Товарищество с ограниченной ответственностью «Мир Проект» Государственная лицензия на оказание услуг №02324Р от 29.10.2021 г.

ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

к «Плану горных работ на добычу песчано-гравийной смеси Нового участка Георгиевского месторождения, расположенного на землях г.Актобе»

г. Актобе, 2023 г.

СОДЕРЖАНИЕ

	Сведения об исполнителях	3
	Введение	4
1	Отчет о возможных воздействиях	
	Описание предполагаемого места осуществления намечаемой деятельности, его	
1.1.	координаты, определенные согласно геоинформационной системе, с	6
	векторными файлами.	
1.2	Описание состояния окружающей среды на предполагаемой затрагиваемой	8
	территории на момент составления отчета (базовый сценарий)	
	Описание изменений окружающей среды, которые могут произойти в случае	
1.3	отказа от начала намечаемой деятельности, соответствующее следующим	12
	условиям	
	Информация о категории земель и целях использования земель в ходе	
1.4	строительства и эксплуатации объектов, необходимых для осуществления	13
	намечаемой деятельности	
	Информация о показателях объектов, необходимых для осуществления	
	намечаемой деятельности, включая их мощность, габариты (площадь	
1.5	занимаемых земель, высота), другие физические и технические	13
	характеристики, влияющие на воздействия на окружающую среду; сведения о	
	производственном процессе, в том числе об ожидаемой производительности	
	предприятия, его	
	потребности в энергии, природных ресурсах, сырье и материалах.	
1.0	Описание планируемых к применению наилучших доступных	1.0
1.6	технологий - для объектов I категории, требующих получения	16
	комплексного экологического	
	разрешения в соответствии с пунктом 1 статьи 111 Кодексом.	
1.7	Описание работ по постутилизации существующих зданий, строений,	17
1./	сооружений, оборудования и способов их выполнения, если эти работы необходимы для целей реализации намечаемой деятельности.	1 /
	Информация об ожидаемых видах, характеристиках и количестве эмиссий в	
	окружающую среду, иных вредных антропогенных воздействиях на	
1.8	окружающую среду, связанных со строительством и эксплуатацией объектов	17
1.0	для осуществления рассматриваемой деятельности, включая воздействие на	17
	воды,	
	атмосферный воздух, почвы, недра, а также вибрации, шумовые,	
	электромагнитные, тепловые и радиационные воздействия.	
	Информация об ожидаемых видах, характеристиках и количестве отходов,	
1.9	которые будут образованы в ходе строительства и эксплуатации объектов в	35
	рамках намечаемой деятельности, в том числе отходов, образуемых в	
	результате осуществления постутилизации существующих зданий, строений,	
	сооружений, оборудования.	
	Описание затрагиваемой территории с указанием численности ее	
2	населения, участков, на которых могут быть обнаружены выбросы,	37
	сбросы и иные негативные воздействия намечаемой деятельности на	
	окружающую среду, с учетом их характеристик и способности переноса в	
	окружающую	
	среду; участков извлечения природных ресурсов и захоронения отходов.	

3	Описание возможных вариантов осуществления намечаемой деятельности с учетом ее особенностей и возможного воздействия на окружающую среду, включая вариант, выбранный инициатором намечаемой деятельности для применения, обоснование его выбора, описание других возможных рациональных вариантов, в том числе рационального варианта, наиболее благоприятного с точки зрения охраны жизни и (или) здоровья людей,	38
	окружающей среды.	
4	Варианты осуществления намечаемой деятельности.	38
4.1	Различные условия эксплуатации объекта (включая графики выполнения работ, влекущих негативные антропогенные воздействия на окружающую среду)	38
4.2	Различные условия доступа к объекту (включая виды транспорта, которые будут использоваться для доступа к объекту)	38
4.3	Различные варианты, относящиеся к иным характеристикам намечаемой деятельности, влияющие на характер и масштабы антропогенного воздействия на окружающую среду.	38
5	Возможные рациональные варианты осуществления намечаемой деятельности понимается вариант осуществления намечаемой Деятельности при котором соблюдаются в совокупности следующие условия:	39
5.1	Отсутствие обстоятельств, влекущих невозможность применения данного варианта, в том числе вызванную характеристиками предполагаемого места осуществления намечаемой деятельности и другими условиями ее осуществления;	39
5.2	Соответствие целям и конкретным характеристикам объекта, необходимого для осуществления намечаемой деятельности;	39
5.3	Доступность ресурсов, необходимых для осуществления намечаемой деятельности по данному варианту;	39
5.4	Отсутствие возможных нарушений прав и законных интересов населения затрагиваемой территории в результате осуществления намечаемой деятельности по данному варианту.	39
6	Информация о компонентах природной среды и иных объектах, которые могут быть подвержены существенным воздействиям намечаемой деятельности:	40
6.1	Жизнь и (или) здоровье людей, условия их проживания и деятельности	40
6.2	Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)	40
6.3	Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации)	41
6.4	Воды (в том числе гидроморфологические изменения, количество и качество вод)	41
6.5	Атмосферный воздух (в том числе риски нарушения экологических нормативов его качества, целевых показателей качества, а при их отсутствии ориентировочно безопасных уровней воздействия на него)	42
6.6	Материальные активы, объекты историко-культурного наследия (в том числе	43

	архитектурные и археологические), ландшафты	
7	Описание возможных существенных воздействий (прямых и косвенных, кумулятивных, трансграничных, краткосрочных и долгосрочных, положительных и отрицательных) намечаемой деятельности на объекты,	44
	перечисленные в пункте 6 настоящего приложения, возникающих в результате:	
7.1	Строительства и эксплуатации объектов, предназначенных для осуществления намечаемой деятельности, в том числе работ по постутилизации существующих объектов в случаях необходимости их проведения;	44
7.2	Использование природных и генетических ресурсов (в том числе земель, недр, почв, воды, объектов растительного и животного мира — в зависимости от наличия этих ресурсов и места их нахождения, путей миграции диких животных, необходимости использования невозобновляемых, дефицитных и уникальных природных ресурсов)	44
8	Обоснование предельных количественных и качественных показателей эмиссий, физических воздействий на окружающую среду, выбора операций по управлению отходами.	45
9	Обоснование предельного количества накопления отходов по их видам	63
10	Обоснование предельных объемов захоронения отходов по их видам, если такое захоронение предусмотрено в рамках намечаемой деятельности.	66
11	Информация об определении вероятности возникновения аварий и опасных природных явлений, характерных соответственно для намечаемой деятельности и предполагаемого места ее осуществления, описание возможных существенных вредных воздействий на окружающую среду, связанных с рисками возникновения аварий и опасных природных явлений, с учетом возможности проведения мероприятий по их предотвращению и ликвидации:	66
11.1		66
11.2		67
11.3	Вероятность возникновения неблагоприятных последствий в результате аварий, инцидентов, природных стихийных бедствий в предполагаемом месте осуществления намечаемой деятельности и вокруг него	68
11.4	Все возможные неблагоприятные последствия для окружающей среды, которые	68
	могут возникнуть в результате инцидента, аварии, стихийного природного явления	
11.5		69
11.6	Меры по предотвращению последствий инцидентов, аварий, природных стихийных бедствий, включая оповещение населения, и оценка их надежности	69

11.7	Планы ликвидации последствий инцидентов, аварий, природных стихийных бедствий, предотвращения и минимизации дальнейших негативных последствий для окружающей среды, жизни, здоровья и деятельности человека	69
11.8	Профилактика, мониторинг и ранее предупреждение инцидентов аварий, их последствий, а также последствий взаимодействия намечаемой деятельности со стихийными природными явлениями.	70
12	Описание предусматриваемых для периодов строительства и эксплуатации объекта мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду, в том числе предлагаемых мероприятий по управлению отходами, а также при наличии неопределенности в оценке возможных существенных воздействий - предлагаемых мер по мониторингу воздействий (включая необходимость проведения послепроектного анализа фактических воздействий в ходе реализации намечаемой деятельности в сравнении с информацией, приведенной в отчете о возможных воздействиях).	72
13	Меры по сохранению и компенсации потери биоразнообразия, предусмотренные пунктом 2 статьи 240 и пунктом 2 статьи 241 Кодекса.	73
14	Оценка возможных необратимых воздействий на окружающую среду и обоснование необходимости выполнения операций, влекущих такие воздействия, в том числе сравнительный анализ потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери, в	73
15	экологическом, культурном, экономическом и социальном контекстах. Цели, масштабы и сроки проведения послепроектного анализа, требования к его содержанию, сроки представления отчетов о послепроектном анализе уполномоченному органу.	73
16	Способы и меры восстановления окружающей среды на случаи прекращения намечаемой деятельности, определенные на начальной стадии ее осуществления.	74
17	Описание методологии исследований и сведения об источниках экологической информации, использованной при составлении отчета о возможных воздействиях.	75
18	Описание трудностей, возникших при проведении исследований и связанных с отсутствием технических возможностей и недостаточным уровнем современных научных знаний.	75
19	Краткое нетехническое резюме с обобщением информации, указанной в пунктах 1 - 17 настоящего приложения, в целях информирования заинтересованной общественности в связи с ее участием в оценке воздействия на окружающую среду.	76
	Приложение 1. Государственная лицензия на выполнение природоохранных работ	87
	2. Дополнительные материалы	90

ВВЕДЕНИЕ

«Отчет о возможных воздействиях» разработан в процессе оценки воздействия на окружающую среду намечаемой деятельности в соответствии с требованиями нормативноправовых актов Республики Казахстан:

- Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK.
- Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280. «Об утверждении инструкции по организации проведению экологической оценки».
- Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 14 июля 2021 года № 250 «Об утверждении Правил разработки программы производственного экологического контроля объектов I и II категорий, ведения внутреннего учета, формирования и предоставления периодических отчетов по результатам производственного экологического контроля

В проекте определены предварительные нормативы допустимых эмиссий согласно рекомендуемому варианту разработки; проведена предварительная оценка воздействия объекта на атмосферный воздух; выполнены расчеты выбросов загрязняющих веществ в атмосферный воздух от источников загрязнения; обоснование санитарно- защитной зоны объекта, расчет рассеивания приземных концентраций, приводятся данные по водопотреблению и водоотведению; предварительные нормативы по отходам, образующиеся в период проведения работ; произведена предварительная оценка воздействия на поверхностные и подземные воды, напочвы, растительный и животный мир; описаны социальные аспекты воздействия при проведении работ.

В соответствии с заключением об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействия намечаемой деятельности инициатор обеспечивает проведение мероприятий, необходимых для оценки воздействия намечаемой деятельности на окружающую среду, и подготовку по их результатам отчета о возможных воздействиях.

1. Инициатор намечаемой деятельности условия: АО «Коктас»

	Общая информация					
Резиденство	АО «Коктас»					
БИН	930140000740					
Категория	2 категория					
Основной вид деятельности	Добыча и переработка					
	общераспространенных полезных					
	ископаемых свыше 10 тыс. тонн в год					
Форма собственности	частная					
	Контактная информация					
Индекс	030711					
Регион	РК, Актюбинская область					
Адрес	Мугалжарский район, пос. Мугалжар, ул.					
	Наурыз, дом №8.					
Телефон						
E-mail	info@koktas.kz					
	Директор					
Фамилия	Шунаев					
Имя	Турганбек					
Отечество	Багиндыкович					

1.1. Описание предполагаемого места осуществления намечаемой деятельности, его координаты, определенные согласно геоинформационной системе, с векторными файлами

Георгиевское месторождение песчано-гравийной смеси (Новый участок) расположен в 5,0км к северу от г.Актобе, на отложениях I надпойменной террасы р.Илек.

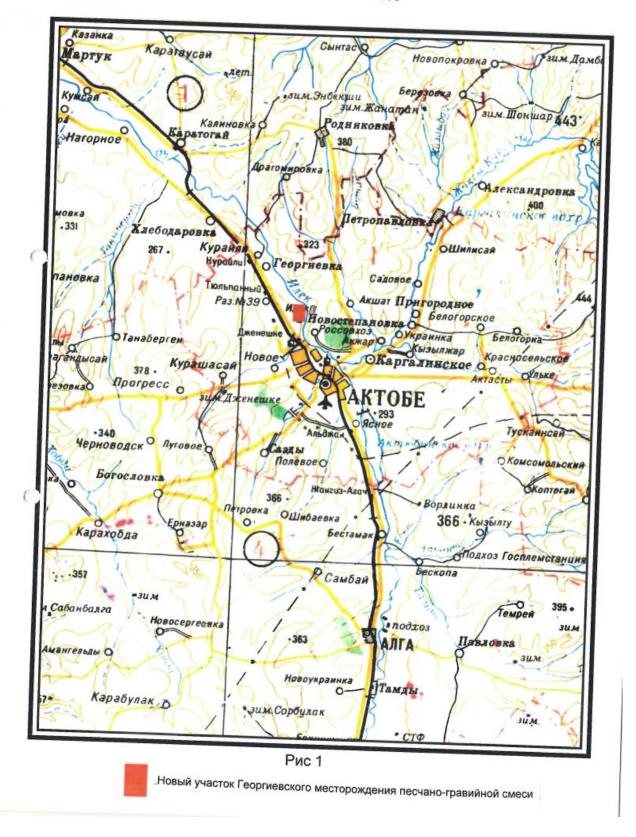
Месторождение находится на площади листа М-40-55-В.

Право недропользования на проведение добычных работ на Новом участке Георгиевского месторождения песчано-гравийной смеси АО «Коктас» имеет на основании Акта государственной регистрации Контракта №76/2007 от 03.10.2007г.(Прил.2).

Ежегодный объем добычи песчано-гравийной смеси согласован с Компетентным органом и предусмотрен проектом разработки в количестве 90,0 тыс.м3.

Однако за период 2017-2020гг. наблюдалось частичное недовыполнение запланированных ежегодных объемов добычи, которые за этот период составили 100,0тыс.м3.

Заседанием Экспертной комиссии по вопросам недропользования от 17.09.2021г. (Прил.3) АО «Коктас» рекомендовано внести изменения в ранее согласованные объемы добычи и компенсировать невыполненные объемы в количестве 100,0 тыс.м3 следующим образом:


период	объем добычи, тыс.м ³
2021-2022гг.	90,0
2023-2027гг.	110,0

Настоящий План горных работ составлен с учетом необходимости внесения изменений в ежегодные объемы добычи.

Технологические процессы добычи и система разработки месторождения не меняются.

Ситуационная карта-схема

ОБЗОРНАЯ КАРТА РАЙОНА РАБОТ масштаб 1:500 000

1.2. Описание состояния окружающей среды на предполагаемой затрагиваемой территории на момент составления отчета (базовый сценарий)

Климат района резко континентальный, с жарким летом и холодной зимой. Средняя температура июля +190, максимум +350, лето сухое с очень незначительными атмосферными осадками. Преобладающие ветры в летний период юго-западные, сухие.

Зима малоснежная, холодная, средняя температура -150 при максимуме -400, снег ложится в середине ноября и держится до второй половины апреля.

Гидрографическая сеть представлена р.Илек, которая расположена вдоль восточного фланга месторождения на расстоянии от 700 до 1000м.

Илек – степная река, весной полноводная, летом мелеет, а местами распадается на ряд небольших плесов, соединенных между собой узкими мелкими протоками. Питание реки происходит за счет грунтовых вод и атмосферных осадков.

Рельеф местности равнинный, абсолютные отметки варьируют от 200,0 до 202,0м.

Район месторождения экономически развит, что объясняется приближенностью к областному центру. В 4,0км западнее месторождения проходит магистральная железная дорога и автодорога.

Геологическое строение района

Геологическое строение района Георгиевского месторождения приводится по данным Романюка Я.И.

Район месторождения сложен осадочным комплексом пород, в котором принимают участие отложения палеозойского, мезозойского и кайнозойского возрастов.

Пермская система (Р)

Отложения пермской системы имеют очень ограниченное распространение и представлены верхним отделом.

Верхний отдел, родниковская свита (P2 rd)

Отложения верхнего отдела представлены родниковской свитой верхне-татарского подъяруса (P2t2 rd). В районе эти отложения протягиваются в виде узкой полосы с севера на юг и представлены мощной толщей песчаников с линзами конгломератов, переслаивающихся с известняками.

Триасовая система (Т)

Отложения этого возраста выполняют, в основном, широкие пологие синклинальные прогибы. На нижележащих верхнепермских породах они залегают с размывом. Среди осадков триасовой системы выделяются отложения нижнего и верхнего отделов, представленные соответственно бузулукской и курайлинской свитами.

Нижний отдел, бузулукская свита (T1bs)

Отложения бузулукской свиты выходят в виде узкой полосы вдоль р.Илек. Литологически отложения представлены грубыми конгломератами с прослоями песчаников и аргиллитоподобных глин.

Верхний отдел, курайлинская свита (T3krl)

Отложения курайлинской свиты имеют широкое площадное развитие. На образованиях нижнего триаса они залегают с угловым несогласием. На всей площади развития это довольно однообразная толща пород, представленная глинами с подчиненными прослоями песков и песчаников.

Глинистые отложения этой свиты являются подстилающими для песчано-гравийной смеси Георгиевского месторождения.

Мощность отложений курайлинской свиты (T3krl) не превышает 350,0м.

Юрская система (J)

Отложения юрской системы в пределах района месторождения развиты широко. Они залегают на различных горизонтах триаса и перми с резким угловым несогласием и представлены средним и верхним отделами.

Средний отдел (J2)

Отложения юрской системы в пределах района представлены глинами темно-серого и

черного цветов с растительными остатками и маломощными прослоями песка и бурого угля. Мощность отложений колеблется от 20,0 до 100,0м.

Верхний отдел (ЈЗ)

Отложения верхней юры литологически представлены серыми и зеленовато-серыми глинами, зеленоватыми глауконитовыми песками, песчанистыми мергелями с галькой фосфоритов. Мощность отложений 10,0-15,0м.

Гидрогеологические условия

Гидрогеологические исследования при разведке заключались в замерах уровня подземных вод в скважинах.

По всем скважинам установившийся уровень грунтовых вод отмечается на глубине 4,5-5,0м от поверхности земли, что соответствует горизонту 196,0м.

Высокий уровень подземных вод объясняется расположением месторождения на террасе р.Илек, который расположен в 700,0-1000,0м восточнее месторождения.

Река Илек имеет постоянный водоток, уровень которого в районе месторождения, в зависимости от времени года, находится на отметках 195,0-196,0м.

Гидрогеологические условия района и месторождения приводятся по результатам гидрогеологической съемки, проведенной в 1961-62гг. Водоносные горизонты приурочены к мезозойским и кайнозойским отложениям.

Водоносным горизонтом аллювиальных отложений являются грубозернистые пески и гравийно-галечные отложения.

Мощность аллювиальных отложений достигает до 10,0-15,0м. Уровень воды аллювиальных отложений долины р.Илек в районе месторождения устанавливается на глубине в среднем 3,0-6,0м.. Дебиты скважин составляют 2,0-10,0л/сек при понижениях 0,5-3,0м. Вода пресная, сульфатно-хлоридная, и смешанная, натриево-кальциевая. Коэффициент фильтрации изменяется от 5,0 до 10,0м/сут, минерализация составляет 0,4-0,8г/л. Вода пригодна для технического водоснабжения.

Питание водоносного горизонта происходит, в основном, за счет поверхностных водотоков, атмосферных осадков и подтока нижемеловых горизонтов.

Действующих водозаборов в районе не имеется. Хозяйственно-питьевая вода будет доставляться на участок работ в емкостях.

Земельные ресурсы и почвы

Площадь контура на добычу составляет: участок 1 - 22,5га; участок 2 - 110,0га.

Почвенный покров в районе работ представлен южными тёмно-каштановыми почвами. Значительное распространение имеют солонцово-солончаковые комплексы.

Почвы в большой степени подвержены ветровой и водной эрозии. Мощность гумусом почвенной толщи достигает 20-30 см. Местами из-под слоя покровных суглинков обнажаются пески.

Район расположен в зоне типчаково-ковыльных степей, на юге распространены песчаные степи, вдоль русел рек — пойменные леса и луга.

Тёмно-каштановые почвы вскипают почвы с поверхности или в нижней части горизонта А. Возможны выделения карбонатов в виде псевдомицелия, белоглазки, мучнистых скоплений, пропиточных пятен, натечных корок на щебне (в почвах межгорных котловин).

Темно-каштановые глинистые, тяжелосуглинистые и суглинистые почвы содержат в верхних 15 см до 3,5-5% гумуса, легкосуглинистые и супесчаные разности — 2,5-3%.

Реакция почв нейтральная в верхнем горизонте и слабощелочная и щелочная ниже по профилю, емкость обмена — 25-35 мг-экв на 100 г почвы; в составе обменных оснований преобладают кальций и магний. Валовой химический состав однороден по профилю.

Животный и растительный мир.

Растительный мир

Растительный покров исследуемой области разнообразен. В центральной части области проходит крупный ботанико-географический рубеж между степной и пустынной зоной. Всоответствии с широтным делением климатических условий выделяется четыре подзональных типа растительности степей: засушливые, умеренно-сухие, сухие и

опустыненные и два подзональных типа пустынь: остепненные и настоящие. Кроме того, широко представлены интразональные типы растительности в долинах рек, днищах оврагов, балок, солончаках.

Облик зональности, в том числе набор зональных полос, их конфигурация и

широтная протяженность, обусловлен климатическими (нарастание аридности климата) и орографическими причинами (неоднородность рельефа, наличие хребтов, возвышенностей, впадин и др.). Все эти факторы определяют флористический и доминантный состав растительных сообществ, их пространственную структуру и динамику.

На крайнем севере области на черноземах распространены разнотравно-злаковая

растительность, с большим количеством ковылей. На темно-каштановых почвах развита разнотравно-типчаково-ковыльная растительность, на солонцеватых почвах - ковыльнотипчаковое разнотравье, а на карбонатных почвах - разнотравно-ковыльное, с примесью полыней. В центральной части области на светло-каштановых почвах растительность составляет полынно-ковыльно-типчаковая, с примесью изеня. На юге области на бурых почвах распространены еркеково-ковыльно-полынная растительность, на солончаках - солянковая растительность (чий, кермек, шелковица, солерос и т.д.).

Территория проектируемого объекта находится в пределах засушливых (опустыненных) полынно-типчаково-ковыльных степей на светло-каштановых почвах, и по существующему в настоящее время ботанико-географическому разделению Евразийской степной области, относится к Заволжско-западноказахстанской подпровинции Заволжско-Казахстанской провинции. Территория района характеризуется разнообразными экологическими условиями, обусловленными геологическим строением, различиями мезо- и микрорельефа, характером засоленности почвообразующих пород и условиями залегания грунтовых вод, различиями в водном и солевом режиме по элементам рельефа. Разнообразные природные условия способствовали неоднородности распределения растительного покрова.

По отношению к механическому составу почв в районе имеются следующие варианты растительных сообществ: пелитофитный и гемипелитофитный (на светлокаштановых суглинистых и легкосуглинистых почвах), гемипсаммофитный (на светлокаштановых супесчаных почвах), гемипетрофитный (на почвах с включением щебня или близким залеганием коренных пород).

Северо-западная часть области — ковыльно-разнотравная и полынно-злаковая степь на темнокаштановых почвах. Центральная и северо-восточная часть занята злаково-пустынной степью на светло-каштановых и сероземных почвах. На юге полынно-солонцовые пустыни и пустыни на бурых солонцеватых почвах с массивами песков и солончаков.

На территории Актюбинской области выявлено около 20 редких, эндемичных и реликтовых видов, занесенных в Красную книгу Казахстан

Животный мир

Ядро фаунистического комплекса пресмыкающихся составляют, по меньшей мере,

15 преимущественно псаммофильных видов: быстрая и разноцветная ящурки, ушастая, такырная круглоголовки и круглоголовка – вертихвостка, степная агама, песчаный

удавчик, серый, североазиатский гекконы, стрела-змея, среднеазиатская черепаха, водяной уж, узорчатый полоз, степная гадюка и обыкновенный щитомордник.

Из числа гнездящихся птиц в полосе пустынных степей птиц достаточно обычны

зерноядно –насекомоядные виды жаворонков: малый, хохлатый, степной, двупятнистый и рогатый.

Из насекомоядных птиц на глинистых участках обычны только каменки (пустынная и плясунья), и два вида славок (пустынная и славка – завирушка).

Наземные кулики представлены двумя видами – каспийским зуйком и авдоткой.

Из видов журавлеобразных в регионе изредка гнездятся журавль – красавка и джек. Среди ночных хищных птиц в регионе зарегистрирован филин, домовый сыч. Из дневных

хищников отмечено обитание канюка – курганника, местами степного орла, могильник.

Кроме того, в этом регионе встречаются мелкие соколиные – обыкновенная пустельга и балобан. Обычными видами в рассматриваемом районе являются представители ракшеобразных:

золотистая и зеленая щурки, сизоворонка и удод. Из овсянок и трясогузковых встречаются полевой конек и желчная овсянка. Вблизи временных водоемов в понижениях рельефа гнездятся утки – огарь и пеганка. С постоянными и временными поселениями человека связаны домовой и полевой воробьи.

Во время весенних и осенних миграций численность птиц резко возрастает и в отдельных ландшафтных разностях может достигать 100 и более особей/км. В этот период значительно увеличивается численность не только ландшафтных пустынных и полупустынных видов, но и представителей водных, околоводных и луговых биотопов.

Социально-экономическое положение

Актюбинская область расположена между Прикаспийской низменностью на западе, плато Устюрт на юге, Туранской низменностью на юго-востоке и южными отрогами Урала на севере. Большая часть области представляет собой равнину, расчленённую долинами рек, высотой 100-200 м. В средней части простираются Мугоджары (высшая точка гора Большой Бактыбай, 657 м). На западе Актюбинской области расположено Подуральское плато, на юго-западе переходящее в Прикаспийскую низменность; на юго-востоке — массивы бугристых песков Приаральские Каракумы и Большие и Малые Барсуки. На северо-востоке в Актюбинской области заходит Тургайское плато, изрезанное оврагами.

Актюбинская область — крупный промышленный регион Казахстана. Основа промышленности: горнодобывающая и химическая отрасли, чёрная металлургия. Запасы полезных ископаемых составляют: газа 144,9 млрд м³, нефти 243,6 млн тонн, нефтегазоконденсата 32,7 млн тонн. Имеются крупные месторождения хромитовых (1-е место в СНГ), никеле-кобальтовых руд, фосфорита, калийных солей и других полезных ископаемых.

За 2019 год валовый региональный продукт области составил 6841,2 млн долларов США, из них промышленность составляет 35,2 %, сельское хозяйство — 5,1 %. ВРП на душу населения составляет 7,8 тыс. долларов США.

По состоянию на 2020 г., уровень газификации Актюбинской области составляет 90,1 %.

Промышленность

Актюбинский регион обладает богатой минерально-сырьевой базой, насчитывающей 340 месторождений полезных ископаемых. На её территории сосредоточены все запасы казахского хрома, 55 % никеля, 40 % титана, 34 % фосфоритов, около 10 % разведанных запасов и 30 % прогнозных ресурсов углеводородного сырья Казахстана, 4,7 % цинка, 3,6 % меди, 2 % алюминия, 1,4 % угля от общих запасов в стране.

Область занимает второе место в мире по запасам хромитовых руд, более 400 млн тонн, третье место в Казахстане по запасам медных руд, 100 млн. тонн и нефти 900 млн тонн, а также четвёртое место в стране по запасам газа. Здесь сконцентрирована вся добыча хромовой руды, производство рентгеноаппаратуры и более четверти казахстанских ферросплавов. Промышленность имеет многоотраслевую структуру и включает: горнодобывающую и нефтегазоперерабатывающую отрасли, черную и цветную металлургию, машиностроение, химическую, легкую и пищевую отрасли, производство строительных материалов.

В 2019 г. в обрабатывающем секторе произведено продукции на сумму 600 млрд тенге. В структуре производства обрабатывающей промышленности наибольшую долю занимает:производство ферросплавов 47 %; производство хромовых солей 14,2 %; производство рельсовой продукции 9,7 %.

Перспективы развития получают отрасли, связанные с выпуском точной, высокотехнологичной и наукоёмкой продукции высоких переделов.

На 1 июня 2020 г. в промышленном производстве зарегистрировано 1617 предприятий, в том числе 645 действующих.

Крупные предприятия: предприятие по добыче хромовой руды и концентратов АО «ТНК «Казхром», нефтедобывающие предприятия АО «СНПС-Актобемунайгаз», ТОО «Казахойл Актобе», завод по производству химических соединений АО «Актюбинский завод хромовых соединений», предприятие по производству рельсовой продукции ТОО «Актюбинский

рельсобалочный завод», предприятие по добыче медной руды и концентратов ТОО «Актюбинская медная компания», предприятие по добыче хромовой руды и концентратов ТОО «Восход-Oriel», компания по добыче золото-содержащей руды АО Altynex Company.

Сельское хозяйство

Общая площадь земель сельскохозяйственного назначения Актюбинской области по состоянию на 1 января 2020 года составляет 10 672,3 тыс. га, в том числе пастбища — 9434,4 тыс. га, пашни — 715,8 тыс. га, сенокосы — 133,8 тыс. га, пахотнопригодные земли — 247,9 тыс. га, многолетние насаждения — 0,6 тыс. га, огороды — 0,6 тыс. га, прочие земли 139,2 тыс. га.

Валовый выпуск продукции и услуг сельского хозяйства в целом по области в 2019 году составил 275,2 млрд тг, что выше уровня соответствующего периода предыдущего года на 3,7 %. За последние три года рост производства валовой продукции составил 136,6 %.

Основными направлениями развития АПК области является животноводство, при этом также развивается растениеводство. В отрасли животноводства объём валовой продукции в 2019 году составил 174,7 млрд.тенге, растениводство 99,4 млрд.тенге.

Рост объёма производства продукции сельского хозяйства в 2019 году обусловлен увеличением объёмов забоя скота и птицы в живом весе на 8,5 %, надоев сырого коровьего молока на 3,2 %, яиц куриных на 2,6 %.

На 1 января 2020 года по сравнению с аналогичной датой прошлого года во всех категориях хозяйств численность лошадей увеличилась на $12,1\,\%$ и составила $144,3\,$ тыс. голов, крупного рогатого скота соответственно на 6,3% и $493,5\,$ тыс. голов, овец на $1,2\,\%$ и $981,2\,$ тыс. голов, коз на $4,6\,\%$ и $145,8\,$ тыс. голов, птицы на $7,7\,\%$ и $1310,5\,$ тыс. голов, верблюдов на $1,9\,\%$ и $17,8\,$ тыс. голов, свиней на $1,8\,\%$ и $58,4\,$ тыс. голов.

Согласно утверждённой структуре посевов в 2020 году посевы сельскохозяйственных культур проведены на площади 787,0 тыс.га, в том числе 457,3 тыс.га зерновых и зернобобовых культур, 35,2 тыс.га масличных культур, 282,2 тыс.га кормовых культур, 6,3 тыс.га картофеля, 5,9 тыс.га бахчевых культур.

Для дальнейшего увеличения валовой продукции сельского хозяйства разработана программа развития АПК Актюбинской области на 2020 — 2025 годы. В соответствии с указанной программой предусматривается увеличение в течение 5 лет производительности труда в АПК и экспорта переработанной сельскохозяйственной продукции как минимум в 2,5 раза по сравнению с 2017 годом. При этом до 2025 года по области планируется увеличить объём производимой валовой продукции до 444,5 млрд тенге, из них по животноводству 289,0 млрд тенге, растениеводству 155,5 млрд тенге.

Обеспеченность объекта трудовыми ресурсами

Реализация проекта даст возможность создания рабочих мест на этапе строительства, а также на этапе эксплуатации. Персоналу на площадке представится возможность работать с современными технологиями, следовательно, заинтересованные рабочие смогут пройти обучение.

Населенные пункты в районе проектируемого предприятия имеют достаточные трудовые ресурсы для обеспечения потребностей проектируемого объекта. На всех рабочих специальностях и частично ИТР будет задействовано местное население.

Санитарно-эпидемиологическое состояние территории и прогноз его изменений в результате намечаемой деятельности;

При реализации проектных решений объекта (при нормальных условиях эксплуатации объекта и возможных аварийных ситуациях); ухудшение социально-экономических условий жизни местного населения не прогнозируется. Санитарно-эпидемиологическое состояние территории в результате намечаемой деятельности не ухудшится ввиду значительной удаленности жилой застройки от предприятия.

Намечаемая деятельность:

- не приведет к сверхнормативному загрязнению атмосферного воздуха в населенных пунктах;
 - не приведет к загрязнению и истощению водных ресурсов, используемых населением

TOO «Мир Проект»

для питьевых, культурно-бытовых и рекреационных целей;

- не связана с изъятием земель, используемых населением для сельско-хозяйственных и рекреационных целей;
 - не приведет к утрате традиционных мест отдыха населения.

Памятники истории и культуры

Территория данного региона в силу определенных физико-географических и исторических условий является местом сохранения значительного количества весьма интересных архитектурных и археологических памятников. Глубокое изучение этого удивительного наследия ведется и несомненно, что в настоящее время наука стоит у порога еще одной, во многом загадочной цивилизации, строителями которой были конные кочевники азиатских степей и пустынь. Роль этой цивилизации, несомненно, выходит за границы рассматриваемого региона, который, однако, имеет совершенно своеобразный облик сохранившихся памятников, особенно последних столетий.

Состояние памятников в основном неудовлетворительное, разрушения происходит из-за естественного старения материала, воздействия атмосферных осадков, влияния техногенной деятельности.

Памятники истории и культуры охраняются государством. Ответственность за их содержание возлагается на местные организации, учреждения и хозяйства, в ведении или на территории, которых они находятся.

На проектируемой территории в настоящее время памятников материальной культуры, являющихся объектами охраны, не зарегистрировано.

1.3. Описание изменений окружающей среды, которые могут произойти в случае отказа от начала намечаемой деятельности, соответствующее следующим условиям

Георгиевское месторождение песчано-гравийной смеси (Новый участок) расположен в 5,0км к северу от г.Актобе, на отложениях I надпойменной террасы р.Илек.

Месторождение находится на площади листа М-40-55-В.

В случае отказа от начала намечаемой деятельности по Проекту «План горных работ на добычу песчано-гравийной смеси Нового участка Георгиевского месторождения, расположенного на землях г.Актобе», изменений в окружающей среде района месторождения не произойдет.

Кроме того, в случае отказа от намечаемой деятельности освоение месторождения не будет реализовано. Дополнительного ущерба окружающей природной среде при этом не произойдет. Однако, в этом случае, предприятие не получит прибыль, а государство и Актюбинская область не получат в виде налогов значительные поступления. Не будут созданы новые рабочие места и привлечены людские ресурсы региона, для которого добыча полезных ископаемых является значимой частью экономики. В этих условиях отказ от разработки месторождения является неприемлемым как по экономическим, так и социальным факторам.

Реализация деятельности в соответствии с «План горных работ на добычу песчаногравийной смеси Нового участка Георгиевского месторождения, расположенного на землях г.Актобе» не окажет существенного влияния на существующую нагрузку на окружающую среду.

1.4. Информация о категории земель и целях использования земель в ходе строительства и эксплуатации объектов, необходимых для осуществления намечаемой леятельности

Право недропользования на проведение добычных работ на Новом участке Георгиевского месторождения песчано-гравийной смеси АО «Коктас» имеет на основании Акта государственной регистрации Контракта №76/2007 от 03.10.2007 г.

Координаты участка: $50^{\circ}08'27.5''$ с. ш. $57^{\circ}23'15.0''$ в. д.; $50^{\circ}09'20.2''$ с. ш. $57^{\circ}23'18.3''$ в. д.; $50^{\circ}09'20.4''$ с. ш. $57^{\circ}23'10.1''$ в. д.; $50^{\circ}09'16.6''$ с. ш. $57^{\circ}23'09.0''$ в. д.; $50^{\circ}09'17.0''$ с. ш. $57^{\circ}23'08.3''$ в. д.;

50°09′00.0" с. ш. 57°23′05.0" в. д.; 50°08′57.9" с. ш. 57°22′37.3" в. д.; 50°08′24.4" с. ш. 57°22′24.3" в. д.; 50°08′14.9" с. ш. 57°22′42.0" в. д.; 50°08′15.6" с. ш. 57°22′54.02" в. д.;

Кадастровый номер земельного участка -02-036-163-1123. Целевое назначение земельного участка - проведение совмещенной разведки и добычи песчано-гравийной смеси с подъездной дорогой, I очереди освоения Нового участка Георгиевского месторождения. Площадь земельного участка -40.0 га.

1.5. Информация о показателях объектов, необходимых для осуществления намечаемой деятельности, включая их мощность, габариты (площадь занимаемых земель, высота), другие физические и технические характеристики, влияющие на воздействия на окружающую среду; сведения о производственном процессе, в том числе об ожидаемой производительности предприятия, его потребности в энергии, природных ресурсах, сырье и материалах

Горные работы

Настоящим планом горных работ каких-либо изменений в технологии производства добычных работ не предусматривается.

Полезное ископаемое – песчано-гравийная смесь, выделенное в составе разреза аллювиальных отложений, представляют собой пластообразную залежь простой формы.

На большей части карьерного поля залежь перекрыта вскрышными породами, глубина ее залегания колеблется от 0,5 до 3,5 м.

Вскрышные породы представлены:

- почвенно-растительным слоем мощностью от 0,0 м до 0,2 м, при средней 0,1 м. Коэффициент крепости пород по шкале М.М.Протодъяконова равен 0,6 (категория I-II). Объемная масса 1,3 т/м3;
- супесью, мощность отложений колеблется 0,2 м до 3,5 м. Коэффициент крепости пород по шкале М.М.Протодъяконова равен 0,6-1,0 (категория III-IV). Объемная масса 1,5 т/м3;

Продуктивная толща представлена:

- песчано-гравийной смесью, рыхлой мощностью 5,5-9,0 м (в среднем — 7,1 м). Коэффициент крепости пород по шкале М.М.Протодъяконова равен 0,5 (категория II). Объемная масса – 1,5 т/м3;

Горно-геологические условия месторождения: умеренная глубина залегания полезной толщи, при небольшой мощности вскрыши, незначительная крепость вскрышных пород и полезного ископаемого определили разработку месторождения открытым способом, без предварительного рыхления и буро-взрывных работ.

Отработка надводной части запасов песчано-гравийной смеси возможна цикличным забойнотранспортным оборудованием (забой — погрузчик или экскаватор — автосамосвал), обводненной части по схеме: забой — экскаватор-драглайн — навал для обезвоживания — погрузчик — автосамосвал.

Руководствуясь горно-техническими условиями разработки месторождения, а также с целью максимального сокращения площадей, нарушаемых горными работами и отходами добычи (отвалами вскрыши), предполагается открытая система разработки с внешними отвалами ПРС и собственно вскрышных пород.

Сейсмичность района, согласно письму Комитета РК по чрезвычайным ситуациям № 32-16/157 от 13.11.1995 г., составляет 6 баллов.

Радиационно-гигиеническая оценка песчано-гравийной смеси полезной толщи, проведенная Актюбинским областным центром санэпидэкспертизы, показала, что ПГС имеет удельную эффективную активность ЕРН. Это свидетельствует, что ПГС и пески относятся к строительным материалам 1 класса и могут использоваться без ограничений, а радиационные условия производства горных работ являются безопасными.

Границы карьера

К отработке настоящим Планом горных работ принимаются балансовые запасы ПГС, разведанных по категории С1, в границах карьера, приведенного ниже:

- по поверхности участка с учетом разноса бортов в пределах представленного Горного отвода;
- по подошве карьера, до глубины подсчета запасов, до горизонта 191,0 м (до глин курайлинской свиты T3 krl).

Производительность и режим работы карьера

Настоящим Планом горных работ производительность карьера по добыче песчано-гравийной смеси определена в количестве 104,0 тыс.м³ ежегодно.

Общий срок функционирования карьера составляет 7 лет, до конца срока действия Контракта т. е. 2027 г.

Дальнейшая отработка балансовых запасов будет продолжена после продления Контракта.

Режим работы карьера принимается круглогодичный в одну смену, при семидневной рабочей неделе, с 8-ми часовым рабочим днем.

Вскрышные работы предусматривается вести в опережающем режиме, параллельно с производством добычи.

Расчетный годовой объем вскрышных работ определен на основе норматива обеспеченности готовыми к выемке запасами, равного при круглогодовом режиме добычных работ: не менее 3-х месяцев.

Производительность и режим работы карьера

_	производительность и режим расоты карьера									
$N_{\underline{0}}$			Вскрыша, тыс.м ³			Добыча, тыс.м ³				
Π /		ед.					не	обводненн		
П	наименование	изм.	всего	ПРС	супесь	всего	обводненн	ые запасы		
							ые запасы			
1	2	3	4	5	6	7	8	9		
1.	годовая	тыс. м ³	42,5	5,5	37,0	104,	55,0	49,0		
	производительность									
	карьера									
2.	число рабочих дней в	день	18	0	18	30	30	55		
	году									
3.	суточная	M^3	236,0	30,5	205,5	285,0	151,0	134,0		
	производительность									
4.	число смен в сутки	смена	1		1		-	1		
5.	сменная	M^3	236,0	30,5	205,5	285,0	151,0	134,0		
	производительность									
6.	продолжительность	час	8	}	8	3	8	3		
	смены									
7.	годовой фонд									
	рабочего времени с									
	учетом проведения	час	1440,0 2 920,0							
	планово-									
	предупредительных									
	ремонтов									

Система разработки

Разработка месторождения ведется по транспортной технологической схеме с цикличным забойно-транспортным оборудованием, с использованием на погрузке полезного ископаемого экскаватора Liugong типа «обратная лопата» с емкостью ковша 1,2 м³ при отработке не обводненных запасов и экскаватора типа «драглайн» марки ЭО612-Б с емкостью ковша 1,2 м³ при отработке обводненных запасов.

На вскрышных работах применяется бульдозер T-130 (Д3-110B) и автопогрузчик ZL-50G с емкостью ковша 3.4 m^3 .

Отработка не обводненной полезной толщи будет осуществляться добычным уступом, высотой до 5,0 м.

Вскрытие и порядок отработки месторождения

В настоящее время отработка месторождения ведется из северо-восточной части, между разведочными линиями I-I — IV-IV.

Отработка этой части месторождения, в течение 2021 г. и до середины 2025 г. будет производиться на полную мощность полезной толщи, т. е. будут отрабатываться как не обводненные так и обводненные запасы.

Добычные работы будут производиться экскаватором Liugong типа «обратная лопата» по не обводненным запасам, а по обводненным запасам — драглайном марки ЭО 612-Б.

С середины 2025 г. добычные работы будут перенесены в южную часть месторождения, на блоке V- C_1 и III-B.

На этом участке будут отрабатываться только не обводненные запасы.

Горно-подготовительные работы

В состав горно-подготовительных работ входят:

- снятие почвенно-растительного слоя, транспортировка и складирование в отвал ПРС.
- вскрышные работы, включающие в себя операции по выемке вскрышной массы, транспортирование и складирование во внешний отвал, а также зачистку кровли от вскрышных пород с целью обеспечения запасов полезного ископаемого, готовых к выемке.

Вскрышные работы

Принятая проектом сплошная система разработки предусматривает обеспечение предприятия готовыми к выемке запасами на 3 месяца бесперебойного ведения добычных работ.

Вскрышные работы заключаются в выемке вскрышных пород, представленных почвенно-растительным слоем, супесью с последующей зачисткой кровли полезной толщи мощностью 0,05 м.

Общий объем вскрышных пород с учетом зачистки кровли полезной толщи составит 212,6 тыс. m^3 ., в том числе ПРС — 24,5 тыс. m^3 , вскрышные породы — 188,1 тыс. m^3 .

По трудности разработки бульдозером вскрышные породы относятся к I категории по ЕНВ-89, группа грунта по СНиП-82 – первая.

На вскрышных работах проектом принята технологическая схема разработки бульдозерно-погрузочно-автомобильным комплексом.

Технологическая схема вскрышных работ предусматривает производство следующих операций:

- 1. Снятие ПРС путем послойного его буртования бульдозером Т-130 (Д3-110В) на расстояние до 50,0 м; укладка ПРС в валы с последующей погрузкой погрузчиком ZL-50G в автотранспорт для вывоза в отвал ПРС;
- 2. Снятие и укладка вскрышных пород экскаватором Liugong типа «обратная лопата» в автосамосвалы для вывоза их в отвал;
- 3. Зачистка кровли полезной толщи мощностью 0,05 м бульдозером T-130; погрузка зачищенной горной погрузчиком ZL-50G в автотранспорт.

Добычные работы

Полезным ископаемым на месторождении является песчано-гравийная смесь, образующая горизонтально залегающую залежь. По трудности экскавации полезное ископаемое относится к I категории в соответствии с классификацией горных пород по ЕНВ-89 на открытые горные работы без ведения взрывных работ. Группа пород по СНиП-82 – I.

Существующая технологическая схема ведения добычных работ экскаваторно-автомобильным комплексом остается без изменений.

Месторождение ниже горизонта +195,0 м обводнено, поэтому отработка месторождения ведется в два этапа.

1-й этап — отработка не обводненных запасов, 2021 - половина 2025 гг.

Выемка полезного ископаемого экскаватором Liugong типа «обратная лопата» с емкостью ковша $1,2 \text{ м}^3$ до горизонта +196,м.

Погрузка полезного ископаемого в автотранспорт типа «КамАЗ-5511» грузоподъемностью 10,0 тонн, который располагается на уровне стояния экскаватора;

Транспортировка полезного ископаемого автотранспортом на отгрузочную площадку.

2-й этап — комплексная отработка месторождения — половина 2025-2027 гг. до горизонта +196,0 м отрабатываются не обводненные запасы, ниже горизонта +196,0 м отрабатываются обводненные запасы

Выемка полезного ископаемого экскаватором Liugong типа «обратная лопата» с емкостью ковша $1,2~{\rm M}^3$ до горизонта $+196,0~{\rm M};$

Погрузка полезного ископаемого в автотранспорт типа «КамАЗ-5511» грузоподъемностью 10,0 тонн, который располагается на уровне стояния экскаватора;

Транспортировка полезного ископаемого автотранспортом на отгрузочную площадку.

Обводненные запасы полезного ископаемого, ниже горизонта +196,0 м извлекаются драглайном ЭО 6112-Б и складируются в бурты на горизонте +196,0 м.

Погрузка полезного ископаемого производится погрузчиком в автосамосвалы типа «Камаз-5511» грузоподъемностью 10,0 тонн и транспортируется на отгрузочную площадку.

Продвижение фронта добычных работ поперечное. Перемещение добычного забоя - продольными экскаваторными заходками. Выемка полезного ископаемого производится в боковом забое.

Календарный план горных работ

В основу календарного графика горных работ положены:

- Производительность и тип горно-транспортного оборудования;
- Годовая производительность карьера по добыче полезного ископаемого согласно технического задания;
 - Горнотехнические условия разработки месторождения;
- Обеспечение безопасных условий при работе горно-транспортного оборудования путем соблюдения нормативных параметров элементов системы разработки.

Календарный график горных работ составлен, исходя из следующих условий:

- обеспечение заданной производительности предприятия по добыче песчано-гравийной смеси в течение всего периода разработки месторождения;
 - обеспечение нормативного количества готовых к выемке балансовых запасов

Календарный график добычных работ

		Объем добычи, тыс.м ³ , Объем вскрыши,							Общий	
			в том числе тыс.м ³ , в том числе		в том числе тыс.м ³ , в том числе Потери				Потери	объем
$N_{\underline{0}}$	Год							полезной	вынутой	
Π/Π	отработки	всего	не	обводнен.	всего	ПРС	супесь	толщи,	горной	
			обводнен.					тыс.м3	массы,	
									тыс.м3	
1	2	3	4	5	6	7	8	9	10	
1.	2021	90,0	-	90,0	-	-	-	2,9	90,0	
2.	2022	90,0	-	90,0	-	-	-	2,2	90,0	
3.	2023	110,0	37,0	73,0	36,6	3,6	33,0	4,1	146,6	
4.	2024	110,0	46,0	64,0	36,6	3,6	33,0	3,9	146,6	
5.	2025	110,0	29,0	81,0	46,0	6,7	39,3	4,2	156,0	
6.	2026	110,0	110,0	-	60,4	6,1	54,3	2,8	170,4	
7.	2027	110,0	110,0	-	33,0	4,5	28,5	2,8	143,0	
	Итого:	730,0	332,0	398,0	212,6	24,5	188,1	22,9	942,6	

Карьерный транспорт

- В настоящем разделе рассматривается вопрос привлечения автотранспорта на следующие виды работ:
- транспортировка полезного ископаемого из карьера на отгрузочную площадку, на расстоянии 4,0 км;
 - транспортировка вскрышных пород из карьера во внешние отвалы, расстояние до 1,0 км.

Отвальные работы

Разработка Нового участка Георгиевского месторождения предусматривает внешнее отвалообразование с формированием отвала вскрышных пород и отвала ПРС.

Отвал ПРС и вскрышных пород размещается в северной части месторождения, в контуре земельного отвода.

Отвал вскрышных пород одноярусный, общий, с достаточной приемной способностью. Способ развития фронта работ на отвале – кольцевой.

По способу отвалообразования отвал вскрышных пород – бульдозерный. На перемещении пород используется бульдозер Т-130, выполняющий на карьере вскрышные и вспомогательные работы.

Отсыпка отвала начинается с подведения к месту складирования вскрышных пород автодороги и создания первоначальной разгрузочной площадки высотой 2,0 м и шириной 40,0 м. Наращивание отвала до проектной высоты яруса осуществляется путем складирования породы на первоначальную площадку с последующим перемещением горной массы бульдозером к верхней бровке отвала. Расстояние перемещения пород бульдозером – 5,0 м.

С целью безопасности разгрузки автомашины у верхней бровки отвала сооружается предохранительный породный вал высотой $0.5\,\mathrm{M}$ и шириной $1.5\,\mathrm{M}$. На отвале берма безопасности должна иметь поперечный уклон по всему фронту разгрузки не меньше 3° , направленный от бровки откосов в глубину отвала.

1.6. Описание планируемых к применению наилучших доступных технологий - для объектов I категории, требующих получения комплексного экологического разрешения в соответствии с пунктом 1 статьи 111 Кодексом.

Согласно Приложение 1, раздел 2, п 2.5. (вид деятельности добыча и переработка общераспространенных полезных ископаемых свыше 10 тыс. тонн в год) Экологического кодекса Республики Казахстан от 2 января 2021 года N = 400-VI 3PK объект относится ко II категории.

Справочники по наилучшим доступным техникам по всем областям применения наилучших доступных техник в соответствии с п. 6 ст. 418 ЭК РК должны быть разработаны до 1 июля 2023 года (подведомственная организация уполномоченного органа в области охраны окружающей среды, осуществляющая функции Бюро по наилучшим доступным техникам, обеспечивает разработку справочников).

На момент разработки настоящего Отчёта утверждённые наилучшие доступные техники в соответствии с требованиями ЭК РК в отношении намечаемой деятельности отсутствуют.

В соответствии с п. 7 ст. 418 ЭК РК до утверждения Правительством Республики Казахстан заключений по наилучшим доступным техникам операторы объектов вправе при получении комплексного экологического разрешения и обосновании технологических нормативов ссылаться на справочники по наилучшим доступным техникам по соответствующим областям их применения, разработанные в рамках Европейского бюро по комплексному контролю и предотвращению загрязнений окружающей среды, а также на решения Европейской комиссии об утверждении заключений по наилучшим доступным техникам по соответствующим областям их применения.

1.7. Описание работ по постутилизации существующих зданий, строений, сооружений, оборудования и способов их выполнения, если эти работы необходимы для целей реализации намечаемой деятельности

На предполагаемой территории размещения объектов отсутствуют: существующие зданий, строений, сооружений, оборудования. Проведение пост утилизации не требуется. Месторождение существующая меняется объем добычи

1.8. Информация об ожидаемых видах, характеристиках и количестве эмиссий в окружающую среду, иных вредных антропогенных воздействиях на окружающую среду, связанных со строительством и эксплуатацией объектов для осуществления рассматриваемой деятельности, включая воздействие на воды, атмосферный воздух, почвы, недра, а также вибрации, шумовые, электромагнитные, тепловые и радиационные воздействия

1.8.1. Воздействие на атмосферный воздух

При оценке воздействия объекта на окружающую среду и здоровье населения важным аспектом является качество атмосферного воздуха. Загрязненность атмосферного воздуха токсичными веществами может влиять на состояние здоровья населения, на почвы, животный и растительный мир промышленной площадки и санитарно-защитной зоны.

Работы по добыче ОПИ будут неизбежно сопровождаться поступлением в атмосферу загрязняющих веществ, что требует оценки возможного воздействия на качество атмосферного воздуха.

Основными источниками выбросов загрязняющих веществ являются:

- № 6001, Снятие ПРС;
- № 6002, Погрузка ПРС в автосамосвалы;
- № 6003, Транспортировка ПРС на отвал;
- № 6004, Отвал ПРС;
- № 6005, Выемочно-погрузочные работы вскрышных пород;
- № 6006, Транспортировка вскрышных пород на отвал;
- № 6007, Отвал вскрыши;
- № 6008, Выемочно-погрузочные работы П/И экскаватором в автосамосвалы;
- № 6009, Транспортировка П/И на отгрузочную площадку.

Валовый выброс вредных веществ, отходящих от нормируемых источников загрязнения атмосферы при разработке месторождений АО «Коктас» составит:

- на 2023-2024 гг. 96.81 т/год;
- на 2025 год 97.95 т/год;
- на 2026 год -99.22 т/год;
- на 2027 год 96.556 т/год.

Перечень загрязняющих веществ, выбрасываемых в атмосферу, их комбинации с суммирующим вредным действием приведены в таблице 3.1.

Приведенное количество и перечень загрязняющих веществ, выбрасываемых в атмосферу при реализации проектных решений, являются предварительными.

TOO «Мир Проект»

ЭРА v2.5 Таблица 3.1

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

г. Актобе, Георгиевское месторождение песчано-гравийной смеси (Новый участок) на 2023-2024 гг.

	see, respinerance meeropempenne neerane r	I 0		J = 0.10 = 0.11, 110					
Код	Наименование	ПДК	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	М/ЭНК	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год		усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.3	0.1		3	10.6587	96.81	968.1	968.1
	всего:					10.6587	96.81	968.1	968.1
_						\ \	,		

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии

ПДКм.р.) ОБУВ; "а" - константа, зависящая от класса опасности ЗВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v2.5

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

г. Актобе, Георгиевское месторождение песчано-гравийной смеси (Новый участок) на 2025 год

Код	Наименование	пдк	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	М/ЭНК	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год		усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.3	0.1		3	11.0285	97.95	979.5	979.5
	ВСЕГО:					11.0285	97.95	979.5	979.5

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии

ПДКм.р.) ОБУВ; "а" - константа, зависящая от класса опасности ЗВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v2.5

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

г. Актобе, Георгиевское месторождение песчано-гравийной смеси (Новый участок) на 2026 год

Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	М/ЭНК	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год		усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.3	0.1		3	11.4327	99.22	992.2	992.2
	всего:					11.4327	99.22	992.2	992.2

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии

ПДКм.р.) ОБУВ; "а" - константа, зависящая от класса опасности ЗВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v2.5 Таблица 3.1 Перечень загрязняющих веществ, выбрасываемых в атмосферу

на существующее положение

г. Актобе, Георгиевское месторождение песчано-гравийной смеси (Новый участок) на 2027 год

Код	Наименование	пдк	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	М/ЭНК	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год		усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.3	0.1		3	10.578			
	всего:					10.578	96.556	965.6	965.56

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ;"а" - константа, зависящая от класса опасности ЗВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

1.8.2. Воздействие на водные объекты

Гидрографическая сеть представлена р.Илек, которая расположена вдоль восточного фланга месторождения на расстоянии от 700 до 1000м.

Илек – степная река, весной полноводная, летом мелеет, а местами распадается на ряд небольших плесов, соединенных между собой узкими мелкими протоками. Питание реки происходит за счет грунтовых вод и атмосферных осадков.

Гидрогеологические исследования при разведке заключались в замерах уровня подземных вод в скважинах.

По всем скважинам установившийся уровень грунтовых вод отмечается на глубине 4,5-5,0 м от поверхности земли, что соответствует горизонту 196,0 м.

Высокий уровень подземных вод объясняется расположением месторождения на террасе р.Илек, который расположен в 700,0-1000,0 м восточнее месторождения.

Река Илек имеет постоянный водоток, уровень которого в районе месторождения, в зависимости от времени года, находится на отметках 195,0-196,0 м.

Гидрогеологические условия района и месторождения приводятся по результатам гидрогеологической съемки, проведенной в 1961-62 гг. Водоносные горизонты приурочены к мезозойским и кайнозойским отложениям.

Водоносным горизонтом аллювиальных отложений являются грубозернистые пески и гравийно-галечные отложения.

Мощность аллювиальных отложений достигает до 10,0-15,0 м. Уровень воды аллювиальных отложений долины р.Илек в районе месторождения устанавливается на глубине в среднем 3,0-6,0 м. Дебиты скважин составляют 2,0-10,0л/сек при понижениях 0,5-3,0 м. Вода пресная, сульфатно-хлоридная, и смешанная, натриево-кальциевая. Коэффициент фильтрации изменяется от 5,0 до 10,0м/сут, минерализация составляет 0,4-0,8г/л. Вода пригодна для технического водоснабжения.

Питание водоносного горизонта происходит, в основном, за счет поверхностных водотоков, атмосферных осадков и подтока нижемеловых горизонтов.

Действующих водозаборов в районе не имеется.

Хозпитьевое водоснабжение осуществляется за счет привозной воды с ближайшего водозабора в г.Актобе. На промплощадках карьера установлена передвижная цистерна типа «Молоко» емкостью 0,9 м3, из которой производится отбор воды. Техническое водоснабжение производится за счет карьерной воды. Технологический процесс добычных работ на данном этапе не предусматривает осущение полезного ископаемого. Водоприток в карьер ожидается только за счет редких атмосферных осадков. В период ливневых дождей работы будут приостанавливаться. Вследствие вышесказанного, вопросы карьерного водоотлива не рассматриваются. В результате хозяйственной деятельности объекта загрязнения подземных, грунтовых и поверхностных вод не предвидится. Сброс сточных вод на открытый рельеф местности и в водные объекты не предусматривается.

1.8.3. Воздействие на геологическую среду

Воздействие на недра при проведении основного комплекса проектируемых работ исключено. Будет очень незначительным ввиду того, что почти весь технологический цикл протекает на небольшой глубине и с соблюдением техники и технологии добычи ОПИ.

1.8.4. Воздействие на почвы

Возможными факторами воздействия на почвенный покров при эксплуатации будут являться:

□ загрязнение горюче-смазочными материалами;

□ загрязнение производственными и твердыми бытовыми отходами.

Повторное механическое воздействие будет вызвано работами по устранению антропогенных форм рельефа, удалению с территории участка мусора, отходов и т.п.

Степень обусловленных этими работами нарушений будет зависеть от тщательности при их проведении, а также своевременности устранения возможных загрязнений и, как ожидается, не превысит уровня предшествующих воздействий. Наибольшую опасность в этом отношении

представляет загрязнение почв углеводородами, степень проявления которого будет зависеть от конкретных условий:

- □ реального объема разлитых ГСМ;
- □ генетических свойств почв, определяющих характер ответных реакций на воздействие;
- оперативности действий по устранению последствий аварии.

При реализации проектных решений воздействие на почвенный покров будет связано с физическими и химическим факторами антропогенной деградации.

Воздействие физических факторов в большей степени характеризуется механическим воздействием на почвенный покров (движение автотранспорта, строительно-монтажные работы).

К химическим факторам воздействия можно отнести: перенос загрязняющих веществ в почвенные экосистемы бытовыми и производственными отходами, при аварийных (случайных) разливах ГСМ.

Основными видами нарушений почв при проведении проектируемых работ являются механические нарушения вследствие передвижения автомобильной техники.

Механические нарушения почв, сопровождаемые резким снижением их устойчивости к действию природных факторов, в дальнейшем становятся первопричиной дефляции, эрозии, плоскостного смыва и т.д. Степень изменения свойств почв находится в прямой зависимости от их удельного сопротивления, глубины разрушения профиля, перемещения и перемешивания почвенных горизонтов. При этом очень важное значение имеют показатели механического состава, влажности, содержания водопрочных агрегатов и высокомолекулярных соединений.

Степень проявления деградации почв зависит от типа техногенного воздействия, как прямого, так и опосредованного. Наибольшая степень деградации почвенного покрова территории при осуществлении работ по проекту ожидается на первоначальном этапе в результате физического воздействия на почвы, связанного с механическими нарушениями почвенного покрова при сооружении г компрессорной установки и движении автотранспорта. В результате механического нарушения формируются почвы с изменёнными морфологическими, химическими и биологическими свойствами. На сильно нарушенных участках содержание гумуса и питательных элементов в почвах уменьшается в два раза, усиливаются процессы засоления и карбонатизации.

Выбросы загрязняющих веществ. Химическое загрязнение почв возможно также в результате газопылевых осаждений из атмосферы. Источниками этого вида загрязнения могут служить выхлопные газы транспортной техники и пр. Выбросы загрязняющих веществ будут иметь место на территории площадок, но этот вид воздействия на этапе эксплуатации можно оценить, как незначительный. Выбросы загрязняющих веществ от двигателей автотранспорта, а также пыление дорог будут оказывать влияние на почвенный покров вдоль трасс автомобильных дорог. Однако, значительного воздействия на почвенный покров этот фактор не окажет. Случайные утечки ГСМ. Проектные решения исключают загрязнения почвенного покрова от случайных утечек ГСМ на этапе эксплуатации. В штатном режиме во избежание попадания топлива на подстилающую поверхность, разработаны соответствующие мероприятия. Принятые проектные решения, а также предусмотренные мероприятия, позволят исключить воздействие утечек ГСМ на почвы в период эксплуатации.

Следовательно, на этапе эксплуатации не ожидается воздействия разливов ГСМ на почвенный покров.

1.8.5. Воздействие на растительный мир

В период эксплуатации объекта непосредственно территория будет лишена растительного покрова.

Проектными решениями предусмотрены такие элементы благоустройства, как озеленение свободных от застройки и инженерных сетей, для обеспечения нормальных санитарно- гигиенических условий.

По периметру участков предусмотрено ограждение. Для обеспечения подъезда транспорта и пожарных машин, запроектирована внутриплощадочная дорога с разворотной площадкой, увязанная с существующими дорогами и площадками, как в плановом, так и высотном отношении. На въездах устанавливаются ворота.

Воздействие на растительность в период эксплуатации будет выражаться лишь в вероятности

прямого или опосредованного воздействия на растительность прилегающих территорий.

Существенный риск воздействия на растительность прилегающих территорий в первую очередь связан с особенностями эксплуатации объекта и опасностью загрязнения почв прилегающих территориях различными веществами.

Воздействия на растительность, связанные с качеством воздуха, на стадии эксплуатации будут аналогичны для стадии строительства.

1.8.6. Воздействие на животный мир

Негативного воздействия на наземных животных в связи с утратой мест обитания на стадии эксплуатации не предполагается.

Воздействия, связанные с фактором беспокойства, будут аналогичны таким воздействиям на стадии строительства. Источниками постоянного шума будут технологическое оборудование и автотранспорт. При соблюдении проектных показателей звукового давления расчетный уровень шума за территориями технологических площадок не будет превышать установленных нормативов, а интенсивность движения автомобильного транспорта в период эксплуатации будет значительно ниже, чем при строительстве.

На стадии эксплуатации прямого воздействия на птиц и м л е к о п и т а ю щ и х не ожидается. Факторы беспокойства будут такими же, как на стадии строительства.

При этом площадь, на которой воздействие может проявляться, существенно снизится.

Дальнейших утрат (после окончания строительства) территорий местообитаний на стадии эксплуатации не предполагается.

1.8.7. Воздействие вибрации, шумовых, электромагнитных, тепловых и радиационных воздействий

Источниками шума и вибрации на территории являются:

□ автотранспорт.

Оценка ожидаемых на рабочих местах уровней шума и вибрации будет приниматься на основании технической документации на оборудование, в которой будут указаны сведения о производимых шуме и вибрации, и расчетах уровня шума и вибрации на рабочих местах.

Первым уровнем обеспечения шумовой и вибрационной безопасности на производстве является снижение шума и вибрации в источнике, т.е. в конструкции применяемых машин и оборудования.

Для электрических приводов машин предусмотрено применение демпферов и гасителей, позволяющих существенно уменьшить амплитуды колебаний на резонансных частотах, которые машина проходит при наборе оборотов до выхода на номинальный режим.

Снижение шума в источнике реализовано за счет применения "нешумных" материалов, использования в конструкции встроенных глушителей и шумозащитных кожухов, обеспечения необходимой точности балансировки вращающихся и неуравновешенных частей.

Второй уровень обеспечения шумовой и вибрационной безопасности реализован за счет снижения шума и вибрации на путях их распространения от источника до рабочего места - применена установка машин на фундаменты, виброизоляторы, усиленные перекрытия. Полы, на которых размещаются рабочие места, динамически не связаны с фундаментом.

Снижение шума на пути его распространения осуществляется акустическими средствами – звукоизолирующими и звукопоглощающими перегородками, виброизоляцией, демпфированием, установкой глушителей, и планировочными решениями - рациональной планировкой производственных помещений, рациональным размещением оборудования и рабочих мест, транспортных потоков.

Третий уровень технического обеспечения шумовой и вибрационной безопасности состоит в использовании средств индивидуальной защиты (СИЗ), обеспечивая защиту работающих непосредственно рабочем месте в сложившихся условиях шумовой и вибрационной нагрузки – виброзащитная обувь, антивибрационные рукавицы, противошумные наушники.

Также применены организационные мероприятия, состоящие в сокращении времени воздействия шума и вибрации на работающего в течение смены.

Источниками электромагнитных полей являются трансформаторные подстанции, машины,

механизмы, высоковольтные линии и средства связи. Уровень напряженности электромагнитного поля в рабочих зонах производственных зданий и на прилегающих территориях соответствует установленным требованиям: СТ РК 1151-2002 «Электромагнитные поля радиочастот. Допустимые уровни и требования к проведению контроля»; «Предельно допустимые уровни (ПДУ) воздействия электриче- ских полей диапазона частот 0.06-30,0 МГЦ № 0.02.021-94».

Таким образом, эксплуатация не окажет сверхнормативного акустического воздействия на ближайшие территории, подлежащие санитарно- гигиеническому нормированию.

1.8.8. Радиационная обстановка

Согласно закону РК от 23.04.1998 г. № 219-I «О радиационной безопасности населения» (с изменениями и дополнениями по состоянию на 14.05.2020 г.), при планировании и принятии решений в области обеспечения радиационной безопасности при проектировании новых объектов, должна проводиться оценка радиационной безопасности.

В соответствии с нормативными требованиями было проведено радиационное обследование площадки проектируемого объекта.

Оценка уровня радиоактивного загрязнения площадки под объектом была осуществлена в

целях:

□ оценки уровня радиоактивного загрязнения для принятия решения о возможности размещения проектируемого объекта;

□ организации безопасных условий труда в период строительства и эксплуатации проектируемого объекта;
 □ обеспечения своевременного вмешательства в случае обнаружения превышения

В соответствии с действующими методическими рекомендациями и регламентом радиационного контроля, исследовался такой радиационный фактор как мощность экспозиционной и эквивалетной дозы гаммы-излучения на территории с целью выявления участков с аномальными значениями гамма- фона и неучтенных источников ионизирующего излучения.

Поверхностных радиоционных аномалий на территории не выявлено. По результатам гамма съемки на участке выявлено, что мощность гаммы-излучения не превышает допустимое значение - локальные радиационные аномалии обследованной территории отсутствуют. Максимальное значение мощности дозы гамма излучения в точках с максимальными показаниями поискового прибора 0,17мк3в/ч. Превышений мощности дозы гаммы излучений на участке не зафиксировано.

Фактор ионизирующих излучений в производственном процессе отсутствует.

природных и техногенных источников ионизирующего облучения.

Радиационное обследование территории позволяет сделать общее заключение: обследуемый участок для размещения компрессорной установки соответствует санитарно-гигиеническим требованиям по ионизирующему излучению, радоновому излучению, по электромагнитному излучению с точки зрения воздействия на жилую зону.

Проведения противорадиационных мероприятий не требуется.

1.9. Информация об ожидаемых видах, характеристиках и количестве отходов, которые будут образованы в ходе строительства и эксплуатации объектов в рамках намечаемой деятельности, в том числе отходов, образуемых в результате осуществления постутилизации существующих зданий, строений, сооружений, оборудования.

В процессе производства и жизнедеятельности человека образуются различные виды отходов производства и потребления, которые могут стать потенциальными источниками вредного воздействия на окружающую среду.

Для обеспечения нормального санитарного содержания территории особую актуальность приобретают вопросы сбора, временного складирования, транспортировки и захоронения отходов производства и потребления.

В результате накопления отходов нарушается природное равновесие, потому что природные процессы воспроизводства не способны самостоятельно справиться с накопленными и качественно измененными отходами.

Отходами при проведении работ будут являться твердо-бытовые отходы, вскрышная порода. Информация об ожидаемых видах, характеристиках и количестве отходов, которые будут образованы в ходе проведения работ в рамках намечаемой деятельности представлена в таблице 1 9 1

Также информация по образуемым отходам приведена в разделе 6 настоящего отчета.

Информация об отходах, образуемых в результате осуществления постутилизации существующих зданий, строений, сооружений, оборудования не приводится, т.к. постутилизация существующих зданий, строений, сооружений и оборудования, в рамках намечаемой деятельности, не предусматривается.

Таблица 1.9.1 Виды отходов, их классификация и их предполагаемые объемы образования

	виды отходов, их классификации и их предполагаемые объемы образования				
№	Наименование отходов	Код	Образование, т/год	Вид операции, которому подвергается	
		отходов		отход	
1	ТБО (смешанные коммунальные отходы)	20 03 01	0,45	Бытовые отходы будут временно собираться в металлические контейнеры с крышками и по мере накопления будут вывозиться на ближайший полигон по соответствующему договору.	
2	Отходы от разработки не металлоносных полезных ископаемых (вскрышная порода	01 01 02	2023 год - 42900 2024 год - 42900 2025 год - 51090 2026 год - 70590 2027 год - 37050	Вскрышная порода подлежит хранение на отвале вскрышных пород	

Приведенное количество и перечень отходов, образующихся при реализации проектных решений, являются предварительными.

При условии соблюдения правил экологической безопасности при сборе, временном хранении, сортировке и передаче сторонним организациям для дальнейшей утилизации отходов, воздействие отходов в местах временного хранения на окружающую среду незначительно. Выполнение соответствующих санитарно-гигиенических и экологических норм при сборе, временном хранении, сортировке отходов на территории строительства и эксплуатации площадки полностью исключает их негативное влияние на окружающую среду.

2. Описание затрагиваемой территории с указанием численности ее населения, участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой деятельности на окружающую среду, с учетом их характеристик и способности переноса в окружающую среду; участков извлечения природных ресурсов и захоронения отходов

2.1. Описание предполагаемого места осуществления намечаемой деятельности

Актюбинская область — крупный промышленный регион Казахстана. Основа промышленности: горнодобывающая и химическая отрасли, чёрная металлургия. Запасы полезных ископаемых составляют: газа 144,9 млрд м³, нефти 243,6 млн тонн, нефтегазоконденсата 32,7 млн тонн. Имеются крупные месторождения хромитовых (1-е место в СНГ), никелекобальтовых руд, фосфорита, калийных солей и других полезных ископаемых.

Население и демографическая ситуация. Численность населения 924 845 человек (на 1 октября 2022 года).

По административно-территориальному делению область разделена на 12 районов, 141 сельский (аульный) округ. На территории области расположены 8 городов и 410 аулов (сел).

Экономика Актобе является крупнейшей экономикой Актюбинской области и Западного Казахстана. Актюбинский регион в целом занимает лидирующие позиции в Казахстане по производительности труда в машиностроении и сельском хозяйстве, область показывает высокий рост оптовой и розничной торговли.

Актобе — крупный индустриальный центр, тесно связанный с месторождениями хромита к востоку от города. В нём расположены заводы ферросплавов, хромовых соединений, сельскохозяйственного машиностроения, рентгеноаппаратуры и др. Развиты химическая, лёгкая, пищевая промышленность, особенно развито производство ликёро-водочной продукции.

Крупнейшими предприятиями города являются Актюбинский завод ферросплавов (АЗФ), Актюбрентген, основным профилем деятельности которого является производство разнообразного рентгенодиагностического оборудования медицинского назначения; Актюбинский завод хромовых соединений (АЗХС) и ряд предприятий пищевой промышленности. На АЗФ производится 22 % ферросплавов Казахстана. АЗХС является единственным предприятием в стране, производящим окись хрома, хромовый ангидрид, дубильные вещества, дихромат натрия.

К основным промышленным предприятиям города также можно отнести: Актюбинский завод нефтяного оборудования (АЗНО), одно из крупнейших специализированных машиностроительных предприятий Казахстана по производству комплексного нефтепромыслового оборудования; Актюбинский завод металлоконструкций (АЗМ), проектирующий и производящий широкий перечень металлоконструкций для различных отраслей промышленности; Актюбинский рельсобалочный завод (АРБЗ), предприятие, занимающееся выпуском дифференцированно-упрочненных рельсов высокого качества, и единственный производитель среднего фасонного проката в Казахстане.

В Актобе расположены крупные предприятия пищевой промышленности, производящие муку, кондитерские и макаронные изделия, растительное масло и другую продукцию.

Уровень развития малого и среднего бизнеса в городе оставляет желать лучшего.

Сдерживающими факторами являются ограниченный доступ к финансированию, неразвитость индустриальной инфраструктуры и инфраструктуры поддержки предпринимательства. Для помощи начинающим предпринимателям был открыт Центр поддержки предпринимателей при фонде «Даму», в котором все желающие могут получить бесплатную помощь по вопросам бухгалтерии, юриспруденции, маркетинга и другие консалтинговые услуги.

2.2. Границы области воздействия объекта

Согласно Приказу и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 «Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека»:

- Раздел 4 (Строительная промышленность), n.15 (Класс II – C33 500 м), nn.4 (производство щебенки, гравия и песка, обогащение кварцевого песка) деятельность

месторождения по добыче песчано-гравийной смеси относится к II классу опасности с минимальным размером C33 500 м.

Размещение объекта соответствует данным требованиям. Санитарно-защитная зона выдержана.

Областью воздействия является территория (акватория), подверженная антропогенной нагрузке и определенная путем моделирования рассеивания приземных концентраций загрязняющих веществ.

Для совокупности стационарных источников область воздействия рассчитывается как сумма областей воздействия отдельных стационарных источников выбросов.

Нормативы допустимых выбросов устанавливаются для каждого загрязняющего вещества, включенного в перечень загрязняющих веществ, в виде:

- 1) массовой концентрации загрязняющего вещества;
- 2) скорости массового потока загрязняющего вещества.

Граница области воздействия на атмосферный воздух объекта определяется как проекция замкнутой линии на местности, ограничивающая область, за границей которого соблюдаются установленные экологические нормативы качества и/или целевые показатели качества окружающей среды с учетом индивидуального вклада объекта в общую нагрузку на атмосферный воздух (Сіпр/Сізв≤1).

Пределы области воздействия на графических материалах (генеральный план города, схема территориального планирования, топографическая карта, ситуационная схема) территории объекта воздействия обозначаются условными обозначениями.

Нормирование выбросов вредных веществ в атмосферу основано на необходимости соблюдения экологических нормативов качества или целевых показателей качества окружающей среды.

Область воздействия для данного вида работ устанавливается по расчету рассеивания согласно Санитарным правилам «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровья человека», утвержденного Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № КР ДСМ-2.

Границы области воздействия не выходят за пределы границ СЗЗ. Согласно результатам расчета рассеивания, превышение концентраций загрязняющих веществ на территории области воздействия не обнаружено.

Границы области воздействия показаны на картах изолиний полей рассеивания загрязняющих веществ в приложениях.

3. Описание возможных вариантов осуществления намечаемой деятельности с учетом ее особенностей и возможного воздействия на окружающую среду, включая вариант, выбранный инициатором намечаемой деятельности для применения, обоснование его выбора, описание других возможных рациональных вариантов, в том числе рационального варианта, наиболее благоприятного с точки зрения охраны жизни и (или) здоровья людей, окружающей среды

3.1. Обоснование применения намечаемого вида деятельности.

Ввиду отсутствия иного варианта осуществления намечаемой деятельности альтернативным вариантом в рамках настоящего отчёта может послужить только полный отказ от реализации намечаемой деятельности. Однако, полный отказ от намечаемой деятельности повлечёт за собой негативные последствия на экологическое состояние региона, так как не используемое и не рекультивированное месторождение представляют потенциальную угрозу неконтролируемого загрязнения всех компонентов окружающей среды. А также будет оказано негативное воздействие на социально-экономическую среду региона, выражающееся в резком сокращении трудовых мест (появление большого количества безработных среди трудоспособного населения) и снижении бюджетной части региона в связи с отсутствием поступлений налоговых и иных платежей и обязательств недропользователя.

На основании вышеизложенного, вариант отказа от намечаемой деятельности в виду его значительного негативного социального и экономического результата рассматриваться не будет.

3.2. Варианты осуществления намечаемой деятельности

Как варианты осуществления намечаемой деятельности, при подготовке данного отчета и заявления о намечаемой деятельности были рассмотрены:

- 1) Различные сроки осуществления деятельности или ее отдельных этапов (начала или осуществления строительства, эксплуатации объекта, выполнения отдельных работ).
 - 2) Различные виды работ, выполняемых для достижения одной и той же цели.
 - 3) Различная последовательность работ.
- 4) Различные технологии, машины, оборудование, материалы, применяемые для достижения олной и той же цели.
- 5) Различные способы планировки объекта (включая расположение на земельном участке зданий и сооружений, мест выполнения конкретных работ).
- 6) Различные условия эксплуатации объекта (включая графики выполнения работ, влекущих негативные антропогенные воздействия на окружающую среду);
- 7) Различные условия доступа к объекту (включая виды транспорта, которые будут использоваться для доступа к объекту).
- 8) Различные варианты, относящиеся к иным характеристикам намечаемой деятельности, влияющие на характер и масштабы антропогенного воздействия на окружающую среду.

По результатам рассмотрения всех вышеперечисленных вариантов осуществления намечаемой деятельности, из всех возможных, были выбраны наиболее оптимальные, которые и рассматриваются в рамках данного отчета как проектные.

Возможный рациональный вариант осуществления намечаемой деятельности

Под возможным рациональным вариантом осуществления намечаемой деятельности понимается вариант осуществления намечаемой деятельности, при котором соблюдаются в совокупности следующие условия:

- 1) Отсутствие обстоятельств, влекущих невозможность применения данного варианта, в том числе вызванную характеристиками предполагаемого места осуществления намечаемой деятельности и другими условиями ее осуществления.
- 2) Соответствие всех этапов намечаемой деятельности, в случае ее осуществления по данному варианту, законодательству Республики Казахстан, в том числе в области охраны окружающей среды.
- 3) Соответствие целям и конкретным характеристикам объекта, необходимого для осуществления намечаемой деятельности.

- 4) Доступность ресурсов, необходимых для осуществления намечаемой деятельности по данному варианту.
- 5) Отсутствие возможных нарушений прав и законных интересов населения затрагиваемой территории в результате осуществления намечаемой деятельности по данному варианту.

Размещение предприятия:

Право недропользования на проведение добычных работ на Новом участке Георгиевского месторождения песчано-гравийной смеси АО «Коктас» имеет на основании Акта государственной регистрации Контракта №76/2007 от 03.10.2007г.

Выбор места обусловлен расположением месторождения полезного ископаемого, возможность выбора других мест осуществления деятельности отсутствует.

Сроки осуществления деятельности:

Календарный план составлен на период 2023-2027 гг.

Вариант осуществления намечаемой деятельности:

Место осуществления намечаемой деятельности, а так же технология разработки определялись горно-геологическими условиями месторождения, в связи с чем альтернативные варианты отработки месторождения не рассматривались.

Реализация проекта окажет положительное влияние на развитие экономики региона и социально-экономическое благополучие населения, начиная с периода производственной деятельности, будут созданы дополнительные рабочие места.

Значительного ущерба окружающей природной среде при реализации проекта не произойдет. Однако, в случае отказа от намечаемой деятельности, предприятие не получит прибыль, а государство и Актюбинская область не получат в виде налогов значительные поступления. Не будут созданы новые рабочие места и привлечены людские ресурсы региона, для которого добыча полезных ископаемых является значимой частью экономики. Отказ от реализации намечаемой деятельности может привести к отказу от социально важных для региона и в целом для Казахстана видов деятельности.

В этих условиях отказ от разработки месторождения является неприемлемым как по экономическим, так и социальным факторам.

Таким образом, предусмотренный настоящим проектом, вариант осуществления намечаемой деятельности является самым оптимальным.

4. Информация о компонентах природной среды и иных объектах, которые могут быть подвержены существенным воздействиям намечаемой деятельности:

4.1. Жизнь и (или) здоровье людей, условия их проживания и деятельности

Поскольку участок проводимых сейсморазведочных работ не граничит с жилыми массивами и находится на значительном расстоянии от жилой зоны, а анализ уровня воздействия объекта на границе СЗЗ показал отсутствие превышений нормативных показателей, рекомендуется регулярно производить мониторинг технологических процессов с целью недопущения отклонений от регламента производства, своевременно осуществлять плановый ремонт существующих механизмов.

Соблюдение технологии работ и техники безопасности позволит избежать нештатных ситуаций, сверхнормативных выбросов и превышения показателей гигиенических нормативов на границе санитарно-защитной зоны.

В период добычных работ также предусмотрены мероприятия организационного характера: регулярный текущий ремонт применяемого оборудования с целью недопущения возникновения аварийных ситуаций; обследование территории на соответствие санитарным и экологическим требованиям.

В проекте заложены мероприятия и средства на организацию и благоустройство территории, в результате которых загазованность воздуха значительно снижается.

В целом, химическое и физическое воздействия на состояние окружающей природной среды от проводимых работ, подтвержденные расчетами приземных концентраций, уровня шума на рабочих местах, не превышающие допустимые значения, будет незначительным.

Планируемые работы, не приведут к значительному загрязнению окружающей природной среды, что не скажется негативно на здоровье населения.

Будут предусмотрены все необходимые меры для обеспечения нормальных санитарногигиенических условий работы и отдыха персонала, его медицинского обслуживания.

Все работники пройдут необходимую вакцинацию и инструктаж по соблюдению правил личной гигиены, с учетом региональных особенностей, поэтому повышение эпидемиологического риска в районе работ маловероятно.

Привлечение местных трудовых ресурсов снижает вероятность заболеваний среди рабочих, адаптированных к местным климатическим условиям, а также уменьшает риск при внесения инфекционных заболеваний из других регионов.

4.2. Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)

На данной местности отсутствуют деревья, кустарники и другие зеленые насаждения.

Координаты участков расположены вне земель государственного лесного фонда и особо охраняемых природных территорий.

В регионе обитают животные и птицы, занесенные в Красную книгу Республики Казахстан. Это саджа и чернобрюхий рябок. Помимо них встречаются дикие животные с шерстью, в том числе волки, лисы, сурки, кролики и грызуны.

Зона воздействия проектируемого объекта на животный мир ограничивается границами земельного отвода (прямое воздействие, заключается в вытеснении за пределы мест обитания) и санитарно-защитной зоны (косвенное воздействие, крайне опосредованное через эмиссии в атмосферный воздух).

Влияние на животный мир так же, как и на человека, может осуществляться через две среды: гидросферу и биосферу. В результате загрязнения грунтовых вод, воздушной среды и почв у животных нарушается минеральный обмен, вследствие которого возможны изменения в костях, задержка роста и другие нарушения. Загрязнение поверхностных и грунтовых вод отсутствует.

4.3. Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации)

Изъятие земель не осуществляется.

Развитие негативных процессов в почвенном покрове обусловлено как природными, так и антропогенными факторами.

Природными предпосылками деградации почвенного покрова на обследуемой территории является континентальность климата, недостаточность осадков, высокая испаряемость, периодические засухи и уязвимость экосистемы к нарушениям гидротермического режима.

Антропогенные факторы наиболее существенно влияют на почвенный покров, их действие приводит к постепенному накоплению негативных экологических изменений и усилению деградации земель. Антропогенные факторы воздействия на почвы выделяются в две большие группы: физические и химические.

Физические факторы в большей степени характеризуются механическим воздействием на почвенный покров:

- воздействие от разработки полезных ископаемых;
- размещение вскрышных пород в отвалах;
- движение внутрикарьерного автотранспорта.

К химическим факторам воздействия можно отнести:

- привнесение загрязняющих веществ в почвенные экосистемы с выбросами в атмосферу, с бытовыми и производственными отходами, при аварийных (случайных) разливах ГСМ.

Нарушения земель неизбежны при производстве работ по добыче.

Потенциальные виды воздействия на почвенно-растительный покров включают в себя:

- непосредственное снятие почвенно-растительного слоя с площадок размещения объектов намечаемой деятельности, с последующей рекультивацией;
- отложение на почвенно-растительном покрове пыли и других, переносимых воздухом загрязнителей от объекта.

Территория размещения объектов намечаемой деятельности свободна от застройки и зеленых насаждений. Дополнительные площади для размещения объектов не требуются, все площадки предприятия будут находиться в границах горного отвода.

Добыча грунтов на земельном участке связана с перепланировкой поверхности и изменением существующего рельефа. Планируемые работы не повлияют на сложившуюся геохимическую обстановку территории и не являются источником химического загрязнения земель. Отходы производства и потребления не будут загрязнять территорию т.к. они складируются в специальных контейнерах и вывозятся по завершению работ.

Рекультивация нарушенных земель относится к мероприятиям восстановительного характера, направленным на устранение последствий воздействия промышленного производства на окружающую среду.

Планом ликвидации предусматривается комплекс работ, способствующий приведению территории в состояние, максимально близкое к исходному. Результатом работ по реализации мероприятий по ликвидации последствий недропользования будет территория с устойчивым ландшафтом, пригодная к дальнейшему использованию в народном хозяйстве.

4.4. Воды (в том числе гидроморфологические изменения, количество и качество вод)

Согласно п.п. 7 п. 2 Правил установления водоохранных зон и полос утвержденных Приказом Министра сельского хозяйства от 18 мая 2015 года № 19-1/446 Минимальная ширина водоохранных зон по каждому берегу принимается от уреза воды при среднемноголетнем меженном уровне до уреза воды при среднемноголетнем уровне в период половодья (включая пойму реки, надпойменные террасы, крутые склоны коренных берегов, овраги и балки) и плюс следующие дополнительные расстояния:

- для малых рек (длиной до 200 км) 500 м;
- для остальных рек:
- с простыми условиями хозяйственного использования и благоприятной экологической обстановкой на водосборе 500 м;

Расположение участка недр находится за пределами водоохранных зоны и полосы рек и притоков. Все работы будут проводиться за пределами водоохранных полосы и зоны рек и притоков. Ввиду этого воздействие намечаемой деятельности на поверхностные воды будет минимальным.

Проектом не предусматривается забор воды из рек без разрешения местных исполнительных органов власти. Проектом также не предусматривается сброс хозяйственно-бытовых стоков в поверхностные водоисточники или пониженные места рельефа местности.

Также следует отметить, что в соответствии с п. 4 ст. 10 Водного кодекса РК «отношения, возникающие в области геологического изучения, разведки и комплексного освоения недр, охраны подземных вод и подземных сооружений от вредного воздействия вод, подчиняются режиму недр и регулируются соответствующим законодательством Республики Казахстан в области недр и недропользования, о гражданской защите, за исключением пунктов 3 и 4 статьи 66 настоящего Кодекса.»

Мойка машин и механизмов на территории участка не допускается. На проектируемой территории хоз-бытовые сточные воды будут накапливаться в биотуалет и по мере накопления передаваться специализированным организациям на договорной основе.

С целью исключения засорения и загрязнения поверхностных вод, предусматривается мероприятия по предотвращению воздействия образующихся отходов производства и потребления.

Твердо-бытовые отходы будут собираться в закрытые баки-контейнеры, располагаемые на оборудованной площадке и в дальнейшем вывозиться на ближайший полигон ТБО согласно договора. С целью исключения засорения водных объектов в процессе осуществления намечаемой деятельности предусматривается проведение плановой уборки территории. Не допускается открытое размещение отходов на территории участка.

Таким образом, засорение и загрязнения водных объектов района исключено.

Общее воздействие намечаемой деятельности на поверхностную водную среду оценивается низкой значимостью воздействия (допустимое).

Намечаемая деятельность не окажет дополнительного воздействия на поверхностные воды района расположения объекта. Непосредственное воздействие на водный бассейн при реализации проектных решений исключается.

Проведение дополнительного экологического мониторинга поверхностных вод при реализации проектных решений не предусматривается.

Таким образом, намечаемая деятельность вредного воздействия на качество подземных вод и вероятность их загрязнения не окажет. Общее воздействие намечаемой деятельности на подземные воды оценивается как допустимое (низкая значимость воздействия).

4.5. Атмосферный воздух (в том числе риски нарушения экологических нормативов его качества, целевых показателей качества, а при их отсутствии- ориентировочно безопасных уровней воздействия на него)

Риски нарушения экологических нормативов минимальны. Аварийных ситуаций и залповых выбросов которые могли бы существенно повлиять на окружающую среду в проектируемых предприятии нет.

4.6. Материальные активы, объекты историко-культурного наследия (в том числе архитектурные и археологические), ландшафты

Территория данного региона в силу определенных физико-географических и исторических условий является местом сохранения значительного количества весьма интересных архитектурных и археологических памятников. Глубокое изучение этого удивительного наследия ведется и несомненно, что в настоящее время наука стоит у порога еще одной, во многом загадочной цивилизации, строителями которой были конные кочевники азиатских степей и пустынь. Роль этой цивилизации, несомненно, выходит за границы рассматриваемого региона, который, однако, имеет совершенно своеобразный облик сохранившихся памятников, особенно

последних столетий.

Состояние памятников в основном неудовлетворительное, разрушения происходит из-за естественного старения материала, воздействия атмосферных осадков, влияния техногенной деятельности.

Памятники истории и культуры охраняются государством. Ответственность за их содержание возлагается на местные организации, учреждения и хозяйства, в ведении или на территории, которых они находятся.

На основании п.1 ст.30 Закона РК «Об охране и использовании объектов историкокультурного наследия» от 26 декабря 2019 года за №288-VII, в случае обнаружения объектов, имеющих историческую, научную, художественную и иную культурную ценность компания обязана приостановить дальнейшее ведение работ и сообщить об этом уполномоченному органу, то есть КГУ «Центр исследования, реставрации и охраны историко-культурного наследия».

5. Обоснование предельных количественных и качественных показателей эмиссий, физических воздействий на окружающую среду, выбора операций по управлению отходами

5.1. Обоснование предельных количественных и качественных показателей эмиссий в атмосферный воздух

В данном разделе приводится обоснование предельных количественных и качественных показателей эмиссий, а именно выбросов загрязняющих веществ в атмосферный воздух.

5.1.1. Источники и масштабы расчетного химического загрязнения

Добыча производится без применения буровзрывных работ для предварительного рыхления.

Принята система разработки месторождения открытым способом, с сдвоенным уступом до 9 м (5м не обводненная часть), согласно техническому заданию заказчика.

Обводнённая часть разрабатывается земснарядом.

При производстве работ выделение загрязняющих веществ будет осуществляться при работе экскаватора на добыче полезного ископаемого, транспортировке полезного ископаемого, вспомогательных работах бульдозера.

В процессе эксплуатации оборудования, при проведении работ выделяются вредные вещества в атмосферу от сжигания топлива в двигателях внутреннего сгорания автотранспортных средств, бульдозеров, погрузчика, экскаватора, поливомоечной машины.

На данном этапе проектирования предусматриваются следующие источники выбросов загрязняющих веществ в атмосферу:

- № 6001, Снятие ПРС;
- № 6002, Погрузка ПРС в автосамосвалы;
- № 6003, Транспортировка ПРС на отвал;
- № 6004, Отвал ПРС;
- № 6005, Выемочно-погрузочные работы вскрышных пород;
- № 6006, Транспортировка вскрышных пород на отвал;
- № 6007, Отвал вскрыши;
- № 6008, Выемочно-погрузочные работы П/И экскаватором в автосамосвалы;
- № 6009, Транспортировка П/И на отгрузочную площадку.

На карьере работает спецтехника, работающая за счет сжигания топлива в двигателях внутреннего сгорания. Обеспечение ГСМ горных и транспортных механизмов, а также технической и хозпитьевой водой предусматривается в ближайшем населённом пункте. Заправка техники на карьере не осуществляется.

5.1.2. Методики расчета выбросов загрязняющих веществ в атмосферу и результаты расчетов

2023-2024 гг.

Город N 002, Актобе

Объект N 065,Вариант 1 Георгиевское месторождение песчано-гравийной смеси (Новый участок) на 2023-2024 гг.

Источник загрязнения N 6001, Неорганизованный Источник выделения N 001, Снятие ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 3.25

Суммарное количество перерабатываемого материала, т/год, GGOD = 4680

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 3.25 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.1062$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 4680 \cdot (1-0.85) = 0.33$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1062 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.33 = 0.33

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.1062000	0.3300000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6002, Неорганизованный Источник выделения N 001, Погрузка ПРС в автосамосвалы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 3.25

Суммарное количество перерабатываемого материала, т/год, GGOD = 4680

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 3.25 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.1062$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 4680 \cdot (1-0.85) = 0.33$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1062 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.33 = 0.33

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.1062000	0.3300000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6003, Неорганизованный Источник выделения N 001, Транспортировка ПРС на отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 1

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/c, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: ПРС

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 3

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.8

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot \overline{K5} \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.8 \cdot 0.004 \cdot 9.8 \cdot 1 = 0.0587$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0587 \cdot (365 \cdot (150 + 16.67)) = 1.006$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0587000	1.0060000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6004, Неорганизованный Источник выделения N 001, Отвал ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: ПРС

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Поверхность пыления в плане, м2, S = 1340

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.8 \cdot 1.45$

 $\cdot 0.7 \cdot 0.004 \cdot 1340 \cdot (1-0.85) = 1.306$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 - (TSP + TD)) \cdot (1-NJ)$

 $= 0.0864 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 1340 \cdot (365 \cdot (150 + 16.67)) \cdot (1 \cdot 0.85) = 13.42$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 1.306 = 1.306

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 13.42 = 13.42

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.3060000	13.4200000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6005, Неорганизованный

Источник выделения N 001, Выемочно-погрузочные работы вскрышных пород

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Вскрыша

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.7**

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 29.8

Суммарное количество перерабатываемого материала, т/год, GGOD = 42900

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 29.8 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.973$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 42900 \cdot (1-0.85) = 3.03$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.973 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 3.03 = 3.03

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.9730000	3.0300000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6006, Неорганизованный

Источник выделения N 001, Транспортировка вскрышных пород на отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, VI = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: Вскрыша

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 3

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.8

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.8 \cdot 0.004 \cdot 9.8 \cdot 1 = 0.0587$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0587 \cdot (365 \cdot (150 + 16.67)) = 1.006$

Итоговая таблина:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0587000	1.0060000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6007, Неорганизованный Источник выделения N 001, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Вскрыша

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Поверхность пыления в плане, м2, S = 6787

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.8 \cdot 1.45$

 $\cdot 0.7 \cdot 0.004 \cdot 6787 \cdot (1-0.85) = 6.61$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 - NJ)$

 $= 0.0864 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 6787 \cdot (365 \cdot (150 + 16.67)) \cdot (1 \cdot 0.85) = 68$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 6.61 = 6.61

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 68 = 68

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	6.6100000	68.0000000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6008, Неорганизованный

Источник выделения N 001, Выемочно-погрузочные работы П/И экскаватором в автосамосвалы Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.04

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 30

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 56.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 165000

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = KI \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 2 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 56.5 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.384$ Валовый выброс, т/год (3.1.2), $MC = KI \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 165000 \cdot (1-0.85) = 8.73$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.384 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 8.73 = 8.73

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.3840000	8.7300000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6009, Неорганизованный

Источник выделения N 001, Транспортировка П/И на отгрузочную площадку

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), CI = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл. 3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., N1 = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L=4

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги (табл. 3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/c, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: Песчано-гравийная смесь (ПГС)

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Влажность перевозимого материала, %, VL = 5

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.7

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 4 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.7 \cdot 0.002 \cdot 9.8 \cdot 2 = 0.0559$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0559 \cdot (365 \cdot (150 + 16.67)) = 0.958$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0559000	0.9580000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

2025 год

Город N 002, Актобе

Объект N 066,Вариант 1 Георгиевское месторождение песчано-гравийной смеси (Новый участок) на 2025 год

Источник загрязнения N 6001, Неорганизованный Источник выделения N 001, Снятие ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 6.05

Суммарное количество перерабатываемого материала, т/год, GGOD = 8710

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 6.05 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.1976$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 8710 \cdot (1-0.85) = 0.615$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1976 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.615 = 0.615

Итоговая таблина:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.1976000	0.6150000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6002, Неорганизованный Источник выделения N 001, Погрузка ПРС в автосамосвалы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 6.05

Суммарное количество перерабатываемого материала, т/год, GGOD = 8710

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 6.05 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.1976$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 8710 \cdot (1-0.85) = 0.615$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1976 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.615 = 0.615

Итоговая таблина:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.1976000	0.6150000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6003, Неорганизованный Источник выделения N 001, Транспортировка ПРС на отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл. 3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 1

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N = 1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/c, V1 = 2.4

Средняя скорость движения транспортного средства, $\kappa M/4$ ас, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: ПРС

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 3

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.8

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.8 \cdot 0.004 \cdot 9.8 \cdot 1 = 0.0587$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0587 \cdot (365 \cdot (150 + 16.67)) = 1.006$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0587000	1.0060000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6004, Неорганизованный Источник выделения N 001, Отвал ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: ПРС

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Поверхность пыления в плане, м2, S = 1340

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.8 \cdot 1.45$

 $\cdot 0.7 \cdot 0.004 \cdot 1340 \cdot (1-0.85) = 1.306$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ)$ = $0.0864 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 1340 \cdot (365 \cdot (150 + 16.67)) \cdot (1 \cdot 0.85) = 13.42$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 1.306 = 1.306

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 13.42 = 13.42

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.3060000	13.4200000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6005, Неорганизованный

Источник выделения N 001, Выемочно-погрузочные работы вскрышных пород

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Вскрыша

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4** = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 35.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 51090

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 35.5 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.16$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 35.5 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.16$

 $0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 51090 \cdot (1-0.85) = 3.6$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.16 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 3.6 = 3.6

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.1600000	3.6000000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6006, Неорганизованный Источник выделения N 001, Транспортировка вскрышных пород на отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения(табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 1

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N = 1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 2.4

Средняя скорость движения транспортного средства, $\kappa M/4$ ас, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: Вскрыша

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 3

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.8

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.8 \cdot 0.004 \cdot 9.8 \cdot 1 = 0.0587$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0587 \cdot (365 \cdot (150 + 16.67)) = 1.006$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0587000	1.0060000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6007, Неорганизованный Источник выделения N 001, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Вскрыша

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Поверхность пыления в плане, м2, S = 6787

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 6787 \cdot (1-0.85) = 6.61$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ)$ = $0.0864 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 6787 \cdot (365 \cdot (150 + 16.67)) \cdot (1 \cdot 0.85) = 68$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 6.61 = 6.61

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 68 = 68

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	6.6100000	68.0000000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6008, Неорганизованный

Источник выделения N 001, Выемочно-погрузочные работы П/И экскаватором в автосамосвалы Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.04

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 30

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 56.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 165000

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 2 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 56.5 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.384$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 165000 \cdot (1-0.85) = 8.73$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.384 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 8.73 = 8.73

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.3840000	8.7300000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6009, Неорганизованный Источник выделения N 001, Транспортировка П/И на отгрузочную площадку

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., N1 = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L = 4

Число ходок (туда + обратно) всего транспорта в час, N = 1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: Песчано-гравийная смесь (ПГС)

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Влажность перевозимого материала, %, VL = 5

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.7

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 4 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.7 \cdot 0.002 \cdot 9.8 \cdot 2 = 0.0559$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0559 \cdot (365 \cdot (150 + 16.67)) = 0.958$

Итоговая таблина:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0559000	0.9580000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

2026 год

Город N 002, Актобе

Объект N 067,Вариант 1 Георгиевское месторождение песчано-гравийной смеси (Новый участок) на 2026 год

Источник загрязнения N 6001, Неорганизованный Источник выделения N 001, Снятие ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 5.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 7930

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX$

 $10^{6} / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 5.5 \cdot 10^{6} / 3600 \cdot (1-0.85) = 0.1797$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot$

 $0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 7930 \cdot (1 \text{-} 0.85) = 0.56$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1797

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.56 = 0.56

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.1797000	0.5600000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6002, Неорганизованный Источник выделения N 001, Погрузка ПРС в автосамосвалы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 5.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 7930

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 5.5 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.1797$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 7930 \cdot (1-0.85) = 0.56$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1797 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.56 = 0.56

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.1797000	0.5600000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6003, Неорганизованный Источник выделения N 001, Транспортировка ПРС на отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), CI = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 1

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/c, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: ПРС

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 3

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.8

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.8 \cdot 0.004 \cdot 9.8 \cdot 1 = 0.0587$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0587 \cdot (365 \cdot (150 + 16.67)) = 1.006$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0587000	1.0060000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6004, Неорганизованный Источник выделения N 001, Отвал ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: ПРС

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Поверхность пыления в плане, м2, S = 1340

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 1340 \cdot (1-0.85) = 1.306$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1-NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 1340 \cdot (365 \cdot (150 + 16.67)) \cdot (1-0.85) = 13.42$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 1.306 = 1.306

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 13.42 = 13.42

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.3060000	13.4200000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6005, Неорганизованный

Источник выделения N 001, Выемочно-погрузочные работы вскрышных пород

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Вскрыша

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.7**

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 49

Суммарное количество перерабатываемого материала, т/год, GGOD = 70590

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 49 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.6$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 70590 \cdot (1-0.85) = 4.98$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.6 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 4.98 = 4.98

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.6000000	4.9800000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6006, Неорганизованный Источник выделения N 001, Транспортировка вскрышных пород на отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл. 3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 1

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове (табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: Вскрыша

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 3

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.8

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.8 \cdot 0.004 \cdot 9.8 \cdot 1 = 0.0587$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0587 \cdot (365 \cdot (150 + 16.67)) = 1.006$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0587000	1.0060000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6007, Неорганизованный Источник выделения N 001, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Вскрыша

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Поверхность пыления в плане, м2, S = 6787

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 6787 \cdot (1-0.85) = 6.61$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 6787 \cdot (365 \cdot (150 + 16.67)) \cdot (1 \cdot 0.85) = 68$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 6.61 = 6.61

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 68 = 68

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	6.6100000	68.0000000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6008, Неорганизованный

Источник выделения N 001, Выемочно-погрузочные работы П/И экскаватором в автосамосвалы Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.04

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 30

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 56.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 165000

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 2 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 56.5 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.384$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 165000 \cdot (1-0.85) = 8.73$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.384 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 8.73 = 8.73

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.3840000	8.7300000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6009, Неорганизованный Источник выделения N 001, Транспортировка П/И на отгрузочную площадку

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), CI = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., N1 = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L=4

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, O1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/c, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: Песчано-гравийная смесь (ПГС)

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Влажность перевозимого материала, %, VL = 5

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.7

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 4 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.7 \cdot 0.002 \cdot 9.8 \cdot 2 = 0.0559$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0559 \cdot (365 \cdot (150 + 16.67)) = 0.958$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0559000	0.9580000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

2027 год

Город N 002, Актобе

Объект N 068,Вариант 1 Георгиевское месторождение песчано-гравийной смеси (Новый участок) на 2027 год

Источник загрязнения N 6001, Неорганизованный Источник выделения N 001, Снятие ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.7**

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 4.06

Суммарное количество перерабатываемого материала, т/год, GGOD = 5850

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 4.06 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.1326$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 5850 \cdot (1-0.85) = 0.413$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1326 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.413 = 0.413

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.1326000	0.4130000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6002, Неорганизованный Источник выделения N 001, Погрузка ПРС в автосамосвалы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 4.06

Суммарное количество перерабатываемого материала, т/год, GGOD = 5850

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 4.06 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.1326$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 5850 \cdot (1-0.85) = 0.413$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1326 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.413 = 0.413

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.1326000	0.4130000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6003, Неорганизованный Источник выделения N 001, Транспортировка ПРС на отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 1

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: ПРС

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 3

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.8

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200 Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.8 \cdot 0.004 \cdot 9.8 \cdot 1 = 0.0587$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0587 \cdot (365 \cdot (150 + 16.67)) = 1.006$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0587000	1.0060000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6004, Неорганизованный Источник выделения N 001, Отвал ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: ПРС

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.7**

Поверхность пыления в плане, м2, S = 1340

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

 Θ ффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.8 \cdot 1.45$

 $\cdot 0.7 \cdot 0.004 \cdot 1340 \cdot (1-0.85) = 1.306$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1-NJ)$ $= 0.0864 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 1340 \cdot (365 \cdot (150 + 16.67)) \cdot (1 \cdot 0.85) = 13.42$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 1.306 = 1.306

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 13.42 = 13.42

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.3060000	13.4200000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6005, Неорганизованный

Источник выделения N 001, Выемочно-погрузочные работы вскрышных пород

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Вскрыша

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 25.7

Суммарное количество перерабатываемого материала, т/год, GGOD = 37050

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 25.7 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.8395$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.7 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 37050 \cdot (1-0.85) = 2.61$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.8395 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 2.61 = 2.61

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.8395000	2.6100000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6006, Неорганизованный Источник выделения N 001, Транспортировка вскрышных пород на отвал

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), CI = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 1

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, O1 = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/c, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: Вскрыша

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 3

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.8

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.8 \cdot 0.004 \cdot 9.8 \cdot 1 = 0.0587$ Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0587 \cdot (365 \cdot (150 + 16.67)) = 1.006$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0587000	1.0060000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6007, Неорганизованный Источник выделения N 001, Отвал вскрыши

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Вскрыша

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 3

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.7

Поверхность пыления в плане, м2, S = 6787

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.8 \cdot 1.45$

 $\cdot 0.7 \cdot 0.004 \cdot 6787 \cdot (1-0.85) = 6.61$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ)$ = $0.0864 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.7 \cdot 0.004 \cdot 6787 \cdot (365 \cdot (150 + 16.67)) \cdot (1 \cdot 0.85) = 68$ Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 6.61 = 6.61 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 68 = 68

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	6.6100000	68.0000000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6008, Неорганизованный

Источник выделения N 001, Выемочно-погрузочные работы П/И экскаватором в автосамосвалы Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.04

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 30

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 56.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 165000

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 2 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 56.5 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.384$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 165000 \cdot (1-0.85) = 8.73$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.384 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 8.73 = 8.73

Итоговая таблина:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.3840000	8.7300000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6009, Неорганизованный Источник выделения N 001, Транспортировка П/И на отгрузочную площадку

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >10 - < = 15 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), CI = 1.3

Средняя скорость передвижения автотранспорта: >20 - < = 30 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 2.75

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., N1 = 2

Средняя продолжительность одной ходки в пределах промплощадки, км, L=4

Число ходок (туда + обратно) всего транспорта в час, N=1

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 10

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.1

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 2.4

Средняя скорость движения транспортного средства, км/час, V2 = 30

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.4 \cdot 30 / 3.6)^{0.5} = 4.47$

Коэфф., учитывающий скорость обдува материала в кузове (табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 9.8

Перевозимый материал: Песчано-гравийная смесь (ПГС)

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Влажность перевозимого материала, %, VL = 5

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.7

Количество дней с устойчивым снежным покровом, TSP = 150

Продолжительность осадков в виде дождя, часов/год, TO = 200

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 200 / 24 = 16.67$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Максимальный разовый выброс, г/с (3.3.1), $G = C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot O \cdot S \cdot N1 = 1.3 \cdot 2.75 \cdot 1 \cdot 0.1 \cdot 0.01 \cdot 1 \cdot 4 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.7 \cdot 0.002 \cdot 9.8 \cdot 2 = 0.0559$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.0559 \cdot (365 \cdot (150 + 16.67)) = 0.958$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0559000	0.9580000
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

5.2. Обоснование предельных количественных и качественных показателей эмиссий в водные ресурсы

Характер рельефа и климатические условия исключают возможность больших скоплений дождевых и талых вод на месте проектируемого карьера. Мероприятия по предотвращению поступления в карьер талых и ливневых вод не предусматривается.

Расчет нормативов допустимых сбросов не предусмотрен.

5.3. Обоснование выбора операций по управлению отходами

Согласно статье 319 Экологического кодекса РК, под управлением отходами понимаются операции, осуществляемые в отношении отходов с момента их образования до окончательного удаления.

К операциям по управлению отходами относятся:

- 1) накопление отходов на месте их образования;
- 2) сбор отходов;
- 3) транспортировка отходов;
- 4) восстановление отходов;
- 5) удаление отходов;
- 6) вспомогательные операции, выполняемые в процессе осуществления операций, предусмотренных подпунктами 1), 2), 4) и 5);
- 7) проведение наблюдений за операциями по сбору, транспортировке, восстановлению и (или) удалению отходов;
- 8) деятельность по обслуживанию ликвидированных (закрытых, выведенных из эксплуатации) объектов удаления отходов.

Лица, осуществляющие операции по управлению отходами, за исключением домовых хозяйств, обязаны при осуществлении соответствующей деятельности соблюдать национальные стандарты в области управления отходами, включенные в перечень, утвержденный уполномоченным органом в области охраны окружающей среды.

Нарушение требований, предусмотренных такими национальными стандартами, влечет ответственность, установленную законами Республики Казахстан.

Отходами при проведении работ будут являться твердо-бытовые отходы, вскрышная порода.

Согласно п. 1 ст. 358. ЭК РК управление отходами горнодобывающей промышленности осуществляется в соответствии с принципом иерархии.

Согласно статье 329 ЭК РК Образователи и владельцы отходов должны применять следующую иерархию мер по предотвращению образования отходов и управлению образовавшимися отходами в порядке убывания их предпочтительности в интересах охраны окружающей среды и обеспечения устойчивого развития Республики Казахстан:

- 1) предотвращение образования отходов;
- 2) подготовка отходов к повторному использованию;
- 3) переработка отходов;
- 4) утилизация отходов;
- 5) удаление отходов.

При осуществлении операций, предусмотренных подпунктами 2) – 5) части первой настоящего пункта, владельцы отходов вправе при необходимости выполнять вспомогательные операции по сортировке, обработке и накоплению.

- 2. Под предотвращением образования отходов понимаются меры, предпринимаемые до того, как вещество, материал или продукция становятся отходами, и направленные на:
- 1) сокращение количества образуемых отходов (в том числе путем повторного использования продукции или увеличения срока ее службы);
- 2) снижение уровня негативного воздействия образовавшихся отходов на окружающую среду и здоровье людей;
 - 3) уменьшение содержания вредных веществ в материалах или продукции.

Под повторным использованием в подпункте 1) части первой настоящего пункта

понимается любая операция, при которой еще не ставшие отходами продукция или ее компоненты используются повторно по тому же назначению, для которого такая продукция или ее компоненты были созданы.

- 3. При невозможности осуществления мер, предусмотренных пунктом 2 настоящей статьи, отходы подлежат восстановлению.
- 4. Отходы, которые не могут быть подвергнуты восстановлению, подлежат удалению безопасными методами, которые должны соответствовать требованиям статьи 327 настоящего Кодекса.
- 5. При применении принципа иерархии должны быть приняты во внимание принцип предосторожности и принцип устойчивого развития, технические возможности и экономическая целесообразность, а также общий уровень воздействия на окружающую среду, здоровье людей и социально-экономическое развитие страны.

5.3.1. Отходы горнодобывающей промышленности.

Под отходами горнодобывающей промышленности понимаются отходы, образуемые в процессе разведки, добычи, обработки и хранения твердых полезных ископаемых, в том числе вскрышная, вмещающая порода, пыль, бедная (некондиционная) руда, осадок механической очистки карьерных и шахтных вод, хвосты и шламы обогащения.

Согласно Классификатору отходов, утвержденному приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314. Отходы от разработки не металлоносных полезных ископаемых к неопасным отходам, код отхода — 010102.

В соответствии со статьёй 359 Экологического Кодекса складирование и долгосрочное хранение отходов горнодобывающей промышленности для целей применения платы за негативное воздействие на окружающую среду приравниваются к захоронению отходов.

В соответствии с пунктом 4 статьи 323 Экологического Кодекса Под утилизацией отходов понимается процесс использования отходов в иных, помимо переработки, целях, в том числе в качестве вторичного энергетического ресурса для извлечения тепловой или электрической энергии, производства различных видов топлива, а также в качестве вторичного материального ресурса для целей строительства, заполнения (закладки, засыпки) выработанных пространств (пустот) в земле или недрах или в инженерных целях при создании или изменении ландшафтов.

Таким образом, размещение вскрышных пород во временном внешнем отвале является захоронением отходов, размещение вскрышных пород в отработанном пространстве карьера – утилизацией.

5.3.2. Отходы, не относящиеся к отходам горнодобывающей промышленности

Управление отходами и безопасное обращение с ними являются одним из основных пунктов стратегического экологического планирования и управления.

Обращение с отходами должно производиться в строгом соответствии с международными стандартами и действующими нормативами Республики Казахстан.

Для рационального управления отходами необходим строгий учет и контроль над всеми видами отходов, образующихся в процессе деятельности предприятия.

Отходами при проведении работ будут являться твердо-бытовые отходы.

Твердые бытовые отходы.

Согласно «Классификатору отходов» твердые бытовые отходы классифицируются как «Смешанные коммунальные отходы» с кодом 20 03 01 и не относятся к опасным отходам.

Твердые бытовые отходы (ТБО) образуются в результате жизнедеятельности персонала, задействованного для выполнения данных видов работ. Бытовые отходы включают в себя: упаковочные материалы (бумажные, тканевые, пластиковые), оберточную пластиковую пленку, бумагу, бытовой мусор, пищевые отходы.

По мере накопления отходы вывозятся на полигон или утилизацию. Накопление отходов не превышает 6 месяцев.

6. Обоснование предельного количества накопления отходов по их видам. обоснование предельных объемов захоронения отходов по их видам, если такое захоронение предусмотрено в рамках намечаемой деятельности

Лимиты накопления и лимиты захоронения отходов устанавливаются в целях обеспечения охраны окружающей среды и благоприятных условий для жизни и (или) здоровья человека, уменьшения количества подлежащих захоронению отходов и стимулирования их подготовки к повторному использованию, переработки и утилизации.

Лимиты накопления отходов и лимиты захоронения отходов обосновываются операторами объектов II категории в программе управления отходами при получении экологического разрешения и устанавливаются в соответствующем экологическом разрешении. Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

6.1. Виды и объемы образования отходов

В процессе производственной и жизнедеятельности человека образуются различные виды отходов производства и потребления, которые могут стать потенциальными источниками вредного воздействия на окружающую среду.

Для обеспечения нормального санитарного содержания территории особую актуальность приобретают вопросы сбора, временного складирования, транспортировки и захоронения отходов производства и потребления.

В результате накопления отходов нарушается природное равновесие, потому что природные процессы воспроизводства не способны самостоятельно справиться с накопленными и качественно измененными отходами.

Обоснованием полноты и достоверности исходных данных, принятых для расчета предполагаемого количества отходов является проект «План горных работ на добычу глинистых пород и песков (грунтов) на месторождениях «Грунтовый резерв №№1-2» в черте города Актобе Актюбинской области».

Отходами при проведении работ будут являться твердо-бытовые отходы, вскрышная порода.

Расчет образования отходов производства и потребления ТБО

Объем образования отходов определялся согласно приложению №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100–П,

Норма образования бытовых отходов (m1, т/год) определяется с учетом удельных санитарных норм образования бытовых отходов на промышленных предприятиях $-0.3~{\rm m}^3$ /год на человека, списочной численности работающих на предприятии и средней плотности отходов, которая составляет $0.25~{\rm t/m}^3$.

Мобр =
$$0.3 \text{ м}^3/\text{год} \times 6 \text{ чел} \times 0.25 \text{ т/м}^3 = 0.45 \text{ тонн/год}.$$

$\mathbf{I}\lambda$	TAT	٠.

Код	Отход	Кол-во, т/год
200301	Твердые бытовые отходы	0,45

Расчет количества отходов от разработки не металлоносных полезных ископаемых (вскрышная порода)

Расчет объемов образования отходов вскрышных пород в тоннах ведется по формуле:

m=p*V

Где: **p** – объем вскрышных пород **V** – плотность материала, 1,3 т/м³

Георгиевское месторождение песчано-гравийной смеси (Новый участок)

Наименовани отхода	е Годы отработн	O(0.032000)	ния Плотност T/M^3	объем образования отхода т/год
Отходы от	2023	33000		42900
разработки не	2024	33000		42900
металлоносны	x 2025	39300		51090
полезных	2026	54300	1,3	70590
ископаемых		28500		
(вскрышная	2027			37050
порода)				

В соответствии с пунктом 4 статьи 323 Экологического Кодекса Под утилизацией отходов понимается процесс использования отходов в иных, помимо переработки, целях, в том числе в качестве вторичного энергетического ресурса для извлечения тепловой или электрической энергии, производства различных видов топлива, а также в качестве вторичного материального ресурса для целей строительства, заполнения (закладки, засыпки) выработанных пространств (пустот) в земле или недрах или в инженерных целях при создании или изменении ландшафтов.

Таким образом, размещение вскрышных пород во временном внешнем отвале является захоронением отходов, размещение вскрышных пород в отработанном пространстве карьера – утилизацией.

6.2. Обоснование предельного количества накопления отходов по их видам

Согласно ст. 320 ЭК РК, под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных в пункте 2 ст. 320 ЭК РК, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления.

Лимиты накопления отходов устанавливаются для каждого конкретного места накопления отходов, входящего в состав объектов II категории, в виде предельного количества (массы) отходов по их видам, разрешенных для складирования в соответствующем месте накопления.

Места накопления отходов предназначены для:

- 1) временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- 2) временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- 3) временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление.

Для вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники срок временного складирования в процессе их сбора не должен превышать шесть месяцев.

4) временного складирования отходов горнодобывающих и горноперерабатывающих производств, в том числе отходов металлургического и химико-металлургического производств, на месте их образования на срок не более двенадцати месяцев до даты их направления на восстановление или удаление.

Лимиты накопления отходов и лимиты захоронения отходов обосновываются операторами объектов I и II категорий в программе управления отходами при получении экологического разрешения и устанавливаются в соответствующем экологическом разрешении. Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

Твердые бытовые отходы (20 03 01) – Смешанные коммунальные отходы)

Твердые бытовые отходы (ТБО) образуются в результате жизнедеятельности персонала, задействованного для выполнения данных видов работ. Бытовые отходы включают в себя: упаковочные материалы (бумажные, тканевые, пластиковые), оберточную пластиковую пленку, бумагу, бытовой мусор, пищевые отходы.

Бытовые отходы будут временно собираться в металлические контейнеры с крышками и по мере накопления будут вывозиться на ближайший полигон по соответствующему договору. Накопление отходов не превышает 6 месяцев.

Лимиты накопления отходов приведены в таблице 6.2.1 по форме согласно приложению 1 к Приказу министра экологии, геологии и природных ресурсов РК от 22 июня 2021 г. № 206 «Об утверждении методики расчета лимитов накопления отходов и лимитов захоронения отходов».

Лимиты накопления отходов пересматриваются не реже одного раза в десять лет, в составе заявки для получения экологического разрешения на воздействие.

Таблица 6.2.1.

Лимиты накопления отходов

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год
1	2	3
	На 2023-2024 гг.	
Всего	-	42900,45
в том числе отходов производства	-	42900
отходов потребления	-	0,45
Опасные отходы		
Неопасные отходы		
ТБО (Смешанные коммунальные отходы)	-	0,45
Отходы от разработки не металлоносных полезных ископаемых (вскрышная порода)	-	42900
	На 2025 г.	·
Всего	-	51090,45
в том числе отходов производства	-	51090
отходов потребления	-	0,45
Опасные отходы		
Неопасные отходы		
ТБО (Смешанные коммунальные отходы)	-	0,45
Отходы от разработки не металлоносных полезных ископаемых (вскрышная порода)	-	51090
	На 2026 г.	
Всего	-	70590,45
в том числе отходов производства	-	70590
отходов потребления	-	0,45
Опасные отходы		
Неопасные отходы		
ТБО (Смешанные коммунальные отходы)	-	0,45
Отходы от разработки не металлоносных полезных ископаемых (вскрышная	-	70590

порода)		
	На 2027 г.	
Всего	-	37050,45
в том числе отходов производства	-	37050
отходов потребления	-	0,45
Опасные отходы		
Неопасные отходы		
ТБО (Смешанные коммунальные отходы)	-	0,45
Отходы от разработки не металлоносных	-	37050
полезных ископаемых (вскрышная		
порода)		

Согласно п. 3, ст. 320 ЭК РК, накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

Согласно п. 4, ст. 320 ЭК РК, запрещается накопление отходов с превышением сроков, указанных в пункте 2 ст.320, и (или) с превышением установленных лимитов накопления отходов (для объектов I и II категорий).

6.3. Обоснование предельных объемов захоронения отходов по их видам

Согласно п.2, ст. 325 ЭК РК, захоронение отходов - складирование отходов в местах, специально установленных для их безопасного хранения в течение неограниченного срока, без намерения их изъятия.

Вскрышные породы. В соответствии с принятой в проекте системой разработки месторождения породы вскрыши будут доставляться автомобильным транспортом и складироваться в отвал вскрыши.

В соответствии со статьёй 359 Экологического Кодекса складирование и долгосрочное хранение отходов горнодобывающей промышленности для целей применения платы за негативное воздействие на окружающую среду приравниваются к захоронению отходов.

В соответствии с пунктом 4 статьи 323 Экологического Кодекса Под утилизацией отходов понимается процесс использования отходов в иных, помимо переработки, целях, в том числе в качестве вторичного энергетического ресурса для извлечения тепловой или электрической энергии, производства различных видов топлива, а также в качестве вторичного материального ресурса для целей строительства, заполнения (закладки, засыпки) выработанных пространств (пустот) в земле или недрах или в инженерных целях при создании или изменении ландшафтов.

Таким образом, размещение вскрышных пород во временном внешнем отвале является захоронением отходов, размещение вскрышных пород в отработанном пространстве карьера – утилизацией.

Лимиты захоронения отходов представлены в таблице 6.3.1.

Таблица 6.3.1.

Лимиты захопонения отхолов

Наименование отходов	Объем захороненных отходов на существующее положение, тонн/год	Образование, тонн/год	Лимит захоронения, тонн/год	Повторное использование переработка тонн/год	Передача сторонним организациям, тонн/год
1	2	3	4	5	6
		Ha 2023	-2024 гг.		
Всего	-	42900,45	42900	-	0,45
в том числе отходов производства	-	42900	42900	-	-
потребления	-	0,45	-	-	0,45
Опасные отходы	1	1	1		

Отчет о возможных воздействиях

Неопасные отход					
ТБО	(DI	0,45	_	_	0,45
(Смешанные		0,43	_	_	0,43
·					
коммунальные					
отходы)		42000	42000		
Отходы от	-	42900	42900	-	-
разработки не					
металлоносных					
полезных					
ископаемых					
(вскрышная					
порода)					
-	Т		25 год		L 0 4 5
Всего	-	51090,45	51090	-	0,45
в том числе	-	51090	51090	-	-
отходов					
производства					
потребления	-	0,45	-	-	0,45
			е отходы		
			ие отходы		
ТБО	-	0,45	-	-	0,45
(Смешанные					
коммунальные					
отходы)					
Отходы от	-	51090	51090	-	-
разработки не					
металлоносных					
полезных					
ископаемых					
(вскрышная					
порода)					
1 /		Ha 20	26 год		
Всего	-	70590,45	70590	-	0,45
в том числе	-	70590	70590	-	-
отходов					
производства					
потребления	_	0,45	-	-	0,45
no i peomenini	<u>I</u>		е отходы		·, ··
			ие отходы		
ТБО	_	0,45	- ·	_	0,45
(Смешанные		0,10			0,10
коммунальные					
отходы)					
Отходы от	_	70590	70590	-	_
	_	10370	10370	-	_
разработки не					
металлоносных					
полезных					
ископаемых					
(вскрышная					
порода)		TT AA	27		
Danna			27 год		0.45
Всего	-	37050,45	37050	-	0,45
в том числе	-	37050	37050	-	-
отходов					
производства					
потребления	-	0,45	-	-	0,45
			е отходы		
			ие отходы		,
ТБО	-	0,45	-	-	0,45

(Смешанные					
коммунальные					
отходы)					
Отходы от	-	37050	37050	-	-
разработки не					
металлоносных					
полезных					
ископаемых					
(вскрышная					
порода)					

6.4. Программа управления отходами

Согласно ст. 360 Экологического кодекса РК оператор объекта складирования отходов обязан разработать программу управления отходами горнодобывающей промышленности для минимизации образования, восстановления и удаления отходов.

Программа управления отходами горнодобывающей промышленности разрабатывается с учетом необходимости использования наилучших доступных техник в соответствии с информационно-техническими справочниками по наилучшим доступным техникам.

Целями программы управления отходами горнодобывающей промышленности являются:

- 1) предотвращение или снижение образования отходов и их опасности;
- 2) стимулирование восстановления отходов горнодобывающей промышленности путем переработки, повторного использования в тех случаях, когда это соответствует экологическим требованиям;
- 3) обеспечение безопасного в краткосрочной и долгосрочной перспективах удаления отходов, в частности путем выбора соответствующего варианта проектирования, который: предполагает минимальный уровень или отсутствие необходимости мониторинга, контроля закрытого объекта складирования отходов и управления им; направлен на предотвращение или снижение долгосрочных негативных последствий от захоронения отходов; обеспечивает долгосрочную геотехническую стабильность дамб и отвалов, выступающих над земной поверхностью.

Программа управления отходами горнодобывающей промышленности является неотъемлемой частью экологического разрешения и подлежит пересмотру каждые пять лет в случае существенных изменений в условиях эксплуатации объекта складирования отходов и (или) виде, характере складируемых отходов. Изменения подлежат утверждению уполномоченным органом в области охраны окружающей среды.

Программа управления отходами горнодобывающей промышленности разрабатывается в соответствии с принципом иерархии и должна содержать сведения об объеме и составе образуемых и (или) получаемых от третьих лиц отходов, способах их накопления, сбора, транспортировки, обезвреживания, восстановления и удаления, а также описание предлагаемых мер по сокращению образования отходов, увеличению доли их переработки и утилизации.

6.4.1. Рекомендации по обезвреживанию и утилизации отходов

Управление отходами и безопасное обращение с ними являются одним из основных пунктов стратегического экологического планирования и управления.

Обращение с отходами должно производиться в строгом соответствии с международными стандартами и действующими нормативами Республики Казахстан.

Для удовлетворения требований Республики Казахстан по недопущению загрязнения окружающей среды должна проводиться политика управления отходами, проводимая предприятием.

Она минимализирует риск для здоровья и безопасности работников и природной среды. Составной частью этой политики, кроме расчета и соблюдения нормативов предельно-допустимых выбросов (ПДВ), является система управления отходами, контролирующая безопасное размещение различных типов отходов.

Система управления отходами начинается на стадии разработки и согласования проектной документации для промышленного или иного объекта.

На стадии проектирования определяются виды отходов, образование которых возможно при эксплуатации проектируемого объекта, их количество, способ утилизации и захоронения отходов.

Для рационального управления отходами необходим строгий учет и контроль над всеми видами отходов, образующихся в процессе деятельности предприятия.

Управление отходами – это деятельность по планированию, реализации, мониторингу и анализу мероприятий по обращению с отходами производства и потребления.

Стратегическим планом развития Республики Казахстан до 2020 года, утвержденным Указом Президента Республики Казахстан от 1 февраля 2010 года № 922 указана необходимость оптимизации системы управления устойчивого развития и внедрения политики «зеленой» низкоуглеродной экономики, в том числе в вопросах привлечения инвестиций, решения экологических проблем, снижения негативного воздействия антропогенной нагрузки, комплексной переработки отходов.

В отношении отходов производства, в том числе опасных отходов, владельцами отходов в рамках действующего законодательства принимаются конкретные меры. С 2013 г. вводится новый инструмент управления, который доказал свою эффективность для решения проблемы сокращения отходов в развитых странах - программа управления отходами, предусматривающая мероприятия по сокращению образования и накопления отходов и увеличению утилизации и переработки отходов.

В отношении отходов потребления проблемой, отрицательно влияющей на экологическую обстановку, является увеличение объема образования и накопления твердых бытовых отходов, существующее состояние раздельного сбора, утилизации и переработки коммунальных отходов.

Порядок управления отходами производства на предприятии охватывает весь процесс образования отходов до использования, утилизации, уничтожения или передачи сторонним организациям, а также процедуру составления статистической отчетности, которая является обязательным приложением к отчету по производственному экологическому контролю.

Отходами при проведении работ будут являться твердо-бытовые отходы, вскрышная порода.

Для рационального управления отходами необходим строгий учет и контроль над всеми видами отходов, образующихся в процессе деятельности предприятия.

Этапы технологического цикла отходов - последовательность процессов обращения с конкретными отходами в период времени от их появления (на стадиях жизненного цикла продукции), паспортизации, сбора, сортировки, транспортирования, хранения (складирования), включая утилизацию и/или захоронение (уничтожение) отхода, до окончания их существования.

- Появление отходов имеет место в технологических и эксплуатационных процессах, а также от объектов в период их ликвидации (1-й этап).
- Сбор и/или накопление объектов и отходов (2-й этап) в установленных местах должны проводиться на территории владельца или другой санкционированной территории.

Сбор и временное накопление отходов будет производиться в специально отведённых местах, оборудованных контейнерами с плотно закрывающимися крышками.

- Идентификация объектов и отходов (3-йэтап) может быть визуальной и/или инструментальной по признакам, параметрам, показателям и требованиям, необходимым для подтверждения соответствия конкретного объекта или отхода его описанию.

Идентификация отходов будет производиться визуально, в связи с небольшим объёмом образования отходов.

- Сортировка (4-й этап). Разделение и/или смешение отходов согласно определенным критериям на качественно различающиеся составляющие. При необходимости проводят работы по первичному обезвреживанию объектов и отходов.

Смешивание отходов, образующихся на участке работ не предусматривается.

Компонентный состав отходов принят согласно МУ «Методика разработки проектов

Сразу после образования отходов они сортируются по видам и складируются в контейнеры с плотно закрывающимися крышками, раздельно по видам.

Существует несколько приемов организации сортировки мусорных отходов.

Сортировка твердых бытовых отходов происходит следующим образом:

На территории устанавливаются контейнеры. Контейнеры оборудованы крышками с отверстиями. В каждый выбрасывается определенный материал: стеклотара, пластик, пищевые отходы, макулатура, текстильные изделия.

- При паспортизации объектов и отходов (5-й этап) заполняют паспорта и регистрируют каталожные описания в соответствии с принятыми формами.

Согласно п.3 ст.343 Экологического кодекса РК Паспорт опасных отходов представляется в уполномоченный орган в области охраны окружающей среды в течение трех месяцев с момента

образования отходов.

- Упаковка объектов и отходов (6-й этап) состоит в обеспечении установленными методами и средствами (с помощью укладки в тару или другие емкости, пакетированием, брикетированием с нанесением соответствующей маркировки) целостности и сохранности объектов и отходов в период их сортировки, погрузки, транспортирования, складирования, хранения в установленных местах.

6.5. Особенности загрязнения территории отходами производства и потребления

В процессе производственной и жизнедеятельности человека образуются различные виды отходов производства и потребления, которые могут стать потенциальными источниками вредного воздействия на окружающую среду.

Для обеспечения нормального санитарного содержания территории особую актуальность приобретают вопросы сбора, временного складирования, транспортировки и захоронения отходов производства и потребления.

В результате накопления отходов нарушается природное равновесие, потому что природные процессы воспроизводства не способны самостоятельно справиться с накопленными и качественно измененными отходами.

На период проведения работ должны предусматриваться мероприятия по предотвращению и смягчению негативного воздействия отходов на окружающую среду:

- подрядчик несет ответственность за сбор и утилизацию отходов, а также за соблюдение всех норм и требований РК в области ТБ и ООС;
- все отходы, образованные при проведении работ, должны идентифицироваться по типу, объему, раздельно собираться и храниться на спецплощадках и в спецконтейнерах;
- по мере накопления будет осуществляться сбор мусора и остатков всех видов отходов, а также вывоз контейнеров с ними для утилизации в согласованные места по договору с соответствующими организациями;
 - в процессе проведения работ налажен контроль над выполнением требований ООС.

Правильная организация хранения, удаления отходов максимально предотвращает загрязнение окружающей среды. Это предполагает исключение, изменение или сокращение видов работ, приводящих к загрязнению отходами почвы, атмосферы или водной среды.

Планирование операций по снижению количества отходов, их повторному использованию, утилизации, регенерации создают возможность минимизации воздействия на компоненты окружающей среды.

С целью снижения негативного влияния образующихся отходов на окружающую среду организован их сбор и временное хранение в специально отведенных местах, оснащенных специальной тарой (контейнеры для временного сбора и хранения).

Транспортировка отходов проводится на полигон ТБО и по договору со специализированными организациями.

При соблюдении всех мероприятий образование и складирование отходов будет безопасным, и воздействие на окружающую среду будет незначительным.

7. Информация об определении вероятности возникновения аварий и опасных природных явлений, характерных соответственно для намечаемой деятельности и предполагаемого места ее осуществления, описание возможных существенных вредных воздействий на окружающую среду, связанных с рисками возникновения аварий и опасных природных явлений, с учетом возможности проведения мероприятий по их предотвращению и ликвидации

7.1. Вероятность возникновения отклонений, аварий и инцидентов в ходе намечаемой деятельности

Вероятность возникновения стихийных бедствий в предполагаемом месте осуществления намечаемой деятельности и вокруг него.

Вероятность возникновения неблагоприятных последствий в результате аварий, инцидентов, природных стихийных бедствий в предполагаемом месте осуществления намечаемой деятельности и вокруг него.

Планом горных работ предусматриваются технические и проектные решения, обеспечивающие высокую надежность и экологическую безопасность производства.

Однако, даже при выполнении всех требований безопасности и высокой подготовленности персонала потенциально могут возникать аварийные ситуации, приводящие к негативному воздействию на окружающую среду. Анализ таких ситуаций не должен рассматриваться как фактический прогноз наступления рассматриваемых ситуаций.

Одной из главных проблем оценки экологического риска является правильное прогнозирование возникновения и развития непредвиденных обстоятельств, заблаговременное их предупреждение. Очень важно разработать меры по локализации аварийных ситуаций с целью сужения зоны разрушений, оказания своевременной помощи.

Осуществление производственной программы проведения работ требует оценки экологического риска как функции вероятного события.

Оценка вероятности возникновения аварийных ситуаций используется для определения или оценки следующих явлений:

- потенциальные события или опасности, которые могут привести к аварийным ситуациям, а также к вероятным катастрофическим воздействиям на окружающую среду при осуществлении конкретного проекта;
 - вероятность и возможность наступления такого события;
- потенциальная величина или масштаб экологических последствий, которые могут быть причинены в случае наступления такого события.

Потенциальные опасности, связанные с риском проведения работ могут возникнуть в результате воздействия, как природных, так и антропогенных факторов.

Чрезвычайные ситуации, возможные на территории Республики, их характеристика и последствия.

Для Республики Казахстан характерны практически все виды чрезвычайных ситуаций природного и техногенного характера, за исключением таких ЧС, как цунами, тайфуны и др., связанные с катастрофическими явлениями океанов.

Чрезвычайные ситуации наносят экономике страны значительный материальный ущерб, влекут гибель людей.

Криминогенная и террористическая обстановка района деятельности, по состоянию на на момент проектирования, не вызывает значительных опасений и не угрожает осуществлению намеченных планов. В случае ухудшения данной обстановки, необходимые меры должны приниматься государственными правоохранительными органами в соответствии с действующим законодательством.

Вероятность возникновения стихийных бедствий

Вероятность возникновения стихийных бедствий в предполагаемом месте осуществления намечаемой деятельности и вокруг него обусловлена воздействием природных факторов.

Под природными факторами понимаются разрушительные явления, вызванные природноклиматическими условиями, которые не контролируются человеком. При возникновении природной

чрезвычайной ситуации возникает опасность саморазрушения окружающей среды. За последние 20 лет стихийные бедствия унесли более 3 млн. человеческих жизней.

Чрезвычайные ситуации природного характера — чрезвычайные ситуации, вызванные стихийными бедствиями (землетрясениями, селями, лавинами, наводнениями и другими), природными пожарами, эпидемиями и эпизоотиями, поражениями сельскохозяйственных растений и лесов болезнями и вредителями.

Стихийные действия сил природы, не в полной мере подвластны человеку, вызывают экстремальные ситуации, нарушают нормальную жизнедеятельность людей и работу объектов.

Это опасные природные явления, стихийные события и бедствия природного происхождения, которые по своей интенсивности, масштабам распространения и продолжительности могут вызвать отрицательные последствия для жизнедеятельности людей, экономики и природной среды, привести к многочисленным человеческим жертвам, нанести значительный материальный ущерб и другие тяжелые последствия.

К чрезвычайным ситуациям природного характера относятся:

- геофизические опасные явления (землетрясения);
- геологические опасные явления (оползни, сели, лавины, обвалы);
- метеорологические и агрометеорологические опасные явления (ураганы, смерчи, засуха, сильные морозы и др.);
 - гидрологические опасные явления (наводнения, паводки и др.);
 - природные пожары;
 - эпидемии.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении о риске, связанном с природными факторами.

Неблагоприятные метеоусловия

В результате неблагоприятных метеоусловий, таких как сильные ураганные ветры, повышенные атмосферные осадки, могут произойти частичные повреждения оборудования, кабельных линий электричества (ЛЭП).

Анализ ранее представленных природно-климатических данных показал, что для летнего периода работ характерна вероятность возникновения пожароопасных ситуаций, в связи с засушливым типом климата. Кроме того, данные аварийные ситуации могут возникнуть при неосторожном обращении персонала с огнем и нарушением правил техники безопасности. Характер воздействия: кратковременный.

Месторождение по категории опасности природных процессов относится к простой сложности и к умеренно опасным факторам по подтоплению территории. Сейсмичность территории расположения объекта - не сейсмоопасная. Исключены опасные явления экзогенного характера типа селей, лавин и др.

Вероятность возникновения данных чрезвычайных ситуаций незначительная.

Вероятность возникновения аварий

Авария — это разрушение зданий, сооружений и (или) технических устройств, применяемых на опасном производственном объекте, неконтролируемые взрыв и (или) выброс опасных веществ (Закон Республики Казахстан «О промышленной безопасности на опасных производственных объектах» от 3 апреля 2002 года N 314).

При выполнении вскрышных и добычных работ и транспортировке вскрыши и полезного ископаемого основными опасными производственными факторами являются:

- оползневые явления и обрушение бортов;
- попадание в карьер подземных и паводковых вод.

Горнотехнические условия отработки достаточно простые.

Горно-геологические условия месторождения позволяют вести отработку запасов открытым способом.

Основными причинами возникновения возможных аварийных ситуаций и инцидентов в общем случае могут быть неконтролируемое отказы технологического оборудования. Последние могут возникнуть из-за заводских дефектов, коррозии, физического износа.

При добычных работах причинами аварийных ситуаций могут являться:

- обрушение бортов разреза;
- оползни;
- запыленность и загазованность воздуха рабочей зоны;
- затопление карьера паводковыми водами;
- ошибка обслуживающего персонала;
- разрушение конструкций грузоподъемных механизмов;
- завышение проектных откосов бортов разреза;
- неисправность электрооборудования экскаватора;
- заезд машин в зону сдвижения бортов разреза, отвала;
- ошибочные действия персонала несоблюдение требований правил безопасности;
- неправильная оценка возникшей ситуации;
- неудовлетворительная организация эксплуатации оборудования;
- некачественный ремонт;
- дефекты монтажа;
- заводские дефекты;
- ошибки проектирования;
- незнание технических характеристик оборудования;
- несвоевременное проведение ремонтов, обслуживания и освидетельствования оборудования;
 - неисправность топливной системы технологического транспорта;
 - загорание автомобиля из-за неисправности его узлов, курения.

При эксплуатации и ремонте горнотранспортного оборудования возможные причины возникновения и развития аварий и инцидентов:

- ошибка обслуживающего персонала;
- разрушение конструкций грузоподъемных механизмов;
- пожароопасность;
- запыленность и загазованность воздуха рабочей зоны;
- выход из строя вращающих частей механизмов;
- нарушение техники безопасности и технологии ведения работ;
- погодные условия;
- ошибки в управлении технологическим процессом, а также при подготовке оборудования к ремонту.

7.2. Все возможные неблагоприятные последствия для окружающей среды, которые могут возникнуть в результате инцидента, аварии, стихийного природного явления

Карьер расположен на значительном расстоянии от потенциально опасных объектов.

Неблагоприятным последствиями вышеперечисленных аварий могут являться:

- нарушение земель, возникновение эрозионных процессов;
- загрязнение земель нефтепродуктами;
- загрязнение атмосферного воздуха;
- подтопление территорий, загрязнение подземных вод.

Масштабы неблагоприятных последствий

Масштабы неблагоприятных последствий в результате аварий, будут ограничены территорией карьера, или в худшем варианте его санитарно-защитной зоны.

Неблагоприятные последствия для жилой зоны не прогнозируются.

7.3. Меры по предотвращению последствий инцидентов, аварий, природных стихийных бедствий, включая оповещение населения, и оценка их надежности

Основными мерами по предупреждению аварийных ситуаций является строгое соблюдение технологической и производственной дисциплины, выполнение проектных решений и оперативный контроль.

Техника безопасности и охрана труда

Для обеспечения безопасности ведения работ, охраны труда, предотвращения пожаров и

улучшения общей культуры производства, на карьере необходимо предусмотреть следующие организационно-технические мероприятия:

- постоянный контроль за выполнением правил ведения горных работ, за углами откоса уступа, за высотой, за размерами рабочих площадок;
 - содержание в надлежащем порядке горно-технического оборудования и дорог.

Дороги должны иметь гравийно-щебнистое покрытие и поливаться водой с целью подавления пыли;

- оборудование помещений для приема пищи, смены спецодежды, по технике безопасности;
- снабжение рабочих кипяченой водой;
- установление пожарных щитов с годными углекислотными и пенными огнетушителями, ящики с песком, простейший противопожарный инвентарь в необходимых количествах;
- популяризация среди рабочих правил безопасности посредством распространения спецброшюр, плакатов, обучение приемам тушения пожаров;
- принятие мер для создания безопасности работ, следить за исполнением положений инструкций, правил по технике безопасности и охране труда. В связи с этим запрещается допуск к работе лиц, не прошедших предварительного обучения. Повторный инструктаж по технике безопасности должен проводиться не реже двух раз в год с его регистрацией в специальной книге. В помещении на рабочих местах должны вывешиваться плакаты, предупредительные надписи, а в машинных помещениях инструкции по технике безопасности;
- осуществление контроля за состоянием оборудования, за своевременной его остановкой в целях профилактических и планово-предупредительных ремонтов. Для этого следует составить график и утвердить его техническим руководством;
- установление тщательного наблюдения за поведением пород в бортах карьера, за предупреждением возможных обвалов, за состоянием внутрикарьерных подъездов и рабочих площадок;
- разработка, исходя из местных условий, действующих правил распорядка, памяток и инструкций по технике безопасности для всех профессий горнорабочих, с выдачей каждому из них под расписку и с вывешиванием на рабочих местах;
- обеспечение карьера комплектом технических средств по контролю и управлению технологическими процессами и безопасностью ведения работ.

Помимо упомянутых мер должен ежегодно разрабатываться план мероприятий по общему улучшению условий труда, предупреждению несчастных случаев, внедрению передовой технологии и автоматизации производственных процессов.

Сведения о мероприятиях по предупреждению, локализации и ликвидации последствий аварий на объекте

В целях обеспечения готовности к действиям по локализации и ликвидации последствий аварий организации, имеющие опасные производственные объекты, обязаны:

- планировать и осуществлять мероприятия по локализации и ликвидации последствий аварий на опасных производственных объектах;
- привлекать к профилактическим работам по предупреждению аварий на опасных производственных объектах, локализации и ликвидации их последствий военизированные аварийно-спасательные службы и формирования;
- иметь резервы материальных и финансовых ресурсов для локализации и ликвидации последствий аварий;
- обучать работников методам защиты и действиям в случае аварии на опасных производственных объектах;
- создавать системы наблюдения, оповещения, связи и поддержки действий в случае аварии на опасных производственных объектах и обеспечивать их устойчивое функционирование.

Инженерно-технические мероприятия Гражданской обороны

Гражданская оборона Республики Казахстан является составной частью общегосударственных оборонных мероприятий и предназначена для осуществления мероприятий по защите персонала и объекта от последствий применения агрессором современных средств поражения.

Несмотря на представленные Республике Казахстан гарантии безопасности не исключается вероятность возникновения межгосударственных конфликтов с применением силы и использованием современных средств поражения.

Главной задачей ГО является защита персонала, объектов хозяйствования и территории региона от поражающих факторов современных средств поражения.

Гражданская оборона объекта должна быть организована и подготовлена к действиям в мирное время и к переводу на военное положение в кратчайшие сроки.

Силы ГО предназначены для проведения комплекса предупредительных мер, спасательных и других неотложных работ при ликвидации последствий применения современных средств поражения и ЧС природного и техногенного характера.

Инженерно-технические мероприятия Гражданской обороны разрабатываются и проводятся заблаговременно.

К общим требованиям ИТМ ГО в зависимости от степени категорирования городов и объектов хозяйствования относятся:

- обеспечение защиты персонала производственных цехов от современных средств поражения, а также последствий аварий, катастроф и стихийных бедствий;
 - повышение пожарной безопасности на объектах;
 - организация резервного снабжения электроэнергией, водой;
 - защита объектов водоснабжения от средств заражения;
 - подготовка к проведению светомаскировки объектов и другие.

Требования ИТМ ГО обязательны для выполнения при проведении инженерно-технических мероприятий Гражданской обороны на всей территории Республики Казахстан.

Защита рабочих и служащих

В современных условиях защита рабочих и служащих осуществляется путем проведения комплекса мероприятий, включающих три способа защиты:

- 1. Укрытие людей в защитных сооружениях.
- 2. Рассредоточение и эвакуацию.
- 3. Обеспечение индивидуальными средствами защиты.

В случае внезапного нападения противника или других чрезвычайных ситуациях рабочие и служащие предприятия будут рассредоточены и эвакуированы за пределы зон возможных разрушений с помощью имеющего транспорта.

Рассредоточение и эвакуация проводится по распоряжению правительства. Штаб ГО получает это распоряжение установленным порядком. Получив распоряжение о проведении рассредоточения и эвакуации штаб ГО:

- уточняет численность рабочих и служащих;
- оповещают и организуют сбор;
- помогают местным органам в районах рассредоточения и эвакуации размещать прибывающий персонал.

В случае образования какого-либо заражения штаб ГО устанавливает соответствующий режим поведения персонала в зависимости от обстановки.

Для защиты от радиоктивных и отравляющих веществ, при объявлении угрозынападения, рабочие и служащие обеспечиваются средствами индивидуальными защиты.

При чрезвычайных ситуациях на предприятии основными видами связи являются сети телефонизации, сеть радиотрансляционная, радиосвязи, аварийной и пожарной сигнализации.

Мероприятия по предупреждению чрезвычайных ситуаций

Инженерно-технические мероприятия гражданской обороны (ИТМ ГО) и мероприятия по предупреждению чрезвычайных ситуаций (ЧС) является частью проекта строительства и, вследствие этого, обязательным официальным документом для осуществления строительства и производственной деятельности любого потенциально опасного объекта.

Инженерно-технические мероприятия Гражданской обороны разрабатываются и проводятся заблаговременно.

Требования ИТМ ГО обязательны для выполнения при проведении инженерно-технических мероприятий Гражданской обороны на всей территории Республики Казахстан.

Основными задачами ИТМ ГО ЧС являются разработка комплекса организационнотехнических мероприятий, направленных на обеспечение защиты территорий, производственного персонала от опасностей, возникающих при ведении военных действий или диверсий, предупреждение ЧС техногенного и природного характера, уменьшение масштабов их последствий. ИТМ ГО ЧС предназначены также для информирования органов управления по делам гражданской обороны и чрезвычайным ситуациям при органах исполнительной власти субъектов Республики Казахстан о потенциально опасном производственном объекте в целях организации ими контроля за соблюдением мер безопасности, оценки достаточности и эффективности мероприятий по предупреждению и ликвидации чрезвычайных ситуаций на предприятии, производственная деятельность которого представляет потенциальную опасность лля собственного производственного персонала.

В состав таких мероприятиймогут входить:

- проектные решения по созданию на проектируемом потенциально опасном объекте необходимых сооружений и сетей инженерного обеспечения, предназначенных для осуществления производственных процессов в нормальных и чрезвычайных условиях, а также для локализаций и ликвидации чрезвычайных ситуаций;
- инженерные и организационно-технические мероприятия по созданию на предприятии необходимых запасов средств индивидуальной защиты;
 - проектные решения по укрытию персонала в защитных сооружениях;
- проектные решения и организационно-технические мероприятия по созданию и безотказному функционированию системы оповещения об авариях и ЧС;
- организационно-технические мероприятия по созданию материальных средств для ликвидации последствий аварий и ЧС;
- организационно-технические мероприятия по обеспечению беспрепятственной эвакуации людей с территории предприятия;
- организационно-технические мероприятия по обеспечению беспре-пятственного ввода и передвижения по территории потенциально опасного объекта сил и средств для локализации и ликвидации аварий и ЧС;
- организационно-технические мероприятия по предотвращению постороннего вмешательства в производственную деятельность проектируемого объекта;

Кроме вышеперечисленных мероприятий ИТМ ГО ЧС включает в себя также:

- общие положения в области защиты персонала и территорий от чрезвычайных ситуаций;
- -сведения о промышленном объекте и районе его строительства;
- сведения об опасных веществах, обращающихся на промышленном объекте;
- ссылки на законодательные, директивные, нормативные и методические документы;
- список использованных источников информации.

Месторождение по категории опасности природных процессов относится к простой сложности. Исключены опасные явления экзогенного характера типа селей, лавин и др.

Месторождение расположено на значительном расстоянии от потенциально опасных объектов (ППО) и каких-либо транспортных коммуникаций. При отработке месторождения возможно развитие оползней по бортам карьера, для чего проектом предусматривается проведение осушительных мероприятий.

Размещение зданий и сооружений карьера на генплане, автомобильные въезды и проезды по территории комплекса выполнены с учетом нормального обслуживания объектов в случае возникновения чрезвычайных ситуаций.

Объемно-планировочные решения зданий и сооружений комплекса и огнестойкость строительных конструкций должны быть приняты с учетом требований противопожарных норм. Из всех помещений, зданий имеется нормируемое количество эвакуационных выходов. Все здания, в том числе на перепадах высот, обеспечены пожарными лестницами.

Здания и сооружения, автомобильные проезды должны быть выполнены с учетом нормального обслуживания объектов на случай чрезвычайных ситуаций. Ширина проездов, уклон дорог позволяют в любое время года беспрепятственно и оперативно эвакуировать производственный персонал и ввести силы, средства по ликвидации ЧС.

Все технологические параметры карьера, автомобильных дорог должны быть выполнены в соответствии с нормами проектирования.

7.5. Профилактика, мониторинг и ранее предупреждение инцидентов аварий, их последствий, а также последствий взаимодействия намечаемой деятельности со стихийными природными явлениями

Для определения и предотвращения экологического риска необходимы:

- -разработка специализированного плана аварийного реагирования по ограничению, ликвидации и устранению последствий возможных аварий;
- -проведение исследований по различным сценариям развития аварийных ситуаций на различных производственных объектах;
 - -обеспечение готовности систем извещения об аварийной ситуации;
- -обеспечение объекта оборудованием и транспортными средствами по ограничению очага ликвидации аварии;
 - -обеспечение безопасности используемого оборудования;
- -использование системы пожарной защиты, которая позволит осуществить современную доставку надлежащих материалов и оборудования, а также привлечение к работе необходимого персонала для устранения очага возникшего пожара на любом участке предприятия;
 - -оказание первой медицинской помощи;
- -обеспечение готовности обслуживающего персонала и технических средств к организованным действиям при аварийных ситуациях и предварительное планирование их действий.

Деятельность организаций и граждан, связанная с риском возникновения чрезвычайных ситуаций, подлежит обязательному страхованию.

Организации, независимо от форм собственности и ведомственной принадлежности, представляют отчетность об авариях, бедствиях и катастрофах, приведших к возникновению чрезвычайных ситуаций, а специально уполномоченные государственные органы осуществляют государственный учет чрезвычайных ситуаций природного и техногенного характера.

Ответственность за нарушение законодательства в области чрезвычайных ситуаций природного и техногенного характера.

Расследование аварий, бедствий катастроф, приведших к возникновению чрезвычайных ситуаций природного и техногенного характера.

Аварии, бедствия и катастрофы, приведшие к возникновению чрезвычайных ситуаций природного и техногенного характера, подлежат расследованию в порядке, установленном Правительством Республики Казахстан.

В случае выявления противоправных действий или бездействий должностных лиц и граждан материалы расследования подлежат передаче в соответствующие органы для привлечения виновных к ответственности.

Должностные лица и граждане, виновные в невыполнение или недобросовестном выполнение установленных нормативов, стандартов и правил, создании условий и предпосылок возникновению аварий, бедствий и катастроф, неприятие мер по защите населения, окружающей среды и объектов хозяйствования от чрезвычайных ситуаций природного и техногенного характера и других противоправных действий, несут дисциплинарную, административную, имущественную уголовную ответственность, а организации - имущественную ответственность в соответствии с законодательством Республики Казахстан.

Возмещение ущерба, причиненного вследствие области чрезвычайных ситуаций природного и техногенного характера.

Ущерб, причиненный здоровью граждан вследствие чрезвычайных ситуаций техногенного характера, подлежит возмещению за счет юридических и физических лиц, являющихся ответственными за причиненный ущерб. Ущерб возмещается в полном объеме с учетом степени потери трудоспособности потерпевшего, затрат на его лечение, восстановление здоровья, ухода за больным, назначенных единовременных государственных пособий в соответствии с законодательством Республики Казахстан.

Организации и граждане вправе требовать от указанных лиц полного возмещения имущественных убытков в связи с причинением ущерба их здоровью и имуществу, смертью из-за чрезвычайных ситуаций техногенного характера, вызванных деятельностью организаций и граждан, а также возмещения расходов организациям, независимо от их формы собственности, частным

лицам, участвующим в аварийно-спасательных работах и ликвидации последствий чрезвычайных ситуаций.

Возмещение ущерба, причиненного вследствие чрезвычайных ситуаций природного характера здоровью и имуществу граждан, окружающей среде и объектам хозяйствования, производится в соответствии с законодательством Республики Казахстан.

Организации и граждане, по вине которых возникли чрезвычайные ситуации техногенного характера, обязаны возместить причиненный ущерб земле, воде, растительному и животному миру (территории), включая затраты на рекультивацию земель и по восстановлению естественного плодородия земли.

При ликвидации чрезвычайных ситуаций природного и техногенного характера немедленно вводится в действие служба экстренной медицинской помощи, а при недостаточности, включаются медицинские силы и средства министерств, государственных комитетов, центральных исполнительных органов, не входящих в состав Правительства и организаций.

Организации обязаны вести плановую подготовку рабочих и служащих, с целью дать каждому обучаемому определенный объем знаний и практических навыков по действиям и способам защиты в чрезвычайных ситуациях. Подготовка включает проведение регулярных занятий, учебных тревог и т. д.

При соблюдении перечисленных требований, в процессе выполнения работ по реализации проектных решений, вероятность возникновения аварийных ситуаций крайне мала. Воздействие оценивается как допустимое.

8. Описание предусматриваемых для периодов строительства и эксплуатации объекта мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду, в том числе предлагаемых мероприятий по управлению отходами, а также при наличии неопределенности в оценке возможных существенных воздействий - предлагаемых мер по мониторингувоздействий (включая необходимость проведения послепроектного анализафактических воздействий в ходе реализации намечаемой деятельности в сравнении с информацией, приведенной в отчете о возможных воздействиях)

Предусматриваемые меры направлены на предупреждение и минимизацию отрицательных воздействий на окружающую среду в строительный период за счет рациональной схемы организации работ.

Четкое выполнение проектных и технологических решений в период строительства будет гарантировать максимальное сохранение окружающей среды не только в период строительства, но и в период эксплуатации объекта.

Основные мероприятия, обеспечивающие соблюдение природоохранных требований могут организационным, планировочным техническим быть И Организационные и планировочные мероприятия обеспечивают безопасное для персонала выполнение работ и минимизацию воздействия на окружающую среду. Технические или мероприятия предусматривают выполнение специальных специальные мероприятий, предусматриваемых непосредственное снижение уровня воздействия объектов на окружающую среду.

С целью охраны окружающей среды и обеспечения нормальных условий работы обслуживающего персонала приняты меры по уменьшению выбросов загрязняющих веществ.

В период добычных работ, учитывая, что основными источниками загрязнения атмосферы являются техника и автотранспорт.

Основными мерами по снижению выбросов загрязняющих веществ будут следующие:

- строгое соблюдение технологического регламента работы техники;
- своевременное и качественное ремонтно-техническое обслуживание автотранспорта и спецтехники;
 - организация движения транспорта;
 - сокращение до минимума работы двигателей транспортных средств на холостом ходу;
 - для снижения пыления ограничение по скорости движения транспорта;
 - увлажнение пылящих материалов перед транспортировкой;
 - использование качественного дизельного топлива для заправки техники и автотранспорта.

После окончания работ на свободной от асфальта и покрытий территории предусмотрена посадка зеленых насаждений.

Для снижения запыленности воздуха при проведении добычных работ предусматривается пылеподавление.

Увеличение площадей зеленых насаждений на территории предприятия и границе C33, уход и содержание древесно-кустарниковых насаждений.

ТБО сортировка согласно морфологического состава (48%) от общей массы, заключение договоров для дальнейшей передачи сторонним организациям на утилизацию или переработку вторичного сырья.

Проведение производственного экологического контроля путем мониторингового исследования за состоянием атмосферного воздуха на организованных источниках и границе СЗЗ.

9. Меры по сохранению и компенсации потери биоразнообразия, предусмотренные пунктом 2 статьи 240 и пунктом 2 статьи 241 Кодекса

Воздействие проведения сейсморазведочных работ на биоразнообразие окажет минимальное воздействие при выполнении следующих мероприятий:

- упорядочить дорожную сеть, обустроить подъездные пути к площадке работ;
- недопустимо движение автотранспорта и выполнение работ, за пределами отведенных площадок и обустроенных дорог;
 - повсеместно на рабочих местах необходимо соблюдать технику безопасности.

На территории проведения работ представители животного мира отсутствуют. Снос деревьев не предусмотрен. В связи с этим, угроза потери биоразнообразия на территории проектируемого объекта отсутствует, и соответственно компенсация по их потере не требуется.

Рекомендуется провести инструктаж персонала о бережном отношении к природе, указать места, где работы должны быть проведены с особой тщательностью и осторожностью.

10. Оценка возможных необратимых воздействий на окружающую среду и обоснование необходимости выполнения операций, влекущих такие воздействия, в том числе сравнительный анализ потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери, в экологическом, культурном, экономическом и социальном контекстах

Необратимых воздействий на окружающую среду при осуществлении производственной деятельности происходить не будет. Производственная деятельность осуществляется в границах территории площадки. Деятельность не требует дальнейшего нарушения целостности почв, использования животного и растительного мира, выбросы будут осуществляться в пределах нормирования с ежеквартальным мониторингом, сброс сточных вод запроектирован в передвижной биотуалет.

11. Цели, масштабы и сроки проведения послепроектного анализа, требования к его содержанию, сроки представления отчетов о послепроектном анализе уполномоченному органу

На основании ст. 78 Экологического кодекса РК от 02.01.2021 г. послепроектный анализ фактических воздействий при реализации намечаемой деятельности (далее - послепроектный анализ) проводится составителем отчета о возможных воздействиях в целях подтверждения соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

Послепроектный анализ должен быть начат не ранее чем через двенадцать месяцев и завершен не позднее чем через восемнадцать месяцев после начала эксплуатации соответствующего объекта, оказывающего негативное воздействие на окружающую среду.

Порядок проведения послепроектного анализа и форма заключения по результатам после проектного анализа определяются и утверждаются уполномоченным органом в области охраны окружающей среды.

Согласно характеристике возможных форм воздействия на окружающую среду, их характеру и ожидаемых масштабах для оценки экологических последствий намечаемой деятельности был использован матричный анализ. На основе «Методических указаний по проведению оценки воздействия хозяйственной деятельности на окружающую среду» (Приказ МООС РК №270-О от 29.10.10 года) предложена унифицированная шкала оценки воздействия на окружающую среду с использованием трех основных показателей: пространственный масштаб воздействия, временной масштаб воздействия и величины (степени интенсивности).

Таким образом, проведение послепроектного анализа фактических воздействий при реализации намечаемой деятельности не требуется.

12. Способы и меры восстановления окружающей среды на случаипрекращения намечаемой деятельности, определенные на начальной стадии ее осуществления

В случае принятия решения о прекращении намечаемой деятельности на начальной стадииее осуществления, оператором будет разработан план ликвидации последствий производственной деятельности на основании «Инструкции по составлению плана ликвидации», утвержденной приказом №386 от 24.05.2018 г.

При планировании ликвидационных мероприятий выделены следующие критерии:

- приведение нарушенного участка в состояние, безопасное для населения и животного мира;
- приведение земель в состояние, пригодное для восстановления почвенно-растительного покрова;
 - улучшение микроклимата на восстановленной территории;
- нейтрализация отрицательного воздействия нарушенной территории на окружающую среду и здоровье человека.

13. Описание методологии исследований и сведения об источниках экологической информации, использованной при составлении отчета о возможных возлействиях

- 1. Экологический Кодекс РК от 2 января 2021 года № 400-VI 3PK.
- 2. "Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека" Утверждены приказом Исполняющий обязанности Министра здравоохранения Республики Казахстан от 11 января 2022 года № КР ДСМ-2.
- 3. Инструкции по организации и проведению экологической оценки Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280
- 4. Методика определения удельных выбросов вредных веществ в атмосферу и ущерба отвида используемого топлива РК. РНД 211.3.02.01-97.
- 5. «Сборник методик по расчету выбросов загрязняющих веществ от различных производств», Алматы 1996;
- 6. Методика расчетов выбросов в окружающую среду от неорганизованных источников;
- 7. Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов.

TOO «Мир Проект» 98

14. Описание трудностей, возникших при проведении исследований исвязанных с отсутствием технических возможностей и недостаточным уровнем современных научных знаний

В ходе разработки настоящего Отчёта трудностей, возникших при проведении исследований и связанных с отсутствием технических возможностей и недостаточным уровнем современных научных знаний не возникло.

Приложение 1

Лицензия на выполнение работ

21030714

лицензия

<u>29.10.2021 года</u> <u>02324Р</u>

Выдана Товарищество с ограниченной ответственностью "Мир Проект"

030000, Республика Казахстан, Актюбинская область, Актобе Γ .А., Γ .Актобе,

улица Маресьева, дом № 103А

БИН: 030940004822

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом

Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

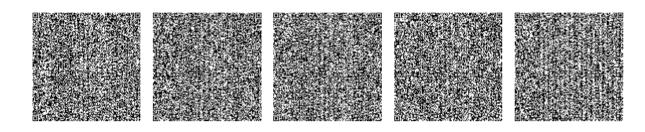
(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

Примечание Неотчуждаемая, класс 1

(отчуждаемость, класс разрешения)

Лицензиар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов

Республики Казахстан.


(полное наименование лицензиара)

Руководитель Абдуалиев Айдар Сейсенбекович (уполномоченное лицо) (фамилия, имя, отчество (в случае наличия)

Дата первичной выдачи

Срок действия лицензии

Место выдачи <u>г.Нур-Султан</u>

21030714 Страница 1 из 2

приложение к лицензии

Номер лицензии 02324Р

Дата выдачи лицензии 29.10.2021 год

Подвид(ы) лицензируемого вида деятельности

 Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиат Товарищество с ограниченной ответственностью "Мир Проект"

030000, Республика Казахстан, Актюбинская область, Актобе Г.А., г.Актобе, улица Маресьева, дом № 103A, БИН: 030940004822

(полное наименование, местонажождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Производственная база город Актобе, пр. Абилкайыр-хана, 44/3, 7 этаж, 7 кабинет

(местонахождение)

Особые условия действия лицензии

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

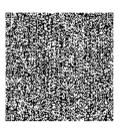
Лицензиар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства экологии,

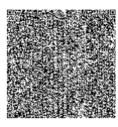
геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов Республики Казахстан.

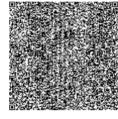
(полное наименование органа, выдавшего приложение к лицензии)

Руководитель Абдуалиев Айдар Сейсенбекович

(уполномоченное лицо) (фамилия, имя, отчество (в случае наличия)


Номер приложения 001


Срок действия


•

Дата выдачи приложения 29.10.2021

Место выдачи г. Нур-Султан

