временной масштаб	Интенсивнос ть воздействия	я оценка, балл	Ба лл ы	Значимость (положительна я)
<u>Нулевой</u> 0	<u>Нулевой</u> 0	<u>Нулевая</u> 0	0		Незначительна я
<u>Точечный</u> 1	<u>Кратковременны</u> <u>й</u> 1	<u>Незначительна</u> <u>я</u> 1	1	от +1 до +5	Низкая
<u>Локальный</u> 2	<u>Средней</u> продолжительны <u>й</u> 2	<u>Слабая</u> 2	6	от +6 до +10	Средняя
<u>Местный</u> 3	<u>Долговременный</u> 3	<u>Умеренная</u> 3	9	от +6 до +10	Средняя
<u>Региональный</u> <u>4</u>	<u>Продолжительн</u>	<u>Значительная</u> 4	12	от +11 до +15	Высокая
<u>Национальный</u> <u>5</u>	<u>Постоянный</u> 5	<u>Сильная</u> <u>5</u>	15	от +11 до +15	Высокая

По итогам определения интегрированного воздействия на социально-экономическую сферу можно сказать, что намечаемая деятельность влечет за собой дополнительную платежку на налог и открытия новых рабочих мест.

Таблица 16.10 - Интегральная (комплексная) оценка воздействия на социальную сферу при строительстве скважин

Фактор воздействия	Пространс	Временной	Интенсивнос		ексная оценка здействия
	твенный		ть	баллы	качественная

					оценка
1	2	3	4	5	6
Производства	<u>Точечный</u> +1	<u>Долговременн</u> <u>ый</u> +3	<u>Значительная</u> +4	+8	Средняя

Ведение работ на этой территории способствует:
• поступлению налогов в местный и республиканский бюджет. созданию дополнительных рабочих мест.

ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, ВЫБОРА ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ.

ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЭМИССИЙ

Обоснование по количественным и качественном показателям указаны в разделе 8 настоящего проектного документа (Информацию об ожидаемых видах, характеристиках и количестве эмиссий в окружающую среду, иных негативных антропогенных воздействиях на окружающую среду, связанных со строительством и эксплуатацией объектов для осуществления рассматриваемой деятельности, включая воздействие на воды, атмосферный воздух, почвы, недра, а также вибрации, шумовые, электромагнитные, тепловые и радиационные воздействия).

Обоснование предельных количественных и качественных показателей физических воздействий на окружающую среду

Первым уровнем обеспечения шумовой и вибрационной безопасности на производстве является снижение шума и вибрации в источнике, т.е. в конструкции применяемых машин и оборудования.

Для электрических приводов машин предусмотрено применение демпферов и гасителей, позволяющих существенно уменьшить амплитуды колебаний на резонансных частотах, которые машина проходит при наборе оборотов до выхода на номинальный режим.

Снижение шума в источнике реализовано за счет применения "нешумных" материалов, использования в конструкции встроенных глушителей и шумозащитных кожухов, обеспечения необходимой точности балансировки вращающихся и неуравновешенных частей.

Второй уровень обеспечения шумовой и вибрационной безопасности реализован за счет снижения шума и вибрации на путях их распространения от источника до рабочего места - применена установка машин на фундаменты, виброизоляторы, усиленные перекрытия. Полы, на которых размещаются рабочие места, динамически не связаны с фундаментом.

Снижение шума на пути его распространения осуществляется акустическими средствами — звукоизоли- рующими и звукопоглощающими перегородками, виброизоляцией, демпфированием, установкой глушителей, и планировочными решениями - рациональной планировкой производственных помещений, рациональным размещением оборудования и рабочих мест, транспортных потоков.

Третий уровень технического обеспечения шумовой и вибрационной безопасности состоит в использо- вании средств индивидуальной защиты (СИЗ), обеспечивая защиту работающих непосредственно рабочем месте в сложившихся условиях шумовой и вибрационной нагрузки

-виброзащитная обувь, антивибрационные рукавицы, противошумные наушники.

Также применены организационные мероприятия, состоящие в сокращении времени воздействия шума и вибрации на работающего в течение смены.

Источниками электромагнитных полей, являются трансформаторные подстанции, машины, механизмы, высоковольтные линии и средства связи. Уровень напряженности электромагнитного поля в рабочих зонах производственных зданий и на прилегающих территориях соответствует установленным требованиям: СТ РК 1151-2002

«Электромагнитные поля радиочастот. Допустимые уровни и требования к проведению контроля»; «Предельно допустимые уровни (ПДУ) воздействия электрических полей диапа- зона частот 0,06-30,0 МГЦ №.02.021-94».

Таким образом, эксплуатация не окажет сверхнормативного акустического воздействия на ближайшие территории, подлежащие санитарно-гигиеническому нормированию.

Оценка ожидаемых на рабочих местах уровней шума и вибрации будет приниматься на основании технической документации на оборудование, в которой будут указаны сведения о производимых шуме и вибрации, и расчетах уровня шума и вибрации на рабочих местах.

Выбор операций по управлению отходами

7.4.1. Управление отходами

В соответствии со ст.335 Экологического Кодекса РК «Операторы объектов I и (или) II категорий, а также лица, осуществляющие операции по сортировке, обработке, в том числе по обезвреживанию, восстановлению и (или) удалению отходов, обязаны разрабатывать программу управления отходами в соответствии с правилами, утвержденными уполномоченным органом в области охраны окружающей среды».

Программа управления отходами разрабатывается в соответствии с принципом иерархии и должна содержать сведения об объеме и составе образуемых и (или) получаемых от третьих лиц отходов, способах их накопления, сбора, транспортировки, обезвреживания, восстановления и удаления, а также описание предлагаемых мер по сокращению образования отходов, увеличению доли их повторного использования, переработки и утилизации.

Анализ текущего состояния управления отходами на предприятии

В настоящее время компанией разработана политика, в которой определена необходимость планирования сбора, хранения, переработки, размещения и утилизации отходов, разработка единого плана управления отходов для всех этапах проведения работ, проводимых филиалом компании. Согласно этому проводиться регулярная инвентаризация, учет и контроль над временным хранением и состоянием всех образующихся видов отходов производства и потребления.

Принципы единой системы управления заключается в следующем:

-раздельный сбор с учетом целесообразного объединения видов отходов по степени и уровню их опасности с целью оптимизации дальнейших способов удаления;

- -идентификация образующихся отходов на месте их сбора;
- -хранение отходов в контейнерах (ёмкостях) в соответствии с требуемыми условиями для данного вида отходов. Все емкости для хранения отходов маркируются по степени и уровню опасности.
- -сбор и временное хранение организуется на специально оборудованных площадках временного хранения;
 - -по мере возможности производить вторичное использование отходов.

3.1 Классификация отходов.

Классификация отходов, образующихся в филиале компании при эксплуатации приведена в таблице 1.1.. Кодировка отходов приведена согласно приказу и.о. Министра экологии, геологии и природных ресурсов РК от 6 августа 2021 года №314.

Таблица 1.1. Классификация отходов на период экплуатации

№ п/п	Вид отхода	Код отхода	Количество т/год
	Н	еопасный список	
1	Коммунальные отходы	200301	1,65
2	Стеклобой	200102	0,15
3	Пищевые отходы	200108	3

4	Отходы офисной техники	200136	1
5	Огарки сварочных электродов	170407	0,39
6	Металлолом	160117	5,77
7	Макулатура	200101	2,475
8	Автошины	160103	8,53
9	Пластмасса	200139	0,225
		Опасный список	
12	Отработанные	200121	0,029
	ртутьсодержащие лампы		
13	Отработанные фильтры		0,728
	(масляные, топливные	150202	
	фильтры, воздушные)		
14	Отработанные масла	130206	12,39
15	Отработанные аккумуляторы	160601	0,368
16	Ветошь промасленная	150202	3,81

1.1. Система управления отходами.

Система управления отходами должно включает в себя работы по обращению с отходами согласно нормативным документам, дейсвтующих на территории РК. Система управления отходами включает в себя десять следующих основных этапов технологического цикла:

- 1. Образования отходов
- 2. Сбор и/или накопление отходов
- 3. Идентификация отходов
- 4. Сортировка отходов, включая обезвреживание
- 5. Паспортизация отходов
- 6. Упаковка и маркировка отходов
- 7. Транспортирование отходов
- 8. Складирование (упорядоченное размещение) отходов
- 9. Хранение отходов
- 10. Удаление отходов.

Ниже более подробно рассмотрены основные этапы технологического цикла отходов образующихся при реализации намечаемой деятельности.

2.2.1 Образование отходов

Первым этапом технологического цикла отходов является образование отходов. Образование отходов предусмотрено во всех технологических процессах, а также от жизнедеятельности персонала.

2.2.2 СБОР И/ИЛИ НАКОПЛЕНИЕ ОТХОДОВ

Вторым этапом технологического цикла являются сбор и накопление отходов. Осуществляется, разделяет сбор образующихся отходов. Сбор и накопление отходов производится в специально оборудованных местах и предназначенных для сбора и накопления различного вида контейнерах.

<u>Коммунальные отходы, макулатура, стеклобой, пищевые отходы, отходы офисной</u> техники.

Отходы собираются в металлические контейнера объемом 0,75 м3. Контейнеры имеют соответствующую маркировку отходов.

Отработанные автомобильные шины

Отработанные автомобильные шины временно хранятся на открытых площадках, имеющих твёрдое покрытие.

Огарки сварочных электродов

Огарки сварочных электродов собираются на месте проведения сварочных работ в металлические поддоны.

Металлолом

Металлолом собирается на бетонированное место сбора. Имеется табличка с надписьб «Металлолом».

Отработанные люминесцентные лампы

Сбор отработанных люминесцентных ламп производит на месте их образования отдельно от коммунальных и других отходов. Сбор осуществляется в заводскую упаковку. Доступ в помещение, где находятся отработанные лампы, строго ограничен.

Для битых ртутных и ртутьсодержащих ламп будет предусмотрен в специальный контейнер. Контейнер изготовлен из металла или ртуть устойчивого пластика и должен иметь герметичную крышку и ручки для переноса.

Отработанные аккумуляторные батареи

Отработанные аккумуляторные батареи собираются в специальном помещении гаража.

Промасленная ветошь

Сбор осуществляется на производственных объектах в металлических контейнерах.

Отработанные масляные и топливные фильтры

Сбор осуществляется на производственных объектах в металлических контейнерах.

Отработанные масла

Сбор осуществляется в металлических емкостях на твердом покрытии.

2.2.3 Идентификация отходов

Идентификация отходов является третьим этапом технологического цикла отходов. Промышленные отходы собираются в отдельные емкости (контейнеры) с четкой идентификацией для каждого типа отхода по типу и классу опасности.

2.2.4 Сортировка отходов, включая обезвреживание

Сортировка является четвертым этапом технологического цикла отходов.

На предприятии для производственных отходов с целью оптимизации организации их обработки и удаления, а также облегчения утилизации предусмотрен отдельный сбор (сортировка) различных типов промышленных отходов.

2.2.5 Паспортизация отходов

Паспортизация является пятым этапом технологического цикла отходов.

На каждый вид отхода имеется паспорт опасных отходов, с указанием объема образования, места складирования, химического состава и так далее в соответствии с требованиями Экологического кодекса РК.

2.2.6 Упаковка и маркировка отходов

Упаковка и маркировка отходов является шестым этапом технологического цикла отходов.

Отработанные лампы упакуются обратно в заводскую коробку. Все контейнера, емкости и места хранения маркируются в соответствии с временными хранимыми отходами.

2.2.7 Транспортировка отходов

Транспортировка является седьмым этапом технологического цикла отходов.

Все отходы производства и потребления вывозятся только специализированным автотранспортом, не допускается присутствие посторонних лиц, кроме водителя и сопровождающего груз персонала предприятия, так же при погрузочно-разгрузочных работах и транспортировки отходов выполняются все требования нормативно-правовых актов принятых на территории РК и международных стандартов. Вывоз отходов производится по мере его накопления.

2.2.8 Складирование отходов

Складирование является восьмым этапом технологического цикла отходов.

На территории производственных объектов оборудованы специальные площадки и установлено необходимое количество соответствующих контейнеров и емкостей.

2.2.9 Хранение отходов

Хранение является девятым этапом технологического цикла отходов.

Все образованные на предприятии отходы временно размещаются и хранятся на соответствующих площадках для временного хранения отходов.

2.2.10 Удаление отходов

Система управления отходами на предприятии минимизирует возможное воздействие на все компоненты окружающей природной среды, как при хранении, так и при перевозке отходов к месту размещения. Все образующиеся отходы производства и потребления передаются сторонним организациям.

Анализ существующей системы управления отходами

Положительные аспекты существующей системы управления отходами компании:

- 1. На всех производственных объектах ведется строгий учет образующихся отходов;
- 2. Сбор и/или накопление отходов осуществляется согласно нормативным документам РК. Для сбора отходов имеются специально оборудованные площадки, и имеется необходимое количество контейнеров.
- 3. Осуществляются работы по паспортизации отходов с привлечением специализированных организаций;
- 4. Частично осуществляется упаковка и маркировка отходов;
- 5. Транспортировка отходов осуществляют специализированные организации, которые имеют все необходимые разрешительные документы на занятие данным видом деятельности, а также автотранспорт и персонал;
- 6. Складирование и хранение, образующихся отходов осуществляется в специальные контейнеры и на специально оборудованных местах;
- 7. Удаление отходов осуществляется на специально оборудованные полигоны сторонних организаций. Утилизация отходов осуществляется также на специализированных предприятиях.
- 8. На предприятии осуществляется раздельный сбор ТБО на коммунальные

отходы, стеклобой, макулатура и пищевые отходы.

Следует отметить, что система обращения с отходами отвечает существующим требованием нормативных документов РК.

Цель, задачи и целевые показатели

Цель программы заключается в достижении установленных показателей, направленных на постепенное сокращение объемов и (или) уровня опасных свойств образуемых и накопленных отходов, а также отходов, подвергаемых удалению, увеличение доли восстановления отходов.

Задачи программы — определить пути достижения поставленной цели наиболее эффективными и экономически обоснованными методами.

Показатели программы – представлены в виде количественных (выраженных в числовой форме) или качественных значений (изменения опасных свойств; изменение вида отхода; агрегатного состояния и т.п.). Целевые показатели рассчитываются разработчиком самостоятельно с учетом производственных факторов, региональных особенностей, экологической эффективности, технической и экономической целесообразности.

Основные направления, пути достижения поставленной цели и соответствующие меры

Для решения вопроса управления отходами для предполагается проводить раздельный сбор образующихся отходов. Для этой цели планируется предусмотреть маркирование металлических контейнеров для каждого типа отходов, расположенные на специально оборудованных для этого площадках.

Сортировка отходов: разделение и/или смешение отходов согласно определенным критериям на качественно различающиеся составляющие.

Сортировка отходов осуществляется на начальном этапе сбора отходов и заключается в раздельном сборе различных видов отходов, в зависимости от их физико-химических свойств, класса опасности, агрегатного состояния и определением дальнейших путей складирования, хранения, утилизации или захоронения.

Сбор отходов: деятельность, связанная с изъятием отходов в течение определенного времени из мест их образования, для обеспечения последующих работ по обращению с отходами.

Сортировка (с обезвреживанием). Определение ресурсной ценности отходов, возможности повторного использования производится на площадке утилизации материалов.

Идентификация - деятельность, связанная с определением принадлежности данного объекта к отходам того или иного вида, сопровождающаяся установлением данных о его опасных, ресурсных, технологических и других характеристиках. Идентификацию отходов проводят на основе анализа эксплуатационно-информационных документов, в том числе паспорта отходов. При необходимости идентификацию отходов проводят путем контрольных измерений, испытаний, тестов и т.п.

Складирование и хранение. Для складирования и хранения отходов на месторождении оборудованы специальные площадки и установлено необходимое количество соответствующих контейнеров. Складирование осуществляется в течение определенного интервала времени с целью последующей транспортировки отходов.

Транспортирование. Транспортировка отходов осуществляется специализированными организациями, имеющими специальные документы на право обращения с отходами на специализированные полигоны для захоронения или места утилизации.

Транспортировка отходов осуществляется специальным автотранспортом. Транспортировка опасных видов отходов осуществляется согласно:

- «Правилам перевозок грузов автомобильным транспортом». Утверждены Приказ Министра по инвестициям и развитию Республики Казахстан от 30 апреля 2015 года № 546.
- «Правилам перевозки опасных грузов автомобильным транспортом и перечня опасных грузов, допускаемых к перевозке автотранспортными средствами на территории Республики Казахстан» от 17 апреля 2015 года № 460 (утверждены приказом и.о. Министра по инвестициям и развитию Республики Казахстан).

Перевозка опасных отходов допускается только при наличии паспорта отходов, на специально оборудованных и снабженных специальными знаками транспортных средствах, с соблюдением требований безопасности перевозки опасных отходов, перевозочных документов и документов для передачи опасных отходов, с указанием количества перевозимых опасных отходов, цели и места назначения их перевозки. План маршрута и график перевозки опасных отходов формирует перевозчик по согласованию с грузоотправителем (грузополучателем).

Опасные отходы, являющиеся объектом перевозки, упаковываются, маркируются и транспортируются в соответствии с требованиями, установленными нормативными документами по стандартизации Республики Казахстан.

При осуществлении перевозки опасных отходов грузоотправитель или перевозчик разрабатывают в соответствии с законодательством Республики Казахстан паспорт безопасности или аварийную карточку на данный груз в случае возможных аварийных ситуаций в пути следования. В случае возникновения или угрозы аварии, связанной с перевозкой опасных отходов, перевозчик незамедлительно информирует об этом компетентные органы.

При производстве погрузочно-разгрузочных работ должны выполняться требования нормативно-технических документов по обеспечению сохранности и безопасности груза. Контроль за погрузочно-разгрузочными операциями опасных отходов на транспортные средства должен вести представитель грузоотправителя (грузополучателя), сопровождающий груз.

Погрузочно-разгрузочные операции с опасными отходами должны производиться на специально оборудованных постах. При этом может осуществляться погрузкаразгрузка не более одного транспортного средства. Присутствие посторонних лиц на постах, отведенных для погрузки-разгрузки опасных отходов, не разрешается. Не допускается также производство погрузочно-разгрузочных работ с взрывоопасными отнеопасными отходами во время грозы.

Погрузочно-разгрузочные операции с опасными отходами осуществляются ручным способом и должны выполняться с соблюдением всех мер личной безопасности привлекаемого к выполнению этих работ персонала. Использование грузозахватных устройств погрузочно-разгрузочных механизмов, создающих опасность повреждения тары, и произвольное падение груза не допускается. Перемещение упаковки с опасными отходами в процессе погрузочно-разгрузочных операций и выполнения складских работ может осуществляться только по специально устроенным подкладкам, трапам и настилам. Опасные отходы, упакованные в ящиках при выполнении погрузочно-разгрузочных операций должны перемещаться на специальных тележках. В случае упаковки опасных грузов в корзины переноска их за ручки допускается только после предварительной проверки прочности ручек и дна корзины. Не допускается переносить упаковку на спине, плече или перед собой.

Удаление. Удалению подлежат все образующиеся отходы. Под удалением понимается сбор, сортировка, транспортирование и переработка опасных или других отходов с уничтожением и/или захоронением их способом специального хранения.

Сбор, сортировка, транспортирование осуществляется специализированными организациями согласно договорам. Переработка отходов осуществляется специализированными организациями согласно договорам.

Аварийные ситуации при обращении с отходами могут возникнуть:

- При временном хранении отходов на предприятии.
- При погрузочно-разгрузочных работах.
- При транспортировке отходов к местам обработки, утилизации, захоронения.

При временном хранении отходов на предприятии особое внимание следует уделить отходам опасного списка.

К показателям программы в конкретном рассматриваемом случае относятся материальные и организационные ресурсы, направленные на недопущение загрязнения окружающей среды отходами производства и потребления. Организация своевременного сбора и передачи отходов на переработку специализированным предприятиям.

Предлагаемые проектным решением мероприятия заключаются в следующем:

1. Оптимизация системы учета и контроля на всех этапах технологического цикла отходов. Для ведения полноценного учета и контроля необходимо:

соблюдать требования, установленные действующим законодательством, принимать необходимые организационно-технические и технологические меры по удалению образовавшихся отходов;

иметь паспорта опасных отходов;

проводить инвентаризацию отходов (объемы образования и передачи сторонним организациям, качественный состав, места хранения);

вести регулярный учет образующихся и перемещаемых отходов;

предоставлять в порядке, установленном законодательством Республики Казахстан, информацию, связанную с обращением отходов уполномоченному органу в области ООС;

соблюдать требования по предупреждению аварий, которые могут привести к загрязнению окружающей среды отходами производства и потребления и принимать неотложные меры по их ликвидации;

в случае возникновения аварии, связанной с обращением с отходами, немедленно информировать об этом уполномоченный органы в области ООС и санитарноэпидемиологического надзора;

производить визуальный осмотр отходов на местах их временного размещения;

проводить регулярную проверку мест временного хранения отходов и тары для их складирования на герметичность и соответствие экологическим требованиям;

- 2. Заключение договоров с подрядными организациями, осуществляющими деятельность в сфере использования отходов производства и потребления в качестве вторичного сырья и утилизацию отходов с применением наилучших технологий.
- 3. Планирование внедрения раздельного сбора отходов, в частности ТБО.
- 4. Уменьшение количества отходов путем повторного использования упаковки и тары. Следует рационально использовать расходные материалы с учетом срока их хранения после вскрытия упаковки.

Необходимые ресурсы и источники их финансирования.

Согласно правил разработки программы управления отходами, источниками финансирования программы являются собственные средства организаций, прямые иностранные и отечественные инвестиции, гранты международных финансовых экономических организаций или стран-доноров, кредиты банков второго уровня, и другие, не запрещенные законодательством Республики Казахстан источники.

Планирует использовать собственные средства для реализации настоящей программы. В целом планируется потратить 20 000 000 тенге.

В сумму расходов, входят закупка емкостей и т.п., оборудование мест и площадок, затраты на утилизацию отходов производства и потребления, обучения персонала, сортировка отходов.

План мероприятий по реализации Программы

План мероприятий является составной частью программы и представляет собой комплекс организационных, экономических, научно-технических и других мероприятий, направленных на достижение цели и задач программы с указанием необходимых ресурсов, ответственных исполнителей, форм завершения и сроков исполнения.

На производственной площадке будут оборудованы специально отведенные места для установки контейнеров, предназначенных для сбора отходов. Сбор отходов производится раздельно в специальных контейнерах, в соответствии с видом отходов.

При соблюдении методов накопления и временного хранения отходов, а также при своевременном вывозе отходов производства и потребления с территории строительной площадки не произойдёт нарушения и загрязнения почвенного покрова рассматриваемого района.

1. ОБОСНОВАНИЕ ПРЕДЕЛЬНОГО КОЛИЧЕСТВА НАКОПЛЕНИЯ ОТХОДОВ ПОИХ ВИДАМ

В целях обеспечения охраны окружающей среды и благоприятных условий для жизни и (или) здоровья человека, уменьшения количества подлежащих захоронению отходов и стимулирования их подготовки к повторному использованию, переработки и утилизации устанавливаются лимиты накопления и лимиты захоронения отходов для объектов I и II категорий (приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 22 июня 2021 года № 206 «Об утверждении методики расчета лимитов накопления отходов и лимитов захоронения отходов»).

Лимиты накопления отходов устанавливаются для каждого конкретного места накопления отходов, входящего в состав объектов I и II категорий, в виде предельного количества (массы) отходов по их видам, разрешенных для складирования в соответствующем месте накопления.

Строительные отходы, которые будут образовываться на период строительство, согласно приложению №16 100-п Методика разработки проектов нормативов предельного размещения отходов производства и потребления учет будет вестись по факту образования отходов.

Металлолом (лом черного металлолома)

Норма образования лома при ремонте автотранспорта рассчитывается по формуле: $N=n\cdot\alpha\cdot M[13,15]$, $_{T/\Gamma OJ}$,

где n - число единиц конкретного вида транспорта, использованного в течение года; α - нормативный коэффициент образования лома (для легкового транспорта α =0,016, для грузового транспорта α =0,016, для строительного транспорта α =0,0174); M - масса металла (т) на единицу автотранспорта (для легкового транспорта M =1,33, для грузового транспорта M =4,74, для строительного транспорта M =11,6).

N грузовой автотранспорт = 20*0.016*4,74=1,52 т N строительный автотранспорт = 20*0.0174*11,6=4,04 т N легковой автотранспорт = 10*0.016*1,33=0,21 т Учитывая все, в год образуется **5,77** тонн металлолома.

Бытовые отходы

Норма образования бытовых отходов (m_1 , τ /год) определяется с учетом удельных санитарных норм образования бытовых отходов на промышленных предприятиях — 0,3 м

 3 /год на человека, списочной численности работающих на ТЭЦ и средней плотности отходов, которая составляет 0,25 т/м 3 .

Мобр =
$$100$$
 чел * $0.3 * 0.25 = 7.5$ т/год

В составе ТБО имеются отходы запрещенные принимать для захоронения на полигонах согласно ЭК РК статьи 351, такие как бумага и картон, стеклобой, пищевые отходы, пластмасса.

Морфологический состав ТБО принят в соответствии с приказом Министра охраны окружающей среды РК от 12 июня 2014 года №221 приложение 11 таблица 1.

Пищевые отходы

Составляет 40% от всего ТБО М пищевые отходы = 7.5*40/100 = 3 тонн

Бумага и картон

Составляет 33% от всего ТБО М бумага, картон = 7.5 * 33/100 = 2,475 тонн

Стеклобой

Составляет 2% от всего ТБО М Стеклобой = 7,5 * 2/100 = 0,15 тонн

Пластмасса

Составляет 3% от всего ТБО М Стеклобой = 7.5 * 3/100 = 0.225 тонн

Смешанные ТБО(Коммунальные отходы)

Составляет 22% от всего ТБО М Стеклобой = 7.5 * 22/100 = 1,65 тонн

Огарки сварочных электродов

«Методика разработки проектов нормативов предельного размещения отходов производства и потребления» приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18 » 04 2008г. № 100-п.

Объем образования огарков сварочных электродов рассчитывается по формуле:

$$M_{o \delta p} = M * \acute{a}$$
 т/период,

где:

M — фактический расход электродов, т/период lpha - доля электрода в остатке, равна 0,015 $M_{oбp}$ =26*0,015=**0,39** т/период

Отходы офисной техники

Согласно ожидаемому количество образования отходе при плановом ежегодном ремонте составит 1 т\год.

Отработанные шины

Расчет объемов образования отходов выполнен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления" утвержденных приказом Министра охраны окружающей среды РК от 18 апреля 2008 г. №100-п

Образование отработанных автомобильных шин рассчитывается по формуле:

Мотх = $0.001 \cdot \text{Пср} \cdot \text{K} \cdot \text{k} \cdot \text{M} / \text{H}$, (т/год), где: K – количество автомашин, шт.; k – количество шин, установленных на автомашине, шт.; M – масса шины (принимается в зависимости от марки шины), кг; Пср – среднегодовой пробег автомобиля, тыс. км; H – нормативный пробег шины, тыс. км.

$$Motx = 0.001 * 40 * 20 * 4 * 80 / 30 = 8.53$$
 TOHH

Ветошь промасленная

Расчет объемов образования отходов выполнен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления" утвержденных приказом Министра охраны окружающей среды РК от 18 апреля 2008 г. N00-n.

Нормативное количество отхода определяется исходя из поступающего количества ветоши (M_0 , т/год), норматива содержания в ветоши масел (M) и влаги (W): $N = M_0 + M + W$, т/год, где, $M = 0.12 \cdot M_0$, $W = 0.15 \cdot M_0$.

Количество промасленной ветоши составляет:

$$H = 3 + 0.12 * 3 + 0.15 * 3 = 3.81 \text{ тонн}$$

Отработанные ртутьсодержащие лампы

Расчет норматива образования отходов выполнен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления" утвержденных приказом Министра охраны окружающей среды РК от 18 апреля 2008 г. №100-п.

Норма образования отработанных ламп (N) рассчитывается по формуле:

$$N = n \times (T / T_p)$$
, шт/год $M = N \times m$, т/год

где n – количество работающих ламп данного типа по проекту, шт;

 T_p – ресурс времени работы ламп, принят по паспорту, ч (для ламп типа ЛБ равен 4800-15000 ч, для ламп типа ДРЛ равен 6000-15000 ч);

Т – фактическое время работы ламп, ч/год;

т – масса одной лампы, т.

$$N = 200 \times (4800 / 7000) = 137$$
 шт/год $M = 137 \times 0.00021 = 0.029$ т/год

Отработанные масла

Количество отработанного масла может быть определено также по формуле: $N = (N_b + N_d) \cdot 0.25$, где 0.25 - доля потерь масла от общего его количества; N_d - нормативное количество израсходованного моторного масла при работе транспорта на дизельном топливе, $N_d = Y_d \cdot H_d \cdot \rho$ (здесь: Y_d - расход дизельного топлива за год, м 3 , H_d - норма расхода масла, 0.032 л/л расхода топлива; ρ - плотность моторного масла, 0.930 т/м 3); N_b - нормативное количество израсходованного моторного масла при работе транспорта на бензине, $N_b = Y_b \cdot H_b \cdot \rho$ (здесь: Y_b - расход бензина за год, м 3 ; H_b - норма расхода масла, 0.024 л/л расхода топлива).

расход дизельного топлива —
$$250 \text{ т/год.}$$
 Nd = $250 * 0.032 * 0.93 = 7.44$

Отработанное трансмиссионное масло

Нормативное количество отработанного масла (N, т/год) определяется также по формуле: $N = (T_6 + T_{\pi}) \cdot 0.30$, где $T_6 = Y_6 \cdot H_6 \cdot 0.885$, $T_{\pi} = Y_{\pi} \cdot H_{\pi} \cdot 0.885$ (здесь: $H_6 = 0.003$ л/л расхода топлива, $H_{\pi} = 0.004$ л/л топлива, 0.885 - плотность трансмиссионного масла, т/м 3).

Количество израсходованного трансмиссионного масла составляет: 7,5 т/год. Расчет объема образования отработанного трансмиссионного масла: $N = 7.5 \cdot 0.3 = 2,25$ т/год.

Отработанное специальное масло

Количество отработанного масла определяется по формуле: $M = Mc \cdot 0.9 \cdot n$, (т/год), где количество отхода определяется, исходя из количества масла, залитого в картеры техники Mc, коэффициента слива масла -0.9. периодичности замены масла -n раз в год.

Количество израсходованного специального масла составляет 3 т/год. Расчет объема образования отработанного специального масла:

$$N = 0.9 *3 * 1 = 2.7$$
 т/год.

$$N = 7.44 + 2.25 + 2.7 = 12.39 \text{ T/год}.$$

Отработанные фильтры

Промасленные фильтры образуются вследствие эксплуатации транспорта. Расчет объемов образования отходов выполнен согласно п. 3.6 п. 14 (Отработанные промасленные фильтры) «Методических рекомендаций по оценке объемов образования отходов производства и потребления». Москва, 2003 г.

Объем образования промасленных фильтров рассчитывается по формуле:

 $\mathbf{M}\boldsymbol{\phi} = \mathbf{N}\boldsymbol{\phi} \cdot \mathbf{n} \cdot \mathbf{m}\boldsymbol{\phi} \cdot \mathbf{K}\mathbf{n}\mathbf{p} \cdot \mathbf{L}\boldsymbol{\phi} / \mathbf{H}\boldsymbol{\phi} \cdot \mathbf{10}$ -3. (т/год),

где Nф – количество фильтров установленных на 1-м автомобиле, шт.;

n – количество автомобилей данной модели;

тф – масса фильтра данной модели, г;

Кпр – коэффициент, учитывающий наличие механических примесей, (1.1–1.5);

 $L \varphi$ — среднегодовой пробег единицы автотранспорта с фильтром данной модели, тыс. км или моточас

Нф – нормативный пробег 5 тыс. км

Расчет образования автомобильных фильтров

$$M\phi = 2 * 50 * 1,4 * 1,3 * 20 / 5 * 0,001 = 0,728$$

Отработанные аккумуляторы

Расчет объемов образования отходов выполнен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления" утвержденных приказом Министра охраны окружающей среды РК от 18 апреля 2008 г. №100-п

Норма образования отходов определяется по формуле:

 $M = \Sigma ni \cdot mi \cdot \alpha \cdot 10^{-3} / t$, (т/год), где ni - количество аккумуляторов, шт.; mi - средняя масса аккумулятора, кг; $\alpha -$ норма зачета при сдаче (80 %); t - срок фактической эксплуатации (2 года для автотранспорта).

$$M = 20 * 46 * 0.8 * 10^{-3} / 2 = 0.368$$

Места накопления отходов предназначены для:

1) временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или

самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;

2) временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением, вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;

3) временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление.

Лимиты накопления отходов и лимиты захоронения отходов обосновываются операторами объектов I и II категорий в программе управления отходами при получении экологического разрешения и устанавливаются в соответствующем экологическом разрешении. Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

Лимиты накопления отходов производства и потребления при строительномонтажных работах и эксплуатации представлены в таблице.

На период эксплуатации

Наименование отходов	Объем накопленных	Лимит накопления, т/год
	отходов на существующее	, , ,
	положение, т/год	
1	2	3
Всего	0	40,515
В том числе отходов	0	33,015
производства		
Отходов потребления	0	7,5
	Опасные отходы	
Отработанные	0	0,029
ртутьсодержащие лампы		
Отработанные фильтры	0	0,728
(масляные, топливные		
фильтры, воздушные)		
Отработанные масла	0	12,39
Отработанные	0	0,368
аккумуляторы		
Ветошь промасленная		3,81
	Неопасные отходы	
Коммунальные отходы	0	1,65
Стеклобой	0	0,15
Пищевые отходы	0	3
Отходы офисной техники	0	1
Огарки сварочных	0	0,39
электродов		
Металлолом	0	5,77
Макулатура	0	2,475
Автошины	0	8,53
Пластмасса	0	0,225

Лимиты захоронения отходов производства на 2026-2038 гг.

	Лимиты захороне				
Наименование	Объем	Образование,	Лимит	Повторное	Передача
отходов	захороненных	тонн/ год	захоронения,	использование,	сторонним
	отходов на		тонн/год	тонн/год	организациям
	существующее				
	положение,				
	тонн/год				
1	2	3	4	5	6
1		2026			0
Всего	42500	42500	42500	0	0
В том числе	42500	42500	42500	0	0
отходов					
производства					
Отходов	0	0	0	0	0
потребления					
		Неопасны	х отходов		
Вскрышная	42500	42500	42500	0	0
порода					
1 ,,	l	2027	ГОЛ		
Всего	32500	32500	32500	0	0
				0	0
В том числе	32500	32500	32500	0	0
отходов					
производства					
Отходов	0	0	0	0	0
потребления					
		Неопасны	х отходов		
Вскрышная	32500	32500	32500	0	0
порода					
		2028	год		
Всего	32500	32500	32500	0	0
В том числе	32500	32500	32500	0	0
отходов	32000	32500	32500	Ŭ	
производства					
Отходов	0	0	0	0	0
		0	0	U	U
потребления		Шаажаат	V OTVOTOR		
D	22500	Неопасны			0
Вскрышная	32500	32500	32500	0	0
порода		2020			
		2029		T	1
Всего	32500	32500	32500	0	0
В том числе	32500	32500	32500	0	0
отходов					
производства					
Отходов	0	0	0	0	0
потребления					
1	1	Неопасны	Х ОТХОДОВ	<u>I</u>	<u>I</u>
Вскрышная	32500	32500	32500	0	0
Бекрышпал	32300	32300	32300	1 0	ı

порода					
породи		2030	ГОД		1
Всего	32500	32500	32500	0	0
В том числе отходов производства	32500	32500	32500	0	0
Отходов потребления	0	0	0	0	0
norpeonemia		Неопасны	х отхолов		
Вскрышная порода	32500	32500	32500	0	0
		2031	год		
Всего	32500	32500	32500	0	0
В том числе отходов производства	32500	32500	32500	0	0
Отходов потребления	0	0	0	0	0
1		Неопасны	х отходов		<u>'</u>
Вскрышная порода	32500	32500	32500	0	0
		2032			
Всего	32500	32500	32500	0	0
В том числе отходов производства	32500	32500	32500	0	0
Отходов потребления	0	0	0	0	0
1		Неопасны	х отходов		
Вскрышная порода	32500	32500	32500	0	0
		2033	год		
Всего	32500	32500	32500	0	0
В том числе отходов производства	32500	32500	32500	0	0
Отходов потребления	0	0	0	0	0
		Неопасны	х отходов		
Вскрышная порода	32500	32500	32500	0	0
		2034			
Всего	32500	32500	32500	0	0
В том числе отходов производства	32500	32500	32500	0	0
Отходов потребления	0	0	0	0	0
		Неопасны	х отходов		
Вскрышная порода	32500	32500	32500	0	0

Всего 32500 32500 32500 0 0 В том числе отходов производства 32500 32500 32500 0 0 Отходов потребления 0 0 0 0 0 0 Вскрышная 32500 32500 32500 0 0 0	
отходов производства Отходов О О О О О О О О О О О О О О О О О О О	
производства 0 <	
Отходов 0 0 0 0 0 0 потребления Неопасных отходов	
потребления Неопасных отходов	
Неопасных отходов	
Вскрышная 32500 32500 0	
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
порода	
2036 год	
Bcero 32500 32500 0 0	
В том числе 32500 32500 0 0	
отходов	
производства	
Отходов 0 0 0 0	
потребления	
Неопасных отходов	-
Вскрышная 32500 32500 0 0	
порода	
2037 год	
Bcero 32500 32500 32500 0 0	
В том числе 32500 32500 0 0	
отходов	
производства	
Отходов 0 0 0 0	
потребления	
Неопасных отходов	
Вскрышная 32500 32500 0 0	
порода	
2038 год	
Bcero 32500 32500 0 0	
В том числе 32500 32500 0 0	
отходов	
производства	
Отходов 0 0 0 0	
потребления	
Неопасных отходов	
Вскрышная 32500 32500 0 0	
порода	

Исходя из фактических данных работы предприятия с производственными отходами, следует, что:

- 1. на площадке образования промасленная ветошь, использованная тара хранится в специальных емкостях в течение 7 дней, с последующей передачей для утилизации согласно заключенным договорам.
- 2. на площадке образования, хранение металлолом и огарки сварочных электродов производится в специально оборудованных местах в течение 7 дней, с последующей передачей согласно заключенным договорам.
- 3. ТБО отходы потребления, образующиеся в результате непроизводственной сферы деятельности человека. Временно размещаются в закрытых контейнерах согласно п.51 Санитарных правил от 23 апреля 2018 года № 187. Срок хранения отходов в

контейнерах при температуре 0 °C и ниже допускается не более трех суток, при плюсовой температуре не более суток, вывозится на полигон твердо-бытовых отходов согласно заключенным договорам.

Предназначенные для удаления отходы должны храниться с учетом мероприятия по предотвращению загрязнения окружающей среды в специально отведенном месте, в контейнерах и емкостях.

Влияние отходов производства и потребления на природную среду будет минимальным при условии выполнения соответствующих санитарно-эпидемиологических и экологических норм, направленных на минимизацию негативных последствий антропогенного вмешательства в окружающую среду.

Потенциальная направленность негативного воздействия отходов может проявляться при несоблюдении надлежащих требований, а также в результате непредвиденных ситуаций на отдельных стадиях сбора, хранения либо утилизации отходов производства и потребления.

Основными моментами экологической безопасности, соблюдения которых следует придерживаться при любом производстве, являются:

- предупреждение образования отдельных видов отходов и уменьшение образованияобъемов образования других;
- исключение образования экологически опасных видов отходов путем перехода наиспользование других веществ, материалов, технологий;
 - предотвращения смешивания различных видов отходов;
 - организация максимально возможного вторичного использования отходов попрямому назначению и других целей;
- снижение негативного воздействия отходов на компоненты окружающей среды прихранении, транспортировке и захоронении отходов.

Кроме этого, необходимо принять во внимание тот момент, что даже стопроцентное соблюдение требований организации сбора, хранения и утилизации отходов не может полностью исключить проявление локального воздействия продуктов отхода производства и потребления на природную среду.

Для минимизации воздействия влияния отходов на процесс жизнедеятельности окружающей среды необходима четко работающая схема сбора, хранения и утилизации отходов производства и потребления с учетом всех современных средств и технологий в этой области.

В настоящие время все отходы производства и потребления передаются по договору в специализированные организации. Образованные отходы будущего периода будут передаваться в специализированные предприятия, определенные по итогам закупа услуг.

Предназначенные для удаления отходы должны храниться с учетом предотвращения загрязнения окружающей среды.

Согласно утвержденного Кодекс Республики Казахстан от 2 января 2021 года № 400-VI ЗРК, Экологического кодекса (ЭК) Республики Казахстан, отходы производства и потребления должны собираться, храниться, обезвреживаться, транспортироваться в места утилизации или захоронения.

На площадке строительства и эксплуатации организованы места временного хранения (накопления) отходов, откуда они по мере накопления вывозятся по договору на предприятия, осуществляющие переработку, использование, обезвреживание или захоронение отходов. При организации мест временного хранения (накопления) отходов приняты меры по обеспечению экологической безопасности. Обеспечение мест временного хранения (накопления) проведено с учетом класса опасности (маркировано по типу отхода), физико-химических свойств, реакционной способности образующихся отходов, а также с учетом требований соответствующих ГОСТов и СНИП.

Влияние отходов производства и потребления на природную среду будет минимальным при условии выполнения соответствующих санитарно-эпидемиологических

и экологических норм, направленных на минимизацию негативных последствий антропогенного вмешательства в окружающую среду. Потенциальная направленность негативного воздействия отходов может проявляться при несоблюдении надлежащих требований, а также в результате непредвиденных ситуаций на отдельных стадиях сбора, хранении, либо утилизации отходов производства и потребления.

2. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ ОБЪЕМОВ ЗАХОРОНЕНИЯ ОТХОДОВ ПО ИХ ВИДАМ, ЕСЛИ ТАКОЕ ЗАХОРОНЕНИЕ ПРЕДУСМОТРЕНО В РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Захоронение отходов, вскрышных пород, в рамках намечаемой деятельности планируется в отвалы. Строительство новых отвалов для захоронения отходов предусмотрено планом горных работ.

Размещение вскрышных пород предусматривается на внешних отвалах, а также часть вскрыши будет размещена во внутренних отвалах, в пространстве отработанных карьеров. Вскрышные породы месторождения представлены глинистыми породами.

С площадок, на которых размещаются отвалы месторождения, предварительно удаляется почвенный слой.

Общий объем размещаемых в отвале приведен в таблице 4.1.

Объемы вскрышных пород в отвале

Таблица 4.1

Породы	Целик, тыс.м.куб	Остаточный коэффициент разрыхления	Объем в отвале, тыс.м.куб
Вскрыша во внешних отвалах	291,0	1,2	349,2
Вскрыша во внутренних отвалах	235,1	1,2	282,0
Всего	526,1		631,3

Внешние отвалы вскрышных пород отсыпается в один ярус, высота отвала 15м. Показатели работы внешнего отвального хозяйства приведены в таблице 4.2.

Таблица 4.2 Показатели работы внешнего отвального хозяйства

№	Наименование показателей	Ед. изм.	Значение
1	Объем вскрышных пород	тыс. м ³	349,2
2	Геометрическая емкость отвала:	тыс. м ³	349,2
3	Занимаемая площадь	тыс.м ²	34,1
4	Количество ярусов	ШТ	1
5	Высота первого	M	15
7	Продольный наклон въезда на отвал	0/00	80
8	Ширина въезда	M	20
9	Угол откоса ярусов	град	35

При данных объемах складирования пород в отвал, а также вследствие применения автомобильного транспорта целесообразно принять бульдозерную технологию отвалообразования. Бульдозерный отвал состоит из трех участков равной длине по фронту разгрузки. На первом участке ведется разгрузка, на втором — планировочные работы, третий участок резервный. По мере развития горных работ назначение участков меняется.

Формирование отвалов осуществляется бульдозерами типа ShantuiSD32, либо аналогичными, технические характеристики бульдозера приведены в таблице 4.3.

Таблина 4.3

Технические характеристики бульдозера ShantuiSD32

Характеристики	ед.	параматеры	
Ширина отвала	M	4.03	
Высота отвала	M	1.72	
Максимальная высота подъема	MM	1560	
Максимальная глубина выемки	MM	560	
Призма волочения	м3	11.7	
Максимальная передняя скорость	км/ч	11.5	
Максимальная передняя скорость	км/ч	13.5	
Номинальная мощность	кВт (320 л.с.)	235	
Дельный расход топлива	г/кВт·ч	245	
Модель двигателя	Cummins NTA855-C360 («Камминс»)		

Сменная производительность бульдозера рассчитана по формуле:

$$\Pi_{_{\mathit{CM}}} = \frac{3600 \times V \times K_{_{\mathit{y}}} \times K_{_{\mathit{n}}} \times K_{_{\mathit{B}}} \times T_{_{\mathit{CM}}}}{T_{_{\mathit{u}}} \times K_{_{\mathit{D}}}}, \mathit{м}^3 \, / \, \mathit{смену}$$

где Тсм - продолжительность рабочей смены, 11 ч;

V- объем грунта в разрыхленном состоянии, перемещаемый бульдозером на отвал, m^3 ;

Ку - коэффициент, учитывающий уклон на участке работы бульдозера, 0,95;

Кп – коэффициент учитывающий потери,0,9;

КВ – коэффициент использования бульдозера во времени, 0,8;

Кр – коэффициент разрыхления грунта, 1,5;

Тц – продолжительность одного цикла, сек.

Продолжительность одного цикла работы бульдозера:

$$T_{u} = \frac{J_{1}}{V_{1}} + \frac{J_{2}}{V_{2}} + \frac{J_{1} + J_{2}}{V_{3}} + t_{n} + 2t_{p}$$
, м 3 / смену

где J1 - расстояние набора породы, 3 м;

J2 - расстояние перемещения породы, 3 м;

V1 - скорость перемещения при наборе породы, 3 м/с;

V2 - скорость движения бульдозера с грунтом, 3,2 м/с;

V3 - скорость холостого хода бульдозера, 3,6 м/с;

tп - время переключения скоростей, 2 c;

tр - время одного разворота бульдозера, 10 c.

Результаты расчета приведены в таблице 4.4.

Инвентарный парк на отвалообразовании с учетом обслуживания склада руды составит 2 бульдозера.

Объем, площадь отвала пустых пород, длина фронта разгрузки автосамосвалов и производительность бульдозера рассчитаны согласно утвержденным в Республике Казахстан Методическим рекомендациям по технологическому проектированию горнодобывающих предприятий открытым способом разработки.

Формирование отвалов при бульдозерном отвалобразовании осуществляют двумя способами - периферийным и площадным. Отсыпку отвалов производят послойно высотой по 5 м в слое.

При периферийном отвалообразовании автосамосвалы разгружаются по периферии отвального фронта в непосредственной близости от верхней бровки отвального откоса или под откос. Часть породы в этом случае сталкивается бульдозером под откос.

При площадном отвалообразовании разгрузка породы из самосвалов производится по всей площади отвала или на значительной части его, а затем бульдозером планируют отсыпной слой породы, укатываемый катками, после чего цикл повторяется.

Более экономичным способом формирования является периферийный (рис. 4.1), при котором меньше объем планировочных работ. В связи с вышеизложенным в проекте принят периферийный способ отвалообразования.

Предельные показатели равны следующим значениям:

- 1. Площадь отвала 34,1 тыс.м2.
- 2. Объем максимально возможного приема вскрышных пород составит 349,2 тыс.м3
- 3. Способ отвалообразование периферийный.

3. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ПРИРОДНЫХ **ВОЗНИКНОВЕНИЯ АВАРИЙ** И ОПАСНЫХ явлений. ХАРАКТЕРНЫХ СООТВЕТСТВЕННО ДЛЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ И ПРЕДПОЛАГАЕМОГО **MECTA** $\mathbf{E}\mathbf{E}$ осуществления, ОПИСАНИЕ возможных СУЩЕСТВЕННЫХ **ВРЕДНЫХ** воздействий ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ С РИСКАМИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ, С УЧЕТОМ ВОЗМОЖНОСТИ ПРОВЕДЕНИЯ МЕРОПРИЯТИЙ ПО ИХ ПРЕДОТВРАЩЕНИЮ И ЛИКВИДАЦИИ

Применение любых технических средств защиты на производстве не исключает возможности аварий. Возникновение осложнений и аварийных ситуаций может привести как к прямому, так и к косвенному воздействию на человека и окружающую природную среду.

Под *аварией* понимают существенные отклонения от нормативно-проектных или допустимых эксплуатационных условий производственно-хозяйственной деятельности по причинам, связанным с действиями человека или техническими средствами, а также в результате любых природных явлений (наводнение, землетрясение, оползни, ураганы и другие стихийные бедствия), которые создают на объекте определенной территории угрозу жизни и здоровью людей и приводят к разрушению зданий, сооружений, оборудования и транспортных средств, нарушению производственного и транспортного процесса и негативному воздействию на окружающую природную среду.

Опасность аварий связана с возможностью разрушения зданий и сооружений, взрывом и выбросом опасных веществ.

Оценка риска — процесс, используемый для определения степени риска анализируемой опасности для здоровья человека и окружающей среды. Оценка риска включает анализ частоты, анализ последствий и их сочетание, и разработка рекомендаций по уменьшению риска. Увеличение количества и энергоемкости, используемых в промышленности опасных веществ, усложнение технологий и режимов управления современными производствами требуют разработки механизма получения обоснованных оценок и критериев безопасности таких производств с учетом всей совокупности экологических и социально-экономических факторов, в том числе вероятности и последствий возможных аварий.

Оценка возможного экологического риска производственной деятельности предприятия выполняется на основе:

- комплексной оценки последствий воздействия на компоненты окружающей среды при нормальном (без аварий) режиме эксплуатации объекта;
- анализа сценариев развития аварийных ситуаций и определения характера опасного воздействия на население и окружающую среду.

Оценка вероятности возникновения аварийных ситуаций является весьма сложной задачей, зависящей не только от надежности технологической системы, но и множества других факторов, отражающих взаимодействие человека и производства.

Особое внимание к оценке влияния аварий на окружающую среду объясняется тем, что именно с ними связана максимальная интенсивность негативного техногенного воздействия, а зачастую и степень экологической безопасности проекта в целом. Оценка риска аварий проводится для определения вероятности (или частоты) и степени тяжести последствий аварии для здоровья персонала и населения, а также состояния окружающей

среды.

В настоящем разделе рассматриваются вопросы, связанные с экологическим риском в связи со строительством и эксплуатацией объекта и инфраструктуры (газопроводы, линии электропердач, канализации, водопровода). Под оценкой экологического риска здесь понимается оценка последствий деятельности человека для природных ресурсов и населения. Методика такого подхода включает:

- •выявление потенциально опасных событий, могущих повлечь за собой значимые последствия для окружающей среды;
 - оценку риска возникновения таких событий;
- оценку масштабов воздействия на окружающую среду возможных чрезвычайных событий.

К сожалению, в настоящее время отсутствуют сколько-нибудь удовлетворительные методики, по оценке экологического риска. Да и само понятие экологического риска зачастую трактуется неоднозначно.

Основная задача анализа риска заключается в том, чтобы предоставить объективную информацию о состоянии промышленных объектов лицам, принимающим решения в отношении безопасности анализируемого объекта. Анализ риска должен дать ответы на тривопроса:

- Как часто это может случаться?
- Какие могут быть последствия?
- Что плохого может произойти?

По степени экологической опасности последствия производственной деятельности можноподразделить на следующие типы:

- экологически опасные (техногенная деятельность приводит к необратимым изменениям природной среды);
- относительно опасные (природная среда самостоятельно или с помощью человекаможет восстановить изменения, связанные с производственной деятельностью);
- безопасные, когда техногенные воздействия не оказывают существенного влияния наприродную среду и социально-экономические условия осваиваемой территории.

Оценка вероятности возникновения аварийной ситуации при осуществлении данногопроекта используется для оценки:

- потенциальных событий или опасностей, которые могут привести к аварийнойситуации с вероятным негативным воздействием на окружающую среду;
 - вероятности и возможности реализации таких событий;
- потенциальной величины или масштаба экологических последствий, которые могутвозникнуть при реализации события.

Вероятность возникновения отклонений, аварий и инцидентов в ходе намечаемой деятельности

В процессе строительства и эксплуатации могут возникнуть различные осложнения и аварии. Борьба с ними требует затрат материальных и трудовых ресурсов, ведет к потере времени, что снижает производительность, повышает стоимость работ, вызывает увеличение продолжительности простоев и ремонтных работ. Поэтому знание причин аварий, мероприятий по их предупреждению, быстрая ликвидация возникших осложнений приобретают большое практическое значение.

Аварии, способные привести к чрезвычайным ситуациям техногенного происхожения на проектируемом объекте могут быть условно разделены на:

- пожары, взрывы в зданиях;
- аварии с выбросом, разливом или истечением химических веществ, взрывоопасных и горючих веществ;
- внезапное обрушение, полное или частичное разрушение (повреждение) зданий, сооружений, технологического оборудования, элементов транспортных коммуникаций, не связанное со взрывом или пожаром.

Основными причинами аварийной разгерметизации оборудования являются:

- коррозионный и эрозионный износ;
- отказы средств регулирования и защиты;
- нарушение технологического процесса;
- пропуск через фланцевые соединения;
- механические повреждения;
- сбои в подаче электроэнергии;
- человеческий фактор.

К человеческому фактору, способному привести к авариям, относятся:

- ошибки персонала;
- несоблюдение трудовой и технологической дисциплины;
- умышленные действия.

Перечисленные причины возникновения аварий необходимо учитывать при разработке проектных решений с целью их максимального исключения.

С учетом свойств обращающихся на проектируемом объекте веществ и статистикой аварий на аналогичных объектах, самым неблагоприятным сценарием аварии является мгновенная разгерметизация технологического оборудования или разрыв трубопровода газа, сопровождающиеся выбросом углеводородных смесей с формированием парогазового облака, с последующим его загоранием и взрывом, а также образование пожара пролива.

Основным источником зажигания взрывоопасного воздушного облака в помещении участка могут быть электроприборы (в случае их несоответствия категории и группе взрывоопасной среды), искры от удара (при различных ремонтных работах) и разряд атмосферного электричества.

По данным завода за период эксплуатации аварии такого рода не возникало.

При соблюдении всех мер безопасности возникновения аварийной ситуации исключается.

Вероятность возникновения стихийных бедствий в предполагаемом месте осуществления намечаемой деятельности и вокруг него

Потенциальные опасности, связанные с риском проведения строительства и эксплуатации проектируемого объекта, могут возникнуть в результате воздействия как природных факторов, так и антропогенных.

Под природными факторами понимаются разрушительные явления, вызванные природно-климатическими причинами, которые не контролируются человеком. Иными словами, при возникновении природной чрезвычайной ситуации возникает опасность саморазрушения окружающей среды.

К природным факторам относятся:

- землетрясения;
- ураганные ветры;
- повышенные атмосферные осадки.

Площадка строительства проектируемого объекта характеризуется:

- отсутствием риска опасных гидрологических явлений (наводнения, половодья, паводка, затора, зажора, ветрового нагона, прорыва плотин, перемерзаний/пересыханий рек);
- отсутствием риска опасных геологических и склоновых явлений (селей, обвалов, оползней, снежных лавин);
 - средним риском сильных дождей;
 - средним риском сильных ветров;
 - низким риском экстремально высоких температур;
 - средним риском экстремально низких температур;
- \bullet климатическим экстремумом «среднее многолетнее число дней в году с максимальной температурой выше 30^{0} C 40 и более»;
 - низкой степенью опустынивания;
 - отсутствием риска лесных и степных пожаров.

Согласно карты общего сейсмического районирования Северной Евразии (ОСР-97, карта-С), сейсмичность района составляет 1-2 баллов по шкале MSK-64, с учетом местных грунтовых условий.

Вероятность возникновения землетрясения с силой 7-9 баллов, которое может привести кразрушениям зданий и сооружений, очень низкая.

Риски извержения вулканов, цунами, ураганов, бурь, смерчей отсутствует.

Характер воздействия события: одномоментный.

Таким образом, природные (естественные) факторы, представляющие угрозу проектируемым работам, характеризуются очень низкими вероятностями.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении риска, связанном с природными факторами.

Вероятность возникновения аварийных ситуаций на проектируемом объекте по причине природных воздействий следует принять несущественной, так как при проектировании зданий, сооружений, способа разработки месторождения и инженерных сетей в полной мере учитываются природно- климатические особенности района будущего строительства.

Вероятность возникновения неблагоприятных последствий в результате аварий, инцидентов, природных стихийных бедствий в предполагаемом месте осуществления намечаемой деятельности и вокруг него

Экологические последствия аварийных ситуаций могут быть тяжелыми, и зависят, в первую очередь, от характера аварии.

Возникновение аварийных ситуаций может привести как к прямому, так и косвенному негативному воздействию на окружающую среду.

На предприятии разработаны меры по уменьшению риска аварий. Своевременное и качественное проведение осмотров, регулировок, ревизий и ремонтов оборудования и приспособлений, при соблюдении правил безопасности и производственных инструкций, своевременном проведении инструктажей возникновение аварий практически исключено, что подтверждается данными за период существования предприятия с 2007 года.

Воздействия на население при возникновений аварийных ситуаций будут незначительными.

По принятой методике оценки воздействия уровней экологического риска рассчитано, что все они не выходят за рамки низкого (терпимого) риска, и лишь при аварийной ситуации с возможным возгоранием и взрывом риск можно оценить как средний, когда риск приемлем, если соответствующим образом управляем.

Все возможные неблагоприятные последствия для окружающей среды, которые могутвозникнуть в результате инцидента, аварии, стихийного природного явления

Основными объектами воздействия при строительстве и эксплуатации объекта являются:

- атмосферный воздух;
- водные ресурсы;
- почвенно-растительные ресурсы.

Воздействие возможных аварий на атмосферный воздух

Исходя из анализа исследований наиболее значительными авариями являются аварии, связанные с воздействием на атмосферный воздух. Оценка воздействия охватывает наихудший вариант аварий в рамках реализации проекта представлена ниже.

Основное воздействие на атмосферный воздух при аварийных ситуациях связано с выбросами загрязняющих веществ, значительная роль в которых принадлежит при возгорании — угарные газы, диоксиды серы и азота. Для атмосферы характерна чрезвычайно высокая динамичность, обусловленная как быстрым перемещением воздушных масс в латеральном и вертикальном направлениях, так и высокими скоростями, разнообразием протекающих в ней физико-химических реакций. Атмосфера рассматривается как огромный «химический котел», который находится под воздействием многочисленных и изменчивых антропогенных и природных факторов. Газы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реакционной способностью. Сажа, возникающая при сгорании УВ, сорбирует тяжелые металлы и радионуклиды и при осаждении на поверхность могут загрязнить обширные территории, проникнуть в организм человека через органы дыхания.

Возможное воздействие на воздушную среду при аварийных ситуациях оценивается в пространственном масштабе как *локальное*, *кратковременного действия*, по величине воздействия как *умеренной значимости*.

Воздействие возможных аварий на водные ресурсы

Практически невозможно предотвратить загрязнение поверхностных и подземных вод при продолжающемся загрязнении других природных компонентов. Особое внимание следует обратить на загрязнение почвогрунтов, так как через них возможно вторичное загрязнение поверхностных и подземных вод. Особое значение для предотвращения возможных аварий и загрязнения водоносных горизонтов имеют периодический осмотр пруда испарителя, канализационных сетей и технологического оборудования, и соответственно проведение профилактического ремонта и противокоррозионных мероприятий металлических конструкций.

В качестве аварийных ситуаций могут рассматриваться розлив ГСМ, в случаи возникновения аварийной ситуации на автодороге, при этом компаний разработан План ликвидации аварий, с помощью которого при возникновении аварийных ситуации позволить оперативно устанить последствия.

Воздействие возможных аварий на почвенно-растительный покров

Основные аварийные ситуации, которые могут иметь негативные последствия для почвенно-растительного покрова, связаны со следующими процессами:

- пожары;
- разливы ГСМ;

• разливы сточных вод.

Необходимо отметить, что серьезное воздействие на компоненты окружающей среды могут оказать и непосредственно ликвидационные работы по изъятию загрязненной почвы и ее утилизации. Подобные операции обычно требуют привлечения транспортных средств и техники, движение которых происходит на достаточно большой площади. В результате могут уничтожаться естественные ландшафты далеко за пределами очага загрязнения.

Компаний разработан План ликвидации аварий, с помощью которого при возникновении аварийных ситуации позволить оперативно устанить последствия.

Воздействие на социально-экономическую среду

Аварийные ситуации могут оказать воздействие на социальные и экономические условия. Но аварийные ситуации непредсказуемы, а проектирование и будущая эксплуатация рассчитаны на сведение к минимуму возможных аварийных ситуаций. Прямого социального или экономического воздействия на представителей населения не будет. Потенциально возможные аварии маловероятны, а запланированные предупредительные и противоаварийные мероприятия позволят ликвидировать их на начальной стадии и минимизировать ущерб окружающей среде. Негативное воздействие на здоровье населения аварийной ситуации с выбросом вредных веществ маловероятно, вероятность этой ситуации очень мала, и может иметь экономические последствия, связанные с ликвидацией последствий выброса и устранением прорыва.

Основное экономическое воздействие крупных аварийных ситуаций проявится в потребности в рабочей силе и оборудовании для ликвидации аварии и ремонту нанесенных повреждений для возврата к нормальной эксплуатации. Маловероятно, что возникнет необходимость в привлечении местной рабочей силы для ликвидации аварии в случае выброса газа, т.к. данная авария будет краткосрочной.

Возможное воздействие на социально-экономическую среду при аварийных ситуациях оценивается в пространственном масштабе как *покальное*, по величине воздействия как *слабо отрицательное*. Все вышеуказанные негативные воздействия на окружающую среду можно свести к минимуму при соблюдении технологического регламента производственного процесса, профилактического осмотра и ремонта оборудования и трубопроводных систем, правил безопасного ведения работ и проведение природо-охранных мероприятий.

Меры по предотвращению последствий инцидентов, аварий, природных стихийных бедствий, включая оповещение населения, и оценка их надежности.

Важнейшую роль в обеспечении безопасности рабочего персонала и охраны окружающей природной среды при проведении проектируемых работ играет система правил, нормативов, инструкций и стандартов, соблюдение которых обязательно руководителями и всеми сотрудниками. При проведении работ необходимо уделять первоочередное внимание монтажу, проверке и техническому обслуживанию всех видов оборудования, требуемых в соответствии с правилами техники безопасности и охраны труда, обучению персонала и проведению практических занятий.

Во всех случаях, где это возможно, меры уменьшения вероятности аварии должны иметь приоритет над мерами уменьшения последствий аварий. Это означает, что выбор технических и организационных мер для уменьшения опасности имеет следующие приоритеты:

- меры уменьшения вероятности возникновения аварийной ситуации, включающие: меры уменьшения вероятности возникновения неполадки (отказа);
- меры уменьшения вероятности перерастания неполадки в аварийную ситуацию;

- меры уменьшения тяжести последствий аварии, которые в свою очередь имеют следующие приоритеты: меры, предусматриваемые при проектировании опасного объекта (например, выбор несущих конструкций);
 - меры, относящиеся к системам противоаварийной защиты и контроля;
- меры, касающиеся организации, оснащенности и боеготовности противоаварийных служб.

Иными словами, в общем случае первоочередными мерами обеспечения безопасностиявляются меры предупреждения аварии.

Основными мерами *предупреждения* аварий является строгое исполнение технологической и производственной дисциплины, оперативный контроль.

Рекомендации по предотвращению аварийных ситуаций включают в себя следующие мероприятия:

- строгое выполнение проектных решений при проведении строительных работ;
- обязательное соблюдение всех правил эксплуатации технологического оборудования при строительстве и эксплуатации объекта;
 - периодическое проведение инструктажей и занятий по технике безопасности;
 - регулярное проведение учений по тревоге;
- контроль за наличием спасательного и защитного оборудования и умением персоналами пользоваться;
 - своевременное устранение утечки во время работы механизмов;
 - использование контейнеров для сбора отходов производства и потребления;
 - строгое следование Программы управления отходами;
- все операции по хранению и транспортировке химреагентов должны проходить под контролем ответственных лиц и строго придерживаться правил техники безопасности;
- своевременное проведение профилактического осмотра и ремонта оборудования и питающих линий.

Мероприятия по охране и защите окружающей среды, предусмотренные данным проектом, полностью соответствуют экологической политике, проводимой в Республике Казахстан. Основные принципы этой политики сводятся к следующему:

- минимальное вмешательство в сложившиеся к настоящему времени природные экосистемы;
 - использование новейших природосберегающих технологий;
- сведение к минимуму любых воздействий на окружающую среду в процессе проведения работ;
- полное восстановление нарушенных элементов природной среды после завершения работ.

Технические решения, предусмотренные в проекте, обеспечивают безопасность, учитывают все возможные чрезвычайные ситуации, а также мероприятия по повышению промышленной безопасности, позволяют свести *вероятность появления любой аварийной ситуации к минимуму*. Технологическое оборудование проектируемых объектов и всего предприятия в целом должно соответствовать требованиям действующих нормативных документов, что значительно снизит вероятность возникновения аварий.

Своевременное и качественное проведение осмотров, регулировок, ревизий и ремонтов оборудования и приспособлений, соблюдение правил безопасности и производственных инструкций, своевременное проведение инструктажей приведет к исключению возникновения аварий.

Проектом предусмотрены защитные меры: применение нормативных взрывопожаробезопасных расстояний, нормативной огнестойкости конструкций зданий и сооружений, меры по обеспечению взрывозащиты и противопожарной защиты.

Решения по предупреждению возникновения чрезвычайных ситуаций в результате

возможных аварий и снижению их тяжести

С целью предупреждения развития возможных аварий в чрезвычайные ситуации и снижения тяжести их последствия, проектом предусмотрены:

- система противоаварийной защиты, обеспечивающая перевод технологического процесса и оборудования в безопасное состояние с целью защиты персонала, имущества и окружающей среды при возникновении аварийных ситуаций и их дальнейшем развитии в аварии;
- система автоматизации, позволяющая осуществить безаварийную остановку незатронутого аварией технологического оборудования;
- аварийное освещение безопасности, позволяющее обслуживающему персоналу критически важных установок безопасно продолжать или завершить технологические процессы и при необходимости безопасно покинуть место работы при возникновении техногенной аварии;
- оборудование, работающего под давлением, устройствами сброса избыточного давления, возникшего в результате аварийной ситуации (аварии);
- система автоматической газовой сигнализации для своевременного обнаружения ДВК взрывоопасных газов и паров и превышения ПДК токсичных веществ в воздухе помещений и на наружных установках в результате аварийных утечек (выбросов);
- система автоматической пожарной сигнализации для своевременного обнаружения возгорания и задымления в защищаемых помещениях и на защищаемых наружных установках и незамедлительного принятия мер по тушению пожара;
- расположение зданий, сооружений и технологического оборудования с соблюдением противопожарных разрывов;
- конструктивные, объемно-планировочные и инженерно-технические решения для сооружений проектируемого объекта, обеспечивающие в случае пожара нераспространение огня на рядом расположенное оборудование и сооружения и ограничение прямого и косвенного материального ущерба в случае аварии;
- наличие первичных средств пожаротушения, дающее возможность тушения возникших возгораний на ранних этапах, не допуская перерастания их в крупномасштабные пожары;
- резервное электроснабжение на случай аварийного прерывания основного электроснабжения электроприемников систем и оборудования, задействованных в мониторинге и ликвидации аварий и чрезвычайных ситуаций (оборудования КИПиА, связи, видеонаблюдения, аварийного освещения и пожарной насосной);
- пути эвакуации из зданий и сооружений и по территории объектов, обеспечивающие безопасную эвакуацию персонала в случае развития аварии в чрезвычайную ситуацию.

Планы ликвидации последствий инцидентов, аварий, природных стихийных бедствий, предотвращения и минимизации дальнейших негативных последствий для окружающей среды, жизни, здоровья и деятельности человека

В случае фиксирования аварийных ситуаций, связанных с загрязнением окружающей среды, руководство предприятия должно проинформировать о данных фактах областной Департамент экологии, органы СЭС(включая ветеренарную службу), органов ЧС, принять меры по ликвидации последствий после аварий, определить размер ущерба, причиненного компонентам окружающей среды, осуществить соответствующие платежи в фонд охраны природы. Своевременная ликвидация аварий уменьшает степень отрицательного воздействия на окружающую природную среду.

После устранения аварийной ситуации на предприятии должны быть откорректированы мероприятия по предупреждению подобных ситуаций. План детализации мониторинга должен быть разработан в составе комплекса мероприятий по ликвидации последствий аварии в зависимости от ее характера и масштабов после

получения результатов обследования и будет согласовываться в оперативном порядке координатором работ по ликвидации аварийной ситуации. После ликвидации аварийной ситуации вышеуказанные виды наблюдений переходят на постоянно действующий режим мониторинга со сгущением точек наблюдений (отбора проб) в границах зоны влияния аварии. Данные наблюдения проводятся на протяжении цикла реабилитации территории, в том числе в течение двухлет после её завершения.

Предприятием должен быть разработан *План ликвидации аварий* (ПЛА), в котором с учетом специфичных условий предусматривается оперативные действия персонала по ликвидации аварийных ситуаций и предупреждению аварий, а в случае их возникновения — по локализации, исключению загораний, максимальному снижению тяжести последствий. В данном документе должны быть определены виды и места возникновения аварий, расписаны мероприятия по ликвидации последствий, определены ответственные лица за выполнение мероприятий и указаны средства и техника, которые будут использованы в процессе ликвидации аварии. Планом ликвидации аварий должны предусматриваться меры по выводу в безопасное место людей, не связанных непосредственно с ликвидацией аварии.

При разработке плана действий на случай возникновения любых неплановых аварийных ситуаций должны быть учтены следующие аспекты:

- положение о готовности к действиям в чрезвычайных ситуациях;
- разработку структуры штаба по ликвидации последствий происшествий и аварий суказанием различных штатных функций и обязанностей;
- разработку программы экстренного оповещения и информирования с указаниемпредставителей предприятия и природоохранного органа;
 - перечень оборудования на случай аварийной ситуации;
 - программу учебной подготовки на случай аварийной ситуации.

На всех этапах проведения работ специалисты в области инженерно-экологической безопасности, охраны здоровья и оценки риска должны анализировать фактические и потенциальные факторы безопасности.

Компания в полной мере должна осознавать свою ответственность, связанную с экологической безопасностью всех производственных работ и взаимодействовать с органами надзора и инспекциями, отвечающими за инженерно-экологическую безопасность и здоровье населения и своих работников. Специалисты компании в области инженерно-экологической безопасности, охраны здоровья на каждом этапе работ анализируют фактические и потенциальные факторы экологической безопасности производственного процесса.

В соответствии с Законом Республики Казахстан «Об обязательном экологическом страховании» (от 13 декабря 2005 г. № 93-III ЗРК) на случай аварии предприятия должны застраховать свою гражданско-правовую ответственность по возмещению вреда, причиненного жизни, здоровью, имуществу третьих лиц и (или) окружающей среде в результате ее аварийного загрязнения.

Организационные мероприятия гражданской защиты и предупреждения чрезвычайных ситуаций будут разработаны в составе соответствующих документов (План гражданской обороны, План ликвидации аварий, Декларация безопасности опасного производственного объекта), подлежащих разработке в установленном порядке.

Профилактика, мониторинг и раннее предупреждение инцидентов аварий, их последствий, а также последствий взаимодействия намечаемой деятельности со стихийными природными явлениями

Наибольшее число аварий возникает по субъективным причинам, т.е. по вине исполнителя трудового процесса. Поэтому при разработке мер профилактики и борьбы с авариями следует особо обращать внимание на строгое соблюдение требований и положений, излагаемых в производственных инструкциях. Таким образом, при строгом соблюдении проектных решений и правил техники безопасности, применении

современных технологий и трудовой дисциплины, при строительно-монтажных работах и при эксплуатации установок, позволяет судить о низкой степени возникновения аварийных ситуаций.

В рамках данного проекта техническими решениями для предупреждения развития аварий и локализации аварийных выбросов на технологических установках предусмотрено следующее:

- герметизированная схема технологического процесса;
- обеспечение прочности и герметичности технологических аппаратов, арматуры и трубопроводов,
- высокий уровень автоматизации производственных процессов и дистанционный контроль (системы аварийного оповещения и связи),
 - технологические методы защиты от коррозии,
- после сдачи проектируемых объектов в эксплуатацию будет производиться жесткий контроль за изменением толщины стенки трубопровода, появлением микротрещин наземного оборудования и трубопроводов.

Все технологические трубопроводы после монтажа подвергаются контролю сварных стыков и гидравлическому испытанию. Все площадки выполнены с твердым покрытием и устройствами для сбора талых и дождевых вод.

С учетом вероятности возможности возникновения аварийных ситуаций, одним из эффективных методов минимизации ущерба от потенциальных аварий является готовность к ним.

Здания сооружения и площадки, оборудуются пожарной и газовой сигнализацией в соответствии с соответствующими требованиями.

Детальная проработка инженерно-технических мероприятий гражданской обороны и инженерно-технических мероприятий по предупреждению чрезвычайных ситуаций будет осуществлена на этапе проектирования и согласовано с органами ЧС.

Методика оценки степени экологического риска аварийных ситуаций

Воздействие на окружающую среду при штатном режиме деятельности производственного объекта резко отличается от воздействий в результате возникновения аварийных ситуаций. В связи с отсутствием утвержденных методических разработок, оценка воздействия на компоненты окружающей среды при аварийных ситуациях выполнена на основе опыта проведенных ранее экологических проектов и экспертных опенок.

Оценка воздействия на окружающую среду аварийных ситуаций несколько усложняется по сравнению с оценкой воздействия в штатном режиме, за счет введения дополнительной стадии по оценке воздействия - это оценка вероятности возникновения чрезвычайного события.

Основными этапами оценки воздействия чрезвычайных ситуаций являются:

- выявление потенциально опасных событий, могущих повлечь за собой значимыепоследствия для окружающей среды;
 - оценка риска возникновения таких событий;
- оценка воздействия на окружающую среду возможных чрезвычайных событий;
- разработка мероприятий по минимизации возможности возникновения опасных событий и минимизации их последствий.

Оценка уровня экологического риска для каждого сценария аварии определяется исходя из приведенной матрицы в таблице 10.9.1.

Предлагаемые матрицы — это специальные таблицы, где столбцы соответствуют компонентам окружающей среды, в которых проявились негативные последствия намечаемой деятельности, а строки соответствуют градациям уровням тяжести этих последствий. На пересечении строк и столбцов, при помощи условных значков (например, значка «х») и отражается уровень риска.

В матрице экологического риска, показанной в таблице 10.9.1, используются баллы значимости воздействия, полученные при оценке воздействия аварий.

Если вероятность появления конкретного воздействия крайне мала, то даже при высокой значимости воздействия, вероятность негативных последствий может соответствовать низкому экологическому риску (терпимый риск).

В матрице использована следующая градация риска:

- В высокая величина риска;
- С средняя величина риска;
- Н низкая величина риска.

В соответствии с международной практикой маркировки опасностей (риска), наиболее высокий риск можно маркировать красным цветом, средний – желтым и низкий – зеленым.

Аварии, для которых характерна частота возникновения первой и второй градации, маловероятны в течение срока производственной деятельности предприятия.

Аварии, характеризующиеся средней и высокой вероятностью, возможны в течение срока производственной деятельности.

Аварии с очень высокой вероятностью случаются в среднем чаще, чем раз в год. По вертикали, как уже сказано, в матрице показана степень изменения компонентов окружающей среды.

Основное требование к результатам анализа риска связано с предоставлением объективной информации о выявлении и исследовании наиболее опасных аварийных ситуаций по критериям «вероятность-тяжесть последствий». Анализ риска состоит из трех этапов:

- идентификация опасностей;
- анализ частоты;
- анализ последствий.

Основные задачи анализа риска (опасностей) при строительстве и эксплуатации объектов «заключаются в предоставлении:

- объективной информации о состоянии промышленного объекта и о промышленной безопасности;
 - сведений о наиболее опасных, «слабых» местах с точки зрения безопасности;
 - оценку степени риска (на качественном уровне);
 - обоснованных рекомендаций по уменьшению степени риска. Характеристикастепеней изменения приведена в таблице 10.9.2.

Каждой степени изменения соответствует значимость воздействия, которая определяется пометодике оценки воздействия для штатной ситуации.

Таблица 10.9.1 Матрица оценки уровня экологического риска

Частота аварий (число случаев в год)								
Значимость	Компонент	<10-6	□10-6<10-	□ 10-4<10-	□10-3<10-	□ 10-1<1	$\Box 1$	
воздействия	ы		4	3	1			
, балл	природной	Практически	Редкая	Мало-				
	среды	невозможная	(Неправдо-	вероятная	Случайная	Вероятная	Частая	
		(невероятная)	подобная)	авария	авария	авария	авария	
		авария	авария					
0-10		H	H	H	H	H	H	
11-21		Н	Н	Н	H	C	C	
22-32		Н	Н	Н	C	C	В	
33-43		Н	Н	С	C	В	В	
44-54		Н	С	С	В	В	В	
55-64		С	С	В	В	В	В	

Таблица 10.9.2 Характеристика степеней изменений компонентов окружающей

средь	I	
		Баллы
Критерий	Характеристика изменений	интегральной
		оценки
		воздействия
Компонент	Последствия испытываются, но величина воздействия	1-8
окружающе	достаточно низка (при смягчении или без смягчения), а также	
й среды	находится в пределах допустимых стандартов или рецепторы	
	имеют низкую чувствительность /ценность	
	Широкий диапазон, начиная от порогового значения, ниже	9-27
	которого воздействие является низким, до уровня, почти	
	нарушающего узаконенный предел.	
	Превышены допустимые пределы интенсивности нагрузки на	28-64
	компонент природной среды или когда отмечаются воздействия	
	большого масштаба, особенно в отношении ценных /	
	чувствительных ресурсов	

Анализ опасности и оценка степени риска

Вероятность возникновения аварийных ситуаций зависит от множества факторов, обусловленных климатическими, техническими и другими особенностями. Количественная оценка вероятности возникновения аварийной ситуации возможна только при наличии достаточно полной репрезентативной статистической информационной базы данных, учитывающей специфику эксплуатации объекта.

Экологические последствия аварийных ситуаций могут быть тяжелыми и зависят, в первую очередь, от характера аварии. Однако, технические решения по обеспечению безопасности, которые учитывают все возможные чрезвычайные ситуации при эксплуатации предприятия, а также постоянно разрабатываемые на предприятии мероприятия по повышению промышленной безопасности, позволяют свести вероятность появления любой аварийной ситуации к минимуму.

Технические решения по обеспечению безопасности предусмотрены проектом и будут реализованы в ходе строительства объектов и соответствуют требованиям государственных стандартов, строительных норм и противопожарных правил.

Уровень тяжести воздействия на компоненты окружающей среды при возникновении аварийных ситуаций приведен в таблице 10.9.3.

Таблица 10.9.3 Воздействия на компоненты окружающей среды при аварии на объекте

Компонент	Масштаб воздействи	R		Суммарная
окружающей	пространственный	временной	интенсивность	значимость
среды			воздействия	воз- действия
Атмосферный	Точечный (1)	Кратковременный	Умеренная (3)	Низкая (3)
воздух		(1)		
Поверхностные и	Точечный (1)	Кратковременный	Умеренная (3)	Низкая (3)
подземные воды		(1)		
Почва	Точечный (1)	Кратковременный	Умеренная (3)	Низкая (3)
		(1)		
Растительность	Точечный (1)	Кратковременный	Умеренная (3)	Низкая (3)
		(1)		
Животный мир	Точечный (1)	Кратковременный	Умеренная (3)	Низкая (3)
		(1)		

Оценка уровня экологического риска для каждого сценария аварии в соответствии с принятой методикой приведена в таблице 10.9.4.

Таблица 10.9.4 Матрица оценки риска аварийной ситуации

таолица 10.9.4 Матрица оценки риска авариинои ситуации												
Последствия (воздействия) в баллах Частота аварий (число случаев в год)												
Компоненты природной					<10-0	6	□ 10-	□10-	□ 10-	□10-1<1	$\Box 1$	
	среды	[6<10-4	4<10-3	3<10-1		
Значимост ь воздейств ия	Атмосферный	Поверхностные и под- земные воды	Почва	Растительность	Животный мир	Практически невозможная авария		Редкая авария	Маловероятная авария	Случайная авария	Вероятная авария	Частая
0-10	3	3	3	3	3					XXXXX		
Последствия (воздействия) в баллах Частота аварий (число случаев в год)												
Компоненты природной					<10-0	6	□10-	□10-	□10-	□10-1<1	$\Box 1$	
	среды							6<10-4	4<10-3	3<10-1		
Значимост ь воздейств ия		Поверхностные и под- земные воды	Почва	Растительность	Животный мир	Практически невозможная авария		Редкая авария	Маловероятная авария	Случайная авария	Вероятная авария	Частая
11-21						Низкий р				_		
22-32												
33-43												
								Средний риск			Высокий риск	

На основании вышеизложенного, можно заключить, что при соблюдении требований ныне действующих нормативных документов по безопасному производству работ и выполнении мероприятий, содержащихся в настоящем проекте, уровень риска при строительстве и эксплуатации объекта будет низкий, вплоть до незначительного.

4. ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ ДЛЯ ПЕРИОДОВ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТА **MEP** ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ **ВЫЯВЛЕННЫХ** СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ОКРУЖАЮЩУЮ СРЕДУ, В ТОМ ЧИСЛЕ ПРЕДЛАГАЕМЫХ МЕРОПРИЯТИЙ УПРАВЛЕНИЮ ПО ОТХОДАМИ, ТАКЖЕ ПРИ НАЛИЧИИ **НЕОПРЕДЕЛЕННОСТИ** ОЦЕНКЕ возможных СУШЕСТВЕННЫХ B ВОЗДЕЙСТВИЙ – ПРЕДЛАГАЕМЫХ МЕР ПО МОНИТОРИНГУ ВОЗДЕЙСТВИЙ **НЕОБХОЛИМОСТЬ** ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО (ВКЛЮЧАЯ **АНАЛИЗА** ФАКТИЧЕСКИХ воздействий ХОДЕ РЕАЛИЗАЦИИ НАМЕЧАЕМОЙ **ДЕЯТЕЛЬНОСТИ** В СРАВНЕНИИ \mathbf{C} ИНФОРМАЦИЕЙ, ПРИВЕДЕННОЙ В ОТЧЕТЕ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ)

Предусматриваемые меры по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду

Предусматриваемые меры направлены на предупреждение и минимизацию отрицательных воздействий на окружающую среду в строительный период за счет рациональной схемы организации работ.

Четкое выполнение проектных и технологических решений в период строительства будет гарантировать максимальное сохранение окружающей среды не только в период строительства, но и в период эксплуатации объектов.

Основные мероприятия, обеспечивающие соблюдение природоохранных требований при строительстве и эксплуатации проектируемых объектов могут быть отнесены к организационным, планировочным и техническим (специальным). Организационные и планировочные мероприятия обеспечивают безопасное для персонала выполнение работ и минимизацию воздействия на окружающую среду. Технические или специальные мероприятия предусматривают выполнение специальных мероприятий, предусматриваемых непосредственное снижение уровня воздействия объектов на окружающую среду: установка пылегазочистных сооружений, установка локально-очистных сооружений.

Меры по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду на период строительства.

Меры по предотвращению, сокращению, смягчению выявленных существенных воздействий намечае- мой деятельности на окружающую среду на период строительства сводятся к проведению следующих мероприятий:

Мероприятия по снижению негативного воздействия на атмосферный воздух

С целью охраны окружающей среды и обеспечения нормальных условий работы обслуживающего пер- сонала приняты меры по уменьшению выбросов загрязняющих вешеств.

В период строительных работ, учитывая, что основными источниками загрязнения атмосферы являются строительная техника и автотранспорт, большинство мер по снижению загрязнения атмосферного воздуха будут связаны с их эксплуатацией.

Основными мерами по снижению выбросов загрязняющих веществ будут следующие:

• строгое соблюдение технологического регламента работы техники;

- своевременное и качественное ремонтно-техническое обслуживание автотранспорта и спецтехники, очистных сооружений;
 - организация движения транспорта;
 - очистка мест разлива ГСМ с помощью спецсредств;
- сокращение до минимума работы двигателей транспортных средств на холостом ходу;
- для снижения пыления ограничение по скорости движения транспорта, устройства твердого покрытия;
 - увлажнение пылящих материалов перед транспортировкой;
 - укрытие кузова машин тентами при перевозке сильно пылящих грузов;
- в местах проведенияработ и интенсивного движения автотранспорта при необходимости будет производиться, полив участка строительства;
- использование качественного дизельного топлива для заправки техники и автотранспорта.

Мероприятия по снижению негативного воздействия на поверхностные и подземные воды.

При строительных работах основными мероприятиями, снижающим негативное воздействие на подземные воды, можно считать:

- постоянный контроль использования ГСМ на местах стоянки, ремонта и заправки транспортных средств, своевременный сбор и утилизация возможных протечек ГСМ;
- своевременный вывоз и утилизация хозбытовых сточных вод и производственных сточных вод на очистные сооружения по договору;
- оборудование мест для складирования ГСМ на бетонированных и обвалованных площадках с замкнутой системой сбора сточных вод и канализации;
- предотвращение инфильтрации из септиков и пруда испарителя путем использования гидроизоляционных материалов;
- размещение бытовых и промышленных отходов в специальных емкостях, с последующей транспортировкой на специальные полигоны для захоронения либо передача на переработку, удаление и восстановление;
- обязательный сбор сточных вод от промывки строительного оборудования и автомашин.
- соблюдение графика строительных работ и транспортного движения, чтобы исключить аварийные ситуации и последующее загрязнение;
- организованный сбор отработанных масел, ветоши в специальные емкости исключающие попадание углеводородов через почво-грунты в подземные воды;
 - оперативная ликвидация случайных утечек ГСМ.
 - своевременный ремонт локально очистного сооружения.

Мероприятия по снижению негативного воздействия на почвенно-растительный покров.

- С целью обеспечения рационального использования и охраны почвенно-растительного покрова на период строительства предусмотрены следующие меры:
- рациональное использование земель, ведение работ в пределах отведенной территории. Все работы, связанные с технологическими процессами, проводятся только в пределах оборудованных площадок,
- регламентация передвижения транспорта; а проезд транспортной техники по бездорожью исключается;

- использование современной и надежной системы сбора сточных вод;
- пылеподавление посредством орошения территории;
- устройство временных площадок для мытья колес автомобилей и строительной техники;
 - оперативная ликвидация загрязнений на площадках строительства;
 - освещение прожекторами рабочих мест (в темное время суток);
- оснащение временных сооружений первичными средствами пожаротушения в соответствии с типовыми правилами пожарной безопасности на весь период строительства;
- необходимо неукоснительное соблюдение санитарно-гигиенических требований, норм по хранению ГСМ, утилизации отходов, хранения и транспортировки бытовых и технологических отходов.

Все твердые отходы складируются в специальных местах для дальнейшей транспортировки к полигонам захоронения либо передаются на удаление, восстановление, переработку.

Одним из мероприятий по охране подстилающей поверхности является проведение технической рекультивации.

При проведении технического этапа рекультивации земель должны быть выполнены следующие работы:

- очистка территории строительных работ от мусора, строительных, бетонных и металлических отходов, оставшихся по завершении работ на площадках;
 - сбор и вывоз оборудования;
- устранение последствий утечек ГСМ снятие загрязненных ГСМ грунтов, их обезвреживание и вывоз в специализированную организацию на утилизацию.

До начала строительства на проектируемой площадке будет выполнен ряд мероприятий по подготовки ее к строительству:

- организован вывоз строительного мусора на полигон.
- изоляции места стоянки транспортных средств.

Выполнение предусмотренных мероприятий позволит минимизировать воздействия на земли, почвы и ландшафты.

Мероприятия по снижению негативного воздействия на животный мир

Мероприятия по охране и предотвращению ущерба животному миру могут в значительной степени снизить неизбежное негативное воздействие.

При строительных работах должны предусматриваться и осуществляться мероприятия по предотвращению гибели животных, сохранению среды обитания и условий размножения.

Для снижения даже кратковременного и незначительного негативного влияния на животный мир необходимо выполнение следующих мероприятий:

- снижение площадей нарушенных земель;
- организация огражденных мест хранения отходов;
- поддержание в чистоте территории площадки строительства и прилегающих площадей;
- исключение проливов ГСМ и своевременная их ликвидация;
- просветительская работа экологического содержания.

В целях предотвращения гибели объектов животного мира в период строительства должны быть предусмотрены следующие мероприятия:

- максимальное сохранение почвенно-растительного покрова;
- минимизация освещения в ночное время на участках строительства;
- исключить доступ птиц и животных к местам складирования пищевых и производственных отходов;
- не допускать привлечения, прикармливания или содержания животных на участках строительства;
 - строгое соблюдение технологии производства;
 - поддержание в чистоте прилежащих территорий;
- контроль скоростного режима движения автотранспорта с целью предупреждения гибели животных.

Кроме вышеперечисленных мер на период строительства предусмотрены следующие организационные мероприятия по охране окружающей среды:

• до начала строительства рабочие и инженерно-технический персонал должны пройти экологический инструктаж по соблюдению требований по охране окружающей среды при выполнении строительно- монтажных работ.

Мероприятия по снижению негативного воздействия физических факторов

Соблюдение действующего законодательства в части использования техники и оборудования, соответ- ствующих ГОСТу, является основным мероприятием по защите от шума, вибрации и электромагнитного излучения персонала и населения.

На период строительства основные мероприятия по уменьшению уровней шума предусматривают:

- уменьшение шума в его источнике (замена шумных технологических процессов и механизмов бесшумными или менее шумными);
- систему сборки деталей агрегата, при которой сводятся к минимуму ошибки в сочленениях деталей (перекосы, неверные расстояния между центрами и т.п.);
 - •широкое применение смазки соударяющихся деталей вязкими жидкостями;
- оснащение агрегатов, создающих чрезмерный шум вследствие вихреобразования или выхлопа воз- духа и газов (вентиляторы, воздуходувки, пневматические инструменты и машины, ДВС и т.п.) специальными глушителями;
- изменение направленности излучения шума (рациональное ориентирование источников шумообразования относительно рабочих мест);
- уменьшение шума на пути распространения (устройство звукоизолирующих ограждений, кожухов, экранов);
- применение для защиты органов слуха средств индивидуальной защиты от шума (беруши, наушники, шлемы, противошумные вкладыши, перекрывающих наружный слуховой проход; защитные каски с подшлемниками);
 - замеры шума, вибрации, других опасных и вредных производственных факторов.

Борьбу с шумом проводят путем своевременного профилактического ремонта оборудования, подтягивания ослабевших соединений, своевременной смазки вращающихся частей. Для снижения шума от технологического оборудования предусмотрено: шумящие и вибрирующие механизмы заключены в кожухи, установлены гибкие связи, упругие прокладки и пружины; тяжелое вибрирующее оборудование устанав- ливается на самостоятельные фундаменты, применены вибробезопасные и малошумящие машины, ди- станционное управление, сокращено время пребывания в условиях вибрации и шума, рабочие места не с постоянным пребыванием в

компрессорных, а периодическим, с целью осмотра отдельных узлов, в обязательном порядке используются средства индивидуальной защиты.

При эксплуатации машин, производственных зданий и сооружений, а также при организации рабочих мест для устранения вредного воздействия на работающих повышенного уровня шума должны применяться:

- технические средства (уменьшение шума машин в источнике его образования);
- применение технологических процессов, при которых уровни звукового давления на рабочих местах не превышают допустимые значения;
 - определение опасных и безопасных зон;
 - применение звукопоглощающих, звукоизолирующих устройств и конструкций;
 - снижение коэффициента направленности шумового излучения относительно интересующей терри- тории;
- выбор оптимальной зоны ориентации и оптимального расстояния от источника шума;
- организационные мероприятия (выбор рационального режима труда и отдыха, сокращение времени нахождения в шумных условиях);
- зоны с уровнем звука свыше 80 дБ должны быть обозначены знаками безопасности;
- организационно-технические мероприятия по профилактике в части своевременного ремонта и смазки оборудования.

Меры по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду на период эксплуатации

Меры по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду на период экплуатации сводятся к проведению следующих мероприятий:

Мероприятия по снижению негативного воздействия на атмосферный воздух

Основными мерами по снижению выбросов загрязняющих веществ в атмосферный воздух в период эксплуатации будут следующие:

- использование заводских модульных систем, что обеспечивает надежность и герметичность технологических соединений,
- использование современного оборудования, отвечающего международным стандартам безопасности для окружающей среды,
- использование сварных соединений, обеспечивающих полную герметизацию потоков,
 - снижение выбросов загрязняющих вещест за счет пылегазочистных сооружений.
 - своевременный контроль за работой производственного процесса.

Мероприятия по снижению негативного воздействия на подземные воды

Основными мероприятиями по охране и рациональному использованию водных ресурсов являются:

- запрет на слив отработанного масла в неустановленных местах;
- бетон для бетонных и железобетонных конструкций принят на сульфатостойком портландцементе; под бетонными и железобетонными конструкциями предусматривается подготовка из щебня, пропи- танного битумом;
 - антикоррозионная защита металлических конструкций;

- контроль за техническим состоянием сооружений и транспотрных средств при эксплуатации оборудования с целью недопущения утечек ГСМ на подстилающую поверхность и смыва.
 - обустройство мест локального сбора и хранения отходов;
 - контроль за качеством и составом питьевой и технической воды.
- внедрение системы оборота воды(внедрена на автомойке, все воды которые будут использоваться для мойки автотранспортных средеств, будут возвращены обратно, для обратного использования);
- сбор и отведение дождевых, талых вод осуществляется через приямки и дождеприемные колодцы самотечными сетями в пруд исправитель;
 - гидроизоляция и герметизация подземных сооружений и инженерных сетей;
- устройство ограждающих бортиков площадок, на которые возможны аварийные проливы жидких продуктов, исключающих поступление загрязнённых стоков и аварийных розливов на рельеф;
 - исключение сброса в дождевую канализацию отходов производства.

Для предотвращения загрязнения подземных вод предпринят ряд технических решений, исключающих утечки от установок и оборудования, которые до минимума снизят отрицательное воздействие производства на подземные воды:

- все установки и оборудования расположены на сплошных монолитных ж/б плитах.
- Гермитизация геомембраной пруда испарителя и дна септиков.

Мероприятия по снижению негативного воздействия на земельные ресурсы

Охрана земель от воздействия проектируемого объекта в период эксплуатации обеспечивается комплексом мер по минимизации изымаемых и нарушенных земель по предотвращению развития опасных геологических явлений, по предупреждению химического загрязнения почв.

Проектом предусматривается рациональное использование территории, земельных ресурсов для размещения проектируемых объектов. Взаимное расположение сооружений, по раскладки коммуникаций на территории выполнены в соответствии с требованиями действующих норм и правил.

Проектной документацией предусмотрено выполнение сплошной вертикальной планировки в пределах условных границ благоустройства с сохранением направления естественного уклона проектируемой площадки, обеспечением нормативных уклонов и поверхностного водоотвода от зданий, сооружений и наружных установок.

Вертикальная планировка разработана с учетом возможности примыкания проектируемых автомобильных дорог к существующим.

Мероприятия по снижению негативного воздействия на почвенный покров

Для эффективной охраны почв от возможного загрязнения и нарушения должен выполняться комплекс мероприятий, направленные на предупреждение, снижение или исключение различных видов воздействия на подстилающую поверхность, а также решения, обеспечивающие инженерно-экологическую безопасность в районе работ.

Мероприятия, обеспечивающие защиту почвы, складываются из организационнотехнологических решений:

- установка контейнеров для сбора ТБО и периодического вывоза на полигон ТБО;
- вывоз хозяйственно-бытовых стоков и твердых отходов в специализированной организации по договору.

Проектом предусмотрен также ряд мероприятий, направленных на обеспечение инженерно-экологической безопасности объектов и предупреждения аварийных ситуаций:

- защита проектируемых сооружений от коррозии;
- оперативная ликвидация загрязнений на площадках строительства;
- оснащение временных сооружений первичными средствами пожаротушения в соответствии с типовыми правилами пожарной безопасности на весь период строительства.

Для защиты почвенного покрова от механических нарушений и химического загрязнения проектом предусматриваются следующие технические решения:

- проезд транспортной техники по бездорожью исключается;
- необходимо неукоснительное соблюдение санитарно-гигиенических требований, норм по хранению ГСМ, утилизации отходов, хранения и транспортировки бытовых и технологических отходов.

Мероприятия по снижению негативного воздействия на растительность

В период эксплуатации объекта непосредственно территория будет лишена растительного покрова.

Воздействие на растительность в период эксплуатации будет выражаться лишь в вероятности прямого или опосредованного воздействия на растительность прилегающих территорий.

Наиболее важными природоохранными мероприятиями дл снижения воздействия на растительность прилегающих территорий будут являться:

- применение современных технологий;
- организация и проведение работ по предупреждению аварийных ситуаций;
- планово-предупредительные ремонтные работы и обследование состояния оборудования;
- сбор и утилизация отходов.

Мероприятия по снижению негативного воздействия на животный мир

Для снижения негативного влияния на животный мир, проектом предусмотрено выполнение следующих мероприятий:

- соблюдение норм шумового воздействия и максимально возможное снижение шумового фактора на окружающую фауну;
- соблюдение норм светового воздействия и максимально возможное снижение светового фактора на окружающую фауну;
 - разработка строго согласованных маршрутов передвижения техники;
 - ограждение территории, исключающее случайное попадание на площадку предпрятия животных;
- строгое запрещение кормление диких животных персоналом, а также надлежащее хранение отходов, являющихся приманкой для диких животных.

Мероприятия по снижению негативного воздействия физических факторов

В период эксплуатации для снижения уровня шума в проектной документации предусмотрен комплекс технологических и организационных мероприятий по снижению уровня шума при работе оборудования и автотранспорта.

С целью снижения уровня шума от работающего технологического оборудования предусмотрены следующие методы:

Архитектурно-акустические методы:

• рациональное с акустической точки зрения решение генерального плана объекта;

- сосредоточение источников шума в отдельных комплексах на территории промышленного объекта или в зданиях и т.д.;
- применение при строительстве зданий ограждающих конструкций с требуемой звукоизоляцией, звукопоглощающих конструкций, звукопоглощающих кабин.

Строительно-акустические методы:

- звукоизоляция шумного оборудования;
- для снижения шума насосных агрегатов до предельно допустимых уровней при монтаже оборудования, рассматриваемого в рамках данного проекта, предусматриваются глушител и резиновые прокладки;
 - виброизоляция оборудования.

При организации рабочих мест следует применять:

- технические средства (уменьшение шума машин в источнике его образовани применение технологических процессов, при которых уровни звука на рабочих местах н превышают допустимые и т.д);
 - дистанционное управление;
 - средства индивидуальной защиты;
- организованные мероприятия (выбор рационального режима труда и отдыха, сокращени времени воздействия шумовых факторов в рабочей зоне, лечебнопрофилактические другие мероприятия);
 - соблюдение технологической дисциплины;
 - улучшение качества подъездных и внутриплощадочных дорог.
- зоны с уровнем звука более 80 дБА обозначаются знаками опасности. Работа в этих зона без использования средств индивидуальной защиты слуха не допускается;
 - не допускается пребывание рабочих в зонах с уровнем звука выше 135 дБА;
- обязательный технический осмотр машин и механизмов, полученных с завода изготовителя;
 - использование СИЗ (виброзащитные перчатки, противошумные антифоны).

На период эксплуатации наиболее действенным средством защиты человека от вибрации является устранение непосредственно его контакта с вибрирующим оборудованием. Методы защиты от вибраций включают в себя способы и приемы по снижению вибраций как в источнике их возникновения, так и на путях распространения упругих колебаний в различных средах.

При установке и эксплуатации оборудования, имеющего вращающиеся детали, производят их балансировку. Эффективным методом снижения вибраций в источнике является выбор оптимальных режимов работы, состоящих в устранении резонансных явлений в процессе эксплуатации механизмов.

Для снижения вибрации от технологического оборудования предусмотрено: установление гибких связей, упругих прокладок и пружин; тяжелое вибрирующее оборудование устанавливается на самостоятельные фундаменты, сокращение времени пребывания в условиях вибрации, применение средств индивидуальной защиты.

Для устранения вредного воздействия вибрации на работающих механизмах необходимо применять следующие мероприятия:

- снижение вибрации в источнике ее образования конструктивными или технологическими мерами;
- уменьшение вибрации на пути ее распространения средствами виброизоляции и вибропоглощения;

- дистанционное управление, исключающее передачу вибрации на рабочие места;
- средства индивидуальной защиты.

Борьбу с вибрацией проводят путем своевременного профилактического ремонта оборудования, подтягивания ослабевших соединений, своевременной смазки вращающихся частей. Общий метод борьбы с вибрацией тяжелых машин — устройство под ними фундаментов, виброизолированных от пола и соседних конструкций.

Предлагаемых мероприятий по управлению отходами

Мероприятия по управлению отходами производства и потребления включают следующие эффективные меры:

- обеспечение сбора, хранения и удаления отходов в соответствии с требованиями охраны окружающей среды: размещение отходов только на специально предназначенных для этого площадках и емкостях; временное складирование отходов раздельно по видам и классам опасности в специально предназначенные для этих целей емкости (контейнеры, бочки и др.);
- отходы высокой степени опасности изолируются; несовместимые отходы физически разделяются; опасные отходы не смешиваются;
- утилизация всех видов отходов, не подлежащих вторичному использованию и переработке;
- своевременный вывоз образующихся и накопленных отходов, годных для дальнейшей транспортировки и переработки на специализированные предприятия;
- транспортировка отходов осуществляется с использованием транспортных средств, оборудованных для данной цели;
- при сборе, хранении, транспортировании, использовании или обезвреживании должны соблюдаться действующие экологические, санитарно-эпидемиологические, технические нормы и правила обращения с отходами;
- проведение учета образования, хранения, размещения, обезвреживания и вывоза отходов;
 - обеспечение герметичности емкостей для сбора отходов производства;
 - составление паспортов отходов;
 - проведение периодического аудита системы управления отходами;
- максимально возможное снижение объемов образования отходов за счет рационального использования сырья и материалов, используемых в производстве;
- рациональная закупка материалов в таких количествах, которые реально используются на протяжении определенного промежутка времени, в течение которого они не будут переведены в разряд отходов;
- принятие мер предосторожности и проведение ежедневных профилактических работ для исключения утечек и проливов жидкого сырья и топлива;
- повторное использование отходов производства, для достижения снижения использования сырьевых материалов;
- заключение контрактов со специализированными компаниями на утилизацию отходов производства и потребления.

Все предусмотренные мероприятия по безопасному обращению с отходами будут максимально предотвращать их влияние на окружающую среду.

Предусматриваемая в проекте организация хранения, удаления и переработки отходов максимально предотвращает загрязнение окружающей среды.

Разработка Программы управления отходами, планирование мероприятий по снижению количества отходов, их повторному использованию, утилизации, регенерации создадут возможность минимизации воздействия отходов на окружающую среду.

Предлагаемые меры по мониторингу воздействия

Производственный экологический контроль в период строительных работ

На этапе строительства целью экологического мониторинга является осуществление контроля за источниками загрязнения окружающей природной среды для обеспечения экологически безопасного функционирования объектов строительства.

На этапе строительства объектами экологического мониторинга будут являться источники техногенного воздействия на окружающую природную среду, такие как: дороги и другие линейные коммуникации, объекты строительства и т.д., а также природные комплексы и их компоненты.

Мониторинг в период проведения строительных работ включает в себя следующие виды работ:

- мониторинг эмиссий наблюдения за выбросами загрязняющих веществ на источниках выбросов;
- мониторинг воздействия оценка фактического состояния загрязнения атмосферного воздуха в конкретных точках наблюдения на местности на границе СЗЗ:
 - контроль состояния атмосферного воздуха;
 - контроль состояния почв и растительности;
 - контроль состояния поверхностных вод и подземных вод;
 - контроль соблюдения правил обращения с отходами.

Производственный экологический контроль рекомендуется проводить 1 раз в период строительства.

Мониторинг эмиссий

Мониторинг эмиссий загрязняющих веществ в атмосферу на источниках выбросов выполняется для контроля соблюдения нормативов НДВ.

Мониторинг эмиссий при строительных работах, учитывая временный характер работ, предлагается вести расчетным путем (исходя из фактически использованного топлива и объемов строительных работ) по методикам расчета выбросов, утвержденных в РК и использованных в соответствующем разделе ОВОС к проектной документации.

Мониторинг воздействия

Объектами мониторинга загрязнения атмосферы в период строительства будут являться:

- автотранспорт, строительные машины и спецтехника при производстве строительных работ;
 - выбросы при проведении земляных работ и пылении автотранспорта,
 - погрузочно-разгрузочные работы на площадке;
 - сварочные работы на площадке;
 - выбросы от дизельных двигателей сварочного агрегата, ДЭС, компрессоров передвижных;
 - работы с лакокрасочными материалами и др.

В процессе проведения строительных работ будет осуществляться наблюдение за состоянием строительной техники и оборудования, которые будут использоваться в период проведения строительства.

При строительстве имеются источники, действующие периодически (спецтехника), контроль за выбросами сводится к контролю технического состояния данного автотранспорта.

В связи с тем, что в период строительства продолжительность действия источников выбросов загрязняющих веществ имеет кратковременный характер, контроль над соблюдением установленных величин предельно допустимых предусматривается расчетным методом.

Контроль соблюдения правил обращения с отходами

Объем работ включает в себя визуальные наблюдения 1 раз в месяц сторонней организации и еженедельно собственными экологическими служюами в период строительства за соблюдением правил обращения с отходами производства и потреблениями, установленных в проектных материалах. Данные наблюдения необходимо провести на площадках временного хранения отходов на территории строительной площадки.

В процессе проектируемых работ для снижения нагрузки на почвы и растительность необходимо осуществлять мониторинг образования и утилизации отходов производства и потребления. Отходы должны складироваться на промплощадке и в полевом лагере только на специально отведенных местах и с соблюдением санитарных требований.

Экологическая служба подрядчика должна осуществлять ежедневный визуальный мониторинг почв на промышленной площадке для выявления возможных утечек и проливов.

После окончания работ должен проводиться контроль качества демонтажа временных сооружений и оборудований, рекультивации территории промплощадки.

Производственный экологический контроль в период эксплуатации

Производственный мониторинг в период эксплуатации включает:

- мониторинг атмосферного воздуха;
- мониторинг почв;
- мониторинг растительности;
- мониторинг животного мира;
- мониторинг радиационный;
- мониторинг шум и вибрации;
- мониторинг отходов производства.

Атмосферный воздух

Мониторинг эмиссий

Мониторинг будет осуществляться в соответствие с утвержденными нормативыми выбросов ЗВ. По организованным источникам мониторинг проводиться с помощью газоанализаторов(инструментаьлный замер), в случаи отсутсвия соответсвующего датчика по ЗВ будет проводиться расчетно-аналитическим путем. По неорганизованным источникам выбросы будут контролироваться расчетным-аналитическим методом. Так же после ввода в эксплуатации будет рассмотрен вопрос о внедрении системы автоматизированного мониторинга за основными источниками загрязнения атмосферного воздуха(в случаи удовлетворений требоавниям (пороговых значений) установленных законодательством РК).

Мониторинг воздействия

В целях выполнения нормативных требований о ведении комплексного мониторинга, сочетающие данные о состоянии воздуха, подземных вод и почв, точка

наблюдения за состоянием атмосферного воздуха, подземных и поверхностных вод, почвы и радиации, физ факторов.

Контроль содержания загрязняющих веществ в атмосферном воздухе проводится на границе СЗЗ.

Контролируемые ингредиенты: азота оксид, азота диоксид, серы диоксид, углерода оксид, сероводород, пыли неорганической 70-20% и менее 20%.

Измерения показателей загрязненности атмосферного воздуха могут проводиться как экологической службой самого предприятия, так и сторонней организацией на договорной основе. Для замеров должны использоваться приборы, аттестованные органами государственной метрологической службой.

В случае возникновения аварийной ситуации контроль источников выбросов и состояния воздушного бассейна должен проводиться газоспасательной службой.

Мониторинг воздействия включает метеорологические наблюдения за основными параметрами воздушной среды и качеством атмосферного воздуха.

Водные ресурсы

Производственный мониторинг состояния систем водопотребления и водоотведения предусматривает осуществление наблюдений за источниками воздействия на водные ресурсы рассматриваемого района, а также их рационального использования. Результаты мониторинга позволяют своевременно выявить и провести оценку происходящих изменений окружающей среды при осуществлении производственной деятельности предприятия.

Исходя из требований нормативных документов мониторинг состояния систем водопотребления и водоотведения включает:

- операционный мониторинг наблюдения за объемами забираемой и используемой предприятием свежей воды и их соответствия установленным лимитам;
- мониторинг эмиссий наблюдения за объемами и качеством сбрасываемых сточных вод и их соответствием установленным лимитам;
- мониторинг воздействия наблюдения за качеством поверхностных и подземных вод при сбросе сточных вод в накопители.

Сточных вод, непосредственно сбрасываемых в поверхностные водные объекты и на рельеф местности, предприятие не имеет.

Почвенно-растительный покров

Исходя из требований нормативных документов мониторинг состояния почвенно-растительного покрова включает:

- ведение периодического мониторинга, обеспечиваемого организацией стационарных экологических площадок (СЭП) для постоянного, с установленной периодичностью, слежения за изменением состояния почв и растительности;
- ведение оперативного мониторинга аварийных, других нештатных ситуаций, вызывающих негативные изменения почвенно-растительного покрова, а также на рекультивированных участках по мере выявления таких участков.

Проведение оперативного мониторинга диктуется необходимостью постоянного визуального контроля за состоянием нарушенности и загрязненности почвенно-растительного покрова с целью выявления аварийных участков разливов нефти и нефтепродуктов, механических нарушений в местах проведения строительных работ и на участках рекультивации почв.

Мониторинг состояния почв

Мониторинг почв является составной частью системы производственного мониторинга воздействия и проводится с целью:

- своевременного выявления изменений состояния почв под влиянием производственной деятельности;
- оценке, прогноза и разработке рекомендаций по предупреждению и устранению негативных последствий техногенного воздействия на природные комплексы, рациональному использованию и охране почв;
 - созданию информационного обеспечения мониторинга почв.

Непосредственно наблюдения за динамикой изменения свойств почв осуществляют на стационарных экологических площадках (СЭП), на которых проводятся многолетние периодические наблюдения за комплексом показателей свойств почв. Эти наблюдения обеспечивают выявление изменений направленности протекающих процессов и свойств, определяющих экологическое состояние почв; выявление тенденций и динамики изменений, структуры и состава почвенно-растительных экосистем под влиянием действия природных и антропогенных факторов.

СЭП представляет собой условно выбранную площадку (ключевой участок), расположенную в типичном месте характеризуемого участка территории (Научнометодические указания по мониторингу земель Республики Казахстан, 1993).

Мониторинг на СЭП является основным в звене производственного мониторинга почв. Места заложения СЭП выбираются с учетом пространственного распространения основных почвенных разностей, направления их производственного использования и характера техногенных нарушений, с таким расчетом, чтобы полученная информация наиболее полно характеризовала процессы, происходящие в почвах на территории объекта, его объектах и прилегающих участках. Территориальная сеть пунктов наблюдений должна характеризовать весь комплекс техногенного воздействия на почвы с учетом различной степени проявления негативных процессов. Экологические площадки закладывают таким образом, чтобы наблюдения велись на преобладающих почвах различного уровня нарушений и загрязнения.

Количество СЭП определяется площадью объектов, наличием сложных инженернотехнических сооружений, экологическим состоянием земель и сложностью ландшафтных условий.

Периодичность наблюдений: за показателями химического загрязнения - два раза в год. Контролируемые параметры:

- нефтепродукты;
- хлориды;
- Азот нитратный;
- Сульфаты;
- Свинец;
- Цинк;
- Медь;
- Никель:
- Кобальт;
- Железо;

Отмечаются и экологические аспекты (тип почв, глубина грунтовых вод. засоление, тип увлажнения и др.).

Отбор проб и изучение почво-грунтов проводится по сети станций, размещение которых, относительно источников воздействия, обеспечивает, с учетом реальной возможности проведения наблюдений, объективную оценку происходящих изменений.

Мониторинг растительности

Мониторинг растительного покрова и мониторинг почв, как два взаимосвязанных компонента природной среды проводятся одновременно.

Растительность, благодаря физиономическим свойствам и высокой динамичности является надежным индикатором природных и антропогенно-стимулированных процессов по сравнению с другими компонентами экосистем. В связи с этим, мониторинг растительности должен производиться в комплексе с изучением почвенного покрова. Это даст возможность более детально определить направление процессов природной и антропогенной динамики растительности и выявить негативные тенденции.

При проведении мониторинговых наблюдений за растительным покровом будет учитываться:

- видовой состав и его изменения;
- состояние растительных популяций;
- наличие поврежденности, нарушенностирастительных популяций;

Учитываются воздействия, оказывающие влияние на растительность (воздействия природного, антропогенного или антропогенно-стимулированного характера).

Оценка трансформации растительности проводится путем сравнения описаний фоновых (ненарушенных) и нарушенных сообществ одного типа на участках, близких по условиям местообитания.

Мониторинговые площадки. Пространственно точки наблюдения за состоянием растительного покрова совпадают со станциями наблюдения почвенного покрова.

Интенсивность наблюдения также приурочена к периодичности отбора проб почв.

Мониторинг животного мира

Изменения состояния среды обитания животного мира, происходящие под воздействием природных и техногенных факторов, в значительной степени будут зависеть от характера техногенных нагрузок на места обитания животных. Поэтому предлагается при формировании и согласовании Программы экологического контроля (ПЭК) на последующие годы рассмотреть организацию мониторинга животного мира.

Проводятся визуальные наблюдения за животными и следами их жизнедеятельности на территории ССЗ предприятия при обходах местности.

Предлагаемая периодичность наблюдений: 2 раз в год.

Радиационный контроль

Систематический производственный контроль, проводимый службой радиационной безопасности, включает в себя:

• контроль над блоками гамма-излучения;

Периодичность контроля – 1 раз в год.

Мониторинг при возникновении чрезвычайных ситуаций

Мониторинг и прогнозирование опасных природных процессов и явлений и оповещение о них осуществляются ведомственными системами «Казгидромета» и Департамента по чрезвычайным ситуациям Актюбинской области.

Мониторинг и прогнозирование опасных гидрометеорологических процессов осуществляется «Казгидрометом» с использованием собственной сети гидро- и метеорологических постов.

Для оповещения должностных лиц о чрезвычайных ситуациях природного характера используются средства коммуникаций с указанными организациями.

Инженерно-технические средства мониторинга состояния безопасности потенциально опасных объектов, предусмотренные данным проектом, обеспечивают мониторинг:

• проведение мероприятия при НМУ, в плоть до полной остановки производственного процесса, в случаи невозможно усилить контроль за производственным процессом.

Мониторинг при возникновении чрезвычайной ситуации должен включать оперативные наблюдения за всеми параметрами окружающей среды, которые подвергаются воздействию в результате аварии.

Программа мониторинга при возникновении чрезвычайной ситуации является составной частью Плана ликвидации чрезвычайных ситуаций (неконтролируемый выброс, разлив нефтепродуктов, пожар и т. д.).

В Плане ликвидации возможных аварий должны быть определены организация и производство аварийно восстановительных работ, определены обязанности должностных лиц, участвующих в ликвидации аварий. После определения фактических нарушений, разрабатывается План мероприятий по очистке и восстановлению (реабилитации) территории.

В случае аварийной ситуации будут начаты мониторинговые наблюдения с момента начала аварии. Продолжительность будет зависеть от характера аварии и источника воздействия на окружающую среду, а также учетом предполагаемых работ по реабилитации природных комплексов.

Цель мониторинговых наблюдений - определить последствия влияния данной аварии на компоненты окружающей среды.

По окончании оперативных аварийно-восстановительных работ, мониторинг состояния окружающей среды должен заключаться в проведении комплексного обследования площади, подвергшейся неблаго- приятному воздействию.

Мониторинговые наблюдения планируются в зависимости от характера и масштабов нештатных ситуаций. При этом определяются природные среды, состояние которых будет наблюдаться, частота из- мерений по каждой среде и измеряемые ингредиенты.

Мониторинговые работы в период аварийной ситуации отличаются, прежде всего, увеличением частоты измерений (до ежедневных в первые две недели после аварии и еженедельных на протяжении всего цикла реабилитационных работ. Методы отбора и анализа проб те же, что предусмотрены в период обычных мониторинговых работ.

После ликвидации аварии наблюдения переходят на постоянно действующий режим мониторинга со сгущением точек наблюдений (отбора проб) в границах зоны влияния аварии.

Мониторинг после аварийной ситуации предусматривается организовать в кратчайшее время в случае возникновения аварии, и продолжать его до тех пор. пока не будет определена степень воздействия аварии на окружающую среду.

В случае возникновения аварийных ситуаций на объекте должно быть обеспечено оперативное оповещение лиц, ответственных за экологическую безопасность на предприятии, согласно Схеме внутреннего оповещения, при возникновении чрезвычайных ситуаций. Для выяснения причин и устранения последствий аварии должны быть приняты безотлагательные меры, в связи, с чем на предприятии должно быть в наличии

необходимое количество рабочих, а также необходимые и в достаточном количестве техника и оборудование.

Данные производственного мониторинга передаются в Департамент экологии в установленные сроки.

Проведение наблюдений за операциями ПО сбору, транспортировке, восстановлению и (или) удалению отходов. Согласно Статьи 159, п.3, п.п.7 Экологического кодекса республики Казахстан от 2 января 2021 года № 400-VI 3PK отходы и управление ими являются объектами экологического мониторинга.

Производственный контроль при обращении с отходами предусматривает ведение учета объема, состава, режима их образования, хранения и отгрузки с периодичностью, достаточной для заполнения форм внутрипроизводственной и государственной статистической отчетности, которые регулярно направляются в территориальные природоохранные органы.

Обращение со всеми видами отходов, их захоронение будет осуществляться в соответствии с документом, регламентирующим процедуры по управлению с отходами. Выполнение положений данного документа по организации сбора и удаления отходов обеспечит:

- соответствие природоохранному законодательству и нормативным документам по обращению с отходами в РК;
- соответствие политике по контролю рисков для здоровья, техники безопасности и окружающей среды;
 - предотвращения загрязнения окружающей среды.
 - Основными моментами экологической безопасности, соблюдения которых следует придерживаться при любом производстве, являются:
- предупреждение образования отдельных видов отходов и уменьшение образования объемов обра- зования других;
- исключение образования экологически опасных видов отходов путем перехода на использование других веществ, материалов, технологий;
 - предотвращения смешивания различных видов отходов;
 - организация максимально возможного вторичного использования отходов по прямому назначению и других целей;
- снижение негативного воздействия отходов на компоненты окружающей среды при хранении, транспортировке и захоронении отходов.

Предприятию, на основании Экологического Кодекса РК, необходимо организовать и осуществлять про- изводственный контроль в области образования отходов. Самостоятельно разработать и утвердить порядок осуществления данного контроля и согласовать с уполномоченным органом в области охраны окружающей среды и государственными органами санитарно-эпидемиологической службы.

Основными факторами, определяющими периодичность контроля и выбор точек замеров загрязняющих веществ, являются:

- опасные свойства (взрыво- и пожароопасность, агрегатное состояние);
- физико-химические свойства отходов (растворимость в воде, летучесть, реакционная способность;
 - способ хранения отходов.

Контроль за хранением отходов производства и потребления осуществляется Областным Департаментом Госсанэпиднадзора и Департаментом Экологии по Актюбинской области, а организация своевременного вывоза их с территории – отделом по охране окружающей среды предприятия.

За всеми видами отходов, образующихся при проведении проектных работ, достаточно визуального наблюдения за условиями временного хранения отходов, герметичностью тары и ее состоянием, периодичностью вывоза отходов или передачи работникам предприятия, своевременным использованием отходов на предприятии.

Параметры образования отходов производства и потребления, их циркуляция и удаление будут контролироваться и регулироваться в ходе основных технологических процессов.

Контроль за физическими факторами

Контроль за физическими факторами осуществляется на ежеквартальной основе. Замеры шум и вибрации проводяться на границе СЗЗ. В случаи увелечения шумового воздействия на границе СЗЗ, будет проводиться непосредственно в населенном пункте.

Все вышеуказнные меры направлены на предупреждение последствий негативного влияния. Строгое соблюдение мер позволить недопустить превышения ЗВ в компонентах окружающей среды.

19. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА, ТРЕБОВАНИЯ К ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДСТАВЛЕНИЯ ОТЧЕТОВ О ПОСЛЕПРОЕКТНОМ АНАЛИЗЕ УПОЛНОМОЧЕННОМУ ОРГАНУ

Согласно Экологическому кодексу республики Казахстан (Статья 67. Стадии оценки воздействия на окружающую среду) послепроектный послепроектный анализ фактических воздействий при реализации намечаемой деятельности является последней стадией проведения оценки воздействия на окружающую среду.

В соответствии со Статьей 78 ЭК РК послепроектный анализ фактических воздействий при реализации намечаемой деятельности (далее – послепроектный анализ) будет проведен составителем отчета о возможных воздействиях.

Цель проведения послепроектного анализа - подтверждение соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

Сроки проведения послепроектного анализа - послепроектный анализ будет начат не ранее чем через двенадцать месяцев и завершен не позднее чем через восемнадцать месяцев после начала эксплуатации соответствующего объекта, оказывающего негативное воздействие на окружающую среду.

Не позднее срока, указанного выше, составитель отчета о возможных воздействиях подготавливает и подписывает заключение по результатам послепроектного анализа, в котором делается вывод о соответствии или несоответствии реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам оценки воздействия на окружающую среду. В случае выявления несоответствий в заключении по результатам послепроектного анализа приводится подробное описание таких несоответствий.

Составитель направляет подписанное заключение по результатам послепроектного анализа оператору соответствующего объекта и в уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты подписания заключения по результатам послепроектного анализа.

Уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты получения заключения по результатам послепроектного анализа размещает его на официальном интернет ресурсе.

Порядок проведения послепроектного анализа и форма заключения по результатам послепроектного анализа определяются и утверждаются уполномоченным органом в области охраны окружающей среды.

Получение уполномоченным органом в области охраны окружающей среды заключения по результатам послепроектного анализа является основанием для проведения профилактического контроля без посещения субъекта (объекта) контроля.

20. СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ СОСТАВЛЕНИИ ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ.

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK.
- 2. Водный кодекс Республики Казахстан от 9 июля 2003 года, № 481-II ЗРК (с изменениями и дополнения- ми по состоянию на 01.07.2021 г.).
- 3. Лесной Кодекс Республики Казахстан от 8 июля 2003 года, № 477-II ЗРК (с изменениями и дополнения- ми по состоянию на 01.07.2021 г.).
- 4. Земельный Кодекс Республики Казахстан от 20 июня 2003 года, № 442-II ЗРК (с изменениями и допол- нениями по состоянию на 06.07.2021 г.).
- 5. Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI «О недрах и недропользовании» (с изменениями и дополнениями от 01.07.2021 г.);
- 6. Кодекс Республики Казахстан от 07 июля 2020 № 360-VI «О здоровье народа и системе здравоохранения» (с изменениями по состоянию на 24.06.2021 г.);
- 7. Закон Республики Казахстан «Об особо охраняемых природных территориях» от 7 июля

2006 года № 175- III ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.).

- 8. Закон Республики Казахстан от 26 декабря 2019 года № 288-VI «Об охране и использовании объектов историко-культурногонаследия».
- 9. Закон Республики Казахстан «Об охране, воспроизводстве и использовании животного мира» от 9 июля 2004 года № 593-II, (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 10. Закон Республики Казахстан от 23 апреля 1998 года № 219-I «О радиационной безопасности населения» (с изменениями и дополнениями по состоянию на 25.02.2021 г.).
- 11. Закон Республики Казахстан от 16 июля 2001 года № 242-II «Об архитектурной, градостроительной и строительной деятельности в Республике Казахстан» (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 12. Приказ Министра энергетики Республики Казахстан от 15 июня 2018 года № 239 «Об утверждении Единых правил по рациональному и комплексному использованию недр» (с изменениями и дополнениями от 20.08.2021 г.).
- 13. Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучения (ОСП 72/87);
- 14. Санитарные правила СП 2.6.6.1168-02 «Санитарные правила обращения с радиоактивными отходами (СПОРО-2002)»;
- 15. Приказ Министра национальной экономики Республики Казахстан от 27 февраля 2015

года №155

- «Об утверждении гигиенических нормативов «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности».
- 16. СН РК 1.02-03-2011 «Порядок разработки, согласования, утверждения и состав проектной документации на строительство» (с изменениями по состоянию на 09.07.2021 г.).

- 17. «Методические указания по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденную МООС РК приказом N270-о от $29.10.2010 \, \Gamma$.
- 18. Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий. Приложение №18 к приказу МООС РК №100-п от 18.04.2008 (приложение№ 12 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221- ⊖).
- 19. РНД 211.2.02.09-2004 г. Астана 2005 г. «Методическое указание по определению выбросов загрязняющих веществ в атмосферу из резервуаров».
- 20. РНД 211.2.02.04-2004, Астана, 2005 г. «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок».
- 21. РНД 211.2.02.03-2004, Астана, 2005 г. «Методика расчета выбросов загрязняющих веществ в атмосфе- ру при сварочных работах».
- 22. РНД 211.2.02.06-2004. «Методика расчета выбросов загрязняющих веществ в атмосферу при механи- ческой обработке металлов (по величинам удельных выбросов).
- 23. Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу МОСиВР РК от 12.06.2014 г. №221-ө).
- 24. РНД 211.2.02.05-2004, Астана, 2004 г. «Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)».
- 25. РД 39-142-00 «Методика расчета выбросов вредных веществ в окружающую среду от неорганизован- ных источников нефтегазового оборудования».
- 26. Методика расчета выбросов вредных веществ от предприятий дорожностроительной отрасли, в т.ч. АБЗ. Приложение №12 к приказу Министра ООС РК от 18 апреля 2008 г. № 100-п.
- 27. Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приказ Министра ООС РК от 29 июля 2011 года № 196-п.
- 28. РНД 03.1.0.3.01-96 «Порядок нормирования объемов образования и размещения отходов производства».
 - 29. Классификатор отходов от 6 августа 2021 года № 314.
- 30. Приказ и.о.Министра экологии, геологии и природных ресурсов Республики Казахстан от 3

августа 2021 года № 286 «Об утверждении Правил проведения общественных слушаний».

31. Приказ Министра охраны окружающей среды Республики Казахстан от 8 апреля 2009 года

№ 68-п «Об утверждении Методики расчета платы за эмиссии в окружающую среду».

- 32. РД 52.04.52-85 «Регулирование выбросов при неблагоприятных метеорологических условиях».
- 33. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 9 августа 2021 года №319 Об утверждении Правил выдачи экологических разрешений, представления декларации о воздействии на окружающую среду, а также форм бланков экологического разрешения на воздействие и порядка их заполнения/

- 34. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 25 июня 2021 года № 212 «Об утверждении Перечня загрязняющих веществ, эмиссии которых подлежат экологическому нормированию».
- 35. ГОСТ 17.5.3.04 83 Охрана природы. Земли. Общие требования к рекультивации земель.
- 36. ГОСТ 17.5.1.02 85 Охрана природы. Земли. Классификация нарушенных земель для рекультивации.
- 37. ГОСТ 32220-2013 «Вода питьевая, расфасованная в емкости. Общие технические условия».
- 38. ГОСТ 12.1.003-2014 «ССБТ. Шум. Общие требования безопасности». Введен на территории Республики Казахстан с 1 января 2016 года (Приложение к приказу Председателя Комитета технического регулирования и метрологии Министерство по инвестициям и развитию Республики Казахстан от 30 октября 2015 года № 217-од)
- 39. СП РК 2.04-01-2017 «Строительная климатология» (с изменениями от $01.04.2019~\mathrm{r.}$).
- 40. «Гигиенические нормативы к физическим факторам, оказывающим воздействие на человека», утвер- жденные Приказом Министра национальной экономики РК от 28 февраля 2015 г. № 169.
- 41. Предельно допустимые уровни (ПДУ) воздействия электрических полей диапазона частот 0,06-30,0 МГЦ №.02.021-94. Утверждены Главным государственным санитарным врачом Республики Казахстан 22.08.1994 г.
- 42. Приказ Министра национальной экономики Республики Казахстан от 20 марта 2015 года
- № 237 «Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к зданиям и сооружени- ям производственного назначения» и «Санитарно-эпидемиологические требования по установлению санитарно-защитной зоны производственных объектов».
- 43. Санитарные правила «Санитарно-эпидемиологические требования к водоисточникам, местам водоза- бора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно- бытового водопользования и безопасности водных объектов» № 209 от 16.03.2015 г.
- 44. СН РК 4.01-01-2011 «Внутренний водопровод и канализация зданий и сооружений».
- 45. Приказ Министра здравоохранения Республики Казахстан от 16 июня 2021 года № ҚР ДСМ-49 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к условиям труда и бытового обслуживания при строительстве, реконструкции, ремонте и вводе, эксплуатации объектов строительства».
- 46. «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления» от 25 декабря 2020 года № ҚР ДСМ-331/2020
- 47. Санитарные правила «Санитарно-эпидемиологические требования к зданиям и сооружениям производ- ственного назначения», утвержденные приказом Министра национальной экономики РК от 28.02.2015 года №174 (с изменениями и дополнениями от 05.07.2020 г.).

