Республика Казахстан ТОО «AS-Project» ГЛ 01858Р от 25.08.2016 г.

ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ

К ПЛАНУ ГОРНЫХ РАБОТ ЗАПАДНОГО И ВОСТОЧНОГО ФЛАНГОВ АЙСАРИНСКОГО МЕСТОРОЖДЕНИЯ ОСАДОЧНЫХ ПОРОД (ПЕСКИ) В АКЖАРСКОМ РАЙОНЕ СЕВЕРО-КАЗАХСТАНСКОЙ ОБЛАСТИ

<u>Исполнитель</u> TOO «AS-Project» Директор

Заказчик TOO«QazaqSand» Директор

СОДЕРЖАНИЕ

Номер раздела	Наименование раздела, пункта, подпункта	стр.
	Содержание	2
	Введение	5
Глава 1	Отчет о возможных воздействиях	7
	Описание предполагаемого места осуществления намечаемой деятельности, его координаты,	
1.1	определенные согласно геоинформационной системе, с векторными файлами	7
	Описание состояния окружающей среды на предполагаемой затрагиваемой территории на	_
1.2	момент составления отчета (базовый сценарий)	8
	Описание изменений окружающей среды, которые могут произойти в случае отказа от начала	4.4
1.3	намечаемой деятельности	11
1.1	Информацию о категории земель и целях использования земель в ходе строительства и	1.1
1.4	эксплуатации объектов, необходимых для осуществления намечаемой деятельности	11
	Информацию о показателях объектов, необходимых для осуществления намечаемой	
	деятельности, включая их мощность, габариты (площадь занимаемых земель, высота), другие	
1.5	физические и технические характеристики, влияющие на воздействия на окружающую среду;	12
	сведения о производственном процессе, в том числе об ожидаемой производительности	
	предприятия, его потребности в энергии, природных ресурсах, сырье и материалах	
	Описание планируемых к применению наилучших доступных технологий – для объектов I	
1.6	категории, требующих получения комплексного экологического разрешения в соответствии с	65
	пунктом 1 статьи 111 Кодексом	
	Описание работ по постутилизации существующих зданий, строений, сооружений,	
1.7	оборудования и способов их выполнения, если эти работы необходимы для целей реализации	67
	намечаемой деятельности	
	Информацию об ожидаемых видах, характеристиках и количестве эмиссий в окружающую	
1.0	среду, иных вредных антропогенных воздействиях на окружающую среду, связанных со	
1.8	строительством и эксплуатацией объектов для осуществления рассматриваемой деятельности,	68
	включая воздействие на воды, атмосферный воздух, почвы, недра, а также вибрации,	
	шумовые, электромагнитные, тепловые и радиационные воздействия	
	Информацию об ожидаемых видах, характеристиках и количестве отходов, которые будут	
1.9	образованы в ходе строительства и эксплуатации объектов в рамках намечаемой деятельности,	164
	в том числе отходов, образуемых в результате осуществления постутилизации существующих	
	зданий, строений, сооружений, оборудования	
	Описание затрагиваемой территории с указанием численности ее населения, участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия	
Глава 2	намечаемой деятельности на окружающую среду, с учетом их характеристик и способности	173
1 Jiaba 2	переноса в окружающую среду; участков извлечения природных ресурсов и захоронения	1/3
	отходов	
	Описание возможных вариантов осуществления намечаемой деятельности с учетом ее	
	особенностей и возможного воздействия на окружающую среду, включая вариант, выбранный	
Глава 3	инициатором намечаемой деятельности для применения, обоснование его выбора, описание	174
	других возможных рациональных вариантов, в том числе рационального варианта, наиболее	
	благоприятного с точки зрения охраны жизни и (или) здоровья людей, окружающей среды	
Глава 4	Варианты осуществления намечаемой деятельности относятся	179
	Под возможным рациональным вариантом осуществления намечаемой деятельности	
Глава 5	понимается вариант осуществления намечаемой деятельности, при котором	179
	соблюдаются в совокупности следующие условия	
Г- (Информация о компонентах природной среды и иных объектах, которые могут быть	150
Глава 6	подвержены существенным воздействиям намечаемой деятельности	179
6.1	Жизнь и (или) здоровье людей, условия их проживания и деятельности	179
	Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы,	
6.2	природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)	180
6.3	Земли (в том числе изъятие земель), почвы (в том числе включая органический состав,	183
	· · · · · · · · · · · · · · · · · · ·	Ì

	1	l
	эрозию, уплотнение, иные формы деградации)	
6.4	Воды (в том числе гидроморфологические изменения, количество и качество вод)	183
	Атмосферный воздух (в том числе риски нарушения экологических нормативов его качества,	
6.5	целевых показателей качества, а при их отсутствии – ориентировочно безопасных уровней	185
	воздействия на него)	
6.6	Сопротивляемость к изменению климата экологических и социально-экономических систем	185
6.7	Материальные активы, объекты историко-культурного наследия (в том числе архитектурные и	186
0.7	археологические), ландшафты	100
	Описание возможных существенных воздействий (прямых и косвенных, кумулятивных,	
Глава 7	трансграничных, краткосрочных и долгосрочных, положительных и отрицательных)	186
	намечаемой деятельности на объекты, перечисленные в пункте 6 настоящего	
	приложения	
	Строительства и эксплуатации объектов, предназначенных для осуществления намечаемой	
7.1	деятельности, в том числе работ по постутилизации существующих объектов в случаях	186
	необходимости их проведения	
- ^	Обоснование предельных количественных и качественных показателей эмиссий,	40=
Глава 8	физических воздействий на окружающую среду, выбора операций по управлению	187
	отходами	
Глава 9	Обоснование предельного количества накопления отходов по их видам	187
	06	
Глава 10	Обоснование предельных объемов захоронения отходов по их видам, если такое	187
	захоронение предусмотрено в рамках намечаемой деятельности	
	Информация об определении вероятности возникновения аварий и опасных природных	
	явлений, характерных соответственно для намечаемой деятельности и предполагаемого места ее осуществления, описание возможных существенных вредных воздействий на	
Глава 11	окружающую среду, связанных с рисками возникновения аварий и опасных природных	188
	явлений, с учетом возможности проведения мероприятий по их предотвращению и	
	ликвидации	
	Вероятность возникновения отклонений, аварий и инцидентов в ходе намечаемой	
11.1	деятельности	188
	Вероятность возникновения стихийных бедствий в предполагаемом месте осуществления	
11.2	намечаемой деятельности и вокруг него	189
	Вероятность возникновения неблагоприятных последствий в результате аварий, инцидентов,	
11.3	природных стихийных бедствий в предполагаемом месте осуществления намечаемой	189
	деятельности и вокруг него	
	Все возможные неблагоприятные последствия для окружающей среды, которые могут	400
11.4	возникнуть в результате инцидента, аварии, стихийного природного явления	189
11.5	Примерные масштабы неблагоприятных последствий	191
	Меры по предотвращению последствий инцидентов, аварий, природных стихийных бедствий,	
11.6	включая оповещение населения, и оценка их надежности	191
	Планы ликвидации последствий инцидентов, аварий, природных стихийных бедствий,	
11.7	предотвращения и минимизации дальнейших негативных последствий для окружающей	192
	среды, жизни, здоровья и деятельности человека	
	Профилактика, мониторинг и ранее предупреждение инцидентов аварий, их последствий, а	
11.8	также последствий взаимодействия намечаемой деятельности со стихийными природными	193
	явлениями	
	Описание предусматриваемых для периодов строительства и эксплуатации объекта мер	
	по предотвращению, сокращению, смягчению выявленных существенных воздействий	
	намечаемой деятельности на окружающую среду, в том числе предлагаемых	
	мероприятий по управлению отходами, а также при наличии неопределенности в оценке	400
		193
Глава 12	возможных существенных воздействий – предлагаемых мер по мониторингу воздействий	
Глава 12	возможных существенных воздействии – предлагаемых мер по мониторингу воздействий (включая необходимость проведения послепроектного анализа фактических воздействий	
Глава 12		
Глава 12	(включая необходимость проведения послепроектного анализа фактических воздействий	

	пунктом 2 статьи 240 и пунктом 2 статьи 241 Кодекса					
	Оценка возможных необратимых воздействий на окружающую среду и обоснование					
	необходимости выполнения операций, влекущих такие воздействия, в том числе					
Глава 14	сравнительный анализ потерь от необратимых воздействий и выгоды от операций,					
	вызывающих эти потери, в экологическом, культурном, экономическом и социальном					
	контекстах					
	Цели, масштабы и сроки проведения послепроектного анализа, требования к его					
Глава 15	содержанию, сроки представления отчетов о послепроектном анализе уполномоченному	195				
	органу					
Глава 16	Способы и меры восстановления окружающей среды на случаи прекращения	195				
1 Mada 10	намечаемой деятельности, определенные на начальной стадии ее осуществления	170				
Глава 17	Описание методологии исследований и сведения об источниках экологической	196				
T HILDU I	информации, использованной при составлении отчета о возможных воздействиях	100				
	Описание трудностей, возникших при проведении исследований и связанных с					
Глава 18	отсутствием технических возможностей и недостаточным уровнем современных	196				
	научных знаний					
- 40	Краткое нетехническое резюме с обобщением информации, указанной в пунктах 1 - 17	40-				
Глава 19	настоящего приложения, в целях информирования заинтересованной общественности в	197				
	связи с ее участием в оценке воздействия на окружающую среду					
19.1	Предлагаемые меры по снижению воздействий на окружающую среду (мероприятия по охране атмосферного воздуха, мероприятия по защите подземных, поверхностных вод, почвенного	203				
17.1	покрова и т.д.) согласно приложения 4 к Экологическому Кодексу РК	203				
	Список использованной литературы	205				
	ПРИЛОЖЕНИЯ	206				
1	Ситуационная карта схема расположения участка с нанесение границ СЗЗ иисточников загрязня					
	веществ					
2	Материалы результатов расчета рассеивания загрязняющих веществ в атмосфере и ситуационны карты-схемы с нанесенными на них изолиниями расчетных концентраций	ые				
3	ГСЛ ТОО «AS-Project»					
4	РГК Казгидромет (НМУ)					
5	РГП Казгидромет (метео)					
	РГП Казгидромет (фон)					
7	РЦГИ Казгеоинформ					
	Согласование Есильской басейной инспекции					
8	· · · · · · · · · · · · · · · · · · ·					
9	Письмо по ветеринарии					
10	Справка от территориальной инспекция лесного хозяйства и животного мира					
11	Справка от историко-культурного наследия»					
12	Заключение по скринингу					

ВВЕДЕНИЕ

Настоящий отчет о возможных воздействиях на окружающую среду (далее Отчет) выполнен с целью получения информации о влиянии на окружающую природную среду намечаемой деятельности по добычи осадочных пород (пески) Западного и Восточного участков Айсаринского месторождения в Акжарском районе Северо-Казахстанской области.

Отчет о воздействии на окружающую среду разработан на основании:

- 1. Приложение 2 к Инструкции по организации и проведению экологической оценки на основании Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 «Об утверждении Инструкции по организации и проведению экологической оценки»;
- 2. Экологического Кодекса РК от 2 января 2021 года № 400-VI 3РК;
- 3. Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246. Зарегистрирован в Министерстве юстиции Республики Казахстан 15 июля 2021 года № 23538 «Об утверждении Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду».

На этапе описания состояния компонентов окружающей среды приведена обобщенная характеристика природной среды в районе намечаемой деятельности, рассмотрены основные направления хозяйственного использования территории и определены принципиальные позиции по оценке воздействия на окружающую среду, включающие в себя:

- 1) виды воздействия намечаемой деятельности на окружающую среду, их взаимодействие с уже существующими видами воздействия на рассматриваемой территории (типы нарушений, наименование и количество загрязнителей);
 - 2) характеристику ориентировочных выбросов загрязняющих веществ в атмосферу;
- 3) основные решения по ограничению или нейтрализации отрицательных последствий от реализации намечаемой деятельности, способствующие снижению воздействия на окружающую среду.

При выполнении Отчета о возможных воздействиях на окружающую среду определены потенциально возможные изменения в компонентах окружающей среды при реализации намечаемой деятельности.

Оценка воздействия на окружающую среду — процесс выявления, изучения, описания и оценки на основе соответствующих исследований возможных существенных воздействий на окружающую среду при реализации намечаемой деятельности, включающий в себя стадии, предусмотренные статьей 64 Кодекса.

Организация экологической оценки включает организацию процесса выявления, изучения, описания и оценки возможных прямых и косвенных существенных воздействий (далее – существенные воздействия) реализации намечаемой и осуществляемой деятельности или разрабатываемого Документа на окружающую среду.

Для организации процесса выявления возможных существенных воздействий намечаемой деятельности на окружающую среду в ходе оценки воздействия на окружающую среду инициатор намечаемой деятельности подает в уполномоченный орган в области охраны окружающей среды заявление о намечаемой деятельности.

По результатам Заявления о намечаемой деятельности TOO «QazaqSand» было получено Заключение об определении сферы охвата оценки воздействия на окружающую среду за № KZ64VWF00100080 от 13.06.2023 г., выданное Министерством Экологии и Природных Ресурсов Республики Казахстан Комитет Экологического Регулирования и Контроля (Приложение 12).

Согласно Экологического Кодекса РК (далее – Кодекс), карьеры и открытая добыча твердых полезных ископаемых на территории, превышающей 25 га входит в Перечень видов намечаемой деятельности и объектов, для которых проведение оценки воздействия на окружающую среду является обязательным (приложение 1, раздел 1 п.2.2).

Объект относится ко II категории (7.11. добыча и переработка общераспространенных полезных ископаемых свыше 10 тыс. тонн в год).

Отчет выполнен в составе рабочего проекта «План горных работ....», представленного в составе плана и графической части проекта, содержащие технические решения по

предотвращению неблагоприятных воздействий на окружающую среду.

Характеристики и параметры воздействия на окружающую среду определялись в соответствии с проектными решениями и исходными данными, выданными Заказчиком.

Объем изложения достаточен для анализа принятых проектных решений и обеспечения охраны окружающей среды от негативного воздействия объекта исследования на компоненты окружающей среды в рамках действующего предприятия.

Работы выполнены в соответствии с действующими нормативно-методическими и законодательными документами, принятыми в Республике Казахстан.

Материалы выполнены ТОО «AS-Project», действующее на основании Государственной лицензии 01858Р от 25.08.2016г. на занятие выполнения работ и оказания услуг в области охраны окружающей среды, выданной Министерством энергетики РК. (Приложение 4).

Недропользователь:

Адрес заказчика: TOO«QazaqSand», г.Астана, Проспект Б.Момышұлы, Дом 19/1, КВ. 101, тел: 87079946398

Исполнитель (проектировщик):

Адрес разработчика: ТОО «AS-Project» г.Кокшетау, ул.А.Баймуканова,68 тел./факс: 8 (716-2) 25-74-10

Список исполнителей:

№ п/п	Должность	Подпись	Фамилия исполнителя
1	Инженер-эколог	Eng	Сунгатуллина И.Ф.

1 Отчет о возможных воздействиях

1.1 Описание места осуществления намечаемой деятельности, его координаты, определенные согласно геоинформационной системе, с векторными файлами

В административном положении Западный и Восточный участки Айсаринского месторождения расположены в Акжарском районе Северо-Казахстанской области. Ближайшим населенным пунктом является пос. Айсары, расположенный в 3,3 км восточнее от Восточного участкаи в 6,0 км восточнее от Западного участка. Расстояние до ближайших железнодорожных станций Тальщик и Заозерное составляют соответственно 40 км и 55 км.

Район хорошо обжит. Основу экономики района составляет сельское хозяйство, в котором доминирует производство зерна. Значительное место занимают также овощеводство и мясомолочное животноводство.

Собственные топливные ресурсы в районе отсутствуют. Нефтепродукты, уголь привозные. Снабжение электроэнергией осуществляется за счет государственной энергосистемы.

В районе создана сеть дорог с улучшенным покрытием, обеспечивающая возможность всесезонного транспортного сообщения между населенными пунктами.

Наличие в районе месторождений строительных материалов послужило причиной зарождения горнодобывающей промышленности. В Акжарском районе функционирует десять организаций, занимающихся разведкой и добычей строительного камня. Имеются месторождения суглинков для производства строительного кирпича. Кроме того, на территории района имеются месторождения с промышленными запасами подземных минеральных вод.

Наблюдение за состоянием атмосферного воздуха непосредственно на прилегающей территории расположения объекта на стационарных постах не ведется.

Добыча кварцевого песка на Айсаринском месторождении будет производиться одним добычным уступом высотой от 6,8 до 9,5 м, в среднем составляя 8,6 м (Западный участок) и высотой от 6,4 до 9,4 м, в среднем составляя 8,4 м (Восточнй участок) на полную разведанную мощность полезной толщи, без предварительного рыхления.

Разработка Айсаринского месторождения будет начата с Западного участка с 2023г. по 2036г. На Восточном участке добыча будет вестись с 2036г. по 2037г.

Первые десять лет работы будут вестись на участке Западный.

Исходя из принятых показателей производительности карьера и режима работы, а также промышленных (извлекаемых) запасов срок отработки месторождения составит 15лет.

Таблица 1 – Размер площади и координаты угловых точек Западного и Восточного участков Айсаринского месторожления

	y fact Rob Ancaphick	ого месторождения			
Номера	Географичес	ские координаты			
угловых точек	Северная широта	Восточная долгота	Площадь, км ²		
	Западный	участок			
т.1	53°17′12,0″	71°47′57,0″			
т.2	53°17′15,0″	71°48′17,0″	0.24		
т.3	53°16′55,0″	71°48′24,0″	0,24		
т.4	53°16′53,0″ 71°48′02,0″	71°48′02,0″			
	Восточный	і участок			
т.1	53°17′36,0″	71°50′12,0″			
т.2	53°17′36,0″	71° 50′23,0″	0.16		
т.3	53°17′10,0″	71° 50′28,0″	0,16		
т.4	53°17′10,0″	71° 50′17,0″	1		

1.2 Описание состояния окружающей среды на предполагаемой затрагиваемой территории на момент составления отчета (базовый сценарий)

Климатическая характеристика региона.

Климат района резко-континентальный, зима холодная и продолжительная, лето жаркое и сравнительно короткое. Средняя температура воздуха в январе составляет -18,1°С, в самые холодные дни температура достигается до -45°С. В летний период наблюдается сравнительно высокая температура воздуха (среднеиюльская + 24,9 С). Продолжительность солнечного сияния варьирует от 2000 до 2150 часов.

Среднегодовое количество осадков составляет от 294-296 до 426-437 мм. Снежный покров устойчив со средней мощностью к концу зимы около 25-30 см, лежит около 5 месяцев, с ноября по март.

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере приведены в таблице 3.4.

ЭРА v3.0
TOO "AS-Project"

Таблица 3.4

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города Акжарский район

Акжарский район, месторождение "Айсаринское"

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы, А	200
Коэффициент рельефа местности в городе	1.00
Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, град.С	24.9
Средняя температура наружного воздуха наибо- лее холодного месяца (для котельных, работа- ющих по отопительному графику), град С	-18.0
Среднегодовая роза ветров, %	
С СВ В ЮВ Ю ЮЗ З СЗ	8.0 7.0 10.0 9.0 11.0 32.0 13.0 10.0
Среднегодовая скорость ветра, м/с Скорость ветра (по средним многолетним данным), повторяемость превышения которой составляет 5 %, м/с	5.0 9.0

Данные взяты согласно справке РГП Казгидромет (Приложение 6).

Географо-экономическая характеристика района

В административном положении Западный и Восточный участки Айсаринского месторождения расположены в Акжарском районе Северо-Казахстанской области в пределах листа N-42-XXX (рис. 1).

Ближайшим населенным пунктом является пос. Айсары, расположенный в 3,3 км

восточнее от Восточного участкаи в 6,0 км восточнее от Западного участка. Расстояние до ближайших железнодорожных станций Тальщик и Заозерное составляют соответственно 40 км и 55 км.

Рельеф района представляет собой сглаженную равнину, характеризующуюся наличием широких плоских увалов, разделенными широкими ложбинами. Расположение и ориентировка морфологических форм рельефа зависит от складчатых структур фундамента и лотлогии пород, но имеет уклон на северо-восток в сторону Западно-Сибирской низменности.

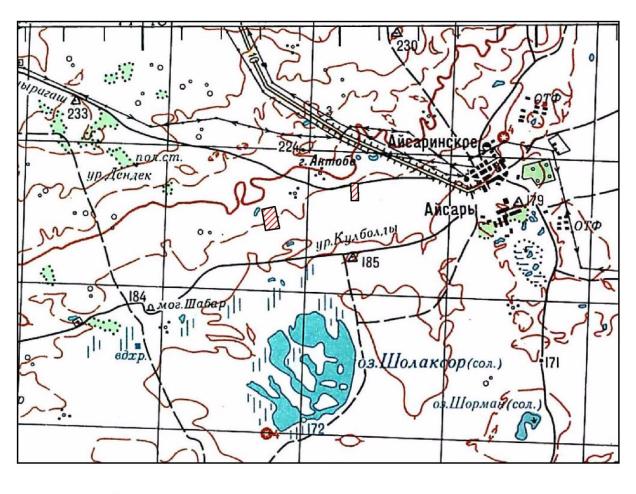
Территория Акжарского района расположена в пределах двух природно-земледельческих районов: степного равнинно-западинного карбонатных почв и засушливо степного южных карбонатных черноземов.

В гидрогеологическом отношении район участка характеризуется отсутствием речной сети и наличием бессточных соленых озер. Это незначительные по размеру водоемы (Шопсор, Шолаксор) с резким колебанием уровней воды в различные времена года, вплоть до полного высыхания в летнее время. Большим развитием в районе пользуются так называемые «степные плесы» - небольшие озерки и болотца с горько-соленой водой. Питаются все водоемы за счет талых вод. Из крупных озер района только озеро Жантайсор — пресное. Берега и пойма многих озер используются для выпаса сельскохозяйственных животных. Основным источником поступления питьевой воды является Булаевский групповой водопровод, скважины и колодцы. На территории имеется 5 станций очистки воды.

Климат района континентальный с резким колебанием годовых и суточных температур, с продолжительными зимними и короткими летними периодами. Средняя температура в январе - 17-19°C, июле +19-20°C.

Среднегодовое количество осадков достигает 300-350 мм. Снежный покров устойчивый, высота его колеблется от 16 до 56 см. Промерзание почвы достигает 2,5-3 м. продолжительность зимнего периода в среднем составляет 150-155 дней, часто наблюдаются метели. Теплый период (средняя суточная температура воздуха выше нуля) продолжается с середины апреля до конца октября, составляя в среднем около 7 месяцев. Для района характерны постоянные восточные и северо-восточные ветра.

Район хорошо обжит. Основу экономики района составляет сельское хозяйство, в котором доминирует производство зерна. Значительное место занимают также овощеводство и мясомолочное животноводство.


Собственные топливные ресурсы в районе отсутствуют. Нефтепродукты, уголь привозные. Снабжение электроэнергией осуществляется за счет государственной энергосистемы.

Водоснабжение населенных пунктов осуществляется за счет подземных вод.

В районе создана сеть дорог с улучшенным покрытием, обеспечивающая возможность всесезонного транспортного сообщения между населенными пунктами.

Наличие в районе месторождений строительных материалов послужило причиной зарождения горнодобывающей промышленности. В Акжарском районе функционирует десять организаций, занимающихся разведкой и добычей строительного камня. Имеются месторождения суглинков для производства строительного кирпича. Кроме того, на территории района имеются месторождения с промышленными запасами подземных минеральных вод

Рис 1.1. Обзорная карта района работ. Масштаб 1: 500 000

Западный участок

Восточный участок

1.3 Описание изменений окружающей среды, которые могут произойти в случае отказа от начала намечаемой деятельности

Охват изменений в состоянии всех объектов охраны окружающей среды и антропогенных объектов, на которые намечаемая деятельность может оказывать существенные воздействия, выявленные при определении сферы охвата и при подготовке отчета о возможных воздействиях

В процессе оценки воздействия на окружающую среду проводится оценка воздействия на следующие объекты, в том числе в их взаимосвязи и взаимодействии:

- 1) атмосферный воздух;
- 2) поверхностные и подземные воды;
- 3) ландшафты;
- 4) земли и почвенный покров;
- 5) растительный мир;
- 6) животный мир;
- 7) состояние экологических систем и экосистемных услуг;
- 8) биоразнообразие;
- 9) состояние здоровья и условия жизни населения;
- 10) объекты, представляющие особую экологическую, научную, историко-культурную и рекреационную ценность

Полнота и уовень детализации достоверной информации об изменениях состояния окружающей среды должны бытьне ниже уровня, достижимого при затратах на исследование, не превышающих выгоды от него.

Детализированная информация представлена об изминенях состояния окружающей среды представлена в разделах 1.8, 1.9.

1.4 Информацию о категории земель и целях использования земель в ходе строительства и эксплуатации объектов, необходимых для осуществления намечаемой деятельности

Согласно п.2 статьи 1 Земельного Кодекса РК земельные участки используются в соответствии с установленным для них целевым назначением. Правовой режим земель определяется исходя из их принадлежности к той или иной категории и разрешенного использования в соответствии с зонированием земель (территории).

Планируемая деятельность располагается на свободной территории, на землях промышленности. Целевое назначение – обслуживание объекта – добыча кварцевых песков месторождения Айсаринское.

В административном положении Западный и Восточный участки Айсаринского месторождения расположены в Акжарском районе Северо-Казахстанской области в пределах листа N-42-XXX.

Ближайшим населенным пунктом является пос. Айсары, расположенный в 3,3 км восточнее от Восточного участкаи в 6,0 км восточнее от Западного участка. Расстояние до ближайших железнодорожных станций Тальщик и Заозерное составляют соответственно 40 км и 55 км.

Проектная мощность предприятия, согласно календарному графику работ, первые 10 лет, составляет: 100 тыс. м3 в год. Первые десять лет работы будут вестись на участке Западный.

Заданная производительность обеспечена набором соответствующего горно-транспортного оборудования.

Краткие сведения о изученности района работ

Конкретные сведения о геологическом строении района приведены в объяснительной записке к изданной геологической карте листа N-42-XXX масштаба 1:200 000 (Жуков М.А. и др., 1957-1958 гг.).

В 1958-59 годах проведена геологическая съемка листов N-42-108-A и N-42-108-Б масштаба $1:50\ 000\ ($ Hауменко B.B.).

По результатам вышеназванных съемок откартированы площади распространения палеогеновых (эоценовых) отложений, представленных сливными кварцевыми песчаниками и кварцевыми разнозернистыми песками. На площади листов выявлены проявления песков

Безымянное-І и Айсары, первоначально оцененные в качестве строительных, а в дальнейшем доизученные Северо-Казахстанской геолого-геофизической экспедицией и в 1978 году переда

нные Партии нерудного сырья СКПГО для проведения поисково-оценочных работ на стекольные пески. Детальная разведка Айсаринского месторождения стекольных песков была завершена в 1982 году.

1.5 Информация о показателях объектов, необходимых для осуществления намечаемой деятельности, включая их мощность, габариты (площадь занимаемых земель, высота),

другие физические и технические характеристики, влияющие на воздействия на окружающую среду, сведения о производственном процессе, в том числе об ожидаемой производительности предприятия, его потребности в энергии, природных ресурсах, сырье и материалах

В настоящем проекте горных работ предусматривается добыча полиметаллических руд (цинк, свинец, серебро) месторождения Кокзабой в Карагандинской области подземным способом.

Геологическое строение района работ

Район работ характеризуется двухярусным строением. Нижний ярус сложен сильно дислоцированными породами палеозоя, верхний – толщей горизонтально залегающими рыхлыми отложениями кайнозоя.

Объектом изучения являются пески среднего палеогена, поэтому стратиграфия палеозойских пород не приводится.

Мезозойская группа

Кора выветривания (еМz)

Образования коры выветривания представлены песчано-дресвяно-глинистым материалом светло-бурого и желтовато-бурого с зеленоватым оттенком цвета. Мощность составляет 0,3-9,6 м. глубина залегания 0,4-16,3 м.

Кайнозойская группа

Палеогеновая система (Р)

Эоцен (P_2). Эоценовые отложения имеют широкое распространение в районе работ, на дневную поверхность не выходят. Мощность отложений достигает 22-50 м.

Геологическая карта района работ Масштаб 1:200000

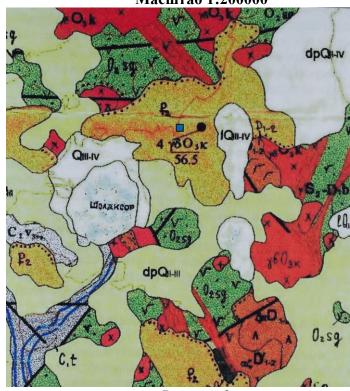
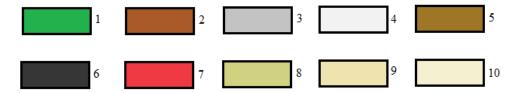



Рисунок 2

Условные обозначения к геологической карте

1 - среднеордовикский комплекс вулканической дуги (санская свита); 2 - ранеесреднедевонский субщелочной риолито-дацитовый подкомплекс (нижнесреднедевонские образования); 3, 4 - карбонатно-терригенные отложения нижнего карбона; 5 - эоценовые отложения; 6 - куртукульский габбро-диабазовый комплекс; 7 - крыккудукский грано-диоритовый комплекс; 8 - средне-верхнеплейстоценовые делювиально-пролювиальные отложения; 9 - верхнее звено - голоценвые делювиально-пролювиальные и озерные отложения; 10 - голоценовые озерные отложения.

Рисунок 3

Эоценовые отложения с резким несогласием залегают на палеозойских породах и корах выветривания. Представлены светлыми в разной степени слабо ожелезненными мелкотонкозернистыми кварцевыми песками и зеленовато-серыми глинами, часто запесоченными разнозернистыми кварцевым материалом. Пески слагают верхнееюю часть разреза, глины – нижнюю.

Четвертичная система (Q)

Четвертичные отложения почти сплошным чехлом покрывают более древние осадки. Мощность их обычно небольшая и не превышает первые метры и лишь в озерных котловинах мощность их увеличивается и достигает 30-40 м.

Среднечетвертичные озерно-аллювиальные отложения (Q_{II}) представлены глинами, суплинками, супесями и песками.

Верхнечетвертичные-современные отложения ($Q_{\rm III}$ - $Q_{\rm II}$) слагают надпойменные террасы озер и представлены желто-бурыми лессовидными суглинками, супесями и илами.

Современные осадки (Q_{IV}) слагают поймы озер, представлены илами.

Геологическое строение участков Геологическое строение Западного участка

В геологическом строении участка принимают участие кайнозойские отложения.

Максимальная отметка +189,0 м. Рельеф участка относительно спокойный, абсолютные отметки варьируют в пределах от +180,0 м до +189,0 м. Повышение рельефа наблюдается в северной части участка (+189,0 м), понижение рельефа отмечено в южной части участка.

Продуктивная толща участка приурочена к отложениям среднего палеогена (эоцена). Мощность продуктивного горизонта колеблется от 6,8 до 9,5 м, в среднем составляя 8,6 м.

Вскрышные породы представлены почвенно-растительным слоем, супесями и суглинком. Мощность вскрышных пород колеблется в пределах от 0,5 до 3,0 м, в среднем 1,3 м.

Участок сложен светло-серыми, белыми, изредка с желтым оттенком кварцевыми песками. Пески участка представляют собой линзообразные залежи горизонтального залегания.

Геологическое строение Восточного участка

В геологическом строении участка принимают участие кайнозойские отложения.

Максимальная отметка +186,0 м. Рельеф участка относительно спокойный, абсолютные отметки варьируют в пределах от +179,0 м до +186,0 м. Повышение рельефа наблюдается в северной части участка (+186,0 м), понижение рельефа отмечено в южной части участка.

Вся поверхность участка перекрыта почвенно-растительным слоем.

Продуктивная толща участка приурочена к отложениям среднего палеогена (эоцена). Мощность продуктивного горизонта колеблется от 6,4 до 9,4 м, в среднем составляя 8,4 м.

Вскрышные породы представлены почвенно-растительным слоем, супесями и суглинком. Мощность вскрышных пород колеблется в пределах от 0,6 до 2,5 м, в среднем 1,4 м.

Участок сложен светло-серыми, белыми, изредка с желтым оттенком кварцевыми песками.

Пески участка представляют собой линзообразные залежи горизонтального залегания.

Вещественный состав и технологические свойства полезного ископаемого Требования стекольной промышленности к качеству стекольного песка

Основным сырьевым материалом, используемым встекольной промышленности, являются кварцевые пески.

Кварцевые пески служат основным компонентом стекольной шихты. Для производства стекла требуются хорошо отсортированные пески с большой однородностью их гранулометрического и химического состава с очень низким содержанием красящих окислов и незначительной примесью глинистых и пылеватых частиц.

Оценка качества полезного ископаемого дана в соответствии с областями его применения согласно следующим ГОСТам:

- ГОСТ 22551-77 «Песок кварцевый, молотые песчаник, кварцит и жильный кварц для стекольной промышленности. Технические условия»;
 - ГОСТ 2138-91 «Пески формовочные»;
 - ГОСТ 7031-75 «Песок кварцевый для тонкой керамики»;
 - ГОСТ 4417-75 «Песок кварцевый для сварочных материалов».

Требования к стекольным пескам очень высокие, особенно по химическому составу. ГОСТ 2551-77 строго регламентирует содержание кремнезема (не менее 95-99,8 % в зависимости от марки песка), оксидов железа (не более 0,001-0,025 %, глинозема (не более 0,1-4,0 %). Нормируется также влажность (для обогащенных песков до 0,5 %, для необогащенных -7,0 %), содержание тяжелой фракции (до 0,05 %) и зерновой состав. Кроме того лимитируется содержание пылеватых и глинистых частиц, равномерность зернового состава.

В зависимости от требований, предъявляемых к различным видам изделий, подбирают песок с тем или иным содержанием железа. Для производства оптического стекла, а также для высших сортов посудного требуются пески с содержанием соединений железа в пересчете ${\rm нaFe_2O_3}$ не свыше 0,01 %. При выборе песка для листового стекла руководствуются назначением стекла и его толщиной. В качестве нормативов обычно принимают следующие цифры: для зеркального – 0,015-0,020 %, для оконного тянутого – 0,03-0,08 % и для тары из обесцвеченного стекла – 0,03-0,05 %.

В таблице 1.4.1.1 и 1.4.1.2 приведены химико-физические и гранулометрические характеристики стекольного песка по ГОСТ 22551-77, применяемого для производства листового полированного флоат-стекла, проката, витрин, автомобильного стекла, технического стекла, стекловолокна для специальных изделий, лабораторного, медицинского, парфюмерного стекла, стеклоизделий для электронной техники, стеклоблоков, силиката-натрия, консервной тары и т.д.

Таблица 1.4.1.1

Химико-физические характеристики

			no quisti		1			
марка песка по	рн	sio_2	fe_2o_3	al_2o_3	cao	na ₂ o+k ₂ o	tio_2	форма
гост 22551-77						+mgo		зерна
вс-030-в	нейтр.	99,66	0,03	0,2	0,02	0,01	<0,02	полу-
								округлая
вс-050-1	нейтр.	99,4	0,05	0,2	0,03	0,01	<0,02	полу-
								округлая
c-070-1	нейтр.	98,8	0,07	0,2	0,04	0,02	<0,02	полу-
								округлая
б-100-1	нейтр.	98,5	0,1	0,2	0,06	0,03	<0,02	полу-
								округлая

Таблица 1.4.1.2

Гранулометрические характеристики стекольного песка

_	punjuan		<i>F</i>				1	
марка песка по гост		размер сита, мм						
22551-77	0,4	0,315	0,2	0,16	0,1	0,063	<0,063	
вс-030-в	0,02	3,60	75,00	16,20	5,10	0,08	0,1	
вс-050-1	0,02	3,60	75,00	16,20	5,10	0,08	0,1	

c-070-1	0,02	3,60	75,00	16,20	5,10	0,08	0,1
б-100-1	0,02	3,60	75,00	16,20	5,10	0,08	0,1

Однородность зернового состава песков и размер зерен оказывают большое влияние на скорость варки и на количество пороков в стекле. Крупные зерна кварца (диаметром 0,8-2 мм) провариваются медленно или не провариваются совсем, что часто является причиной образования в стекле такого порока, как материальный камень. Мелкие зерна провариваются быстро, поэтому для стекловарения целесообразно применять мелкозернистые пески при условии их однородности. Неоднородные мелкозернистые пески также приводят к образованию камня в стекле. Однородные мелкозернистые пески целесообразно использовать при варке тугоплавких стекол.

Окись железа, являющаяся вредным окислом, окрашивающим стекло в желтый цвет, присутствует в том или ином количестве во всех песках. Но наряду с Fe_2O_3 в стекле часто обнаруживается и FeO, придающая стеклу голубую окраску. Зеленоватые оттенки свойственны стеклу, сваренному из песков, содержащих одновременно Fe_2O_3 и FeO. Окись титана TiO_2 содержится в песках в количестве 0,01-0,3 % и заметно окрашивает стекло в желтый цвет только в присутствии окиси железа. Окись хрома Cr_2O_3 редко обнаруживается в песке, но даже самое незначительное ее количество окрашивает стекло в интенсивный зеленый цвет.

ГОСТ 4417-75 лимитирует содержание SiO_2 не менее 97 %, серы — следы, фосфора — 0,015 %.

ГОСТ 7031-75 лимитирует содержание SiO_2 не менее 93 %, содержание суммы $Fe_2O_{3+}TiO_2$ не более 0,3 %, содержание CaO не более 2 %, ппп не более 2 %.

ГОСТ 2138-91 подразделяет формовочные пески на классы, группы, марки. При этом учитывается: массовая доля глинистой составляющей, содержание диоксида кремния, коэффициент однородности и средний размер зерна, предел прочности при сжатии во влажном состоянии, массовая доля влаги, водородный показатель, массовая доля вредных примесей и форме зерен, газопроницаемость, ппп.

Вешественный состав и технологические свойства полезного ископаемого

В зависимости от физико-химического состава кварцевый песок, молотые песчаник, кварцит и жильный кварц выпускают следующих марок, указанных в таблице 1.4.2.1.

Таблица 1.4.2.1.

Марка и область применения песка

	T	шств применения нески
марка	наименование и характеристика	преимущественная область применения
оовс-010-в	кварцевый песок и жильный	для производства оптического стекла, работающего в
	кварц обогащенные высшего	малой толщине, свинцового хрусталя, художественных
	сорта	изделий, увиолевого стекла
оовс-015-1	кварцевый песок и жильный кварц обогащенные 1-го сорта	для производства светотехнического увиолевого стекла, бессвинцового хрусталя, цветных и бесцветных изделий из сортового стекла ручной выработки и выдувных изделий механизированной выработки, художественных изделий, особо чистых силикатов натрия (катализаторов). допускается по согласованию с
		потребителем для производства свинцового хрусталя
овс-020-в	кварцевый песок и жильный кварц обогащенные или необогащенные высшего сорта	для производства светотехнического и сигнального стекла, сортовой посуды, прессованных изделий механизированной выработки «дюралекс», силикатов натрия (катализаторов)
овс-025-1	кварцевый песок и жильный кварц обогащенные 1-го сорта	для стеклоизделий электронной техники
овс-025-1а	кварцевый песок и жильный кварц обогащенные или необогащенные 1-го сорта	для производства светотехнического сигнального стекла, стеклянной посуды, прессованных цветных изделий, силикатов натрия (катализаторов)
	кварцевый песок и жильный	для стеклоизделий электронной техники

	кварц обогащенные	
вс-030-в	кварцевый песок, молотые	для производства листового технического стекла,
	песчаник, кварцит и	автомобильного стекла, стеклоблоков, витрин, проката,
	жильный кварц обогащенные	стекловолокна для специальных изделий,
	или необогащенные высшего	лабораторного, медицинского, парфюмерного стекла,
	сорта	стеклоизделий для электронной техники; консервной
	1	тары и бутылок из обесцвеченного стекла; сортовой
		посуды, прессованной, светотехнического и
		сигнального стекла, силикатов натрия (катализаторов)
вс-040-1	кварцевый песок, молотые	для производства листового, оконного и технического
	кварцит и жильный кварц	стекла, лабораторного, медицинского и парфюмерного
	обогащенные или	стекла, стекловолокна для электротехники, силиката
	необогащенные 1-го сорта	натрия (катализаторов)
вс-050-1	кварцевый песок, молотые	для производства листового оконного и технического
	песчаник, кварцит и	стекла; лабораторного, медицинского и парфюмерного
	жильный кварц обогащенные	стекла; стекловолокна для электротехники,
	или необогащенные 1-го	электроосветительного стекла, силикатов натрия
	сорта	(катализаторов)
вс-050-2	кварцевый песок, молотые	для производства листового оконного и технического
	песчаник, кварцит и	стекла, проката, стеклоблоков, консервной тары и
	жильный кварц обогащенные	бутылок из обесцвеченного стекла, автомобильного
	или необогащенные 2-го	стекла, витрин
	сорта	
c-070-1	кварцевый песок, молотые	для производства оконного и технического стекла,
	песчаник, кварцит и	стеклопрофилита, стеклоблоков, белой консервной
	жильный кварц обогащенные	тары и бутылок, проката, стекловолокна для
	или необогащенные 1-го	электротехники
050.0	сорта	
c-070-2	кварцевый песок, молотые	для производства стеклопрофилита, стеклоблоков,
	песчаник, кварцит и	проката, белой консервной тары и бутылок,
	жильный кварц обогащенные	стекловолокна строительного и другого назначения
£ 100 1	и необогащенные 2-го сорта	
б-100-1	кварцевый песок, молотые	для производства силикат-глыбы, стекловолокна для
	песчаник, кварцит и жильный кварц обогащенные	электротехники, оконного стекла, изоляторов, труб, консервной тары и бутылок из полубелого стекла
	и необогащенные 1-го сорта	консервной тары и бутылок из полубелого стекла
б-100-2	кварцевый песок, молотые	для производства изоляторов, труб, консервной тары и
0-100-2	песчаник, кварцит и	бутылок из полубелого стекла, стекловолокна
	жильный кварц обогащенные	строительного и другого назначения
	или необогащенные 2-го	етроптельного и другого назна тенни
	сорта	
пб-150-1	кварцевый песок, молотые	для производства оконного стекла, консервной тары и
	песчаник, кварцит и	бутылок из полубелого стекла, изоляторов, труб,
	жильный кварц	пеностекла
	необогащенные,	
	обогащенные или	
	усредненные 1-го сорта	
пб-150-2	кварцевый песок, молотые	для производства стекловолокна для строительных
	песчаник, кварцит и	целей, консервной тары и бутылок из полубелого
	жильный кварц	стекла, изоляторов, труб, пеностекла, аккумуляторных
	необогащенные,	банок
	обогащенные или	
	усредненные 2-го сорта	
пс-250	кварцевый песок, молотые	для производства пеностекла, стекловолокна для
	песчаник, кварцит и	строительных целей, консервной тары и бутылок из
	жильный кварц	полубелого стекла, изоляторов, труб, аккумуляторных
	необогащенные,	банок
	усредненные	
T	кварцевый песок, молотые	для производства бутылочного зеленого стекла

песчаник, кварцит и	
жильный кварц	
необогащенные	

В обозначении марок буквы означают: ООВС - для особо ответственных изделий высокой светопрозрачности; ОВС - для ответственных изделий высокой светопрозрачности; ВС - для изделий высокой светопрозрачности; С - для изделий светопрозрачных; Б - для бесцветных изделий; ПБ - для полубелых изделий; ПС - для изделий пониженной светопрозрачности; Т - для изделий из темно-зеленого стекла. В обозначении марок первые три цифры означают: массовую долю окиси железа в тысячных долях; четвертая цифра (буква) - сорт продукции данной марки (высший, первый, второй).

Допускается применение кварцевого песка, молотых песчаника, кварцита и жильного кварца марок C, B, B и B

При содержании в кварцевых песках марок OOBC-010-В и OOBC-015-1 тяжелой фракциив пределах допуска настоящего стандарта допускается массовая доля Cr_2O_3 не более 0,0015 %; TiO_2 не более 0,05 %; V_2O_5 не более 0,001 %.Для обогащенных кварцевых песков марок OBC-020-В и OBC-025-1 допускается массовая доля Cr_2O_3 не более0,0003 %, определение Cr_2O_3 и V_2O_5 выполняется у потребителя.

Допускается посоглашению с потребителем массовая доля влаги в необогащенных песках не более 10 %, содержание влаги в обогащенных песках всех марок не более 7 %.

Гранулометрический состав

Среди песков выделяются так называемая рабочая фракция (-0.8+0.1 мм) и лимитируемых ГОСТом 2551-77 фракции более 0.8 мм и менее 0.1 мм.

Содержание главной фракции (-0,8+0,1 мм) по рядовым пробам (39 проб) Западного участка изменяется от 89,6 до 98,9 % и по участку распределяется следующим образом: менее 90 % - 1 проба (2,6 %); от 90 до 95 % - 4 пробы (10,2 %); свыше 95 % - 34 пробы (87,2 %).

Содержание главной фракции (-0,8+0,1 мм) по рядовым пробам (14 проб) Восточного участка изменяется от 87,7 до 98,5 %, и по участку распределяется следующим образом: менее 90 % - 1 проба (7,1 %); от 90 до 95 % - 4 пробы (28,6 %); свыше 95 % - 9 проб (64,3 %).

Содержание фракции более 0.8 мм на Западном участке колеблется от 0.0 до 1.5 % и по участку распределяется следующим образом: не обнаружено -13 проб (33.3 %); 0.1 % - 17 проб (43.6 %); >0.1%-1.0%-8 проб (20.5 %); >1.0%-5.0%-1 проба (2.6 %).

Содержание фракции более 0.8 мм на Восточном участке колеблется от 0.0 до 1.7 % и по участку распределяется следующим образом: не обнаружено -7 проб (50.0 %); 0.1 % - 3 пробы (21.4 %); >0.1%-1.0%-3 пробы (21.4 %); >1.0%-5.0%-1 проба (7.2 %).

Содержание фракции менее 0,1 мм на Западном участке содержится в количествах от 1,0 до 10,3 % и по участку распределяется следующим образом: до 1,5 % - 3 пробы (7,7 %); >1,5 %-2,5 % - 13 проб (33,3 %); >2,5 %-5,0 % - 18 проб (46,2 %); >5% - 10,3 % - 5 проб (12,8 %).

Содержание фракции менее 0,1 мм на Восточном участке содержится в количествах от 1,4 до 10,6 % и по участку распределяется следующим образом: до 1,5 % - 2 пробы (14,3 %); >1,5 %-2,5 % - 3 пробы (21,4 %); >2,5 %-5,0 % - 5 проб (35,7 %); >5% - 10,6 % - 4 пробы (28,6 %).

Полный рассев песков на ситах на Западном участке производился по 21 пробе. Содержания по фракциям изменяются в следующих пределах:

```
>2,5 мм – не обнаружено;

2,5 мм – 1,25 мм – от 0,0 до 0,3 %;

1,25 мм – 1,0 мм – от 0,0 до 0,2 %;

1,0 мм – 0,8 мм – от 0,0 до 0,3 %;

0,8 мм – 0,63 мм – от 0,0 до 0,4 %;

0,63 мм – 0,4 мм – от 0,2 до 1,6 %;

0,4 мм – 0,315 мм – от 0,5 до 10,2 %;

0,315 мм – 0,2 мм – от 14,8 до 66,3 %;

0,2 мм – 0,16 мм – от 7,3 до 27,9 %;

0,16 мм – 0,1 мм – от 11,0 до 55,8 %;

0,1 мм – 0,05 мм – от 0,4 до 1,4 %.
```

Полный рассев песков на ситах на Восточном участке производился по 8 пробам. Содержания по фракциям изменяются в следующих пределах:

```
>2,5 мм – не обнаружено;

2,5 мм – 1,25 мм – от 0,0 до 0,1 %;

1,25 мм – 1,0 мм – от 0,0 до 0,1 %;

1,0 мм – 0,8 мм – от 0,0 до 1,5 %;

0,8 мм – 0,63 мм – от 0,0 до 7,7 %;

0,63 мм – 0,4 мм – от 0,2 до 7,9 %;

0,4 мм – 0,315 мм – от 1,1 до 8,6 %;

0,315 мм – 0,2 мм – от 14, до 68,6 %;

0,2 мм – 0,16 мм – от 7,4 до 26,1 %;

0,16 мм – 0,1 мм – от 8,9 до 43,0 %;

0,1 мм – 0,05 мм – от 0,3 до 4,1 %.
```

По приведенным даным результатов гранулометрии установлено, что пески месторождения характеризуются высоким содержанием основной рабочей фракции, которая составляет в основном свыше 95 %. Содржание фракции более 0,8 мм составляет менее 5 %, фракции менее 0,1 мм, которая включает и глинистые частицы, менее 15 %, что удовлетворяет требованиям ГОСТ 22551-77.

Химический состав пород

Рядовые пробы стекольного песка Западного участка характеризуются следующим составом:

Содержание кремнезема изменяется от 96,77 до 99,52 % и по участку распределяется следующим образом: <96,0 % - не обнаружено; от 96,0 до 98,0 % - 5 проб (12,8 %); от >98,0 до 98,5 % - 3 пробы (7,7 %); >98,5 до 99,0 % - 23 пробы (58,9 %); >99,0 до 99,52 % - 8 проб (20,6 %).

Содержание глинезема изменяется от 0,0 до 2,10 % и по участку распределяется следующим образом: <0,2 % - 1 проба (2,6 %); от 0,2 до 0,6 % - 17 проб (43,6 %); >0,6 до 1,5 % - 16 проб (41,0 %); >1,5 до 4,0 % - 5 проб (12,8 %).

Содержание окиси железа изменяется от 0,040 до 0,502 % и по участку распределяется следующим образом: от 0,04 до 0,08 % - 19 проб (48,7 %); >0,08 до 0,1 % - 5 проб (12,8 %); >0,1 до 0,15 % - 9 проб (23,1 %); >0,15 до 0,25 % - 4 пробы (10,2 %); >0,25 % - 2 пробы (5,2 %).

Содержание окиси титана колеблется в пределах от 0.012 до 0.114 %.

Содержание окиси хрома от <0,0005 до 0,001 %.

Рядовые пробы стекольного песка Восточного участка характеризуются следующим составом:

Содержание кремнезема изменяется от 97,46 до 98,80 % и по участку распределяется следующим образом: <96,0 % - не обнаружено; от 96,0 до 98,0 % - 3 пробы (21,4 %); от >98,0 до 98,5 % - 8 проб (57,1 %); >98,5 до 99,0 % - 3 пробы (21,5 %); >99,0 — не обнаружено.

Содержание глинезема изменяется от 0.76 до 1.44 % и по участку распределяется следующим образом: от 0.6 до 1.5 % - 14 проб (100 %).

Содержание окиси железа изменяется от 0,050 до 0,34 % и по участку распределяется следующим образом: от 0,05 до 0,08 % - 3 пробы (21,4 %); >0,08 до 0,1 % - 1 проба (7,1 %); >0,1 до 0,15 % - 6 проб (42,9 %); >0,15 до 0,25 % - 2 пробы (14,3 %); > 0,25 % - 2 пробы (14,3 %).

Содержание окиси титана колеблется в пределах от 0,032 до 0,134 %.

Содержание окиси хрома от <0,001 до 0,0021 %.

Приведенные результаты химического анализа рядовых проб песков показывают, что они удовлетворяют требованиям ГОСТ 22551-77 по содержанию основных компонентов.

Физико-механиеские свойства стекольных песков

Естественная влажность сухих песков колеблется в пределах от 1,51 до 3,53 % и в среднем составляет 2,34 %.

Полная влагоемкость песков составляет от 18,7 до 21,1 %, что в среднем составляет 20,14 %, а полная молекулярная влагоемкость – от 0,80 до 3,55 %, в среднем 2,16 %.

Водоотдача изменяется от 14,1 до 18,0 %, в среднем составляет 16,46 %.

Угол естественного откоса псков в сухом состояни именяется в пределах $33-35^{\circ}$, под водой $-23-28^{\circ}$.

Пористотсть песков в предельно-рыхлом состоянии изменяется в пределах от 46,0 до 48,5 %, с реднем 47,38 %, в предельно плотном состоянии – от 35,8 до 41,0 %, в среднем 39,76 %.

Объемная масса предельно-рыхлого сложения измняется в пределах от 1,33 до 1,42 г/см³ и в среднем составляет 1,37 г/см³, а в предельно-плотном от 1,54 до 1,65 г/см³, в среднем 1,59 г/см³. Удельная масса клеблется в пределах от 2,58 до 2,61 г/см³, в среднем 2,59 г/см³.

Коэффициент фильтрации изменяется от 12,61 до 19,34 м/сутки, в среднем составляет 17,8 м/сутки.

Результаты изучения вещественного состава

Изучение вещественного состава Западного и Восточного участков производилось по групповым (объедененным) пробам (4 пробы).

Исходный материал проб характеризуется невыдержанным гранулометрическим составом и высоким содержанием кварца (99,91-99,96 %). Загрязняющие примеси представлены лейкоксеном (от 0,01 до 0,03 %), турмалином (от 0,01 до 0,03 %), амфиболами (от ед. зн. до 0,02 %), эпидотом (от ед. зн. до 0,03 %), дистеном (от ед. зн. до 0,02 %). Минералы ставролит, рутил, циркон, андалузит, полевой шпат, ильменит, сфен присутствуют в единичных знаках.

Зерна кварца прозрачные, иногда имеют различные оттенки и обусловлены наличием тонкодисперсных глинисто-железистых включений или примазок и корочек по ним.

В результате изучения вещественного состава установлено, что пески месторождения характеризуются высоким содержанием кварца, низким содержанием вредных примесей и могут явиться хорошим сырьем для использования в стекольном производстве.

Технологические испытания

Рациональный анализ. Минеральные примеси в кварцевом песке могут находиться в различных структурных формах, что необходимо учитывать при обогащении, т.к. форма нахождения минерала в значительной степени определяет принципиальную возможность и эффективность использования того тлт иного метода его извлечения.

Минералы, входящие в состав песков, подразделяются на группы:

глинисые минералы;

зернистые минеральные примеси;

пленочные минеральные примеси, находящиеся на поверхности зерен кварца (гидроокислы железа и марганца, пленки силикатов железа);

твердые и газово-жидкие минеральные включения внутри зерен кварца;

структурные примеси в кварце.

Для оценки распределения железа и титана по вышеуказанным группам и был проведен рациональный анализ, сущность которого заключается в последовательном выделении всех групп примесей из исходных песков.

Глинистые минералы определялись методом седиментации. Для удаления зернистых минеральных примесей, пробы после обесшламливания подвергали разделению в тяжелой жидкости с удельным весом 2,9.

Легкая фракция (кварц) после раделения в тяжелой жидкости подвергалась обаботке горячим раствором соляной кислоты для удаления с поверхности зерен кварца и из микротрещин пленочных минеральных примесей. Затем обработанный соляной кислотой кварцевый песок измельчался и обрабатывался концентрированной серной кислотой или царской водкой для растворения высвобожденных тонких включений минералов в кварце. Содержание вредных примесей в остатке после обработки кислотами является пределом обогатимости кваревого песка и характеризует его структурные примеси.

Рациональным анализом установлено, что глинистые минералы (менее 20 микрон) в стекольных песках практически отсутсвуют. Зернистые минеральные примеси составляют незначительное количество. Из 17 исследованных проб в 10-ти пробах зернистых минеральных примесей не выделено и только в 7 пробах извлечение этих примесей составляет от 0,88 до 21,25 % от исходного содержания.

Основную часть вредных примесей составляют пленочные минеральные примеси. Извлечение их составляет от 47,5 до 96,16 % от исходного содержания железосодержащих примесей. Извлечение тонких минеральных включений из зерен кварца происходит при измельчении их до крупности 50микрон с обработкой царско водкой и конентрированной серной кислотой. Извлечение железа при этом анализе составляет от 1,87 до 17,57 %, а извлечение титансодержащих примесей от 6,9 до 81,48 от исходного содержания окиси титана.

Структурные минеральные примеси, которые являются пределом обогатимости, составляют: окислов железа от 0,008 до 0,015м%, окиси титана от 0,004 до 0,032 %.

Магнитная сепарация не дала удовлетворительных результатов, содержание железистых примесей снижатся незначительно и колеблется от 0,002 до 0,02 %.

Результаты массовой доли тяжелой фракции (более 2,9) в классе -0.8+01 мм чволятся к следующему: выход в процентном отношении тяжелой фракции (магнитная + I и II электромагнитные фракции) составляют от 0,12 до 0,47 %. Исключение составляет проба Γ -05/3-т 1,43 %. Выход легкой фракции составил от 99,53 до 99,88 %.

Краткая технологическая характеристика. Особенностью для всех проб стекольных песков Айсаринского месторождения является высокое содержание кварца (до 99,96 %) и низкое содержание загрязняющих примесей. Приведенная магнитная сепарация исходных песков с применением магнита Сочнева положительных результатов не дала (содержание железотитановых примесей снижается незначительно и колеблется от 0,002 до 0,02 %). В лабораторных условиях проведена варка стекла на составе стекольной массы: песок -71 %, MgO -4 %, CaO -8 %, Na₂CO₃ -15 %, K₂CO₃ -1 %, каолин -1 %.

Варка стекольной массы производилась в платиновых тиглях при температуре 1450° на марках Т, ПС-50, С-070-1, Б-100-1, ПБ-150-1 из исходного необогащенного песка и песка после магнитной сепарации. Сваренная стекольная масса из исходного песка (кроме марки Т) получилась чистая и прозрачная стекломасса со светло-зеленым и зеленовато-голубым оттенком соответственно. Из других перечисленных марок – чистая и прозрачная.

На Щучинском стекольном заводе проведенной опытной варкой стекла из песков месторождения получены положительные результаты по качеству стекла с рекомендацией их использования для производства стекловолокна, консервной тары, бутылок из полубелого стекла, пеностекла и аккумуляторных банок.

В результате технологических испытаний предшественниками сделан вывод: пески месторождения имеют высокое содержаниеремнезема и невысокое содержание вредных примесей. По своему качеству отвечают требованиям ГОСТ 22551-77 и могут использоваться в природном виде как сырье для стекольной промышленности.

Качество стекольных песоков может быть улучшено снижением содержания железа в процессе обогащения методом ультразвуковой оттирки или оттирки в кислой среде.

Следует отметить, что схема обогащения стекольных песков для условий Северного Казахстана разработана для Апановского месторождения, расположенного в Костанайской обоасти. В Государственном институте стекла (ГИС, г. Москва) в 1970 г. Проведены технологические испытания 11 проб. Рекомендованная схема обогащения: грохочение по классу $0.8\,$ мм — обесшдамливание по классу $0.053\,$ мм — флотация — вторичное обесшламливание — флотоотирка — сушка. Из песков с содержанием Fe_2O_3 — $0.04\,$ % — $0.08\,$ %. Пески с содержанием Fe_2O_3 в концентрате $0.1\,$ % и выше).

Гидрогеологические условия месторождения

В районе работ проведены многочисленные гидрогеологические исследования, в том числе гидрогеологическая съемка масштаба 1:200000. В 1978 г. была составлена кондиционная гидрогеологическая карта масштаба 1:200000 с оценкой запасов подземных вод по категории C_2 листа N-42-XXX (авторы: Тихонов Л.С., Бастанжиева Е.Л. (Северо-Казахстанская гидрогеологическая экспедиция). Данные по всем гидрогеологическим скважинам сведены в каталог опорных водопунктов к гидрогеологической карте масштаба 1:200000.

В процессе гидрогеологической съемки листа N-42-XXX были выделены водоносные горизонты кристаллического фундамента и покровного комплекса.

Распространены следующие водоносные горизонты: аллювиальных и озерных отложений

 $Q_{\text{III-IV}}$, аллювиальных отложений $Q_{\text{II-IV}}$, эоценовых отложений (P_2) , Mz-Kz коры выветривания, водоносные зоны открытой трещиноватости ордовикских образований и разновозрастных гранитоидов.

Слабоводоносный верхнечетвертичный-современный озерный горизонт ($1Q_{III-IV}$). Приурочен к песчано-глинистым отложениям, выполняющим котловины озер, мощностью от 0,4 до 8,3 м и коэффициентом фильтрации до 1,5 м/сут, степень обводненности их, за редким исключением, незначительная. Воды преимущественно грунтовые, реже напорные, глубина залегания уровней находится чаще всего в пределах 1-5 м, местами до 13 м. Дебиты скважин и колодцев 0,01-0,3 л/с при понижениях 1,2-3,0 м. минерализация воды изменяется от пресной и весьма солоноватой (0,4-1,3 г/дм³) до слабосолоноватой и умеренно солоноватой (2,5-3,1 г/дм³). Химический состав слабоминерализованных вод отличается пестротой, нередко смешанный трехкомпонентный, соленые воды хлоридные натриево-магниевые. Практически значение озерного горизонта ограничено, пресные воды используются для мелких нужд посредством колодцев.

Водоносный среднечетвертичный-современный аллювиальный горизонт Представлен песчаными горизонтами, вскрытыми в двух уровнях: на глубине 2,0-4,5 м, мощностью от 0,5 до 2,0 м и на глубине 9,5-16,0 м мощностью 1,0-3,0 м. водоносный горизонт представлен глинистыми песками. Воды верхнего уровня безнапорные, второго напорные. Высота напора достигает 4-10 м, водообильность глиняных песков от 0,1 до 1 л/сек при максимально возможных понижениях 2-11 м. Удельные дебиты скважин изменяются от тысячных до сотых долей л/сек. Уровни подземных вод устанавливаются на глубине от 1,8 до 6 м, преимущественно 4,5 м. Минерализация вод пестрая и колеблется преимущественно от 0,5 г/л до 4,4 г/л. По химическому составу воды с минерализацией до 1 г/л гидрокарбонатные, а выше – хлоридные со смешанным составом катионов. Область питания водоносного горизонта совпадает сего распространением. Питание происходит за счет атмосферных осадков и в период таяния снега. Наибольший практический интерес водоносный горизонт эоценовых отложений, водоносные зоны девонских и ордовикских образований.

Водоносный горизонт эоценовых отложений приурочен к пескам и песчаникам, безнапорный, дебиты 0.03-3.9 л/сек, минерализация 0.2-0.7 г/л. Тип воды гидрокарбонатно-хлоридный кальциево-натриевый. Предварительные прогнозно-эксплуатационные запасы -пол этому горизонту 118 л/сек.

Водоносная зона в девонских гравелитах, песчаниках, известняках, мергелях, конгломератах, алевролитах, аргиллитах — дебиты 0.02-11.6 п/сек, минерализация 0.1-7.6 г/л. Состав воды чаще всего гидрокабонатно-хлоридный натриево-кальциевый. Эксплуатационные запасы по двум месторождениям 173 п/сек.

Водоносная зона в ордовикских песчаниках, алевролитах, конгломератах, порфиритах и их туфах, туфопесчаниках, линзах известняков — дебиты от 0,07 до 9,6 л/сек, минерализаия воды чаще 0,3-3 г/л. Тип воды хлоридный и гидрокарбонатно-хлоридный натриевый.

Расчет притока возможных максимальных водопритоков за счет твердых атмосферных и ливневых осадков

В процессе разведки месторождения подземные воды на участках Западный и Восточный на глубину разведки не встречены.

Месторождение приурочено к склонам положительных форм микрорельефа (холмы), поэтому паводковые воды не окажут влияния на природные водопритоки в карьеры.

Гидрогеологические условия не будут препятствовать разработке месторождения открытым способом. Водопритоки в проектные карьеры возможны только за счет атмосферных твердых и ливневых осадков, выпадающих непосредственно на площадь карьера.

Расчет возможных максимальных водопритоков за счет твердых атмосферных и ливневых осадков, выпадающих непосредственно на площади карьера выполнен по формуле:

$$Q = \frac{F \times N}{T}, \pi/c$$
(5.1/

где: Q – водоприток в карьер, $M^3/\text{сут}$;

 F_1 – площадь Западного карьера, 240000м²;

 F_2 – площадь Восточного карьера, 160000м²;

N – максимальное количество эффективных осадков (с ноября по март);

T – период откачки снеготалых вод, принимается равным 15 суткам (средняя продолжительность таяния снега).

Расчет притока воды за счет ливневых осадков, выпадающих непосредственно на площади карьера, выполнен исходя из фактического наиболее интенсивного ливня — 43,2 мм (Справочник по климату СССР, выпуск 18, КазССР, часть III, Гидрометиздат, 1968 г.), максимальное количество эффективных (твердых) осадков — 155 мм (1973 г.).

Экстремальный кратковременный приток за счет максимального ливня на Западном участке составит:

$$Q = \frac{240000,0x\ 0,0432}{24} = 432,0\ \text{m}^3/\text{q} = 120\ \text{n/c}$$

Экстремальный кратковременный приток за счет максимального ливня на Восточном участке составит:

$$Q = \frac{160000,0x\ 0,0432}{24} = 288,0\ \text{m}^3/\text{q} = 80,0\ \pi/\text{c}$$

Расчет водопритока за счет эффективных (твердых) осадков, выпадающих непосредственно на площади Западного участка составит:

$$Q = \frac{240000 \times 0{,}155}{15} = 2480{,}0 \text{ m}^3/\text{cyt} = 103{,}3 \text{ m}^3/\text{q} = 28{,}7 \text{ m/c}$$

Расчет водопритока за счет эффективных (твердых) осадков, выпадающих непосредственно на площади Восточного участка составит:

$$Q = \frac{160000 \times 0{,}155}{15} = 1653{,}3 \text{ m}^3/\text{cyt} = 68{,}9 \text{ m}^3/\text{q} = 19{,}1 \text{ }\pi/\text{c}$$

Объем возможных максимальных водопритоков в карьеры приведены в таблице 1.5.1.

Таблица 1.5.1

Расчетные водопритоки в карьер						
Вини волоновитоков	Водоприток					
Виды водопритоков	M^3/H	л/с				
Западный участок						
Приток за счет таяния снежного покрова	103,3	28,7				
Возможный экстремальный кратковременный приток при	432,0	120,0				
выпадении максимального ливня						
Восточный участок						
Приток за счет таяния снежного покрова	68,9	19,1				
Возможный экстремальный кратковременный приток при	288,0	80,0				
выпадении максимального ливня						

Приведенные расчеты свидетельствуют о маломощности возможных сезонных экстремальных водопритоков в карьеры при проведении добычных работ.

Водоснабжение планируется осуществлять путем завоза воды из близлежащих населенных пунктов. По мере отработки карьеров возможен отбор и использование ливневых осадков и талых вод для удовлетворения потребности предприятия в технической воде.

Горнотехнические условия разработки

В геологическом строении участков принимают участие эоценовые отложения. Стекольные пески разведаны на глубину $10\,$ м. Мощность продуктивного горизонта Западного участка колеблется от $6,8\,$ до $9,5\,$ м, в среднем составляя $8,6\,$ м, Восточного участка - от $6,4\,$ до $9,4\,$ м, в среднем составляя $8,4\,$ м.

Вскрышные породы представлены почвенно-растительным слоем, супесями и суглинком. Мощность вскрышных пород на Западном участке колеблется в пределах от 0,5 до 3,0 м, в среднем 1,3 м, на Восточном участке - от 0,6 до 2,5 м, в среднем 1,4 м.

Горнотехнические условия месторождения благоприятны для открытого способа разработки.

Вскрышные породы могут быть удалены любыми средствами механизации, чему способствует ровная поверхность участка и кровли продуктивной толщи, а также рыхлое состояние пород вскрыши. Наиболее целесообразно на вскрышных работах использовать бульдозеры, скрепера, которые при сравнительно небольшом годовом объеме вскрышных работ и дальности транспортировки (не более 150 – 200 м) могут осуществить полный цикл работ по удалению вскрышных пород. Перед удалением вскрышных пород необходимо производить зачистку площади под будущий карьер бульдозером с целью снятия почвенно-растительного слоя. Почвенно-растительный слой необходимо транспортировать и складировать автотранспортными средствами в отдельный отвал для дальнейшего его использования для рекультивации отработанного карьера.

В первую очередь рекомендуется отрабатывать запасы в блоке категории В.

Полезная толща и вскрышные породы месторождения не обводнены.

Отработку месторождения стекольных песков предполагается осуществить одним добычным уступом высотой 10 м. Генеральный угол погашения бортов карьеров при отстройке их проектного положения на конец отработки (учтенный при оконтуривании запасов) составляет 30° .

Подсчет запасов

Подсчет запасов стекольных песковЗападного и Восточного участков Айсаринского месторождения проведен в контуре геологического отвода, а также в соответствии с техническими условиями и результатами лабораторных исследований.

При подсчете запасов использованы следующие параметры кондиций:

- глубина разведки 10 м, вне зависимости от рельефа местности;
- средняя мощность вскрышных пород не более 2 м;
- минимальная мощность продуктивной толщи -2 м;
- отдельно посчитать запасы почвенно-растительного слоя;
- качество кварцевых песков должно отвечать требованиям ГОСТ 22551-77;
- допустимое соотношение мощности вскрышных пород к мощности полезной толщи не более 1:3.

Подсчет запасов производился в проектных контурах карьера (с учетом угла откоса карьера -30°) отстроенного по геологоразведочным выработкам в геологических границах.

В соответствии с Классификацией запасов и прогнозных ресурсов твердых полезных ископаемых месторождение в целом по природным факторам отнесено ко II группе, поэтому разведанные запасы классифицируются по категориям В и C_1 .

Категория В выделана на площади разбуренной по сети близкой к 50x100 м, а контур запасов категории С₁произведен по выработкам, расположенным по сети близкой к200x400 м.

Учитывая простое геологическое строение участков и методику разведки подсчет запасов выполнен методом геологических блоков.

Площадь блока подсчитана с помощью компьютерной программы AutoCAD.

Поскольку стекольные пески месторождения по качеству неравномерны, выделение и геометризация их по маркам, а тем более по сортам, не представляется возможным., в связи с чем, подсчет запасов произведен по параметрам, удовлетворяющим требованиям ГОСТ 22551-77.

В связи с тем, что выделение и геометризация стекольных песков по маркам не

представляется возможным, запасы по маркам выделены статистически в процентах.

Так как выделение полезной толщи проводилось по качественным показателям (содержание SiO_2 , Fe_2O_3 , Al_2O_3 и грансоставу) контуры подсчета запасов проведены по скважинам, вскрывшим кондиционные пески.

Значение качественных показателей по выработкам вычислялись методом средневзвешенного на длину опробованного интервала, что обусловлено различной длиной проб и неравномерным содержанием компонентов.

Оконтуривание песков в разрезе по промышленным категориям производилось в соответствии с техническими условиями: нижняя граница контура подсчета запасов проведена на мощность до глубины 10 м.

Подсчетная мощность полезного ископаемого (вскрыши) по блоку определялась как среднеарифметическое значение мощностей по выработкам в контуре блока по формуле:

$$M_{cp} = (M_1 + M_2 + ... + M_n)/n/1.7.1/$$

где: M_1 , M_2 ... M_n — мощность продуктивной толщи (вскрыши) по выработкам, м; n— количество скважин в контуре блока.

Объемы блоков вычислялись по формуле:

$$V = S * M_{cp}. /1.7.2/$$

где: м_{ср}. – средняя мощность полезного ископаемого (вскрыши), м;

V – объем блока, куб. м;

S-средняя площадь блока в плане, м.

Для подсчета запасов стекольных песков принята величина объемной массы -1,65 т/м³ при естественной влажности для не обводненных песков -2,34 %.

Запасы стекольных песков даны в тоннах путем умножения объема блоков на объемную массу.

Результаты подсчета балансовых запасовприведены в нижеследующих таблицах.

Таблица 1.7.1

Расчет площадей по подсчетным блокам по Западному участку категория опорные точки фигуры площадь блока площадь блока средняя по дну, M^2 запасов и по поверхности, площадь \mathbf{M}^2 блока, M^2 номер блока iв c-16, c-17, c-18, c-19, c-20, c-20000 20000 20000 21, c-22, c-23 c-1, c-2, c-3, c-4, c-19, c-16, c-106852 99910.8 92969.7 ic_1 17, c-18, c-20, c-6 c-4, c-19, c-21, c-22, c-23, c-20, 111906,1 97751,4 104828,7 iic_1 c-6, c-9, c-8, c-7

Таблица 1.7.2

Расчет площадей по подсчетным блокам по Восточному участку

	тистет питощиден но	noge retirbant offore	tivi iio bocto iiiomi	j mernej
категория запасов и номер блока	опорные точки фигуры	площадь блока по поверхности, м ²	площадь блока по дну, м ²	средняя площадь блока, м ²
ic ₁	c-10, c-11, c-12, c-13	79001,7	66264,0	72632,8
iic ₁	c-12, c-13, c-14, c-15	79882,0	65783,4	72832,7

Таблица 1.7.3

Расчет средних мощностей продуктивной толщи и вскрышных пород по Западному участку

nopog no sunugnom; y morny							
номер	номер	глубина	мощность вскрышных пород, м	мощность			

блока и категория запасов	скважины	скважины, м	всего	в т.ч. прс	продуктивной толщи, м
1	2	4	5	6	7
	c-16	10,0	0,6	0,3	9,4
	c-17	10,0	3,0	0,3	7,0
	c-18	10,0	1,1	0,3	8,9
	c-19	10,0	1,0	0,3	9,0
ів	c-20	10,0	1,3	0,3	8,7
	c-21	10,0	1,2	0,3	8,8
	c-22	10,0	0,6	0,3	9,4
	c-23	10,0	1,0	0,3	9,0
	c-5	10,0	1,0	0,3	9,0
итого п	о блоку ів	90,0	10,8	2,7	79,2
среднее	по блоку ів	10,0	1,2	0,3	8,8
	c-1	10,0	1,0	0,4	9,0
	c-2	10,0	1,5	0,3	8,5
	c-3	10,0	2,0	0,3	8,0
	c-4	10,0	0,5	0,5	9,5
ic_1	c-6	10,0	2,2	0,4	6,8
	c-16	10,0	0,6	0,3	9,4
	c-17	10,0	3,0	0,3	7,0
	c-18	10,0	1,1	0,3	8,9
	c-19	10,0	1,0	0,3	9,0
	c-20	10,0	1,3	0,3	8,7
итого по	о блоку іс1	100,0	14,2	3,4	84,8
среднее і	по блоку іс ₁	10,0	1,42	0,34	8,48
	c-4	10,0	0,5	0,5	9,5
	c-6	10,0	2,2	0,4	6,8
	c-7	10,0	1,0	0,3	9,0
	c-8	10,0	1,6	0,4	6,9
	c-9	10,0	1,0	0,4	9,0
	c-19	10,0	1,0	0,3	9,0
	c-20	10,0	1,3	0,3	8,7
	c-21	10,0	1,2	0,3	8,8
	c-22	10,0	0,6	0,3	9,4
	c-23	10,0	1,0	0,3	9,0
	о блоку ііс ₁	100,0	11,4	3,5	86,1
среднее г	ю блоку ііс ₁	10,0	1,14	0,35	8,61
	сего	290,0	36,4	9,6	250,1
среднее по участку		10,0	1,25	0,33	8,63

Таблица 1.7.4 Расчет средних мощностей продуктивной толщи и вскрышных пород по Восточному участку

номер	номер	глубина	мощность вск	хрышных пород, м	мощность
блока и	скважины	скважины, м	всего	в т.ч. прс	продуктивной
категория					толщи, м
запасов					
1	2	4	5	6	7
	c-10	10,0	0,8	0,4	9,2
ic_1	c-11	10,0	2,5	0,4	6,5
	c-12	10,0	2,2	0,4	7,8
	c-13		1,4	0,4	6,6
итого по	итого по блоку ic_1		6,9 1,6		30,1
среднее п	среднее по блоку ic ₁		1,72	0,4	7,52
c-12		10,0	2,2	0,4	7,8

c-13	3 10,0	1,4	0,4	6,6
c-14	10,0	1,0	0,3	9,0
c-15	5 10,0	0,6	0,3	9,4
итого по блоку ііс	40,0	5,2	1,4	32,8
среднее по блоку іі	c ₁ 10,0	1,3	0,35	8,2
всего	80,0	12,1	3,0	62,9
среднее по участк	y 10,0	1,51	0,375	7,86

Западный участок:

Блок IB – выделен в контуре выработок, пройденных по сети 50x100.

Среднее содержание кремнезема по блоку составляет $98,7\,\%$, окиси железа $-0,097\,\%$, глинозема $-0,53\,\%$, фракции $>0,8-0,143\,\%$, фракции $<0,1-2,9\,\%$. Средняя марка песка по блоку -5-100-1.

Блок IC_1 -выделен в контуре выработок, пройденных по сети 200x400.

Среднее содержание кремнезема по блоку составляет 98,7 %, окиси железа -0.102 %, глинозема -0.71 %, фракции >0.8-0.1 %, фракции <0.1-3.34 %. Средняя марка песка по блоку - ПБ-150-1.

Блок IIC_1 -выделен в контуре выработок, пройденных по сети 200x400.

Среднее содержание кремнезема по блоку составляет 98,8 %, окиси железа -0.098 %, глинозема -0.76 %, фракции >0.8-0.13 %, фракции <0.1-2.9 %. Средняя марка песка по блоку - Б-100-1.

Восточный участок

Блок IC_1 -выделен в контуре выработок, пройденных по сети 200x400.

Среднее содержание кремнезема по блоку составляет 98,4 %, окиси железа - 0,144 %, глинозема - 1,13 %, фракции >0,8 - 0,1 %, фракции <0,1 - 4,74 %. Средняя марка песка по блоку - ПБ-150-1.

Блок IIC_1 -выделен в контуре выработок, пройденных по сети 200x400.

Среднее содержание кремнезема по блоку составляет 98,3 %, окиси железа -0.134 %, глинозема -0.92 %, фракции >0.8-0.19 %, фракции <0.1-3.65 %. Средняя марка песка по блоку $-\Pi B-150-1$.

Таблица 1.7.5

Содержания песков по маркам

	содержания несков по маркам									
	западный участок									,
марка	вс-	вс-	c-070-	c-070-	б-100-	б-100-	пб-	пб-	пс-250	T
	050-1	050-2	1	2	1	2	150-1	150-2		
содерж.,	2,6	2,6	15,4	10,2	17,9	10,2	23,1	2,6	10,2	5,2
%										
				восточ	ный учас	ток				
марка	вс-	вс-	c-070-	c-070-	б-100-	б-100-	пб-	пб-	пс-250	T
	050-1	050-2	1	2	1	2	150-1	150-2		
содерж.,	-	7,1	14,3	-	-	7,1	28,6	14,3	14,3	14,3
%										

Результаты подсчета запасов полезного ископаемого и объема вскрышных пород Западного и Восточного участков Айсаринского месторождения приведены в нижеследующих таблицах.

ЦК МКЗ при МД «Севказнедра» утверждены балансовые запасы стекольного пескаЗападного и Восточного участков Айсаринского месторождения, подсчитанные по состоянию на 01.05.2015 г. по категории В в количестве 290,4 тыс.т, по категории C_1 в количестве 4732,9тыс. т, в т.ч. по Западному участку по категории B - 290,4 тыс.т, по категории $C_1 - 2887,1$ тыс.т; по Восточному участку по категории $C_1 - 1845,8$ тыс.т. (Протокол №30 от 26.07.2022г.)

Вскрышные породы составляют 542,9 тыс. 3 , в том числе ПРС – 141,0 тыс. 3 .

Таблица 1.7.6

Результаты подсчета запасов продуктивной толщи Западного участка

номер	площадь	средняя	объем	объемный	запасы	сред	RRHJ	объ	ем
блока,	блока, \mathbf{m}^2	мощность	полезного	вес песка,	песка,	мощн	ность	вскры	шных
категория		полезной	ископаемого,	T/M^3	тыс. т	вскры	шных	пород	, тыс.
запасов		толщи,	\mathbf{M}^3			порс	д, м	M	3
		M				всего	в т.ч.	всего	в т.ч.
							прс		прс
iв	20000	8,8	176000,0	1,65	290,4	1,2	0,3	24,0	6,0
ic ₁	99910,8	8,48	847243,6	1,65	1397,9	1,42	0,34	151,7	36,3
iic ₁	104828,7	8,61	902575,1	1,65	1489,2	1,14	0,35	127,5	39,2

Таблица 1.7.7

Результаты подсчета запасов продуктивной толщи Восточного участка

	ı csy.	пвтаты подст	CTA Janacob n	родуктивн	ои толщ	n Duciu	moro y	iacina	
номер	площадь	средняя	объем	объемный	запасы	сред	RRH J	объ	ьем
блока,	блока,	мощность	полезного	вес песка,	песка,	мощі	ность	вскры	шных
категори	\mathbf{M}^2	полезной	ископаемого,	T/M^3	тыс. т	вскры	шных	пород,	гыс. м ³
я запасов		толщи,	\mathbf{M}^3			поро	од, м		
		M				всего	в т.ч.	всего	в т.ч.
							прс		прс
ic ₁	72632,8	7,52	546198,6	1,65	901,2	1,72	0,4	135,9	31,6
iic ₁	72832,7	7,86	572465,0	1,65	944,6	1,3	0,35	103,8	27,9

Горные работы Характеристика месторождения

Западный и Восточный участки Айсаринского месторождения расположены в Акжарском районе Северо-Казахстанской области области. Правом на недропользование является Акт удостоверяющий горный отвод №764от 20.01.2023г, выданный МД «Севказнедра» (Приложение 1).

Добыча кварцевого песка на Айсаринском месторождении будет производитьсяодним добычным уступом высотой от 6,8 до 9,5 м, в среднем составляя 8,6 м (Западный участок) и высотой от 6,4 до 9,4 м, в среднем составляя 8,4 м (Восточнй участок) на полную разведанную мощность полезной толщи, без предварительного рыхления.

Разработка Айсаринского месторождения будет начата с Западного участка.

Максимальная годовая производительность карьера в 2023-2034 составит 100тыс.м³. Режим работы карьера принят 7 месяцев (с апреля по ноябрь) при 6-дневной рабочей неделе и составляет:

количество рабочих дней в году – 180; количество рабочих дней в году по добыче – 165; количество рабочих дней в году по вскрыше – 15; количество рабочих смен в сутки – 1; продолжительность смены – 8 часов.

Границы отработки и параметры карьера

Границы карьера установлены с учетом контура подсчета запасов по площади и на глубину в зависимости от физико-механических свойств пород. Учитывая мощность полезного ископаемого, проектом предусматривается разработка месторождений одним уступом высотой до 9,5м на полную разведанную мощность полезной толщи. Согласно «Нормам технологического проектирования предприятий промышленности нерудных строительных материалов» углы откосов рабочих бортов карьера принимаются 30^{0} .

Размеры планируемых карьеров на конец отработки приведены в таблице 2.2.1:

Таблица 2.2.1

Параметры карьеров

	34
Параметры	Значение

	Западный участок	Восточный участок
- средняя длина:		
по верху, м	600	810
по низу, м	395	776
- средняя ширина:		
по верху, м	580	200
по низу, м	365	172
- площадь, км ²	0,24	0,16
- средняя глубина карьера, м	9,9	9,8
- мощность полезного ископаемого, м	8,6	8,4
- мощность вскрыши, м	1,3	1,4

Мощность продуктивного горизонта Западного участка колеблется от 6,8 до 9,5 м, в среднем составляя 8,6 м, Восточного участка - от 6,4 до 9,4 м, в среднем составляя 8,4 м.

Вскрышные породы представлены почвенно-растительным слоем, супесями и суглинком. Мощность вскрышных пород на Западном участке колеблется в пределах от 0.5 до 3.0 м, в среднем 1.3 м, на Восточном участке - от 0.6 до 2.5 м, в среднем 1.4 м.

Плотность кварцевого песка месторождения – 1,65г/см³.

Плотность вскрышных пород месторождения— $1,6 \Gamma/\text{см}^3$.

По трудоемкости экскавации пески продуктивной толщи относятся к II категории, вскрышные породы к I категории.

Горно-геологические условия отработки месторождения предопределяют открытый способ отработки карьера. Выемка песков после удаления почвенно-растительного слоя будет вестись одним уступом.

Углы откосов должны уточняться в период эксплуатации путем систематических маркшейдерских замеров, наблюдений и изучения физико-механических свойств пород разрабатываемыхместорождений.

Проектные потери полезного ископаемого рассматриваются в соответствии с «Отраслевой инструкцией по определению и учету потерь нерудных строительных материалов при добыче».

Эксплуатационные потери І группа

Т.к. границы проектируемого карьера определились контурами утвержденных запасов полезного ископаемого в пределах месторождения по площади и на глубину с учетом разноса бортов, то потерь в бортах не будет.

Эксплуатационные потери ІІ группа

В процессе добычи строительных песков будут предусмотрены меры по исключению засорения продуктивной толщи вскрышными и подстилающими породами.

1)Потери при зачискте

Т.к. при подсчете запасов стекольных песков была учтена охранная подушка над подстилающими полезную толщу глинами мощностью 0,2 м, то потери в подошве исключаются.

2)Потери при транспортировке полезного ископаемого

Согласно «Отраслевой инструкции по определению и учету потерь нерудных строительных материалов при добыче» потери строительного песка при транспортировке составляют 0.5%.

$$\Pi_{TP} = 5.0,5\%$$
, T

где Б – балансовые запасы полезного ископаемого, т

Потери при транспортировке полезного ископаемого на карьере месторождения составят:

$$\Pi_{TP} = 5023,3 \cdot 0,5\% = 25,1_{TMC.T}$$

Коэффициент потерь определяется по формуле:

$$K_{\Pi} = \frac{\Pi_{OBIII}}{3} \cdot 100\%$$

где $\Pi_{\text{ОБЩ}}$ – все потери в контуре проектируемых карьеров, тыс.т; 3 – геологические запасы месторождений, тыс.т.

Коэффициент потерь на карьере участка составит:

$$K_{II} = \frac{25,1}{5023,3} \cdot 100\% = 0,5\%$$

Потери должны удовлетворять «Отраслевой инструкции по определению и учету потерь нерудных строительных материалов при добыче», которой допускается разработка месторождения при потерях не более 10% без пересчета запасов полезного ископаемого.

Сводная таблица запасов, потерь и вскрышных пород сведены в таблицу 2.2.3:

Таблица 2.2.3

Сводная таблица запасов, потерь и вскрышных пород

Параметры	Значение
Геологические запасы, тыс.т	5023,3
Общекарьерные потери, тыс.т	-
Эксплуатационные запасы, тыс.т	5023,3
Потери всего, тыс.т	25,1
Промышленные запасы, тыс.т	4998,2
Общий объем вскрыши, тыс.м ³	542,9
в т.ч. ПРС, тыс.м ³	141
Коэффициент вскрыши, м ³ /т	0,11

Режим работы, производительность карьера

Согласно заданию напроектированиегодовая производительность карьера по полезному ископаемому в плотном теле составляет 100тыс.т. Режим работы карьера 180 рабочих дней в году. Данные по производительности и режиму работы карьера сведена в таблицу 2.3.1.

Таблица 2.3.1

Режим работы карьера

№ пп	Наименование показателей	Един. изм.	Добычные работы	Вскрышные работы
1	Годовая производительность	тыс.м3	100	9,6
2	Суточная производительность	M^3	606	640
3	Сменная производительность	M^3	606	640
4	Число рабочих дней в году	дни	165	15
5	Число смен в сутки	смен	1	1
6	Продолжительность смены	час	8	8

Исходя из принятых показателей производительности карьера и режима работы, а также промышленных (извлекаемых) запасов срок отработки месторождения составит 15лет.

Вскрытие и порядок отработки месторождения. горно-капитальные работы Вскрытие и порядок отработки месторождения

Основными горно-техническими и горно-геологическими условиями, определившими способ вскрытия и разработки месторождения, явились следующие показатели:

- Мощность продуктивной толщи, вошедшая в среднем, составляет 8,6м.
- Мощность вскрышных пород составляет 1,3м.
- Объемная насыпная плотность песка продуктивной толщи составляет 1,65 г/см³.
- Плотность вскрышных пород месторождения 1,6г/см³.
- По трудоемкости экскавации пески продуктивной толщи относятся к II категории, вскрышные породы к I категории.
 - Горно-геологические условия отработки месторождения предопределяют открытый

способ отработки карьера. Выемка песков после удаления почвенно-растительного слоя будет вестись одним уступом.

Разработка полезного ископаемого будет производитьсяодним добычным уступом высотой до 9,9м на полную разведанную мощность полезной толщи, без предварительного рыхления.

Перемещение пород вскрыши в отвал и полезного ископаемого будет осуществляться автосамосвалами КамАЗ-65115.

Элементы системы разработки

а) Высота уступа

Согласно принятой технологической схемы отработки месторождения, полезная толща будет разрабатываться без предварительного рыхления.

Высота уступа принимается, исходя геологического строения месторождений и по условиям безопасности, в соответствии с линейными размерами экскаватора ЕК 270LC и будет составлять не более 6,7м.

б) Ширина заходки экскаватора

Ширина заходки экскаватора принимается исходя из рабочих параметров экскаватора:

$$\coprod_{3.3} = 1.5 \cdot R_{4}, M$$

где $R_{\rm q}$ – радиус черпания экскаватора на уровне стояния, м.

$$III_{3,3} = 1,5 \cdot 10,7 \approx 16,05 M.$$

в) Ширина рабочей площадки

Ширина рабочей площадки при принятой проектом транспортной системы разработки определяется согласно «Нормам технологического проектирования предприятий промышленности нерудных строительных материалов» Приложение II «Методика расчета ширины рабочей площадки на карьере»:

$$\coprod_{P\Pi} = \coprod_{\Im \Im} + \Pi_{\Pi} + 2\Pi_{0} + \Pi_{B}, \mathbf{M}$$

где Π_{Π} — ширина проезжей части принимается согласно СНи Π 2.05.02 — 85 «Автомобильные дороги» и составляет при двухполосном движении 8,5м;

 Π_0 — ширина обочины с нагорной стороны — со стороны вышележащего подуступа, 1,5м;

 Π_{B} – ширина полосы безопасности – призма обрушения, 1м.

$$III_{PTT} = 16,05 + 8,5 + 2 \cdot 1,5 + 1 = 28,55M$$

Минимальная длина фронта работ на месторождении будет составлять 100м.

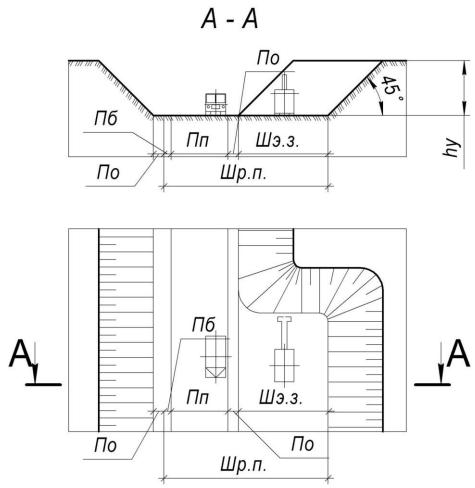


Рисунок. 4. Элементы системы разработки

Горнокапитальные работы

В состав горно-капитальных работ на карьере месторождения входит строительство стационарной наклонной траншеи.

Объемы капитальных траншей карьеров:

Объем стационарной въездной траншеи определяем по формуле:

$$V_{\tau p} = \frac{1}{4} \cdot (2H/tg45^0 + b) \cdot H^2/i , M^3y$$

где Н – перепад высот между началом и окончанием траншеи, м;

b – ширина основания траншеи – 10м;

і - продольный уклон траншеи - 80%.

Объем стационарной въездной траншей месторождения:

$$V_{mp} = \frac{1}{4} \cdot (2 \cdot 9.9/1 + 10) \cdot 9.9^2 / 0.08 = 9.1$$
 тыс.м³

Система разработки

Основные факторы, учтенные при выборе системы разработки:

- А) горно-геологические условия полезного ископаемого;
- Б) физико-механические свойства полезного ископаемого и вскрышных пород;
- В) заданная годовая производительность карьеров 100 тыс.т.
- С учетом вышеперечисленных факторов принимаем следующую систему разработки карьеров:
 - по способу перемещения горной массы транспортная;
 - по развитию рабочей зоны сплошная;
 - по расположению фронта работ продольная;
 - по направлению перемещения фронта работ однобортовая.

Выемочной единицей в данном проекте промышленной разработки является карьер.

Технологическая схема производства горных работ Вскрышные работы и отвалообразование Вскрышные работы

Вскрышные породы представлены почвенно-растительным слоем, супесями и суглинком. Мощность вскрышных пород на Западном участке колеблется в пределах от 0,5 до 3,0 м, в среднем 1,3 м, на Восточном участке - от 0,6 до 2,5 м, в среднем 1,4 м.

Объемная масса вскрышных пород 1,6т/м³. По трудоемкости экскавации вскрышные породы ко I - II категориям.

На проектируемом карьере Западного участка площадью 240000м^2 объем вскрышных пород на месторождении составляет 303,2тыс.м³, в т.ч. ПРС – 81,5тыс.м³.

На проектируемом карьере Западного участка площадью 160000м^2 объем вскрышных пород на месторождении составляет 239,7тыс. M^3 , в т.ч. ПРС – 59,5тыс. M^3 .

Снятие ПРС будет происходить по следующей схеме:

- 1) Бульдозер SD-16 будет перемещать ПРС в гурты;
- 2) Погрузчик ZL50G с вместимостью ковша 3м³ будет грузить ПРС в автосамосвалы Камаз-65115, грузоподъемностью 15т;
- 3) Автосамосвалы Камаз-65115 будут транспортировать ПРС на склад, который будет располагаться на расстояние 10м от карьера вдоль всех его бортов.

Отработку пород внешней вскрыши предполагается осуществлять одним уступом. Погрузочно-выемочные работы по отработке пород внешней вскрыши будет выполняться погрузчиком ZL50G с вместимостью ковша 3м³, транспортирование будет осуществляться автосамосвалами КамАЗ-65115, грузоподъемностью 15т.

Зачистка кровли полезного ископаемого будет производиться бульдозером SD-16. При проведении вскрышных работ принимается следующая схема – погрузчик-автосамосвал-отвал.

Для создания нормальных условий при выемке полезного ископаемого предполагается опережение вскрышных работ перед добычными.

Отвалообразование

Способ отвалообразования принимаем бульдозерный.

Склад ПРС будет располагаться в 10м от карьера вдоль всех карьера Западного участка, общей площадью 4,0га. Высота бурта составит 2,5м, ширина 20м, длина 2000м и объемом 81,5тыс.м³, углы откосов приняты 30° .

Склад ПРС будет располагаться в 10м от карьера вдоль всех карьера Восточного участка, общей площадью 3,32га. Высота бурта составит 2,5м, ширина 16,6м, длина 2000м и объемом 59,5тыс.м³, углы откосов приняты 30° .

Способ отвалообразования принимается внешний. Отвал вскрышных пород будет располагаться в 50м от карьера с северной стороны западного участка. Объем отвала составит 221,7тыс.м³.Отвал будет отсыпать в один ярус высотой 5м, углы откосов приняты 40° .

Способ отвалообразования принимается внешний. Отвал вскрышных пород будет располагаться в 50м от карьера с северной стороны западного участка. Объем отвала составит 180,2тыс.м³.Отвал будет отсыпать в один ярус высотой 5м, углы откосов приняты 40° .

Разгрузка автосамосвала должна производиться за пределами призмы обрушения на расстоянии 5м от бровки отвала. По всему фронту разгрузки устраивается берма, имеющая уклон внутрь отвала не менее 3° и породную отсыпку высотой 0,7м и шириной 1,5м. Отвал будет состоять из двух участков по фронту разгрузки. На первом участке будет происходить разгрузка, второй будут производиться планировочные работы (рис. 4).

Площадь, занимаемая отвалом вскрышных пород определяется по формуле: $S = \frac{v_{\textit{BCKP}} \cdot \textit{K}}{\eta_{\textbf{1}} \cdot \textit{H}_{\textbf{1}}}, \, \text{M}^2$

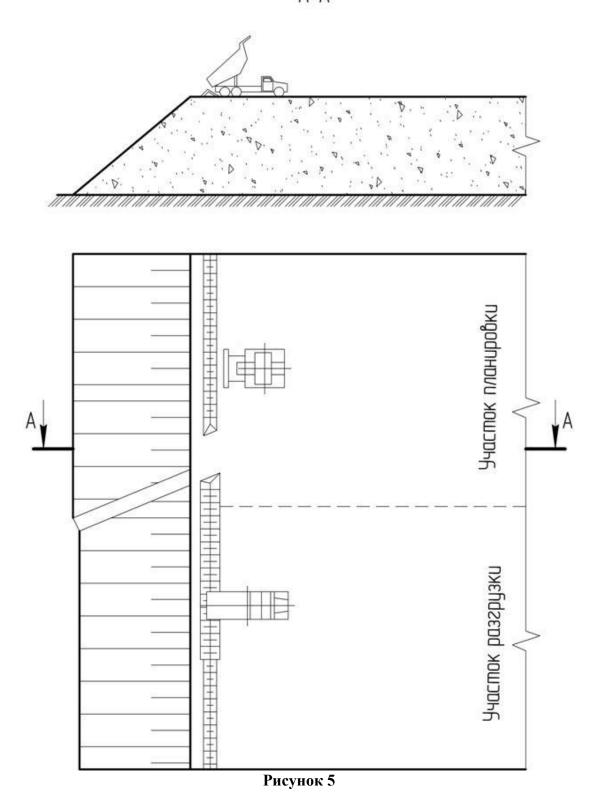
$$S = \frac{V_{BCKP} \cdot K}{\eta_1 \cdot H_1}, M^2$$

где V_{BCKP} – объем вскрыши, подлежащих укладке, м³;

К – коэффициент остаточного разрыхления пород в отвале;

 η_1 – коэффициенты, учитывающие заполнение площади отвала;

Н₁- высота яруса, м.


Площадь отвала вскрышных пород Западного участка составит:
$$S = \frac{221700 \cdot 1,12}{1 \cdot 5} = 49660 \text{м}^2 = 4,97 \text{га} \ (200 \text{x} 248 \text{м})$$

Площадь отвала вскрышных пород Восточного участка составит:
$$S = \frac{{}^{180,2 \cdot 1,12}}{{}^{1 \cdot 5}} = 40364 \mathrm{m}^2 = 4,04 \mathrm{fa} \; (200 \mathrm{x} 202 \mathrm{m})$$

Предполагается формирование съезда шириной 8м и уклоном 80% согласно СНиП 2.05.07-91 «Промышленный транспорт».

Формирование и планирование отвала будет производиться бульдозером SD-16.

Схема планирования и формирования отвала A-A

Производительность горного оборудования на вскрыше и отвалообразовании Расчет производительности бульдозера Т-170при отвалообразовании

Сменная производительность бульдозера в плотном теле при разработке грунта с перемещением определяется согласно «Нормам технологического проектирования предприятий промышленности нерудных строительных материалов» Приложение V «Методика расчета производительности бульдозеров»:

$$\Pi_{\text{b.CM}} = \frac{60 \cdot T_{\text{CM}} \cdot V \cdot K_{y} \cdot K_{\text{O}} \cdot K_{\text{\Pi}} \cdot K_{\text{B}}}{K_{\text{P}} \cdot T_{\text{H}}}, \, _{\text{M}}^{3}/_{\text{CM}}$$

Где V – объем грунта в разрыхленном состоянии, перемещаемый отвалов бульдозера, ${\rm M}^3$;

$$V = \frac{I \cdot h \cdot a}{2}, M^3$$

1 – длина отвала бульдозера, м;

h – высота отвала бульдозера, м;

- высота отвала оульдозера, ..., a- ширина призмы перемещаемого грунта, м; $a=\frac{h}{tg\delta},_{M}$

$$a=\frac{h}{tg\delta}, M$$

 δ – угол естественного откоса грунта (30 – 40°);

Roca TpyHTa
$$(30-40)$$
;
$$a = \frac{1,31}{0,83} = 1,58M$$

$$V = \frac{2,48 \cdot 1,31 \cdot 1,58}{2} = 2,57M^3$$

Ку – коэффициент, учитывающий уклон на участке работы бульдозера, 0,95;

Ко - коэффициент, учитывающий увеличение производительности при работе бульдозера с открылками, 1,15;

 K_{Π} – коэффициент, учитывающий потери породы в процессе ее перемещения, 0,9;

К_В – коэффициент использования бульдозера во времени, 0,8;

Кр – коэффициент разрыхления грунта, 1,25;

 T_{II} – продолжительность одного цикла, с

$$T_{LI} = \frac{I_1}{V_1} + \frac{I_2}{V_2} + \frac{(I_1 + I_2)}{V_3} + t_{\Pi} + 2t_{P}, c$$

 l_1 – длина пути резания грунта, м;

 v_1 – скорость перемещения бульдозера при резании грунта, м/с;

 l_2 – расстояние транспортирования грунта, м;

 v_2 – скорость движения бульдозера сгрунтом, м/с;

 v_3 – скорость холостого (обратного) хода, м/с;

 t_{Π} – время переключения скоростей, с;

t_P – время одного разворота трактора, с.

Значения необходимых величин для расчета продолжительности цикла бульдозера сведены в таблицу 2.5.1.3.1.

Таблица 2.5.1.3.1

Значения расчетных величин

Shu lenin pue lenin ben ini											
Наимонование групте	Моницости буди додоро д о	Элементы Тц									
Наименование грунта	Мощность бульдозера, л.с.		$\mathbf{v_1}$	\mathbf{v}_2	v_3	\mathbf{t}_{Π}	$\mathbf{t}_{\mathbf{P}}$				
ПРС, пески	170	7	0,67	1,0	1,5	9	10				
$T_{II} = \frac{5}{0,67} + \frac{10}{1} + \frac{(5+10)}{1,5} + 9 + 2 \cdot 10 = 56,5c$ $\Pi_{E.CM} = \frac{60 \cdot 480 \cdot 2,57 \cdot 0,95 \cdot 1,15 \cdot 0,9 \cdot 0,8}{1.25 \cdot 56,5} = 824 \text{ m}^3/\text{cm}$											

Суточная производительность бульдозера в плотном теле по вскрыше при разработке грунта с перемещением будет составлять $\Pi_{\text{Б.СУТ}} = 824 * 1 = 824 \text{m}^3/\text{сут}$.

Годовая производительность определяется по формуле:

$$\Pi_{\text{Б.Г.}} = \Pi_{\text{Б.СУТ}} \cdot \mathbf{N} \cdot \mathbf{K}_{\text{H}}, \, \mathbf{M}^3 / \mathbf{год}$$

Где N – число рабочих дней в году по вскрыше, 15;

К_н – коэффициент неравномерности производственного процесса, 0.9;

$$\Pi_{E,\Gamma} = 824 \cdot 15 \cdot 0,9 = 11124 M^3 / 200$$

Производительность бульдозера при планировочных работах на отвале определяется по формуле:

$$\Pi_{\text{ПЛ.СМ}} = \frac{60 \cdot T_{\text{CM}} \cdot L \cdot (I \cdot \sin \alpha - c) \cdot K_{\text{B}}}{n \cdot (\frac{L}{v} + t_{\text{P}})}, \, _{\text{M}}^{2}/c_{\text{M}}$$

где L – длина планируемого участка, 50м;

α – угол установки отвала бульдозер к направлению его движения;

с – ширина перекрытия смежных проходов, 0,4м;

n – число проходов движения бульдозера по одному месту, 2;

v – средняя скорость движения бульдозера при планировке, м/с;

 t_{P} – время, затрачиваемое на развороты при каждом проходе, с.

$$\Pi_{\Pi\Pi,CM} = \frac{60 \cdot 480 \cdot 50 \cdot (3,3 \cdot \sin 2 \ 0 - 0,4) \cdot 0,8}{2 \cdot (\frac{50}{2.0} + 10)} = 11992 \text{M}^2/\text{cm}$$

Суточная производительность бульдозера в плотном теле по вскрыше при планировочных работах на отвале будет составлять $\Pi_{\Pi\Pi,CYT}=11992*1=11992m^2/cm$.

Годовая производительность определяется по формуле:

$$\Pi_{\Pi\Pi,\Gamma} = \Pi_{\Pi\Pi,CYT} \cdot \mathbf{N} \cdot \mathbf{K}_{H}, \, \mathbf{M}^2 / \Gamma O \mathbf{M}$$

Где N – число рабочих дней в году по вскрыше, 15;

К_н – коэффициент неравномерности производственного процесса, 0.9;

$$\Pi_{\Pi\Pi\Pi} = 11992 \cdot 15 \cdot 0,9 = 161892/200$$

Годовая производительность бульдозера по перемещению вскрыши и планировочных работ на отвале удовлетворяет потребность предприятия, исходя из этого принимается 1 бульдозераТ-170.

Расчет производительности погрузчика ZL50G на вскрыше

Сменная производительность погрузчика определяется по формуле:

$$H_{\Pi,CM} = \frac{60 \cdot (T_{CM} - T_{\Pi,3} - T_{\Pi,H}) \cdot E \cdot K_H}{t_{LL} \cdot K_P} \cdot K_\Pi, M^3 \text{ / cm}$$

 Γ де $T_{\Pi.3}$, - время на выполнение подготовительно-заключительных операций, мин;

 $T_{\text{Л.H.}}$ – время на личные надобности – 10мин;

E – вместимость ковша погрузчика, 3м³;

 $K_{\rm H}$ – коэффициент наполнения ковша, 0.9;

 K_P – коэффициент разрыхления, 1.25;

 $t_{\rm II}$ – продолжительность цикла, с.

$$t_{_{L\!L}}=t_{_{\Pi\!L\!L}}+t_{_{1}}+t_{_{2}}+t_{_{3}}+t_{_{4}}+t_{_{5}}\text{, }c$$

где $t_{\text{пц}}$ – время полного цикла погрузки, 10.8 c

 t_1 – время движения из исходной точки в забой, с;

$$t_1 = \frac{\pi \cdot R \cdot I}{180^0 \cdot v}, c$$

R – радиус поворота, м;

1 – длина дуги перемещения, град;

v – скорость перемещения от исходной точки к забою, м/с;

$$t_1 = \frac{3.14 \cdot 6.23 \cdot 90^0}{180^0 \cdot 10} = 1c$$

t₂ – время движения в исходную точку задним ходом с грузом, 1.7c;

 t_3 – время движения из исходной точки к транспортному средству с грузом, 1.7c;

 t_4 – время переключения скоростей, 5с;

t₅ – время возвращения в исходное положение, 1с;

$$t_{\text{LL}} = 10.8 + 1 + 1.7 + 1.7 + 5 + 1 = 21.2c$$

$$H_{\Pi,CM} = \frac{60 \cdot (480 - 35 - 10) \cdot 3 \cdot 0.9}{21.2 \cdot 1.25} \cdot 0.97 = 2659 \text{m}^3/\text{cm}$$

Суточная производительность погрузчика ZL50G по вскрыше будет составлять: $H_{\Pi,CYT} = 2659*1 = 2659m^3/cyT$.

Годовая производительность определяется по формуле:

$$H_{\Pi\Gamma} = H_{\Pi CVT} \cdot N \cdot K_H, M^3 / \Gamma O J$$

Где N – число рабочих дней в году по вскрыше, 15;

К_н – коэффициент неравномерности производственного процесса, 0.9;

$$H_{\Pi,\Gamma} = 2659 \cdot 15 \cdot 0.9 = 35896,5 \text{м}^3/\text{год}$$

На вскрышных работах принимается 1 погрузчик ZL50G.

Добычные работы

По трудоемкости экскавации строительные пески продуктивной толщи относятся к II категории. Разработка полезного ископаемого будет производитьсяодним добычными уступом высотой до 6,7м на полную разведанную мощность полезной толщи.

Для наиболее полного извлечения полезного ископаемого принимается угол откоса уступа равный 30^{0} .

Выемка полезного ископаемого будет осуществляться экскаватором ЕК 270LCc ковшом вместимостью 1,25м³.Погрузка полезного ископаемого будет производиться в автосамосвалы КамАЗ-65115.

Выемка строительных песков будет производится боковыми проходками.

Дно карьера будет дорабатываться бульдозером Т-170.

Маркшейдерская служба карьера осуществляет систематический контроль за соблюдением проектной отметки дна карьера.

Производительность горного оборудования на добыче Расчет производительности экскаватора EK 270LCна добыче

Норма выработки для одноковшовых экскаваторов при погрузке в автосамосвалы определяется согласно «Нормам технологического проектирования предприятий промышленности нерудных строительных материалов» Приложение III «Методика расчета производительности экскаваторов»:

$$H_{\text{3.CM}} = \frac{(T_{\text{CM}} - T_{\text{\Pi.3.}} - T_{\text{J.H.}}) \cdot Q_{\text{K}} \cdot n_{\text{K}}}{(T_{\text{\Pi.C,}} + T_{\text{y.\Pi.}})}, \, M^{3}/c_{\text{M}}$$

Где T_{CM} – продолжительность смены, мин;

 $T_{\Pi,3}$ - время на выполнение подготовительно-заключительных операций, мин;

 $T_{\rm Л.H.}$ – время на личные надобности – 10мин;

 $T_{\Pi.C.}$ – время погрузки одного автосамосвала, мин;

$$T_{\Pi,C_{i}} = \frac{n_{K}}{n_{II}}$$

n_K – число ковшей, погружаемых в один автосамосвал;

$$n_{_{K}} = \frac{C_{_{T}}}{Q_{_{K}} \cdot \gamma}$$

Ст – грузоподъемность автосамосвала КамАЗ-65115 составляет 15т;

 γ – объемная плотность породы в целике – 1,65г/м³;

 Q_K – объем горной массы в целике в одном ковше, при коэффициенте наполнения ковша 0.9 в породах I группы, равен 1.125;

$$n_K = \frac{15}{1,125 \cdot 1,65} = 8,08 \approx 8$$

 $n_{\rm I\!I}$ — число циклов экскаваций в минуту, при продолжительности цикла экскавации при угле поворота стрелы от 90 до 135^0 для экскаватора EK 270LC, составляет 4;

$$T_{\Pi.C.} = \frac{8}{4} = 2$$
мин

 $T_{\rm У.П.}$ – время установки автосамосвала под погрузку, равно 0,3мин.

$$H_{3.CM} = \frac{(480 - 35 - 10) \cdot 1,125 \cdot 8}{(2 + 0,3)} = 1702 M^3 / cM$$

Суточная производительность экскаватора по добыче определяется по формуле:

$$H_{3,CVT} = 1702 * 1 = 1702 \text{ m}^3/\text{cyt}$$

Годовая производительность определяется по формуле:

$$H_{\mathfrak{I},\Gamma} = H_{\mathfrak{I},CVT} \cdot N \cdot K_H, \, \mathrm{M}^3$$
/год

Где N – число рабочих дней в году по добыче, 165;

К_н – коэффициент неравномерности производственного процесса, 0.9;

$$H_{3,\Gamma} = 1702 \cdot 165 \cdot 0.9 = 252747 M^3 / 200$$

Необходимое количество смен работы экскаватора для удовлетворения производственной мощности предприятия по добыче составит:

$$S_{PAB} = \frac{Q_{\Pi PEA.}}{H_{3.CM}}, cmeh(2.5.2.1.5.)$$

Где $Q_{\Pi P E J L}$ — годовая производительность предприятия по добыче, м³/год.

$$S_{PAB} = \frac{60\ 606}{1702} = 35$$
cmen

На добычных работах на месторождении принимается 1 экскаватор ЕК 270LC.

Календарный план горных работ

Календарный план горных работ составлен в соответствии с принятой системой разработки и отражает принципиальный порядок отработки месторождения, с использованием принятого горного транспортного оборудования.

В основу составления календарного плана вскрышных и добычных работ положены:

- 1. Режим работы карьера по добыче и вскрыше;
- 2. Годовая производительность карьера по добыче полезного ископаемого –100 тыс.т;
- 3. Горнотехнические условия разработки месторождения;
- 4. Тип и производительность горно-транспортного оборудования.

Календарный план горных работ составлен на полную отработку месторождения и составляет 15 лет. Календарный план вскрышных и добычных работ приведен в таблице 2.6.1.:

Календарный план горных работ

		0.4		Период разработки по годам, тыс.м ³													
		Общ	1	2	3	4	5	6	7	8	9	10г	11г	12г	13	14	15
Горизо	Вид	ий	год	год	год	год	год	год	год	год	год	ОД	ОД	од	год	год	год
HT	работ	объе	202	202	202	202	202	202	202	203	203	203	203	203	2035	2036	2037
		M	3г	4г	5г	6г	7г	8г	9Γ	0г	1г	2	3г	4Γ	Г	Г	Г
	Западный участок																
		303,2	2,9	4,8	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	143,9	55,6	
			В	В	В	В	В	В	В	В	В	В	В	В	в т.ч.	в т.ч.	
	Вскрыш	в т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	т.ч.	ПРС	ПРС	_
+170,4	ные	ПРС	ПР	ПР	ПР	ПР	ПР	ПР	ПР	ПР	ПР	ПР	ПР	ПР			_
M			C	C	C	C	C	C	C	C	C	C	C	С			
		81,5	0,8	1,3	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	38,2	14,9	
	Добычн	3161,	30	50	100	100	100	100	100	100	100	100	100	100	1500	581,6	_
	ые	6	30	30	100						100	100	100	100	1300	301,0	
	1	1		1	1		Вост	очны	й учас	сток	1			1	1	T	,
		239,7														119,9	119,
	_																8
	Вскрыш	в т.ч.														В Т.Ч.	В
+169,1	ные	ПРС	-	-	-	-	-	-	-	-	-	-	-	-	-	ПРС	т.ч.
M																	ПРС
		59,5														29,8	29,7
	Добычн	1836,	-	-	-	-	-	-	-	-	-	-	-	-	-	010.4	918,
	ые	6														918,4	2
	ышные	542,9	2.0	4.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	1420	175,5	119,
	ы, тыс.м ³	4000	2,9	4,8	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	143,9		8
, ,	ычные	4998,	30	50	100	100	100	100	100	100	100	100	100	100	1500	1500	918, 2
работы, тыс.т		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Потери, % Потери, тыс.т		25,1	0,3	0,3	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	7,54	7,54	4,62
Погашено		5023,	30,1	50,2	100,	100,	100,	100,	100,	100,	100,	100,	100,	100,	1507,	1507,	922,
		3023,	50,1	50,2	5	100,	5	5	100, 5	5	5	100,	100,	100, 5	54	1307, 54	922, 82
запасов, тыс.т		3	3))	3	3	3	J	3))	3	3	54	J4	02
Коэффициент вскрыши, м ³ /т		0,11	0.10	0,10	0.10	0.10	0.10	0.10	0.10	0,10	0,10	0,10	0,10	0,10	0,10	0,12	0,13
	ши, м / г ю горной	5541,	0,10	0,10	109,	109,	109,	109,	109,	109,	109,	109,	109,	109,	1643,	1675,	0,13
		1	32 9	54,8		6	6	6	6	6	6	6	6	6	9	5	1038
массе, тыс.м ³		1	34,9	J-7,0	U	U	U	U	U	U	U	U	U	U	,	J	1050

Осушение карьерного поля. водоотвод и водоотлив

Исходя из гидрогеологических условий месторождения, разработка его возможна в сухом карьере до подсчетного горизонта с абсолютной отметкой +337,3 м.

Отработка месторождения намечается до глубины не более 9,9м.

Площадь проектных карьеров по верху составляет 240000м^2 (Западный участок) и 160000м^2 (Восточный участок).

Расчет водопритоков приведен в разделе 1.5.«Гидрогеологические условия месторождения»

Объем возможных максимальных водопритоков в карьеры приведены в таблице 2.7.1.

Таблица 2.7.1

Расчетные водопритоки в карьер

т асчетные водопритоки в карвер					
Вини волоническов	Водоприток				
Виды водопритоков	M^3/q	л/с			
Западный участок					
Приток за счет таяния снежного покрова	103,3	28,7			
Возможный экстремальный кратковременный приток при	432,0	120,0			
выпадении максимального ливня					
Восточный участок					
Приток за счет таяния снежного покрова	68,9	19,1			
Возможный экстремальный кратковременный приток при	288,0	80,0			
выпадении максимального ливня					

Приведенные расчеты свидетельствуют о маломощности возможных сезонных экстремальных водопритоков в карьеры при проведении добычных работ.

Общая годовая потребность будущего предприятия в технической воде по аналогии с действующими предприятиями составит 5 тыс.м³. Питьевое водоснабжение возможно осуществлять путем завоза воды из п. Айсары.

Во избежание попадания вод в карьер во время снеготаяния, учитывая рельеф местности, будет организована нагорная канава вдоль всех бортов карьера глубиной 0,5м.

Из-за низкого водопритока поверхностных вод и отсутствия подземных вод мероприятия по водоотливу проектом не предусматривается.

Сведения о воздействии намечаемой деятельности на состояние поверхностных и подземных вод

В соответствии с Водным кодексом Республики Казахстан в целях поддержания благоприятного водного режима поверхностных водоемов предупреждения их заиления и зарастания, водной эрозии почв, ухудшения условий обитания водных, животных и птиц, уменьшения колебаний стока устанавливаются водоохранные зоны и полосы.

Водоохраной зоной является территория, прилегающая к акваториям рек, озер, водохранилищ и оросительно-обводнительных систем, на которой создаются особые условия пользования в целях предупреждения загрязнения, засорения и истощения вод, поддержания их экологической устойчивости и надлежащего санитарного состояния. В пределах водоохранных зон выделяются водоохранные полосы, являющиеся территорией строгого ограничения хозяйственной деятельности и имеющие санитарно-защитное назначение.

Минимальная ширина водоохранных зон по каждому берегу от уреза среднемноголетнего меженного уровня воды, включая пойму реки, надпойменные террасы, крутые склоны коренных берегов, овраги и балки, принимается:

для малых рек (длиной до 200 км) 500 м.

В карьерах расположенных в пределах водоохраной зоны должен соблюдаться режим пользования, исключающий засорение и загрязнение водного объекта.

В пределах водоохранных зон запрещается:

-ввод в эксплуатацию новых и реконструированных объектов, не обеспеченных сооружениями и устройствами, предотвращающими загрязнение и засорение водных объектов и их водоохранных зон и полос;

-производство строительных, добыча полезных ископаемых без проектов, согласованных в установленном порядке с государственными органами охраны природы, управления водными ресурсами, местными администрациями и другими специально уполномоченными органами;

-присутствие площадок для автотранспорта, влекущих за собой попадание загрязняющих веществ в воду.

Предприятие не будет осуществлять сбросов непосредственно в поверхностные водные объекты прилегающей территории, поэтому прямого воздействия на поверхностные воды не окажет.

Ближайшим водным объектом является о.Шолаксор, расположенное в 2,5км южнееЗападного участка и 3,0км юго-западнее Восточного участка.

Таким образом, участок отработки месторождения не расположен в пределах водоохраной зоны, что исключает засорение и загрязнение водного объекта и отвечает требованиям санитарно-гигиенического законодательства.

Характеристика водопритока в карьер и влияние карьерного водоотлива на состояние подземных вод

При отработке месторождения открытым способом приток воды в карьер будет происходить за счет атмосферных осадков паводкового периода и кратковременных ливневых дождей.

Исходя из гидрогеологических условий и срока действия контракту на добычу, разработка будет проводиться на Западном участке до гор.+170,4м, на Западном участке до гор.+169,1м.

Таким образом, участок отработки месторождения не расположен в пределах водоохраной зоны, что исключает засорение и загрязнение водного объекта и отвечает требованиям санитарно-гигиенического законодательства.

Мероприятия по предотвращению загрязняющих поверхностей подземных вод

С целью снижения негативного воздействия на водные ресурсы проектными решениями предусматриваются следующие мероприятия:

- внедрение технически обоснованных норм водопотребления;
- сбор хозяйственно-бытовых стоков в специальный герметичный выгреб с последующей откачкой и вывозом в места, определяемые СЭС;
- планировка территории с целью организованного отведения ливневых стоков с площадки предприятия.

Предприятие не будет осуществлять сбросов производственных сточных вод непосредственно в подземные и поверхностные водные объекты прилегающей территории, поэтому прямого воздействия на поверхностные воды не окажет.

Для предотвращения риска загрязнения и истощения подземных вод необходимо проводить экологический мониторинг состояния подземных вод, предложения по проведению мониторинга.

Предложения по проведению экологического мониторинга поверхностных и подземных вод

Мониторинг качественного состояния водных ресурсов представляет собой систему наблюдений за состоянием качества поверхностных и подземных вод. Регулярно должны проводиться наблюдения за гидрологическими, гидрогеологическими, гидрогеохимическими, санитарно-химическими и другими показателями состояния водных ресурсов. Проводимый мониторинг должен включать в себя сбор, обработку и передачу полученной информации в целях своевременного выявления негативных процессов, оценки и прогнозирования их развития.

Система производственного экологического контроля должна быть ориентирована на организацию наблюдений, сбора данных, проведения анализов, оценки воздействияпредприятия на состояние окружающей среды с целью принятия мер по предотвращению, сокращению и ликвидации загрязняющего воздействия предприятия на окружающую среду.

Для предотвращения вредных последствий проектируемого карьера на водные ресурсы мониторинг должен сопровождаться разработкой рекомендаций, уменьшающих негативное влияние последних.

Согласно плану горных работ работа предприятия предусматривается без прямого воздействия на водную среду.

Для наблюдения за режимом и качественным составом подземных вод рекомендуется создание специализированной наблюдательной сети скважин по периметру карьера.

Также производственный экологический контроль должен включать замеры уровней подземных вод в наблюдательных скважинах. Это позволит определить фактическое понижение (истощение) мощности водоносного горизонта в пределах проведения добычи полезного ископаемого.

В период эксплуатации карьера мониторинг за состоянием подземных вод необходимо осуществлять путем отбора проб воды из скважин, предложенных в программе ведения экологического мониторинга.

Проведение мониторинга и соблюдение природоохранных мер обеспечит снижение негативного воздействия на окружающую природную среду и отразит реальную картину воздействия.

Важнейшими видами профилактических водоохранных мероприятий также является:

- организация учета и контроля водопотребления и водоотведения на предприятии;
- проведение лабораторного контроля за качеством используемой на предприятии воды.

Карьерный транспорт

Настоящим проектом в качестве транспорта принят автомобильный транспорт, предусматривается производить следующие виды перевозок автосамосвалами КамАЗ-65115 грузоподъемностью 15т:

- 1. Транспортировка полезного ископаемого будет осуществляться автотранспортом заказчика на склад, расположенный в 0,2км от карьера.
- 2. Транспортировка вскрыши на расстояние до 0,4км будет осуществляться недропользователем.

Исходные данные для расчета транспорта приведены в таблице 3.1.1.

Таблииа 3.1.1.

Основные исходные данные для расчета транспорта

№№ п.п.	Наименование показателей	Добычные работы	Вскрышные работы
11.11.	Объем перевозок	paoorbi	риоты
1	$A)$ годовой, тыс. M^3	60,6	9,6
	Б) сменный, м ³	367	340
2	Группа пород	II	I
3	Расстояние транспортирование, км	0,4	0,4
4	Тип погрузочного средства	Экскаватор EK 270LC	Погрузчик ZL50G
5	Вместимость ковша, м ³	1,25	3.0
6	Количество погрузочных механизмов	1	1
7	Среднее время одного цикла погрузки, мин	1,03	0,51
8	Объемная плотность в целике, т/м ³	1,43	1,6
9	Коэффициент разрыхления	1,25	1,25

Автомобильный транспорт

Сменная производительность автосамосвалов, а также их необходимое количество приведено в таблице 3.1.2. на основании нормативных данных. Для транспортировки полезного ископаемого и пород вскрыши будут использоваться автосамосвалы КамАЗ-65115.

Расчетное необходимое количество автосамосвалов при перевозке пород вскрыши

Сменная производительность автосамосвала по перевозке пород вскрыши определяется по формуле:

$$H_{B} = \frac{(T_{CM} - T_{\Pi 3} - T_{\Pi H} - T_{T\Pi})}{T_{CM}} \circ V_{A}, M^{3}/cM$$

Где Т_{СМ} – продолжительность смены, 480мин;

 $T_{\Pi 3}$ – время на подготовительно-заключительные операции, 20мин;

 $T_{ЛH}$ – время на личные надобности, 20мин;

T_П – время технологического перерыва, 20мин;

 V_A – объем вскрыши, который помещается в кузов автосамосвала КамАЗ-65115, 9,4 м 3 ;

 T_{OB} – время одного рейса автосамосвала, мин.

$$T_{OB} = 2 \cdot L \cdot \frac{60}{v_C} + t_{\Pi} + t_{P} + t_{OK} + t_{y\Pi} + t_{yP} + t_{M}$$
, мин

Где L - расстояние движения автосамосвала в один конец, 0,4км;

v_C - средняя скорость движения автосамосвала, 30 км/час;

 t_{Π} - время погрузки автосамосвала.

$$t_{\Pi} = \frac{t_{\mu}}{60} \cdot n$$
, мин

 Γ де $t_{\scriptscriptstyle \rm II}$ – время цикла экскавации, сек

n – количество ковшей погружаемых в автосамосвал, шт;

$$t_{\Pi} = \frac{30.8}{60} \cdot 8 = 4.1$$
мин

t_P - время на разгрузку автосамосвала 1 мин;

 $t_{\text{ОЖ}}$ - время ожидания установки автосамосвала под погрузку, 1 мин;

tуп - время установки автосамосвала под погрузку, 1 мин;

typ - время установки автосамосвала под разгрузку, 1 мин;

t_м - время на маневры, 1 мин.

Суточная производительность автосамосвала по перевозке пород вскрыши определяется по формуле:

$$= H_{\text{\tiny B}} * 1 = 368 * 1 = 368 \text{м}^3 / \text{сутки}.$$

Расчетное необходимое количество автосамосвалов при перевозке полезного ископаемого

Сменная производительность автосамосвала по перевозке изверженных пород определяется по формуле:

$$H_{B} = \frac{(T_{CM} - T_{\Pi 3} - T_{\Pi H} - T_{\Pi \Pi})}{T_{OB}} \cdot V_{A}, M^{3}/cM$$

Где T_{CM} – продолжительность смены, 480мин

 $T_{\Pi 3}$ – время на подготовительно-заключительные операции, 20мин;

Тлн – время на личные надобности, 20мин;

 $T_{T\Pi}$ – время технологического перерыва, 20мин;

 V_A – объем полезного ископаемого, который помещается в кузов автосамосвала КамАЗ-65115, 9.1m^3 ;

Тоб – время одного рейса автосамосвала, мин.

$$T_{\text{OБ}} = 2 \cdot L \cdot \frac{60}{v_{\text{C}}} + t_{\text{П}} + t_{\text{P}} + t_{\text{OЖ}} + t_{\text{УП}} + t_{\text{УР}} + t_{\text{M}},$$
 мин

Где L - расстояние движения автосамосвала в один конец, 0,4 км;

v_C - средняя скорость движения автосамосвала, 30 км/час;

 t_{Π} - время погрузки автосамосвала, 4.9мин.

t_P - время на разгрузку автосамосвала 1 мин;

t_{ОЖ} - время ожидания установки автосамосвала под погрузку, 1 мин;

t_{уп} - время установки автосамосвала под погрузку, 1 мин;

t_{уР} - время установки автосамосвала под разгрузку, 1 мин;

t_м - время на маневры, 1 мин.

$$T_{OE} = 2 \cdot 0.4 \cdot \frac{60}{30} + 4.9 + 1 + 1 + 1 + 1 + 1 = 11,5$$
мин
$$H_B = \frac{(480 - 20 - 20)}{11.5} = 334 \text{м}^3/\text{смену}$$

Суточная производительность автосамосвала по перевозке полезного ископаемогоопределяется по формуле:

$$=H_{\rm B}*1=357*1=334{\rm M}^3/{\rm сутки}$$

Таблица 3.1.2

Результаты расчета транспорта

№№ п.п.	Наименование показателей	Перевозка полезного ископаемого	Перевозка вскрыши
1	Объем перевозок		
	$A)$ годовой, тыс. M^3	60,6	9,6
	Б) сменный, м ³	367	340
2	Средняя дальность перевозки, км	0,4	0,4
3	Средняя скорость движения, км/ч	30	30

4	Сменная производительность одного		
	автосамосвала, м ³ /смену	334	368
5	Количество рейсов в сутки	65	71
6	Коэффициент использования подвижного		
	состава во времени	0,93	0,93
7	Рабочий парк автомашин	2	2

Горно-транспортное оборудование. штаты

Основными критериями для выбора оборудования являются:

- -горно-геологические и горнотехнические условия разработки месторождения;
- -энергообеспеченность предприятия;
- -наличие горнотранспортного оборудования у заказчика;
- -минимум затрат на приобретение и эксплуатацию оборудования.

Основное технологическое оборудование принято по всем рассматриваемым вариантам, исходя из оценки местных условий и возможностей по перечисленным критериям, а также на основании «Норм технологического проектирования горнодобывающих предприятий с открытым способом разработки».

Ведомость горно-транспортного оборудования

Таблица 4.1.1.

Ведомость горно-транспортного оборудования

№№ п/п	Марка, модель	Количество
1	Экскаватор EK 270LC	1
2	Погрузчик ZL50G	1
3	Бульдозер Т-170	1
4	Автосамосвал КамАЗ-65115	2

Технические характеристики применяемого оборудования

Таблица 4.2.1

Технические характеристики экскаватора ЕК 270LC

Параметры	Значения
Высота в положении для транспортировки, мм	2910
Длина в положении для транспортировки, мм	10450
Ширина гусеничной ленты, мм	600; 900; 1 200
Ширина гусеничного хода, мм	3 250; 3 550; 3 850
Длина гусеничного хода, мм	4850
База составляет 2809 мм	4000
Клиренс, мм	450
Колея, мм	2650
Радиус хвостовой части поворотной платформы, мм	3300
Высота до крыши кабины, мм	2900
Высота до поворотной платформы, мм	1160
Длина рукояти, м	3,2
Максимальный радиус копания, мм	10700
Максимальная высота копания, мм	10900
Максимальная высота выгрузки, мм	8000
Максимальная глубина копания, мм	7000
Максимальное усилие копания ковшом, кН	200
Максимальное усилие копания рукоятью, кН	120
Номинальная емкость ковша, м ³	1,25

Таблица 4.2.2

Технические характеристики погрузчика XCMG ZL50G

Основные характеристики

Полное название	Погрузчик фронтальный XCMG ZL50G
Грузоподъёмность, кг	5000
Общий вес, кг	18000
Двигатель	
Модель двигателя	C6121ZG10h/WD615G.220
Тип двигателя	дизельный
Мощность двигателя, кВт (л.с.)	158(215)
Расчётная частота вращения, об/мин	2200
Топливная система	
Максимальная скорость, км/ч	38
Размеры	
Дорожный просвет, мм	450
Колесная (гусеничная) база, мм	3300
Габаритные размеры, мм	8110x3000x3485
Вылет кромки рабочего агрегата (ковша), мм	1130
Тормозная система	
Рабочие тормоза	Пневматич., дисковые в масле
Стояночные тормоза	Подпружиненные, пневмоотключаемые
Заправочные емкости	
Топливный бак, л	300
Система охлаждения, л	60
Эксплуатационные характеристики	
Высота выгрузки, мм	3090
Вырывное усилие (цилиндр ковша), кН	170
Колёса	
Шины	23,5-25-16PR (L-3)
Колея передних/ задних колес, мм	2200
Ходовые характеристики	
Наружный габаритный радиус поворота, мм	6400
Вид управления	сидя
Навесное оборудование	
Вид рабочего органа	Ковш
Вместимость ковша, куб.м.	3
Ширина режущей кромки ковша, мм	3000
Другие характеристики	
Вид шасси	Колёса

Таблица 4.2.3

Технические характеристики бульдозера Т-170

Параметры	Значения
Масса бульдозера, т	17
Длина, мм	4210
ширина, мм	2480
Высота, мм	3250
Ширина бульдозерного отвала, мм	2480
Высота бульдозерного отвала, мм	1310
Высота подъёма отвала, мм	1020
Глубина резки, мм	440
Масса конструкционная, кг	15000
Тип шасси	гусеничный
Тяговый класс	10
База, мм	2517
Колея, мм	1880

Двигатель	
Марка двигателя	Д180.111-1(Д-160.11)
Тип двигателя	Четырехтактный дизельный, с турбонаддувом, многотопливный
Мощность двигателя, кВт (л.с.)	125 (170)
Удельный расход топлива, г/кВт*ч (г/л. с. ч .)	218 (160)
Заправочные ёмкости	
Топливный бак, л	300
Система охлаждения, л	60
Система смазки двигателя, л	32
Гидравлическая система, л	10

Таблица 4.2.4

Технические характеристики автосамосвала КамАЗ-65115

Параметры	Значения
Снаряженная масса а/м, кг	10050
Снаряженная масса а/м, нагрузка на переднюю ось, кг	4250
Снаряженная масса а/м, нагрузка на заднюю тележку, кг	5800
Грузоподъемность а/м, кг	15000
Полная масса, кг	25200
Полная масса а/м, нагрузка на переднюю ось, кг	6200
Полная масса а/м, нагрузка на заднюю тележку, кг	19000
Полная масса прицепа, кг	13000
Двигатель	
Модель	740.30-260 (Евро-2)
Тип	дизельный с турбонаддувом
Номинальная мощность, нетто, кВт(л.с.) / при частоте вращения коленчатого вала, об/мин	180 (245) / 2200
Номинальная мощность, брутто, кВт(л.с.) / при частоте вращения коленчатого вала, об/мин	191 (260) / 2200
Максимальный крутящий момент, нетто, Нм(кгсм) / при частоте вращения коленчатого вала, об/мин	1059 (108) / 1300-1500
Расположение и число илиндров	V-образное, 8
Рабочий объём, л	10,85
Диаметр цилиндра и ход поршня, мм	120/120
Степерь сжатия	16,5

Явочный состав трудящихся

Таблица 4.3.1

№ <u>№</u> п/п	Наименование оборудования	Количество
1	2	3
1.	Машинист экскаватора EK 270LC	1
2.	Машинист погрузчика ZL50G	1
3.	Машинист бульдозера Т-170	1
4.	Машинист автосамосвала КамАЗ-65115	2
	Руководители и специалисты	
5.	Начальник карьера	1
6.	Механик горного оборудования	1
7.	Горный мастер	1
8	Участковый маркшейдер	1
	Bcero	9

Ремонтное хозяйство. хранение горюче-смазочных материалов Ремонтное хозяйство

Техника будет обслуживаться в специализированных пунктах технического обслуживания в п. Айсары.

Режим ремонтной службы определяется на месте в зависимости от объема работ.

Хранение горюче-смазочных материалов

На предприятии предусмотрено использование различных видов техники и оборудования, которые нуждаются в обеспечении горюче-смазочными материалами.

На предприятии предусмотрено использование различных видов техники и оборудования, которые нуждаются в обеспечении ГСМ. Учитывая отдаленность АЗС и других нефтехранилищ, заправка горного оборудования осуществляется из передвижного топливозаправщика. Годовой проход дизельного топлива – 40м^3 /год.Отпуск дизтоплива осуществляется через сливной шланг.

Хранение горюче-смазочных материалов на территории карьера и промплощадки исключается.

Архитектурно-строительные решения Санитарные нормыи правила

месторождении При строительстве карьера на недропользователь руководствоваться "Санитарными правилами для предприятий по добыче и обогащению рудных, нерудных и россыпных полезных ископаемых (№1.06.064-94 раздел 3 «Гигиенические требования к предприятиям по добыче полезных ископаемых открытым способом»), "Санитарные организации технологических процессов гигиенические требования правила производственному оборудованию" (№ 1.01.002-94), "Санитарными нормами микроклимата производственных помещений" (№ 1.02.006-94), "Санитарные нормы допустимых уровней шума на рабочих местах" (№1.02.007-94), «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» (№ 1.02.011-94), "Санитарные нормы вибрации рабочих мест" (№ 1.02.012-94), СанПиН «Санитарно-эпидемиологические требования» №93 от 17.01.2012г.

Борьба с пылью и вредными газами

Состав атмосферы карьера по добыче строительного камня (изверженных пород - граниты) должен отвечать установленным нормативам по содержанию основных составных частей воздуха и вредных примесей с учетом требований санитарных правил и норм по гигиене труда в промышленности, часть 1, «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» № 1.02.011-94».

В местах производства работ воздух должен содержать по объему 20% кислорода и не более 0,5% углекислого газа; содержание других вредных газов не должно превышать величин, приведенных в таблице 4.2.1.

Таблица 4.2.1 Предельно допустимое содержание основных компонентов воздуха

Гор	Предельно допустимые концентрации							
Газ	% по объему	мг/м						
Окислы азота (в пересчете на NO ₂)	0,00010	5						
Окись углерода	0,0017	20						
Сероводород	0,00071	10						
Сернистый ангидрит	0,00033	10						
Акролеин	0,0009	0,2						
Формальдегид	0,00004	0,5						

Не реже одного раза в квартал должен производиться отбор проб для анализа воздуха на содержание вредных газов в нем.

Пылеобразование на дорогах происходит в результате высыпания из самосвалов породной мелочи, поднятия пыли колесами машин и заноса пыли ветром с прилегающих территорий.

Для снижения запыленности карьерных автодорог необходимо их орошение водой. Пылеподавление при погрузочно-разгрузочных работах также основано на увлажнении горной массы до оптимальной величины. С целью снижения пылеобразования при погрузочно-

разгрузочных работах (в т.ч. и для дорог) будет производиться гидроорошение, осуществляемое поливомоечной машиной ПМ-130Б.

Величины параметров орошения будут зависеть от механизма улавливания пыли и его эффективности. Для дорог и увлажнения массива горных пород преимущественно будет использоваться технологический режим - обычное орошение (механическое распыление жидкости под давлением 1,2-2,0 МПа) при необходимости для улавливания витающей пыли возможно применение водовоздушного орошения диспергированной водой (2-2,5МПа).

Административно-бытовые помещения

Промплощадка карьера будет расположена на свободной от застройки территории и находится на расстоянии 100м от каждого из карьеров Западного и Восточного участков месторождения.

На промплощадке карьеров будут размещены следующие объекты:

- бытовой вагончик;
- стоянка;
- уборная на 1 очко.

Размеры санитарно-защитной зоны (C33) будут рассчитаны в разделе OBOC к данному проекту промышленной разработки.

Согласно «Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы» проектом предусмотреныадминистративно-бытовые помещения упрощенного типа - передвижные инвентарные вагоны. Проектом предусмотрен один вагончик - для бытовых нужд.

В вагончике будет храниться медицинская аптечка, средства для индивидуальной защиты от вредных воздействий (респираторы, при необходимости средства от поражения людей электрическим током и пр.)

Также предусмотрено помещение для рабочей и верхней одежды, помещение для приема пищи, отдыха, для хранения питьевой воды. Для мытья рук и умывания предусмотрены умывальники. Вентиляция в вагончике естественная.

Обогрев вагончика - автономный, используются масляные радиаторы типа Samsung.

Энергоснабжение бытового вагончика будет производиться от ЛЭП.

На промплощадке карьера предусматривается установка контейнера для сбора мусора, противопожарный щит, площадки для стоянки техники, которые будут подсыпана 15см слоем шебенки.

Водоснабжение

Источником водоснабжения карьера является привозная вода, соответствующая требованиям ГОСТа 2874-82 «Вода питьевая», расходуемая на хозяйственно-бытовые нужды.

Водабудет привозится из п. Айсары.

Вода хранится в емкости объемом 1600л (квасная бочка). Емкость снабжена краном фонтанного типа. Изнутри бочка должна быть покрыта специальным лаком или краской, предназначенной для покрытия баков (цистерн) питьевой воды (полиизобутиленовый лак, лак XC-74), железный сурик на олифе, эпоксидные покрытия на основе смол ЭД-5 и ЭД-6 и т.д.

Расход воды на пылеподавление карьера и пожаротушение составит 5тыс. $м^3$ /год. Противопожарный запас воды заливается в резервуар объемом $10 m^3$ и используется только по назначению.

Расход водопотребления приведен в таблицах 6.4.1. и 6.4.2.

Таблица 6.4.1

				реолению					
№ п/п	Наименование потребителей	Ед. изм.		чество бителей в макс, смену	Норма водопотр- ебления в смену, л	Коэффи- циент часовой неравно- мерности	Суточ- ный расход воды, м ³	Годовой расход воды, м ³	Продолжи- тельность водопотре- бления, ч

Паниые по родопотреблению

	Водопотребление											
1	Хоз. питьевые	\mathbf{M}^3	\mathbf{M}^3 9 9		0,05	1,3	0,585	105,3	8			
2	Мытье полов	\mathbf{M}^3	9	1	0,005	1	0,045	81	1			
3	Пылеподавление	M^3	-	27,7		1	27,72	4990	8			
4	4 Пожаротушение		-	-	10	1	10	10	1			
Всего							38,35	5186,3				
	Водоотведение											
	Всего	\mathbf{M}^3	9	9	0,05	1,3	0,585	105,3	8			

Канализация

Настоящим проектом канализование административного вагончика, не предусматривается.

На территории промплощадки предусмотрено устройство туалета с герметичной выгребной ямой объемом 4,5м³, обсаженными железобетонными плитами, которые ежедневно дезинфицируются. В целях гидроизоляции предусмотрена обмазка блоков горячим битумом за два раза.Вывоз стоков производится ассенизационной машиной, заказываемой по договору с коммунальными предприятиями района.

Оказание первой медицинской помощи

При несчастном случае пострадавшему необходимо оказать первую медицинскую помощь, вызвать врача или направить пострадавшего в ближайшее медицинское учреждение.

Для оказания первой медицинской помощи на всех сложных машинах должны быть аптечки.

Для своевременного оказания первой медицинской помощи каждый рабочий должен изучить следующие правила.

Первая медицинская помощь включает в себя:

- 1) временную остановку кровотечения;
- 2) перевязку раны, места ожога;
- 3) оживляющие мероприятия, в особенности искусственное дыхание;
- 4) переноску и перевозку пострадавшего.

При ранении во избежание загрязнения раны нельзя прикладывать к ней загрязненные бинты или ветошь и обмывать ее водой.

При сильном кровотечении следует наложить давящую повязку (жгут), закрыть рану чистой марлей, бинтом и ватой, плотно перебинтовать.

Для уменьшения боли при незначительных ушибах надо прикладывать холодные примочки. Когда при ушибе есть ссадина, то сначала поврежденное место смазывают настойкой йода, а затем перевязывают так же, как рану. При сильных ушибах могут быть головокружения, тошнота, головная боль, рвота, боль в животе и т.д.

В этом случае необходима срочная медицинская помощь.

При переломах кости нужно наложить шины и немедленно доставить пострадавшего в медпункт. Шины сначала обертывают ватой, марлей, чистой тряпкой или травой, накладывают их с обеих сторон на ногу или руку, так чтобы они захватывали суставы кости выше и ниже перелома, а затем перевязывают.

Если шин не окажется, поврежденную ногу привязывают к здоровой, а поврежденную руку берут на косынку. Открытые раны перевязывают до наложения шин.

При растяжении или разрыве связок кладут холодную примочку и поверх нее давящую повязку (мокрый бинт или полотенце) и доставляют пострадавшего в лечебный пункт.

При поражении электрическим током первая помощь должна быть организована немедленно. Если пострадавший находится под действием тока, сразу же освобождают его от соприкосновения с проводником тока. Оказывающий помощь должен надеть резиновые перчатки или набросить на руку сухую шерстяную или прорезиненную одежду. Для изоляции от земли следует надеть галоши или положить под ноги сухую доску, одежду или другой материал, не проводящий электрического тока и оторвать пострадавшего от источника тока.

Пострадавшего немедленно укладывают на что-нибудь сухое и теплое и согревают - тепло укрывают, дают горячий чай.

Если пострадавший не подает признаков жизни, с него снимают стесняющую одежду, обеспечивают доступ чистого воздуха и делают искусственное дыхание.

Во всех случаях немедленно вызывают врача.

Такая же помощь оказывается при поражении молнией.

При первых признаках теплового или солнечного удара, пострадавшего перевозят в тень, укладывают и поят водой, расстегивают ворот, смачивают голову и грудь холодной водой, осторожно дают понюхать нашатырный спирт. При остановке дыхания производят искусственное дыхание.

При попадании в глаз инородного тела - соринки, песчинки - нельзя тереть глаз. Засоренный глаз промывают чистой водой. Промывание производят от нарушенного угла глаза к носу. Если инородное тело извлечь из глаза не удается, следует обратиться к врачу.

Рациональное и комплексное использование недр

При проведении работ по добыче должны выполняться следующие требования в области рационального и комплексного использования недр и охраны недр:

- обеспечение рационального и комплексного использования ресурсов недр на всех этапах проведения операций по недропользованию;
- обеспечение полноты извлечения из недр полезных ископаемых, не допуская выборочную отработку богатых участков;
- достоверный учет извлекаемых и погашенных в недрах запасов основных и совместно с ними залегающих полезных ископаемых и попутных компонентов, в том числе продуктов переработки минерального сырья и отходов производства при разработке месторождений;
- исключение корректировки запасов полезных ископаемых, числящихся на государственном балансе, по данным первичной переработки;
- предотвращение накопления промышленных и бытовых отходов на площадях водосбора и в местах залегания подземных вод, используемых для питьевого или промышленного водоснабжения;
- охрана недр от обводнения, пожаров и других стихийных факторов, осложняющих эксплуатацию и разработку месторождений;
- соблюдение установленного порядка приостановления, прекращения операций по недропользованию, консервации и ликвидации объектов разработки месторождений;
- обеспечение экологических и санитарно-эпидемиологических требований при складировании и размещении отходов.

С целью снижения потерь и сохранения качественных и количественных характеристик полезного ископаемого, т.е. рационального использования недр и охраны окружающей среды необходимо:

- Вести строгий контроль за правильностью отработки месторождения;
- Учет количества добываемого полезного ископаемого и объемов вскрышных работ производить двумя способами: по маркшейдерской съемке горных выработок и оперативным учетом (оперативный учет должен обеспечивать определение объемов, вынутых каждой выемочно-погрузочной единицей с погрешность не более 5%);
 - -Проводить регулярную маркшейдерскую съемку;
- Обеспечить полноту выемки почвенно-плодородного слоя и следить за правильным размещением его на рекультивируемые бермы;
- Использовать внешнюю вскрышу для рекультивации предохранительных берм в процессе отработки и после полной отработки карьера;
 - -Обеспечить опережающее ведение вскрышных работ;
- Обеспечить строжайший контроль за карбюраторной и маслогидравлической системой работающих механизмов и машин;
- -Следить за состоянием автомобильных дорог, предусмотреть регулярное орошение и планировку полотна автодорог, тем самым снизить величину транспортных потерь, увеличить пробег автотранспорта и уменьшить вредное воздействие выхлопов на окружающую среду;
- -Вести постоянную работу среди ИТР, служащих и рабочих карьера по пропаганде экологических знаний;

- Разработать комплекс мероприятий по охране недр и окружающей среды;
- Наиболее полное извлечение полезного ископаемого с применением рациональной технологии горных работ, что позволит свести потери до минимума;
- -Предотвращение загрязнения окружающей среды при проведении добычи кирпичных суглинков (разлив нефтепродуктов и т.д.);
- Обеспечение экологических требований при складировании и размещении промышленных и бытовых отходов;
 - -Сохранение естественных ландшафтов;
- И другие требования согласно Законодательству о недропользовании и охране окружающей среды.

Маркшейдерская и геологическая служба

Согласно «Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы» на карьере должно быть предусмотрено геолого-маркшейдерское обеспечение горных работ.

В штате карьера проектом предусмотрен маркшейдер.

Маркшейдерские работы выполняются в соответствии с "Инструкцией по производству маркшейдерских работ».

Мероприятия по технике безопасности Основные требования по технике безопасности и промсанитария

Разработка месторождения должна производиться в соответствии с «Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы», утвержденной Приказом Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 352.

На карьере должны быть разработаны инструкции-памятки по технике безопасности для всех видов профессий и по правилам технической эксплуатации горного оборудования.

В каждой памятке для различных профессий необходимо помещать общие указания по передвижению рабочих к месту работы, предупреждения о возможных опасностях при выполнении работ и меры их предотвращения.

Каждый рабочий должен:

- пройти медицинское освидетельствование и прослушать вводный инструктаж по технике безопасности;
- без разрешения технического руководителя не оставлять место работы и не выполнять не порученную ему работу;
- при переходе на другую работу пройти технический и санитарный минимум, сдать экзамен и получить удостоверение на право выполнения работы по профессии;
- при обнаружении опасности, угрожающей людям или оборудованию, должен немедленно предупредить об этом ответственных лиц и принять все возможные меры к ее ликвидации;
- в памятке-инструкции должен быть помещен раздел «Оказание первой медицинской помощи пострадавшим при несчастных случаях».

Инструкции составляются на основании тщательного изучения существующих инструкций по технике безопасности в зависимости от местных условий.

Инструкции должны отвечать следующим требованиям:

- 1. Трудовой кодекс Республики Казахстан от 15 мая 2007 года № 251-III
- 2. Закон Республики Казахстан от 11 апреля 2014 года № 188-V «О гражданской защите»;
- 3. «Организации обучения безопасности труда» ГОСТ 10.02.004-90;
- 4. «Правилам разработки и утверждения инструкции безопасности и охраны труда в организации» утв. приказом Министра труда и соц. защиты населения РК от 02.12.04г №278-п.

Основные организационно-технические мероприятия по технике безопасности и охране труда

В порядке организации службы охраны труда и техники безопасности на карьере должны проводиться следующие основные мероприятия:

- добыча полезного ископаемого производится уступами с последовательной отработкой каждого уступа сверху вниз;
- высота уступов, разрабатываемых одноковшовым экскаватором типа «механическая лопата» должна превышать полторы максимальной высоты черпания экскаватора;
- ширина рабочей площадки должна обеспечивать размещение на ней рабочего оборудования, транспортных средств, транспортных и предохранительных берм;
 - постоянно снабжать рабочих карьера кипяченой водой;
- смазочные и обтирочные материалы машин и механизмов хранить в закрывающихся металлических ящиках;
- заземлять все металлические части электроустановок и оборудования, которые могут оказаться под напряжением вследствие нарушения изоляции;
- в помещениях и складах ГСМ необходимо иметь средства защиты от пожара (огнетушители, инструменты, ящики с песком);
- следить за своевременным выполнением графика профилактического и плановопредупредительного ремонта оборудования;
- электрогазосварочные работы должны выполняться в строгом соответствии с правилами техники безопасности на местах и производственной санитарии;
- административно-технический персонал предприятия обязан выполнять все мероприятия, необходимые для создания здоровой и безопасной работы, следить за выполнением установленных положений, инструкций и правил по технике безопасности и охране труда.

Наблюдение за выполнением правил безопасности должно осуществляться техническим руководителем.

Основные правила безопасности при эксплуатации карьерных машин и механизмов

Техника безопасности при работе экскаватора

- 1. Не разрешается оставаться без присмотра экскаватор с работающим двигателем.
- 2. Во время работы экскаватора запрещается нахождение людей у загружаемых автосамосвалов, под ковшом.
- 3. Любое изменение режимов работы во время погрузочных работ должно сопровождаться четкой системой сигналов.
- 4. В случае угрозы обрушения или оползания уступа во время работы экскаватора, работа должна быть приостановлена, и погрузочные механизмы отведены в безопасное место.
 - 5. Запрещается работа погрузочных механизмов поперек крутых склонов.
- 6. Подъемные и тяговые устройства подлежат осмотру в сроки, установленные главным механиком предприятия.
- 7. Для ремонта, смазки и регулировки погрузочное оборудование должно быть установлено на горизонтальной площадке, двигатель выключен, ковш блокирован, экскаватор обесточен.

Техника безопасности при работе погрузчика

- 1. Не разрешается оставлять без присмотра погрузчик с работающим двигателем.
- 2. Во время работы погрузчика запрещается нахождение людей у загружаемых автосамосвалов, под ковшом.
- 3. Любое изменение режимов работы во время погрузочных работ должно сопровождаться четкой системой сигналов.
- 4. В случае угрозы обрушения или оползания уступа во время работы погрузчика, работа должна быть приостановлена, и погрузочные механизмы отведены в безопасное место.
 - 5. Запрещается работа погрузочных механизмов поперек крутых склонов.
- 6. Подъемные и тяговые устройства подлежат осмотру в сроки, установленные главным механиком предприятия.
- 7. Для ремонта, смазки и регулировки погрузочное оборудование должно быть установлено на горизонтальной площадке, двигатель выключен, ковш блокирован.

Техника безопасности при работе автотранспорта

Автомобиль-самосвал должен быть исправлен и иметь зеркало заднего вида, действующую световую и звуковую сигнализацию, освещение, опорное приспособление необходимой прочности, исключающее возможность самопроизвольного опускания поднятого кузова.

На бортах должна быть нанесена краской надпись: «Не работать без упора при поднятом кузове!».

Скорость и порядок передвижения автомобилей на дорогах карьера устанавливается администрацией, с учетом местных условий, качества дорог, состояния транспортных средств.

Инструктирование по технике безопасности шоферов автомобилей, работающих в карьере, должно производиться администрацией автохозяйства и шоферам должны выдаваться удостоверения на право работать в карьере.

На карьерных автомобильных дорогах движение должно производиться без обгона.

При погрузке автомобилей должны выполнятся следующие правила:

- находящийся под погрузкой автомобиль должен быть заторможен;
- ожидающий погрузку,подается под погрузку только после разрешающего сигнала машиниста экскаватора;
- погрузка в кузов автосамосвала должна производиться только сбоку или сзади. Перенос ковша над кабиной автосамосвала запрещается. Кабина автомобиля должна быть перекрыта специальным защитным «козырьком». В случаеотсутствиязащитных «козырьков» водители автомобиля на время погрузки должны выходить из кабины. При работе автомобиля в карьере запрещается:
 - движение автомобиля с поднятым кузовом;
 - движение задним ходом к месту погрузки на расстояние более 30м;
 - перевозить посторонних лиц в кабине;
- сверхгабаритнаязагрузка, атакжезагрузка, превышающая установленную грузоподъемность автомобиля:
 - оставлять автомобиль на уклоне и подъемах;
 - производить запуск двигателя, используя движение автомобиля по уклон.

Необходимо, чтобы задний ход автомобиля был заблокирован с подачей звукового сигнала. Разгрузочные площадки должны иметь надежный вал, высотой 0,7м, отстоящий от верхней кромки отвала на расстоянии не менее 2,5м, который является ограничителем движения задним ходом.

Техника безопасности при работе на бульдозере

- 1.Не разрешается оставлять без присмотра бульдозер с работающим двигателем, поднятым отвальным хозяйством, при работе становиться на подвесную раму и отвальное устройство. Запрещается работа бульдозера поперек крутых склонов.
- 2. Для ремонта смазки и регулировки бульдозер должен быть установленнагоризонтальнойплощадке, двигатель выключен.

отвал опущен на землю. В случае аварийной остановке бульдозера

на наклонной плоскости должны быть приняты меры,

исключающие самопроизвольное движение его под уклон.

- 3. Для осмотра отвала снизу он должен быть опущен на надежныеподкладки, а двигатель выключен. Запрещается находиться подподнятым отвалом бульдозера.
- 4. Расстояниеот края гусеницыбульдозера добровкиоткоса определяется с учетом геологических условий и должно быть занесено в паспорт ведения работ в забое.
- 5. Максимальные углы откоса забоя при работе бульдозера не должныпревышать: на подъем 25^0 и под уклон 30^0 .

Мероприятия по предупреждению и ликвидации аварий, несчастных случаев Плана ликвидации аварий

Согласно Приказу Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 352 «Об утверждении Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы» на

месторождении будет разработан и утвержден техническим руководителем организации План ликвидации аварий (далее - ПЛА).

План ликвидации аварий - это документ, определяющий меры и действия, необходимые для спасения людей и ликвидации аварий в карьере в начальной стадии их возникновения. Каждая его позиция действует с момента извещения о происшедшей аварии до полного вывода всех людей в безопасные места и начала организации работ по ликвидации последствий аварии. Предусмотренные планом материальные и технически средства для осуществления мероприятий по спасению люден и ликвидации аварий должны быть в наличии, в исправном состоянии и в необхолимом количестве.

ПЛА составляется под руководством технического руководителя производственного объекта, согласовывается с руководителем аварийной спасательной службы, обслуживающей данный опасный производственный объект, и утверждается руководителем организации.

ПЛА включает в себя оперативную часть, распределение обязанностей между персоналом, участвующим в ликвидации аварий, и порядок его действия, а также список должностных лиц и учреждений, которые немедленно извещаются об авариях.

Ответственность за правильное составление плана ликвидации аварий несет начальника карьера. Работники карьера будутознакомлены соспособами оповещения об авариях (аварийной сигнализацией).

План учебных тревог и противоаварийных тренировок

Учебные тревоги в производствах проводятся на основания графика, составленного начальником отдела техники безопасности и утвержденного директором предприятия.

Учебные тревоги должны проводиться по возможности таким образом, чтобы до объявления тревоги об аварии, кроме проверяющих лиц, телефонистки никто не знал, что тревога учебная.

При проведении учебных тревог проверяются:

- возможность осуществления в организации мероприятий по спасению людей, локализации аварии и ликвидации ее последствий;
 - знание работников организации своих действии при авариях и инцидентах;
 - состояние систем связи, оповещения и определения местоположения персонала.

Учебная тревога в организации проводится не реже одного раза в год. Учебные тревоги в организациях проводятся по графику, утвержденному техническим директором карьера.

График проведения учебных тревог составляется на календарный год. Технический директор карьера переносит сроки проведения учебных тревог, вносит изменения идополнения в утвержденный им график проведения учебных тревог.

Проведение учебных тревог не должно вызывать нарушений технологическогопроцесса ведения горных работ.

Мероприятия по профилактике профессиональных заболеваний

Все рабочие и инженерно-технические работники (ИТР), поступающие на предприятие, подлежат предварительному медицинскому освидетельствованию, а работающие непосредственно на открытых горных работахпериодическому освидетельствованию на предмет их профессиональной пригодности.

Согласно Приказу и.о. Министра национальной экономики Республики Казахстан от 24 февраля 2015 года № 128 «Об утверждении Правил проведения обязательных медицинских осмотров» обязательные периодические медицинские осмотры проводятся 1 раз в год.

Недропользователь:

- 1) составляет не позднее 1 декабря поименный список лиц с указанием их места работы, тяжести выполняемой работы, вредных (особый вредных) и (или) опасных условий труда, а также стажа работы в данных условиях труда, с последующим согласованием с территориальными подразделениями ведомства государственного органа в сфере санитарно-эпидемиологического благополучия населения (в том числе на транспорте);
- 2) организует за счет собственных средств проведение периодического медицинского осмотра;

- 3) обеспечивает совместно с медицинской организацией, обслуживающей предприятие, или с территориальной медицинской организацией по месту нахождения работодателя своевременное направление больных на углубленное обследование и лечение в центры профессиональной патологии лиц с профессиональными заболеваниями и подозрением на них;
- 4) разрабатывает совместно с медицинской организацией, обслуживающей предприятие, или с территориальной медицинской организацией по месту нахождения работодателя, ежегодный план мероприятий по оздоровлению выявленных больных, согласованный с территориальным подразделением ведомства государственного органа в сфере санитарноэпидемиологического благополучия населения (в том числе на транспорте) по улучшению условий труда.

По результатам обязательного периодического медицинского осмотра медицинской организацией, обслуживающей предприятие, или с территориальной медицинской организацией по месту нахождения работодателя, формируются группы, с последующим определением принадлежности работника к одной из диспансерных групп и оформлением рекомендаций по профилактике профессиональных заболеваний и социально-значимых заболеваний — по дальнейшему наблюдению, лечению и реабилитации:

- 1) здоровые работники, не нуждающиеся в реабилитации;
- 2) практически здоровые работники, имеющие нестойкие функциональные изменения различных органов и систем;
 - 3) работники, имеющие начальные формы общих заболеваний;
- 4) работники, имеющие выраженные формы общих заболеваний, как являющиеся, так и не являющиеся противопоказанием для продолжения работы в профессии;
- 5) работники, имеющие признаки воздействия на организм вредных производственных факторов;
 - 6) работники, имеющие признаки профессиональных заболеваний.

Медицинская организация по месту нахождения работодателя направляет списки лиц из сформированных групп диспансерного наблюдения в медицинские организации по месту жительства работников для дальнейшего диспансерного наблюдения, при отсутствии медицинской организации, обслуживающей предприятие.

Диспансерному наблюдению в медицинской организации, обслуживающей предприятие, или медицинской организации по месту жительства работника по результатам обязательных периодических медицинских осмотров, подвергаются: практически здоровые работники, имеющие нестойкие функциональные изменения различных органов и систем; работники, имеющие начальные формы общих заболеваний; работники, имеющие выраженные формы общих заболевании как являющиеся, так и не являющиеся противопоказанием для продолжения работы в профессии; и лица с профессиональными заболеваниями.

Комплекс мероприятий по обеспечению рационального и комплексного использования недр

Требованиями в области рационального и комплексного использования недр и охраны недр являются:

- обеспечение полноты опережающего геологического изучения недр для достоверной оценки величины и структуры запасов полезных ископаемых, месторождений и участков недр, предоставляемых для проведения операций по недропользованию, в том числе для целей, не связанных с добычей;
- обеспечение рационального и комплексного использования ресурсов недр на всех этапах добычи;
- обеспечение полноты извлечения из недр полезных ископаемых, не допуская выборочную отработку богатых участков;
- достоверный учет извлекаемых и погашенных в недрах запасов основных и совместно с ними залегающих полезных ископаемых и попутных компонентов, в том числе продуктов переработки минерального сырья и отходов производства при разработке месторождений;
- исключение корректировки запасов полезных ископаемых, числящихся на государственном балансе, по данным первичной переработки;

- предотвращение накопления промышленных и бытовых отходов на площадях водосбора и в местах залегания подземных вод, используемых для питьевого или промышленного водоснабжения;
- охрана недр от обводнения, пожаров, взрывов, обрушении налегающих толщ пород, а также стихийных факторов, осложняющих эксплуатацию и разработку месторождений;
 - предотвращения загрязнения недр при проведении добычи;
- соблюдение установленного порядка приостановления, прекращения операций по недропользованию, консервации и ликвидации объектов разработки месторождений;
- обеспечение экологических и санитарно-эпидемиологических требований при складировании и размещении отходов;
- использование недр в соответствии с требованиями законодательства государства по охране окружающей среды;
 - предохраняющими недра от проявлений опасных техногенных процессов при добыче;
- систематически осуществлять геолого-маркшейдерский контроль за правильностью и полнотой отработки месторождения;
- при проведении вскрышных работ производить тщательную зачистку полезной толщи с целью получения минимальных потерь и засорения руды.
 - не допускать перегруза автосамосвалов при транспортировке горной массы.

Геолого-маркшейдерское обеспечение работ

В целях полноты выемки запасов и рационального использования недр необходима организация геолого-маркшейдерской группы, в комплекс основных задач которой входят:

- контроль за правильностью и полнотой отработки месторождения, заключающийся в выполнении регулярных топографических съемок и заданий направлений горных работ;
- маркшейдерский учет количества добываемого полезного ископаемого и разрабатываемых вскрышных пород;
 - учет состояния и движения запасов по степени их подготовленности к выемке;
 - проведение эксплоразведки, контроль за качеством полезного ископаемого.

Основными задачами геологической и маркшейдерской служб являются:

- оперативно-производственное обеспечение всеми видами геологических и маркшейдерских работ на стадии разработки месторождения;
- контроль за полнотой отработки месторождения, ведение горных работ в соответствии с проектом, учет и приемка всех видов горных работ;
 - участие в планировании горных работ;
- учет эксплуатационных запасов по степени подготовленности и их активности, расчет плановых и фактических потерь и разубоживания. Потери и разубоживание определяются прямым методом. Учет потерь по видам их образования ведется в паспортах по выемочным единицам и отражается на маркшейдерских планах масштаба 1:200. Суммарный учет потерь по руднику ведется в книге учета эксплуатационных потерь;
- осуществление контроля за охраной сооружений от вредного влияния. В качестве вспомогательной меры, с целью своевременной корректировки принятых горных и конструктивных мер охраны маркшейдерской службы, необходимо вести систематические визуальные и инструментальные наблюдения за сдвижением горных пород и земной поверхности в соответствии с действующей инструкцией;
- ведение и своевременное пополнение всей геолого-маркшейдерской документации журналы документации горных выработок, планы, разрезы, паспорта отработки и крепления, журналы опробования и др.;
- ведение учета состояния и движения запасов, потерь и разубоживания для подготовки ежегодного баланса запасов;
- своевременная подготовка обосновывающих материалов к списанию отработанных участков.

Списание запасов полезных ископаемых с учета недропользователя ведется в соответствии с «Положением о порядке списания запасов полезных ископаемых с учета организаций», отражается в геологической и маркшейдерской документации раздельно по элементам учета и

вносится в специальную книгу списания запасов организации.

При выборе площадок для строительства объектов основного и вспомогательного производств учитывались следующие факторы и условия:

- местоположение месторождения и условия его разработки;
- оптимальное расположение хозяйственных и производственных объектов с учетом зоны влияния горных работ;
- требования санитарных и противопожарных норм, а также мероприятия по охране окружающей среды.

Маркшейдерские работы должны выполняться в соответствии с требованиями Инструкции по производству маркшейдерских работ и других нормативных документов, а также законодательства о недрах и недропользовании.

Маркшейдерские работы, требующие применения специальных методик и технических средств и инструментов, должны выполняться специализированными организациями по договору с недропользователем.

В каждой организации должны быть и систематически вестись записи в книге геологических и маркшейдерских указаний, обязательных для исполнения должностными лицами, которым они адресованы. Исполнение этих указаний должно регулярно контролироваться руководителями организации.

Экологическая безопасность

Общие положения

ведении горных работ на месторождении необходимо руководствоваться: «Гигиеническими нормативами к атмосферному воздуху в городских и сельских населенных пунктах» (Приказ Министра национальной экономики РК от 28.02.2015 г. №168), Санитарных «Санитарно-эпидемиологические требования сооружениям К зданиям производственного назначения» (Приказ Министра национальной экономики от 28.02.2015г. № 174), санитарных правил «Санитарно-эпидемиологические требования объектам (Приказ Министра национальной экономики от 20.03.2015г. № 236), промышленности» Санитарных правил «Санитарно-эпидемиологические требования по установлению санитарнозащитной зоны производственных объектов» (Приказ Министра национальной экономики от 20.03.2015г. № 237), Трудовым кодексом Республики Казахстан.

Прием на работу лиц, не достигших 18 лет, запрещается.

Работники должны проходить обязательные предварительные (при поступлении на работу) и периодические медицинские осмотры с учетом профиля и условий их работы.

Работники должны быть обеспечены водой, расход воды на одного работающего не менее 25 л/смену. Питьевая вода должна доставляться к местам работы в закрытых емкостях, которые снабжены кранами. Емкости изготовляются из материалов, разрешенных Министерством здравоохранения РК.

Все трудящиеся, где возможно присутствие в воздухе рабочей зоны вредных газов и паров, а также возможен непосредственный контакт с опасными реагентами и продуктами производства, обеспечиваются средствами индивидуальной защиты (СИЗ), спецодеждой и обувью. Допуск к работе с вредными и токсичными веществами без спецодежды и других защитных средств запрещается. Для защиты от пыли работники, занятые на участках, связанных с сыпучими и пылящими продуктами, обеспечиваются респираторами противопылевыми очками. Аварийный запас средств индивидуальной защиты определяется планом ликвидации аварий.

Контроль состояния воздушной среды рабочей зоны производственных помещений осуществляется согласно программы производственного экологического контроля.

Перед началом работ необходимо проверить рабочее место на возможность безопасного выполнения работ. При несоответствии рабочего места требованиям норм безопасности, производство работ не допускается.

При обнаружении угрозы жизни, возникновения аварии немедленно известить любое лицо контроля.

Пуск, остановка технических устройств сопровождается подачей предупреждающего

сигнала.

Таблица сигналов вывешивается на видном месте вблизи технического устройства.

Значение сигналов доводится до всех находящихся в зоне действия технического устройства.

При сигнале об остановке или непонятном сигнале, техническое устройство немедленно останавливается.

При перерыве в электроснабжении техническое устройство приводится в нерабочее положение.

Безопасные и гигиенические условия труда в шахте сводятся в основном к обеспечению комфортных условий трудящихся по освещению и проветриванию рабочих забоев, борьбе с запыленностью, вибрацией и шумом.

Для защиты подземных рабочих от вредного воздействия на них условий рабочей среды и работающего оборудования проектом предусмотрено:

- подача свежего воздуха в количестве, обеспечивающем его эффективную скорость по выработкам;
 - подогрев подаваемого в шахту воздуха до температуры +5°C в зимнее время;
- оснащение всех откаточных, камерных выработок, ходовых отделений стволов шахт и вентиляционно-ходовых восстающих стационарным, а проходческих и очистных забоев переносным освещением;
- применение бурового оборудования, позволяющего свести до минимума влияние вибрации на работающего;
- применение буров с резинометаллическими буртиками, которые снижают уровень шума в 1,5-1,7 раза;
- применение вибрационных кареток при бурении ручными перфораторами, виброзащитных устройств при бурении телескопными перфораторами;
- осуществление систематического газо-температурного контроля в очистных и проходческих забоях и на исходящей струе.

Борьба с пылью и вредными газами и радиационная безопасность

Повышенное содержание пыли, вредных газов в воздухе относится к группе опасных и вредных физических производственных факторов.

При получении анализов с превышением ПДК пыли должны быть разработаны дополнительные меры по снижению запыленности на рабочих местах и снижению концентрации пыли и других вредных веществ до уровня допустимых.

Для снижения загрязненности воздуха до санитарных норм данным проектом предусматривается комплекс инженерно-технических мероприятий по борьбе с пылью и газами:

- для снижения пылеподавления на автомобильных дорогах при положительной температуре воздуха проводится поливка дорог водой с применением при необходимости связующих добавок;
- при погрузке горной массы в транспортные средства с помощью ПДМ, смачивается оросителями, встроенными в машину.

Проверка загазованности и запылённости на рабочих местах проводится по графику, согласно производственному экологическому контролю, но не реже 1 раза в течение квартала.

Предотвращение техногенного опустынивания земель

Во избежание опустынивания земель, ветровой и водной эрозии почвенно плодородного слоя.

Технологические схемы производства горных работ должны предусматривать:

- снятие и транспортировку плодородно-растительного слоя, его складирование и хранение в бортах обваловки или нанесение на рекультивируемые поверхности;
 - формирование по форме и структуре устойчивых отвалов.

Необходимо проведение рекльтивационных работ. Для этого настоящим проектом предусматривается складирование ПРС для биологического восстановления нарушенного горными работами.

Рекультивируемые площади и прилегающие к ним территории после завершения всего комплекса работ должны представлять собой оптимально организационный и устойчивый ландшафт.

Мероприятия по предотвращению проявлений опасных техногенных процессов рациональному использованию и охране недр

Для выполнения требований по рациональному и комплексному использованию недр, планом горных работ предусматривается следующие мероприятия:

- выбор наиболее рациональных методов разработки месторождения;
- строгий маркшейдерский контроль за проведением горных работ;
- проведение горных работ с учетом наиболее полного извлечения полезного ископаемого из недр и уменьшения потерь при;
 - ликвидация и рекультивация горных выработок.

Мероприятия по снижению воздействия отходов производства на окружающую среду во многом дублируют мероприятия по охране почв, поверхностных и подземных вод и включают в себя решения по организации работ, обеспечивающих минимальное воздействие на окружающую среду.

Планом горных работ предусматривается проведение комплекса мероприятий при временном складировании и хранении производственных и бытовых отходов с целью уменьшения и сокращения вредного влияния на окружающую среду. Основными мероприятиями являются:

- -тщательная регламентация проведения работ, связанных с загрязнением и нарушением рельефа
 - -организация систем сбора, транспортировки и утилизации отходов
 - -ведение постоянных мониторинговых наблюдений

Отходы, хранящиеся в производственных помещениях, должны быть защищены от влияния атмосферных осадков и не воздействовать на почву, атмосферу, подземные и поверхностные воды. Их воздействие на окружающую среду может проявиться только при несоблюдении правил их сбора и хранения.

При необходимости, в процессе эксплуатации предприятия, с целью предупреждения или смягчения возможных экологических последствий образования и размещения отходов, будут предусмотрены и осуществлены дополнительные, соответствующие современному уровню и стадии производства инженерные и природоохранные мероприятия.

Негативное воздействие проектируемого объекта на растительный покров прилегающих угодий весьма незначительное, и будет ограничиваться выделением пыли во время автотранспортных работ.

Район проведения горных работ не затрагивает памятников природы, истории, архитектуры, культуры, курганов, заповедников, заказников.

Влияния не изменят коренным образом структуру и направление развития экосистемы и ее способность к самовосстановлению после прекращения или уменьшения степени техногенного воздействия.

Промышленная безопасность.

Основные требования к промышленной безопасности

При разработке месторождения Кокзабой Полиметаллический следует руководствоваться следующими нормативно правовыми актами:

- Трудовой Кодекс Республики Казахстан от 23.11.2015 г. №414 (с изменениями и дополнениями по состоянию на 01.01.2019 г.)
- Закон Республики Казахстан «О гражданской защите» от 11 апреля 2014 г. № 188-V. (с изменениями и дополнениями по состоянию на 11.04.2019 г.)
- Правила обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы, утвержденных приказом Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 352. Зарегистрирован в Министерстве юстиции Республики Казахстан 13 февраля 2015 года № 10247;

- Постановление Правительства Республики Казахстан от 17 августа 2017 года №15501 «Об утверждении Технического регламента «Общие требования к пожарной безопасности».

В каждой памятке для различных профессий необходимо помещать общие указания по передвижению рабочих к месту работы, предупреждения о возможных опасностях при выполнении работ и меры их предотвращения.

Каждый рабочий должен:

- пройти медицинское освидетельствование и вводный инструктаж по технике безопасности;
- без разрешения технического руководителя не оставлять место работы и не выполнять не порученную ему работу;
- при переходе на другую работу пройти технический и санитарный минимум, сдать экзамен и получить удостоверение на право выполнения работы по профессии;
- при обнаружении технической не исправности оборудования и агрегатов немедленно предупредить об этом ответственных лиц и принять все возможные меры к устранению;
- в памятке-инструкции должен быть помещен раздел «Оказание первой медицинской помощи пострадавшим при несчастных случаях».

Инструкции составляются на основании существующих инструкций по технике безопасности. Инструкции должны отвечать следующим требованиям:

- 1. Правила обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы, утвержденных приказом Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 352. Зарегистрирован в Министерстве юстиции Республики Казахстан 13 февраля 2015 года № 10247;
- 2. Правила обеспечения промышленной безопасности для опасных производственных объектов (Приказ Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 343);
- 3. Трудовой Кодекс Республики Казахстан от 23.11.2015 г. №414 (с изменениями и дополнениями по состоянию на 01.01.2019 г.).

Мероприятия по предупреждению и ликвидации чрезвычайных ситуаций

В целях обеспечения готовности к действиям по локализации и ликвидации последствий аварий организации, имеющие опасные производственные объекты, обязаны:

- 1) планировать и осуществлять мероприятия по локализации и ликвидации последствий аварий на опасных производственных объектах;
- 2) привлекать к профилактическим работам по предупреждению аварий на опасных производственных объектах, локализации и ликвидации их последствий военизированные аварийно-спасательные службы и формирования;
- 3) иметь резервы материальных и финансовых ресурсов для локализации и ликвидации последствий аварий;
- 4) обучать работников методам защиты и действиям в случае аварии на опасных производственных объектах;
- 5) создавать системы наблюдения, оповещения, связи и поддержки действий в случае аварии на опасных производственных объектах и обеспечивать их устойчивое функционирование.

План ликвидации аварий. Согласно закону Республики Казахстан «О гражданской защите» (с изменениями и дополнениями по состоянию на 11.04.2019 г.) На опасном производственном объекте разрабатывается план ликвидации аварий. В плане ликвидации аварий предусматриваются мероприятия по спасению людей, действия персонала и аварийных спасательных служб.

План ликвидации аварий содержит:

- 1) оперативную часть;
- 2) распределение обязанностей между персоналом, участвующим в ликвидации аварий, последовательность их действий;
- 3) список должностных лиц и учреждений, оповещаемых в случае аварии и участвующих в ее ликвидации.

План ликвидации аварий утверждается руководителем организации и согласовывается с

аварийно-спасательными службами и формированиями.

- В Плане ликвидации аварий предусматриваются:
- 1) мероприятия по спасению людей
- 2) мероприятия по ликвидации аварий в начальной стадии их возникновения;
- 3) действия персонала при возникновении аварий;
- 4) действия военизированной аварийно-спасательной службы (далее ACC), аварийного спасательного формирования (далее ACФ).

План ликвидации аварий подлежит утверждению: первичному - при пуске опасного объекта; внеочередному–при изменении технологии работ или требований нормативов - немедленно. План ликвидации аварий согласовывается с командиром АСС (АСФ) и утверждается руководителем организации за 15 дней до начала работ. Если в План ликвидации аварий не внесены необходимые изменения, командир АСС (АСФ) имеет право снять свою подпись о согласовании с ним Плана.

Наиболее опасными на месторождении являются провалы в подземные горные выработки. Выявленные провалы для исключения попадания в них людей и механизмов отсыпаны по периметру обваловкой, обозначены и выделены на планах горных работ. В качестве мероприятий по предупреждению и ликвидации чрезвычайных ситуаций принимается:

- вынесение зоны возможного возникновения провалов на поверхность;
- в случае появления новых провалов их обваловка и выставление ограждения с предупреждающими надписями.

На предприятии разработаны: декларация безопасности, инструкции по безопасной эксплуатации объектов, планы ликвидации возможных пожаров и аварий, которые предусматривают взаимодействие персонала и соответствующих специализированных служб предприятия.

Для предотвращения вредного влияния на сохранность запасов полезных ископаемых и обеспечения технической безопасности ежегодно на предприятии разрабатываются специальные мероприятия.

Таблица 68 Мероприятия по повышению промышленной безопасности

№п/п	Наименование мероприятий
1	Модернизация технологического оборудования
2	Геолого-маркшейдерское обеспечение горных работ современным оборудованием и программным обеспечением (электронные теодолиты и нивелиры, обработка результатов съемки на компьютерах, работа в специализированных программах типа «Micromine»)
3	Использование современного горно-транспортного высокопроизводительного оборудования для эффективной отработки месторождения
4	Монтаж и ремонт горного оборудования
5	Современная мобильная и стационарная радиосвязь
6	Обновление запасов средств защиты персонала в зоне возможного поражения

Учебные тревоги и противоаварийные тренировки

На опасном производственном объекте проводятся учебные тревоги и противоаварийные тренировки по плану, утвержденному руководителем организации и согласованному с территориальным подразделением уполномоченного органа.

Учебная тревога проводится руководителем организации совместно с представителями территориального подразделения уполномоченного органа и аварийно-спасательной службы.

Итоги учебной тревоги оформляются актом. Контроль за исполнением изложенных в акте предложений возлагается на руководителя организации.

Проведение учебной тревоги не вызывает нарушения работ, ведущихся на объекте, обеспечения боеспособности подразделений $ACC(AC\Phi)$ в случае возникновения аварий.

Задачами проведения учебной тревоги являются:

- проверка подготовленности объекта, персонала к спасению людей и ликвидации аварии;
- проверка соответствия ПЛА фактическому положению на объекте; проверка боеготовности подразделений АСС (АСФ), обслуживающий объект. Учебная тревога проводится техническим руководителем организации совместно с представителями АСС (АСФ).

Пожарная безопасность

Противопожарные мероприятия регламентируются утвержденными в Республике Казахстан «Правилами пожарной безопасности» (Постановление Правительства РК от 9.10.2014г. № 1077).

Оповещение о пожаре осуществляется с помощью мобильных радиостанций.

Здания на территории предприятия выполняются из несгораемых железобетонных конструкций, с соблюдением противопожарных разрывов между зданиями и сооружениями.

Временные сооружения, а также подсобные сооружения обеспечиваются первичными средствами пожаротушения в соответствии в правилами.

Помимо противопожарного оборудования зданий и сооружений, на территории склада, зданий будут размещены пожарные щиты со следующим минимальным набором пожарного инвентаря, шт.: топоров -2, ломов и лопат -2., багров железных -2, ведер, окрашенных в красный цвет -2, огнетушителей -2.

Так как полезное ископаемое и порода месторождения не склонна к самовозгоранию и карьер неопасен по газу и пыли, то возникновение пожара возможен только от тепловых импульсов, источником которых могут быть электрическая энергия, небрежное отношение с огнепламенным оборудованием и курение.

На период проходки и эксплуатации выработки района работ обеспечиваются средствами пожаротушения:

- противопожарным водопроводом (промышленным водопроводом) с пожарным краном;
- ящиками с песком, емкостью не менее 0,2 м² у РП энергоснабжения.

Смазочные и обтирочные материалы должны храниться в закрывающихся ящиках и в них выдаваться из шахты.

Планом горных работ приняты следующие решения по обеспечению пожарной безопасности:

- для хранения противопожарного запаса воды на площадке имеется резервуар с насосной станцией емкостью 200 m^3 ;
- предусмотрена прокладка пожарно-технического водопровода, оборудованного пожарными кранами и редукционными клапанами. Узел «вода-воздух» используется при тушении пожара в горизонтальных выработках для подачи воды по трубопроводу сжатого воздуха при неисправности водопровода;
- в воздухоподающих выработках ствола Вентиляционный всех горизонтов устанавливаются двойные несгораемые двери, закрывающиеся по ходу вентиляционной струи.

Планом горных работ на поверхности предусмотрен склад противопожарных материалов. На горизонтах также предусмотрены подземные склады ППМ.

Для обеспечения взрыво- и пожаробезопасности предусмотрено следующее:

- для предупреждения возможности распространения огня по выработкам, подающих свежий воздух, и камерных выработках предусмотрены несгораемые противопожарные двери;
- все подземные рабочие, в соответствии с требованиями правил безопасности, обеспечены и обучены пользованию самоспасателями и первичными средствами пожаротушения;
- производство сварочных и газопламенных работ ведется в строгом соответствии с «Инструкцией по производству сварочных и газопламенных работ в подземных выработках и надшахтных зданиях»;
- при возникновении аварии (пожара), требующей вывода людей из шахты, предусмотрена аварийная сигнализация, которая подается с одного места (диспетчерского пункта), выполненная согласно «Методическим указаниям по составлению плана ликвидации аварий». Для оповещения персонала подземных выработок используется световая сигнализация (путем мигания света не менее 5 раз через 10-20 секунд);
- своевременное сооружение в необходимых местах вентиляционных устройств (перемычек, дверей). Поддержание вентиляционной сети горных выработок в состоянии, обеспечивающем надежное их проветривание, выполнение реверса (опрокидывания)

вентиляционной струи за время не более 10 минут, причем количество воздуха, проходящего по выработкам после реверсирования, должно составлять не менее 60% от нормального дебита вентилятора;

- все ИТР, рабочие и служащие проходят специальную противопожарную подготовку в системе производственного обучения.

Обеспечение промышленной безопасности

Все горные и геологоразведочные работы ведутся на основании проектной документации на строительство, расширение, реконструкцию, модернизацию, консервацию и ликвидацию опасного производственного объекта (далее — проект) и плана горных работ, разработанного в соответствии с приказом Министра по инвестициям и развитию Республики Казахстан от 18 мая 2018 года № 351 «Об утверждении Инструкции по составлению плана горных работ».

На объектах, ведущих горные, геологоразведочные работы, разрабатываются и утверждаются техническим руководителем организации:

- 1) положение о производственном контроле;
- 2) технологические регламенты;
- 3) план ликвидации аварий (далее ПЛА) в соответствие с Требованиями к разработке плана ликвидации аварий, установленными приложением к Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы (далее Правила).

К техническому руководству горными работами допускаются лица, предусмотренные Квалификационным справочником должностей руководителей, специалистов и других служащих, утвержденным приказом Министра труда и социальной защиты населения Республики Казахстан от 21 мая 2012 года № 201-ө-м «Об утверждении Квалификационного справочника должностей руководителей, специалистов и других служащих».

Все работы выполняются по наряд-заданию, оформленному письменно в Книге нарядов или в электронном журнале регистрации наряд-заданий.

Наряд-задание — задание на безопасное производство работы, оформленное в Книге (журнале) наряд-задания или в электронном журнале регистрации наряд-заданий и определяющее содержание, место работы, время ее начала и окончания, условия ее безопасного выполнения, необходимые меры безопасности, состав бригады и работников, ответственных за безопасное выполнение работы и отметка о выполнении или невыполнении наряд-задания.

Наряд-задание, оформленное письменно в Книге нарядов выдается техническим руководителем структурного подразделения организации ответственному руководителю и ответственному производителю работ письменно под роспись.

Наряд-задание определяет время, содержание, место выполнения работ, фактические объемы работ, безопасный порядок выполнения и конкретных лиц, которым поручено выполнение работ.

Все работы повышенной опасности выполняются по наряд-допуску.

Перечень работ повышенной опасности ежегодно корректируется и утверждается приказом руководителя организации или технического руководителя структурного подразделения организации.

Перечень инженерно-технических работников структурных подразделений организации, имеющих право выдачи наряд-допуска, утверждается приказом руководителя организации или технического руководителя структурного подразделения организации.

На объектах, ведущих горные работы в соответствии с утвержденным планом проводятся учебные тревоги и противоаварийные тренировки.

Для ознакомления персонала с условиями безопасного производства работ на объекте владелец организует проведение инструктажей, предусмотренных Правилами и сроками проведения обучения, инструктирования и проверок знаний по вопросам безопасности и охраны труда работников, утвержденными приказом Министра здравоохранения и социального развития Республики Казахстан от 25 декабря 2015 года № 1019 «Об утверждении Правил и сроков проведения обучения, инструктирования и проверок знаний по вопросам безопасности и охраны труда работников».

Производство взрывных работ, хранение, транспортирование и учет взрывчатых веществ и

изделий на их основе должны производиться в соответствии с требованиями приказа Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 343 «Об утверждении Правил обеспечения промышленной безопасности для опасных производственных объектов».

Каждый работающий, заметивший опасность, угрожающую людям, должен принимать зависящие от него меры для ее устранения и сообщает об этом лицу контроля.

Лицо контроля должно принимать меры к устранению опасности; при невозможности устранения опасности – прекращает работы, выводит работающих в безопасное место и ставит в известность старшего по должности.

Посторонние лица, не состоящие в штате объекта, при его посещении проходят инструктаж по мерам безопасности и обеспечиваются средствами индивидуальной защиты.

Не допускается нахождение персонала, производство работ в опасных местах, за исключением случаев ликвидации опасности, предотвращения возможной аварии, пожара и спасении людей.

Руководитель организации, эксплуатирующей объект, должен обеспечивать безопасные условия труда, разработку защитных мероприятий на основе оценки опасности на каждом рабочем месте и на объекте в целом, определять порядок действий рабочих и должностных лиц при обнаружении опасности, угрожающей жизни и здоровью людей, возникновении инцидентов, аварий.

Не допускается отдых персонала непосредственно в забоях, в опасной зоне работающих механизмов, на транспортных путях.

Провалы, зумпфы, воронки, недействующие шурфы, дренажные скважины, вертикальные выработки должны перекрываться и ограждаться.

Не допускается загромождать места работы оборудования и подходы к ним горной массой или какими-либо предметами, затрудняющими передвижение людей, машин и механизмов.

Передвижение людей по территории допускается по пешеходным дорожкам или по обочинам автодорог навстречу направлению движения автотранспорта. С маршрутами передвижения должны ознакамливаться все работающие под роспись. Маршрут передвижения утверждается техническим руководителем организации.

За состоянием оборудования устанавливается постоянный контроль, периодичность контроля и лица, осуществляющие производственный контроль, устанавливаются нормативным актом о производственном контроле в области промышленной безопасности, утверждаемого приказом руководителя организации.

Результаты заносятся в Журнал осмотра по форме согласно приложению 2 к Правилам.

Сроки периодических осмотров и порядок выбраковки неисправного инструмента утверждаются техническим руководителем организации.

Выбракованный инструмент изымается из употребления.

Работниками не допускается:

- 1) эксплуатировать оборудование, механизмы, аппаратуру и инструмент при нагрузках (давлении, силе тока, напряжении и прочее), превышающих допустимые нормы по паспорту;
- 2) применять не по назначению, использовать неисправные оборудование, механизмы, аппаратуру, инструмент, приспособления и средства защиты;
- 3) оставлять без присмотра работающее оборудование, аппаратуру, требующие при эксплуатации постоянного присутствия обслуживающего персонала;
 - 4) производить работы при отсутствии или неисправности защитных ограждений;
 - 5) обслуживать оборудование и аппаратуру в не застегнутой спецодежде.

Во время работы механизмов не допускается:

- 1) подниматься на работающие механизмы или выполнять, находясь на работающих механизмах, какие-либо работы;
- 2) ремонтировать, закреплять какие-либо части, чистить, смазывать движущиеся части вручную или при помощи не предназначенных для этого приспособлений;
- 3) тормозить движущиеся части механизмов, надевать, сбрасывать, натягивать или ослаблять ременные, клиноременные и цепные передачи, направлять канат или кабель на барабане лебедки при помощи ломов (ваг), и непосредственно руками;

- 4) оставлять на ограждениях какие-либо предметы;
- 5) снимать ограждения или их элементы до полной остановки движущихся частей;
- 6) передвигаться по ограждениям или под ними;
- 7) входить за ограждения, переходить через движущиеся не огражденные канаты или касаться их.

Ha транспортных средствах, (погрузочно-доставочный транспорт, самоходных автосамосвалы, подземные автобусы по доставке работников до рабочих мест, транспорт по доставке взрывчатых материалов, буровые установки, геофизические шурфопроходческие агрегаты) изготовителем предусматриваются места для размещения кассет с аптечкой, термоса с питьевой водой и средств пожаротушения. Кассеты и огнетушитель располагаются в легкодоступном месте и имеют быстросъемное крепление.

Транспортные средства обеспечиваются индивидуальными медицинскими аптечками и огнетушителями.

Социально-экономические аспекты ввода в эксплуатацию

Целесообразность проведения добычных работ обуславливается высокой потребностью материалов.

Проведение работ приведет к созданию ряда рабочих мест, позволит максимально использовать существующую транспортную систему и социально-бытовые объекты области в целом, приведет к увеличению спроса на продукты питания местных сельхозпроизводителей.

Создание дополнительных рабочих мест приведет к увеличению поступлений в местные бюджеты финансовых средств за счет отчисления социальных и подоходных налогов.

Прогноз социально-экономических последствий, связанных с современной и будущей деятельностью предприятия - благоприятен. Проведение работ с соблюдением норм и правил техники безопасности, промышленной санитарии, противопожарной безопасности обеспечит безопасное проведение планируемых работ и не вызовет дополнительной, нежелательной нагрузки на социально-бытовую инфраструктуру области.

1.6 Описание планируемых к применению наилучших доступных технологий — для объектов I категории, требующих получения комплексного экологического разрешения в соответствии с пунктом 1 статьи 111 Кодексом

Применяемая добыча является общепринятой и общераспространенной в нашей стране.

Отработка месторождения с использованием новой техники и технологии добычи песка, в настоящий период времени и с перспективой на будущие 10 лет, позволит обеспечить подъем экономики Республики Казахстан за счет пополнения государственного запаса благородными металлами.

При условии соблюдения безопасных методов труда, мероприятий по охране недр, использования оптимального оборудования и соблюдения квалифицированной организации труда, обеспечение заданной производственной мощности предприятия будет находиться в допустимых пределах.

Горно-геологические и горнотехнические условия залегания месторождения весьма благоприятны для эффективной добычи полезного ископаемого, а возможный прирост запасов позволит увеличить срок службы карьера в 1,5-2 раза, тем самым повысить рентабельность производства на 40-50 процентов.

Разделы касающиеся поверхностного строительства, ремонтного хозяйства, вспомогательного транспорта, цехов и оборудования, а также другие разделы, требуемые СН РК 1.02-03-2011 «Порядок разработки, согласования, утверждения и состав проектнойдокументации на строительство» будут выполняться на стадии РД (рабочая документация).

При проведении работ предприятие старается использовать технологическое оборудование, соответствующее передовому научно-техническому уровню.

В настоящее время одним из основных показателей предъявляемых к данному типу оборудования, является их производительность, высокая точность, многооперационность, управляемость, доступность и безопасность. Использование в различных отраслях промышленности экономически развитых стран, данного типа оборудования и их аналогов, с

учетом их соответствия требованиям международных стандартов, свидетельствует о их соответствии передовому научно-техническому уровню.

Надлежащее функционирование и соответствие техническим условиям применяемого на предприятии оборудования обеспечивается за счет регулярного ремонта и контроля исправности. На данный момент все технологическое оборудование, используемое предприятием, находится в должном техническом состоянии, что создает необходимые условия для качественного решения всех производственных задач.

В соответствии с вышеизложенным, применяемые на предприятии технологии, учитывая специфику предприятия и характер производимых работ, вполне соответствуют предъявляемым к ним требованиям.

Технико-экономическое обоснование Горнотехническая часть

Границы карьера и основные показатели горных работ

Исходя из горно-геологических условий, отработка кварцевого песка месторождения планируется открытым способом, как наиболее дешевым и экономически приемлемым.

На карьере рекомендуется транспортная система разработки с вывозом вскрышных пород автомобильным транспортом на внешний отвал.

Добыча строительного песка на месторождении будет производитьсяодним добычным уступом высотой до 9,9м на полную разведанную мощность полезной толщи, без предварительного рыхления.

Зачистка кровли полезного ископаемого будет производиться бульдозером Т-170. При проведении вскрышных работ принимается следующая схема – погрузчик-автосамосвал-отвал.

Выемка полезного ископаемого будет осуществляться экскаватором ЕК 270LCc ковшом вместимостью $1,25 \,\mathrm{m}^3$.Погрузка полезного ископаемого будет производиться в автосамосвалы КамАЗ-65115.

Исходя из объемов и технологии горных работ, для освоения участка потребуется следующее основное оборудование и машины (таблица 9.1.2):

Таблица 9.1.2

Перечень карьерного оборудования

-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	№	Наименование	Количество
	п/п		
	1.	Экскаватор ЕК270LС	1
ſ	2.	Погрузчик ZL50G	1
ſ	3.	Бульдозер Т-170	1
	4.	Автосамосвал КамАЗ-65115	2

Необходимая численность трудящихся приведена в таблице 9.1.3.

Таблица 9.1.3

Список производственного персонала

№ п/п	Категория трудящихся	Численность
1.	Рабочие: экскаваторщик	1
2.	Машинист погрузчика	1
3.	Бульдозерист	1
4.	Водители	2
	Итого рабочих	5
5.	ИТР	4
	Всего трудящихся	9

Экономическая часть

Добытый песок будет реализовываться по 320 тенге за 1m^3 . Таким образом, стоимость годовой товарной продукции составит:

320x100000 = 32000 тыс.тг.

Эксплуатационные расходы

Зарплата:100000 ×9 × 7 мес. =6300 тыс. тг.

Отчисления с заработной платы: 18,6 % от Φ OT = 1146,6 тыс. тг.

Приобретение ГСМ:7 553,4 тыс.тг.

Всего эксплуатационных затрат – 15 000 тыс. тг.

Налоги и другие платежи

1. Налоги на добычу:

0,02 MPII (2917тг. на момент разработки плана горных работ) за 1m^3 :

0.02 * 3063 * 100 000 = 6 126 тыс. тенге

2. НДС (12%): 32 000 тг. * 12 / 112 = 3 428,6тыс.тенге

3.Платы за пользование земельными участками (арендного платежа)

450 МРП (2917тг. на момент разработки плана горных работ) за 1кm^2

0.4km² * 450 * 3063tr. = **551.3 Tыс.**тг.

Итого налоги и другие платежи – 10 105,9 тыс.тенге.

Основные сведения о финансировании работы карьера приведены в таблице 9.2.1.

Таблица 9.2.1.

Сведения о финансировании планируемых работ с разбивкой по годам

										Год	ы отра	ботки						
Ŋº	Наимено-	Ед.		1	2	3	4	5	6	7	8	9	10	11	2	3	4	5
	вание	изм.	Итого	год														
				2022г.	2023г.	2024г.	2025г.	2026г.	2027г.	2028г.	2029г.	2030г.	2031г.	2032г.	2023г.	2024г.	2025г.	2026г.
1	Объем добычи в плотном теле в год	тыс.м3	4998,2	30	50	100	100	100	100	100	100	100	100	100	100	1500	1500	918,2
2	Потери	тыс.м3	25,1	0,15	0,25	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	7,54	7,54	4,62
3	Вскрыша	тыс.м3	542,9	2,9	4,8	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	9,6	143,9	175,5	119,8
4	Затраты на добычу, всего	тыс.тг.	749730	4500	7500	15000	15000	15000	15000	15000	15000	15000	15000	15000	15000	225000	225000	137730

1.7 Описание работ по постутилизации существующих зданий, строений, сооружений, оборудования и способов их выполнения, если эти работы необходимы для целей реализации намечаемой деятельности

Утилизация существующих здании, строений, сооружений, оборудования не предусматривается.