1.6

0,40

0,01

где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта, C_2 - коэффициент, учитывающий среднюю скорость передвижения транспорта 2,00 (при 20 км/ч) С₃ - коэффициент, учитывающий состояние дорог, 1,0 C_4 - коэф., учитывающий профиль поверхности материала на платформе $C_5\,$ - коэффициент, учитывающий скорость обдува материала, ${\rm C}_{\rm 6}$ - коэффициент, учитывающий влажность верхнего слоя материала, C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу, N - число ходок (туда и обратно) всего транспорта в час, L - средняя протяженность одной ходки, 18,0 КМ 1450 $q_{1}\,\text{-}\,$ пылевыделение на 1 км пробега , г/км q₂ - пылевыделение с факт. поверхности материала на платформе,

 $0.002 \quad \Gamma/M^2$

1,5

2,0

F - средняя площадь платформы, 14 м^2 п - число работающих автомашин , 2 шт.

Т - режим работы автотранспорта,

273 ч/год

Итого от транспортировки скального грунта:

Цанианаранна загр и анијаннага ранкастра	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % ${ m SiO_2}$	0,2742	0,26950

Выгрузка скального грунта (ист. 6073)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$egin{align*} \mathbf{M}_{\mathrm{cer}} = \mathbf{k}_1 imes \mathbf{k}_2 imes \mathbf{k}_3 imes \mathbf{k}_4 imes \mathbf{k}_5 imes \mathbf{k}_7 imes \mathbf{B} ` imes \mathbf{G}_{\mathrm{vac}} imes \mathbf{10}^6 \ / \ 3600, \ \mathrm{r/cer} \ \\ \mathbf{M}_{\mathrm{roa}} = \mathbf{k}_1 imes \mathbf{k}_2 imes \mathbf{k}_3 imes \mathbf{k}_4 imes \mathbf{k}_5 imes \mathbf{k}_7 imes \mathbf{B} ` imes \mathbf{G}_{\mathrm{roa}}, \ \mathrm{r/rod} \ \end{split}$$

\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,03
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
${\bf k}_3$ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
${\bf k}_{5}$ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
$G_{\text{год}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	13650

 $M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 50.0 \times 10^{\circ}}{3600} = 0.5600$ г/сек $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 13650 = 0.5504$ т/год

Итого от выгрузки скального грунта:

Have covered to a serie governo power and the series of th	Выброс	
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,5600	0,5504

Бульдозерная планировка скального грунта (ист. 6074)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times 10^6 / 3600$$
, г/сек $\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}$, т/год

\mathbf{k}_1	- весовая доля пылевой фракции в материале	0,03
\mathbf{k}_2	- доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
\mathbf{k}_3	- коэффициент, учитывающий местные метеоусловия;	1,2
k_4	- коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
	пылеобразования;	1,0
\mathbf{k}_{5}	- коэффициент, учитывающий влажность материала;	0,4
k_7	- коэффициент, учитывающий крупность материала;	0,2
B`	- коэффициент, учитывающий высоту пересыпки;	0,5

 $G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч; 50,0 G_{ron} - суммарное количество перерабатываемого материала в течение года, т/год; 13650 0,40 × г/сек 3600 $M_r = 0.03 \times 0.02 \times 1.2 \times$ 1.0 $0,40 \times$ 0,2 $0.5 \times 13650 = 0.3931$ т/гол Итого от планировочных работ: Выброс Наименование загрязняющего вещества г/с т/год Пыль неорганическая (70-20% SiO2) 0.4000 0.3931

Рекультивация гребня северной ограждающей дамбы на участке 1 о

Планировка поверхности гребня бульдозером (ист. 6075)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{vac}} \times \mathbf{10}^6 / 3600, \text{г/сек}$$

$$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \text{т/год}$$

$\mathbf{M}_{\mathrm{ron}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B} \times \mathbf{G}_{\mathrm{ron}}, \mathbf{q}$	лод	
\mathbf{k}_1 - весовая доля пылевой фракции в материале		0,03
${ m k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозс	оль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;		1,2
 k₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внеши пылеобразования; k₅ - коэффициент, учитывающий влажность материала; 	них воздействий, условия	1,0
k ₇ - коэффициент, учитывающий крупность материала;		0,4
В` - коэффициент, учитывающий высоту пересыпки;		0,5
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала,	т/ч;	50,0
$G_{{ m ro}_{ m I}}$ - суммарное количество перерабатываемого материала в течение года, т/год;		14763
$M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2}{3600} \times \frac{0.00 \times 0.02 \times 0.02}{3600}$	0,5 × 50,0 × 10 ⁶ = 0,4000	г/сек
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times$	$0.5 \times 14763 = 0.4252$	т/год
Итого от планировки поверхности гребня бульдозером:		
Наименование загрязняющего вещества	Выброс	
-	г/с т/год	
Пыль неорганическая (70-20% SiO2)	0,4000 0,4252	

<u> Нанесение скального грунта на поверхность гребня ограждающей дамбы участка $1\ o$ </u>

Разработка скального грунта с погрузкой (ист. 6076)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^{6} \, / \, 3600, \, \text{г/сек} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \, \text{т/год} \end{split}$$

к ₁ - весовая доля пылевои фракции в материале	0,03
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	14700

 $M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.2 \times 0.7 \times 50.0 \times 10^{-6}}{3600} = 0.5600 \quad \text{r/cek}$ $M_{r} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.2 \times 0.7 \times 14700 = 0.5927 \quad \text{t/for}$

Итого при разработке скального грунта:

	Выброс	
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,5600	0,5927

Транспортировка скального грунта с карьера Анненский (ист. 6077)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M}^{\hat{}} = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 / 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \times \mathbf{n}, \text{ r/cek}$$

$$\mathbf{M} = \mathbf{M}^{\hat{}} \times \mathbf{T} \times 3600 \times 10^{-6}, \text{ t/rog}$$

где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта,

1,9

С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта

1,9

(при 20 км/ч) 2,00

С₃ - коэффициент, учитывающий состояние дорог,

1,6

1,5

 C_4 - коэф., учитывающий профиль поверхности материала на платформе C_5 - коэффициент, учитывающий скорость обдува материала,

С₆ - коэффициент, учитывающий влажность верхнего слоя материала,

0,40

 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу,

0,40

 $\label{eq:N-def} N$ - число ходок (туда и обратно) всего транспорта в час, L - средняя протяженность одной ходки, 2,0

 q_1 - пылевыделение на 1 км пробега ,

14,0 1450 г/км

 ${\bf q}_2$ - пылевыделение с факт. поверхности материала на платформе,

 $0.002 \quad \Gamma/M^2$

F - средняя площадь платформы,

 $14 ext{ m}^2$

п - число работающих автомашин,

2 шт.

Т - режим работы автотранспорта,

294 ч/год

1,0

$$M' = 1.9$$
 2.00 \times 1.0 \times 0.40 \times 0.01 \times 2.0 \times 14.0 \times 1450 / 3600 $+$ 1.6 1.50 \times 0.40 \times 0.002 \times 14 \times 2 $=$ 0.2252 Γ/\cos

Итого от транспортировки скального грунта:

	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: $70-20 \% SiO_2$	0,2252	0,23840

Выгрузка скального грунта (ист. 6078)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{aligned} \mathbf{M}_{\text{сек}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 \ / \ \mathbf{3600}, \ \mathbf{r} \ / \mathbf{cek} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \ \mathbf{T} \ / \mathbf{г} \ \mathsf{г} \ \mathsf{г} \end{aligned}$$

 k₁ - весовая доля пылевой фракции в материале 	0,03
${ m k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	14700

$$M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 50.0 \times 10^{-6}}{3600} = 0.5600 \quad \text{r/cek}$$

 $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 14700 = 0.5927$ т/год

Итого от выгрузки скального грунта:

Наименование загрязняющего вещества	Выброс	
	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,5600	0,5927

Бульдозерная планировка скального грунта (ист. 6079)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\text{сек}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^{6} \ / \ \mathbf{3600}, \ \textit{г/сек} \\ \mathbf{M}_{\text{год}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \ \textit{т/год} \end{split}$$

${\bf k}_1$ - весовая доля пылевой фракции в материале		0,03
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль		0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;		1,2
 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 		1,0
k ₅ - коэффициент, учитывающий влажность материала;		0,4
k ₇ - коэффициент, учитывающий крупность материала;		0,2
В` - коэффициент, учитывающий высоту пересыпки;		0,5
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;		50,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;		14700
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2}{2.00} \times 0.5 \times 50.0 \times 10^{-6}$	0.4000	
M _c = 3600	-= 0,4000	г/сек
$M_{\Gamma} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 14700 =$	0,4234	т/год
Итого от планировочных работ:		
Наименование загрязняющего вещества Выброс г/с т/год		

Рекультивация гребня северной ограждающей дамбы на участке 2 о

Планировка поверхности гребня бульдозером (ист. 6080)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6 / 3600$$
, г/сек
$$\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{roa}}$$
, т/год

$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2}{1.0 \times 0.40 \times 0.2} \times 0.5 \times 50.0 \times 10^6 = 0$),4000 г/сек
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	30208,5
$G_{\text{час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
В` - коэффициент, учитывающий высоту пересыпки;	0,5
k ₇ - коэффициент, учитывающий крупность материала;	0,2
k ₅ - коэффициент, учитывающий влажность материала;	0,4
 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
${\bf k}_1$ - весовая доля пылевой фракции в материале	0,03

M.	_ 0,05 %	0,02		1,2 '	•	1,0		0,70		0,2	,,		0,0		20,0		10	-= 0,4000	г/сен
TVIC	_								3600									- 0,4000	17001
									2000										
	M = 0.03		0.02	, ,	12	~	1.0	~	0.40	~	0.2	~		0.5	× 3	กวกร	5 -	- 0.8700	т/гол

Итого от планировки поверхности гребня бульдозером:

Пыль неорганическая (70-20% SiO2)

Цантанованна загр а дандната ваннаства	Выб	рос
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,4000	0,8700

Нанесение скального грунта на поверхность гребня ограждающей дамбы участка 2 о

Разработка скального грунта с погрузкой (ист. 6081)

$M_{cek} = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times B \times G_{vac} \times 10^6 / 3600, r/cek$ $\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \text{т/год}$

0,03
0,02
1,2
1,0
0,4
0,2
0,7
50,0
30240

$M_c = \frac{0.03 \times 0.02 \times 1.2 \times}{0.000 \times 0.000}$	1,0 ×	0,40 ×	0,2	×	0,7	×	50,0	×	= 0.5600	г/сек
1 41 c =		3600							- 0,5000	1/cek

0.2

 $0.7 \times 30240 = 1.2193$

1.0

т/год

1,9

Итого при разработке скального грунта:

1,2

0,02 ×

 $M_r = 0.03 \times$

	Выб	noc
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,5600	1,2193

Транспортировка скального грунта с карьера Анненский (ист. 6082)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\begin{split} \mathbf{M}^* = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 \ / \ 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \ \times \mathbf{n}, \ \mathbf{r/cek} \\ \mathbf{M} = \mathbf{M}^* \times \mathbf{T} \times 3600 \times 10^{-6}, \ \mathbf{t/fog} \end{split}$$

где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта, ${\rm C}_2$ - коэффициент, учитывающий среднюю скорость передвижения транспорта (при 20 км/ч) 2,00

С₃ - коэффициент, учитывающий состояние дорог,

 ${\rm C_4}$ - коэф., учитывающий профиль поверхности материала на платформе 1.6 C_5 - коэффициент, учитывающий скорость обдува материала, 1,5

С₆ - коэффициент, учитывающий влажность верхнего слоя материала, 0,40 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу, 0,01

N - число ходок (туда и обратно) всего транспорта в час, 2,0

L - средняя протяженность одной ходки, 14,0 q₁ - пылевыделение на 1 км пробега, 1450 г/км

0,002 Γ/M^2 q₂ - пылевыделение с факт. поверхности материала на платформе,

 14 m^2 F - средняя площадь платформы, 2 шт. п - число работающих автомашин,

Т - режим работы автотранспорта, 605 ч/год

Итого от транспортировки скального грунта:

Наименование загрязняющего вещества		брос
		т/год
Пыль неорганическая: 70-20 % SiO_2	0,2252	0,4905

Выгрузка скального грунта (ист. 6083)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600$$
, г/сек $\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}$ т/год

\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,03
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
\mathbf{k}_3 - коэффициент, учитывающий местные метеоусловия;	1,2

k₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; ${\bf k}_{\bf 5}$ - коэффициент, учитывающий влажность материала; 0,4 - коэффициент, учитывающий крупность материала; 0,2 - коэффициент, учитывающий высоту пересыпки; 0,7 $G_{\rm vac}\,$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч; 50,0 ${
m G}_{{
m ron}}\,$ - суммарное количество перерабатываемого материала в течение года, т/год; 30240 $50,0 \times 10^6$ 1,0 × $0,40 \times$ 0,2 0,7 $0.03 \times 0.02 \times 1.2 \times$ г/сек 3600 $M_{\rm b} = 0.03 \times$ $0,02 \times$ 1.2 1.0 $0.40 \times$ 0.2 30240 = 1,2193т/год Итого от выгрузки скального грунта: Выброс Наименование загрязняющего вещества т/год Пыль неорганическая (70-20% SiO2) 0,5600 1,2193

Бульдозерная планировка скального грунта (ист. 6084)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек $\mathbf{M}_{\mathrm{rod}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{rod}}$, т/год

	3600	
M _c =	$ = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 50.0 \times 10^{6} = 0.4000 $	г/сек
$G_{roд}$	- суммарное количество перерабатываемого материала в течение года, т/год;	30240
$G_{\text{\tiny \tiny \tiny 4ac}}$	- производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
B`	- коэффициент, учитывающий высоту пересыпки;	0,5
\mathbf{k}_{7}	- коэффициент, учитывающий крупность материала;	0,2
\mathbf{k}_{5}	- коэффициент, учитывающий влажность материала;	0,4
k_4	 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
\mathbf{k}_3	- коэффициент, учитывающий местные метеоусловия;	1,2
\mathbf{k}_2	- доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
\mathbf{k}_1	- весовая доля пылевой фракции в материале	0,03

 $M_{\rm r} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 30240 = 0.8709$ т/год

Итого от планировочных работ:

Ионманованна загрядняющаго ваннаства		рос
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,4000	0,8709

Рекультивация гребня западной ограждающей дамбы на участке 3 о

Планировка поверхности гребня бульдозером (ист. 6085)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек $\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{roa}}$ т/год

k ₁ - весовая доля пылевой фракции в материале	0,03
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
${\rm G_{rog}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	56857,5

Итого от планировки поверхности гребня бульдозером:

Have cave parties parties and	Выб	рос
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,8000	1,6375

Нанесение скального грунта на поверхность гребня ограждающей дамбы участка 3 о

Разработка скального грунта с погрузкой (ист. 6086)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{\times} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600, \text{г/сек}$$
 $\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{\times} \times \mathbf{G}_{\text{год}}, \text{т/год}$

 ${\bf k}_1$ - весовая доля пылевой фракции в материале 0,03 k₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль 0,02 k₃ - коэффициент, учитывающий местные метеоусловия; 1,2 k₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: 1,0 k₅ - коэффициент, учитывающий влажность материала; 0,4 k₇ - коэффициент, учитывающий крупность материала; 0,2 В` - коэффициент, учитывающий высоту пересыпки; 0.7 $G_{\text{час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч; 100,0 $G_{\text{год}}\,$ - суммарное количество перерабатываемого материала в течение года, т/год; 56910

 $M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2}{3600} = 1,1200$ r/cek $M_c = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 56910 = 2.2946$ T/FOII

Итого при разработке скального грунта:

Науманаранна запряднячанара рашадтра	Выброс			
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	1,1200	2,2946		

Транспортировка скального грунта с карьера Анненский (ист. 6087)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M}^{`} = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 / 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \times \mathbf{n}, \ \mathbf{f/cek}$$

$$\mathbf{M} = \mathbf{M}^{`} \times \mathbf{T} \times 3600 \times 10^{-6}, \ \mathbf{t/fog}$$

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта, 1,9 С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта (при 20 км/ч) 2,00 1,0 С₃ - коэффициент, учитывающий состояние дорог, С₄ - коэф., учитывающий профиль поверхности материала на платформе 1.6 C_5 - коэффициент, учитывающий скорость обдува материала, 1,5 C_6 - коэффициент, учитывающий влажность верхнего слоя материала, 0,40 0,01 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу, N - число ходок (туда и обратно) всего транспорта в час, 2,0 L - средняя протяженность одной ходки, 14,0 q₁ - пылевыделение на 1 км пробега, 1450 г/км q₂ - пылевыделение с факт. поверхности материала на платформе, 0.002 Γ/M^2 $14 ext{ m}^2$ F - средняя площадь платформы, п - число работающих автомашин, 2 шт. Т - режим работы автотранспорта, 570 ч/гол

 $M^{\circ} = 1.9$ 2,00 \times 1,0 \times 0,40 \times 0,01 \times 2,0 \times 14,0 \times 1450 / 3600 +

+	1,6	1,50	× 0,40	×	0,002	× 14	×	2 =	0,2252 гл	′сек
	М	=	0.2252	×	570	× 3600	×	10.6 =	0.4621	т/гол

Итого от транспортировки скального грунта:

Цанманаранна авградицанара рашаатра	Выб	брос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO_2	0,2252	0,4621

Выгрузка скального грунта (ист. 6088)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{vac}} \times \mathbf{10}^6 / 3600, \text{г/сек}$$

$$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \text{т/год}$$

100 1 2 3 4 3 7 - 1007										
k ₁ - весовая доля пылевой фракции в материале		0,03								
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозол	І Ь	0,02								
k ₃ - коэффициент, учитывающий местные метеоусловия;		1,2								
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 										
k ₅ - коэффициент, учитывающий влажность материала;		1,0								
		0,4								
k ₇ - коэффициент, учитывающий крупность материала;		0,2								
В` - коэффициент, учитывающий высоту пересыпки;		0,7								
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т	/ ч ;	100,0								
$G_{{ m rog}}$ - суммарное количество перерабатываемого материала в течение года, т/год;		56910								
$M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2}{1.0 \times 0.40 \times 0.2}$	0,7 × 100,0 × 10 ⁶ = 1,1200	г/сек								
3600	- 1,1200	1/cck								
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times$	$0.7 \times 56910 = 2,2946$	т/год								
Итого от выгрузки скального грунта:										
	Dryfmaa									

Пыль неорганическая (70-20% SiO2) 1,1200

Наименование загрязняющего вещества

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

Бульдозерная планировка скального грунта (ист. 6089)

г/с

т/год

2,2946

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^{6} \ / \ 3600, \ \text{г/сек} \\ \mathbf{M}_{\text{гол}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\text{гол, T/год}} \end{split}$$

k ₁ - весовая доля пылевой фракции в материале	0,03
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
${f G}_{{ m rog}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	56910

M	= 0,03	×	0,02	×	1,2	Х		1,0	×	0,40	' X		0,2		×	0,5		X	100,0	,0 ×) <u> </u>	-= 0,8000	-1	
IVI _c		•										3600											- 0,0000	1/cek	
	$\mathbf{M}_{-} = 0$.03	×	0.0	2 >		1.2	×	1.0	×		0.40	×	0.2	×		().5	×	569	10	=	1,6390	т/го	П

Итого от планировочных работ:

111010 01 Initiatinpobo inbix patori.										
Цанманаранна загрядняната раниетра	Выб	рос								
Наименование загрязняющего вещества	г/с	т/год								
Пыль неорганическая (70-20% SiO2)	0,8000	1,6390								

Формирование дрены вдоль низового откоса на участке пригруза

Срезка болотной растительности с погрузкой (ист. 6090)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600$$
, г/сек $\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}$, т/год

k ₁ - весовая доля пылевой фракции в материале	0,03
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,2
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\scriptsize qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	11700

М -	1,0 ×	0,20 ×	0,4	×	0,7	×	100,0 ×	$\frac{10^{6}}{}$ = 1,1200	Elaara
M _c =		360	0					= 1,1200	г/сек

 $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.20 \times 0.4 \times 0.7 \times 11700 = 0.4717$ T/год

Итого при срезки болотной растительности:

Uалианаранна аар и данданара рашадтра	Выб	рос	
Наименование загрязняющего вещества	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,1200	0,4717	

Транспортировка болотной растительности (ист. 6091)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$M' = C_1 \times C_2 \times C_3 \times C_6 \times C_7 \times N \times L \times q_1 / 3600 + C_4 \times C_5 \times C_6 \times q_2 \times F \times n$$
, г/сек
$$M = M' \times T \times 3600 \times 10^{-6}$$
, т/год

где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта,

1,9

 ${\bf C}_2$ - коэффициент, учитывающий среднюю скорость передвижения транспорта

(при 20 км/ч) 2,00

С₃ - коэффициент, учитывающий состояние дорог,

1,0

 C_4 - коэф., учитывающий профиль поверхности материала на платформе

1,6

 ${\rm C}_5\;$ - коэффициент, учитывающий скорость обдува материала,

1,5

 ${\rm C}_{\rm 6}$ - коэффициент, учитывающий влажность верхнего слоя материала,

0,20

 ${\rm C_7}$ - коэффициент учитывающий долю пыли, уносимой в атмосферу,

0,01

N - число ходок (туда и обратно) всего транспорта в час,

4,0

L - средняя протяженность одной ходки,

10,0

q₁ - пылевыделение на 1 км пробега,

1450 г/км

 ${\bf q}_2$ - пылевыделение с факт. поверхности материала на платформе,

 $0,002 \Gamma/M^2$

F - средняя площадь платформы,

14 м² 2 шт.

п - число работающих автомашин,

шт.

Т - режим работы автотранспорта,

117 ч/год

Итого от транспортировки скального грунта:

Цанманаранна заг а дандашага ранцастра	Выб	брос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO_2	0,1493	0,0629

Выгрузка болотной растительности (ист. 6092)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600$$
, г/сек
$$\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}$$
, т/год

${\bf k}_1$ - весовая доля пылевой фракции в материале									
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02								
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2								
 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 									
k ₅ - коэффициент, учитывающий влажность материала;	0,2								
k ₇ - коэффициент, учитывающий крупность материала;	0,4								
В` - коэффициент, учитывающий высоту пересыпки;	0,7								
$G_{\rm vac}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0								
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	11700								
$M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.20 \times 0.4 \times 0.7 \times 100.0 \times 10^{-6}}{3600} = 1,1200$	г/сек								
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.20 \times 0.4 \times 0.7 \times 11700 = 0.4717$	т/год								
Итого от выгрузки грунта:									
Наименование загрязняющего вещества Выброс г/с т/год									
Пыль неорганическая (70-20% SiO2) 1,1200 0,4717									

Формирование дрены из скального грунта

Разработка скального грунта с погрузкой (ист. 6093)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^{6} \ / \ \mathbf{3600}, \ \mathbf{r/cek} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \ \mathbf{T/fom} \end{split}$$

k ₁ - вес	совая доля пылевой фракции в материале	0,03							
k ₂ - дол	ля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02							
k ₃ - коз	эффициент, учитывающий местные метеоусловия;	1,2							
k ₄ - коз	k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия								
ПЫ	пеобразования;	1,0							
k ₅ - коз	эффициент, учитывающий влажность материала;	0,4							
k ₇ - коз	эффициент, учитывающий крупность материала;	0,2							
В` - коз	эффициент, учитывающий высоту пересыпки;	0,7							
G _{час} - про	оизводительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0							
G _{год} - сум	ммарное количество перерабатываемого материала в течение года, т/год;	29494,5							
$M_a = \frac{0.03}{1}$	$6 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 100.0 \times 10^{6} = 1.1200$	г/сек							

Tric =					3600			- 1,1200	17001
M = 0.03 ×	0.02 ×	12 v	1.0	v	0.40 ×	0.2	V	0.7 × 20404.5 = 1.1892	т/гол

 $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 29494.5 = 1.1892$

Итого при разработке грунта:

	Выброс		
Наименование загрязняющего вещества		т/год	
Пыль неорганическая (70-20% SiO2)	1,1200	1,1892	

Транспортировка скального грунта (ист. 6094)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$M^{\boldsymbol{\cdot}} = C_1 \times C_2 \times C_3 \times C_6 \times C_7 \times N \times L \times q_1$$
 / 3600 + $C_4 \times C_5 \times C_6 \times q_2 \times F \times n$, r/cek $M = M^{\boldsymbol{\cdot}} \times T \times 3600 \times 10^{-6}$, t/fom

1,9 где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта, ${\rm C}_2$ - коэффициент, учитывающий среднюю скорость передвижения транспорта (при 20 км/ч) 2,00 С₃ - коэффициент, учитывающий состояние дорог, 1,0 C_4 - коэф., учитывающий профиль поверхности материала на платформе 1,6 ${\rm C}_5\,$ - коэффициент, учитывающий скорость обдува материала, 1,5 ${\rm C}_{\rm 6}$ - коэффициент, учитывающий влажность верхнего слоя материала, 0,40 0,01 ${\rm C}_7$ - коэффициент учитывающий долю пыли, уносимой в атмосферу, N - число ходок (туда и обратно) всего транспорта в час, 4,0

L - средняя протяженность одной ходки,

13,0 км

 $q_{1}\,\text{-}\,$ пылевыделение на 1 км пробега ,

1450 г/км

q₂ - пылевыделение с факт. поверхности материала на платформе,

F - средняя площадь платформы,

 $14 m^2$

п - число работающих автомашин,

4 шт.

Т - режим работы автотранспорта,

295 ч/год

M` =	1,9	2,00	× 1	,0	× 0,40	× 0,01	×	4,0 × 13,0	× 1450 /	3600 +
+	1,6	1,50	× 0,40	×	0,002	× 14	×	4 = 0,4259	г/сек	
	М	=	0.4259	×	295	× 3600	×	$10^{-6} = 0.4523$	т/гол	

Итого от транспортировки скального грунта:

Harmon and the company of the compan	Выброс	
Наименование загрязняющего вещества		т/год
Пыль неорганическая: 70-20 % SiO ₂	0,4259	0,4523

Выгрузка скального грунта (ист. 6095)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600$$
, г/сек
$$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}$$
т/год

k₁ - весовая доля пылевой фракции в материале 0,03 k₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль 0.02 k₃ - коэффициент, учитывающий местные метеоусловия; 1,2 k₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: 1,0 k₅ - коэффициент, учитывающий влажность материала; 0.4 ${\bf k}_{7}$ - коэффициент, учитывающий крупность материала; 0.2 В` - коэффициент, учитывающий высоту пересыпки; 0.7 $G_{\rm uac}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч; $G_{\text{гол}}\,$ - суммарное количество перерабатываемого материала в течение года, т/год; 29494

 $M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 100.0 \times 10^{-6}}{3600} = 1,1200$ r/cek

 $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 29494.5 = 1.1892$ T/form

Итого от выгрузки скального грунта:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,1200	1,1892	

Планировочные работы бульдозером (ист. 6096)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600, \text{г/сек}$$
 $\mathbf{M}_{\mathrm{ro,1}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{ro,7}}, \text{т/год}$

 ${\bf k}_1$ - весовая доля пылевой фракции в материале 0.03 k₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль 0.02 k₃ - коэффициент, учитывающий местные метеоусловия; k₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 1,0 - коэффициент, учитывающий влажность материала; 0.4 ${\bf k}_7$ - коэффициент, учитывающий крупность материала; 0.2 В` - коэффициент, учитывающий высоту пересыпки; 0,5 $G_{\rm vac}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч; 100,0 ${\bf G}_{{
m ron}}\,$ - суммарное количество перерабатываемого материала в течение года, т/год; 29494,5

 $M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 100.0 \times 10^6}{3600} = 0.8000$ r/cer

 $M_{_{\Gamma}} = 0.03 \times -0.02 \times -1.2 \times -1.0 \times -0.40 \times -0.2 \times -0.5 \times 29494.5 = 0.8494 - \text{t/for}$

Итого от планировочных работ:

Иомменование загрядняющего рашество	Выброс		
Наименование загрязняющего вещества		т/год	
Пыль неорганическая (70-20% SiO2)	0,8000	0,8494	

Формирование дрены вдоль низового откоса

Срезка болотной растительности с погрузкой (ист. 6097)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек $\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{roa}}$, т/год

k ₁ - весовая доля пылевой фракции в материале	0,03
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
${f k}_5$ - коэффициент, учитывающий влажность материала;	0,2
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
${ m G}_{ m roz}$ - суммарное количество перерабатываемого материала в течение года, т/год;	27744

 $\mathbf{M_{c}} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.20 \times 0.4 \times 0.7 \times 100.0 \times 10^{-6}}{3600} = 1,1200 \quad \text{r/cek}$

 $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.20 \times 0.4 \times 0.7 \times 27744 = 1.1186$ т/год

Итого при срезки болотной растительности:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,1200	1,1186	

Транспортировка болотной растительности (ист. 6098)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$M` = C_1 \times C_2 \times C_3 \times C_6 \times C_7 \times N \times L \times q_1 / 3600 + C_4 \times C_5 \times C_6 \times q_2 \times F \times n, \ r/cek$$

$$M = M` \times T \times 3600 \times 10^{-6}, \ r/fod$$

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

 ${\bf C}_2$ - коэффициент, учитывающий среднюю скорость передвижения транспорта

1,9

(при 20 км/ч) 2,00

 C_3 - коэффициент, учитывающий состояние дорог, 1,0

 ${
m C_4}$ - коэф., учитывающий профиль поверхности материала на платформе 1,6

 C_5 - коэффициент, учитывающий скорость обдува материала, 1,5

 ${\it C}_{\it 6}$ - коэффициент, учитывающий влажность верхнего слоя материала, 0,20

 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу, 0,01

N - число ходок (туда и обратно) всего транспорта в час, 4,0

L - средняя протяженность одной ходки, $10,0 \qquad \text{ км}$

 ${\bf q}_1$ - пылевыделение на 1 км пробега , $$1450\ \ \,$ г/км

 q_2 - пылевыделение с факт. поверхности материала на платформе, 0,002 г/м²

F - средняя площадь платформы, 14 м²

п - число работающих автомашин, 2 шт.

Т - режим работы автотранспорта, 278 ч/год

Итого от транспортировки скального грунта:

Harmona paragrama paragrama paragrama	Выб	рос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: $70-20 \% SiO_2$	0,1493	0,1494

Выгрузка болотной растительности (ист. 6099)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{\hat{}} \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6 / 3600$$
, г/сек
$$\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{\hat{}} \times \mathbf{G}_{\mathrm{roa}}$$
, т/год

k ₁ - весовая доля пылевой фракции в материале	0,03		
${ m k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02		
${f k}_3$ - коэффициент, учитывающий местные метеоусловия;	1,2		
${f k}_4$ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия			
пылеобразования;	1,0		
${f k}_5$ - коэффициент, учитывающий влажность материала;	0,2		
${f k}_7 - {f k}$ оэффициент, учитывающий крупность материала;	0,4		
В` - коэффициент, учитывающий высоту пересыпки;	0,7		
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;			
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	27744		
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.20 \times 0.4}{3600} \times \frac{0.7 \times 100.0 \times 10^6}{1000} = 1,1200$	г/сек		
3600	17cck		
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.20 \times 0.4 \times 0.7 \times 27744 = 1.1186$	т/год		
Итого от выгрузки грунта:			
Наименование загрязняющего вещества			
17С 17ГОД			
Пыль неорганическая (70-20% SiO2) 1,1200 1,1186			

Формирование дрены из скального грунта вдоль низового откоса

Разработка скального грунта с погрузкой (ист. 6100)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек
$$\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{roa}}$$
 т/год

$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \mathbf{T} / \mathbf{\Gamma} 0 \mathbf{\mathcal{A}}$	
k ₁ - весовая доля пылевой фракции в материале	0,03
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
$G_{\text{год}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	48552
$M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 100.0 \times 10^{-6}}{3600} = 1.1200$	г/сек
3000	
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 48552 = 1.9576$	т/год
Итого при разработке грунта:	
Наименование загрязняющего вещества Выброс г/с т/год	
Пыль неорганическая (70-20% SiO2) 1.1200 1.9576	

Транспортировка скального грунта (ист. 6101)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M} = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 / 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \times \mathbf{n}, \text{ г/сек}$$
$$\mathbf{M} = \mathbf{M}^* \times \mathbf{T} \times 3600 \times 10^{-6}, \text{ т/год}$$

1,9 где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта, ${\bf C}_2$ - коэффициент, учитывающий среднюю скорость передвижения транспорта (при 20 км/ч) 2,00 C_3 - коэффициент, учитывающий состояние дорог, 1,0 C_4 - коэф., учитывающий профиль поверхности материала на платформе 1,6 ${\rm C}_5\,$ - коэффициент, учитывающий скорость обдува материала, 1,5 ${\rm C_6}$ - коэффициент, учитывающий влажность верхнего слоя материала, 0,40 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу, 0,01 N - число ходок (туда и обратно) всего транспорта в час, 4,0 13,0 L - средняя протяженность одной ходки, q₁ - пылевыделение на 1 км пробега, 1450 г/км ${\bf q}_2$ - пылевыделение c факт. поверхности материала на платформе, $0.002 \quad \Gamma/M^2$ $14 ext{ m}^2$ F - средняя площадь платформы, п - число работающих автомашин, 4 шт.

Итого от транспортировки скального грунта:

Harrison and the second	Выб	брос
менование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO ₂	0,4259	0,7452

Выгрузка скального грунта (ист. 6102)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{aligned} \mathbf{M}_{\text{сек}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{vac}} \times \mathbf{10}^{6} \ / \ 3600, \ \text{г/сек} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \ \text{т/год} \end{aligned}$$

${\bf k}_1$ - весовая доля пылевой фракции в материале	0,03
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
$G_{\text{год}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	48552
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.20 \times 0.2}{2.00} \times \frac{0.7 \times 100.0 \times 10^6}{1.200} = 1.1200$	г/сек
3600	1/cek
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 48552 = 1.9576$	т/год

Итого от выгрузки скального грунта:

	Выброс		
Наименование загрязняющего вещества	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,1200	1,9576	

Планировочные работы бульдозером (ист. 6103)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек
$$\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{roa}}$$
, т/год

k ₁ - весовая доля пылевой фракции в материале	0,03
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
${\it k_4}~$ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздейст	вий, условия
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
$G_{\text{год}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	48552

M _c =	0,03 ×	0,02	×	1,2	×	1,0	×	0,40	×	0,2	×	0,5	×	100,0 ×	10 ⁶	-= 0,8000	Elaara
IVIc —									36	500						- 0,0000	г/сек

 $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 48552 = 1.3983$ т/год

Итого от планировочных работ:

Наименование загрязняющего вещества	выорос		
Наименование загрязняющего вещества	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	0,8000	1,3983	

Формирование пригруза

Разработка скального грунта с погрузкой (ист. 6104)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6 / 3600, \, \mathrm{r/cek}$$

$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}},$ т/год

100 1 2 3 4 3 7 1000	
k ₁ - весовая доля пылевой фракции в материале	0,03
${ m k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
${ m k}_4$ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
${\bf k}_5$ - коэффициент, учитывающий влажность материала;	0,4
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
G_{vac} - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	111720
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 150.0 \times 10^6}{2.600} = 1.6800$	г/сек
3600	Treek
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 111720 = 4,5046$	т/год

Итого при разработке грунта:

	Выброс		
Наименование загрязняющего вещества	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,6800	4,5046	

Транспортировка скального грунта (ист. 6105)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M}^{\hat{}} = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 / 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \times \mathbf{n}, \text{ r/cek}$$

$$\mathbf{M} = \mathbf{M}^{\hat{}} \times \mathbf{T} \times 3600 \times 10^{-6}, \text{ r/rog}$$

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

1.9

1,5

 ${\rm C_2}$ - коэффициент, учитывающий среднюю скорость передвижения транспорта

(при 20 км/ч) 2,00

С₃ - коэффициент, учитывающий состояние дорог,

1,0 C_4 - коэф., учитывающий профиль поверхности материала на платформе 1,6

С₅ - коэффициент, учитывающий скорость обдува материала,

С₆ - коэффициент, учитывающий влажность верхнего слоя материала, 0.40 0,01

С₇ - коэффициент учитывающий долю пыли, уносимой в атмосферу,

N - число ходок (туда и обратно) всего транспорта в час, 6,0

L - средняя протяженность одной ходки,

q₁ - пылевыделение на 1 км пробега, 1450 г/км

q₂ - пылевыделение с факт. поверхности материала на платформе,

 Γ/M^2 0,002

F - средняя площадь платформы,

 14 m^2

п - число работающих автомашин,

6 шт.

13.0

Т - режим работы автотранспорта,

745 ч/год

0,40 M' =1,9 2,00 0.01 6.0 \times 13,0 \times 1450 / 3600 0.6388 1,6 1,50 0.002 г/сек 745 M 0,6388 1,7133

Итого от транспортировки скального грунта:

Наименование загрязняющего вещества	Вы	брос
	г/сек	т/год
Пыль неорганическая: 70-20 % SiO ₂	0.6388	1.7133

Выгрузка скального грунта (ист. 6106)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение № 8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^{6} \, / \, 3600, \, \text{г/сек} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \, \text{т/год} \end{split}$$

k ₁ - весовая доля пылевой фракции в материале	0,03
${ m k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	111720

$$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.2 \times 0.7 \times 150.0 \times 10^6}{3600} = 1,6800$$
 г/сек $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 111720 = 4,5046$ т/год

Итого от выгрузки скального грунта:

Изиманованна загрязнятаннаго рашаство	Выброс		
Наименование загрязняющего вещества	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,6800	4,5046	

Планировка горизонтальных и наклонных поверхностей (ист. 6107)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600, \ \text{г/сек}$$

$$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}} \text{ т/год}$$

\mathbf{k}_2	- доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
\mathbf{k}_3	- коэффициент, учитывающий местные метеоусловия;	1,2
\mathbf{k}_4	- коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
	пылеобразования;	1,0
k_5	- коэффициент, учитывающий влажность материала;	0,4
\mathbf{k}_7	- коэффициент, учитывающий крупность материала;	0,2
B`	- коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\text{\tiny qao}}$	- производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
G_{roz}	- суммарное количество перерабатываемого материала в течение года, т/год;	111720
M _c	$= \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 150.0 \times 10^{6}}{3600} = 1,2000$	г/сек
	$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 111720 = 3,2175$	т/год

Итого от планировочных работ:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,2000	3,2175	

Ремонт поверхности хвостохранилища и ограждающих дамб

Разработка скального грунта с погрузкой (ист. 6120)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников' (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек $\mathbf{M}_{\mathrm{ro,1}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{ro,2}}$ т/год

${\bf k}_1$ - весовая доля пылевой фракции в материале	0,03
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
${ m k}_{5}$ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В' - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
G _{год} - суммарное количество перерабатываемого материала в течение года, т/год;	210000

$M_c = \frac{0.03 \times 0.02}{0.02}$	2 × 1,2	×	1,0 ×	0,4	<u>0 ×</u> 3600)	×	0,7	×	150,0 ×	= 1,6800	г/сек
$M = 0.03 \times$	0.02	. 12	~	10 5	0.40	~	0.2	•	0.7	× 2100	00 = 8.4672	т/гол

Итого при разработке скального грунта:

Havradanaviva sarragaviga navvastra	Выброс			
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	1,6800	8,4672		

Транспортировка скального грунта (ист. 6121)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M}^{\circ} = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 / 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \times \mathbf{n}, \text{г/сек}$$

$$\mathbf{M} = \mathbf{M}^{\circ} \times \mathbf{T} \times 3600 \times 10^{-6}, \text{т/год}$$

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

 C_2 - коэффициент, учитывающий среднюю скорость передвижения транспорта и 20 км/ч) 2,00

(при 20 км/ч)

С₃ - коэффициент, учитывающий состояние дорог,

 C_4 - коэф., учитывающий профиль поверхности материала на платформе

С₅ - коэффициент, учитывающий скорость обдува материала,

С₆ - коэффициент, учитывающий влажность верхнего слоя материала,

С₇ - коэффициент учитывающий долю пыли, уносимой в атмосферу,

N - число ходок (туда и обратно) всего транспорта в час,

L - средняя протяженность одной ходки,

q₁ - пылевыделение на 1 км пробега,

q₂ - пылевыделение с факт. поверхности материала на платформе,

F - средняя площадь платформы,

п - число работающих автомашин,

Т - режим работы автотранспорта,

20,0 1450 г/км

0,002

1.0

 14 m^2 6 шт.

1400 ч/год

$$M^{\circ} = 1.9$$
 2,00 × 1,0 × 0,40 × 0,01 × 6,0 × 20,0 × 1450 / 3600 + 1,6 1,50 × 0,40 × 0,002 × 14 × 6 = 0,8959 г/сек
 $M = 0.8959$ × 1400 × 3600 × 10⁻⁶ = 4,5153 т/год

Итого от транспортировки скального грунта:

Harmana parting a same gray gray gray and a same gray gray gray gray gray gray gray gray	Выб	брос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO ₂	0,8959	4,5153

Выгрузка скального грунта (ист. 6122)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение № 8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек
$$\mathbf{M}_{\mathrm{rod}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{rod}}$$
, т/год

1,9

1,6

0,40

г/м²

0.01

1,5

6,0

 доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль 												
- коэффициент, учитывающий местные метеоусловия;												
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, услови												
пылеобразования;	1,0											
k ₅ - коэффициент, учитывающий влажность материала;	0,4											
k ₇ - коэффициент, учитывающий крупность материала;	0,2											
В` - коэффициент, учитывающий высоту пересыпки;	0,7											
${ m G}_{ m vac}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0											
${ m G}_{ m rog}\;$ - суммарное количество перерабатываемого материала в течение года, т/год;	210000											
$M_{r} = \frac{-0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.2 \times 0.7 \times 150.0 \times 0.2}{2.600}$	= 1,6800 г/сек											
3600	1,0000 17cck											
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 210000 = 8,4672$												
Итого от выгрузки скального грунта:												
Наименование загрязняющего вещества Выброс												
Г/С Т/год												
Пыль неорганическая (70-20% SiO2) 1,6800 8,4672	∠											

Бульдозерная планировка скального грунта (ист. 6123)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600, \ \text{г/сек}$$

$$\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}, \ \text{т/год}$$

$\mathbf{M}_{\mathbf{r}_{0,0}} = \mathbf{K}_1 \times \mathbf{K}_2 \times \mathbf{K}_3 \times \mathbf{K}_4 \times \mathbf{K}_5 \times \mathbf{K}_7 \times \mathbf{K} \times \mathbf{G}_{\mathbf{r}_{0,0}}, \forall \mathbf{r}_{0,0}$										
k ₁ - весовая доля пылевой фракции в материале										
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02									
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2									
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	1,0									
${f k}_5$ - коэффициент, учитывающий влажность материала;	0,4									
k ₇ - коэффициент, учитывающий крупность материала;	0,2									
В` - коэффициент, учитывающий высоту пересыпки;	0,5									
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0									
$G_{\rm rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	210000									
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 150.0 \times 10^6}{2.000} = 1,2000$	г/сек									
3600	Treek									
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 210000 = 6.0480$	т/год									

Итого от планировочных работ:

Наиманованна заг р язняющаго вашаетва	Выброс			
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	1,2000	6,0480		

Работы проводимые в 2025 году

Рекультивация дренажного канала

Очистка русла дренажного канала от наносов с погрузкой (ист. 6108)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{vac}} \times \mathbf{10}^6 / 3600, \text{г/сек}$$

$$\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}, \text{т/год}$$

k ₁ - весовая доля пылевой фракции в материале	0,05
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,1
k ₇ - коэффициент, учитывающий крупность материала;	1
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
G_{ron} - суммарное количество перерабатываемого материала в течение года, т/год;	59500

 $M_c = \frac{0.05 \times 0.02 \times 1.2 \times 1.0 \times 0.10 \times 1.0 \times 0.5 \times 100.0 \times 10^6}{3600} = 1,6667$ r/cek

 $M_r = 0.05 \times 0.02 \times 1.2 \times 1.0 \times 0.10 \times 1.0 \times 0.5 \times 59500 = 3.5700$ т/год

Итого от разработки наносов хвостов:

Ионманоронна сог р язиянонаго ранкастро	Выброс			
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	1,6667	3,5700		

Транспортировка хвостов в чашу хвостохранилища (ист. 6109)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\begin{aligned} \mathbf{M}^{\hat{}} &= \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 \ / \ 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \ \times \mathbf{n}, \ \mathbf{r}/\mathbf{c}\mathbf{c}\mathbf{k} \\ \mathbf{M} &= \mathbf{M}^{\hat{}} \times \mathbf{T} \times 3600 \times 10^{-6}, \ \mathbf{t}/\mathbf{r}\mathbf{o}\mathbf{g} \end{aligned}$$

где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта,

 ${\rm C_2}$ - коэффициент, учитывающий среднюю скорость передвижения транспорта

(при 20 км/ч) 2,00

С₃ - коэффициент, учитывающий состояние дорог,

 ${
m C_4}$ - коэф., учитывающий профиль поверхности материала на платформе

 ${\bf C}_5\,$ - коэффициент, учитывающий скорость обдува материала,

 ${
m C}_6$ - коэффициент, учитывающий влажность верхнего слоя материала, 0,10

1.9

1,6

1,5

1,0

 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу, 0,01

N - число ходок (туда и обратно) всего транспорта в час, 4,0

L - средняя протяженность одной ходки, 6,0 км

 ${\bf q}_1$ - пылевыделение на 1 км пробега , 1450 г/км

 $m q_2$ - пылевыделение с факт. поверхности материала на платформе, m 0,002 г/м²

F - средняя площадь платформы, 14 M^2

п - число работающих автомашин, 2 шт.

Т - режим работы автотранспорта, 595 ч/год

M` = 1,9 2,00 1,0 0,10 0,01 6,0 × 1450 / 3600 0,0502 г/сек 1,6 1,50 0,10 × 0,002 14 M 0,0502 595 3600 0,1075

Итого от транспортировки хвостов:

MITOI	о от транспортировки хвостов.		
Harmenvanarra	AHADDIHIA 2019G2HGIAHIAFA DAHIACTDO	Выб	poc
Паим	енование загрязняющего вещества	г/сек	т/год
Пыль	неорганическая: 70-20 % SiO ₂	0,0502	0,10750

Выгрузка хвостов в чаше хвостохранилища (ист. 6110)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\rm cer} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{`} \times \mathbf{G}_{\rm qac} \times \mathbf{10}^6 \ / \ 3600, \ r/cer \\ \mathbf{M}_{\rm roa} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\rm roa, 7} \ \text{т/год} \end{split}$$

\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,05
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
${f k}_5$ - коэффициент, учитывающий влажность материала;	0,1
k ₇ - коэффициент, учитывающий крупность материала;	1
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\text{час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
G _{гол} - суммарное количество перерабатываемого материала в течение года, т/год;	59500

$M_c = \frac{0.05}{}$	× 0,02	×	1,2	×	1,0	×	0,10	×	1,0	×	0,7	×	100,0 ×	$\frac{10^{6}}{}$ = 2.3333	-/
IVI _c —								3600)					- 2,3333	г/сек

 $M_r = 0.05 \times 0.02 \times 1.2 \times 1.0 \times 0.10 \times 1.0 \times 0.7 \times 59500 = 4.9980$ T/год

Итого от выгрузки хвостов:

Uауманаранна зар а данданара ранкадра	Выб	poc
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	2,3333	4,9980

Разравнивание хвостов в чаше хвостохранилища (ист. 6111)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6 / 3600, \ r/\mathrm{cek}$$

$$\mathbf{M}_{\mathrm{rog}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{rog}}, \ \tau/\mathrm{rog}$$

k ₁ - весовая доля пылевой фракции в материале	0,05
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
${\bf k}_{5}$ - коэффициент, учитывающий влажность материала;	0,1
k ₇ - коэффициент, учитывающий крупность материала;	1
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	100,0
${f G}_{{ m rog}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	59500

М -	0,05	0.05×0	0,02	×	1,2	×		1,0	×	0,	<u>),10</u>	×	1,0		×	0,5	×	100	<u>,0 ×</u>	〈 1	10°	-= 1,6667	r/oo
IVIc -												3600										1,0007	1/001
I	$M_r = 0$,05	×	0,0	2 :	<	1,2	×	1.	,0	×	0,10	×	1,0	×		0,5	×	59.	500	=	3,5700	т/год

Итого от разравнивания хвостов в чаше хвостохранилища:

. Наиманаранна зар а данданнага ранкастра	Выб	рос
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	1,6667	3,5700

Закрепление откосов и дна дренажного канала скальным грунтом

Разработка скального грунта с погрузкой (ист. 6112)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\rm cek} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{``} \times \mathbf{G}_{\rm vac} \times \mathbf{10}^6 \, / \, \mathbf{3600}, \, \text{г/cek} \\ \mathbf{M}_{\rm rol} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{``} \times \mathbf{G}_{\rm rol}, \, \text{т/год} \end{split}$$

\mathbf{k}_1	- весовая доля пылевой фракции в материале	0,03
\mathbf{k}_2	- доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k_3	- коэффициент, учитывающий местные метеоусловия;	1,2

k₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: 1,0 - коэффициент, учитывающий влажность материала; 0.4 - коэффициент, учитывающий крупность материала; 0,2 - коэффициент, учитывающий высоту пересыпки; 0,7 $G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч; 50,0 - суммарное количество перерабатываемого материала в течение года, т/год; 42000 1,0 × $0,40 \times$ $50,0 \times 10^{6}$ г/сек 3600 $M_r = 0.03 \times$ $0.02 \times$ 1,2 1,0 $0,40 \times$ 0.2 42000 1,6934 т/год Итого при разработке скального грунта: Выброс Наименование загрязняющего вещества т/год Пыль неорганическая (70-20% SiO2) 0,5600 1,6934

Транспортировка скального грунта с карьера Анненский (ист. 6113)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$M^{`}=C_1\times C_2\times C_3\times C_6\times C_7\times N\times L\times q_1$$
 / 3600 + $C_4\times C_5\times C_6\times q_2\times F\times n$, r/cek $M=M^{`}\times T\times 3600\times 10^{-6}$, t/fog

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта

(при 20 км/ч) 2,00

 ${\bf C}_3$ - коэффициент, учитывающий состояние дорог,

 C_4 - коэф., учитывающий профиль поверхности материала на платформе

1,5

 ${\rm C}_5\,$ - коэффициент, учитывающий скорость обдува материала,

 C_6 - коэффициент, учитывающий влажность верхнего слоя материала, 0.40

1,9

1,6

1,0

18,0

2,0

С₇ - коэффициент учитывающий долю пыли, уносимой в атмосферу, 0,01

N - число ходок (туда и обратно) всего транспорта в час,

L - средняя протяженность одной ходки,

q₁ - пылевыделение на 1 км пробега , 1450 г/км

 ${\bf q}_2$ - пылевыделение с факт. поверхности материала на платформе, 0.002 Γ/M^2 14 m²

F - средняя площадь платформы,

п - число работающих автомашин, 2 шт.

Т - режим работы автотранспорта, 840 ч/гол

1.9 M` = × 1450 / 2.00 1.0 0.40 0.01 \times 18.0 3600 1.6 1.50 0,2742 г/сек 0.002 M 840 0,8292 т/год

Итого от транспортировки скального грунта:

111010 01 1 punchio prin pobitin estati bilioto 1 p y il tav		
Have care parties appropriately appropriatel	Выб	брос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO ₂	0,2742	0,8292

Выгрузка скального грунта (ист. 6114)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек $\mathbf{M}_{\mathrm{ro,1}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{ro,3}}$ т/год

k ₁ - весовая доля пылевой фракции в материале	0,03
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
$G_{\rm rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	42000

$M_c = \frac{0.03 \times 0.02}{0.02}$	× 1,	,2 ×		1,0	×	0,40	×	0,2		×	0,7	×	50,0) ×	10 ⁶	-= 0,5600	г/сек
3600														1/CCK			
$M_r = 0.03 \times$	0,02	×	1,2	×	1,0	×	0,40	×	0,2	×		0,7	×	4200	00 =	1,6934	т/год
Итого от выг	рузки	скал	ьного гі	оунта	ı												

 Наименование загрязняющего вещества
 Выброс

 Пыль неорганическая (70-20% SiO2)
 0,5600
 1,6934

Бульдозерная планировка скального грунта (ист. 6115)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600, \ \text{г/сек}$$

$$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \ \text{т/год}$$

\mathbf{K}_1	- весовая доля пылевои фракции в материале	0,03												
k_2	- доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02												
k_3	k ₃ - коэффициент, учитывающий местные метеоусловия;													
k_4	 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия 													
	пылеобразования;	1,0												
k_5	- коэффициент, учитывающий влажность материала;	0,4												
\mathbf{k}_7	k ₇ - коэффициент, учитывающий крупность материала;													
B`	- коэффициент, учитывающий высоту пересыпки;	0,5												
G_{vac}	- производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0												
G_{rog}	- суммарное количество перерабатываемого материала в течение года, т/год;	42000												
	$0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 50.0 \times 10^6$													

 $M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.2 \times 0.5 \times 0.00 \times 10^{-10}}{3600} = 0.4000 \quad \text{r/cek}$ $M_{r} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 42000 = 1.2096 \quad \text{t/fog}$

Итого от планировочных работ:

Цанманованна заг а дзидонаго ванаство	Выб	poc
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,4000	1,2096

Перекрытие скальным грунтом наносов из дренажного канала

Разработка скального грунта с погрузкой (ист. 6116)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^{6} \ / \ 3600, \ \text{г/сек} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \ \text{т/год} \end{split}$$

k ₁ - весовая доля пылевой фракции в материале	0,03
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
${\bf k}_5$ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
${\rm G_{rog}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	22050

M _c =	0,03 ×	0,02	×	1,2	×	1,0) ×	0,40	×	0,2	×	0,7	×	50,0	×	10 6	-= 0,5600	E/aara
IVIc -	,								36	500							0,5000	г/сек

 $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 22050 = 0.8891$ т/год

Итого при разработке скального грунта:

Have a partie partie gave a partie pa	Выб	ос	
Наименование загрязняющего вещества	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	0,5600	0,8891	

Транспортировка скального грунта с карьера Анненский (ист. 6117)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\begin{split} \mathbf{M}^{\hat{}} &= C_1 \times C_2 \times C_3 \times C_6 \times C_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 \ / \ 3600 + C_4 \times C_5 \times C_6 \times \mathbf{q}_2 \times \mathbf{F} \ \times \mathbf{n}, \, \mathrm{r/cek} \\ \mathbf{M} &= \mathbf{M}^{\hat{}} \times \mathbf{T} \times 3600 \times 10^{-6}, \, \mathrm{t/rog} \end{split}$$

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

1.9

С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта

(при 20 км/ч) 2.00

С₃ - коэффициент, учитывающий состояние дорог,

1,0

 C_4 - коэф., учитывающий профиль поверхности материала на платформе

1,6

С₅ - коэффициент, учитывающий скорость обдува материала,

0,40

С₆ - коэффициент, учитывающий влажность верхнего слоя материала, С₇ - коэффициент учитывающий долю пыли, уносимой в атмосферу,

N - число ходок (туда и обратно) всего транспорта в час,

0,01

L - средняя протяженность одной ходки,

2,0

1,5

q₁ - пылевыделение на 1 км пробега ,

км г/км

18,0

 ${\bf q}_2$ - пылевыделение с факт. поверхности материала на платформе,

0,002 Γ/M^{*}

F - средняя площадь платформы,

 $14 ext{ m}^2$ 2 шт.

1450

п - число работающих автомашин,

ч/год

Т - режим работы автотранспорта,

Итого от транспортировки скального грунта:

Наимонования загрядания в ранковтра	Вы	брос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO ₂	0,2742	0,4353

Выгрузка скального грунта (ист. 6118)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600$$
, г/сек $\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}$ т/год

k ₁ - весовая доля пылевой фракции в материале	0,03
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
\mathbf{k}_3 - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
${\bf k}_5$ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
G_{vac} - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
G _{год} - суммарное количество перерабатываемого материала в течение года, т/год;	22050

м	= 0,03 ×	0,02	×	1,2	×		1,0	×	0,4	0	×	0,2		×	0,7	×	50,0	×	10^{6}	-= 0,5600	-/
1VIc	_										3600					-				0,3000	17CEK
	$M_{\rm r} = 0.03$	×	0.0	2 ×	:	1.2	×		1.0 >	<	0.40	×	0.2	×		0.7	×	2205	io =	. 0.8891	т/гол

Итого от выгрузки скального грунта:

. Наиманаранна сар а данданара рануаства	Выброс				
Наименование загрязняющего вещества	г/с	т/год			
Пыль неорганическая (70-20% SiO2)	0,5600	0,8891			

Бульдозерная планировка скального грунта (ист. 6119)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{aligned} \mathbf{M}_{\text{cek}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{qac}} \times \mathbf{10}^6 \, / \, \mathbf{3600}, \, \text{r/cek} \\ \mathbf{M}_{\text{rot}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{rot}}, \, \text{t/fog} \end{aligned}$$

k ₁ - весовая доля пылевой фракции в материале												
${ m k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль												
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2											
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия												
пылеобразования;												
k ₅ - коэффициент, учитывающий влажность материала;	0,4											
k ₇ - коэффициент, учитывающий крупность материала;	0,2											
В` - коэффициент, учитывающий высоту пересыпки;	0,5											
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0											
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	22050											
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 50.0 \times 10^6}{2000} = 0.4000$	г/сек											
3600												
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 22050 = 0.6350$	т/год											
Итого от планировочных работ:												
Наименование загрязняющего вещества												
г/с т/год												
Пыль неорганическая (70-20% SiO2) 0,4000 0,6350												

Ремонт поверхности хвостохранилища и ограждающих дамб

Разработка скального грунта с погрузкой (ист. 6120)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 \, / \, \mathbf{3600}, \, \text{г/сек} \\ \mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \, \text{т/год} \end{split}$$

03
02
2
)
4
2
7
0,0
0000
г/сек
17CCR
год

Транспортировка скального грунта (ист. 6121)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\begin{split} \mathbf{M}^{\smallfrown} = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 \ / \ 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \ \times \mathbf{n}, \ \mathbf{r}/\mathbf{c}\mathbf{c}\mathbf{k} \\ \mathbf{M} = \mathbf{M}^{\backprime} \times \mathbf{T} \times 3600 \times 10^{-6}, \ \mathbf{t}/\mathbf{r}\mathbf{o}\mathbf{g} \end{split}$$

1,9 где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта, C_2 - коэффициент, учитывающий среднюю скорость передвижения транспорта (при 20 км/ч) 1,0 ${\rm C}_3$ - коэффициент, учитывающий состояние дорог, ${\rm C_4}$ - коэф., учитывающий профиль поверхности материала на платформе 1,6 ${\rm C}_5\,$ - коэффициент, учитывающий скорость обдува материала, 1,5 ${\rm C_6}$ - коэффициент, учитывающий влажность верхнего слоя материала, 0,40 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу, 0,01 N - число ходок (туда и обратно) всего транспорта в час, 6,0 L - средняя протяженность одной ходки, 20,0 1450 г/км q_1 - пылевыделение на $1\ \mbox{км}$ пробега , $0.002 \quad \Gamma/M^2$ ${\bf q}_2$ - пылевыделение с факт. поверхности материала на платформе,

F - средняя площадь платформы,

 14 m^2 6 шт.

п - число работающих автомашин, Т - режим работы автотранспорта,

$$M = 1,9$$
 2,00 × 1,0 × 0,40 × 0,01 × 6,0 × 20,0 × 1450 / 3600 + 1,6 1,50 × 0,40 × 0,002 × 14 × 6 = 0,8959 г/сек
 $M = 0,8959$ × 1400 × 3600 × 10⁻⁶ = 4,5153 г/год

Итого от транспортировки скального грунта:

Harmon parties and	Выб	рос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO ₂	0,8959	4,51530

Выгрузка скального грунта (ист. 6122)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^{6} / 3600$$
, г/сек
$$\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{roa}}$$
, т/год

\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,03
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\rm vac}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
G_{rox} - суммарное количество перерабатываемого материала в течение года, т/год;	210000

$$M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 150.0 \times 10^{\circ}}{3600} = 1,6800$$
 r/cek $M_{r} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 210000 = 8,4672$ T/год

Итого от выгрузки скального грунта:

Uолиманаранна загряднянана ранкастра	Выб	poc
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	1,6800	8,4672

Бульдозерная планировка скального грунта (ист. 6123)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600, \text{г/сек}$$

$$\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}, \text{т/год}$$

k ₁ - весовая доля пылевой фракции в материале	0,03
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
${\bf G}_{\rm rog}\;$ - суммарное количество перерабатываемого материала в течение года, т/год;	210000
0.02 0.02 1.2 1.0 0.40 0.2 0.5 150.0 10.6	

M.	0,03 ×	: 0,0:	2	×	1,2	×	1,0	×	0,40 ×	0,2	×	:	0,5	×	150,0	×	10 °	-= 1.2000	E/0012
TVI c	_								3	3600								1,2000	г/сек

 $0.5 \times 210000 = 6.0480$ $M_r = 0.03 \times 0.02 \times 1.2$ 1.0 $0,40 \times$ 0.2 т/год

Итого от планировочных работ:

mioro or manimpobo mbix pacor.				
Наимоноронно загра	Наименование загразняющего вещества		ос	
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)		1.2000	6.0480	

Буровые работы при организации КИА (ист. 6124)

Расчет выбросов пыли от буровых работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

Валовое и максимально-разовое количество пыли, выделяющейся при бурении скважин за год, рассчитывается по формуле:

 $M_{cek} = n*z*(1-n)/3600$ г/сек $M_{\text{год}}$ =(Мсек/100000) × 3600 × T , т/год

- количество единовременно работающих буровых станков, шт

- количество пыли выделяемое при бурении одним станком, г/ч

- эффективность системы пылеочистки, в долях кг/м3

- чистое время работы станка в год, ч/год

388

г/сек 2 × 360 3600 0,1000 (1-0) $\mathbf{M}_{\mathrm{rog}}$ = 0,100 / 1000000 × 3600 0,1397 т/год

Итого при буровых работах:

	Наименование загрязняющего вещества	Выброс		
		г/сек	т/год	
	Пыль неорганическая (70-20% SiO2)	0,1000	0,1397	

Работы проводимые в 2026 - 2041 гг.

Ремонт поверхности хвостохранилища и ограждающих дамб

Разработка скального грунта с погрузкой (ист. 6120)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6 / 3600$$
, г/сек $\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{roa}}$, т/год

100 1 2 3 4 3 7 100	
\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,03
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\rm qac}~$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0

0,40 × г/сек

× 105000 = 4,2336 $M_r = 0.03 \times$ 0,02 × 1,2 1,0 0,40 × 0,2 т/год

Итого при разработке скального грунта:

Hannayanayana saraganganyana nawaagan	Выброс		
Наименование загрязняющего вещества	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,6800	4,2336	

Транспортировка скального грунта (ист. 6121)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\begin{split} \mathbf{M} \hat{} &= C_1 \times C_2 \times C_3 \times C_6 \times C_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 \ / \ 3600 + C_4 \times C_5 \times C_6 \times \mathbf{q}_2 \times \mathbf{F} \ \times \mathbf{n}, \ \mathbf{r}/\mathbf{c}\mathbf{e}\mathbf{k} \\ \mathbf{M} &= \mathbf{M} \hat{} \times \mathbf{T} \times \mathbf{3}600 \times \mathbf{10}^{\text{-}6}, \ \mathbf{t}/\mathbf{r}\mathbf{o}\mathbf{g} \end{split}$$

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

 $G_{\rm rog}\,$ - суммарное количество перерабатываемого материала в течение года, т/год;

С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта

1,0

105000

1,9

1,6

1,5

 ${\bf C}_3$ - коэффициент, учитывающий состояние дорог,

 C_4 - коэф., учитывающий профиль поверхности материала на платформе

 C_5 - коэффициент, учитывающий скорость обдува материала,

С₆ - коэффициент, учитывающий влажность верхнего слоя материала, 0,40

0,01 С₇ - коэффициент учитывающий долю пыли, уносимой в атмосферу,

N - число ходок (туда и обратно) всего транспорта в час, 6,0

L - средняя протяженность одной ходки, 20.0

1450 q₁ - пылевыделение на 1 км пробега, г/км

 $0.002 \quad \Gamma/M^2$ ${\bf q}_2$ - пылевыделение с факт. поверхности материала на платформе,

 $14 m^2$ F - средняя площадь платформы,

п - число работающих автомашин, 6 шт.

Т - режим работы автотранспорта, 700 ч/год

Итого от транспортировки скального грунта:

Наименование загрязняющего вещества Пыль неорганическая: 70-20 % SiO2	Выброс		
	г/сек	т/год	
Пыль неорганическая: 70-20 % SiO ₂	0,8959	2,25770	

Выгрузка скального грунта (ист. 6122)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$M_{cek} = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times B' \times G_{vac} \times 10^6 / 3600, r/cek$$

$\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}, \text{т/год}$

\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,03
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	·
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
$G_{\rm rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	105000

$M_c = -$	0,03 × 0,02 ×	1,2	× 1,0	×	0,40	× 0,2	×	×	0,7 × 150	,0 ×	= 1,6800	БІоот
M _c ==						3600					- 1,0000	г/сек

 $M_{\Gamma} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.7 \times 105000 = 4.2336$ T/Fom

Итого от выгрузки скального грунта:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,6800	4,2336	

Бульдозерная планировка скального грунта (ист. 6123)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\times} \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^{6} / 3600, \ r/\mathrm{cek}$$

$$\mathbf{M}_{\mathrm{rog}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\times} \times \mathbf{G}_{\mathrm{rog}}, \ \tau/\mathrm{rog}$$

$M_0 = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 150.0 \times 10^6}{1.2000} = 1.2000$	г/сек
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	105000
$G_{\text{час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
В` - коэффициент, учитывающий высоту пересыпки;	0,5
k ₇ - коэффициент, учитывающий крупность материала;	0,2
${f k}_5$ - коэффициент, учитывающий влажность материала;	0,4
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₁ - весовая доля пылевой фракции в материале	0,03

 $M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2}{3600} = 1,2000$ r/ce $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.5 \times 105000 = 3,0240$ T/год

Итого от планировочных работ:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,2000	3,0240	

Работы проводимые в 2042 гг.

Ремонт поверхности хвостохранилища и ограждающих дамб

Разработка скального грунта с погрузкой (ист. 6120)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\rm cer} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{`} \times \mathbf{G}_{\rm vac} \times \mathbf{10}^6 \ / \ 3600, \ r/cer \\ \mathbf{M}_{\rm rog} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\rm rog}, \ \tau/rod \end{split}$$

k₁ - весовая доля пылевой фракции в материале 0,03 - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль 0,02 - коэффициент, учитывающий местные метеоусловия; 1,2 ${\bf k}_4$ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: ${\bf k}_{5}$ - коэффициент, учитывающий влажность материала; 0,4 ${\bf k}_7$ - коэффициент, учитывающий крупность материала; 0.2 В` - коэффициент, учитывающий высоту пересыпки; 0.7 $G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч; 150,0

0,03 × 0,02 × 1,2 × г/сек

 $\mathbf{M}_{\Gamma} = 0.03 \times 0.02 \times 1.2$ $0,40 \times$ $0.7 \times 105000 = 4.2336$ т/гол

Итого при разработке скального грунта:

Наименование загрязняющего вещества		Выброс		
		т/год		
Пыль неорганическая (70-20% SiO2)	1,6800	4,2336		

Транспортировка скального грунта (ист. 6121)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M}^{\circ} = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 / 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \times \mathbf{n}$$
, г/сек $\mathbf{M} = \mathbf{M}^{\circ} \times \mathbf{T} \times 3600 \times 10^{-6}$, т/год

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

 ${\rm C_2}$ - коэффициент, учитывающий среднюю скорость передвижения транспорта

 $G_{\text{гол}}\,$ - суммарное количество перерабатываемого материала в течение года, т/год;

105000

1,9

1.6

0,01

С₃ - коэффициент, учитывающий состояние дорог,

1,0

 C_4 - коэф., учитывающий профиль поверхности материала на платформе

1,5 С₅ - коэффициент, учитывающий скорость обдува материала,

 C_6 - коэффициент, учитывающий влажность верхнего слоя материала, 0,40

С₇ - коэффициент учитывающий долю пыли, уносимой в атмосферу,

N - число ходок (туда и обратно) всего транспорта в час, 6,0

L - средняя протяженность одной ходки. 20.0 км 1450 г/км

q₁ - пылевыделение на 1 км пробега, 0,002 Γ/M^2 q₂ - пылевыделение с факт. поверхности материала на платформе,

F - средняя площадь платформы,

 14 m^2

п - число работающих автомашин, 6 шт.

Т - режим работы автотранспорта, 700 ч/год

M` = × 1450 / 1.9 2.00 1.0 0.40 0.01 × 20.0 3600 1,6 1,50 0.002 10-6 = M 0.8959 700 3600 2,2577 т/гол

Итого от транспортировки скального грунта:

Наименование загрязняющего вещества	Выб	брос
	г/сек	т/год
Пыль неорганическая: 70-20 % SiO_2	0,8959	2,25770

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{*} \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^{6} / 3600, \ r/\mathrm{cek}$$

$$\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{*} \times \mathbf{G}_{\mathrm{roa}}, \ \text{т/год}$$

${\sf k}_1$ - весовая доля пылевой фракции в материале	0,03
${\it k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
\mathbf{k}_3 - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
$G_{\text{год}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	105000

 $M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.2 \times 0.7 \times 150.0 \times 10^{-6}}{3600} = 1,6800 \quad \text{r/cek}$ $M_{r} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.2 \times 0.2 \times 0.7 \times 105000 = 4,2336 \quad \text{t/for}$

Итого от выгрузки скального грунта:

<u> Ионаманаранна загрязиваннага раннастра</u>	Выброс		
Наименование загрязняющего вещества		т/год	
Пыль неорганическая (70-20% SiO2)	1,6800	4,2336	

Бульдозерная планировка скального грунта (ист. 6123)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{vac}} \times \mathbf{10}^6 / 3600, \text{ r/cek}$$

$$\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}, \text{ т/год}$$

к ₁ - весовая доля пылевой фракции в материале	0,03
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1.0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,2
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	105000

м	= 0,03 ×	0,02	×	1,2	×		1,0	×	0,40	×	(0,2	×		0,5	×	150	0,0	×	10 ⁶	-= 1,2000	rlaar
171,	, =									360	0										1,2000	1/001
	$M_r = 0.03$	×	0.0	2 ×	(1.2	×	1.0	×	0.40) ×	0.2	2	×		0.5	×	10	0500	0 =	3,0240	т/год

Итого от планировочных работ:

Have covered to a program of a paragraph of a parag	Выб	рос
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	1,2000	3,0240

Рекультивация пляжей хвостохранилища (участок № 4)

Разработка скального грунта с погрузкой (ист. 6125)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{cek}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{vac}} \times 10^6 / 3600$$
, r/cek $\mathbf{M}_{\text{reg}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{reg}}$, τ/for

1010д 11 12 13 14 15 17 2 10д 17 10д	
\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,03
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
${\bf k}_3$ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4

k₇ - коэффициент, учитывающий крупность материала; - коэффициент, учитывающий высоту пересыпки; 0.7 - производительность узла пересыпки или количество перерабатываемого материала, т/ч; 150,0 $G_{\text{гол}}\,$ - суммарное количество перерабатываемого материала в течение года, т/год; 753621 г/сек $M_r = 0.03 \times$ $0.7 \times 753620.7 = 60,7720$ $0,02 \times$ 1,2 1,0 $0,40 \times$ т/год

Итого при разработке скального грунта:

Цаугламаранна загряданятамара рамадера		poc
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	3,3600	60,7720

Транспортировка скального грунта (ист. 6126)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M}^{`} = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 \ / \ 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \times \mathbf{n},$$
г/сек $\mathbf{M} = \mathbf{M}^{`} \times \mathbf{T} \times 3600 \times 10^{-6},$ т/год

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта (при 20 км/ч)

С₃ - коэффициент, учитывающий состояние дорог,

 C_4 - коэф., учитывающий профиль поверхности материала на платформе

 ${\rm C}_5\,$ - коэффициент, учитывающий скорость обдува материала,

 ${\rm C}_{\rm 6}$ - коэффициент, учитывающий влажность верхнего слоя материала,

 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу,

N - число ходок (туда и обратно) всего транспорта в час,

L - средняя протяженность одной ходки,

 ${\bf q}_1$ - пылевыделение на 1 км пробега ,

q₂ - пылевыделение с факт. поверхности материала на платформе,

F - средняя площадь платформы,

п - число работающих автомашин,

Т - режим работы автотранспорта,

1,9

30.0

1,0

1,6

1,5

0,40 0,01

6,0

1450 г/км $0.002 \quad \Gamma/M^2$

5024 ч/год

1.9 **M**` = 2,00 0,01 × 30,0 × 1450 / 3600 1,6 1,50 0,002 M 1,3439 5024

 $14 ext{ m}^2$

9 шт.

Итого от транспортировки скального грунта:

Наименование загрязняющего вещества		брос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO ₂	1.3439	24,30630

Выгрузка скального грунта (ист. 6127)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек $\mathbf{M}_{\mathrm{rog}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{\circ} \times \mathbf{G}_{\mathrm{rog}}$, т/год

оля пылевой фракции в материале $0{,}03$
и с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль 0,02
иент, учитывающий местные метеоусловия; 1,2
иент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия
<u>1,0</u>
иент, учитывающий влажность материала; 0,4
иент, учитывающий крупность материала; 0,4
иент, учитывающий высоту пересыпки; 0,7
ительность узла пересыпки или количество перерабатываемого материала, т/ч; 150,0
ре количество перерабатываемого материала в течение года, т/год; 753621
DO NO THE PROPERTY OF THE PROP

г/сек 3600 $M_r = 0.03 \times 0.02 \times$ 1,2 1,0 $0,40 \times$ 0,4 $0.7 \times 753620.7 = 60,7720$

Итого от выгрузки скального грунта:

Науманаранна загрядняющего ранкастра	Выброс			
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	3,3600	60,7720		

Бульдозерная планировка скального грунта (ист. 6128)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6 / 3600$$
, г/сек
$$\mathbf{M}_{\mathrm{rog}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{rog}}$$
, т/год

k ₁ -	весовая доля пылевой фракции в материале	0,03
•	••	0,03
k ₂ -	доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ -	коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ -	коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	1,0
k ₅ -	коэффициент, учитывающий влажность материала;	0,4
k ₇ -	коэффициент, учитывающий крупность материала;	0,4
В` -	коэффициент, учитывающий высоту пересыпки;	0,5
G_{vac} -	производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
$G_{\text{год}}$ -	суммарное количество перерабатываемого материала в течение года, т/год;	753621
$M_c = \frac{0}{2}$	$0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.5 \times 150.0 \times 10^{-6} = 2,4000$	г/сек

0,5 × 753620,7 = 43,4086 т/год

Итого от планировочных работ:

 $M_{\Gamma} = 0.03 \times 0.02 \times 1.2$

Uалиданаранна даг а данданданара разидатра	Выброс			
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	2,4000	43,4086		

1,0

Работы проводимые в 2043 гг.

Рекультивация пляжей хвостохранилища (участок № 4)

Разработка скального грунта с погрузкой (ист. 6125)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6 / 3600$$
, г/сек $\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{roa}}$, т/год

 k1 станции в катериале
 0,03

 k2 станции в катериале
 0,02

 k3 станции в коэффициент, учитывающий местные метеоусловия;
 1,2

 k4 станции в коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;
 1,0

 k5 станции в коэффициент, учитывающий влажность материала;
 0,4

 k7 станциент, учитывающий крупность материала;
 0,4

 B станции в коэффициент, учитывающий высоту пересыпки;
 0,7

 В` - коэффициент, учитывающий высоту пересыпки;
 0,7

 G_{час} - производительность узла пересыпки или количество перерабатываемого материала, т/ч;
 150,0

753621

1.9

 ${f G}_{{
m rog}}\,$ - суммарное количество перерабатываемого материала в течение года, т/год;

 $M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.40 \times 0.4 \times 0.7 \times 150.0 \times 10^6}{3600} = 3,3600$ r/cek

 $M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.7 \times 753620.7 = 60,7720$ т/год

Итого при разработке скального грунта:

Наимонованна загряднята вонноства	Выброс		
Наименование загрязняющего вещества		т/год	
Пыль неорганическая (70-20% SiO2)	3,3600	60,7720	

Транспортировка скального грунта (ист. 6126)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M}^* = \mathbf{C}_1 \times \mathbf{C}_2 \times \mathbf{C}_3 \times \mathbf{C}_6 \times \mathbf{C}_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 / 3600 + \mathbf{C}_4 \times \mathbf{C}_5 \times \mathbf{C}_6 \times \mathbf{q}_2 \times \mathbf{F} \times \mathbf{n}, \text{ r/cek}$$

$$\mathbf{M} = \mathbf{M}^* \times \mathbf{T} \times 3600 \times 10^{-6}, \text{ t/rog}$$

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта

(при 20 км/ч) 2,00

С₃ - коэффициент, учитывающий состояние дорог, 1,0

 ${
m C_4}$ - коэф., учитывающий профиль поверхности материала на платформе 1,6

 ${
m C}_5\,$ - коэффициент, учитывающий скорость обдува материала, 1,5

 C_6 - коэффициент, учитывающий влажность верхнего слоя материала, 0,40

 C_7 - коэффициент учитывающий долю пыли, уносимой в атмосферу, 0,01

N - число ходок (туда и обратно) всего транспорта в час, 6,0

L - средняя протяженность одной ходки, 30,0 км

q₁ - пылевыделение на 1 км пробега , 1450 г/км

 q_2 - пылевыделение с факт. поверхности материала на платформе, 0,002 г/м²

F - средняя площадь платформы, 14 $\,$ м 2 п - число работающих автомашин , 9 $\,$ шт.

Т - режим работы автотранспорта, 5024 ч/год

M = 1,9 2,00 × 1,0 × 0,40 × 0,01 × 6,0 × 30,0 × 1450 / 3600 + + 1,6 1,50 × 0,40 × 0,002 × 14 × 9 = 1,3439 γ/ceκ

M = 1,3439 × 5024 × 3600 × 10⁻⁶ = 24,3063 γ/γοπ

Итого от транспортировки скального грунта:

Наименование загрязняющего вещества	Выброс		
	г/сек	т/год	
Пыль неорганическая: $70-20 \% SiO_2$	1,3439	24,30630	

Выгрузка скального грунта (ист. 6127)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$M_{cek} = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times B' \times G_{vac} \times 10^6 / 3600, r/cek$$

$\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}, \text{т/год}$

${\bf k}_1$ - весовая доля пылевой фракции в материале	0,03
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
${\bf k}_3$ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1.0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
$G_{\text{год}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	753621

 $\mathbf{M_{c}} = \frac{0.03 \, \times \, 0.02 \, \times \, 1.2 \, \times }{3600} \times \frac{1.0 \, \times \, 0.40 \, \times \, 0.40 \, \times \, 0.40 \, \times \, 0.7 \, \times \, 150.0 \, \times \, 10^{\,6}}{3600} = 3,3600 \quad \text{r/cembers}$

 $M_{\Gamma} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.4 \times 0.7 \times 753620.7 = 60,7720 \text{ T/Formula}$

Итого от выгрузки скального грунта:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	3,3600	60,7720	

Бульдозерная планировка скального грунта (ист. 6128)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600, \text{г/сек}$ $\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \text{т/год}$

${\bf k}_1$ - весовая доля пылевой фракции в материале	0,03
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
${\bf G}_{{ m ro}{ m J}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	753621

 $M_{c} = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.4 \times 0.5 \times 150.0 \times 10^{\circ}}{3600} = 2,4000 \text{ r/cek}$

 $M_{\scriptscriptstyle \Gamma} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.5 \times 753620,7 = 43,4086$ t/for

Итого от планировочных работ:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	2,4000	43,4086	

Работы проводимые в 2044 гг.

Рекультивация пляжей хвостохранилища (участок № 4)

Разработка скального грунта с погрузкой (ист. 6125)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times 10^6 / 3600$$
, г/сек
$$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}$$
 т/год

\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,03
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	· · · · · · · · · · · · · · · · · · ·
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	753621

$M_c = \frac{0.03 \times 0.02}{0.02}$	× 1,2 ×	1,0	× 0,	40 ×	0,4	×	0,7	×	150,0 × 10 ⁶	3 3600	г/сек
141 _c —				3600						- 5,5000	1/000
$M_r = 0.03 \times$	0,02 ×	1,2 ×	1,0	× 0,40	× 0,4	×		0,7	× 753620,7 =	60,7720	т/год

Итого при разработке скального грунта:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	3,3600	60,7720	

Транспортировка скального грунта (ист. 6126)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\mathbf{M}^{\smallfrown}=C_1\times C_2\times C_3\times C_6\times C_7\times N\times L\times q_1$$
/3600 + $C_4\times C_5\times C_6\times q_2\times F\times n,$ г/сек
$$\mathbf{M}=\mathbf{M}^{\backprime}\times T\times 3600\times 10^{-6},$$
 т/год

где С₁ - коэффициент, учитывающий среднюю грузоподъемность транспорта,

С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта

1,0

1,9

С₃ - коэффициент, учитывающий состояние дорог,

 C_4 - коэф., учитывающий профиль поверхности материала на платформе 1.6 1,5

С₅ - коэффициент, учитывающий скорость обдува материала,

 C_6 - коэффициент, учитывающий влажность верхнего слоя материала, 0,40 0,01

С₇ - коэффициент учитывающий долю пыли, уносимой в атмосферу,

N - число ходок (туда и обратно) всего транспорта в час, 6.0

L - средняя протяженность одной ходки, 30,0

q₁ - пылевыделение на 1 км пробега, 1450 г/км

q₂ - пылевыделение с факт. поверхности материала на платформе, 0.002 Γ/M^2

 $14 ext{ } ext{ }$ F - средняя площадь платформы,

п - число работающих автомашин, 9 IIIT.

Т - режим работы автотранспорта, 5024 ч/год

$$M^{\circ} = 1.9$$
 2,00 × 1,0 × 0,40 × 0,01 × 6,0 × 30,0 × 1450 / 3600 + 1,6 1,50 × 0,40 × 0,002 × 14 × 9 = 1,3439 г/сек $M = 1,3439$ × 5024 × 3600 × $10^{-6} = 24,3063$ т/год

Итого от транспортировки скального грунта:

Наименование загрязняющего вещества	Выброс		
Наименование загрязняющего вещества	г/сек	т/год	
Пыль неорганическая: 70-20 % SiO ₂	1,3439	24,3063	

Выгрузка скального грунта (ист. 6127)

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{*} \times \mathbf{G}_{\mathrm{uac}} \times \mathbf{10}^{6}$$
 / 3600, г/сек
$$\mathbf{M}_{\mathrm{roa}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{*} \times \mathbf{G}_{\mathrm{roa}}$$
, т/год

k ₁ - весовая доля пылевой фракции в материале	0,03
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\rm vac}~$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
${\bf G}_{{ m rog}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	753621
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.40 \times 0.40 \times 0.7 \times 150.0 \times 10^6}{3.300} = 3.3600$	г/сек
3600	17000
$M_{\Gamma} = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.7 \times 753620.7 = 60,7720$	т/год
Итого от выгрузки скального грунта:	
Наименование загрязняющего вещества Выброс г/с т/год т/год	
Пыль неорганическая (70-20% SiO2) 3,3600 60,7720	
Бульдозерная планировка скального грунта (ист. 6128)	

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\mathrm{cer}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^{6} \ / \ 3600, \ \mathrm{r/cek} \\ \mathbf{M}_{\mathrm{ro,1}} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{ro,7}}, \ \mathrm{t/fog} \end{split}$$

$\mathbf{W}_{\mathbf{rod}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{b} \times \mathbf{G}_{\mathbf{rod}}$ 1/10/4	
\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,03
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\text{час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	150,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	753621
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.40 \times 0.4}{3.000} \times \frac{0.5 \times 150.0 \times 10^6}{0.500} = 2,4000$	
$M_c = \frac{3600 \times 3602 \times 312 \times 10^{-10}}{3600} = 2,4000$	г/сек
$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.5 \times 753620.7 = 43,4086$	т/год
Итого от планировочных работ:	
Наименование загрязняющего вещества Выброс г/с т/год	
Пыль неорганическая (70-20% SiO2) 2,4000 43,4086	

Демонтаж и тампонирование конструкций ВК-2 и ВК-3

Засыпка устья водосбросных колодцев ВК-2, ВК-3 и засыпка пространства образованного после установки фундаментных блоков

Разработка скального грунта с погрузкой (ист. 6129)

Расчет выбросов пыли от разработки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cer}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6$$
 / 3600, г/сек $\mathbf{M}_{\mathrm{rot}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{rot}}$, т/год

11-10g 11 11-12 113 11-14 113 11-14 11-15	
${\bf k}_1$ - весовая доля пылевой фракции в материале	0,03
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
${f k}_5$ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
G_{vac} - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	457,8
$M_c = \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.7 \times 50.0 \times 10^{6}}{3600} = 1.1200$	г/сек

 $0.7 \times 457.8 = 0.0369$

т/год

 $M_r = 0.03 \times 0.02 \times$

1,2

Итого при разработке скального грунта:

Цанманаранна загрядинара ранцестра		Выброс	
Наименование загрязняющего вещества	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,1200	0,0369	

Транспортировка скального грунта (ист. 6130)

Расчет выбросов загрязняющих веществ в атмосферу от автотранспортных работ проивзводится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө). по формуле:

$$\begin{split} \mathbf{M}^{`} &= C_1 \times C_2 \times C_3 \times C_6 \times C_7 \times \mathbf{N} \times \mathbf{L} \times \mathbf{q}_1 \ / \ 3600 + C_4 \times C_5 \times C_6 \times \mathbf{q}_2 \times \mathbf{F} \ \times \mathbf{n}, \ \mathbf{r}/\mathbf{c}\mathbf{c}\mathbf{k} \\ \mathbf{M} &= \mathbf{M}^{`} \times \mathbf{T} \times 3600 \times 10^{^{-6}}, \ \mathbf{t}/\mathbf{r}\mathbf{o}\mathbf{g} \end{split}$$

где C_1 - коэффициент, учитывающий среднюю грузоподъемность транспорта,

1,9

1,6

С2 - коэффициент, учитывающий среднюю скорость передвижения транспорта

(при 20 км/ч) 2,00

С₃ - коэффициент, учитывающий состояние дорог,

1.0

 C_4 - коэф., учитывающий профиль поверхности материала на платформе

1.5

 C_5 - коэффициент, учитывающий скорость обдува материала, C_6 - коэффициент, учитывающий влажность верхнего слоя материала,

0,40

 ${\sf C}_7$ - коэффициент учитывающий долю пыли, уносимой в атмосферу,

0,01

N - число ходок (туда и обратно) всего транспорта в час,

M

2,0

L - средняя протяженность одной ходки, q_1 - пылевыделение на $1\ \mbox{км}$ пробега ,

20,0 к 1450 г/км

 ${\bf q}_2$ - пылевыделение с факт. поверхности материала на платформе,

 $0,002 \Gamma/M^2$

F - средняя площадь платформы,

14 м² 2 шт.

3600

 π - число работающих автомашин , T - режим работы автотранспорта,

10 ч/год

0.0107

Итого от транспортировки скального грунта:

Havarayanayya sarpagayayana bayyaarpa	Выб	брос
Наименование загрязняющего вещества	г/сек	т/год
Пыль неорганическая: 70-20 % SiO ₂	0,2986	0,0107

0.2986

Выгрузка скального грунта (ист. 6131)

10

Расчет выбросов пыли от выгрузки грунта производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cee}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^6$$
 / 3600, г/сек $\mathbf{M}_{\mathrm{roi}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\mathrm{roi}}$, т/год

k ₁ - весовая доля пылевой фракции в материале	0,03
k ₂ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,4
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\text{час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
${\bf G}_{{ m rog}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	457,8

$\mathbf{M_c} = \frac{0.03 \, \times \, 0.02 \, \times \, 1.2 \, \times \qquad 1.0 \, \times \qquad 0.40 \, \times \qquad 0.4 \, \times \qquad 0.7 \, \times \, 50.0 \, \times \, 10^{\,6}}{3600} = 1,1200 \qquad \text{r/cerc}$

 $M_r = 0.03 \times -0.02 \times -1.2 \times -1.0 \times -0.40 \times -0.4 \times -0.7 \times -457.8 = 0.0369$ т/год

Итого от выгрузки скального грунта:

Наумамаранна рагредомичена размастра	Выброс	
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	1,1200	0,0369

Планировочные работы бульдозером (ист. 6132)

Расчет выбросов пыли от планировочных работ производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{vac}} \times 10^{6} / 3600$$
, г/сек $\mathbf{M}_{\mathrm{rog}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{\mathrm{rog}}$, т/год

 \mathbf{k}_1 - весовая доля пылевой фракции в материале

0,03

 \mathbf{k}_2 - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль

0,02

\mathbf{k}_3	- коэффициент, учитывающий местные метеоусловия;	1,2
k_4	- коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
	пылеобразования;	1,0
k_5	- коэффициент, учитывающий влажность материала;	0,4
\mathbf{k}_7	- коэффициент, учитывающий крупность материала;	0,4
B`	- коэффициент, учитывающий высоту пересыпки;	0,5
G_{vac}	- производительность узла пересыпки или количество перерабатываемого материала, т/ч;	50,0
$G_{\text{год}}$	- суммарное количество перерабатываемого материала в течение года, т/год;	457,8
М -	$= \frac{0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.40 \times 0.40 \times 0.5 \times 50.0 \times 10^{-6}}{3.000} = 0.8000$	г/сек
IVIc -	3600 0,8000	17000
N	$M_r = 0.03 \times 0.02 \times 1.2 \times 1.0 \times 0.40 \times 0.4 \times 0.5 \times 457.8 = 0.0264$	т/год
	Итого от планировочных работ:	
	Наименование загрязинного вещества Выброс	

Иолисторовина портистивно ромостро	Выброс	
Наименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,8000	0,0264

Вспомогательные работы - 2023 год

Расчет выбросов от газовой резки металла (ист. 6133)

Расчет выбросов загрязняющих веществ в атмосферу от газовой резки металла производится согласно РНД 211.2.02.03-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах, Астана, 2004 г." по формуле:

$$M_{\text{год}}$$
 = $K_{\text{m}} \times T \times (1\text{-n}) \times 0,000001$, т/год;
 $M_{\text{сек}}$ = $K_{\text{m}} \times (1\text{-n}) / 3600$, г/сек

где: K_m - удельный показатель выброса загрязняющих веществ при резке металла, г/час

Т - общее время работы оборудования

20 ч/год

n - степень очистки воздуха в соответствующем аппарате, которым снабжается

группа технологических агрегатов

0

Удельные показатели выбросов загрязняющих веществ (г/ч) при резке металлов толщиной до 20 мм, приведены в таблице:

	К _т , г/час		
Железа оксид	Марганец и его соединения	Оксид углерода	Диоксид азота
197,0	3,0	65,0	53,2

Выбросы оксида железа при резке металла составят:

$$M_{r_{0,1}} =$$
 197,0 × 20 × (1 - 0) × 0,000001 = 0,0039 т/год $M_{cek} =$ 197,0 × (1 - 0) / 3600 = 0,0547 г/сек

Выбросы марганца и его соединений при резке металла составят:

$$M_{rol} = 3.0 \times 20 \times (1 - 0) \times 0.000001 = 0.00006 \ {
m T/rol} = M_{cek} = 3.0 \times (1 - 0) / 3600 = 0.0008 \ {
m F/cek}$$

Выбросы углерода оксида при резке металла составят:

$$\mathbf{M_{r_{01}}} = 65,0 \times 20 \times (1 - 0) \times 0,000001 = 0,0013 \text{ T/год}$$
 $\mathbf{M_{cek}} = 65,0 \times (1 - 0) / 3600 = 0,0181 \text{ F/cek}$

Выбросы диоксида азота при резке металла составят:

$$M_{rol} = 53.2 \times 20 \times (1 - 0) \times 0.000001 = 0.0011$$
 т/год $M_{cek} = 53.2 \times (1 - 0) / 3600 = 0.0148$ г/сек

Итого от передвижных постов газовой резки металла:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Железа оксид	0,0547	0,0039
Марганец и его соединения	0,0008	0,00006
Углерода оксид	0,0181	0,0013
Азота диоксид	0,0148	0,0011

Пост газовой сварки металла пропан-бутановой смесью (ист. 6134)

При работе сварочного поста газовой сварки металла пропан-бутановой смесью в атмосферу выделяется диоксид азота.

Расход пропан-бутановой смеси

5,6 кг/год

Режим работы -

9 ч/год

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\mathrm{rog}}$$
 = $\mathbf{B}_{\mathrm{rog}}$ × \mathbf{K}_{m} × (1-n) × 0,000001, т/год;
 $\mathbf{M}_{\mathrm{cek}}$ = $\mathbf{B}_{\mathrm{час}}$ × \mathbf{K}_{m} × (1-n) / 3600, г/сек

где $\boldsymbol{B}_{\text{год}}$ - расход применяемого сырья и материалов

5,6 кг/год

 $\boldsymbol{B}_{\text{час}}$ - фактический максимальный расход применяемых материалов

0,62 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества (диоксида азота) на

единицу массы расходуемых сырья и материалов,

15,0 г/кг

n - степень очистки воздуха в соответствующем аппарате, которым снабжается группа

группа технологических агрегатов

Выбросы диоксида азота при газовой сварке составят:

Итого от поста газовой сварки пропан-бутановой смесью:

Наименование заглязиянного вещества	Выброс

танменование загрязняющего вещества	г/сек	т/год
Диоксид азота	0,0026	0,00008

Сварочные работы (ист. 6135)

При проведении сварочных работ применяются электроды марки Э-42, Э-46, Э-55. Расчёт произведён по аналогии с электродами марки УОНИ 13/45.

При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

Расход электродов 720,0 кг/год

Режим работы - 500 ч/г

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{B}_{\text{год}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \times 0,000001, \text{т/год};$$

$$\mathbf{M}_{\text{сек}} = \mathbf{B}_{\text{час}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) / 3600, \text{г/сек}$$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

720,0 кг/год

В_{час} - фактический максимальный расход применяемых материалов

1.44 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается группа технологических агрегатов $\ 0$

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами приведены в таблице:

Наименование загрязняющнго вещества	$K_{\rm m}$, г/кг
Железа оксид	10,69
Марганец и его соединения	0,92
Пыль неорганическая (70-20% SiO_2)	1,40
Фтористые соединения газообразные	0,750
Фториды	3,30
Азота диоксид	1,50
Углерода оксид	13,30

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{r_{03}} = 720.0 \times 10.69 \times (1 - 0) \times 0.000001 = 0.0077 \text{ T/r_{03}} \ M_{cek} = 1.44 \times 10.69 \times (1 - 0) / 3600 = 0.0043 \text{ r/cek}$$

Выбросы марганца и его соединений при производстве сварочных работ составят:

$$M_{rol} = 720,0 \times 0.92 \times (1 - 0) \times 0.00001 = 0.0007 \text{ T/rol}$$
 $M_{cek} = 1.44 \times 0.92 \times (1 - 0) \times 3600 = 0.0004 \text{ r/cek}$

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{rol} = 720,0 \times 1,400 \times (1 - 0) \times 0,000001 = 0,0010 \text{ T/rol}$$
 $M_{cek} = 1,44 \times 1,400 \times (1 - 0) / 3600 = 0,0006 \text{ r/cek}$

Выбросы фтористых соединений газообразных при производстве сварочных работ составят:

Выбросы фторидов при производстве сварочных работ составят:

$$M_{rog} = 720,0 \times 3,30 \times (1 - 0) \times 0,000001 = 0,0024 \text{ T/fog}$$
 $M_{cek} = 1,44 \times 3,30 \times (1 - 0) / 3600 = 0,0013 \text{ F/cek}$

Выбросы диоксида азота при производстве сварочных работ составят:

$$M_{\text{rog}} = 720,0 \times 1,50 \times (1 - 0) \times 0,000001 = 0,0011 \text{ T/rog}$$
 $M_{\text{cek}} = 1,44 \times 1,50 \times (1 - 0) / 3600 = 0,0006 \text{ r/cek}$

Выбросы оксида углерода при производстве сварочных работ составят:

$$M_{\rm rol} = 720,0 \times 13,30 \times (1-0) \times 0,000001 = 0,0096$$
 т/год $M_{\rm cek} = 1,44 \times 13,30 \times (1-0) / 3600 = 0,0053$ г/сек

Итого от электродуговой сварки:

	Выб	Выброс	
Наименование загрязняющего вещества	г/сек	т/год	
Железа оксид	0,0043	0,0077	
Марганец и его соединения	0,0004	0,0007	
Пыль неорганическая (70-20% SiO2)	0,0006	0,0010	
Фтористые соединения газообразные	0,0003	0,0005	
Фториды	0,0013	0,0024	
Азота диоксид	0,0006	0,0011	
Углерода оксид	0,0053	0,0096	
Итого:	0.0128	0.0230	

Сварочные работы с применением проволоки

При проведении сварочных работ применяется сварочная проволока. При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

 Расход проволоки
 175,0
 кг/год
 Режим работы 194
 ч/год

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$egin{aligned} \mathbf{M}_{\mathrm{rog}} &= \mathbf{B}_{\mathrm{rog}} imes \mathbf{K}_{\mathrm{m}} imes (1\text{-n}) imes 0,000001, \ \mathrm{T/год}; \\ \mathbf{M}_{\mathrm{ce\kappa}} &= \mathbf{B}_{\mathrm{vac}} imes \mathbf{K}_{\mathrm{m}} imes (1\text{-n}) \ / \ 3600, \ \mathrm{r/ce\kappa} \end{aligned}$$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

175,0 кг/год

 $B_{\mbox{\tiny qac}}$ - фактический максимальный расход применяемых материалов

0,90 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается

группа технологических агрегатов

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами

Наименование загрязняющнго вещества	$K_{\rm m}$, г/кг
Железа оксид	38,00
Марганец и его соединения	1,48
Пыль неорганическая (70-20% SiO_2)	0,16

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{r_{0,1}} = 175,0 \times 38,00 \times (1 - 0) \times 0,000001 = 0,0067 \text{ T/rom}$$
 $M_{cek} = 0,90 \times 38,00 \times (1 - 0) / 3600 = 0,0095 \text{ r/cek}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

$$M_{rog} = 175,0 \times 1,48 \times (1 - 0) \times 0,000001 = 0,0003 \text{ T/rog}$$
 $M_{cek} = 0,90 \times 1,48 \times (1 - 0) / 3600 = 0,0004 \text{ r/cek}$

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{rol} = 175,0 \times 0,160 \times (1 - 0) \times 0,000001 = 0,00003 \text{ T/rol}$$
 $M_{cek} = 0,90 \times 0,160 \times (1 - 0) / 3600 = 0,00004 \text{ r/cek}$

Итого от сварочных работ с применением проволоки:

Harmananana aaragamaanana namaarna	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Железа оксид	0,0095	0,0067
Марганец и его соединения	0,0004	0,0003
Пыль неорганическая (70-20% SiO2)	0,00004	0,00003

Итого от сварочных работ:

Наименование загрязняющего вещества	Выб	Выброс	
	г/сек	т/год	
Железа оксид	0,0138	0,0144	
Марганец и его соединения	0,0008	0,0010	
Пыль неорганическая (70-20% SiO2)	0,00064	0,00103	
Фтористые соединения газообразные	0,0003	0,0005	
Фториды	0,0013	0,0024	
Азота диоксид	0,0006	0,0011	
Углерода оксид	0,0053	0,0096	
Итого:	0,0227	0,0300	

Покрасочные и грунтовочные работы

Расчет выбросов от процесса грунтовки ГФ-021 (ист. 6136)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении грунтовки на поверхность изделия определяется по формулам:

$$egin{align*} \mathbf{M}_{\text{и.окр.}} = \mathbf{m}_{\phi} imes \delta_{a} imes (100 \text{-} \mathbf{f}_{p}) imes (1 \text{-} \mathbf{n}) imes 10^{\text{-}4}, \ \text{т/год} \ \\ \mathbf{M}_{\text{и.окр.}} = \mathbf{m}_{\text{M}} imes \delta_{a} imes (100 \text{-} \mathbf{f}_{p}) imes (1 \text{-} \mathbf{n}) imes 10^{\text{-}4} / 3,6, \ \text{т/год} \ \\ \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,3800 т

 δ_a - доля краски, потеряной в виде аэрозоля,

30,0 % мас.

f_p - доля летучей части (растворителя) в ЛКМ,

45,0 % мас.

n - степень очистки воздуха газоочистным оборудованием

т, - фактический максимальный часовой расход ЛКМ,

3,00 кг/час

$$M_{\text{H.okp.}} = 0.3800 \times 30.0 \times (100)$$
 $M_{\text{H.okp.}} = 3.00 \times 30.0 \times (100)$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при нанесении грунтовки на поверхность изделия, определяется по формуле:

45,0

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ т/год;} \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{M} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

0.3800

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности 3,00 кг/час

работы оборудования,

f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении грунтовки составят:

$$\mathbf{M}^{x}_{\text{okp}} = 0,3800 \times 45,0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0,0428 \text{ T/rog}$$
 $\mathbf{M}^{x}_{\text{okp}} = 3,00 \times 45,0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0938 \text{ r/cek}$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при сушке нанесенной грунтовки, определяется по формуле:

$$\begin{split} \mathbf{M^{x}}_{\text{okp}} &= \mathbf{m_{\phi}} \times \mathbf{f_{p}} \times \boldsymbol{\delta_{p}} `` \times \boldsymbol{\delta_{x}} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}, \text{ t/fol}; \\ \mathbf{M^{x}}_{\text{okp}} &= \mathbf{m_{w}} \times \mathbf{f_{p}} \times \boldsymbol{\delta_{p}} `` \times \boldsymbol{\delta_{x}} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}/3,6, \text{ t/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,3800 т/год

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

3,00 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 лол. ел.

Выбросы ксилола при сушке грунтовки составят:

$$M_{\text{okp}}^{x} = 0,380 \times 45,0 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0,1283 \text{ T/rog}$$
 $M_{\text{okp}}^{x} = 3,00 \times 45,0 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,2813 \text{ r/cek}$

Итого от процесса грунтовки:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Взвешенные частицы	0,1375	0,0627
Ксилол	0,3751	0,1711

Расчет выбросов от процесса покраски мастикой МБ-50 (по аналогии с БТ-577) (ист. 6137)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$$M_{\text{H.ОКD.}} = m_{\phi} \times \delta_{a} \times (100 - f_{p}) \times (1 - n) \times 10^{-4}, \text{ т/год}$$

$$M_{\text{н.окр.}} = m_{\text{м}} \times \delta_{\text{a}} \times (100 - f_{\text{p}}) \times (1 - n) \times 10^{-4} / 3,6, \text{ т/год}$$

где m_φ - фактический годовой расход ЛКМ,

 δ_a - доля краски, потеряной в виде аэрозоля,

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ,

n - степень очистки воздуха газоочистным оборудованием

 $m_{_{\rm M}}$ - фактический максимальный часовой расход ЛКМ,

3,00 кг/час

$$M_{\text{н.окр.}} = 0,8050$$
 × 30,0 × (100 - 63,0) × (1 - 0) × 10^{-4} = 0,0894 т/год $M_{\text{н.окр.}} = 3,00$ × 30,0 × (100 - 63,0) × (1 - 0) × 10^{-4} / 3,6 = 0,0925 г/сек

Выброс индивидуальных летучих компонентов краски, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{\text{X}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{\text{p}} \times \boldsymbol{\delta}_{\text{p}} \times \boldsymbol{\delta}_{\text{x}} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/foh;} \\ \mathbf{M}_{\text{okp}}^{\text{X}} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{\text{p}} \times \boldsymbol{\delta}_{\text{p}} \times \boldsymbol{\delta}_{\text{x}} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,805 т/год

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 3.00 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

уайт-спирит 42,60 % мас. ксилол 57,40 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы уайт-спирита при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0.8050$$
 \times 63,0 \times 25 \times 42,60 \times (1 - 0) \times 10⁻⁶ = 0.0540 $_{\text{T}/\text{Год}}$ $M_{\text{okp}}^{x} = 3.00$ \times 63,0 \times 25 \times 42,60 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0.0559 $_{\text{Г/сек}}$

Выбросы ксилола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0.8050$$
 \times 63.0 \times 25 \times 57.40 \times $($ 1 - 0 $)$ \times 10^{-6} $=$ 0.0728 T/FOX $M_{\text{okp}}^{x} = 3.00$ \times 63.0 \times 25 \times 57.40 \times $($ 1 - 0 $)$ \times 10^{-6} $/$ 3.6 $=$ 0.0753 T/cek

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{окр}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \\ & \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ т/год;} \\ \mathbf{M}_{\text{окр}}^{x} &= \mathbf{m}_{\text{M}} \times \mathbf{f}_{p} \times \delta_{p} \\ & \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ г/сек} \end{split}$$

где т_ф - фактический годовой расход ЛКМ,

0.8050 т/гол

 $m_{_{\! M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 3.00 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 δ_{p} `` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

уайт-спирит 42.60 % мас. ксилол 57,40 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы уайт-спирит при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,8050$$
 \times $63,0$ \times 75 \times $42,60$ \times $($ 1 - 0 $) \times 10^{-6} $=$ $0,1620$ t/год $M_{\text{okp}}^{x} = 3,00$ \times $63,0$ \times 75 \times $42,60$ \times $($ 1 - 0 $) \times 10^{-6} $/$ $3,6$ $=$ $0,1677$ $\text{t/cek}$$$

Выбросы ксилол при сушке краски составят:

$$\mathbf{M^{x}}_{\text{okp}} = 0.8050$$
 \times 63.0 \times 75 \times 57.40 \times (1 - 0) \times 10⁻⁶ = 0.21833 T/год $\mathbf{M^{x}}_{\text{okp}} = 3.00$ \times 63.0 \times 75 \times 57.40 \times (1 - 0) \times 10⁻⁶ / 3.6 = 0.2260 T/cek

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Взвешенные частицы	0,0925	0,08940
Уайт-спирит	0,2236	0,21600
Ксилол	0,3013	0,29113

Расчет выбросов от процесса покраски ПФ-115 (ист. 6138)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$$\begin{split} \mathbf{M}_{\text{н.окр.}} &= \mathbf{m}_{\varphi} \times \delta_{a} \times (100\text{-}\mathbf{f}_{p}) \times (1\text{-}\mathbf{n}) \times 10^{\text{-}4}, \text{т/год} \\ \\ \mathbf{M}_{\text{н.окр.}} &= \mathbf{m}_{\text{м}} \times \delta_{a} \times (100\text{-}\mathbf{f}_{p}) \times (1\text{-}\mathbf{n}) \times 10^{\text{-}4}/3,6, \text{т/год} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0.7500

 $\delta_{\rm a}$ - доля краски, потеряной в виде аэрозоля,

30,0 % мас.

 f_p - доля летучей части (растворителя) в ЛКМ,

45,0 % мас.

n - степень очистки воздуха газоочистным оборудованием

т, - фактический максимальный часовой расход ЛКМ,

3.00 кг/час

$$M_{\text{н.окр.}} = 0.750 \times 30.0 \times ($$

Выброс индивидуальных летучих компонентов краски, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fol}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{M} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

0.750 т/гол

т, фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 3,00 кг/час

 ${\bf f}_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 50.00 уайт-спирит 50,00 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,750$$
 \times $45,0$ \times 25 \times $50,00$ \times $($ 1 - 0 $) \times 10^{-6} $=$ $0,0422$ t/год $M_{\text{okp}}^{x} = 3,00$ \times $45,0$ \times 25 \times $50,00$ \times $($ 1 - 0 $) \times 10^{-6} $/$ $3,6$ $=$ $0,0469$ $\text{t/cek}$$$

Выбросы уайт-спирита при нанесении краски составят:

$$M^{x}_{okp} = 0,750$$
 \times $45,0$ \times 25 \times $50,00$ \times $(1 - 0) \times 10^{-6} = 0,0422$ t/год $M^{x}_{okp} = 3,00$ \times $45,0$ \times 25 \times $50,00$ \times $(1 - 0) \times 10^{-6}$ / $3,6$ = 0,0469 t/cek

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{x} = \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{x} = \mathbf{m}_{M} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-\mathbf{n}) \times 10^{-6} / 3,6, \text{ г/сек}$$

где m_{φ} - фактический годовой расход ЛКМ,

т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 3,00 кг/час

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 $\delta_{\rm p}$ - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

50,00 % мас. ксилол 50,00 % мас. vайт-спирит

n - степень очистки воздуха газоочистным оборудованием

0 лол. ел.

Выбросы ксилола при сушке краски составят:

$$M^{x}_{\text{okp}} = 0,750$$
 \times 45,0 \times 75 \times 50,00 \times (1 - 0) \times 10⁻⁶ = 0,1266 т/год $M^{x}_{\text{okp}} = 3,00$ \times 45,0 \times 75 \times 50,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,1406 г/сек

Выбросы уайт-спирита при сушке краски составят:

$$\mathbf{M^{x}}_{\text{okp}} = 0,750$$
 \times 45,0 \times 75 \times 50,00 \times (1 - 0) \times 10⁻⁶ = 0,1266 $_{\text{T}}$ /год $\mathbf{M^{x}}_{\text{okp}} = 3,00$ \times 45,0 \times 75 \times 50,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,1406 $_{\text{T}}$ /сек

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Взвешенные частицы	0,1375	0,1238
Ксилол	0,1875	0,1688
Уайт-спирит	0,1875	0,1688

<u>Пропитка битумом щебеночных оснований под железобетонные конструкции и гидроизоляция бетонных поверхностей конструкций и фундаментов (ист. 6139)</u>

Расчет выбросов углеводородов в атмосферу от использования битума и битумно-масляной эмульсии выполняется по аналогии с расчетами от емкостей и хранилиш битума (п. 6.2.4.Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами) по формуле:

 $M = 2,52 \times 10 \times 18 \times 127,5 \times (0,015 + 0,584) \times 1,26 \times 1,10 \times 10^{-9} = 0,00005 \text{ kg/y}$ $MT = 0,00005 \times 50 / 1000 = 0,000025 \text{ T/rog}$ $MT = 0,00005 \times 1000 / 3600 = 0,000014 \text{ T/cek}$

Итого от использования битума:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Углеводороды предельные (C_{12} - C_{19})	0,000014	0,0000025

Расчет выбросов от использования керосина (ист. 6140)

Выброс индивидуальных летучих компонентов растворителя (керосина), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{окр}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ т/год;} \\ \mathbf{M}_{\text{окр}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3,6, \text{ г/сек} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,0810 т/год

 $m_{_{\! M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 2,000 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

керосин 100 % мас.

Выбросы керосина при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,08100$$
 × 100 × 25 × 100 × $(1 - 0)$ × $10^{-6} = 0,0203$ т/год $M_{\text{okp}}^{x} = 2,000$ × 100 × 25 × 100 × $(1 - 0)$ × 10^{-6} / $3,6 = 0,1389$ г/сек

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}^{x}_{\text{окр}} = \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \cong \delta_{x} \times (1-n) \times 10^{-6}, \text{ т/год};$$

$$\mathbf{M}^{x}_{\text{окр}} = \mathbf{m}_{x} \times \mathbf{f}_{p} \times \delta_{p} \cong \delta_{x} \times (1-n) \times 10^{-6} / 3,6, \text{ г/сек}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,08100 т/год

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

2,000 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

керосин 100 % мас.

п - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы керосина при сушке краски составят:

$$M_{\text{okp}}^{x} = 0.08100 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0.0608 \text{ г/год}$$

 $M_{\text{okp}}^{x} = 2.000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.4167 \text{ г/сек}$

Итого от использования керосина:

Цанманаранна загрязняющего рашаетра	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Керосин	0,5556	0,0811

Расчет выбросов от использования ксилола (ист. 6141)

Выброс индивидуальных летучих компонентов растворителя (ксилола), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{\text{X}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{\text{p}} \times \boldsymbol{\delta}_{\text{p}} \times \boldsymbol{\delta}_{\text{x}} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fog;} \\ \mathbf{M}_{\text{okp}}^{\text{X}} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{\text{p}} \times \boldsymbol{\delta}_{\text{p}} \times \boldsymbol{\delta}_{\text{x}} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,0620

т, - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования,

2,000 кг/час $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 $\delta_p \hat{\ }$ - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 лол. ел.

Выбросы ксилола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,06200 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0,01550 \text{ T/год}$$
 $M_{\text{okp}}^{x} = 2,000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,1389 \text{ г/сек}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{окр}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \\ ^{``} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ т/год;} \\ \mathbf{M}_{\text{окр}}^{x} &= \mathbf{m}_{m} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \\ ^{``} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}} / 3,6, \text{ г/сек} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,06200 т/год

 $m_{_{\!M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

2,000 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 $\delta_{p}\ \tilde{}\$ - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

ксилол 100 % мас.

Выбросы ксилола при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,06200 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0,04650 \text{ г/год}$$

 $M_{\text{okp}}^{x} = 2,000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,4167 \text{ г/сек}$

Итого от использования ксилола:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Ксилол	0,5556	0,0620

Расчет выбросов от использования уайт-спирита (ист. 6142)

Выброс индивидуальных летучих компонентов растворителя (уайт - спирита), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\phi} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\mathbf{m}} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{n}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6} / 3.6, \text{ г/сек}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,1200 т/год

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 2,000 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 $\delta_{\!p}\, \hat{}\,$ - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

уайт-спирит 100 % мас. 0 лол. ел.

n - степень очистки воздуха газоочистным оборудованием

Выбросы уайт-спирита при нанесении краски составят:

$$M^{x}_{okp} = 0,12000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0,03000 \text{ T/rog}$$

 $M^{x}_{okp} = 2,000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,1389 \text{ r/cek}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{\text{x}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{\text{p}} \times \delta_{\text{p}} `` \times \delta_{\text{x}} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fod;} \\ \mathbf{M}_{\text{okp}}^{\text{x}} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{\text{p}} \times \delta_{\text{p}} `` \times \delta_{\text{x}} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,12000 т/год

 $\rm m_{\rm \scriptscriptstyle M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

2,000 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 $\delta_{p} \, \widetilde{} \,$ - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

n - степень очистки воздуха газоочистным оборудованием

уайт-спирит 100 % мас.

Выбросы уайт-спирита при сушке краски составят:

$$M_{\text{okp}}^{x} = 0.12000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0.09000 \text{ T/rog}$$

 $M_{\text{okp}}^{x} = 2.000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.4167 \text{ r/cek}$

Итого от использования уайт-спирита:

Have covered to the government of the covered to th	Е	Выброс		
Наименование загрязняющего вещества	г/сек	т/год		
Vайт-спи п ит	0.5556	0.1200		

Расчет выбросов загрязняющих веществ от шлифовальных машин (ист. 6143)

Для расчета выбросов абразивной и металлической пыли в атмосферный воздух применяется методика по расчету выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004.

Валовое и максимально-разовое количество загрязняющих веществ, образующихся от одной единицы оборудования, при обработке металла без применения СОЖ определяется по формулам:

$$M = k \times Q \times T \times 3600 \times (1 - \eta) \times 10^{-6}$$
, т/год $M' = k \times Q \times (1 - \eta)$, г/сек

где k - коэффициент гравитационного оседания, для источников выбросов, не оборудованных системой местных отсосов или коэффициент эффективности местных отсосов, для источников оборудованных системой местных отсосов

г/с

к принят равным 0,2 как коэффициент гравитационного оседания для абразивной и металлической пыли Q - удельный показатель пылеобразования на единицу оборудования, г/с

Q принято равным для пыли абразивной

0.0250

для пыли металлической 0,0380

как для плоскошлифовального станка с диаметром абразивного круга 500 мм

Т - фактический годовой фонд времени работы одной единицы обору-

дования, ч. Согласно данным предприятия:

η - степень очистки воздуха пылеулавливающим оборудованием (в дол. ед.)

η = 0,0 , станки не оснащены пылегазоулавливающим оборудованием

Валовое и максимально-разовое количество абразивной пыли, образующееся от одной единицы оборудования:

$$M' = 0.2 \times 0.0250 \times (1 - 0.0) = 0.0050$$
 r/cek $M = 0.2 \times 0.025 \times 361.00 \times 3600 \times (1 - 0.0) \times 10^{-6} = 0.0065$ r/rom

Валовое и максимально-разовое количество металлической пыли, образующееся от одной единицы оборудования:

$$M'=0,2$$
 × 0,0380 × (1 - 0,0) = 0,0076 г/сек
 $M=0,2$ × 0,038 × 361,00 × 3600 × (1 - 0,0) × 10⁻⁶ = 0,0099 т/год

Итого	
Валовый выброс, Π = $\Sigma\Pi$ i, тонн/год	
Пыль абразивная	0,006500
Пыль металлическая (взвешенные частицы)	0,009900
Максимально разовый выброс, М=ΣМі, гр/	сек
Пыль абразивная	0,005000
Пыль металлическая (взвешенные частицы)	0,007600

Ремонт дорог щебнем фр. 40-80

Выгрузка щебня фр. 40-80 мм (ист. 6147)

Расчет выбросов пыли от выгрузки щебня производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{aligned} \mathbf{M}_{cee} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{uac} \times \mathbf{10}^6 \ / \ \mathbf{3600}, \ \mathbf{r/cer} \\ \mathbf{M}_{rm} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{rm}, \ \mathbf{r/rog} \end{aligned}$$

100 -1 -2 -3 -4 -3 -7 - 1000	
${f k}_1$ - весовая доля пылевой фракции в материале	0,04
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
${f k}_3$ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,4
В' - коэффициент, учитывающий высоту пересыпки;	0,7
G_{vac} - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	816,2

\mathbf{M}_{c}	0,04 × 0,02 ×	1,2	×	1,0	×	0,60 ×	0,4	× (0,7	×	25,0 ×	$\frac{10^{6}}{}$ = 1.1200	Elaora
IVI _c	-						3600					= 1,1200	г/сек

 $M_{r} = 0.04 \ \times \quad 0.02 \quad \times \quad 1.2 \quad \times \quad 1.0 \ \times \quad 0.60 \ \times \quad \quad 0.4 \qquad \qquad \times \qquad \quad 0.7 \ \times \ 816.20 \ = \ 0.1316 \quad _{T/\Gamma0.0} = 0.0000 \quad \times = 0.00000 \quad \times = 0.0000 \quad \times = 0.0000 \quad \times = 0.00000 \quad \times = 0.00000 \quad \times = 0.00000 \quad \times = 0.00000$

Итого от выгрузки щебня:

Have a various a company of the participants	Выб	Выброс		
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	1,1200	0,1316		

Разработка (перемещение) щебня автогрейдером (ист. 6148)

Расчет выбросов пыли от разработки щебня бульдозером производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{ce\kappa} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \ \mathbf{B}^{`} \times \mathbf{G}_{uac} \times \mathbf{10}^{6} \ / \ 3600, \ r/ce\kappa \\ \mathbf{M}_{ro, z} &= \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{`} \times \mathbf{G}_{ro, z}, \ T/roj \end{split}$$

k ₁ - весовая доля пылевой фракции в материале	0,04
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
\mathbf{k}_3 - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: 	1,0
${ m k}_{5}\ $ - коэффициент, учитывающий влажность материала;	0,6
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,4
В' - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	816,2

Итого при разработке щебня будьдозером:

Наименование загрязняющего вещества		рос
паименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,8000	0,0940

Расчет выбросов от дизельной электростанции (ист. 0149)

Дизельная электростанция (ДЭС) мощностью 4 кВт/час служит в качестве источника электроэнергии. Расход дизельного топлива составит 10,0 тонн. Выброс загрязняющих веществ осуществляется через выхлопную трубу высотой 1 м и диаметром устья – 0,1 м. Скорость воздушного потока – 0,2 м/с.

В качестве топлива используется дизельное топливо со следующими характеристиками на рабочую массу:

зольность, (A^r) - 0,025 %

содержание серы, (S^r) - 0,3 %

низшая теплота сгорания, (Q_i^r) -

42,75 МДж/кг

	2023 г				
Годовой расход топлива	10,0	тонн			
Режим работы	1558	ч/год			

В процессе сжигания дизельного топлива в генераторном агрегате в атмосферу выделяется: оксид углерода, сажа (углерод черный), углеводороды предельные C_{12} - C_{19} , диоксид азота, формальдегид, диоксид серы и бенз(а)пирен.

Расчет выбросов загрязняющих веществ от генераторного агрегата производится согласно п. 6.1 и 6.2 РНД 211.2.02.04-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок".

Максимальный выброс i-го вещества (г/сек) стационарной дизельной установкой определяется по формуле:

$$M_{cek} = e_i \times P_{\mathcal{F}} / 3600$$
, r/cek;

где е; - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности,

 ${\bf P}_{\rm 9}$ - эксплуатационная мощность стационарной дизельной установки,

40 κB

Удельные показатели выбросов загрязняющих веществ на единицу полезной работы маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	е _і , г/кВт ч
Углерода оксид	7,2
Окислы азота	10,3
Углеводороды предельные C_{12} - C_{19}	3,6
Сажа (углерод черный)	0,7
Диоксид серы	1,1
Формальдегид	0,15
Бенз(а)пирен	0,000013

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{cek} = 7.2 \times 4.0$$
 / 3600 = 0.0080 г/сек

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{\rm cek}$$
 = 10,3 × 4,0 / 3600 = 0,0114 г/сек в пересчёте на NO₂ $M_{\rm cek}$ = 0,8 × 0,0114 = 0,0091 г/сек в пересчёте на NO $M_{\rm cek}$ = 0,13 × 0,0114 = 0,0015 г/сек

Выбросы углеводородов предельных $C_{12}\text{-}C_{19}$ при работе генераторного агрегата составят:

$$M_{\rm cek}$$
 = 3,6 × 4,0 / 3600 = 0,0040 г/сек

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

$$M_{cek} = 0.7 \times 4.0$$
 / 3600 = 0.0008 г/сек

Выбросы диоксида серы при работе генераторного агрегата составят:

$$M_{cek}$$
 = 1,1 × 4,0 / 3600 = 0,0012 г/сек

Выбросы формальдегида при работе генераторного агрегата составят:

$$M_{cek} = 0.15 \times 4.0 / 3600 = 0.0002 \text{ g/cek}$$

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

$$M_{cek} = 0,000013 \times 4,0$$
 / 3600 = 0,00000001 г/сек

Валовый выброс і-го вещества (т/год) за год стационарной дизельной установкой определяется по формуле:

$$M_{rog} = q_i \times B_{rog} / 1000$$
, т/год;

где q_i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной B_{rog} - расход топлива стационарной дизельной установкой за год 10,0 т. 2023 г

Удельные показатели выбросов загрязняющих веществ на один кг дизельного топлива при работе маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	q _i , г/кг
Углерода оксид	30
Окислы азота	43
Углеводороды предельные C ₁₂ -C ₁₉	15
Сажа (углерод черный)	3,0
Диоксид серы	4,5
Формальдегид	0,6
Бенз(а)пирен	0,000055

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{\text{год}}$$
 = 30 × 10,000 / 1000 = 0,3000 т/год

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{rog} = 43 \times 10,000$$
 / $1000 = 0,4300$ т/год в пересчёте на NO $M_{rog} = 0,8 \times 0,4300 = 0,3440$ т/год в пересчёте на NO $M_{rog} = 0,13 \times 0,4300 = 0,0559$ т/год

Выбросы углеводородов предельных $C_{12}\text{-}C_{19}$ при работе генераторного агрегата составят:

$$M_{rog}$$
 = 15 × 10,000 / 1000 = 0,1500 т/год

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

$$M_{rog}$$
 = 3,0 × 10,000 / 1000 = 0,0300 т/год

Выбросы диоксида серы при работе генераторного агрегата составят:

$$M_{rog}$$
 = 4,5 × 10,000 / 1000 = 0,0450 т/год

Выбросы формальдегида при работе генераторного агрегата составят:

$$M_{\rm rog}$$
 = 0,6 × 10,000 / 1000 = 0,00600 т/год

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

$$M_{rol} = 0,000055 \times 10,000 / 1000 = 0,0000006 T/rog$$

Итого от ДЭС (ист.0001):

Наименование загрязняющего вещества	Выброс 2023 г		
Углерода оксид	0,0080	0,3000	
Азота оксид	0,0015	0,0559	
Азота диоксид	0,0091	0,3440	
Углеводороды предельные C_{12} - C_{19}	0,0040	0,1500	
Сажа (углерод черный)	0,0008	0,0300	
Диоксид серы	0,0012	0,0450	
Формальдегид	0,0002	0,00600	
Бенз(а)пирен	0,00000001	0,0000006	

Вспомогательные работы - 2024 год

Расчет выбросов от газовой резки металла (ист. 6133)

Расчет выбросов загрязняющих веществ в атмосферу от газовой резки металла производится согласно РНД 211.2.02.03-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах, Астана, 2004 г." по формуле:

$$M_{\text{год}}$$
 = $K_{\text{m}} \times T \times (1\text{-n}) \times 0,000001$, т/год;
 $M_{\text{сек}}$ = $K_{\text{m}} \times (1\text{-n})$ / 3600, г/сек

где: K_m - удельный показатель выброса загрязняющих веществ при резке металла, г/час

Т - общее время работы оборудования

20 ч/год

n - степень очистки воздуха в соответствующем аппарате, которым снабжается

группа технологических агрегатов

Удельные показатели выбросов загрязняющих веществ (г/ч) при резке металлов толщиной до 20 мм, приведены в таблице:

К _т , г/час							
Железа оксид	Марганец и его соединения	Оксид углерода	Диоксид азота				
197,0	3,0	65,0	53,2				

Выбросы оксида железа при резке металла составят:

Выбросы марганца и его соединений при резке металла составят:

$$M_{rol} = 3.0 \times 20 \times (1 - 0) \times 0.000001 = 0.00006 \text{ т/год}$$
 $M_{cek} = 3.0 \times (1 - 0) / 3600 = 0.0008 \text{ г/сек}$

Выбросы углерода оксида при резке металла составят:

$$M_{\rm rog} = 65,0$$
 × 20 × (1 - 0) × 0,000001 = 0,0013 т/год $M_{\rm cek} = 65,0$ × (1 - 0) / 3600 = 0,0181 г/сек

Выбросы диоксида азота при резке металла составят:

$$M_{rol} = 53.2 \times 20 \times (1 - 0) \times 0.000001 = 0.0011 \text{ T/rol}$$

 $M_{cer} = 53.2 \times (1 - 0) / 3600 = 0.0148 \text{ T/cer}$

Итого от передвижных постов газовой резки металла:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Железа оксид	0,0547	0,0039
Марганец и его соединения	0,0008	0,00006
Углерода оксид	0,0181	0,0013
Азота диоксид	0,0148	0,0011

Пост газовой сварки металла пропан-бутановой смесью (ист. 6134)

При работе сварочного поста газовой сварки металла пропан-бутановой смесью в атмосферу выделяется диоксид азота.

Расход пропан-бутановой смеси

5,6 кг/год

Режим работы -

6 ч/год

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{B}_{\text{год}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \times 0,000001, \text{ т/год;}$$

$$\mathbf{M}_{\text{сек}} = \mathbf{B}_{\text{час}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) / 3600, \text{ г/сек}$$

где Вгол - расход применяемого сырья и материалов

5,6 кг/год

 $\boldsymbol{B}_{\text{час}}$ - фактический максимальный расход применяемых материалов

0,93 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества (диоксида азота) на

единицу массы расходуемых сырья и материалов,

15,0 г/кг

n - степень очистки воздуха в соответствующем аппарате, которым снабжается группа

группа технологических агрегатов

Выбросы диоксида азота при газовой сварке составят:

$$M_{rot} = 5.6 \times 15.0 \times (1 - 0) \times 0.00001 = 0.00008 \text{ T/rog}$$
 $M_{cek} = 0.93 \times 15.0 \times (1 - 0) \times 3600 = 0.0039 \text{ r/cek}$

Итого от поста газовой сварки пропан-бутановой смесью:

Наименование загрязняющего вещества	Выброс

ттаименование загрязняющего вещества	г/сек	т/год
Диоксид азота	0,0039	0,00008

Сварочные работы (ист. 6135)

При проведении сварочных работ применяются электроды марки Э-42, Э-46, Э-55. Расчёт произведён по аналогии с электродами марки УОНИ 13/45.

При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

Расход электродов 730,0 кг/год

Режим работы - 405 ч/год

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{B}_{\text{год}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \times 0,000001, \text{т/год};$$

$$\mathbf{M}_{\text{сек}} = \mathbf{B}_{\text{час}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) / 3600, \text{г/сек}$$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

730,0 кг/год

В_{час} - фактический максимальный расход применяемых материалов

1,80 кг/час

 $K_{\rm m}$ - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается группа технологических агрегатов $\ 0$

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами приведены в таблице:

Наименование загрязняющнго вещества	K _m , г/кг
Железа оксид	10,69
Марганец и его соединения	0,92
Пыль неорганическая (70-20% SiO ₂)	1,40
Фтористые соединения газообразные	0,750
Фториды	3,30
Азота диоксид	1,50
Углерода оксид	13,30

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{r_{01}} = 730.0 \times 10.69 \times (1 - 0) \times 0.000001 = 0.0078 \text{ T/rog}$$
 $M_{cek} = 1.80 \times 10.69 \times (1 - 0) / 3600 = 0.0053 \text{ r/cek}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{\rm rog} = 730.0 \times 1,400 \times (1 - 0) \times 0,000001 = 0,0010 \, {\rm T/fog}$$
 $M_{\rm cek} = 1,80 \times 1,400 \times (1 - 0) / 3600 = 0,0007 \, {\rm F/cek}$

Выбросы фтористых соединений газообразных при производстве сварочных работ составят:

Выбросы фторидов при производстве сварочных работ составят:

$$M_{rog} = 730.0 \times 3.30 \times (1 - 0) \times 0.000001 = 0.0024 \text{ T/rog}$$
 $M_{cek} = 1.80 \times 3.30 \times (1 - 0) / 3600 = 0.0017 \text{ r/cek}$

Выбросы диоксида азота при производстве сварочных работ составят:

$$M_{\rm rol} = 730,0 \times 1,50 \times (1 - 0) \times 0,000001 = 0,0011 \ {\rm T/rol} = M_{\rm cek} = 1,80 \times 1,50 \times (1 - 0) / 3600 = 0,0008 \ {\rm f/cek}$$

Выбросы оксида углерода при производстве сварочных работ составят:

$$M_{\rm ro, 1} = 730,0 \times 13,30 \times (1 - 0) \times 0,000001 = 0,0097$$
 т/год $M_{\rm cek} = 1,80 \times 13,30 \times (1 - 0) / 3600 = 0,0067$ г/сек

Итого от электродуговой сварки:

However and the second of the	Выб	Выброс	
Наименование загрязняющего вещества	г/сек	т/год	
Железа оксид	0,0053	0,0078	
Марганец и его соединения	0,0005	0,0007	
Пыль неорганическая (70-20% SiO2)	0,0007	0,0010	
Фтористые соединения газообразные	0,0004	0,0006	
Фториды	0,0017	0,0024	
Азота диоксид	0,0008	0,0011	
Углерода оксид	0,0067	0,0097	
Итого:	0.0161	0.0233	

Сварочные работы с применением проволоки

При проведении сварочных работ применяется сварочная проволока. При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

 Расход проволоки
 170,0
 кг/год
 Режим работы 70
 ч/год

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$egin{aligned} \mathbf{M}_{\mathrm{rog}} &= \mathbf{B}_{\mathrm{rog}} imes \mathbf{K}_{\mathrm{m}} imes (1\text{-n}) imes 0,000001, \ \mathrm{T/год}; \\ \mathbf{M}_{\mathrm{ce\kappa}} &= \mathbf{B}_{\mathrm{vac}} imes \mathbf{K}_{\mathrm{m}} imes (1\text{-n}) \ / \ 3600, \ \mathrm{r/ce\kappa} \end{aligned}$$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

170,0 кг/год

 $\mathbf{B}_{\mathrm{qac}}$ - фактический максимальный расход применяемых материалов

2,43 кг/час

 K_{m} - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается

группа технологических агрегатов

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами

Наименование загрязняющнго вещества	$K_{\rm m}$, г/кг
Железа оксид	38,00
Марганец и его соединения	1,48
Пыль неорганическая (70-20% SiO ₂)	0,16

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{rol} = 170.0 \times 38.00 \times (1 - 0) \times 0.000001 = 0.0065 \text{ T/rol}$$
 $M_{cek} = 2.43 \times 38.00 \times (1 - 0) \times 3600 = 0.0257 \text{ r/cek}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

$$M_{ron} = 170.0 \times 1.48 \times (1 - 0) \times 0.000001 = 0.00025 \text{ T/rom}$$
 $M_{cek} = 2.43 \times 1.48 \times (1 - 0) / 3600 = 0.0010 \text{ r/cek}$

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{rol} = 170.0 \times 0.160 \times (1 - 0) \times 0.000001 = 0.000027 \text{ T/rol}$$

 $M_{cek} = 2.43 \times 0.160 \times (1 - 0) / 3600 = 0.00011 \text{ r/cek}$

Итого от сварочных работ с применением проволоки:

Наименование загрязняющего вещества	Выброс	
таименование загрязняющего вещества	г/сек	т/год
Железа оксид	0,0257	0,0065
Марганец и его соединения	0,0010	0,000250
Пыль неорганическая (70-20% SiO2)	0,00011	0,000027

Итого от сварочных работ:

Наимонование загразнателнате ванноства	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Железа оксид	0,0310	0,0143
Марганец и его соединения	0,0015	0,0010
Пыль неорганическая (70-20% SiO2)	0,00081	0,00103
Фтористые соединения газообразные	0,0004	0,0006
Фториды	0,0017	0,0024
Азота диоксид	0,0008	0,0011
Углерода оксид	0,0067	0,0097
Итого:	0,0429	0,0301

Покрасочные и грунтовочные работы

Расчет выбросов от процесса грунтовки ГФ-021 (ист. 6136)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении грунтовки на поверхность изделия определяется по формулам:

где m_φ - фактический годовой расход ЛКМ,

0,3800 т

 δ_a - доля краски, потеряной в виде аэрозоля,

30,0 % мас.

f_p - доля летучей части (растворителя) в ЛКМ,

45,0 % мас.

n - степень очистки воздуха газоочистным оборудованием

0

т, - фактический максимальный часовой расход ЛКМ,

3,00 кг/час

$$M_{\text{H.OKP.}} = 0,3800 \times 30,0 \times (100$$
 $M_{\text{H.OKP.}} = 3,00 \times 30,0 \times (100$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при нанесении грунтовки на поверхность изделия, определяется по формуле:

45,0

$$\mathbf{M}_{\text{окр}}^{\text{X}} = \mathbf{m}_{\phi} \times \mathbf{f}_{\text{p}} \times \mathbf{\delta}_{\text{p}} \times \mathbf{\delta}_{\text{x}} \times (1-\text{n}) \times 10^{-6}, \text{т/год};$$
 $\mathbf{M}_{\text{окр}}^{\text{X}} = \mathbf{m}_{\text{M}} \times \mathbf{f}_{\text{p}} \times \mathbf{\delta}_{\text{p}} \times \mathbf{\delta}_{\text{x}} \times (1-\text{n}) \times 10^{-6}/3,6, \text{г/сек}$

где m_{φ} - фактический годовой расход ЛКМ,

0.3800 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности 3,00 кг/час

работы оборудования,

f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении грунтовки составят:

$$\mathbf{M^{x}}_{\text{okp}} = 0.3800 \times 45.0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0.0428 \text{ T/rog}$$
 $\mathbf{M^{x}}_{\text{okp}} = 3.00 \times 45.0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.0938 \text{ r/ces}$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при сушке нанесенной грунтовки, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\text{X}} = \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{\text{X}} = \mathbf{m}_{\text{M}} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-\mathbf{n}) \times 10^{-6} / 3.6, \text{ г/сек}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,3800 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

3,00 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

75 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

ксилол 100 % мас 0 дол. ед.

п - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при сушке грунтовки составят:

$$M^{x}_{\text{okp}} = 0,380 \times 45,0 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0,1283 \text{ г/год}$$
 $M^{x}_{\text{okp}} = 3,00 \times 45,0 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,2813 \text{ г/сек}$

Итого от процесса грунтовки:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Взвешенные частицы	0,1375	0,0627
Ксилол	0,3751	0,1711

Расчет выбросов от процесса покраски мастикой МБ-50 (по аналогии с БТ-577) (ист. 6137)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$$M_{\text{н.окр.}} = m_{\phi} \times \delta_a \times (100 - f_p) \times (1 - n) \times 10^{-4}$$
, т/год

$$M_{\text{н.окр.}} = m_{\text{м}} \times \delta_{\text{a}} \times (100 \text{- f}_{\text{p}}) \times (1 \text{-n}) \times 10^{\text{-4}} / 3,6,$$
 т/год

где m_φ - фактический годовой расход ЛКМ,

 δ_a - доля краски, потеряной в виде аэрозоля,

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ,

n - степень очистки воздуха газоочистным оборудованием

 $m_{_{\rm M}}$ - фактический максимальный часовой расход ЛКМ,

Выброс индивидуальных летучих компонентов краски, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\mathbf{M}_{\text{okp}}^{\text{X}} = \mathbf{m}_{\Phi} \times \mathbf{f}_{\text{p}} \times \boldsymbol{\delta}_{\text{p}} \times \boldsymbol{\delta}_{\text{x}} \times (1-\mathbf{n}) \times 10^{-6}, \text{ t/foh;}$$

$$\mathbf{M}_{\text{okp}}^{\text{X}} = \mathbf{m}_{\text{M}} \times \mathbf{f}_{\text{p}} \times \boldsymbol{\delta}_{\text{p}} \times \boldsymbol{\delta}_{\text{x}} \times (1-\mathbf{n}) \times 10^{-6} / 3.6, \text{ r/cek}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,8050 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 3.00 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

уайт-спирит 42,60 % мас. ксилол 57,40 % мас. 0 дол. ед.

63,0 % мас.

n - степень очистки воздуха газоочистным оборудованием

Выбросы уайт-спирита при нанесении краски составят:

$$M_{\text{osp}}^{x} = 0,8050$$
 \times 63,0 \times 25 \times 42,60 \times (1 - 0) \times 10⁻⁶ = 0,0540 $_{\text{T/год}}$ $M_{\text{osp}}^{x} = 3,00$ \times 63,0 \times 25 \times 42,60 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0559 $_{\text{T/cek}}$

Выбросы ксилола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0.8050$$
 \times 63.0 \times 25 \times 57.40 \times $($ 1 - 0 $)$ \times 10^{-6} $=$ 0.0728 T/Fog $M_{\text{okp}}^{x} = 3.00$ \times 63.0 \times 25 \times 57.40 \times $($ 1 - 0 $)$ \times 10^{-6} $/$ 3.6 $=$ 0.0753 T/Cek

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{x} = \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \cong \delta_{x} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$
 $\mathbf{M}_{\text{окр}}^{x} = \mathbf{m}_{M} \times \mathbf{f}_{p} \times \delta_{p} \cong \delta_{x} \times (1-\mathbf{n}) \times 10^{-6}/3.6, \text{ г/сек}$

где т_ф - фактический годовой расход ЛКМ,

0.8050 т/гол

 $m_{_{\! M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 3.00 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 $\delta_{\!p}$ ` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

уайт-спирит 42.60 % мас. ксилол 57,40 % мас.

n - степень очистки воздуха газоочистным оборудованием 0 дол. ед.

Выбросы уайт-спирит при сушке краски составят:

$$M_{\text{okp}}^{x} = 0.8050$$
 \times 63.0 \times 75 \times 42.60 \times $($ 1 0 $) \times 10^{-6} $=$ 0.1620 T/год $M_{\text{okp}}^{x} = 3.00$ \times 63.0 \times 75 \times 42.60 \times $($ 1 0 $) \times 10^{-6} $/$ 3.6 $=$ 0.1677 T/cek$$

Выбросы ксилол при сушке краски составят:

$$\mathbf{M^{x}}_{\text{okp}} = 0.8050$$
 \times 63,0 \times 75 \times 57,40 \times (1 - 0) \times 10⁻⁶ = 0,21833 т/год $\mathbf{M^{x}}_{\text{okp}} = 3.00$ \times 63,0 \times 75 \times 57,40 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,2260 г/сек

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс	
1 ' '	г/сек	т/год
Взвешенные частицы	0,0925	0,08940
Уайт-спирит	0,2236	0,21600
Ксилол	0,3013	0,29113

Расчет выбросов от процесса покраски ПФ-115 (ист. 6138)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$$egin{align*} \mathbf{M}_{\text{и.окр.}} = \mathbf{m}_{\varphi} imes \delta_{a} imes (100 \text{-} \mathbf{f}_{p}) imes (1 \text{-} \mathbf{n}) imes 10^{-4}, \ \text{т/год} \ \\ \mathbf{M}_{\text{и.окр.}} = \mathbf{m}_{\text{m}} imes \delta_{a} imes (100 \text{-} \mathbf{f}_{p}) imes (1 \text{-} \mathbf{n}) imes 10^{-4} / 3,6, \ \text{т/год} \ \\ \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

 δ_{a} - доля краски, потеряной в виде аэрозоля,

f_p - доля летучей части (растворителя) в ЛКМ,

n - степень очистки воздуха газоочистным оборудованием

т, - фактический максимальный часовой расход ЛКМ,

3,00 кг/час

30,0 % мас.

45,0 % мас.

 $M_{\text{n.okp.}} = 0,750 \times 30,0 \times (100 - 45,0) \times (1-0) \times 10^4 = 0,1238 \text{ T/год}$ $M_{\text{n.okp.}} = 3,00 \times 30,0 \times (100 - 45,0) \times (1-0) \times 10^4 / 3,6 = 0,1375 \text{ T/cek}$

Выброс индивидуальных летучих компонентов краски, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/rol}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{M} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,750 т/год

0,7500 т

 $m_{\mbox{\tiny M}}$ – фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 3,00 кг/час

 f_{p} - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_p ` - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (таблица 3),

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 50,00 % мас. уайт-спирит 50,00 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении краски составят:

$$M^{x}_{okp} = 0,750$$
 \times 45,0 \times 25 \times 50,00 \times (1 - 0) \times 10⁻⁶ = 0,0422 т/год $M^{x}_{okp} = 3,00$ \times 45,0 \times 25 \times 50,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0469 г/сек

Выбросы уайт-спирита при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0.750$$
 \times 45.0 \times 25 \times 50.00 \times $($ 1 - 0 $) \times 10^{-6} $=$ 0.0422 T/rog $M_{\text{okp}}^{x} = 3.00$ \times 45.0 \times 25 \times 50.00 \times $($ 1 - 0 $) \times 10^{-6} $/$ 3.6 $=$ 0.0469 T/cek$$

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\text{X}} = \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-n) \times 10^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{\text{X}} = \mathbf{m}_{M} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-n) \times 10^{-6} / 3,6, \text{ г/сек}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,750 т/год

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности боты оборудования, 3,00 кг/час

работы оборудования, 3,00 кг/час f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 $\delta_{\rm p}$ - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

ксилол 50,00 % мас. уайт-спирит 50,00 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

п - степень очистки воздуха газоочистным оборудован

Выбросы ксилола при сушке краски составят:

Выбросы уайт-спирита при сушке краски составят:

$$\mathbf{M_{okp}^{X}} = 0.750$$
 \times 45.0 \times 75 \times 50.00 \times (1 - 0) \times 10⁻⁶ = 0.1266 $_{\text{T}/\text{TOA}}$ $\mathbf{M_{okp}^{X}} = 3.00$ \times 45.0 \times 75 \times 50.00 \times (1 - 0) \times 10⁻⁶ / 3.6 = 0.1406 $_{\text{T}/\text{CeK}}$

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Взвешенные частицы	0,1375	0,1238
Ксилол	0,1875	0,1688
Уайт-спирит	0,1875	0,1688

<u>Пропитка битумом щебеночных оснований под железобетонные конструкции и гидроизоляция бетонных поверхностей конструкций и фундаментов (ист. 6139)</u>

Расчет выбросов углеводородов в атмосферу от использования битума и битумно-масляной эмульсии выполняется по аналогии с расчетами от емкостей и хранилиш битума (п. 6.2.4.Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами) по формуле:

$$M = 2,52 \times V_{\infty} \times Ps(38) \times M_{\omega} \times (K_{5x} + K_{5r}) \times K_{6} \times K_{7} \times (1-n) \times 10^{-9}, \, kt/v$$
 $M_{\tau} = M \times T/1000, \, t/rod$ $M_{\tau} = M \times 1000/3600, \, r/cek$ M

Итого от использования битума:

Мт

Мг

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Углеводороды предельные (C ₁₂ -C ₁₉)	0,000014	0,0000025

0.00005

0.00005

Расчет выбросов от использования керосина (ист. 6140)

50

1000

1000

3600

Выброс индивидуальных летучих компонентов растворителя (керосина), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}^{x}_{\ o\kappa p} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \mathbf{\hat{\times}} \boldsymbol{\delta}_{x} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}, \ \text{r/rod;} \\ \mathbf{M}^{x}_{\ o\kappa p} &= \mathbf{m}_{M} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \mathbf{\hat{\times}} \boldsymbol{\delta}_{x} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6} / 3.6, \ \text{r/cek} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,0810 т/год

0,0000025 т/год

0,000014 г/сек

 $m_{_{M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 2,000 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

керосин 100 % мас.

Выбросы керосина при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0.08100 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0.0203 \text{ T/год}$$

 $M_{\text{okp}}^{x} = 2.000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.1389 \text{ г/сек}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{окр}}^{\mathbf{X}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} ^{\sim} \times \boldsymbol{\delta}_{\mathbf{x}} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}, \text{ т/год;} \\ \mathbf{M}_{\text{окр}}^{\mathbf{X}} &= \mathbf{m}_{\mathbf{m}} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} ^{\sim} \times \boldsymbol{\delta}_{\mathbf{x}} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6} / 3,6, \text{ г/сек} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,08100 т/год

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования, 2,000 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{n} - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 $\delta_{\rm x}$ - содержание компонента "x" в летучей части ЛКМ,

керосин 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы керосина при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,08100$$
 × 100 × 75 × 100 × $(1 - 0)$ × 10^{-6} = $0,0608$ T/FOX $M_{\text{okp}}^{x} = 2,000$ × 100 × 75 × 100 × $(1 - 0)$ × 10^{-6} / $3,6$ = $0,4167$ T/CeK

Итого от использования керосина:

Harriana aarngangaanara pantaarna	Выброс		
Наименование загрязняющего вещества	г/сек	т/год	
Керосин	0,5556	0,0811	

Расчет выбросов от использования ксилола (ист. 6141)

Выброс индивидуальных летучих компонентов растворителя (ксилола), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\Phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fol}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{m} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,0620 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 2,000 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении краски составят:

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}^{x}_{\ \ o\kappa\rho} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \delta_{p} ``\times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \ \text{r/rod}; \\ \mathbf{M}^{x}_{\ \ o\kappa\rho} &= \mathbf{m}_{_{M}} \times \mathbf{f}_{p} \times \delta_{p} ``\times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \ \text{r/cek} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,06200 т/год

 $m_{_{\!M}}\text{-}$ фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

2,000 кг/час

 f_{p} - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

ксилол 100 % мас.

Выбросы ксилола при сушке краски составят:

$$M_{\text{окр}}^{x} = 0,06200$$
 × 100 × 75 × 100 × (1 - 0) × 10⁻⁶ = 0,04650 т/год $M_{\text{окр}}^{x} = 2,000$ × 100 × 75 × 100 × (1 - 0) × 10⁻⁶ / 3,6 = 0,4167 г/сек

Итого от использования ксилола:

Havarananayya saragayyayayan nayyaaran	Выброс		
Наименование загрязняющего вещества	г/сек	т/год	
Ксилол	0,5556	0,0620	

Расчет выбросов от использования уайт-спирита (ист. 6142)

Выброс индивидуальных летучих компонентов растворителя (уайт - спирита), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\phi} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$
 $\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\mathbf{m}} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6} / 3,6, \text{ г/сек}$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,1200 т/год

т, фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 2,000 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 $\delta_p \hat{\ }$ - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

vайт-спирит 100 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы уайт-спирита при нанесении краски составят:

$$\mathbf{M^{x}_{okp}} = 0.12000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0.03000 \text{ T/rog}$$

 $\mathbf{M^{x}_{okp}} = 2.000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.1389 \text{ r/cek}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{x} = \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{x} = \mathbf{m}_{M} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-\mathbf{n}) \times 10^{-6} / 3,6, \text{ г/сек}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

 $m_{_{\! M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

2,000 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

75 % мас.

 $\delta_{\!\scriptscriptstyle p}$ ` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

уайт-спирит 100 % мас.

п - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы уайт-спирита при сушке краски составят:

$$M_{\text{okp}}^{x} = 0.12000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0.09000 \text{ T/год}$$
 $M_{\text{okp}}^{x} = 2.000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.4167 \text{ r/cek}$

Итого от использования уайт-спирита:

	Выброс			
Наименование загрязняющего вещества	г/сек	т/год		
Уайт-спирит	0,5556	0,1200		

Расчет выбросов загрязняющих веществ от шлифовальных машин (ист. 6143)

Для расчета выбросов абразивной и металлической пыли в атмосферный воздух применяется методика по расчету выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004.

Валовое и максимально-разовое количество загрязняющих веществ, образующихся от одной единицы оборудования, при обработке металла без применения СОЖ определяется по формулам:

$$M = k \times Q \times T \times 3600 \times (1 - \eta) \times 10^{-6}, \text{ т/год}$$
$$M' = k \times Q \times (1 - \eta), \text{ г/сек}$$

где k - коэффициент гравитационного оседания, для источников выбросов, не оборудованных системой местных отсосов или коэффициент

k принят равным 0,2 как коэффициент гравитационного оседания для абразивной и металлической пыли

О - удельный показатель пылеобразования на единицу оборудования, г/с 0.0250

Q принято равным для пыли абразивной

0.0380

для пыли металлической

r/c r/c

как для плоскошлифовального станка с диаметром абразивного круга 500 мм

T - фактический годовой фонд времени работы одной единицы оборудования, ч. Согласно данным предприятия:

η - степень очистки воздуха пылеулавливающим оборудованием (в дол. ед.)

 $\eta = 0.0$, станки не оснащены пылегазоулавливающим оборудованием

Валовое и максимально-разовое количество абразивной пыли, образующееся от одной единицы оборудования:

	$\mathbf{M'} = 0,2$	× 0,0250	× (1 -	0,0)=	0,0050	г/сек	
M =	$0,2 \times 0,025 \times$	383,00	\times 3600 \times (1 -	0,0	$) \times 10^{-6} =$	0,0069	т/год
	Валовое и максим	ально-разовое	количество ме	еталлической	пыли, образую	цееся от одн	юй
	$\mathbf{M'} = 0,2$	× 0,0380	× (1 -	0,0)=	0,0076	г/сек	
M =	$0.2 \times 0.038 \times$	383,00	\times 3600 \times (1 -	0,0	$) \times 10^{-6} =$	0,0105	т/год

Итого					
B аловый выброс, Π = $\Sigma\Pi$ i, тонн/год					
Пыль абразивная	0,006900				
Пыль металлическая (взвешенные частицы)	0,010500				
M аксимально разовый выброс, M = ΣMi , гр/с	сек				
Пыль абразивная	0,005000				
Пыль металлическая (взвешенные частицы)	0,007600				

Ремонт дорог щебнем фр. 40-70

Выгрузка щебня фр. 40-80 мм (ист. 6147)

Расчет выбросов пыли от выгрузки щебня производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 \ / \ \mathbf{3600}, \ \mathbf{r/cek} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \ \mathbf{r/rod} \end{split}$$

\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,04
${\it k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, услови пылеобразования; 	ля 1,0
${\bf k}_5$ - коэффициент, учитывающий влажность материала;	0,6
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\rm vac}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	697,2

 $\mathbf{M_c} = \frac{0.04 \, \times \, 0.02 \, \times \, 1.2 \, \times \, 1.0 \, \times \, 0.60 \, \times \, 0.4 \, \times \, 0.7 \, \times \, 25.0 \, \times \, 10^{\,6}}{3600} = 1,1200 \quad \text{g/cek}$

 $M_r = 0.04 \times -0.02 \times -1.2 \times -1.0 \times -0.60 \times -0.4 \times -0.7 \times -697.20 = 0.1124 - \text{T/Fo}$

Итого от выгрузки щебня:

Наумамарамна загрядамичага размадтра	Выброс			
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	1,1200	0,1124		

Разработка (перемещение) щебня автогрейдером (ист. 6148)

Расчет выбросов пыли от разработки щебня бульдозером производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 / 3600, \text{г/сек}$$

$$\mathbf{M}_{\text{гол}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{гол}}, \text{г/год}$$

k ₁ - весовая доля пылевой фракции в материале	0,04
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
${f G}_{{ m rog}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	697,2

M.	0,04 × 0,02 ×	1,2	×	1,0	×	0,60 ×	0,4	× 0	,5	×	25,0 ×	10 ⁶	-= 0.8000	Eloore
1VIc	_						3600						0,8000	г/сек

 $M_{r} = 0.04 \times -0.02 \times -1.2 \times -1.0 \times -0.60 \times -0.4 \times -0.5 \times -697.2 = 0.0803 - \text{t/rog}$

Итого при разработке щебня будьдозером:

Наименорание загразиваниего вашества

ттаименование загрязняющего вещества	г/с	т/год
Пыль неорганическая (70-20% SiO2)	0,8000	0,0803

Расчет выбросов от дизельной электростанции (ист. 0149)

Дизельная электростанция (ДЭС) мощностью 4 кВт/час служит в качестве источника электроэнергии. Расход дизельного топлива составит 15.0 тонн. Выброс загрязняющих веществ осуществляется через выхлопную трубу высотой 1 м и диаметром устья -0.1 м. Скорость воздушного потока -0.2 м/с.

В качестве топлива используется дизельное топливо со следующими характеристиками на рабочую массу:

зольность, (A^r) - 0,025 %

содержание серы, (S^r) - 0,3 %

низшая теплота сгорания, (Q_i^r) - 42,75 МДж/кг

	2024 г			
Годовой расход топлива	15,0	тонн		
Режим работы	2506	ч/год		

В процессе сжигания дизельного топлива в генераторном агрегате в атмосферу выделяется: оксид углерода, сажа (углерод черный), углеводороды предельные C_{12} - C_{19} , диоксид азота, формальдегид, диоксид серы и бенз(а)пирен.

Расчет выбросов загрязняющих веществ от генераторного агрегата производится согласно п. 6.1 и 6.2 РНД 211.2.02.04-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок".

Максимальный выброс і-го вещества (г/сек) стационарной дизельной установкой определяется по формуле:

$$M_{cek} = e_i \times P_{\odot} / 3600$$
, r/cek ;

где еі - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности,

 $P_{\mathfrak{I}}$ - эксплуатационная мощность стационарной дизельной установки,

4,0 кВт

Удельные показатели выбросов загрязняющих веществ на единицу полезной работы маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	e _i , г/кВт ч
Углерода оксид	7,2
Окислы азота	10,3
Углеводороды предельные C_{12} - C_{19}	3,6
Сажа (углерод черный)	0,7
Диоксид серы	1,1
Формальдегид	0,15
Бенз(а)пирен	0,000013

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{cek}$$
 = 7,2 × 4,0 / 3600 = 0,0080 г/сек

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{\rm cek}$$
 = 10,3 × 4,0 / 3600 = 0,0114 г/сек в пересчёте на NO $_2$ $M_{\rm cek}$ = 0,8 × 0,0114 = 0,0091 г/сек в пересчёте на NO $M_{\rm cek}$ = 0,13 × 0,0114 = 0,0015 г/сек

Выбросы углеводородов предельных C_{12} - C_{19} при работе генераторного агрегата составят:

$$M_{cek}$$
 = 3,6 × 4,0 / 3600 = 0,0040 г/сек

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

$$M_{cek} = 0.7 \times 4.0$$
 / 3600 = 0.0008 г/сек

Выбросы диоксида серы при работе генераторного агрегата составят:

$$M_{cek}$$
 = 1,1 × 4,0 / 3600 = 0,0012 г/сек

Выбросы формальдегида при работе генераторного агрегата составят:

$$M_{cek}$$
 = 0,15 × 4,0 / 3600 = 0,0002 г/сек

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

$$M_{cek} = 0,000013 \times 4,0$$
 / 3600 = 0,00000001 г/сек

Валовый выброс і-го вещества (т/год) за год стационарной дизельной установкой определяется по формуле:

$M_{rog} = q_i \times B_{rog} / 1000$, т/год;

где q_i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной B_{roa} - расход топлива стационарной дизельной установкой за год 15,0 т. 2024 г

Удельные показатели выбросов загрязняющих веществ на один кг дизельного топлива при работе маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	q _i , г/кг
Углерода оксид	30
Окислы азота	43
Углеводороды предельные C_{12} - C_{19}	15
Сажа (углерод черный)	3,0
Диоксид серы	4,5
Формальдегид	0,6
Бенз(а)пирен	0,000055

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{rog}$$
 = 30 × 15,000 / 1000 = 0,4500 т/год

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{rog}$$
 = 43 × 15,000 / 1000 = 0,6450 т/год в пересчёте на NO $_2$ M_{rog} = 0,8 × 0,6450 = 0,5160 т/год в пересчёте на NO M_{rog} = 0,13 × 0,6450 = 0,0839 т/год

Выбросы углеводородов предельных $C_{12}\text{-}C_{19}$ при работе генераторного агрегата составят:

$$M_{rog}$$
 = 15 × 15,000 / 1000 = 0,2250 т/год

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

$$M_{\rm rog}$$
 = 3,0 × 15,000 / 1000 = 0,0450 т/год

Выбросы диоксида серы при работе генераторного агрегата составят:

$$M_{rog}$$
 = 4,5 × 15,000 / 1000 = 0,0675 т/год

Выбросы формальдегида при работе генераторного агрегата составят:

$$M_{rog} = 0.6 \times 15,000$$
 / 1000 = 0.00900 т/год

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

$$M_{rog} = 0,000055$$
 х 15,000 / 1000 = 0,0000008 т/год

Итого от ДЭС:

	Выброс	
Наименование загрязняющего вещества	2024 г	
	г/сек	т/год
Углерода оксид	0,0080	0,4500
Азота оксид	0,0015	0,0839
Азота диоксид	0,0091	0,5160
Углеводороды предельные C ₁₂ -C ₁₉	0,0040	0,2250
Сажа (углерод черный)	0,0008	0,0450
Диоксид серы	0,0012	0,0675
Формальдегид	0,0002	0,00900
Бенз(а)пирен	0,00000001	0,0000008

Вспомогательные работы - 2025 год

Расчет выбросов от газовой резки металла (ист. 6133)

Расчет выбросов загрязняющих веществ в атмосферу от газовой резки металла производится согласно РНД 211.2.02.03-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах, Астана, 2004 г." по формуле:

$$M_{\text{год}}$$
 = $K_{\text{m}} \times T \times (1\text{-n}) \times 0,000001$, т/год;
 $M_{\text{сек}}$ = $K_{\text{m}} \times (1\text{-n})$ / 3600, г/сек

где: K_m - удельный показатель выброса загрязняющих веществ при резке металла, г/час

Т - общее время работы оборудования

5

n - степень очистки воздуха в соответствующем аппарате, которым снабжается

группа технологических агрегатов

Удельные показатели выбросов загрязняющих веществ (г/ч) при резке металлов толщиной до 20 мм, приведены в таблице:

К _т , г/час			
Железа оксид	Марганец и его соединения	Оксид углерода	Диоксид азота
197,0	3,0	65,0	53,2

Выбросы оксида железа при резке металла составят:

$$M_{\rm rog} =$$
 197,0 × 5 × (1 - 0) × 0,000001 = 0,0010 т/год $M_{\rm cek} =$ 197,0 × (1 - 0) / 3600 = 0,0547 г/сек

Выбросы марганца и его соединений при резке металла составят:

Выбросы углерода оксида при резке металла составят:

$$M_{rot} = 65,0$$
 × 5 × (1 - 0) × 0,000001 = 0,0003 т/год $M_{cek} = 65,0$ × (1 - 0) / 3600 = 0,0181 г/сек

Выбросы диоксида азота при резке металла составят:

$$M_{rol} = 53.2 \times 5 \times (1 - 0) \times 0.000001 = 0.0003 \text{ T/rog}$$
 $M_{cen} = 53.2 \times (1 - 0) / 3600 = 0.0148 \text{ r/cen}$

Итого от передвижных постов газовой резки металла:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Железа оксид	0,0547	0,0010
Марганец и его соединения	0,0008	0,00002
Углерода оксид	0,0181	0,0003
Азота диоксид	0,0148	0,0003

Пост газовой сварки металла пропан-бутановой смесью (ист. 6134)

При работе сварочного поста газовой сварки металла пропан-бутановой смесью в атмосферу выделяется диоксид азота.

Расход пропан-бутановой смеси

2 кг/год Режим работы -

2 ч/год

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{год}} &= \mathbf{B}_{\text{год}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \times 0,\!000001,\,\text{т/год;} \\ \mathbf{M}_{\text{сек}} &= \mathbf{B}_{\text{час}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \,/\,3600,\,\text{г/сек} \end{split}$$

где Вгол - расход применяемого сырья и материалов

2 кг/год

 $\boldsymbol{B}_{\text{час}}$ - фактический максимальный расход применяемых материалов

1,00 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества (диоксида азота) на единицу массы расходуемых сырья и материалов,

Выбросы диоксида азота при газовой сварке составят:

15,0 г/кг

n - степень очистки воздуха в соответствующем аппарате, которым снабжается группа

группа технологических агрегатов

 $M_{\rm rog} = 2$ × 15,0 × (1 - 0) × 0,000001 = 0,00003 т/год $M_{\rm cek} = 1,00$ × 15,0 × (1 - 0) / 3600 = 0,0042 г/сек

Итого от поста газовой сварки пропан-бутановой смесью:

Наименование загрязняющего вещества	Выброс

ттанменование загрязняющего вещества	г/сек	т/год
Диоксид азота	0,0042	0,00003

Сварочные работы (ист. 6135)

При проведении сварочных работ применяются электроды марки Э-42, Э-46, Э-55. Расчёт произведён по аналогии с электродами марки УОНИ 13/45.

При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

Расход электродов 120,0 кг/год

Режим работы - 76 ч/г

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{B}_{\text{год}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \times 0,000001, \text{ т/год;}$$
 $\mathbf{M}_{\text{сек}} = \mathbf{B}_{\text{час}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) / 3600, \text{ г/сек}$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

120,0 кг/год

В_{час} - фактический максимальный расход применяемых материалов

1,58 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается группа технологических агрегатов $\ 0$

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами приведены в таблице:

Наименование загрязняющнго вещества	$K_{\rm m}$, г/кг
Железа оксид	10,69
Марганец и его соединения	0,92
Пыль неорганическая (70-20% SiO ₂)	1,40
Фтористые соединения газообразные	0,750
Фториды	3,30
Азота диоксид	1,50
Углерода оксид	13,30

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{r_{01}} = 120,0 \times 10,69 \times (1 - 0) \times 0,000001 = 0,0013 \text{ T/rog}$$
 $M_{cek} = 1,58 \times 10,69 \times (1 - 0) / 3600 = 0,0047 \text{ r/cek}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{\rm rol} = 120,0 \times 1,400 \times (1 - 0) \times 0,000001 = 0,0002$$
 T/год $M_{\rm cek} = 1,58 \times 1,400 \times (1 - 0) / 3600 = 0,0006$ г/сек

Выбросы фтористых соединений газообразных при производстве сварочных работ составят:

$$M_{\rm rog} = 120,0 \times 0.750 \times (1 - 0) \times 0.000001 = 0.00009$$
 т/год $M_{\rm cek} = 1.58 \times 0.750 \times (1 - 0) / 3600 = 0.0003$ г/сек

Выбросы фторидов при производстве сварочных работ составят:

$$M_{rog} = 120,0 \times 3,30 \times (1 - 0) \times 0,000001 = 0,0004 \text{ T/rog}$$
 $M_{cek} = 1,58 \times 3,30 \times (1 - 0) \times 3600 = 0,0014 \text{ T/cek}$

Выбросы диоксида азота при производстве сварочных работ составят:

$$M_{\rm rog} = 120,0 \times 1,50 \times (1 - 0) \times 0,000001 = 0,0002 \text{ т/год}$$
 $M_{\rm cek} = 1,58 \times 1,50 \times (1 - 0) / 3600 = 0,0007 \text{ г/сек}$

Выбросы оксида углерода при производстве сварочных работ составят:

Итого от электродуговой сварки:

Цауга голоромно дография мара ромастра	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Железа оксид	0,0047	0,0013
Марганец и его соединения	0,0004	0,0001
Пыль неорганическая (70-20% SiO2)	0,0006	0,0002
Фтористые соединения газообразные	0,0003	0,0001
Фториды	0,0014	0,0004
Азота диоксид	0,0007	0,0002
Углерода оксид	0,0058	0,0016
Итого:	0,0139	0,0039

Сварочные работы с применением проволоки

При проведении сварочных работ применяется сварочная проволока. При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

Расход проволоки 25,0 кг/год Режим работы - 22 ч/год

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\mathrm{rog}} = \mathbf{B}_{\mathrm{rog}} \times \mathbf{K}_{\mathrm{m}} \times (1\text{-n}) \times 0,000001, \text{ т/год;}$$
 $\mathbf{M}_{\mathrm{cek}} = \mathbf{B}_{\mathrm{vac}} \times \mathbf{K}_{\mathrm{m}} \times (1\text{-n}) / 3600, \text{ г/сек}$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

25,0 кг/год

 $B_{\mbox{\tiny час}}$ - фактический максимальный расход применяемых материалов

1,14 кг/час

 K_{m} - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается

группа технологических агрегатов

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами

Наименование загрязняющиго вещества	$K_{\rm m}$, г/кг
Железа оксид	38,00
Марганец и его соединения	1,48
Пыль неорганическая (70-20% SiO ₂)	0,16

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{rol} = 25,0 \times 38,00 \times (1 - 0) \times 0,000001 = 0,0010 \text{ т/год}$$
 $M_{cek} = 1,14 \times 38,00 \times (1 - 0) \times 3600 = 0,0120 \text{ г/сек}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

$$M_{rol} = 25,0 \times 1,48 \times (1 - 0) \times 0,000001 = 0,00004 \text{ T/rol}$$
 $M_{cek} = 1,14 \times 1,48 \times (1 - 0) / 3600 = 0,0005 \text{ r/cek}$

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{rol} = 25,0 \times 0,160 \times (1 - 0) \times 0,000001 = 0,000004 \text{ T/rol}$$

 $M_{cen} = 1,14 \times 0,160 \times (1 - 0) / 3600 = 0,00005 \text{ r/cen}$

Итого от сварочных работ с применением проволоки:

Have tay analysis and page and an analysis analysis and an ana	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Железа оксид	0,0120	0,0010
Марганец и его соединения	0,0005	0,000040
Пыль неорганическая (70-20% SiO2)	0,00005	0,000004

Итого от сварочных работ:

Наименование загрязняющего вещества	Выб	Выброс		
	г/сек	т/год		
Железа оксид	0,0167	0,0023		
Марганец и его соединения	0,0009	0,0001		
Пыль неорганическая (70-20% SiO2)	0,00065	0,00020		
Фтористые соединения газообразные	0,0003	0,0001		
Фториды	0,0014	0,0004		
Азота диоксид	0,0007	0,0002		
Углерода оксид	0,0058	0,0016		
Итого:	0,0265	0,0049		

Покрасочные и грунтовочные работы

Расчет выбросов от процесса грунтовки ГФ-021 (ист. 6136)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении грунтовки на поверхность изделия определяется по формулам:

$$egin{align*} \mathbf{M}_{\text{H.ОКр.}} &= \mathbf{m}_{\varphi} imes \delta_{a} imes (100 \text{--} \mathbf{f}_{p}) imes (1 \text{--} \mathbf{n}) imes 10^{-4}, \ \text{т/год} \ \\ \mathbf{M}_{\text{H.ОКр.}} &= \mathbf{m}_{\text{M}} imes \delta_{a} imes (100 \text{--} \mathbf{f}_{p}) imes (1 \text{--} \mathbf{n}) imes 10^{-4} / 3.6, \ \text{т/год} \ \\ \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,0053 т

 δ_a - доля краски, потеряной в виде аэрозоля,

30,0 % мас.

f_p - доля летучей части (растворителя) в ЛКМ,

45,0 % мас.

n - степень очистки воздуха газоочистным оборудованием

0

т, - фактический максимальный часовой расход ЛКМ,

1.00 кг/час

$$M_{\text{n.orp.}} = 0.0053$$
 \times 30.0 \times (100 - 45.0) \times (1 - 0) \times 10^4 = 0.0009 T/FOAT $M_{\text{n.orp.}} = 1.00$ \times 30.0 \times (100 - 45.0) \times (1 - 0) \times 10^4 / 3.6 = 0.0458 T/cek

Выброс индивидуальных летучих компонентов грунтовки, образующихся при нанесении грунтовки на поверхность изделия, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fod;} \\ \mathbf{M}_{\text{okn}}^{x} &= \mathbf{m}_{w} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

0.0053 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 1,00 кг/час

f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении грунтовки составят:

$$\mathbf{M^{X}}_{\text{okp}} = 0.0053 \times 45.0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0.0006 \text{ T/rog}$$
 $\mathbf{M^{X}}_{\text{okp}} = 1.00 \times 45.0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.0313 \text{ r/ces}$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при сушке нанесенной грунтовки, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \\ & \times \boldsymbol{\delta}_{x} \times (1\text{-}\mathbf{n}) \times \mathbf{10}^{\text{-}6}, \text{ t/foh;} \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \\ & \times \boldsymbol{\delta}_{x} \times (1\text{-}\mathbf{n}) \times \mathbf{10}^{\text{-}6} / 3.6, \text{ r/cek} \end{aligned}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0.0053 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

1,00 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

75 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

Выбросы ксилола при сушке грунтовки составят:

ксилол 100 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Итого от процесса грунтовки:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Взвешенные частицы	0,0458	0,0009
Ксилол	0,1251	0,0024

Расчет выбросов от процесса покраски мастикой МБ-50 (по аналогии с БТ-577) (ист. 6137)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$$M_{\text{н.окр.}} = m_{\phi} \times \delta_a \times (100 \text{--} f_p) \times (1 \text{--} n) \times 10^{-4}, \text{ т/год}$$

$$M_{\text{н.окр.}} = m_{\text{м}} \times \delta_{\text{a}} \times (100 - f_{\text{p}}) \times (1 - n) \times 10^{-4} / 3,6, \text{т/год}$$

где m_{φ} - фактический годовой расход ЛКМ,

 δ_a - доля краски, потеряной в виде аэрозоля,

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ,

n - степень очистки воздуха газоочистным оборудованием

т, - фактический максимальный часовой расход ЛКМ,

63,0 % мас. 1,00 кг/час

30,0 % мас.

$$M_{\text{n.osp.}} = 0,0800$$
 \times 30,0 \times (100 - 63,0) \times (1 - 0) \times 10⁴ = 0,0089 $_{\text{T/год}}$ $M_{\text{n.osp.}} = 1,00$ \times 30,0 \times (100 - 63,0) \times (1 - 0) \times 10⁴ / 3,6 = 0,0308 $_{\text{T/год}}$

Выброс индивидуальных летучих компонентов краски, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \mathbf{m}_{\phi} \times \mathbf{f}_{\mathbf{p}} \times \mathbf{\delta}_{\mathbf{p}} \times \mathbf{\delta}_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6}$$
, т/год;
 $\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \mathbf{m}_{\mathbf{m}} \times \mathbf{f}_{\mathbf{p}} \times \mathbf{\delta}_{\mathbf{p}} \times \mathbf{\delta}_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6} / 3,6$, г/сек

где m_{φ} - фактический годовой расход ЛКМ,

0,0800

0.080

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности 2,00 кг/час

работы оборудования,

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

уайт-спирит 42,60 % мас. ксилол 57,40 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы уайт-спирита при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,0800 \times 63,0 \times 25 \times 42,60 \times (1 - 0) \times 10^{-6} = 0,0054 \text{ T/год}$$
 $M_{\text{okp}}^{x} = 2,00 \times 63,0 \times 25 \times 42,60 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0373 \text{ г/сек}$

Выбросы ксилола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,0800$$
 \times 63,0 \times 25 \times 57,40 \times (1 - 0) \times 10⁻⁶ = 0,0072 T/год $M_{\text{okp}}^{x} = 2,00$ \times 63,0 \times 25 \times 57,40 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0502 г/сек

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \\ & \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/rod}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \delta_{p} \\ & \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{split}$$

где т_ф - фактический годовой расход ЛКМ,

0.0800 т/гол

 $m_{_{\! M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности 2,00 кг/час работы оборудования,

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 δ_{p} `` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

уайт-спирит 42.60 % Mac. ксилол 57,40 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы уайт-спирит при сушке краски составят:

$$M^{x}_{okp} = 0,0800 \times 63,0 \times 75 \times 42,60 \times (1 - 0) \times 10^{-6} = 0,0161 \text{ T/год}$$
 $M^{x}_{okp} = 2,00 \times 63,0 \times 75 \times 42,60 \times (1 - 0) \times 10^{-6} / 3,6 = 0,1118 \text{ r/cek}$

Выбросы ксилол при сушке краски составят:

$$\mathbf{M^{X}}_{\text{okp}} = 0.0800 \quad \times \quad 63.0 \quad \times \quad 75 \quad \times \quad 57.40 \quad \times \quad (\quad 1 \quad - \quad 0 \quad) \times \quad 10^{-6} \quad = \quad 0.02170 \quad \text{t/fog}$$
 $\mathbf{M^{X}}_{\text{okp}} = \quad 2.00 \quad \times \quad 63.0 \quad \times \quad 75 \quad \times \quad \quad 57.40 \quad \times \quad (\quad 1 \quad - \quad 0 \quad) \times \quad 10^{-6} \quad / \quad 3.6 \quad = \quad 0.1507 \quad \text{t/cek}$

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Взвешенные частицы	0,0308	0,00890
Уайт-спирит	0,1491	0,02150
Ксилол	0,2009	0,02890

Расчет выбросов от процесса покраски ПФ-115 (ист. 6138)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$$\begin{split} \mathbf{M}_{\text{и.окр.}} &= \mathbf{m}_{\varphi} \times \delta_{a} \times (100\text{-}\mathbf{f}_{p}) \times (1\text{-}\mathbf{n}) \times 10^{\text{-}4}, \text{ т/год} \\ \mathbf{M}_{\text{и.окр.}} &= \mathbf{m}_{\text{м}} \times \delta_{a} \times (100\text{-}\mathbf{f}_{p}) \times (1\text{-}\mathbf{n}) \times 10^{\text{-}4} / 3.6, \text{ т/год} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ, δ_a - доля краски, потеряной в виде аэрозоля,

 f_{p} - доля летучей части (растворителя) в ЛКМ,

п - степень очистки воздуха газоочистным оборудованием

т, - фактический максимальный часовой расход ЛКМ,

 $M_{\text{H.OKP.}} = 0,0053$ \times 30,0 \times (100 - 45,0) \times (1 - 0) \times 10⁻⁴ = 0,0009 T/FOJ. $M_{\text{H.OKP.}} = 1,00$ \times 30,0 \times (100 - 45,0) \times (1 - 0) \times 10⁻⁴ / 3,6 = 0,0458 T/CeK

Выброс индивидуальных летучих компонентов краски, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/rom}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{w} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, 3,6, \text{ r/cek} \end{aligned}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,0053 т/год

0.0053

30,0 % мас.

45,0 % мас.

1,00 кг/час

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 1,00 кг/час

 ${\bf f}_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_p ` - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 50,00 % мас. уайт-спирит 50,00 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении краски составят:

$$\mathbf{M^{x}}_{\text{okp}} = 0,0053$$
 \times 45,0 \times 25 \times 50,00 \times (1 - 0) \times 10⁻⁶ = 0,0003 т/год $\mathbf{M^{x}}_{\text{okp}} = 1,00$ \times 45,0 \times 25 \times 50,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0156 г/сек

Выбросы уайт-спирита при нанесении краски составят:

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\phi} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (\mathbf{1} - \mathbf{n}) \times \mathbf{10}^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\mathbf{M}} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (\mathbf{1} - \mathbf{n}) \times \mathbf{10}^{-6} / \mathbf{3}, \mathbf{6}, \text{ г/сек}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,0053 т/год

 $m_{_{M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, $1{,}00~$ кг/час $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_{p} `` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 $\delta_{\rm x}$ - содержание компонента "x" в летучей части ЛКМ,

ксилол 50,00 % мас.

уайт-спирит 50,00 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

п - степень очистки воздуха газоочистным оборудов

Выбросы ксилола при сушке краски составят:

Выбросы уайт-спирита при сушке краски составят:

$$\mathbf{M_{okp}^{Y}} = 0.0053$$
 \times 45,0 \times 75 \times 50,00 \times (1 - 0) \times 10⁻⁶ = 0,0009 $_{\text{T/FO},\text{T}}$ $\mathbf{M_{okp}^{Y}} = 1.00$ \times 45,0 \times 75 \times 50,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0469 $_{\text{T/Cex}}$

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Взвешенные частицы	0,0458	0,0009
Ксилол	0,0625	0,0012
Уайт-спирит	0,0625	0,0012

<u>Пропитка битумом щебеночных оснований под железобетонные конструкции и гидроизоляция бетонных поверхностей</u> конструкций и фундаментов (ист. 6139)

Расчет выбросов углеводородов в атмосферу от использования битума и битумно-масляной эмульсии выполняется по аналогии с расчетами от емкостей и хранилиш битума (п. 6.2.4.Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами) по формуле:

$$M_{\tau} = M_{\tau} \times T/1000, T/rog_{\tau}$$

$$M_{\tau} = M_{\tau} \times T/1000, T/r$$

$M_{\Gamma} = 0,00005 \times 50$ $M_{\Gamma} = 0,00005 \times 1000$

Итого от использования битума:Наименование загрязняющего вещества

Выброс

Расчет выбросов от использования керосина (ист. 6140)

Выброс индивидуальных летучих компонентов растворителя (керосина), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/foh}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{M} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

Углеводороды предельные (С12-С19)

0,0086 т/год

1000

3600

г/сек

0,000014

0,0000025 т/год

0,000014 г/сек

т/год

0,0000025

 $m_{_{\! M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 1,000 кг/час

 ${\bf f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

керосин 100 % мас.

Выбросы керосина при нанесении краски составят:

$$M^{X}_{osp} = 0.00860 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0.0022 \text{ T/rog}$$

 $M^{X}_{osp} = 1,000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.0694 \text{ r/cek}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{окр}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \text{``} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ т/год;} \\ \mathbf{M}_{\text{окр}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \delta_{p} \text{``} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ 3,6, г/сек} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,00860 т/год

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования, 1,000 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} `` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 $\delta_{\rm x}$ - содержание компонента "x" в летучей части ЛКМ,

керосин 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы керосина при сушке краски составят:

$$\mathbf{M^{x}}_{\text{okp}} = 0,00860 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{6} = 0,0065 \text{ T/rog}$$

 $\mathbf{M^{x}}_{\text{okp}} = 1,000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{6} / 3,6 = 0,2083 \text{ r/cek}$

Итого от использования керосина:

Наименование загрязняющего вещества	Выбр	Выброс	
	г/сек	т/год	
Керосин	0,2777	0,0087	

Расчет выбросов от использования ксилола (ист. 6141)

Выброс индивидуальных летучих компонентов растворителя (ксилола), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fol}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{m} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,0009 т/гол

 $m_{_{\!M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 0,900 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы ксилола при нанесении краски составят:

$$M^{X}_{okp} = 0,00090 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0,00023 \text{ T/rog}$$
 $M^{X}_{okp} = 0,900 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0625 \text{ r/cek}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} ``\times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fod;} \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \delta_{p} ``\times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}} / 3.6, \text{ t/cek} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0.00090

 $m_{_{\!M}}\text{-}$ фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

0,900 кг/час боты оборудования,

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

ксилол 100 % мас.

Выбросы ксилола при сушке краски составят:

$$\mathbf{M_{okp}^{V}} = 0,00090 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0,00068 \text{ T/rog}$$

 $\mathbf{M_{okp}^{V}} = 0,900 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,1875 \text{ r/cek}$

Итого от использования ксилола:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Ксилол	0,2500	0,0009

Расчет выбросов от использования уайт-спирита (ист. 6142)

Выброс индивидуальных летучих компонентов растворителя (уайт - спирита), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\mathbf{M_{\text{окр}}^{x}} = \mathbf{m_{\phi}} \times \mathbf{f_{p}} \times \boldsymbol{\delta_{p}} \times \boldsymbol{\delta_{x}} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$

$$\mathbf{M_{\text{окр}}^{x}} = \mathbf{m_{m}} \times \mathbf{f_{p}} \times \boldsymbol{\delta_{p}} \times \boldsymbol{\delta_{x}} \times (1-\mathbf{n}) \times 10^{-6} / 3,6, \text{ г/сек}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,0009 т/год

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 0,900 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 $\delta_{p}\,\hat{}\,$ - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 $\delta_{\rm x}$ - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

уайт-спирит 100 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы уайт-спирита при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,00090$$
 \times 100 \times 25 \times 100 \times $($ 1 - 0) \times 10^{-6} = 0,00023 т/год $M_{\text{okp}}^{x} = 0,900$ \times 100 \times 25 \times 100 \times $($ 1 - 0) \times 10^{-6} / $3,6$ = 0,0625 r/cek

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\phi} \times \mathbf{f}_{\mathbf{p}} \times \delta_{\mathbf{p}} \times \delta_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\mathbf{M}} \times \mathbf{f}_{\mathbf{p}} \times \delta_{\mathbf{n}} \times \delta_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6} / 3,6, \text{ г/сек}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,00090 $_{\rm T/год}$

 $m_{_{\!M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

0,900 кг/час

 ${\bf f}_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

уайт-спирит 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы уайт-спирита при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,00090$$
 × 100 × 75 × 100 × $(1 - 0)$ × 10^{-6} = $0,00068$ т/год $M_{\text{okp}}^{x} = 0,900$ × 100 × 75 × 100 × $(1 - 0)$ × 10^{-6} / $3,6$ = $0,1875$ г/сек

Итого от использования уайт-спирита:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Уайт-спирит	0,2500	0,0009

Расчет выбросов от использования растворителя Р-4 (ист. 6144)

Выброс индивидуальных летучих компонентов растворителя, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/rol}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{M}} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

0.0015 т/гол

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 0,50 кг/час

100 % мас.

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ацетон 26 % мас. бутилацетат 12 % мас. толуол 62 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ацетона при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,0015$$
 \times 100 \times 25 \times 26 \times $(1 - 0) \times 10^{-6} = 0,0001$ T/год $M_{\text{okp}}^{x} = 0,50$ \times 100 \times 25 \times 26 \times $(1 - 0) \times 10^{-6}$ / $3,6$ = $0,0090$ T/cek

Выбросы бутилацетата при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,0015$$
 \times 100 \times 25 \times 12 \times (1 - 0) \times 10⁻⁶ = 0,0000 t/fog $M_{\text{okp}}^{x} = 0,50$ \times 100 \times 25 \times 12 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0042 t/cek

Выбросы толуола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,0015$$
 \times 100 \times 25 \times 62 \times (1 - 0) \times 10⁻⁶ = 0,0002 т/год $M_{\text{okp}}^{x} = 0,50$ \times 100 \times 25 \times 62 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0215 r/cek

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{\text{x}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{\text{p}} \times \boldsymbol{\delta}_{\text{p}} \\ & \times \boldsymbol{\delta}_{\text{p}} \times \boldsymbol{\delta}_{\text{x}} \times (1\text{-n}) \times \mathbf{10}^{\text{-6}}, \text{ t/foj;} \\ \mathbf{M}_{\text{okp}}^{\text{x}} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{\text{p}} \times \boldsymbol{\delta}_{\text{p}} \\ & \times \boldsymbol{\delta}_{\text{p}} \\ & \times \boldsymbol{\delta}_{\text{x}} \times (1\text{-n}) \times \mathbf{10}^{\text{-6}}/3.6, \text{ r/cek} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,0015

 $m_{_{\!M}}\text{-}$ фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования, 0,50 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

75 % Mac.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

ацетон 26 % мас. бутилацетат 12 % мас. толуол 62 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы ацетона при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,0015$$
 \times 100 \times 75 \times 26 \times (1 - 0) \times 10⁻⁶ = 0,0003 t/fom $M_{\text{okp}}^{x} = 0,50$ \times 100 \times 75 \times 26 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0271 t/cek

Выбросы бутилацетата при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,0015$$
 \times 100 \times 75 \times 12 \times (1 - 0) \times 10⁻⁶ = 0,0001 t/fog $M_{\text{okp}}^{x} = 0,50$ \times 100 \times 75 \times 12 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0125 t/cek

Выбросы толуола при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,0015$$
 \times 100 \times 75 \times 62 \times $($ 1 - 0 $) \times 10^{-6} $=$ $0,0007$ t/for $M_{\text{okp}}^{x} = 0,50$ \times 100 \times 75 \times 62 \times $($ 1 - 0 $) \times 10^{-6} $/$ $3,6$ $=$ $0,0646$ t/cek$$

Итого от использования растворителя Р-4:

Наименование загрязняющего вещества	Выброс			
ттаименование загрязняющего вещества	г/сек	т/год		
Ацетон	0,03610	0,00040		
Бутилацетат	0,01670	0,00010		
Толуол	0,08610	0,00090		

<u>Расчет выбросов от процесса покраски эмалью XB-124 (ист. 6145)</u>

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$$\begin{split} \mathbf{M}_{_{\mathrm{H.0Kp.}}} &= \mathbf{m}_{\varphi} \times \delta_{a} \times (100\text{-}\mathbf{f}_{p}) \times (1\text{-}\mathbf{n}) \times 10^{\text{-}4},\,\text{т/год} \\ \mathbf{M}_{_{\mathrm{H.0Kp.}}} &= \mathbf{m}_{_{\mathrm{M}}} \times \delta_{a} \times (100\text{-}\mathbf{f}_{p}) \times (1\text{-}\mathbf{n}) \times 10^{\text{-}4}/\,3,6,\,\text{т/год} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

 δ_a - доля краски, потеряной в виде аэрозоля,

30,0 % мас.

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ,

73,0 % мас.

n - степень очистки воздуха газоочистным оборудованием

1,25 кг/час

 $m_{_{M}}$ - фактический максимальный часовой расход ЛКМ,

$$M_{\text{n.orp.}} = 0,0025 \times 30,0 \times (100 - 73,0) \times (1 - 0) \times 10^4 = 0,0002 \text{ T/год}$$
 $M_{\text{n.orp.}} = 1,25 \times 30,0 \times (100 - 73,0) \times (1 - 0) \times 10^4 / 3,6 = 0,0281 \text{ F/cek}$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M^{x}}_{\text{okp}} &= \mathbf{m_{\phi}} \times \mathbf{f_{p}} \times \boldsymbol{\delta_{p}} \times \boldsymbol{\delta_{x}} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fol}; \\ \mathbf{M^{x}}_{\text{okp}} &= \mathbf{m_{m}} \times \mathbf{f_{p}} \times \boldsymbol{\delta_{p}} \times \boldsymbol{\delta_{x}} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где тф - фактический годовой расход ЛКМ,

0,0025 т/год

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 1,25 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

73,0 % мас.

 $\delta_{p}`$ - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (таблица 3), $\qquad 25 \qquad \%$ мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ацетон 26,00 % мас. бутилацетат 12,00 % мас. толуол 62,00 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ацетона при нанесении краски составят:

$$M_{\text{окр}}^{x} = 0,0025$$
 × 73,0 × 25 × 26,00 × (1 - 0) × $10^{-6} = 0,0001$ т/год $M_{\text{окр}}^{x} = 1,25$ × 73,0 × 25 × 26,00 × (1 - 0) × 10^{-6} / 3,6 = 0,0165 г/сек

Выбросы бутилацетата при нанесении краски составят:

Выбросы толуола при нанесении краски составят:

$$\mathbf{M_{okp}^{Y}} = 0,0025 \times 73,0 \times 25 \times 62,00 \times (1 - 0) \times 10^{-6} = 0,0003$$
 T/Form $\mathbf{M_{okp}^{Y}} = 1,25 \times 73,0 \times 25 \times 62,00 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0393$ T/Cerc

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fol}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,0025 т/год

 $m_{\mbox{\tiny M}^{-}}$ фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 1,25 кг/час

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

73,0 % мас.

 $\delta_{\rm b}$ - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 $\delta_{\rm x}$ - содержание компонента "x" в летучей части ЛКМ,

ацетон 26,00 % мас. бутилацетат 12,00 % мас. толуол 62,00 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ацетона при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,0025$$
 \times 73,0 \times 75 \times 26,00 \times (1 - 0) \times 10⁻⁶ = 0,0004 \times 1/fog $M_{\text{okp}}^{x} = 1,25$ \times 73,0 \times 75 \times 26,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0494 \times 1/cek

Выбросы бутилацетата при сушке краски составят:

$$\mathbf{M^{x}}_{\text{okp}} = 0.0025$$
 \times 73,0 \times 75 \times 12,00 \times (1 - 0) \times 10⁻⁶ = 0.0002 T/fou $\mathbf{M^{x}}_{\text{okp}} = 1.25$ \times 73,0 \times 75 \times 12,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0.0228 T/cek

Выбросы толуола при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,0025$$
 \times 73,0 \times 75 \times 62,00 \times (1 - 0) \times 10⁻⁶ = 0,0008 t/год $M_{\text{okp}}^{x} = 1,25$ \times 73,0 \times 75 \times 62,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,1179 г/сек

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс			
	г/сек	т/год		
Взвешенные частицы	0,02810	0,00020		
Ацетон	0,06590	0,00050		
Бутилацетат	0,03040	0,00025		
Толуол	0,15720	0,00110		

Расчет выбросов от процесса покраски ГФ 0119 (ист. 6146)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении грунтовки на поверхность изделия определяется по формулам:

$$\begin{split} M_{\text{н.окр.}} &= m_{\varphi} \times \delta_a \times (100\text{-}f_p) \times (1\text{-}n) \times 10^{\text{-}4}, \text{ т/год} \\ M_{\text{н.окр.}} &= m_{\text{м}} \times \delta_a \times (100\text{-}f_p) \times (1\text{-}n) \times 10^{\text{-}4}/3\text{,6, т/год} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

 δ_a - доля краски, потеряной в виде аэрозоля,

 ${\rm f_p}$ - доля летучей части (растворителя) в ЛКМ,

n - степень очистки воздуха газоочистным оборудованием $m_{\scriptscriptstyle M}$ - фактический максимальный часовой расход ЛКМ,

0.009 T

30,0 % мас.

47,0 % мас.

1.00 кг/час

$$M_{\text{R.OKP.}} = 0,009$$
 \times $30,0$ \times (100 - $47,0$) \times (1 - 0) \times 10^{-4} = $0,0014$ T/FOX $M_{\text{R.OKP.}} = 1,00$ \times $30,0$ \times (100 - $47,0$) \times (1 - 0) \times 10^{-4} / $3,6$ = $0,0442$ T/CeK

Выброс индивидуальных летучих компонентов грунтовки, образующихся при нанесении грунтовки на поверхность изделия, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fol}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{w} \times \mathbf{f}_{n} \times \boldsymbol{\delta}_{n} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, 3,6, \text{ r/cek} \end{aligned}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0.009 т/год

 $m_{_{M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования,

1,00 кг/час $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

47.0 % Mac.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100,00 % мас

n - степень очистки воздуха газоочистным оборудованием

0 лол. ел.

Выбросы ксилола при нанесении грунтовки составят:

$$M_{\text{okp}}^{x} = 0,009$$
 \times 47,0 \times 25 \times 100,00 \times (1 - 0) \times 10⁻⁶ = 0,0011 $_{\text{T/год}}$ $M_{\text{okp}}^{x} = 1,00$ \times 47,0 \times 25 \times 100,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0326 $_{\text{г/сек}}$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при сушке нанесенной грунтовки, определяется по формуле:

$$\begin{split} \mathbf{M}^{x}_{\text{okp}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} `` \times \delta_{x} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}, \text{ t/foh;} \\ \mathbf{M}^{x}_{\text{okp}} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \delta_{p} `` \times \delta_{x} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}/3,6, \text{ t/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0.009 т/гол

 $m_{_{\! M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 1,00 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

47,0 % мас.

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

ксилол 100.00 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы ксилола при сушке грунтовки составят:

$$M_{\text{okp}}^{x} = 0,009$$
 \times 47,0 \times 75 \times 100,00 \times (1 - 0) \times 10⁻⁶ = 0,0032 т/год $M_{\text{okp}}^{x} = 1,00$ \times 47,0 \times 75 \times 100,00 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0979 г/сек

Итого от нанесения грунтовки:

	Выброс			
Наименование загрязняющего вещества				
	г/сек	т/год		
Взвешенные частицы	0,0442	0,0014		
Ксилол	0,1305	0,0043		

Ремонт дорог щебнем фр. 40-70

Выгрузка щебня фр. 40-80 мм (ист. 6147)

Расчет выбросов пыли от выгрузки щебня производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$\begin{aligned} \mathbf{M}_{ce\kappa} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{vac} \times \mathbf{10}^6 \, / \, 3600, \, \text{г/cek} \\ \mathbf{M}_{roa} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{rob}, \, \text{т/год} \end{aligned}$

k ₁ - весовая доля пылевой фракции в материале	0,04
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
 к₃ - коэффициент, учитывающий местные метеоусловия; 	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
к ₅ - коэффициент, учитывающий влажность материала;	0,6
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	119,0
Стод - суммарное количество перераоатываемого материала в течение года, глод,	119,0

 $M_{c} = \frac{0.04 \times 0.02 \times 1.2 \times 1.0 \times 0.60 \times 0.4}{3600} \times 0.7 \times 25.0 \times 10^{6} = 1,1200 \text{ r/cek}$

 $M_{r} = 0.04 \times -0.02 \times -1.2 \times -1.0 \times -0.60 \times -0.4 \times -0.7 \times -119.00 = -0.0192 - -1.000 \times -0.0192 \times -1.000 \times -0.0192 \times -1.000 \times -0.0192 \times -0.0192$

Итого от выгрузки щебня:

Наименование загрязняющего вещества	Выбр	Выброс			
	г/с	т/год			
Пыль неорганическая (70-20% SiO2)		0,0192			

Разработка (перемещение) щебня автогрейдером (ист. 6148)

Расчет выбросов пыли от разработки щебня бульдозером производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221
ө).

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{vac}} \times \mathbf{10}^6 \ / \ \mathbf{3600}, \ \mathbf{r/cek} \\ \mathbf{M}_{\text{rog}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\text{rog}}, \ \mathbf{T/rog} \end{split}$$

k ₁ - весовая доля пылевой фракции в материале	0,04
${ m k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
\mathbf{k}_3 - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,5
G_{vac} - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
G_{rog} - суммарное количество перерабатываемого материала в течение года, т/год;	119,0

М.:	0,04 × 0,02 ×	1,2	×	1,0	×	0,60 ×	0,4	×	0,5	×	25,0	×	10 ⁶	-= 0.8000	г/сек
TVIC .	=						3600							- 0,0000	1/CCK

 $M_r = 0.04 \times 0.02 \times 1.2 \times 1.0 \times 0.60 \times 0.4 \times 0.5 \times 119 = 0.0137$

Итого при разработке щебня будьдозером:

Наименование загрязняющего вещества	Выброс			
паименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	0,8000	0,0137		

Расчет выбросов от дизельной электростанции (ист. 0149)

Дизельная электростанция (ДЭС) мощностью 4 кВт/час служит в качестве источника электроэнергии. Расход дизельного топлива составит 2,0 тонны. Выброс загрязняющих веществ осуществляется через выхлопную трубу высотой 1 м и диаметром устья - 0,1 м. Скорость воздушного потока - 0,2 м/с.

В качестве топлива используется дизельное топливо со следующими характеристиками на рабочую массу:

зольность, (A^r) - 0,025 %

содержание серы, (S^r) - 0.3%

низшая теплота сгорания, (Q_i^r) - 42,75 МДж/кг

	2025 г			
Годовой расход топлива	2,0	тонн		
Режим работы	200	ч/год		

В процессе сжигания дизельного топлива в генераторном агрегате в атмосферу выделяется: оксид углерода, сажа (углерод черный), углеводороды предельные C_{12} - C_{19} , диоксид азота, формальдегид, диоксид серы и бенз(а)пирен.

Расчет выбросов загрязняющих веществ от генераторного агрегата производится согласно п. 6.1 и 6.2 РНД 211.2.02.04-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок".

Максимальный выброс і-го вещества (г/сек) стационарной дизельной установкой определяется по формуле:

$$M_{cek} = e_i \times P_{\odot} / 3600$$
, r/cek;

где еі - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности,

 $\mathbf{P}_{\mathbf{9}}$ - эксплуатационная мощность стационарной дизельной установки,

4.0 кВт

Удельные показатели выбросов загрязняющих веществ на единицу полезной работы маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	e _i , г/кВт ч
Углерода оксид	7,2
Окислы азота	10,3
Углеводороды предельные С ₁₂ -С ₁₉	3,6
Сажа (углерод черный)	0,7
Диоксид серы	1,1
Формальдегид	0,15
Бенз(а)пирен	0,000013

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{cer} = 7.2 \times 4.0$$
 / 3600 = 0.0080 г/сек

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{cek}$$
 = 10,3 × 4,0 / 3600 = 0,0114 г/сек в пересчёте на NO_2 M_{cek} = 0,8 × 0,0114 = 0,0091 г/сек в пересчёте на NO M_{cek} = 0,13 × 0,0114 = 0,0015 г/сек

Выбросы углеводородов предельных $C_{12}\text{-}C_{19}$ при работе генераторного агрегата составят:

$$M_{cek}$$
 = 3,6 × 4,0 / 3600 = 0,0040 г/cek

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

$$M_{cek} = 0.7 \times 4.0$$
 / 3600 = 0.0008 г/сек

Выбросы диоксида серы при работе генераторного агрегата составят:

$$M_{cek}$$
 = 1,1 × 4,0 / 3600 = 0,0012 r/cek

Выбросы формальдегида при работе генераторного агрегата составят:

$$M_{cek} = 0.15 \times 4.0 / 3600 = 0.0002 \text{ r/cek}$$

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

$$M_{cek} = 0,000013 \times 4,0$$
 / 3600 = 0,00000001 r/cek

Валовый выброс і-го вещества (т/год) за год стационарной дизельной установкой определяется по формуле:

$$\mathbf{M}_{\mathrm{rog}}$$
 = $\mathbf{q}_{\mathrm{i}} \times \mathbf{B}_{\mathrm{rog}} /$ 1000, т/год;

где q_i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной B_{rog} - расход топлива стационарной дизельной установкой за год 2,0 т. 2025 г

Удельные показатели выбросов загрязняющих веществ на один кг дизельного топлива при работе маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	q _i , г/кг
Углерода оксид	30
Окислы азота	43
Углеводороды предельные C_{12} - C_{19}	15
Сажа (углерод черный)	3,0
Диоксид серы	4,5
Формальдегид	0,6

Выбросы оксида углерода при работе генераторного агрегата составят:

 M_{rog} = 30 × 2,000 / 1000 = 0,0600 т/год

Выбросы окислов азота при работе генераторного агрегата составят:

 $M_{\rm rog}$ = 43 × 2,000 / 1000 = 0,0860 т/год в пересчёте на ${
m NO}_2$ $M_{\rm rog}$ = 0,8 × 0,0860 = 0,0688 т/год в пересчёте на ${
m NO}$ $M_{\rm rog}$ = 0,13 × 0,0860 = 0,0112 т/год

Выбросы углеводородов предельных $C_{12}\text{-}C_{19}$ при работе генераторного агрегата составят:

 $M_{\rm rog}$ = 15 × 2,000 / 1000 = 0,0300 т/год

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

 M_{rog} = 3,0 × 2,000 / 1000 = 0,0060 т/год

Выбросы диоксида серы при работе генераторного агрегата составят:

 M_{rog} = 4,5 × 2,000 / 1000 = 0,0090 т/год

Выбросы формальдегида при работе генераторного агрегата составят:

 M_{rog} = 0,6 × 2,000 / 1000 = 0,00120 т/год

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

 $M_{rog} = 0,000055$ × 2,000 / 1000 = 0,0000001 т/год

Итого от ДЭС:

	Вы	Выброс		
Наименование загрязняющего вещества	200	25 г		
	г/сек	т/год		
Углерода оксид	0,0080	0,0600		
Азота оксид	0,0015	0,0112		
Азота диоксид	0,0091	0,0688		
Углеводороды предельные С ₁₂ -С ₁₉	0,0040	0,0300		
Сажа (углерод черный)	0,0008	0,0060		
Диоксид серы	0,0012	0,0090		
Формальдегид	0,0002	0,00120		
Бенз(а)пирен	0,00000001	0,0000001		

Вспомогательные работы - 2026 - 2041 года

Ремонт дорог щебнем фр. 40-80

Выгрузка щебня фр. 40-80 мм (ист. 6147)

Расчет выбросов пыли от выгрузки щебня производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

 $\begin{aligned} \mathbf{M}_{\text{cek}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\text{vac}} \times \mathbf{10}^6 \, / \, 3600, \, \text{г/cek} \\ \mathbf{M}_{\text{rog}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\text{rog}}, \, \text{т/год} \end{aligned}$

k ₁ - весовая доля пылевой фракции в материале	0,04
${\bf k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\rm qac}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
${\rm G_{rog}}$ - $$ суммарное количество перерабатываемого материала в течение года, т/год;	7056,0

 $\mathbf{M_c} = \frac{0.04 \times 0.02 \times 1.2 \times 1.0 \times 0.60 \times 0.4}{3600} \times 0.7 \times 25.0 \times 10^{-6} = 1,1200 \quad \text{r/cek}$

 $M_r = 0.04 \times -0.02 \times -1.2 \times -1.0 \times -0.60 \times -0.4 \times -0.7 \times -7056,00 = 1,1380 - \text{T/rob}$

Итого от выгрузки щебня:

Наименование загрязняющего вещества	Выброс	
	г/с	т/год
Пыль неорганическая (70-20% SiO2)	1,1200	1,1380

Разработка (перемещение) щебня автогрейдером (ист. 6148)

Расчет выбросов пыли от разработки щебня бульдозером производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221
ө).

$$\begin{split} \mathbf{M}_{\text{сек}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 \, / \, 3600, \, \text{г/сек} \\ \mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \, \text{т/год} \end{split}$$

0,04
0,02
1,2
1,0
0,6
0,4
0,5
25,0
7056,0

М. :	0,04 × 0,02 ×	1,2	×	1,0	×	0,60 ×	0,4	×	0,5	×	25,0	×	10 ⁶ = 0,8000	г/сек
тис -	-						3600						- 0,8000	1/CCK

 $M_{r} = 0.04 \times -0.02 \times -1.2 \times -1.0 \times -0.60 \times -0.4 \times -0.5 \times -7056 = 0.8129 - \text{t/rom}$

Итого при разработке щебня будьдозером:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	0,8000	0,8129	

Вспомогательные работы - 2042 год

Расчет выбросов от газовой резки металла (ист. 6133)

Расчет выбросов загрязняющих веществ в атмосферу от газовой резки металла производится согласно РНД 211.2.02.03-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах, Астана, 2004 г." по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{K}_{\text{m}} \times \mathbf{T} \times (1-\mathbf{n}) \times 0,000001, \text{ т/год;}$$

$$\mathbf{M}_{\text{сек}} = \mathbf{K}_{\text{m}} \times (1-\mathbf{n}) / 3600, \text{ г/сек}$$

где: K_m - удельный показатель выброса загрязняющих веществ при резке металла, г/час

Т - общее время работы оборудования

10 ч/год

n - степень очистки воздуха в соответствующем аппарате, которым снабжается

группа технологических агрегатов

0

Удельные показатели выбросов загрязняющих веществ (г/ч) при резке металлов толщиной до 20 мм, приведены в таблице:

	K _m , г/час		
Железа оксид	Марганец и его соединения	Оксид углерода	Диоксид азота
197,0	3,0	65,0	53,2

Выбросы оксида железа при резке металла составят:

Выбросы марганца и его соединений при резке металла составят:

Выбросы углерода оксида при резке металла составят:

$$M_{\rm rog} = 65,0$$
 × 10 × (1 - 0) × 0,000001 = 0,0007 т/год $M_{\rm cek} = 65,0$ × (1 - 0) / 3600 = 0,0181 г/сек

Выбросы диоксида азота при резке металла составят:

Итого от передвижных постов газовой резки металла:

Наименование загрязняющего вещества	Выброс		
	г/сек	т/год	
Железа оксид	0,0547	0,0020	
Марганец и его соединения	0,0008	0,00003	
Углерода оксид	0,0181	0,0007	
Азота диоксид	0,0148	0,0005	

Пост газовой сварки металла пропан-бутановой смесью (ист. 6134)

При работе сварочного поста газовой сварки металла пропан-бутановой смесью в атмосферу выделяется диоксид азота.

Расход пропан-бутановой смеси

1,5 кг/год

Режим работы -

2 ч/год

0,75 кг/час

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$M_{\text{год}} = B_{\text{год}} \times K_{\text{m}} \times (1-\text{n}) \times 0,000001, \text{ т/год};$$

$$M_{\text{сек}} = B_{\text{час}} \times K_{\text{m}} \times (1-\text{n}) / 3600, \text{ г/сек}$$

где \boldsymbol{B}_{rog} - расход применяемого сырья и материалов

1,5 кг/год

 $\boldsymbol{B}_{\text{час}}$ - фактический максимальный расход применяемых материалов

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества (диоксида азота) на

единицу массы расходуемых сырья и материалов,

15,0 г/кг

п - степень очистки воздуха в соответствующем аппарате, которым снабжается группа

группа технологических агрегатов

0

Выбросы диоксида азота при газовой сварке составят:

$$M_{ros} = 1.5 \times 15.0 \times (1.70 \times 0.00001 = 0.00002 \text{ т/год}$$
 $M_{cen} = 0.75 \times 15.0 \times (1.70 \times 0.00001 = 0.0001 = 0.0001 \text{ г/сек}$

Итого от поста газовой сварки пропан-бутановой смесью:

H	Выброс

ттанменование загрязняющего вещества	г/сек	т/год
Диоксид азота	0,0031	0,00002

Сварочные работы (ист. 6135)

При проведении сварочных работ применяются электроды марки Э-42, Э-46, Э-55. Расчёт произведён по аналогии с электродами марки УОНИ 13/45.

При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

Расход электродов

16,0 кг/год

Режим работы -

10 ч/год

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{B}_{\text{год}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \times 0,000001, \text{ т/год};$$
 $\mathbf{M}_{\text{сек}} = \mathbf{B}_{\text{час}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) / 3600, \text{ г/сек}$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

16,0 кг/год

В_{час} - фактический максимальный расход применяемых материалов

1,6 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается

группа технологических агрегатов

0

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами приведены в таблице:

Наименование загрязняющнго вещества	К _m , г/кг
Железа оксид	10,69
Марганец и его соединения	0,92
Пыль неорганическая (70-20% SiO ₂)	1,40
Фтористые соединения газообразные	0,750
Фториды	3,30
Азота диоксид	1,50
Углерода оксид	13,30

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{rot} = 16.0 \times 10.69 \times (1-0.) \times 0.000001 = 0.0002 \text{ T/rog}$$
 $M_{cek} = 1.6 \times 10.69 \times (1-0.) \times 3600 = 0.0048 \text{ r/cek}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

$$M_{rog} = 16.0 \times 0.92 \times (1-0) \times 0.000001 = 0.00001 _{T/год}$$
 $M_{cek} = 1.6 \times 0.92 \times (1-0) \times 3600 = 0.0004 _{r/cek}$

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{r_{01}} = 16.0 \times 1,400 \times (1-0) \times 0,000001 = 0,00002 \text{ T/rom}$$
 $M_{cek} = 1,6 \times 1,400 \times (1-0) / 3600 = 0,0006 \text{ r/cek}$

Выбросы фтористых соединений газообразных при производстве сварочных работ составят:

$$M_{rol} = 16,0 \times 0,750 \times (1-0) \times 0,000001 = 0,00001$$
 т/год $M_{cek} = 1,6 \times 0,750 \times (1-0) / 3600 = 0,0003$ г/сек

Выбросы фторидов при производстве сварочных работ составят:

$$M_{rog} = 16.0 \times 3.30 \times (1 - 0) \times 0.000001 = 0.00005 \text{ T/rog}$$
 $M_{cen} = 1.6 \times 3.30 \times (1 - 0) / 3600 = 0.0015 \text{ r/cen}$

Выбросы диоксида азота при производстве сварочных работ составят:

$$M_{\rm rog} = 16.0 \times 1.50 \times (1 - 0) \times 0.000001 = 0.00002 \,$$
 т/год $M_{\rm cek} = 1.6 \times 1.50 \times (1 - 0) / 3600 = 0.0007 \,$ г/сек

Выбросы оксида углерода при производстве сварочных работ составят:

$$M_{\rm rol} = 16,0 \times 13,30 \times (1-0) \times 0,000001 = 0,0002$$
 т/год $M_{\rm cek} = 1,6 \times 13,30 \times (1-0) / 3600 = 0,0059$ г/сек

Итого от электродуговой сварки:

	Выб	Выброс			
Наименование загрязняющего вещества	г/сек	т/год			
Железа оксид	0,00480	0,00020			
Марганец и его соединения	0,00040	0,00001			
Пыль неорганическая (70-20% SiO2)	0,00060	0,00002			
Фтористые соединения газообразные	0,00030	0,00001			
Фториды	0,00150	0,00005			
Азота диоксид	0,00070	0,00002			
Углерода оксид	0,00590	0,00020			
Итого:	0,01420	0,00051			

Сварочные работы с применением проволоки

При проведении сварочных работ применяется сварочная проволока. При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

Расход проволоки 5,0 кг/год Режим работы - 3 ч/год

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$egin{aligned} \mathbf{M}_{\mathrm{rog}} = \mathbf{B}_{\mathrm{rog}} imes \mathbf{K}_{\mathrm{m}} imes (1\text{-n}) imes 0,000001, \ \mathrm{T/год}; \\ \mathbf{M}_{\mathrm{ce\kappa}} = \mathbf{B}_{\mathrm{vac}} imes \mathbf{K}_{\mathrm{m}} imes (1\text{-n}) / 3600, \ \mathrm{r/ce\kappa} \end{aligned}$$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

5,0 кг/год

 $B_{\mbox{\tiny час}}$ - фактический максимальный расход применяемых материалов

1,7 кг/час

 K_{m} - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается

группа технологических агрегатов

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами

Наименование загрязняющиго вещества	$K_{\rm m}$, г/кг
Железа оксид	38,00
Марганец и его соединения	1,48
Пыль неорганическая (70-20% SiO ₂)	0,16

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{r_{01}} = 5.0 \times 38.00 \times (1 - 0) \times 0.000001 = 0.00019 \text{ T/rom}$$
 $M_{cek} = 1.7 \times 38.00 \times (1 - 0) / 3600 = 0.0179 \text{ r/cek}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

$$M_{rog} = 5.0 \times 1.48 \times (1 - 0) \times 0.000001 = 0.000007 \text{ T/rog}$$
 $M_{cek} = 1.7 \times 1.48 \times (1 - 0) / 3600 = 0.0007 \text{ r/cek}$

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{rol} = 5.0 \times 0.160 \times (1 - 0) \times 0.00001 = 0.000001 \text{ T/rol}$$

 $M_{cer} = 1.7 \times 0.160 \times (1 - 0) / 3600 = 0.00008 \text{ r/cer}$

Итого от сварочных работ с применением проволоки:

Hayneyanayya aaragaygayyana nayyaaraa	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Железа оксид	0,0179	0,0002
Марганец и его соединения	0,0007	0,000007
Пыль неорганическая (70-20% SiO2)	0,00008	0,0000010

Итого от сварочных работ:

Наименование загрязняющего вещества	Выб	Выброс	
	г/сек	т/год	
Железа оксид	0,022700	0,000400	
Марганец и его соединения	0,001100	0,000017	
Пыль неорганическая (70-20% SiO2)	0,000680	0,000021	
Фтористые соединения газообразные	0,000300	0,000010	
Фториды	0,001500	0,000050	
Азота диоксид	0,000700	0,000020	
Углерода оксид	0,005900	0,000200	
Итого:	0,03288	0,000718	

Покрасочные и грунтовочные работы

Расчет выбросов от процесса грунтовки ГФ-021 (ист. 6136)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении грунтовки на поверхность изделия определяется по формулам:

$$\begin{split} \mathbf{M}_{\text{н.окр.}} &= \mathbf{m}_{\varphi} \times \delta_{a} \times (100\text{-}\mathbf{f}_{p}) \times (1\text{-}\mathbf{n}) \times 10^{\text{-}4}, \text{ т/год} \\ \mathbf{M}_{\text{н.окр.}} &= \mathbf{m}_{\text{M}} \times \delta_{a} \times (100\text{-}\mathbf{f}_{p}) \times (1\text{-}\mathbf{n}) \times 10^{\text{-}4} / 3\text{,6, т/год} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,0013 т

 δ_a - доля краски, потеряной в виде аэрозоля,

30,0 % мас.

f_p - доля летучей части (растворителя) в ЛКМ,

45,0 % мас. 0

n - степень очистки воздуха газоочистным оборудованием

т, - фактический максимальный часовой расход ЛКМ,

1,30 кг/час

$$M_{\text{H.OKD.}} = 0,0013 \times 30,0 \times (100)$$
 $M_{\text{H.OKD.}} = 1,30 \times 30,0 \times (100)$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при нанесении грунтовки на поверхность изделия, определяется по формуле:

45,0

$$\begin{aligned} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ т/год;} \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{M} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

0.0013 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 1,30 кг/час

f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45.0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении грунтовки составят:

$$\mathbf{M^{X}}_{\text{osp}} = 0.0013 \times 45.0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0.0001 \text{ T/rog}$$
 $\mathbf{M^{X}}_{\text{osp}} = 1.30 \times 45.0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.0406 \text{ r/cek}$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при сушке нанесенной грунтовки, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \text{``} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/foh;} \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \text{``} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,0013 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

1,30 кг/час f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

75 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

ксилол 100 % мас 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при сушке грунтовки составят:

$$M^{x}_{okp} = 0,001 \times 45,0 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0,0003 \text{ T/год}$$
 $M^{x}_{okp} = 1,30 \times 45,0 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,1219 \text{ г/сек}$

Итого от процесса грунтовки:

Have to vone and particular and part	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Взвешенные частицы	0,0596	0,0002
Ксилол	0,1625	0,0004

Расчет выбросов от процесса покраски мастикой МБ-50 (по аналогии с БТ-577) (ист. 6137)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$${
m M_{\rm H.0 Kp.}} = {
m m_{\phi}} imes {
m \delta_a} imes (100 \text{-} {
m f_p}) imes (1 \text{-} {
m n}) imes 10^{\text{-}4}, {
m T/год}$$

$$M_{\text{н.окр.}} = m_{\text{м}} \times \delta_{\text{a}} \times (100 \text{- f}_{\text{p}}) \times (1 \text{-n}) \times 10^{\text{-4}} / 3,6,$$
 т/год

где m_{φ} - фактический годовой расход ЛКМ,

 δ_a - доля краски, потеряной в виде аэрозоля,

 f_p - доля летучей части (растворителя) в ЛКМ,

n - степень очистки воздуха газоочистным оборудованием

 $m_{\scriptscriptstyle M}$ - фактический максимальный часовой расход ЛКМ,

0,1660 т 30,0 % мас.

63,0 % мас.

3,00 кг/час

$$M_{\text{н.окр.}} = 0,1660$$
 × 30,0 × (100 - 63,0) × (1 - 0) × 10^{-4} = 0,0184 т/год $M_{\text{н.окр.}} = 3,00$ × 30,0 × (100 - 63,0) × (1 - 0) × 10^{-4} / 3,6 = 0,0925 г/сек

Выброс индивидуальных летучих компонентов краски, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/foj}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,1660 т/год

 ${\rm m_{_{\rm M}}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 3,00 кг/час f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

уайт-спирит 42,60 % мас. ксилол 57,40 % мас.

0 лоп. ел.

n - степень очистки воздуха газоочистным оборудованием

Выбросы уайт-спирита при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,1660 \times 63,0 \times 25 \times 42,60 \times (1 - 0) \times 10^{-6} = 0,0111 \text{ T/год}$$
 $M_{\text{okp}}^{x} = 3,00 \times 63,0 \times 25 \times 42,60 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0559 \text{ r/cek}$

Выбросы ксилола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0.1660$$
 \times 63.0 \times 25 \times 57.40 \times $($ 1 - 0 $) \times 10^{-6} $=$ 0.0150 T/год $M_{\text{okp}}^{x} = 3.00$ \times 63.0 \times 25 \times 57.40 \times $($ 1 - 0 $)$ \times 10^{-6} / 3.6 $=$ 0.0753 T/cek$

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M^{x}}_{_{\mathbf{0}\mathbf{K}\mathbf{p}}} &= \mathbf{m_{\phi}} \times \mathbf{f_{p}} \times \boldsymbol{\delta_{p}} `` \times \boldsymbol{\delta_{x}} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}, \text{ t/foj;} \\ \mathbf{M^{x}}_{_{\mathbf{0}\mathbf{K}\mathbf{p}}} &= \mathbf{m_{M}} \times \mathbf{f_{p}} \times \boldsymbol{\delta_{p}} `` \times \boldsymbol{\delta_{x}} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}/3.6, \text{ t/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,1660 т/год

 $m_{_{\rm M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 3,00 кг/час

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 $\delta_{\rm p}$ - доля растворителя в ЛКМ, выделившегося при сушке пог $\delta_{\rm x}$ - содержание компонента "x" в летучей части ЛКМ,

уайт-спирит 42,60 % мас. ксилол 57,40 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы уайт-спирит при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,1660$$
 \times $63,0$ \times 75 \times $42,60$ \times $(1 - 0) \times $10^{-6} = 0,0334$ T/год $M_{\text{okp}}^{x} = 3,00$ \times $63,0$ \times 75 \times $42,60$ \times $(1 - 0) \times 10^{-6} / $3,6$ = $0,1677$ $\text{r/cek}$$$

Выбросы ксилол при сушке краски составят:

$$M^{x}_{osp} = 0.1660 \times 63.0 \times 75 \times 57.40 \times (1 - 0) \times 10^{-6} = 0.04502 \text{ г/год}$$
 $M^{x}_{osp} = 3.00 \times 63.0 \times 75 \times 57.40 \times (1 - 0) \times 10^{-6} / 3.6 = 0.2260 \text{ г/сек}$

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс	
I ' '	г/сек	т/год
Взвешенные частицы	0,0925	0,01840
Уайт-спирит	0,2236	0,04450
Ксилол	0,3013	0,06002

Расчет выбросов углеводородов в атмосферу от использования битума и битумно-масляной эмульсии выполняется по аналогии с расчетами от емкостей и хранилиш битума (п. 6.2.4.Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами) по формуле:

$$\begin{aligned} \mathbf{M} &= 2{,}52 \times \mathbf{V}_{\varkappa} \times \mathbf{Ps(38)} \times \mathbf{M}_{_{\mathrm{M}}} \times (\mathbf{K}_{5x} + \mathbf{K}_{5r}) \times \mathbf{K}_{6} \times \mathbf{K}_{7} \times (1\text{-n}) \times 10^{.9}, \, \text{kg/y} \\ \\ \mathbf{M}_{_{\mathrm{T}}} &= \mathbf{M} \times \mathbf{T/1000}, \, \text{t/rog}, \\ \\ \mathbf{M}_{_{\mathrm{C}}} &= \mathbf{M} \times 1000/3600, \, \text{t/cek} \end{aligned}$$

где Vж - годовой объем используемого битума

 ${\rm M}^{3}/{\rm год}$

Ps(38) - давление насыщенных паров битума при $t=38~^{0}$ С, принимается в зависимости от эквивалентной температуры начала кипения жидкости $\mathbf{t}_{\scriptscriptstyle \mathsf{экв}},$

18 гПа

 $t_{_{3KB}} = t_{_{H.K.}} + (t_{_{K.K^*}} - t_{_{H.K.}}) / 8,8 =$

 $\mathbf{M}_{\scriptscriptstyle{\mathrm{M}}}$ - молекулярная масса паров битума

+ (340 - 118) / 8,8 = 143,23 $^{\circ}$ C

127,5 г/моль

 $K_{5x},\,K_{5\tau}$ - поправочные коэффициенты, зависящие от давления насыщенных паров Ps(38) и температуры газового пространства tp, соответственно в холодное и теплое

время года, $K_{5x} = 0.015$, $K_{5r} =$

 K_6 - поправочный коэффициент, зависящий от давления насыщенных паров $P_s(38)$

и годовой оборачиваемости хранилищ U,

 ${\rm K}_7$ - поправочный коэффициент, зависящий от технической оснащенности и режима 1,10 эксплуатаци хранилищ,

n - эффективность средств пылеулавливания, доли ед.

Т - количество часов работы,

ч/год

118

$$M = 2,52 \times 5 \times 18 \times 127,5 \times (0.015 + 0.584) \times 1,26 \times 1,10 \times 10^{-9} = 0.00002 \text{ kg/y}$$

$$M_{\Gamma} = 0.00002 \times 25 / 1000 = 0.0000005 \text{ T/for}$$

$$M_{\Gamma} = 0.00002 \times 1000 / 3600 = 0.000006 \text{ T/cek}$$

Итого от использования битума:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Углеводороды предельные (C_{12} - C_{19})	0,000006	0,0000005

Расчет выбросов от использования керосина (ист. 6140)

Выброс индивидуальных летучих компонентов растворителя (керосина), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fom}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где m_φ - фактический годовой расход ЛКМ,

0.0170 т/год

 $m_{_{\! M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности 2,000 кг/час

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

керосин 100 % мас.

Выбросы керосина при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0.01700 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{6} = 0.0043 \text{ г/год}$$
 $M_{\text{okp}}^{x} = 2.000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{6} / 3.6 = 0.1389 \text{ г/сек}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{\text{X}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \text{``} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fod;} \\ \mathbf{M}_{\text{okp}}^{\text{X}} &= \mathbf{m}_{\text{M}} \times \mathbf{f}_{p} \times \delta_{p} \text{``} \times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,01700 т/год

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования.

2,000 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

керосин 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы керосина при сушке краски составят:

$$M_{\text{osp}}^{x} = 0.01700 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0.0128 \text{ T/год}$$

 $M_{\text{osp}}^{x} = 2.000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3.6 = 0.4167 \text{ r/cek}$

Итого от использования керосина:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Керосин	0,5556	0,0171

Расчет выбросов загрязняющих веществ от шлифовальных машин (ист. 6143)

Для расчета выбросов абразивной и металлической пыли в атмосферный воздух применяется методика по расчету выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004.

Валовое и максимально-разовое количество загрязняющих веществ, образующихся от одной единицы оборудования, при обработке металла без применения СОЖ определяется по формулам:

$$M = k \times Q \times T \times 3600 \times (1 - \eta) \times 10^{-6}$$
, т/год

$$M' = k \times Q \times (1 - \eta), \ r/ce\kappa$$

где k - коэффициент гравитационного оседания, для источников выбросов, не оборудованных системой местных отсосов или коэффициент

k принят равным 0,2

как коэффициент гравитационного оседания для абразивной и металлической пыли Q - удельный показатель пылеобразования на единицу оборудования, г/с

Q принято равным для пыли абразивной

0.0250 г/с 0.0380

для пыли металлической как для плоскошлифовального станка с диаметром абразивного круга 500 мм

Т - фактический годовой фонд времени работы одной единицы обору-

дования, ч. Согласно данным предприятия:

162.00 час/год

 η - степень очистки воздуха пылеулавливающим оборудованием (в дол. ед.)

η = 0,0, станки не оснащены пылегазоулавливающим оборудованием

Валовое и максимально-разовое количество абразивной пыли, образующееся от одной единицы оборудования:

$$M' = 0.2 \times 0.0250 \times (1-0.00) = 0.0050$$
 г/сек $M = 0.2 \times 0.025 \times 162.00 \times 3600 \times (1-0.00) \times 10^{-6} = 0.0029$ т/год Валовое и максимально-разовое количество металлической пыли, образующееся от одной $M' = 0.2 \times 0.0380 \times (1-0.00) = 0.0076$ г/сек $M = 0.2 \times 0.038 \times 162.00 \times 3600 \times (1-0.00) \times 10^{-6} = 0.0044$ т/год

Итого		
Валовый выброс, Π = $\Sigma\Pi$ і, тонн/год		
Пыль абразивная	0,002900	
Пыль металлическая (взвешенные частицы)	0,004400	
Максимально разовый выброс, $M=\Sigma M$ i, гр/сек		
Пыль абразивная	0,005000	
Пыль металлическая (взвешенные частицы)	0,007600	

<u>Расчет выбросов от использования растворителя P-4 (ист. 6144)</u>

Выброс индивидуальных летучих компонентов растворителя, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{aligned} \mathbf{M}^{x}_{\ \ o\kappa p} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \\^{\times} \times \boldsymbol{\delta}_{x} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6}, \text{ t/for;} \\ \mathbf{M}^{x}_{\ \ o\kappa p} &= \mathbf{m}_{_{M}} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \\^{\times} \times \boldsymbol{\delta}_{x} \times (1\text{-}\mathbf{n}) \times 10^{\text{-}6} / 3.6, \text{ t/cek} \end{aligned}$$

где m_{φ} - фактический годовой расход ЛКМ,

т/год

 ${\rm m_{_{\rm M}}}\text{-}$ фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования,

1,00 кг/час

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

апетон 26 % мас. бутилацетат 12 % мас. толуол 62 % мас.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ацетона при нанесении краски составят:

$$M^{x}_{okp} = 0,003 \times 100 \times 25 \times 26 \times (1 - 0) \times 10^{-6} = 0,0002 \text{ T/rom}$$

 $M^{x}_{okp} = 1,00 \times 10^{0} \times 25 \times 26 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0181 \text{ r/cek}$

Выбросы бутилацетата при нанесении краски составят:

$$\mathbf{M^{x}}_{okp} = 0,003 \times 100 \times 25 \times 12 \times (1 - 0) \times 10^{-6} = 0,0001 \text{ T/roz}$$

 $\mathbf{M^{x}}_{okp} = 1,00 \times 100 \times 25 \times 12 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0083 \text{ r/ces}$

Выбросы толуола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,003 \times 100 \times 25 \times 62 \times (1 - 0) \times 10^{-6} = 0,0005 \text{ г/год}$$
 $M_{\text{okp}}^{x} = 1,00 \times 10^{0} \times 25 \times 62 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0431 \text{ г/сек}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\Phi} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (\mathbf{1} - \mathbf{n}) \times \mathbf{10}^{-6}, \text{ т/год;}$$
 $\mathbf{M}_{\text{окр}}^{\mathbf{X}} = \mathbf{m}_{\mathbf{M}} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (\mathbf{1} - \mathbf{n}) \times \mathbf{10}^{-6} / \mathbf{3}, \mathbf{6}, \text{ г/сек}$

где m_{φ} - фактический годовой расход ЛКМ,

0.003 т/год

т, - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

1,00 кг/час

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

ацетон 26 % мас. бутилацетат 12 % мас. толуол 62 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы ацетона при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,003 \times 100 \times 75 \times 26 \times (1 - 0) \times 10^{-6} = 0,0006 \text{ г/год}$$
 $M_{\text{okp}}^{x} = 1,00 \times 100 \times 75 \times 26 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0542 \text{ г/сек}$

Выбросы бутилацетата при сушке краски составят:

$$\mathbf{M^{x}}_{okp} = 0,003 \times 100 \times 75 \times 12 \times (1 - 0) \times 10^{6} = 0,0003 \text{ T/rog}$$
 $\mathbf{M^{x}}_{okp} = 1,00 \times 10^{6} \times 75 \times 12 \times (1 - 0) \times 10^{6} / 3,6 = 0,0250 \text{ r/cek}$

Выбросы толуола при сушке краски составят:

$$\mathbf{M}^{x}_{\text{okp}} = 0,003 \times 100 \times 75 \times 62 \times (1 - 0) \times 10^{-6} = 0,0014 \text{ T/rog}$$

 $\mathbf{M}^{x}_{\text{okp}} = 1,00 \times 100 \times 75 \times 62 \times (1 - 0) \times 10^{-6} / 3,6 = 0,1292 \text{ r/cek}$

Итого от использования растворителя Р-4:

LIAM ANADAMA AATRIGAMAAA DAMAATRA	Выброс		
	Наименование загрязняющего вещества	г/сек	т/год
Ацетон		0,07230	0,00080
Бутилацетат		0,03330	0,00040
Толуол		0,17230	0.00190

Ремонт дорог щебнем фр. 40-80

Выгрузка щебня фр. 40-80 мм (ист. 6147)

Расчет выбросов пыли от выгрузки щебня производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$M_{\text{cek}} = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times B' \times G_{\text{vac}} \times 10^6 / 3600, \text{ r/cek}$$

$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^* \times \mathbf{G}_{\text{год}}, \text{т/год}$

k ₁ - весовая доля пылевой фракции в материале	0,04
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
${f G}_{{ m roa}}$ - суммарное количество перерабатываемого материала в течение года, т/год;	2534.0

г/сек $M_{\Gamma} = 0.04 \times 0.02 \times 1.2 \times$ $0.7 \times 2534.00 = 0.4087$

Итого от выгрузки щебня:

Наименование загрязняющего вещества	Выброс	
	г/с	т/год
Пыль неорганическая (70-20% SiO2)	1,1200	0,4087

Разработка (перемещение) щебня автогрейдером (ист. 6148)
Расчет выбросов пыли от разработки щебня бульдозером производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\mathrm{cek}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{\hat{}} \times \mathbf{G}_{\mathrm{uac}} \times \mathbf{10}^6 \ / \ \mathbf{3600}, \ \mathbf{f}/\mathbf{cek} \\ \mathbf{M}_{\mathrm{rog}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{\hat{}} \times \mathbf{G}_{\mathrm{rog}}, \ \mathbf{f}/\mathbf{f}/\mathbf{o} \mathbf{J} \end{split}$$

${\sf k}_1$ - весовая доля пылевой фракции в материале	0.04
k_2 - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\rm vac}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	2534,0

M _c :	= 0,04 ×	0,02	×	1,2	×	1,0	×	0,60	×		0,4		×	0,5	×	25,0	×	10 ⁶	-= 0,8000	rlear
	_									3600	3600								- 0,0000	1/000
	$M_r = 0.04$	×	0,02	×	1,	,2 ;	× 1.	,0 ×	(0,60	×	0,4	×		0,5	×	2534	=	0,2919	т/год

Итого при разработке щебня будьдозером:

111010 iipii paspaootite iiteoini ojanasepoini										
Цанманоронна загрязняющаго рашаетра	Выб	ipoc								
Наименование загрязняющего вещества	г/с	т/год								
Пыль неорганическая (70-20% SiO2)	0,8000	0,2919								

Расчет выбросов от дизельной электростанции (ист. 0149)

Дизельная электростанция (ДЭС) мощностью 4 кВт/час служит в качестве источника электроэнергии. Расход дизельного топлива составит 20,0 тонн. Выброс загрязняющих веществ осуществляется через выхлопную трубу высотой 1 м и диаметром устья – 0,1 м. Скорость воздушного потока – 0,2 м/с.

В качестве топлива используется дизельное топливо со следующими характеристиками на рабочую массу:

зольность, (A^r) - 0,025 % содержание серы, (S^{r}) - 0,3 % 42,75 МДж/кг низшая теплота сгорания, (Q_i^r) -

	2042	! г
Годовой расход топлива	20,0	тонн
Режим работы	2640	ч/год

В процессе сжигания дизельного топлива в генераторном агрегате в атмосферу выделяется: оксид углерода, сажа (углерод черный), углеводороды предельные C_{12} - C_{19} , диоксид азота, формальдегид, диоксид серы и бенз(а)пирен.

Расчет выбросов загрязняющих веществ от генераторного агрегата производится согласно п. 6.1 и 6.2 РНД 211.2.02.04-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок".

Максимальный выброс і-го вещества (г/сек) стационарной дизельной установкой определяется по формуле:

$$M_{ce\kappa} = e_i \times P_{\mathfrak{I}} / 3600$$
, $\Gamma/ce\kappa$;

где е_і - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт

Удельные показатели выбросов загрязняющих веществ на единицу полезной работы маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	e _i , г/кВт ч
Углерода оксид	7,2
Окислы азота	10,3
Углеводороды предельные C ₁₂ -C ₁₉	3,6
Сажа (углерод черный)	0,7
Диоксид серы	1,1
Формальдегид	0,15
Бенз(а)пирен	0,000013

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{cek} = 7.2 \times 4.0$$
 / 3600 = 0,0080 г/сек

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{cek}$$
 = 10,3 × 4,0 / 3600 = 0,0114 г/сек в пересчёте на NO $_2$ M_{cek} = 0,8 × 0,0114 = 0,0091 г/сек в пересчёте на NO M_{cek} = 0,13 × 0,0114 = 0,0015 г/сек

Выбросы углеводородов предельных C_{12} - C_{19} при работе генераторного агрегата составят:

$$M_{cek} = 3.6 \times 4.0$$
 / 3600 = 0,0040 r/cek

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

$$M_{cek} = 0.7 \times 4.0 / 3600 = 0.0008 \text{ r/cek}$$

Выбросы диоксида серы при работе генераторного агрегата составят:

$$M_{cer} = 1.1 \times 4.0 / 3600 = 0.0012 \text{ r/cer}$$

Выбросы формальдегида при работе генераторного агрегата составят:

$$M_{cek} = 0.15 \times 4.0 / 3600 = 0.0002 \text{ g/cek}$$

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

$$M_{cek} = 0,000013 \times 4,0$$
 / 3600 = 0,00000001 г/сек

Валовый выброс і-го вещества (т/год) за год стационарной дизельной установкой определяется по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{q}_{\mathbf{i}} \times \mathbf{B}_{\text{год}} / 1000, \text{т/год};$$

где q_i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной B_{rog} - расход топлива стационарной дизельной установкой за год 20,0 т. 2042 г

Удельные показатели выбросов загрязняющих веществ на один кг дизельного топлива при работе маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	q _i , г/кг
Углерода оксид	30
Окислы азота	43
Углеводороды предельные C_{12} - C_{19}	15
Сажа (углерод черный)	3,0
Диоксид серы	4,5
Формальдегид	0,6
Бенз(а)пирен	0,000055

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{rog}$$
 = 30 × 20,000 / 1000 = 0,6000 т/год

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{rog} = 43 \times 20,000$$
 / $1000 = 0,8600$ т/год в пересчёте на NO_2 $M_{rog} = 0,8 \times 0,8600 = 0,6880$ т/год в пересчёте на NO $M_{rog} = 0,13 \times 0,8600 = 0,1118$ т/год

Выбросы углеводородов предельных $C_{12}\text{-}C_{19}$ при работе генераторного агрегата составят:

 M_{rog} = 15 × 20,000 / 1000 = 0,3000 т/год

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

 M_{rog} = 3,0 × 20,000 / 1000 = 0,0600 т/год

Выбросы диоксида серы при работе генераторного агрегата составят:

 M_{rog} = 4,5 × 20,000 / 1000 = 0,0900 т/год

Выбросы формальдегида при работе генераторного агрегата составят:

 $M_{rog} = 0.6 \times 20,000$ / 1000 = 0.01200 $_{T/rog}$

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

 $M_{rog} = 0,000055$ х 20,000 / 1000 = 0,0000011 т/год

Итого от ДЭС:

	Вы	Выброс				
Наименование загрязняющего вещества	20	42 г				
	г/сек	т/год				
Углерода оксид	0,0080	0,6000				
Азота оксид	0,0015	0,1118				
Азота диоксид	0,0091	0,6880				
Углеводороды предельные C ₁₂ -C ₁₉	0,0040	0,3000				
Сажа (углерод черный)	0,0008	0,0600				
Диоксид серы	0,0012	0,0900				
Формальдегид	0,0002	0,01200				
Бенз(а)пирен	0,00000001	0,0000011				

Вспомогательные работы - 2043 год

Ремонт дорог щебнем фр. 40-80

Выгрузка щебня фр. 40-80 мм (ист. 6147)

Расчет выбросов пыли от выгрузки щебня производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$M_{cek} = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times B' \times G_{vac} \times 10^6 / 3600, r/cek$
$\mathbf{M}_{\text{год}} = \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{\cdot} \times \mathbf{G}_{\text{год}}, \text{т/год}$

k ₁ - весовая доля пылевой фракции в материале	0,04
${\bf k}_2~$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
k ₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия	<u> </u>
пылеобразования;	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny qac}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	2534,0
0.04 × 0.02 × 1.2 × 1.0 × 0.60 × 0.4 × 0.7 × 25.0 × 10.6	

 $M_{c} = \frac{0.04 \times 0.02 \times 1.2 \times 1.0 \times 0.60 \times 0.4}{3600} \times \frac{0.4 \times 0.7 \times 25.0 \times 10^{\circ}}{10^{\circ}} = 1,1200 \text{ r/cem}$

 $M_{r} = 0.04 \times -0.02 \times -1.2 \times -1.0 \times -0.60 \times -0.4 \times -0.7 \times 2534.00 = 0.4087 - -1.000 \times -0.4087 \times -1.000 \times -0.4087 \times -1.000 \times -0.4087 \times$

Итого от выгрузки щебня:

Наиманаранна загрядняльнага рашаетра	Выброс			
Наименование загрязняющего вещества	г/с	т/год		
Пыль неорганическая (70-20% SiO2)	1,1200	0,4087		

Разработка (перемещение) щебня автогрейдером (ист. 6148)

Расчет выбросов пыли от разработки щебня бульдозером производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221
ө).

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 \ / \ \mathbf{3600}, \ \mathbf{r} / \mathbf{cek} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \ \mathbf{T} / \mathbf{год} \end{split}$$

100, 1 2 3 4 3 / 100/	
k ₁ - весовая доля пылевой фракции в материале	0,04
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
${\bf k}_3$ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования: 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
k ₇ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,5
$G_{\text{час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	2534,0

M _e =	= 0,04 × 0,02	× 1	,2	x 1	1,0	×	0,60	×	0,4		×	0,5	×	25,0	×	10 ⁶	-= 0,8000	-/
									3600								0,8000	1/000
	M = 0.04 ×	0.02	.,	1.2	.,	1.6)	0.60	.,	0.4	v		Λ.5	.,	252	4 _	0.2010	

Итого при разработке щебня будьдозером:

итого при разработке щеоня будьдозером.											
. Наиманаранна загрязняющего раннастра	Выброс										
Наименование загрязняющего вещества	г/с	т/год									
Пыль неорганическая (70-20% SiO2)	0,8000	0,2919									

Вспомогательные работы - 2044 год

Расчет выбросов от газовой резки металла (ист. 6133)

Расчет выбросов загрязняющих веществ в атмосферу от газовой резки металла производится согласно РНД 211.2.02.03-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах, Астана, 2004 г." по формуле:

$$M_{\text{год}}$$
 = $K_{\text{m}} \times T \times (1\text{-n}) \times 0,000001$, т/год;
 $M_{\text{сек}}$ = $K_{\text{m}} \times (1\text{-n})$ / 3600, г/сек

где: K_m - удельный показатель выброса загрязняющих веществ при резке металла, г/час

Т - общее время работы оборудования

n - степень очистки воздуха в соответствующем аппарате, которым снабжается

группа технологических агрегатов

Удельные показатели выбросов загрязняющих веществ (г/ч) при резке металлов толщиной до 20 мм, приведены в таблице:

К _т , г/час				
Железа оксид	Марганец и его соединения	Оксид углерода	Диоксид азота	
197,0	3,0	65,0	53,2	

Выбросы оксида железа при резке металла составят:

$$M_{rog} = 197,0 \times 10 \times (1 - 0) \times 0,000001 = 0,0020 \text{ T/rog}$$
 $M_{cek} = 197,0 \times (1 - 0) \times 3600 = 0,0547 \text{ r/cek}$

Выбросы марганца и его соединений при резке металла составят:

Выбросы углерода оксида при резке металла составят:

Выбросы диоксида азота при резке металла составят:

$$M_{rol} = 53.2 \times 10 \times (1 - 0) \times 0,000001 = 0,0005 \text{ T/год}$$
 $M_{cen} = 53.2 \times (1 - 0) \times 3600 = 0,0148 \text{ r/cer}$

Итого от передвижных постов газовой резки металла:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Железа оксид	0,0547	0,0020
Марганец и его соединения	0,0008	0,00003
Углерода оксид	0,0181	0,0007
Азота диоксид	0,0148	0,0005

Пост газовой сварки металла пропан-бутановой смесью (ист. 6134)

При работе сварочного поста газовой сварки металла пропан-бутановой смесью в атмосферу выделяется диоксид азота.

Расход пропан-бутановой смеси

1,5 кг/год

Режим работы -

2 ч/год

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{B}_{\text{год}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \times 0,000001, \text{т/год};$$

$$\mathbf{M}_{\text{сек}} = \mathbf{B}_{\text{час}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) / 3600, \text{г/сек}$$

где Вгол - расход применяемого сырья и материалов

1,5 кг/год

 $\boldsymbol{B}_{\text{час}}$ - фактический максимальный расход применяемых материалов

0,75 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества (диоксида азота) на

единицу массы расходуемых сырья и материалов,

15,0 г/кг

n - степень очистки воздуха в соответствующем аппарате, которым снабжается группа

группа технологических агрегатов

Выбросы диоксида азота при газовой сварке составят:

Итого от поста газовой сварки пропан-бутановой смесью:

Наименование загрязняющего вещества	Выброс

ттаименование загрязняющего вещества	г/сек	т/год
Диоксид азота	0,0031	0,00002

Сварочные работы (ист. 6135)

При проведении сварочных работ применяются электроды марки Э-42, Э-46, Э-55. Расчёт произведён по аналогии с электродами марки УОНИ 13/45.

При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

Расход электродов

16,0 кг/го

Режим работы -

10 ч/гол

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$\mathbf{M}_{\text{год}} = \mathbf{B}_{\text{год}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) \times 0,000001, \text{ т/год;}$$
 $\mathbf{M}_{\text{сек}} = \mathbf{B}_{\text{час}} \times \mathbf{K}_{\text{m}} \times (1\text{-n}) / 3600, \text{ г/сек}$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

16,0 кг/год

В_{час} - фактический максимальный расход применяемых материалов

1,6 кг/час

 $K_{\rm m}$ - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается группа технологических агрегатов $\begin{tabular} 0 \end{tabular}$

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами приведены в таблице:

Наименование загрязняющнго вещества	$K_{\rm m}$, г/кг
Железа оксид	10,69
Марганец и его соединения	0,92
Пыль неорганическая (70-20% SiO ₂)	1,40
Фтористые соединения газообразные	0,750
Фториды	3,30
Азота диоксид	1,50
Углерода оксид	13,30

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{r_{01}} = 16.0 \times 10.69 \times (1 - 0) \times 0.000001 = 0.0002 \text{ T/r_{01}}$$
 $M_{cek} = 1.6 \times 10.69 \times (1 - 0) \times 3600 = 0.0048 \text{ r/cek}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

$$M_{\rm roa} = 16,0 \times 0,92 \times (1-0) \times 0,000001 = 0,00001 _{\rm T/год} = M_{\rm cek} = 1,6 \times 0,92 \times (1-0) / 3600 = 0,0004 _{\rm F/cek}$$

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{rol} = 16.0 \times 1,400 \times (1 - 0) \times 0,000001 = 0,00002 \text{ T/rol}$$
 $M_{cer} = 1,6 \times 1,400 \times (1 - 0) / 3600 = 0,0006 \text{ F/cer}$

Выбросы фтористых соединений газообразных при производстве сварочных работ составят:

$$M_{rot} = 16.0 \times 0.750 \times (1 - 0) \times 0.00001 = 0.00001$$
 т/год $M_{cek} = 1.6 \times 0.750 \times (1 - 0) \times 3600 = 0.0003$ г/сек

Выбросы фторидов при производстве сварочных работ составят:

$$M_{rog} = 16.0 \times 3.30 \times (1 - 0) \times 0.000001 = 0.00005 \text{ т/год}$$
 $M_{cek} = 1.6 \times 3.30 \times (1 - 0) \times 3.600 = 0.0015 \text{ г/сек}$

Выбросы диоксида азота при производстве сварочных работ составят:

$$M_{roj} = 16.0 \times 1.50 \times (1.0) \times 0.000001 = 0.00002 \text{ T/roj}$$
 $M_{cek} = 1.6 \times 1.50 \times (1.50 \times (1.50 \times 0.00001) = 0.0007 \text{ r/cek}$

Выбросы оксида углерода при производстве сварочных работ составят:

Итого от электродуговой сварки:

Наименование загрязняющего вещества	Выброс	
	г/сек	т/год
Железа оксид	0,00480	0,00020
Марганец и его соединения	0,00040	0,00001
Пыль неорганическая (70-20% SiO2)	0,00060	0,00002
Фтористые соединения газообразные	0,00030	0,00001
Фториды	0,00150	0,00005
Азота диоксид	0,00070	0,00002
Углерода оксид	0,00590	0,00020
Итого:	0,01420	0,00051

Сварочные работы с применением проволоки

При проведении сварочных работ применяется сварочная проволока. При электродуговой сварки металла в атмосферу выделяются: железа оксид, марганец и его соединения, фтористые газообразные соединения.

Режим работы -3 ч/год Расход проволоки 5,0 кг/год

Расчёт выбросов загрязняющих веществ в атмосферу произведён в соответсвии с "Методикой расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах" РНД 211.2.02.03-2004"

Количество вредных веществ выделяющихся в процессе сварки определяется по формуле:

$$egin{aligned} \mathbf{M}_{\mathrm{rog}} = \mathbf{B}_{\mathrm{rog}} imes \mathbf{K}_{\mathrm{m}} imes (1\text{-n}) imes 0,000001, \ \mathrm{T/год}; \\ \mathbf{M}_{\mathrm{ce\kappa}} = \mathbf{B}_{\mathrm{vac}} imes \mathbf{K}_{\mathrm{m}} imes (1\text{-n}) / 3600, \ \mathrm{r/ce\kappa} \end{aligned}$$

где $B_{\text{год}}$ - расход применяемого сырья и материалов

5,0 кг/год

 $\mathbf{B}_{\text{час}}$ - фактический максимальный расход применяемых материалов

1,7 кг/час

 ${\rm K_m}$ - удельный показатель выброса загрязняющего вещества на единицу массы

расходуемых сырья и материалов, г/кг

n - степень очистки воздуха в соответствующем аппарате, котрым снабжается

группа технологических агрегатов

Удельные показатели выбросов загрязняющих веществ на единицу массы расходуемых сварочных материалов при сварке электродами

Наименование загрязняющнго вещества	$K_{\rm m}$, г/кг
Железа оксид	38,00
Марганец и его соединения	1,48
Пыль неорганическая (70-20% SiO ₂)	0,16

Выбросы оксида железа при производстве сварочных работ составят:

$$M_{r_{01}} = 5.0 \times 38.00 \times (1 - 0) \times 0.000001 = 0.00019 \text{ T/rog}$$
 $M_{cek} = 1.7 \times 38.00 \times (1 - 0) / 3600 = 0.0179 \text{ r/cek}$

Выбросы марганца и его соединений при производстве сварочных работ составят:

$$M_{r_{01}} = 5.0 \times 1.48 \times (1 - 0) \times 0.000001 = 0.000007 \text{ T/rom}$$
 $M_{cek} = 1.7 \times 1.48 \times (1 - 0) / 3600 = 0.0007 \text{ T/cek}$

Выбросы пыли неорганической при производстве сварочных работ составят:

$$M_{rog} = 5.0 \times 0.160 \times (1 - 0) \times 0.00001 = 0.00001 \ {
m T/rog}$$
 $M_{cen} = 1.7 \times 0.160 \times (1 - 0) / 3600 = 0.00008 \ {
m r/cen}$

Итого от сварочных работ с применением проволоки:

Have to vone and a company of the control of the co	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Железа оксид	0,0179	0,0002
Марганец и его соединения	0,0007	0,000007
Пыль неорганическая (70-20% SiO2)	0,00008	0,000001

Итого от сварочных работ:

Наименование загрязняющего вещества	Выб	Выброс	
	г/сек	т/год	
Железа оксид	0,0227	0,000400	
Марганец и его соединения	0,0011	0,000017	
Пыль неорганическая (70-20% SiO2)	0,00068	0,000021	
Фтористые соединения газообразные	0,0003	0,000010	
Фториды	0,0015	0,000050	
Азота диоксид	0,0007	0,000020	
Углерода оксид	0,0059	0,000200	
Итого:	0,0329	0,000718	

Покрасочные и грунтовочные работы

Расчет выбросов от процесса грунтовки ГФ-021 (ист. 6136)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении грунтовки на поверхность изделия определяется по формулам:

$$\begin{split} \mathbf{M}_{\text{н.окр.}} &= \mathbf{m}_{\varphi} \times \delta_{a} \times (100\text{-}f_{p}) \times (1\text{-}n) \times 10^{\text{-}4}, \text{ т/год} \\ \mathbf{M}_{\text{н.окр.}} &= \mathbf{m}_{\text{м}} \times \delta_{a} \times (100\text{-}f_{p}) \times (1\text{-}n) \times 10^{\text{-}4}/3.6, \text{ т/год} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,0013 т

 δ_a - доля краски, потеряной в виде аэрозоля,

30,0 % мас.

f_p - доля летучей части (растворителя) в ЛКМ,

45,0 % мас.

n - степень очистки воздуха газоочистным оборудованием

0

т, - фактический максимальный часовой расход ЛКМ,

1,30 кг/час

$$M_{\text{H.OKP.}} = 0.0013 \times 30.0 \times (100)$$

$$M_{\rm H.osp.} = 0.0015 \times 30.0 \times (100 - 45.0)$$
 $M_{\rm H.osp.} = 1.30 \times 30.0 \times (100 - 45.0)$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при нанесении грунтовки на поверхность изделия, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{x} = \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$
 $\mathbf{M}_{\text{окр}}^{x} = \mathbf{m}_{M} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x} \times (1-\mathbf{n}) \times 10^{-6}/3,6, \text{ г/сек}$

где m_{φ} - фактический годовой расход ЛКМ,

0.0013 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности 1,30 кг/час

работы оборудования,

f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ксилол 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ксилола при нанесении грунтовки составят:

$$\mathbf{M^{x}}_{\text{osp}} = 0,0013 \times 45,0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0,0001 \text{ T/rog}$$
 $\mathbf{M^{x}}_{\text{osp}} = 1,30 \times 45,0 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0406 \text{ r/cek}$

Выброс индивидуальных летучих компонентов грунтовки, образующихся при сушке нанесенной грунтовки, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{\text{X}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{\text{p}} \times \delta_{\text{p}} `` \times \delta_{\text{x}} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/foq;} \\ \mathbf{M}_{\text{okp}}^{\text{X}} &= \mathbf{m}_{\text{m}} \times \mathbf{f}_{\text{p}} \times \delta_{\text{p}} `` \times \delta_{\text{x}} \times (1\text{-n}) \times 10^{\text{-6}} / 3.6, \text{ r/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,0013 т/гол

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

1,30 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

45,0 % мас.

75 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ,

ксилол 100 % мас.

п - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы ксилола при сушке грунтовки составят:

$$M^{x}_{\text{okp}} = 0,001 \times 45,0 \times 75 \times 100 \times (1 - 0) \times 10^{-6} = 0,0003 \text{ г/год}$$
 $M^{x}_{\text{okp}} = 1,30 \times 45,0 \times 75 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,1219 \text{ г/сек}$

Итого от процесса грунтовки:

Hamayananya aarmgaygayanara nawaarna	Выброс	
Наименование загрязняющего вещества	г/сек	т/год
Взвешенные частицы	0,0596	0,0002
Ксилол	0,1625	0,0004

Расчет выбросов от процесса покраски мастикой МБ-50 (по аналогии с БТ-577) (ист. 6137)

Общий валовый или максимальный разовый выброс нелетучей (сухой) части аэрозоля (взвешенные частицы), образующейся при нанесении краски на поверхность изделия определяется по формулам:

$$M_{\text{н.окр.}} = m_{\phi} \times \delta_a \times (100 - f_p) \times (1 - n) \times 10^{-4}, \text{ т/год}$$

$${
m M}_{{\scriptscriptstyle H.0KP.}}$$
 = ${
m m}_{{\scriptscriptstyle M}} imes \delta_{{
m a}} imes (100\mbox{-}{
m f}_{{
m p}}) imes (1\mbox{-}{
m n}) imes 10^{-4}$ / 3,6, т/год

где m_{φ} - фактический годовой расход ЛКМ,

 δ_a - доля краски, потеряной в виде аэрозоля,

 f_p - доля летучей части (растворителя) в ЛКМ,

n - степень очистки воздуха газоочистным оборудованием

т, - фактический максимальный часовой расход ЛКМ,

$$M_{\text{н.окр.}} = 0,1660$$
 \times 30,0 \times (100 - 63,0) \times (1 - 0) \times 10⁻⁴ = 0,0184 т/год $M_{\text{н.окр.}} = 3,00$ \times 30,0 \times (100 - 63,0) \times (1 - 0) \times 10⁻⁴ / 3,6 = 0,0925 г/сек

Выброс индивидуальных летучих компонентов краски, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/rom}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\text{M}} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, 3,6, \text{ r/cek} \end{split}$$

где m_{φ} - фактический годовой расход ЛКМ,

0.1660 т/гол

 ${\rm m}_{_{\rm M}}\text{-}$ фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 3,00 кг/час

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 $\delta_{p}\, \hat{}$ - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

уайт-спирит 42,60 % мас. ксилол 57,40 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы уайт-спирита при нанесении краски составят:

$$M_{\text{oxp}}^{x} = 0.1660 \times 63.0 \times 25 \times 42.60 \times (1 - 0) \times 10^{-6} = 0.0111 \text{ T/год}$$
 $M_{\text{oxp}}^{x} = 3.00 \times 63.0 \times 25 \times 42.60 \times (1 - 0) \times 10^{-6} / 3.6 = 0.0559 \text{ r/cek}$

Выбросы ксилола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,1660 \times 63,0 \times 25 \times 57,40 \times (1 - 0) \times 10^{-6} = 0,0150 \text{ T/год}$$
 $M_{\text{okp}}^{x} = 3,00 \times 63,0 \times 25 \times 57,40 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0753 \text{ r/cek}$

Выброс индивидуальных летучих компонентов краски, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{окр}}^{\text{X}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \\ ^{``} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ т/год;} \\ \mathbf{M}_{\text{окр}}^{\text{X}} &= \mathbf{m}_{\text{M}} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \\ ^{``} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}} / \text{ 3,6, r/cek} \end{split}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,1660 т/год

 $m_{\rm M}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, 3,00 кг/час

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

63,0 % мас.

 δ_{p}^{**} - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 $\delta_{\rm p}$ - доля растворителя в ЛКМ, выделившегося при сушке покрыт $\delta_{\rm x}$ - содержание компонента "x" в летучей части ЛКМ,

уайт-спирит 42,60 % мас. ксилол 57,40 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы уайт-спирит при сушке краски составят:

$$M_{\text{okp}}^{x} = 0.1660 \times 63.0 \times 75 \times 42.60 \times (1 - 0) \times 10^{-6} = 0.0334 \text{ T/год}$$
 $M_{\text{okp}}^{x} = 3.00 \times 63.0 \times 75 \times 42.60 \times (1 - 0) \times 10^{-6} / 3.6 = 0.1677 \text{ r/cek}$

Выбросы ксилол при сушке краски составят:

$$\mathbf{M^{x}}_{\text{osp}} = 0.1660 \times 63.0 \times 75 \times 57.40 \times (1 - 0) \times 10^{-6} = 0.04502 \text{ r/rog}$$

 $\mathbf{M^{x}}_{\text{osp}} = 3.00 \times 63.0 \times 75 \times 57.40 \times (1 - 0) \times 10^{-6} / 3.6 = 0.2260 \text{ r/ces}$

Итого от процесса покраски:

Наименование загрязняющего вещества	Выброс	
1	г/сек	т/год
Взвешенные частицы	0,0925	0,01840
Уайт-спирит	0,2236	0,04450
Ксилол	0,3013	0,06002

Расчет выбросов углеводородов в атмосферу от использования битума и битумно-масляной эмульсии выполняется по аналогии с расчетами от емкостей и хранилиш битума (п. 6.2.4.Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами) по формуле:

$$\begin{aligned} \mathbf{M} &= 2{,}52 \times \mathbf{V}_{\text{**}} \times \mathbf{Ps}(38) \times \mathbf{M}_{\text{M}} \times (\mathbf{K}_{5x} + \mathbf{K}_{5r}) \times \mathbf{K}_{6} \times \mathbf{K}_{7} \times (1\text{-n}) \times 10^{\text{-9}}, \text{ kg/y} \\ \\ \mathbf{M}_{\text{r}} &= \mathbf{M} \times \mathbf{T}/1000, \text{ t/rog} \\ \\ \mathbf{M}_{\text{r}} &= \mathbf{M} \times 1000/3600, \text{ t/cek} \end{aligned}$$

где Vж - годовой объем используемого битума

 $м^3$ /год

Ps(38) - давление насыщенных паров битума при $t=38\,^{0}$ С, принимается в зависимости от эквивалентной температуры начала кипения жидкости $\mathbf{t}_{\scriptscriptstyle{\mathsf{экв}}},$

 $t_{_{3KB}} = t_{_{H.K.}} + (t_{_{K.K^*}} - t_{_{H.K.}}) / 8,8 =$

18 гПа

 $+ (340 - 118) / 8,8 = 143,23 \, {}^{0}\text{C}$ 118

 $M_{\scriptscriptstyle M}$ - молекулярная масса паров битума 127,5 г/моль

 $K_{5x},\,K_{5\tau}$ - поправочные коэффициенты, зависящие от давления насыщенных паров Ps(38) и температуры газового пространства tp, соответственно в холодное и теплое

время года, $K_{5x} = 0.015$, $K_{5r} =$

 K_6 - поправочный коэффициент, зависящий от давления насыщенных паров $P_s(38)$

и годовой оборачиваемости хранилищ U,

К₇ - поправочный коэффициент, зависящий от технической оснащенности и режима 1,10

эксплуатаци хранилищ,

n - эффективность средств пылеулавливания, доли ед.

Т - количество часов работы,

$$M = 2,52 \times 5 \times 18 \times 127,5 \times (0.015 + 0.584) \times 1,26 \times 1,10 \times 10^{-9} = 0.00002 \text{ kg/y}$$

$$MT = 0.00002 \times 25 / 1000 = 0.0000005 \text{ t/rog}$$

$$MT = 0.00002 \times 1000 / 3600 = 0.000006 \text{ t/cek}$$

Итого от использования битума:

Наименование загрязняющего вещества	Выброс	
· ·		т/год
Углеводороды предельные (C_{12} - C_{19})	0,000006	0,0000005

Расчет выбросов от использования керосина (ист. 6140)

Выброс индивидуальных летучих компонентов растворителя (керосина), образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\begin{split} \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{\varphi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/fom}; \\ \mathbf{M}_{\text{okp}}^{x} &= \mathbf{m}_{m} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p} \times \boldsymbol{\delta}_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ t/cek} \end{split}$$

где m_φ - фактический годовой расход ЛКМ,

0.0170 т/год

 $m_{_{\!M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности 2,000 кг/час

 $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 $\delta_{p}\,\hat{}$ - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (таблица 3), 25 % мас.

 δ_{x} - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

керосин 100 % мас.

Выбросы керосина при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,01700 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} = 0,0043 \text{ T/год}$$

 $M_{\text{okp}}^{x} = 2,000 \times 100 \times 25 \times 100 \times (1 - 0) \times 10^{-6} / 3,6 = 0,1389 \text{ r/cek}$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\begin{aligned} \mathbf{M}_{\text{окр}}^{\text{X}} &= \mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \\ &\times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}, \text{ t/год;} \\ \mathbf{M}_{\text{окр}}^{\text{X}} &= \mathbf{m}_{\text{M}} \times \mathbf{f}_{p} \times \delta_{p} \\ &\times \delta_{x} \times (1\text{-n}) \times 10^{\text{-6}}/3.6, \text{ r/cek} \end{aligned}$$

где m_{ϕ} - фактический годовой расход ЛКМ,

0,01700 т/год

 $m_{_{\!M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

2,000 кг/час $f_{\rm p}$ - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} `` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

75 % мас.

 δ_x - содержание компонента "x" в летучей части ЛКМ,

керосин 100 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

Выбросы керосина при сушке краски составят:

$$\mathbf{M_{okp}^{x}} = 0.01700 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{6} = 0.0128 \text{ T/rog}$$

 $\mathbf{M_{okp}^{x}} = 2.000 \times 100 \times 75 \times 100 \times (1 - 0) \times 10^{6} / 3.6 = 0.4167 \text{ r/cek}$

Итого от использования керосина:

Havi ayananya aaringaygyawara nawaarina	Выбр	Выброс		
Наименование загрязняющего вещества	г/сек	т/год		
Керосин	0,5556	0,0171		

Расчет выбросов загрязняющих веществ от шлифовальных машин (ист. 6143)

Для расчета выбросов абразивной и металлической пыли в атмосферный воздух применяется методика по расчету выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004.

Валовое и максимально-разовое количество загрязняющих веществ, образующихся от одной единицы оборудования, при обработке метадла без применения СОЖ определяется по формулам:

$$M = k \times Q \times T \times 3600 \times (1 - \eta) \times 10^{-6}$$
, т/год $M' = k \times Q \times (1 - \eta)$, г/сек

где k - коэффициент гравитационного оседания, для источников выбросов, не оборудованных системой местных отсосов или коэффициент как коэффициент гравитационного оседания для абразивной и металлической пыли

k принят равным 0.2

Q - удельный показатель пылеобразования на единицу оборудования, г/с

Q принято равным для пыли абразивной

0,0250 0,0380

для пыли металлической как для плоскошлифовального станка с диаметром абразивного круга 500 мм

Т - фактический годовой фонд времени работы одной единицы обору-

дования, ч. Согласно данным предприятия:

 $M = 0.2 \times 0.038 \times 162,00$

T =162.00 час/гол

η - степень очистки воздуха пылеулавливающим оборудованием (в дол. ед.)

 $\times 3600 \times (1 -$

η = 0,0, станки не оснащены пылегазоулавливающим оборудованием

Валовое и максимально-разовое количество абразивной пыли, образующееся от одной единицы оборудования:

0.0044 т/гол

$$\mathbf{M'}=0.2$$
 × 0.0250 × $(1$ - 0.0) = 0.0050 г/сек $\mathbf{M}=0.2$ × 0.025 × 162.00 × 3600 × $(1$ - 0.0) × 10^{-6} = 0.0029 т/год Валовое и максимально-разовое количество металлической пыли, образующеея от одной $\mathbf{M'}=0.2$ × 0.0380 × $(1$ - 0.0) = 0.0076 г/сек

Итого Валовый выброс, П=ΣПі, тонн/год		
Пыль металлическая (взвешенные частицы)	0,004400	
M аксимально разовый выброс, M = ΣM i , г	р/сек	
Пыль абразивная	0,005000	
Пыль металлическая (взвешенные частицы)	0,007600	

0.0

Расчет выбросов от использования растворителя Р-4 (ист. 6144)

 $) \times 10^{-6} =$

Выброс индивидуальных летучих компонентов растворителя, образующихся при нанесении краски на поверхность изделия, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \mathbf{m}_{\phi} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (\mathbf{1} - \mathbf{n}) \times \mathbf{10}^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \mathbf{m}_{\mathbf{m}} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{x}} \times (\mathbf{1} - \mathbf{n}) \times \mathbf{10}^{-6} / 3,6, \text{ г/сек}$$

где m_{φ} - фактический годовой расход ЛКМ,

0,003 т/год

 ${\rm m_{_{\rm M}}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности

работы оборудования, 1,00 кг/час

 f_p - доля летучей части (растворителя) в ЛКМ, (таблица 2),

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия,

(таблица 3), 25 % мас.

 $\delta_{\rm x}$ - содержание компонента "x" в летучей части ЛКМ, (таблица 2),

ацетон 26 % мас. бутилацетат 12 % мас. толуол 62 % мас.

n - степень очистки воздуха газоочистным оборудованием

0 дол. ед.

100 % мас.

Выбросы ацетона при нанесении краски составят:

$$M^{x}_{okp} = 0,003 \times 100 \times 25 \times 26 \times (1 - 0) \times 10^{-6} = 0,0002 \text{ T/rog}$$

 $M^{x}_{okp} = 1,00 \times 10^{0} \times 25 \times 26 \times (1 - 0) \times 10^{-6} / 3,6 = 0,0181 \text{ r/cek}$

Выбросы бутилацетата при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,003$$
 \times 100 \times 25 \times 12 \times (1 - 0) \times 10⁻⁶ = 0,0001 T/год $M_{\text{okp}}^{x} = 1,00$ \times 100 \times 25 \times 12 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0083 T/cek

Выбросы толуола при нанесении краски составят:

$$M_{\text{okp}}^{x} = 0,003$$
 \times 100 \times 25 \times 62 \times $($ 1 - 0 $) \times 10^{-6} $=$ $0,0005$ t/год $M_{\text{okp}}^{x} = 1,00$ \times 100 \times 25 \times 62 \times $($ 1 - 0 $) \times 10^{-6} $/$ $3,6$ $=$ $0,0431$ $\text{t/cek}$$$

Выброс индивидуальных летучих компонентов растворителя, образующихся при сушке нанесенной краски, определяется по формуле:

$$\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \mathbf{m}_{\phi} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \cong \boldsymbol{\delta}_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6}, \text{ т/год;}$$

$$\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \mathbf{m}_{\mathbf{m}} \times \mathbf{f}_{\mathbf{p}} \times \boldsymbol{\delta}_{\mathbf{p}} \cong \boldsymbol{\delta}_{\mathbf{x}} \cong \boldsymbol{\delta}_{\mathbf{x}} \times (1-\mathbf{n}) \times 10^{-6} / 3,6, \text{ г/сек}$$

где m_{φ} - фактический годовой расход ЛКМ,

003 т/год

 $\rm m_{_{M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности ра-

боты оборудования,

1,00 кг/час

 f_{p} - доля летучей части (растворителя) в ЛКМ, (таблица 2),

100 % мас.

 δ_{p} ` - доля растворителя в ЛКМ, выделившегося при сушке покрытия,

 $\delta_{\rm x}$ - содержание компонента "х" в летучей части ЛКМ,

75 % мас.

ацетон 26 % мас. бутилацетат 12 % мас.

толуол 62 % мас. 0 дол. ед.

n - степень очистки воздуха газоочистным оборудованием

Выбросы ацетона при сушке краски составят:

$$M_{okp}^{x} = 0,003$$
 \times 100 \times 75 \times 26 \times (1 - 0) \times 10⁻⁶ = 0,0006 t/fog $M_{okp}^{x} = 1,00$ \times 100 \times 75 \times 26 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0542 t/cek

Выбросы бутилацетата при сушке краски составят:

$$M_{\text{okp}}^{x} = 0,003$$
 \times 100 \times 75 \times 12 \times (1 - 0) \times 10⁻⁶ = 0,0003 t/fom $M_{\text{okp}}^{x} = 1,00$ \times 100 \times 75 \times 12 \times (1 - 0) \times 10⁻⁶ / 3,6 = 0,0250 t/cek

Выбросы толуола при сушке краски составят:

$$M_{\text{окр}}^{x} = 0,003$$
 × 100 × 75 × 62 × (1 - 0) × 10⁻⁶ = 0,0014 т/год $M_{\text{окр}}^{x} = 1,00$ × 100 × 75 × 62 × (1 - 0) × 10⁻⁶ / 3,6 = 0,1292 г/сек

Итого от использования растворителя Р-4:

Наименование загрязняющего вещества	Выброс		
таименование загрязняющего вещества	г/сек	т/год	
Ацетон	0,07230	0,00080	
Бутилацетат	0,03330	0,00040	
Толуол	0,17230	0,00190	

Ремонт дорог щебнем фр. 40-80

Выгрузка щебня фр. 40-80 мм (ист. 6147)

Расчет выбросов пыли от выгрузки щебня производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\mathbf{M}_{\mathrm{cek}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{*} \times \mathbf{G}_{\mathrm{vac}} \times \mathbf{10}^{6} / 3600$$
, г/сек $\mathbf{M}_{\mathrm{rol}} = \mathbf{k}_{1} \times \mathbf{k}_{2} \times \mathbf{k}_{3} \times \mathbf{k}_{4} \times \mathbf{k}_{5} \times \mathbf{k}_{7} \times \mathbf{B}^{*} \times \mathbf{G}_{\mathrm{rol}}$, т/год

\mathbf{k}_1 - весовая доля пылевой фракции в материале	0,04
${\bf k}_2$ - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль	0,02
k ₃ - коэффициент, учитывающий местные метеоусловия;	1,2
 к₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования; 	1,0
k ₅ - коэффициент, учитывающий влажность материала;	0,6
${\bf k}_7$ - коэффициент, учитывающий крупность материала;	0,4
В` - коэффициент, учитывающий высоту пересыпки;	0,7
$G_{\mbox{\tiny час}}$ - производительность узла пересыпки или количество перерабатываемого материала, т/ч;	25,0
${ m G}_{ m rog}$ - суммарное количество перерабатываемого материала в течение года, т/год;	2534,0

 $M_c = \frac{0.04 \times 0.02 \times 1.2 \times 1.0 \times 0.60 \times 0.4}{3600} \times \frac{0.7 \times 25.0 \times 10^6}{} = 1,1200$ r/cek

 $M_r = 0.04 \times 0.02 \times 1.2 \times 1.0 \times 0.60 \times 0.4 \times 0.7 \times 2534.00 = 0.4087$ T/rod

Итого от выгрузки щебня:

Наименование загрязняющего вещества	Выброс		
	г/с	т/год	
Пыль неорганическая (70-20% SiO2)	1,1200	0,4087	

Разработка (перемещение) щебня автогрейдером (ист. 6148)

Расчет выбросов пыли от разработки щебня бульдозером производится согласно "Методики расчета выбросов от неорганизованных источников" (Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-ө).

$$\begin{split} \mathbf{M}_{\text{сек}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \ \mathbf{B}^{`} \times \mathbf{G}_{\text{час}} \times \mathbf{10}^6 \ / \ \mathbf{3600}, \ \text{г/сек} \\ \mathbf{M}_{\text{год}} &= \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_3 \times \mathbf{k}_4 \times \mathbf{k}_5 \times \mathbf{k}_7 \times \mathbf{B}^{`} \times \mathbf{G}_{\text{год}}, \ \text{т/год} \end{split}$$

 к1
 - весовая доля пылевой фракции в материале
 0,04

 к2
 - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль
 0,02

 к3
 - коэффициент, учитывающий местные метеоусловия;
 1,2

 к4
 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;
 1,0

 к5
 - коэффициент, учитывающий влажность материала;
 0,6

 к7
 - коэффициент, учитывающий крупность материала;
 0,4

 В°
 - коэффициент, учитывающий высоту пересыпки;
 0,5

 С_{час}
 - производительность узла пересыпки или количество перерабатываемого материала, т/ч;
 25,0

 С_{гол}
 - суммарное количество перерабатываемого материала в течение года, т/год;
 2534,0

 $M_{c} = \frac{0.04 \times 0.02 \times 1.2 \times 1.0 \times 0.60 \times 0.4}{3600} \times \frac{0.5 \times 25.0 \times 10^{-6}}{0.500} = 0.8000 \text{ r/cer}$ $M_{c} = 0.04 \times 0.02 \times 1.2 \times 1.0 \times 0.60 \times 0.4 \times 0.5 \times 2534 = 0.2919 \text{ r/for}$

Итого при разработке щебня будьдозером:

ттого при разрачостие щески оддодозерски			
. Наиманаранна загрязняющаго ранкастра	Выброс		
Наименование загрязняющего вещества		т/год	
Пыль неорганическая (70-20% SiO2)	0,8000	0,2919	

Расчет выбросов от дизельной электростанции (ист. 0149)

Дизельная электростанция (ДЭС) мощностью 4 кВт/час служит в качестве источника электроэнергии. Расход дизельного топлива составит 20,0 тонн. Выброс загрязняющих веществ осуществляется через выхлопную трубу высотой 1 м и диаметром устья – 0,1 м. Скорость воздушного потока – 0.2 м/с.

В качестве топлива используется дизельное топливо со следующими характеристиками на рабочую массу:

зольность, (A^r) - 0,025 %

содержание серы, (S^r) - 0,3 %

низшая теплота сгорания, (Q_i^r) -

42,75 МДж/кг

	2044 г		
Годовой расход топлива	20,0	тонн	
Режим работы	2640	ч/год	

В процессе сжигания дизельного топлива в генераторном агрегате в атмосферу выделяется: оксид углерода, сажа (углерод черный), углеводороды предельные C_{12} - C_{19} , диоксид азота, формальдегид, диоксид серы и бенз(а)пирен.

Расчет выбросов загрязняющих веществ от генераторного агрегата производится согласно п. 6.1 и 6.2 РНД 211.2.02.04-2004 "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок".

Максимальный выброс і-го вещества (г/сек) стационарной дизельной установкой определяется по формуле:

$$M_{ce\kappa} = e_i \times P_{\mathfrak{I}} / 3600$$
, $\Gamma/ce\kappa$;

где е, - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности,

 $P_{\rm 3}$ - эксплуатационная мощность стационарной дизельной установки,

4,0 кВт

Удельные показатели выбросов загрязняющих веществ на единицу полезной работы маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	e _i , г/кВт ч
Углерода оксид	7,2
Окислы азота	10,3
Углеводороды предельные C_{12} - C_{19}	3,6
Сажа (углерод черный)	0,7
Диоксид серы	1,1
Формальдегид	0,15
Бенз(а)пирен	0,000013

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{cek}$$
 = 7,2 × 4,0 / 3600 = 0,0080 г/сек

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{\rm cek}$$
 = 10,3 $imes$ 4,0 / 3600 = 0,0114 г/сек в пересчёте на NO $_2$ $M_{\rm cek}$ = 0,8 $imes$ 0,0114 = 0,0091 г/сек в пересчёте на NO $M_{\rm cek}$ = 0,13 $imes$ 0,0114 = 0,0015 г/сек

Выбросы углеводородов предельных $C_{12}\text{-}C_{19}$ при работе генераторного агрегата составят:

$$M_{cek}$$
 = 3,6 × 4,0 / 3600 = 0,0040 r/cek

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

$$M_{cek} = 0.7 \times 4.0$$
 / 3600 = 0,0008 r/cek

Выбросы диоксида серы при работе генераторного агрегата составят:

$$M_{cek} = 1.1 \times 4.0$$
 / 3600 = 0.0012 r/cek

Выбросы формальдегида при работе генераторного агрегата составят:

$$M_{cek} = 0.15 \times 4.0 / 3600 = 0.0002 \text{ g/cek}$$

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

$$M_{cek} = 0,000013 \times 4,0$$
 / 3600 = 0,00000001 г/сек

Валовый выброс і-го вещества (т/год) за год стационарной дизельной установкой определяется по формуле:

$$M_{\text{год}} = q_i \times B_{\text{год}} / 1000$$
, т/год;

где q_i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной B_{rog} - расход топлива стационарной дизельной установкой за год 20,0 т. 2044 г

Удельные показатели выбросов загрязняющих веществ на один кг дизельного топлива при работе маломощной стационарной дизельной установки приведены в таблице:

Наименование загрязняющего вещества	q _i , г/кг
Углерода оксид	30
Окислы азота	43
Углеводороды предельные C ₁₂ -C ₁₉	15
Сажа (углерод черный)	3,0
Диоксид серы	4,5
Формальдегид	0,6
Бенз(а)пирен	0,000055

Выбросы оксида углерода при работе генераторного агрегата составят:

$$M_{rog}$$
 = 30 × 20,000 / 1000 = 0,6000 т/год

Выбросы окислов азота при работе генераторного агрегата составят:

$$M_{\rm rog}$$
 = 43 × 20,000 / 1000 = 0,8600 т/год в пересчёте на ${
m NO_2}$ $M_{\rm rog}$ = 0,8 × 0,8600 = 0,6880 т/год в пересчёте на ${
m NO}$ $M_{\rm rog}$ = 0,13 × 0,8600 = 0,1118 т/год

Выбросы углеводородов предельных $C_{12}\text{-}C_{19}$ при работе генераторного агрегата составят:

 M_{rog} = 15 × 20,000 / 1000 = 0,3000 т/год

Выбросы сажи (углерода черного) при работе генераторного агрегата составят:

 M_{rog} = 3,0 × 20,000 / 1000 = 0,0600 т/год

Выбросы диоксида серы при работе генераторного агрегата составят:

 $M_{\rm rog}$ = 4,5 × 20,000 / 1000 = 0,0900 т/год

Выбросы формальдегида при работе генераторного агрегата составят:

 $M_{rog} = 0.6 \times 20,000$ / 1000 = 0.01200 $_{T/\Gamma O, T}$

Выбросы бенз(а)пирена при работе генераторного агрегата составят:

 $M_{rog} = 0,000055$ × 20,000 / 1000 = 0,0000011 т/год

Итого от ДЭС:

	Выброс		
Наименование загрязняющего вещества	2044 г		
	г/сек	т/год	
Углерода оксид	0,0080	0,6000	
Азота оксид	0,0015	0,1118	
Азота диоксид	0,0091	0,6880	
Углеводороды предельные C_{12} - C_{19}	0,0040	0,3000	
Сажа (углерод черный)	0,0008	0,0600	
Диоксид серы	0,0012	0,0900	
Формальдегид	0,0002	0,01200	
Бенз(а)пирен	0,00000001	0,0000011	

Испытательный центр TOO «GIO TRADE»

Ф 5 СМ.И-03.02

Қазақстан Республикасы Сынау орталығы «GIO TRADE» ЖШС

Республика Казахстан Испытательный центр ТОО «GIO TRADE» тел./факс: 32-94-30 e-mail: lab@giotrade.kz БСН/БИН 040440008511

протокол

исследований (испытаний) и измерений

Регистрационный номер протокола и дата выдачи	ХЛ 16999-17006 от 05.10.2022 г.
Объект исследований (испытаний) и измерений (фактор)	Почва
Регистрационный номер Акта исследований (испытаний) и измерений, отбора проб	ХЛ 16999-17006
Дата, время (при необходимости) измерений, отбора проб	17.09.2022 г.
Дата, время (при необходимости) проведения исследований (испытаний)	17.09.2022г05.10.2022 г.
Наименование исполнителя	TOO "GIO TRADE"
Адрес исполнителя	г. Караганда, ул. Зелинского д. 20; ул. Восточная д. 20
Сведения об аккредитации	Аттестат аккредитации № К.Z.Т.10.0491 от 26.12.2019 г. до 26.12.2024 г.
Наименование заказчика	ТОО НИЦ «Биосфера Казахстан»
Адрес заказчика	г. Караганда, ул. Мустафина, 7/2
Адрес места измерений, отбора проб(ы)	Предприятие: ТОО «Корпорация Казахмыс», ЖОФ-3
Средства измерений	Весы лабораторные электронные ВК-300 (заводской номер 011144, свидетельство о поверке № 2-02-2100808 действительно до 07.12.2022 г.) Комплекс аналитический вольтамперометрический СТА (заводской номер 682, свидетельство о поверке № С-ВЭ/11-01-2022/124132157 действительно до 11.01.2023 г.) Атомно-абсорбщонный спектрометр МГА-915МД (заводской номер 562, свидетельство о поверке № ВL-3-11-2200013 действительно до 04.02.2023 г.) Дозатор пипеточный ДПОФц-1-20 "Колор" (заводской номер 2027738, свидетельство о поверке № ВL-1-07-2200895 действительно до 19.04.2023 г.)
Документы, устанавливающие правила и методы исследований (испытаний), измерений	MУ 08-47/203/KZ.07.00.01345-2016, M-МВИ-80-2008/ KZ.07.00.01713-2013
Дополнительные сведения:	Производственный контроль согласно договору № 378 от 13.01.2022г.

Результаты исследований (испытаний) и измерений

Место проведения измерений, отбора проб(ы) Описание образца	Определяемая характеристик	Определяемая характеристика (показатель)		Значение	
	наименование	ед. изм.	фактич.	нормир.	чание
1	2	3	4	5	6
Почва, 1 п, Граница СЗЗ хвостохранилище ЖОФ-3: ХЛ 16999	Алюминий	мг/кг	60020,8		
	Барий	мг/кг	460,7	-	
	Бериллий	мг/кг	1,2	-	

Бор	мг/кг	714,8		
Ванадий	мг/кг	101,4		Ť.
Висмут	мг/кг	<5,0		
Железо	мг/кг	34440,2		
Кадмий	мг/кг	4,0		
Кобальт	мг/кг	50,7		
Марганец	Mr/kr	690,8		
Медь	мг/кг	42,7		
Молибден	мг/кг	7,8		
Мышьяк	мг/кг	26,4		
Никель	мг/кг	107,1		
Олово	мг/кг	<5,0		
Свинец	мг/кг	<5,0	-	
Ртуть	мг/кг	0,03	-	
Селен	мг/кг	<5,0	*	
Серебро	мг/кг	<5,0		
Стронций	мг/кг	140,2		
Сурьма	мг/кг	<5,0	-	
Титан	мг/кг	3972,1	-	
Хром	мг/кг	55,7	•	
Цинк	мг/кг	105,0	•	
	из водной вытяжк	0,4700		
Алюминий	MI/KI	0,4700		
Барий	MI/KI	0,0021		
Бериллий	MT/KT	0,0033		
Бор	MI/KI	0,3827		
Ванадий	MI/KI MI/KI	<0,005		
Висмут	MI/KI MI/KI	0,3386		
Железо	MI/KI MI/KI	0,0057		
Кадмий	MI/KI MI/KI	0,0085		
Кобальт	MI/KI MI/KI	0,7059		
Марганец	MI/KI	0,2855		
Медь	MI/KI	0,0065		
Молибден	MI/KI	0,0745		
Мышьяк	мг/кг	0,0125		
Никель	MI/KI MI/KI	<0,005		
Олово	мг/кг	0,0006		
Свинец	мг/кг	0,5090		
Ртуть	MI/KI	0,0046		
Селен	мг/кг	<0,005		1
Серебро	мг/кг	0,8050		
Стронций	мг/кг	<0,005		
Сурьма	мг/кг	0,0060		
Титан	мг/кг	0,0546		
Хром	мг/кг	0,4950		
Цинк	мг/кг	65329,9		
Алюминий	мг/кг	501,5	- 4	
Барий Бериллий	мг/кг	1,3	-	
	мг/кг	778,1	*	
Бор Ванадий	мг/кг	110,4		
Ванадии	мг/кг	<5,0		
Железо	мг/кг	37486,6		
Кадмий	мг/кг	4,4		
Кобальт	мг/кг	55,2	-	
Марганец	мг/кг	751,9		
Медь	мг/кг	46,5		
Молибден	мг/кг	8,5	-	
Мышьяк	мг/кг	28,7		
Никель	мг/кг	116,5	-	
Олово	мг/кг	<5,0		
Свинец	мг/кг	<5,0	-	

Почва 2п, Граница СЗЗ, хвостохранилище ЖОФ 3; ХЛ 17000

	Ртуть	мг/кг	0,03			
	Селен	MT/KT	<5,0	-	-	
	Серебро	мг/кг	<5,0	-		
	Стронций	мг/кг	152,6			
	Сурьма	мг/кг	<5,0	-		
	Титан	MT/KT				
			4323,4	-		
	Хром	мг/кг	60,6	-		
2 . F	Цинк	мг/кг	114,3	-		
Іочва 3 п, Граница СЗЗ востохранилище ЖОФ-3:	Алюминий	мг/кг	61203,5			
Л 17001	Барий	мг/кг	469,8	-		
	Бериллий	мг/кг	1,2			
	Бор	мг/кг	728,9	-		
	Ванадий	мг/кг	103,4	-		
	Висмут	мг/кг	<5,0			
	Железо	мг/кг	35118,8			
	Кадмий	мг/кг	4,1			
	Кобальт	мг/кг	51,7			
	Марганец	мг/кг	704,4	-		
	Медь	мг/кг	43,6			
	Молибден	MI/KI	8,0	-		
	Мышьяк	MI/KI	26,9	-		
	Никель	MI/KI	109,2			
	Олово	MI/KI MI/KI	<5,0	-:-		
	Свинец	MI/KI	<5,0		_	
	Ртуть	MI/KI		-	_	
	Селен		0,03	-		
	Серебро	мг/кг	<5,0	-		
	Стронций	мг/кг	<5,0	-		
	Account to the second	мг/кг	143,0	-		
	Сурьма	мг/кг	<5,0	-		
	Титан	мг/кг	4050,3	-		
	Хром	мг/кг	56,8			
	Цинк	мг/кг	107,1			
	из водной вытяжки:					
	Алюминий	мг/кг	0,4738			
	Барий	мг/кг	0,0626			
	Бериллий	мг/кг	0,0055			
	Бор	мг/кг	0,2340			
	Ванадий	мг/кг	0,3857			
	Висмут	мг/кг	<0,005		_	
	Железо	мг/кг	0,3413			
	Кадмий	мг/кг	0,0057		_	
	Кобальт	MI/KI	0,0037			
	Марганец	MI/KI MI/KI	0,0086			
	Мель				_	
	Молиблен	мг/кг	0,2878			
	Мышьяк	мг/кг	0,0065			
		мг/кг	0,0751			
	Никель Олово	мг/кг	0,0126			
		MI/KI	<0,005			
	Свинец	мг/кг	0,0006			
	Ртуть	мг/кг	0,5131			
	Селен	мг/кг	0,0046			
	Серебро	мг/кг	<0,005			
	Стронций	мг/кг	0,8114			
	Сурьма	мг/кг	<0,005			
	Титан	мг/кг	0,0060			
	Хром	мг/кг	0,0550			
	Цинк	мг/кг	0,4990			
чва 4п, Граница СЗЗ	Алюминий	мг/кг	61821,4	-		
стохранилище ЖОФ 3:	Барий	мг/кг	474,5		_	
17002	Бериллий	мг/кг	1,2			
			8.466			
	Бор	мг/кг	736,3	-		

Висмут	мг/кг	<5,0		
Железо	мг/кг	35473,4		
Кадмий	мг/кг	4,2		
Кобальт	мг/кг	52,2	*	
Марганец	мг/кг	711,5		
Медь	мг/кг	44,0	- 1	
Молибден	мг/кг	8,1		
Мышьяк	мг/кг	27,2	-	
Никель	мг/кг	110,3		
Олово	мг/кг	<5,0		
Свинец	мг/кг	<5,0		
Ртуть	мг/кг	0,03		
Селен	мг/кг	<5,0		
Серебро	мг/кг	<5,0	-	
Стронций	мг/кг	144,4		
Сурьма	мг/кг	<5,0		
Титан	мг/кг	4091,2		
Хром	мг/кг	57,3		
Цинк	мг/кг	108,2	-	
Алюминий	мг/кг	68568,5		
Барий	мг/кг	699,3		
Бериллий	мг/кг	11,7		
Бор	мг/кг	746,8		
Ванадий	мг/кг	95,6		
Висмут	мг/кг	<5,0		
Железо	мг/кг	39624,5		
Кадмий	мг/кг	5,9		
Кобальт	мг/кг	66,1		
Марганец	мг/кг	893,3		
Медь	мг/кг	61,4		
Молиблен	мг/кг	7,8		
Мышьяк	мг/кг	23,6		
Никель	мг/кг	134,4		
Олово	мг/кг	<5,0		
The state of the s	мг/кг	<5,0		
Свинец	мг/кг	0,04		
Ртуть	мг/кг	<5,0		
Селен	мг/кг	<5,0		
Серебро	мг/кг	112,6		
Стронций	мг/кг	<5,0		
Сурьма	мг/кг	3294,7		
Титан	мг/кг	47,8		
Хром	MI/KI MI/KI	113,0		
Цинк	из водной вытяж			
TAN HARDERSON M	из водной вытяж	0,4612		
Алюминий	MI/KI MI/KI	0,0524		
Барий	MI/KI MF/KF	0,0046		
Бериллий	MI/KI MI/KI	0,2047		
Бор	MI/KI MI/KI	0,3884		
Ванадий	MT/KT	<0,005		
Висмут	MI/KI MI/KI	0,3073		
Железо	мг/кг	0,0053		
Кадмий	мг/кг	0,0033		
Кобальт	мг/кг	0,7229		
Марганец	мг/кг	0,3022		
Медь		0,0056		
Молибден	ML/KL	0,0030	1	
Мышьяк	ML/KL	0,0773		
Никель	MT/KT	<0,005		
Олово	MT/KT	0,0005		
Свинец	Mr/kr	0,0003		
Ртуть	мг/кг	0,0037		
Селен	MI/KI	0,0037		

Почва 5п, Граница СЗЗ, хвостохранилище ЖОФ 3: ХЛ 17003

	Серебро	мг/кг	<0,005		
	Стронций	мг/кг	0,7469		
	Сурьма	мг/кг	<0,005		
	Титан	мг/кг	0,0052		
	Хром	мг/кг	0,0654		
	Цинк	мг/кг	0,4935		
Точва 6 п, Граница СЗЗ,	Алюминий				
востохранилище ЖОФ 3:	Барий	мг/кг	62063,6		
СЛ 17004	Бериллий	мг/кг	558,5		
	Бор	мг/кг	11,2		
	Ванадий	мг/кг	668,6		
	Висмут	мг/кг	92,8		
	Железо	мг/кг	<5,0		
	Кадмий	мг/кг	40354,1		
	Кобальт	мг/кг	10,5		
		мг/кг	50,2		
	Марганец	Mr/kr	1168,8		
	Медь Молибден	мг/кг	53,5		
	The second secon	мг/кг	6,7		
	Мышьяк	мг/кг	24,0		
	Никель	мг/кг	118,4		
	Олово	мг/кг	<5,0		
	Свинец	мг/кг	<5,0		
	Ртуть	мг/кг	0,04		
	Селен	мг/кг	<5,0		
	Серебро	мг/кг	<5,0		
	Стронций	мг/кг	77,1		
	Сурьма	мг/кг	<5,0		
	Титан	мг/кг	2254,8		
	Хром	мг/кг	40,6		
очва 7 п, Граница СЗЗ,	Цинк	мг/кг	103,4		
востохранилище ЖОФ 3:	Алюминий	мг/кг	57444,0		
Л 17005	Барий	мг/кг	531,7		
	Бериллий	мг/кг	10,8		
	Бор	мг/кг	654,7		
	Ванадий	мг/кг	91,6		
	Висмут	мг/кг	<5,0		
	Железо	мг/кг	39027,7		
	Кадмий	мг/кг	10,3		
	Кобальт	мг/кг	50,8		
	Марганец	мг/кг	1124,3		
	Медь	мг/кг	64,3		
	Молибден	мг/кг	6,6		
	Мышьяк	мг/кг	21,3		
	Никель	мг/кг	115,7		
	Олово	мг/кг	<5,0		
	Свинец	мг/кг	<5,0		
	Ртуть	мг/кг	0,04		
	Селен	мг/кг	<5,0		
	Серебро	мг/кг	<5,0		
	Стронций	мг/кг	73,3		
	Сурьма	мг/кг	<5,0		
	Титан	мг/кг	2147,0		
	Хром	мг/кг	38,8		
	Цинк	мг/кг	102,2		
	из водной вытяжки:				
	Алюминий	мг/кг	0,4649		
	Барий	мг/кг	0,0528		
	Бериллий	мг/кг	0,0047		
	Бор	мг/кг	0,2064		
	Ванадий	мг/кг	0,3915		
	Висмут	мг/кг	<0,005		
	Железо		A CONTRACTOR OF THE PARTY OF TH		

	Кадмий	мг/кг	0,0054	
	Кобальт	мг/кг	0,0089	
	Марганец	мг/кг	0,7287	
	Медь	мг/кг	0,3046	
	Молибден	мг/кг	0,0057	
	Мышьяк	мг/кг	0,0779	
	Никель	мг/кг	0,0126	
	Олово	мг/кг	<0,005	
	Свинец	мг/кг	0,0005	
	Ртуть	мг/кг	0,5277	
	Селен	мг/кг	0,0038	
	Серебро	мг/кг	<0,005	
	Стронций	мг/кг	0,7529	
	Сурьма	мг/кг	<0,005	
	Титан	мг/кг	0,0053	
	Хром	мг/кг	0,0660	
	Цинк	мг/кг	0,4975	
очва 8 п, Граница СЗЗ,	Алюминий	мг/кг	61845,8	
остохранилище ЖОФ 3:	Барий	мг/кг	578,7	
Л 17006	Бериллий	мг/кг	12,5	
	Бор	мг/кг	733,1	
	Ванадий	мг/кг	101,0	
	Висмут	мг/кг	<5,0	
	Железо	мг/кг	43159,2	
	Калмий	мг/кг	7,8	
	Кобальт	мг/кг	62,3	
	Марганец	мг/кг	1035,9	
	Мель	мг/кг	76,4	
	Молиблен	мг/кг	7,2	
	Мышьяк	мг/кг	22,7	
	Никель	мг/кг	118,9	
	Олово	мг/кг	<5,0	
	Свинец	мг/кг	<5,0	
	Ртуть	мг/кг	0,04	
	Селен	мг/кг	<5,0	
	Серебро	мг/кг	<5,0	
	Стронций	мг/кг	79,9	
	Сурьма	мг/кг	<5,0	
	Титан	мг/кг	2336,9	
	Хром	мг/кг	47,4	
	Динк	мг/кг	114,1	

Цинк мг/кг соответствует погрешности/неопределенности, Погрешность/неопределенность выполненных измерений установленной в методике измерений.

В случаях, не предусматривающих отбор проб неполнителем, ответственность за отбор проб и их представительность несет заказчик. Протокол испытаний распространается только на образцы, подвергнутые испытаниям. Полная или частичная перепечатка протокола без разрешения ТОО «GIO TRADE» запрещена.

Исследования (испытания) и измерения провел (и):

инженер-химик (должность)

Протокол утвердил:

МЛ

Мисюрина В.А.

Егоров В.В.

Протокол исследований (испытаний) и измерений № 16999-17006

Страница №6 из 6

100600, г. Жезказган, Промзона ЖМЗ ТОО «Kazakhmys Smelting» телефон/факс: (7102) 74-56-62, телефон (7102) 2-12-90, E-mail: Natalya.Vs@kazakhmys.kz Аттестат аккредитации № КZ.Т.18.0461 от 29 июля 2020 года.

ПРОТОКОЛ ИЗМЕРЕНИЙ АТМОСФЕРНОГО ВОЗДУХА

Всего листов <u>3</u> Лист 1

№3//6 от "16" марта 2022 г.

Место отбора проб: Хвостохранилище ЖОФ №1,2,3 г. Сатпаев ПО «ЖЦМ»

наименование точки отбора

Цель отбора: контрольный

Наименование (фамилия) и адрес заказчика: Хвостохранилище ЖОФ №1,2,3 ПО «ЖЦМ» г.Сатпаев, промзона

Вид пробы (разовая, среднесуточная): разовая

Условия окружающей среды (температура, относительная влажность, барометр, скорость и направление воздушного потока): - 6 °C -4 °C; 81 % - 73 %; 738 мм.рт.ст.; 5.9 - 6.5 м/с; C-B

Дата и время отбора пробы: $15.03.2022 \, \Gamma$., $10^{00} - 13^{45}$ Дата и время поступления пробы в ПГЛ: $15.03.2022 \, \Gamma$., 15^{00} Дата и время проведения испытаний: $16.03.2022 \, \Gamma$.. $8^{10} - 8^{30}$

Средства измерений, применяемые при отборе: аспиратор ПУ-3Э/12 сертификат о поверке
№ ЕС-07-210017 от 02.04.21 г. зав. № 1178; аспиратор ПУ-3Э/12 сертификат о поверке
№ ЕС-07-220008 от 11.02.22 г. зав. № 1176; измеритель параметров микроклимата « Метеоскоп — М» зав.№ 125914 сертификат о поверке № ВА-10-01-10318 от 08.06.21 г.; измеритель параметров микроклимата « Метеоскоп — М» зав.№ 124714 сертификат о поверке № ВА-09-19-0941 от 03.06.21 г.; весы электронные лабораторные «Ргасtum 224-10 RU» сертификат о поверке
№ ЕС-02-00733 от 22.04.21 г. зав. № 335104638

<u>НД, согласно которым проведен отбор; измерения; ГОСТ 17.2.3.01-86, п.4; Приказ № 168 от</u> 28.02.2015 г., приложение № 1; СТ РК 1957-2010, СТ РК 2036-2010 п. 5.3.8;

Лист <u>2</u> Протокола № <u>3/46</u>

Отбо	рр проб	ние	БГХ	Xapa		гика возд отока	ушного		Концент	рация, м	иг/м³	- Addition
дата	время (начало, конец) проведения отбора, час, мин	№, наименование точки	№ сорбционных трубок, фильтров	температура, °С	скорость, м/с	направление	барометр, мм рт. ст.	пыль ПДК* 0,3	окись углерода 5.0	диоксид серы 0,5	диоксид азота 0,2	оксид азота 0,4
1	2	3	4	5	6	7	8	9	10	11	12	13
	проба	т.5	фон									
		1.5	т.4									
	т.3 .		т.6					-				
	т.1	т.2										
		1.2										-
15.03.22	1000-1100	т.1	1-3	-6	6,2	С-В	738	0,13	-	-	-	1920
		проба				ясно						1 2000
		т.4	4-6	-6	6,0	C-B	738	0,06	102	9		-
		фон				ясно						
			фактич	.пылеу	л.: т.1-	- T.4 = 0,	13 - 0,06	= 0,07 i	MIC/M ³			
	11 ²⁰ -12 ²⁰	т,2	7-9	-4	6,5	С-В	738	0,15	-		1/4	-
		проба				ясно						
		т.5	10-12	-4	5,9	С-В	738	0,06		-	-	-
		фон				ясно	10.0	0,00		.70		
			,					0.00	. 7			
			фактич	пылеу.	л.: т.2-	$\tau.5 = 0,$	15 - 0,06	= 0.09 M	II/M3			
	1245-1345	т.3	13-15	-4	6,4	С-В	738	0,15	-	-	-	·
		проба				ясно						
		т.6	16-18	-4	6,1	С-В	738	0,06	-		-	-
		фон				ясно						
			фактич	пылеу.	л.: т.3-	т.6 = 0,	15 - 0,06	= 0,09 м	г/м³	-1		
								-A-1				
			-6									

	Отбо	р проб	ние	bix pob	Харак	теристин пот		иного		Концен	грация,	мг/м ³	
	дата	время (начало, конец) проведения отбора, час, мин	№, наименование точки	№ сорбционных трубок, фильтров	температура, °C	скорость,	направление	барометр, мм рт. ст.	пыль ПДК* 0,3	окись углерода 5.0	диоксид серы 0,5	диоксид азота 0,2	оксид азота 0,4
_	1	2	3	4	5	6	7	8	9	10	11	12	13
										>			
							0.1						

^{*} Предельно-допустимая концентрация (ПДК)

Должность, Ф.И.О. представителя обследуемого объекта, присутствующего при отборе проб:

Начальник хвостового хоз-ва ЖОФ №1,2,3: Красильников В.А. Подпись

Проводил отбор воздуха лаборант

должность

Зайцева Л.Г. инициалы, фамилия

Проводил отбор воздуха начальник ПГЛ

должность

Dowene подпись Васильева Н.Н.

Проводил испытания

должность

инициалы, фамилия

Зайцева Л.Г. инициалы, фамилия

Начальник Пылегазовой лаборатории

Н. Н. Васильева

Протокол распространяется только на объекты (пробы), подвергнутые испытаниям. Перепечатка протокола частичная или полная запрещена без разрешения лаборатории.

100600, г. Жезказган, Промзона ЖМЗ ТОО «Kazakhmys Smelting» телефон/факс: (7102) 74-56-62, телефон (7102) 2-12-90, E-mail: Natalya.Vs@kazakhmys.kz Аттестат аккредитации № КZ.Т.18.0461 от 29 июля 2020 года.

ПРОТОКОЛ ИЗМЕРЕНИЙ АТМОСФЕРНОГО ВОЗДУХА

Всего листов <u>3</u> Лист 1

№3/23 от "07" апреля 2022 г.

Место отбора проб: Хвостохранилище ЖОФ №1,2,3 г. Сатпаев ПО «ЖЦМ»

наименование точки отбора

Цель отбора: контрольный

Наименование (фамилия) и адрес заказчика: Хвостохранилище ЖОФ №1,2,3 ПО «ЖЦМ» г.Сатпаев, промзона

Вид пробы (разовая, среднесуточная): разовая

Условия окружающей среды (температура, относительная влажность, барометр, скорость и направление воздушного потока): +9 °C +13 °C; 75 % -52 %; 730 мм.рт.ст.; 6,2-7,2 м/с; C

Дата и время отбора пробы: 06.04.2022 г., 10^{00} - 13^{30} Дата и время поступления пробы в ПГЛ: 06.04.2022 г., 15^{00} Дата и время проведения испытаний: 07.04.2022 г., 8^{10} - 8^{30}

Средства измерений, применяемые при отборе: аспиратор ПУ-3Э/12 сертификат о поверке
№ ЕС-07-220009 от 25.03.22 г. зав. № 1178; аспиратор ПУ-3Э/12 сертификат о поверке
№ ЕС-07-220008 от 11.02.22 г. зав. № 1176; измеритель параметров микроклимата « Метеоскоп — М» зав.№ 125914 сертификат о поверке № ВА-10-01-10318 от 08.06.21 г.; измеритель параметров микроклимата « Метеоскоп — М» зав.№ 282917 сертификат о поверке № ВА-10-01-27563 от 26.11.21 г.; весы электронные лабораторные «Ргастит 224-10 RU» сертификат о поверке
№ ЕС-02-00733 от 22.04.21 г. зав. № 335104638

<u>НД, согласно которым проведен отбор; измерения; ГОСТ 17.2.3.01-86, п.4; Приказ № 168 от 28.02.2015 г., приложение № 1; СТ РК 1957-2010, СТ РК 2036-2010 п. 5.3.8;</u>

Лист_2_ Протокола № <u>3/2/3</u>

Отбо	р проб	ние	SOB	Хараг		ика возду отока	шного		Концент	рация, м	II/M ³	
дата	время (начало, конец) проведения отбора, час, мин	№, наименование точки	№ сорбционных трубок, фильтров	температура, °С	скорость, м/с	направление	барометр, мм рт. ст.	пыль ПДК* 0,3	окись углерода 5.0	диоксид серы 0,5	диоксид азота 0,2	оксид азота 0,4
1	2	3	4	5	6	7	8	9	10	11	12	13
		фон т.5 т.4 т.6										
		т.3 т.1 т.2 проба						-				
06.04.22	1000-1100	т.1	1-3	+9	6,5	С пасм.	730	0,22				
		т.4	4-6	+9	6,2	С пасм.	730	0,06	J	Library.		
			фактич	.пылеу	л.: т.1	- _T ,4 = 0,	22 - 0,06	5 = 0,16	мг/м ³			
	11115-1215	т.2 проба	7-9	+11	7,0	С пасм.	730	0,24		,		
		т.5	10-12	+11	6,8	С	730	0,09				
		фон				пасм.					Li le Pasetta	
			фактич	і.пылеу І	I /л.; т.2	$-\tau.5=0,$	24 - 0,09 I	0 = 0,15	Mr/M ³			
	12 ³⁰ -13 ³⁰	т.3 проба	13-15	+13	6,9	С пасм.	730	0,26	544		9104	
		т.6 фон	16-18	+13	7,2	С пасм.	730	0,08	na.		9000	-
			фактич	і.пылеу	ул.: т.3	- т.6 = 0,	26 - 0,08	3 = 0,18				
-												

Отбо	ор проб	ние	bix	Харак	теристи: пот		ушного		Концен	трация,	MIT/M ³	MAI COMMISSION OF THE PARTY OF
дата	время (начало, конец) провежения отбора, час, мин	№, наименование точки	№ сорбционных трубок, фильтров	температура, °С	скорость, м/с	направление	барометр, мм рт. ст.	пыль ПДК* 0,3	окись углерода 5.0	диоксид серы 0,5	диоксид азота 0,2	оксид азота 0,4
1	2	3	4	5	6	7	8	9	10	11	12	13
		r						_				
											100000000000000000000000000000000000000	
-												- -= -
	* 11					THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW				7		

* Предельно-допустимая концентрация (ПДК)

Должность, Ф.И.О. представителя обследуемого объекта, присутствующего при отборе

Начальник хвостового хозяйства ЖОФ №1,2,3: Красильников В.А. Подпись

Проводил отбор воздуха лаборант

должность

подпись

Зайцева Л.Г. инициалы, фамилия

Проводил отбор воздуха лаборант

должность

подпись

Калинина В.В. инициалы, фамилия

Проводил испытания лаборант

должность

ую впись

Зайцева Л.Г. инициалы, фамилия

Начальник Пылегазовой лаборатории

Н. Н. Васильева

Протокол распространяется только на объекты (пробы), подвергнутые испытаниям. Перепечатка протокола частичная или полная запрещена без разрешения лаборатории.

100600, г. Жезказган, Промзона ЖМЗ ТОО «Kazakhmys Smelting» телефон/факс: (7102) 74-56-62, телефон (7102) 2-12-90, E-mail: Natalya.Vs@kazakhmys.kz Аттестат аккредитации № КZ.Т.18.0461 от 29 июля 2020 года.

ПРОТОКОЛ ИЗМЕРЕНИЙ АТМОСФЕРНОГО ВОЗДУХА

Всего листов <u>3</u> Лист 1

№3/64 от "22" августа 2022 г.

Место отбора проб: Хвостохранилище ЖОФ № 3 г. Сатпаев ПО «ЖЦМ»

наименование точки отбора

Цель отбора: контрольный

Наименование (фамилия) и адрес заказчика: Хвостохранилище ЖОФ № 3 ПО «ЖЦМ» г.Сатпаев, промзона

Вид пробы (разовая, среднесуточная): разовая

Условия окружающей среды (температура, относительная влажность, барометр, скорость и направление воздушного потока): +16 °C +20 °C; +43 % +26 %;

Дата и время отбора пробы: 19.08.2022 г., 10^{00} - 13^{35}

Дата и время поступления пробы в ПГЛ: $19.08.2022 \, \Gamma$., 14^{50}

Дата и время проведения испытаний: 19.08.2022 г., 16¹⁵-16³⁵

Средства измерений, применяемые при отборе: аспиратор ПУ-3Э/12 сертификат о поверке № ЕС-07-220009 от 25.03.22 г. зав. № 1178; аспиратор ПУ-3Э/12 сертификат о поверке № ЕС-07-220008 от 11.02.22 г. зав. № 1176; измеритель параметров микроклимата « Метеоскоп — М» зав.№ 125914 сертификат о поверке № ВА-10-01-10318 от 08.06.21 г.; измеритель параметров микроклимата « Метеоскоп — М» зав.№ 282917 сертификат о поверке № ВА-10-01-27563 от 26.11.21 г.; весы электронные дабораторные «Ргасtum 224-10 RU» сертификат о поверке № ЕС-02-01046 от 21.04.22 г. зав. № 335104638

<u>НД, согласно которым проведен отбор; измерения; ГОСТ 17.2.3.01-86, п.4; Приказ № 168 от 28.02.2015 г., приложение № 1; СТ РК 1957-2010, СТ РК 2036-2010 п. 5.3.8;</u>

Лист_2_Протокола № <u>3/6</u> *4*

Отб	ор проб	ание	лых гров	Xapa		стика воз потока	душного		Концен	грация,	мг/м³	
дата	время (начало, конец) проведения отбора, час, мин	Ме, наименование точки	№ сорбщионных трубок, фильтров	температура,	скорость,	м.с направление	барометр, мм рт. ст.	пыль ПДК* 0,3	окись углерода 5.0	лиоксид серы 0,5	дноксид азота 0,2	оксид азота
1	2	3	4	5	6	7	8	9	10	11	12	13
-			dono									
		т.5	фон т.4		-	-	-					
		1	т.6						+	77 199		
		(
-	т.3											-
W.	т.1 проба	т.2										
	проба	T.Z				127				055		
and the second							-			-		
19.08.22	1000-1100	т.1	1-3	+16	7,4	С-В	733	0,28				
		проба		1000		ясно						
		т.4	4-6	+16	7,0	CB	722	0.00				
		фон	7-0	* 10	7,0	С-В	733	0,08				
						ACHO			-			
			фактич	і.пылеу	л.: т.1	- T.4 = 0,	28 - 0,08	= 0,20	мг/м³			
_	1115-1215											
	11.5-12.6	т.2	7-9	+19	8,0	C-B	733	0,26				
1115		проба				ясно						
		т.5	10-12	+19	7,8	С-В	733	0.00				
		фон			7,00	ясно	133	0,08				
						1200		-				
			фактич	.пылеул	п.: т.2-	$\tau.5 = 0,2$	26 - 0,08	= 0.18 M	п/м ³			
	1235-1335	2020	10.15									
	12 -13	т.3	13-15	+20	7,6	С-В	733	0,24				
		проба	-		-	ясно						0.51
		т.6	16-18	+20	7,2	С-В	733	0,08		70.00.00		60Can-86-5
		фон		14/69		ясно		0,00	2000			
			фактич.	пылеул	ι.: т.3-	$\tau.6 = 0,2$	24 - 0,08 =	= 0,16 м	г/м ³			
												-

я . Мин)Ba	HI Ts			ока			Концен	грация,	MI7M"	
время (начало, конец) проведения отбора, час, мин	№, наименование точки	№ сорбционных трубок, фильтров	температура, °С	скорость, м/с	направление	барометр, мм рт. ст.	пыль ПДК* 0,3	окись углерода 5.0	диоксид серы 0,5	диоксид азота 0,2	оксид азота 0,4
2	3	4	5	6	7	8	9	10	11	12	13
								>			
	2	2 3		2 3 4 5	2 3 4 5 6	2 3 4 5 6 7				F	

* Предельно-допустимая концентрация (ПДК)

Должность, Ф.И.О. представителя обследуемого объекта, присутствующего при отборе проб:

<u>Тех. руководитель хвостового хозяйства ЖОФ № 3: Нургазинов Б.А.</u>

Проводил отбор воздуха <u>лаборант</u> должность подпись Зайцева Л.Г. инициалы, фамилия
Проводил отбор воздуха <u>лаборант</u> должность подпись инициалы, фамилия
Проводил испытания даборант

Проводил испытания лаборант должность должност

Начальник Пылегазовой лаборатории

Н. Н. Васильева

Протокол распространяется только на объекты (пробы), подвергнутые испытаниям. Перепечатка протокола частичная или полная запрещена без разрешения лаборатории.

100600, г. Жезказган, Промзона ЖМЗ ТОО «Kazakhmys Smelting» телефон/факс: (7102) 74-56-62, телефон (7102) 2-12-90, E-mail: Natalya.Vs@kazakhmys.kz Аттестат аккредитации № КZ.Т.18.0461 от 29 июля 2020 года.

ПРОТОКОЛ ИЗМЕРЕНИЙ АТМОСФЕРНОГО ВОЗДУХА

Всего листов <u>3</u> Лист 1

№3/9/ от "28" октября 2022 г.

Место отбора проб: Хвостохранилище ЖОФ № 3 г. Сатпаев ПО «ЖЦМ»

наименование точки отбора

Цель отбора: контрольный

<u>Наименование</u> (фамилия) и адрес заказчика: Хвостохранилище ЖОФ № 3 ПО «ЖЦМ» г.Сатпаев, промзона

Вид пробы (разовая, среднесуточная): разовая

Условия окружающей среды (температура, относительная влажность, барометр, скорость и направление воздушного потока): +3 °C +1 °C; 61 % - 56 %; 736 мм.рт.ст.; 5,5-6,1 м/с; C-3

Дата и время отбора пробы: 27.10.2022 г., 14¹⁵-17⁵⁰ Дата и время поступления пробы в ПГЛ: 28.10.2022 г., 08⁰⁰ Дата и время проведения испытаний: 28.10.2022 г., 10¹⁰-10³⁰

Средства измерений, применяемые при отборе: аспиратор ПУ-39/12 сертификат о поверке № EC-07-220009 от 25.03.22 г. зав. № 1178: аспиратор ПУ-39/12 сертификат о поверке № EC-07-220008 от 11.02.22 г. зав. № 1176; измеритель параметров микроклимата « Метеоскоп — М» зав.№ 125914 сертификат о поверке № BA-10-01-10318 от 08.06.21 г.; измеритель параметров микроклимата « Метеоскоп — М» зав.№ 282917 сертификат о поверке № BA-10-01-27563 от 26.11.21 г.; весы электронные лабораторные «Ртастит 224-10 RU» сертификат о поверке № EC-02-01046 от 21.04.22 г. зав. № 335104638

<u>НД, согласно которым проведен отбор: измерения; ГОСТ 17.2.3.01-86, п.4; Приказ Министра</u> здравоохранения РК КР ДСМ-70 от 02.08.22 г; СТ РК 1957-2010, СТ РК 2036-2010 п. 5.3.8;

Лист_2_Протокола № <u>3/ 9/</u>

Отбој	р проб	ние	ьіх ров	Харак		ика возду этока	шного		Концент	рация, м	пг/м ³	
дата	время (начало, конец) проведения отбора, час, мин	Ме, наименование точки	№ сорбционных трубок, фильтров	температура, °С	скорость, м/с	направление	барометр, мм рт. ст.	пыль ПДК* 0,3	окись углерода 5.0	диоксид серы 0,5	диоксид азота 0,2	оксид азота 0,4
1	2	3	4	5	6	7	8	9	10	11	12	13
	фон	_			-							
	т.4	т.6										
	T.5 .		т.2									
<u> </u>		т.3 т.1	проба									
			150									
					-	*						
27.10.22	14 ¹⁵ -15 ¹⁵	т.1	1-3	+3	6,1	C-3	736	0,20				
		проба				пасм.						
-		т.4	4-6	+3	5,9	C-3	736	0,05				
		фон				пасм.						
			фактич	пылеу	 /л.: т.1	$-\tau.4=0,$	20 - 0,0:	5 = 0.15	мг/м³			
	15 ³⁰ -16 ³⁰	2	7-9	+2	6,0	C-3	736	0,18				
	15%-163	т.2 проба	1-9	+4	0,0	пасм.	730	0,10				
		т.5	10-12	+2	6,0	C-3	736	0,05				
	1	фон				пасм.						
			фактич	і.пыле	ул.: т.2	2-T.5=0,	18 - 0,0	5 = 0,13	мг/м³			
	1650-1750	т.3	13-15	+1	5,5	C-3	736	0,22				7
	10 -1/	проба	13-13	2. 1:	0,5	пасм.	25.0	1,22				
			17.15	ļ.,	5.0	6.2	736	0.11				-
	-	т.6 фон	16-18	+1	5,8	С-3	/30	0,11			100000	
		фон		100								
			факти	ч.пыле	ул.: т.	$3 - \tau . 6 = 0$,22 - 0,1	1 = 0,11	MI/M3			Non-Section 1
				-	-				-		+	+

р проб	ние	Bog	Харак			ушного		Концен	грация,	мг/м³	
время (начало, конец) проведения отбора, час, мин	ле, наименова точки	№ сорбционн трубок, фильт	температура, °С	скорость, м/с	направление	барометр, мм рт. ст.	пыль ПДК* 0,3	окись углерода 5.0	диоксид серы 0,5	диоксид азота 0,2	оксид азота 0,4
2	3	4	5	6	7	8	9	10	11	12	13
						2					
							٠				
		время (начало, конец) проведения отбора, час, мин Точки	время (начало, конец) проведения отбора, час, мин Точки Точки Точки Трубок, фильтро	время (начало, поведения отбора, час, мин товедения отбора, час, мин точки точки точки точки точки точки точки точки точки трубок, фильтров	реемя (начало, темец) лроведения отбора, час, мин лочки лочки трубок, фильтров оскорость, оскорость, оскорость, оскорость, оскорость, ость ость ость ость ость ость ость ость	ремя (начало, проведения отбора, час, мин томения отбора, час, мин точки точки точки точки точки точки точки точки оскорость, ос	реми (начало, конец) троведения отбора, час, мин точки Точки Точки Температура, оС корость, ми В барометр, мим рт. ст.	ресма (начало, проведения отбора, час, мин точки оскорость, осторыя от придавление вязывание оскорать оскорость, оскорость, осторыя оскорость,	реема (начало, проведения отбора, час, мин отбора, час, мин точки точки точки точки точки точки точки точки точки оскорость, ми рт. ст. Варометр, мм рт. ст. окись отбора з оскорода з оск	реема (начало, проведения отбора, час, мин отбора, час, мин точки	реема (начало, проведения отбора, час, мин отбора, час, мин точки

^{*} Предельно-допустимая концентрация (ПДК)

Должность, Ф.И.О. представителя обследуемого объекта, присутствующего при отборе проб: Мастер хвостового хозяйства ЖОФ № 3: Куатов Д.В. Проводил отбор воздуха лаборант Зайцева Л.Г. должность инициалы, фамилия Проводил отбор воздуха лаборант Долотова О.В. должность подпись инициалы, фамилия Проводил испытания лаборант Зайцева Л.Г. должность инициалы, фамилия Начальник Пылегазовой лаборатории Н. Н. Васильева

Протокол распространяется только на объекты (пробы), подвергнутые испытаниям. Перепечатка протокола частичная или полная запрещена без разрешения лаборатории.

Всего листов 2

Лист 1

Испытательный центр ТОО «Центргеоланалит» 100008, г. Караганда, Проспект Нурсултана Назарбаева,

строение 12, н.п. 3; тел/факс: 8(7212) 42-60-39 Лаборатория физических методов исследования 100008, г. Караганда, Проспект Нурсултана Назарбаева, строение 12, н.п. 3; тел: 8 (7212) 42-60-37

Наименование заказчика, адрес, контактные данные: ТОО НПК «АлГеоРитм»,

г.Караганда, м-н Степной-2, дом 62, офис 1

Регистрационный номер заказа: 1280-19-22

Характеристика проб: вода ЖОФ 3

Акт отбора образцов: --Метод определения: атомно-эмиссионный (спектральный) сухого остатка воды

Дата поступления проб (образцов) в лабораторию: 12.07.2022г. Дата проведения испытаний: 13.07-15.07.2022г.

Дата оформления протокола: 18.07.2022г.

Протокол испытаний

Sr	Mr/Kr	800	009	009	8	1000	009	
ပ္ပ	Mr/Kr	\ \	60	1		1	₹	
Ag	Mr/Kr	0.2	-	0.05		0.05	<0.05	
Zn	MIT/KIT	<20	<20	<20		<20	<20	
>	Mr/Kr	<5	<5	<5×		<5	<5	
Yb	Mr/Kr	<0.5	<0.5	<0.5		<0.5	<0.5	
2 C	Mr/Kr	9	20	4		3	-	
8	Mr/Kr	<5	<5>	<5		<5	<5	
٦	Mr/Kr	20	100	<10		<10	<10	
>	MIT/KT	<2	Ø	<2		<2	<2	
Sn	Mr/KT	<u>۲</u>	7	^		7	<1	
Mo	Mr/Kr	~	2	7		7	^ı	
g	Mr/Kr	<3	3	8		3	8	
Be	MIT/KIT	<0.3	<0.3	<0.3		<0.3	<0.3	
Ba	Mr/Kr	<100	<100	<100	пробы	<100	<100	
Z	MF/KF	9	80	2	дu	10	<2	
ပ်	MF/KF	5	50	<5	нет	25	<5	
8	Mr/Kr	<5	<5	<5		<5>	<5	
Ga	MIT/KIT	1>	1	1>		۲۷	\ \	
As	Mr/KF	<100	<100	<100		100 <1 <30 <5 <100	<100	
Ti Zr	MIT/KT	<5	<5	<5		<5>	≥5	
	ME/KE ME/KE ME/KE	<30	<30	<30		<30	30	
Pb	Mr/Kr	\	\ \	۲×		1 >	~	
Mn	Mr/Kr	20	200	100			<10	
Sb	MF/KT	<15	<15	<15		<15	<15	
Ь	Mr/Kr	<300 <15	<300	<300 <15		<300 <15	<300 <15	
Sc	MIT/KIT	<1	\ \	-				
Дата	отбора	23.06.2022	23.06.2022	24.06.2022 <1		20.06.2022 <1	22.06.2022 <1	
№ пробы	заказчика (точка отбора)	1	2	3		1р	2p	
일	п/п лаб.	1	2	3	4	5	9	
일	n/n	1	2	3	4	5	9	

	Ть	To	To	To	To	To	To	To	To	To	To	To	10	To
S	MIT/KIT	600	900	600	1000	1200	500	400	1000	600	1200	1500	800	1000
රි	Mr/Kr	-	V	7	V	v	V	Ý	V	V	V	V	7	V
Ag	MF/KT	0.05	0.5			0.3	0.25	0.05	<0.05	0.2	0.1	2	0.4	0.1
Zn	MF/KF	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
>	Mr/Kr	<5×	<5	<5	<5×	<5	<5	<5×	<5	\$	<5	<5	<5	<5×
Yb	MT/KT	<0.5	<0.5			<0.5					<0.5	<0.5		<0.5
Cu	Mr/Kr	3	4	6	2	30	3	20	2	2	5	09	30	5
р	MIT/KT	<5	<5	<5×	< 2	< ₅	<5	<5	<5	<5	<5>	<5	<5	<5
בו	Mr/Kr	<10	<10	<10	<10	20	≤10	10	<10	<10	<10	50	≥10	510
>	Mr/Kr	2	<2	<2	42	2	<2	<2	S	Ø	Ø	Ø	2	5
Sn	MF/KF	^	^	7	7	7	~	₹	~	\ \	^	×	7	~
Mo	MI/KT	~	V	-	~	N V	\Z	-	7	^	^	~	2	7
QN P	MF/KF	×3	\$3	3	×3	\$	83	3	8	<3	3	\$	8	8
Be	MF/KF	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Ba	MIT/KIT	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
ž	MF/KF	Ø	2	5	2	8	10	50	10	15	5	50	Ø	Ø
ప	MF/KF	<5	80	5	12	30	20	120	30	25	5	30	00	5
>	Mr/Kr	<5	<5	<5	<5	<5>	<5	<5>	<5	<5	<5	<5	\$	<5 5
Ga	Mr/Kr	\ <u>\</u>	\ \	^	^	1>	^	^	8	3	^	1>	⊽	⊽
As	MIT/KT	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Zr	Mr/Kr	≥5	<5>	5	10	<5>	\$5	\$2	\$2	\$5	<5	<5	<5	<5
Ε	Mr/Kr	30	<30	30	30	<30	30	30	30	30	<30	<30	30	30
Pb	MF/KF	<1	<1	۲>	1	\ \	\ \	<1	<	-1	<1	<1	\ 1	₹
Mn	Mr/Kr	100	<10	100	100	200	20	20	200	400	20	100	<10	<10
Sb	MF/KF	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
Ь	Mr/Kr	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300
Sc	MIT/KI	1	<u>۲</u>	٧	\	7	₹	٧	٧	<u>۲</u>	Ÿ	٧	₹	٧
Дата	отбора	20.06.2022	22.06.2022	22.06.2022	22.06.2022	22.06.2022	20.06.2022	20.06.2022	24.06.2022	24.06.2022	23.06.2022	23.06.2022	20.06.2022	23.06.2022
№ пробы	заказчика (точка отбора)	3р	4p	6p	7р	8p	d6	10p	11p	12p	13p	14p	Хвосто- хранилище	Дренажная канава
읟	лаб.	7	80	6	10	1	12	13	14	15	16	17	18	19
일	ח/ח	7	80	6	10	1	12	13	14	15	16	17	18	19

1ppm=1mr/kr=1r/T=0.0001%

Элементы Au, B, Bi, Ge, Hf, Hg, In, Pt, Ta, Te, Th, Tl, U не обнаружены

Протокол распространяется только на образцы, подвергнутые испытаниям

физических методов исследований Начальник лаборатории

Н.А. Сидойкина

Частичная перепечатка протокола без разрешения интересоланалит» запрещена

Всего листов 2

Лист 1

Испытательный центр ТОО «Центргеоланалит» 100008, г. Караганда, Проспект Нурсултана Назарбаева, строение 12, н.п. 3; тел/факс: 8(7212) 42-60-39 Лаборатория физических методов исследования

Наименование заказчика, адрес, контактные данные: ТОО НПК «АлГеоРитм», г.Караганда, м-н Степной-2, дом 62, офис 1

строение 12, н.п. 3; тел: 8 (7212) 42-60-37

100008, г. Караганда, Проспект Нурсултана Назарбаева.

Регистрационный номер заказа: 1526-18-22

Характеристика проб: вода ЖОФ 3

Акт отбора образцов: -

Метод определения: атомно-эмиссионный (спектральный) сухого остатка воды Дата поступления проб (образцов) в лабораторию: 04.10.2022г. Дата проведения испытаний: 05.10-20.10.2022г.

Дата оформления протокола: 20.10.2022г.

Протокол испытаний

		WANT SH	min's le			NAME OF	HINDRAFT	a bornet at	
	6	5	4	သ	2	1	n/n	οN	No.
	6	5	4	3	2	1	лаб.	οN	
	3p	2p	1p	3	2	1	заказчика (точка отбора)	Ив пробы	
	10.09.2022	09.09.2022	10.09.2022	09.09.2022	10.09.2022	09.09.2022	отбора	Дата	
	7	^	^	^	4	<1	MIT/KIT	Sc	
	<300	<300	<300	<300	<300	<300	MF/KT	P	
	<15	<15	<15	<15	<15	<15	MI/KI	Sb	30.77
	60	60	60	60	200	50	MF/KF	Mn	
	7	^1	^1	2	<1	^	MIT/KIT	Pb	2000
	80	80	80	50	60	50	Mr/Kr	П	
I	%	5	5	<5	<5	<5	MIT/KIT	7Z	7
	<100	<100	<100	<100	<100	<100	MI/KIT	As	
	<u>^</u>	<u>^</u>	^	7	<1	^1	MF/KT	Ga	
	~ 5	<5	<5	<5	<5	<5	ME/KT	\$	Section 2
	%	<5	15	5	<5	00	ME/KE	Ω	0.000
	2	2	20	4	4	ω	MF/KT	Z.	
CHO CHO	<100	100	150	1000	200	200	Mr/kr	Ba	1000000
- NAME OF	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	MF/KT	Be	
	အ	3	з	<3	ယ	<3	MIT/KIT	Nb	
	4	1	4	1	6	4	ME/KE ME/KE ME/KE	Mo	
	1	<u>^</u>	1	1	2	-	MIT/KIT	Sn	
	2	2	2	2	8	ω	Control (Control	<	
	30	80	40	50	50	40	MIT/KIT	<u></u>	
	<5	<5	\$	\$	~ 5	65	MT/KT	S	
	10	30	40	20	40	10	MIT/KIT	C	
	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ME/KT N	4	
STATE OF	5 5	8	6	\$	8	\$	MIT/KIT	~	
No. of Parties	<20	<20	<20	<20	<20	<20	MF/KT	Zn	
	<0.05	0.06	<0.05	<0.05	0.08	≤0.05	MF/KT	Ag	
N. C.	7		4	<u>^</u>	_	2	MF/KF	co	
A STATE OF THE	600	1500	1000	600	1000	800	Mr/Kr	Sr	

18	17	16	15	14	13	12	11	10	9	8	7	π/n	No
18	17	16	15	14	13	12	11	10	9	œ	7	лаб.	No
Дренажная канава	Хвосто- хранилище	14p	13p	12p	11p	10p	9p	8p	7p	6р	4p	заказчика (точка отбора)	№ пробы
10.09.2022	10.09.2022	09.09.2022	09.09.2022	09.09.2022	10.09.2022	09.09.2022	09.09.2022	09.09.2022	09.09.2022	09.09.2022		отбора	Дата
Δ	4	7	7	2	^1	7	7	4	^_	^		MIT/KIT	Sc
<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300		Mr/kr	P
<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15		ME/KE	Sb
<10	<10	200	100	60	300	<10	10	400	150	100		MIT/KIT	Mn
<u>^</u>	<u>^</u>	^1	^	^1	^1	4	^1	4	^	<1		MI/KI	Pb
60	60	40	50	80	60	60	50	50	60	60		MF/KF	ī
%	~ 5	<5	<5	<5	<5	5	5	<5	<5	<5		MF/KT	Zr
<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100		ML/KL	As
4	7	^	7	^	^1	<1	7	^	^1	^		MIT/KIT	Ga
<5	^5	<5	<5	<5	<5	<5	<5	<5	<5	<5		MF/KT	8
^5	%	<5	<5	8	<5	<5	<5	5	<5	6		MF/KF	Cr
۵	۵	2	2	8	^2	2	^2	<2	2	ω	нет	MF/KT	Z
<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	500		MF/KT	Ва
<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	пробы	ML/KL	Be
۵	۵	<3	\$	<3	^3	<3	<3	4	ပ	\$		MIT/KIT	Nb
-	2	^1	2	ω	<u>^</u>	ယ	2	^1	2	2.5		MF/KF	Mo
7	4	^	7	^	7	^1	^1	1	1	7		ML/KL	Sn
۵	۵	2	2	2	۵	2	2	۵	2	2		MIC/KIT	<
20	40	40	30	40	15	20	40	30	40	60		MIT/KIT	⊏
G	6	<5	65	%	5	%	6 5	%	5	5		MI/KI	СС
10	20	10	10	20	00	6	œ	6	20	30		Mr/Kr	Cu
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		Mr/Kr	44
\$	o	\$ 5	\$	< 5	\$	<5	%	%	<5	\$		MIL/KIL	~
<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20		MIT/KIT	Zn
0.05	0.3	0.2	0.06	0.4	<0.05	0.05	0.3	0.4	<0.05	0.1		ML/KL	Ag
4	4	7	<u>^</u>	_	4	<u>^</u>	4	4	^	4		ME/KT	Co
2000	400	2000	1200	500	1000	800	<50	1000	1000	800		WL/KL	Sr

1ppm=1mr/kr=1r/t=0.0001%

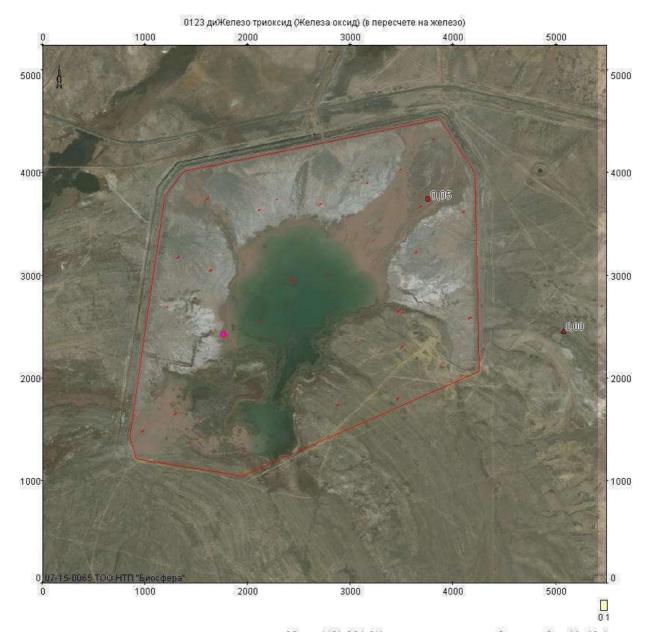
Элементы Au, B, Bi, Ge, Hf, Hg, In, Pt, Ta, Te, Th, Ti, U не обнаружены

Протокол распространяется только на образцы, подвергнутые испытаниям

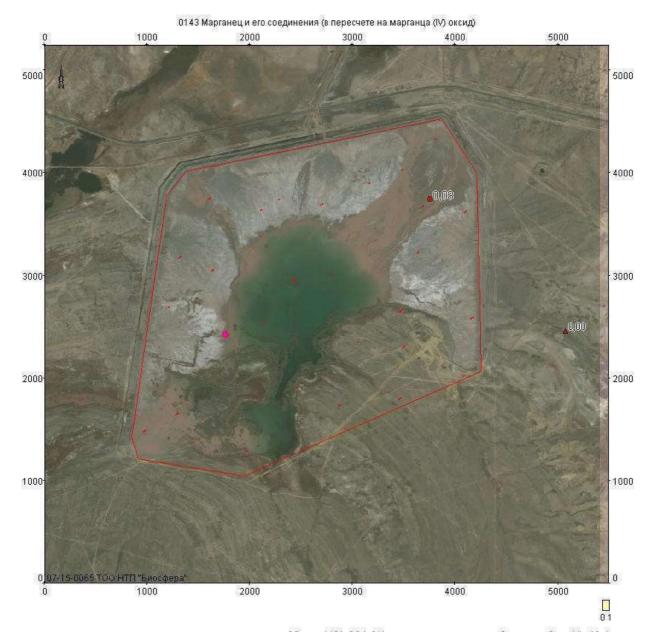
Начальник лаборатории физических методов исследований

Н.А. Сидойкина

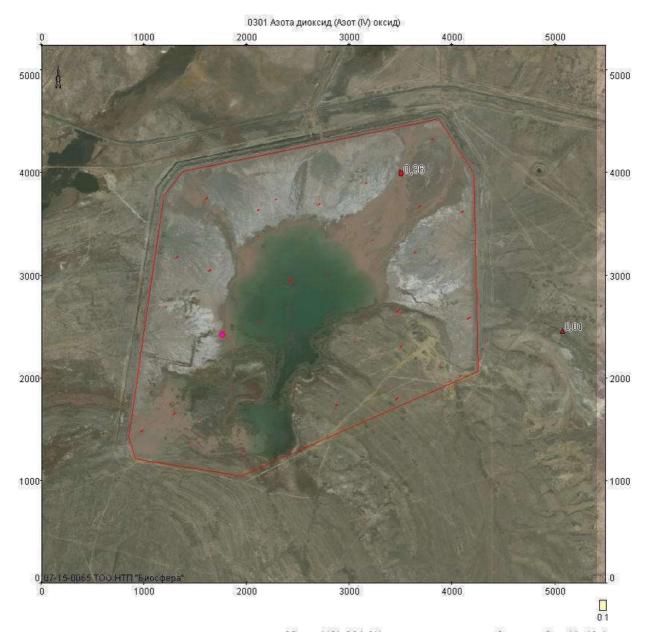
Частичная перепечатка протокола без разрещения ИЦ ТОО «Центргеоланалит» запрещена

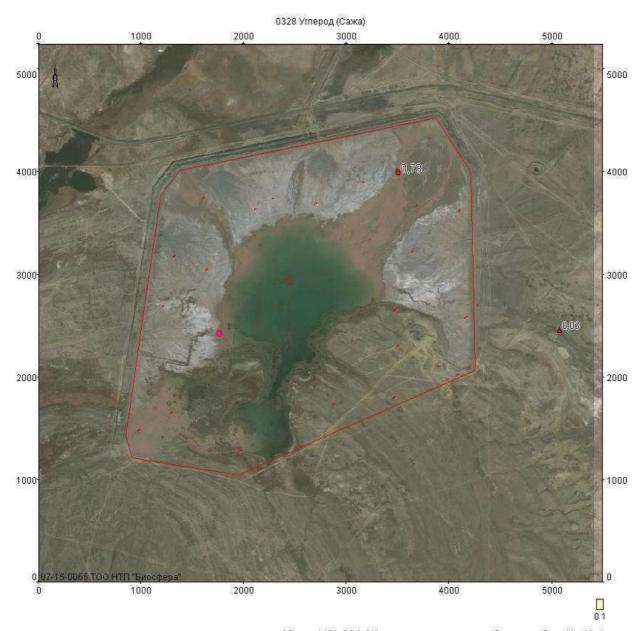

«КАЗГИДРОМЕТ» РМК РГП «КАЗГИДРОМЕТ»

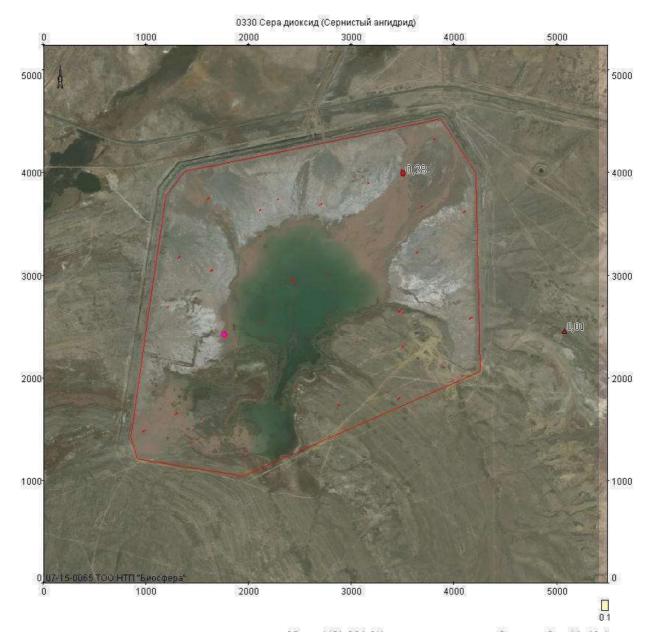
ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, МИНИСТЕРСТВО ЭКОЛОГИИ, ГЕОЛОГИИ ГЕОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ МИНИСТРЛІГІ КАЗАХСТАН

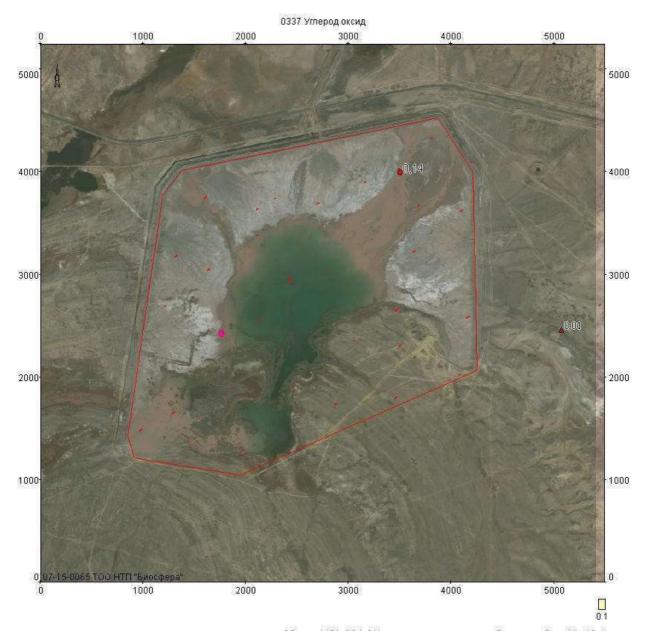

06.04.2023

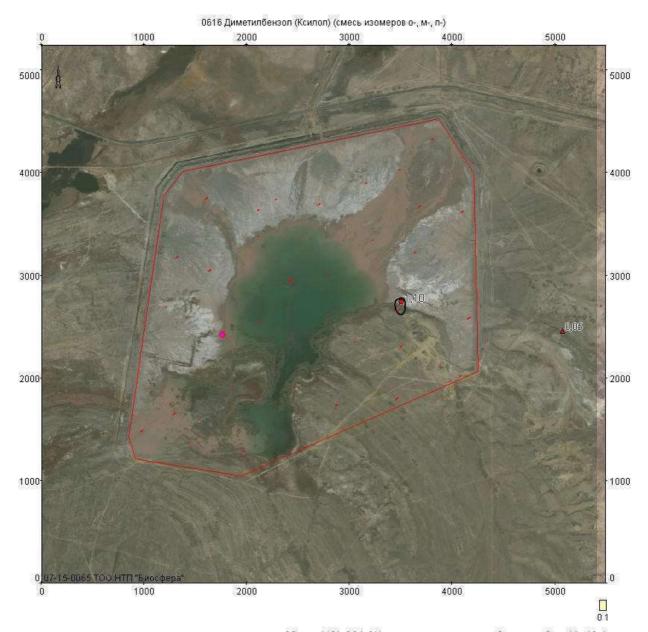
- 1. Город -
- 2. Адрес область Улытау, городской акимат Сатпаев
- 4. Организация, запрашивающая фон ТОО НИЦ "Биосфера Казахстан"
- 5. Объект, для которого устанавливается фон **Хвостохранилище Жезказганской** обогатительной фабрик № 3
- 6. Разрабатываемый проект **Отчёт о возможных воздействиях** Перечень вредных веществ, по которым устанавливается фон: **Азота диоксид**,
- 7. Взвеш.в-ва, Диоксид серы, Углерода оксид, Азота оксид, Углеводороды, Формальдегид

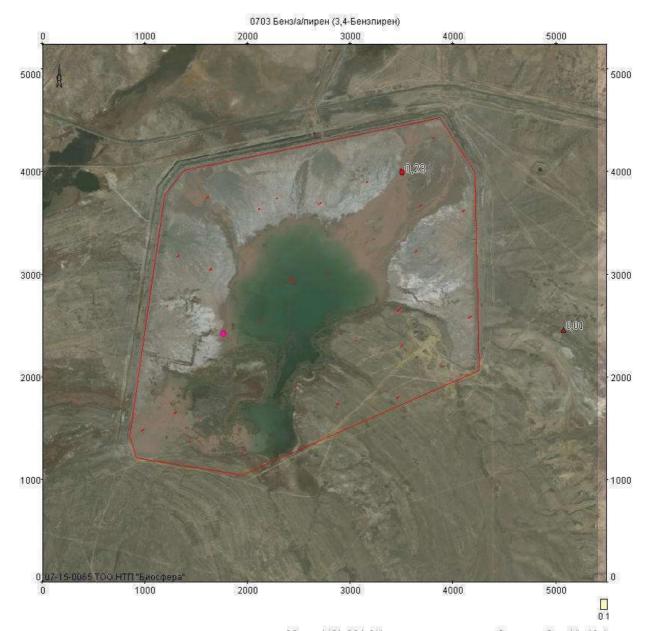

В связи с отсутствием наблюдений за состоянием атмосферного воздуха в область Ультау, городской акимат Сатпаев выдача справки о фоновых концентрациях загрязняющих веществ в атмосферном воздухе не представляется возможным.

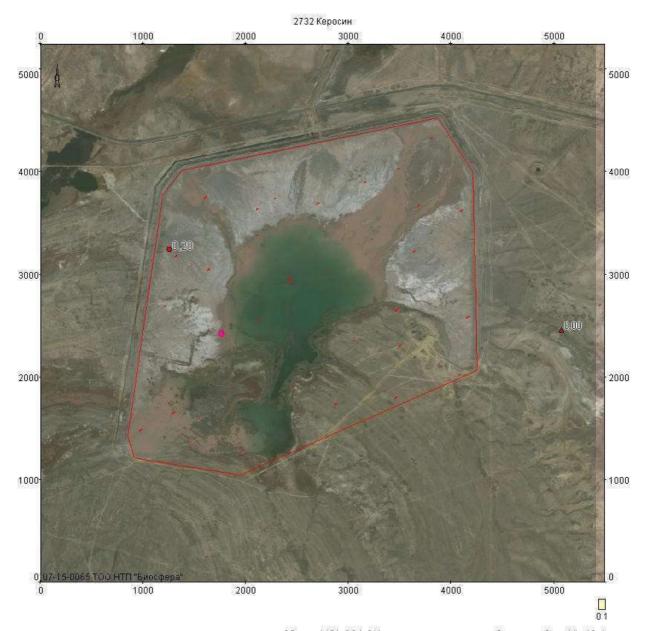

Объект: 1454, СОФ-3 Хвостохранилище; вар.исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

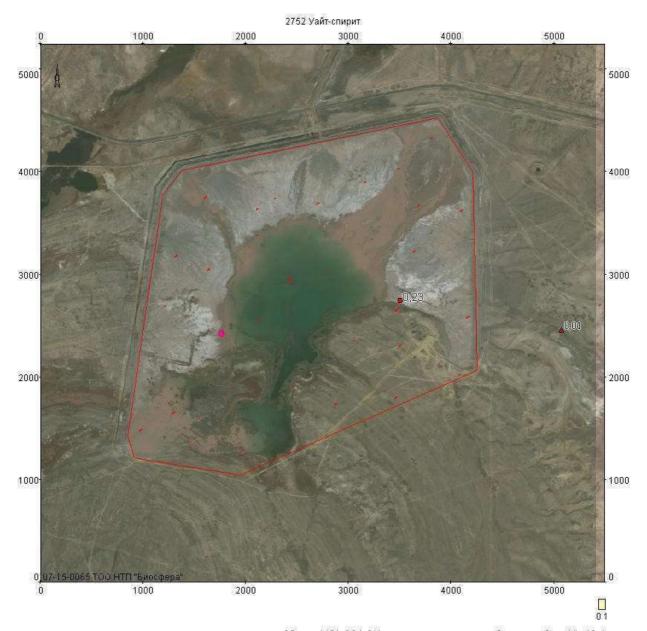

Объект: 1454, СОФ-3 Хвостохранилище; вар.исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

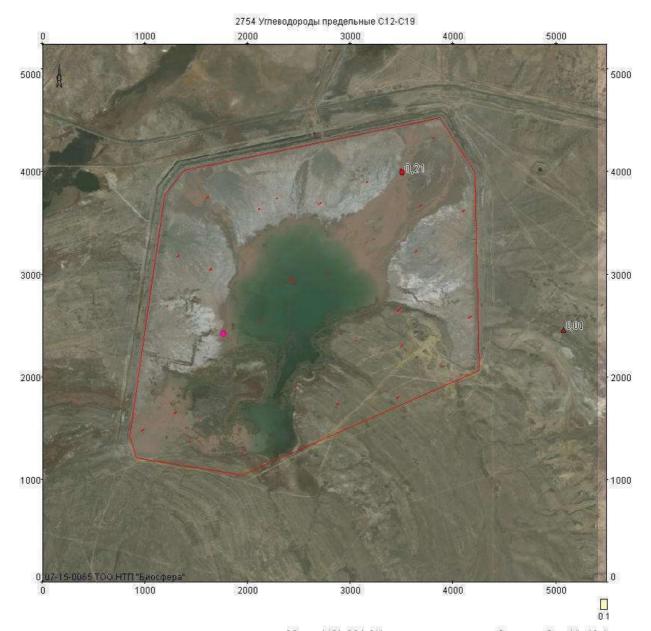

Объект: 1454, СОФ-3 Хвостохранилище; вар:исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

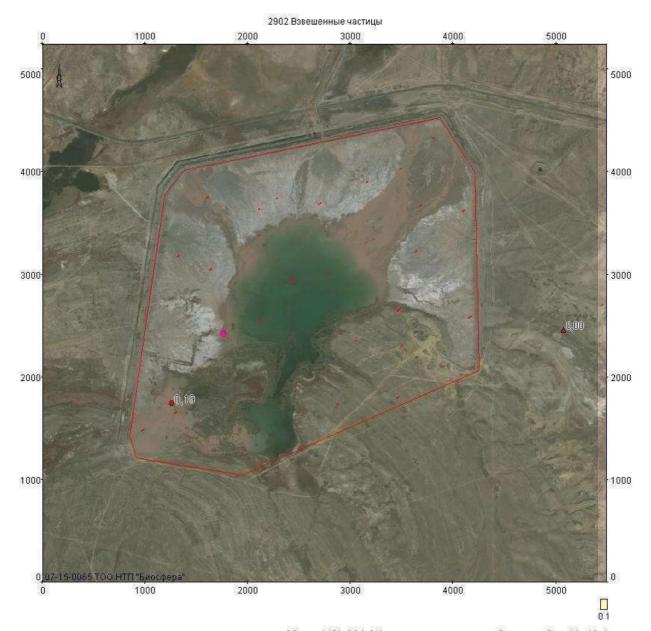

Объект: 1454, СОФ-3 Хвостохранилище, вар.исх.д. 2; вар.расч.2; пл.1 (h=13м) Масштаб 1:36500

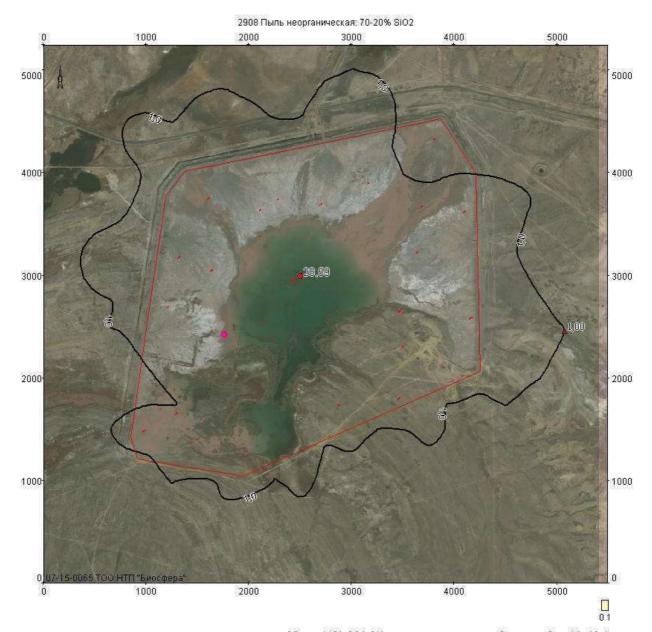

Объект: 1454, СОФ-3 Хвостохранилище; вар:исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

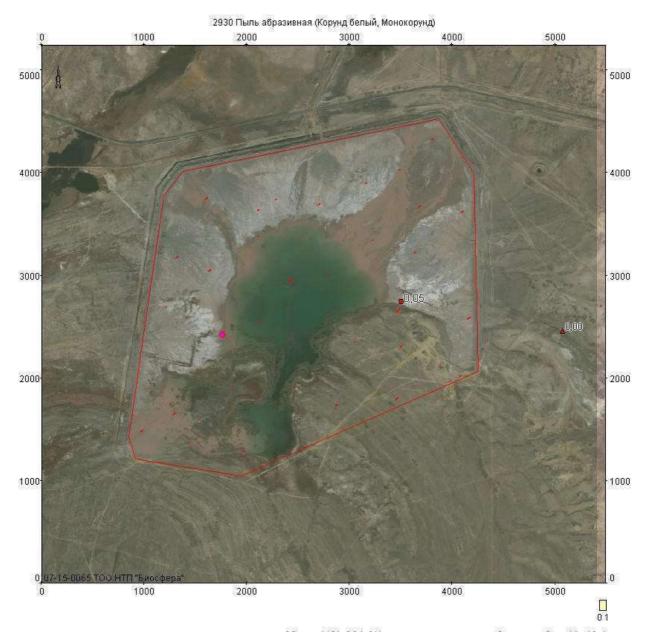

Объект: 1454, СОФ-3 Хвостохранилище, вар.исх.д. 2; вар.расч.2; пл.1 (h=13м) Масштаб 1:36500

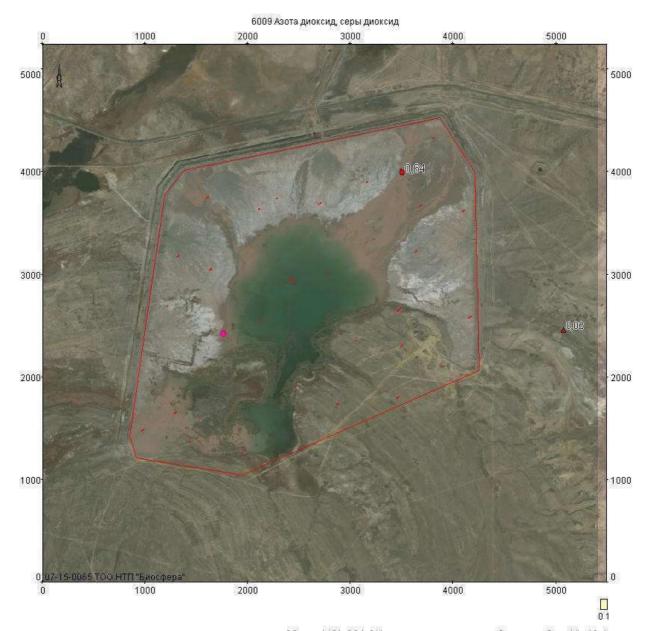

Объект: 1454, СОФ-3 Хвостохранилище; вар.исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

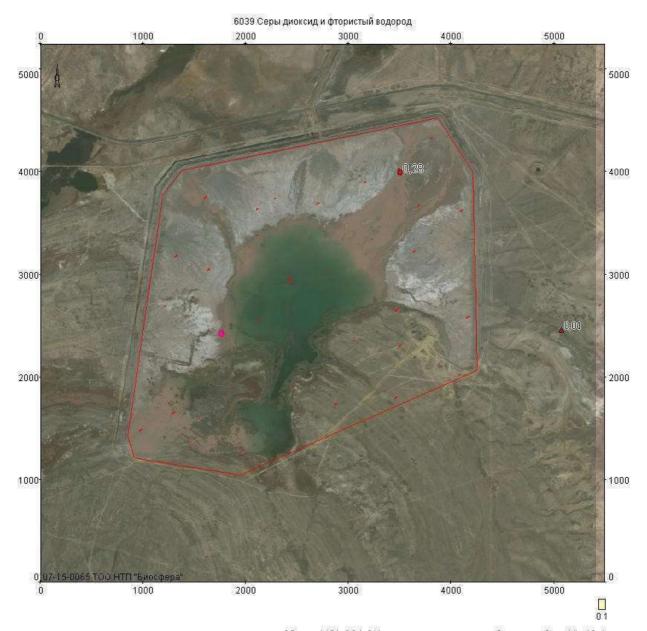

Объект: 1454, СОФ-3 Хвостохранилище; вар:исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500


Объект: 1454, СОФ-3 Хвостохранилище, вар.исх.д. 2; вар.расч.2; пл.1 (h=13м) Масштаб 1:36500


Объект: 1454, СОФ-3 Хвостохранилище; вар.исх.д. 2; вар.расч.2; пл.1 (h=13м) Масштаб 1:36500


Объект: 1454, СОФ-3 Хвостохранилище; вар:исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500


Объект: 1454, СОФ-3 Хвостохранилище; вар.исх.д. 2; вар.расч.2; пл.1 (h=13м) Масштаб 1:36500


Объект: 1454, СОФ-3 Хвостохранилище; вар:исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

Объект: 1454, СОФ-3 Хвостохранилище; вар:исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

Объект: 1454, СОФ-3 Хвостохранилище; вар:исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

Объект: 1454, СОФ-3 Хвостохранилище; вар:исх.д. 2; вар.расч.2; пл.1(h=13м) Масштаб 1:36500

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Предприятие: ЖОФ-3 Хвостохранилище

Город Жезказган

Вариант исходных данных: 2, Новый вариант исходных данных

Вариант расчета: Новый вариант расчета

Расчет проведен на лето

Расчетный модуль: "ОНД-86 стандартный"

Расчетные константы: E1= 0,01, E2=0,01, E3=0,01, S=999999,99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	31,6° C
Средняя температура наружного воздуха самого холодного месяца	-18,0° C
Коэффициент, зависящий от температурной стратификации атмосферы А	200
Максимальная скорость ветра в данной местности (повторяемость	9 м/с
превышения в пределах 5%)	

Структура предприятия (площадки, цеха)

Номер	Наименование площадки (цеха)
	Параметры источников выбросов

Учет:

"%" - источник учитывается с исключением из фона;

"+" - источник учитывается без исключения из фона;

"-" - источник не учитывается и его вклад исключается из фона.

При отсутствии отметок источник не учитывается.

Типы источников:

- 1 точечный;
- 2 линейный;
- 3 неорганизованный;
- 4 совокупность точечных, объединенных для расчета в один площадной;
- 5 неорганизованный с нестационарной по времени мощностью выброса;
- 6 точечный, с зонтом или горизонтальным направлением выброса;
- 7 совокупность точечных с зонтами или горизонтальным направлением выброса;
- 8 автомагистраль.

Учет	№ пл.	Nº	№ ист.	Наименование источника	Вар.	Тип	Высота	Диаметр	Объем	Скорость	Темп.	Коэф.	Коорд.	Коорд.	Коорд.	Коорд.	Ширина
при	Ц	цеха					ист. (м)	устья (м)	ГВС	ГВС (м/с)	ΓBC (°C)	рел.	Х1-ос. (м)	Y1-ос. (м)	Х2-ос. (м)	Y2-ос. (м)	источ.

расч.								(куб.м/с)									(M)
%	0	0 149	ДЭС	1	1	13,0	0,20			4	120	1,0	1757,0	2427,0	1757,0	2427,0	0,00
		Код в-ва	Наименование вещества	•		Зыброс, (ыброс, (т/г)	F	Лето:	Ст/ПД			Вима: Ст/ПД		Um	5,55
		0301	Азота диоксид (Азот (IV) окс	ид)		0.009100		0.0000000	1		0,051	47,4	0,6	0.04		0,7	
		0304	Азот (II) оксид (Азота оксид			0,001500		0,0000000	1		0,004	47,4	0,6	0,004		0,7	
		0328	Углерод (Сажа)	.,		0,000800	00	0,0000000	1		0,006	47,4	0,6	0,00		0,7	
		0330	Сера диоксид (Сернистый анги	дрид)		0,001200	00	0,0000000	1		0,003	47,4	0,6	0,002	2 52,1	0,7	
		0337	Углерод оксид			0,008000		0,0000000	1		0,002	47,4	0,6	0,002		0,7	
		0703	Бенз/а/пирен (3,4-Бензпире	н)		1,0000000		0,0000000	1		0,001	47,4	0,6	0,00		0,7	
		1325	Формальдегид			0,000200		0,0000000	1		0,005	47,4	0,6	0,004	. ,	0,7	
		2754	Углеводороды предельные С12	2-C19		0,004000		0,0000000	1		0,005	47,4	0,6	0,004		0,7	
%	0	0 6007	Выгрузка скального грунта	1	3	13,0		_		0	0	1,0	1950,0	,			2,00
		Код в-ва	Наименование вещества		E	Зыброс, (ыброс, (т/г)	F	Лето:	Cm/ПДI			Вима: Ст/ПД		Um	
		2908	Пыль неорганическая: 70-20%	SiO2		1,680000		0,0000000	3		7,610	37,1	0,5	7,610		0,5	
%	0	0 6008	Планировочные работы	1	3	13,0	0,00	0 0		0	0	1,0	3623,0	3218,0	3628,0	3223,0	2,00
			бульдозером														
		Код в-ва	Наименование вещества		E	Зыброс, (г/с) В	ыброс, (т/г)	F	Лето:	Cm/ПДI	K Xm	Um 3	Вима: Ст/ПД	ДК Xm	Um	
Учет	№ пл.	№ № ист.	Наименование источника	Вар.	Тип	Высота	Диаметр	Объем	Скорс			Коэф.	Коорд.	Коорд.	Коорд.	Коорд.	Ширина
при		цеха				ист. (м)	устья (м		ГВС (м/с) ГВ	C (°C)	рел.	(1-ос. (м)	Y1-ос. (м)	Х2-ос. (м)	Y2-ос. (м)	источ.
расч.								(куб.м/с)									(м)
		2908	Пыль неорганическая: 70-20%	SiO2		1,200000		0,0000000	3		5,436	37,1	0,5	5,436		0,5	
+	0	0 6013	Хвостохранилище	1	3	13,0	0,00	0 0		0	0	1,0	2417,0	2957,0	2422,0	2959,0	50,00
<u> </u>		Код в-ва	Наименование вещества		E	Зыброс, (г/с) В	ыброс, (т/г)	F	Лето:	Cm/ПДI	K Xm	Um 3	Вима: Ст/ПД	ДК Xm	Um	
		2908	Пыль неорганическая: 70-20%	SiO2		11,17602		0,0000000	3		50,624		0,5	50,62		0,5	
%	0	0 6017	Выгрузка скального грунта	1	3	13,0	0,00	0 (כ		0	0	1,0	3633,0	3228,0	3638,0	3233,0	2,00
		Код в-ва	Наименование вещества		E	Зыброс, (г/с) В	ыброс, (т/г)	F	Лето:	Cm/ПДI	К Xm	Um 3	Вима: Ст/ПД	ДК Xm	Um	
		2908	Пыль неорганическая: 70-20%	SiO2		1,680000	00	0,0000000	3		7,610	37,1	0,5	7,610	37,1	0,5	
%	0	0 6018	Бульдозерная планировка	1	3	13,0	0,00	0 0		0	0	1,0	1620,0	3042,0	1625,0	3047,0	2,00
			скального грунта														
		Код в-ва	Наименование вещества	U		Зыброс, (г/с) В	ыброс, (т/г)	F	Лето:	Cm/ПДI	K Xm	Um 3	Вима: Ст/ПД	ДК Xm	Um	
		2908	Пыль неорганическая: 70-20%	SiO2		1,200000)0 ´	0000000	3		5,436	37,1	0,5	5,436		0,5	
%	0	0 6019	Разработка наносов хвостов	1	3	13,0	0,0	0		0	0	1,0	1630,0	3052,0	1635,0	3057,0	2,00
			бульдозерами			ŕ	,					,	,	Í	ŕ	ŕ	,
		Код в-ва	Наименование вещества		·	Зыброс, (г/с) В	ыброс, (т/г)	F	Лето:	Ст/ПД	K Xm	Um 3	Вима: Ст/П	ДК Xm	Um	
		2908	Пыль неорганическая: 70-20%	SiO2		1,666700		0,0000000	3		7,550	37,1	0,5	7,550		0,5	
%	0	0 6020	Погрузка хвостов	1	3	13.0	0.0	o Ìc		0	0	1,0	3217,0	3344,0	3222,0	3349,0	2,00
		Код в-ва	Наименование вещества			Зыброс, (г/c) В	ыброс, (т/г)	F	Лето:	Cm/ПДI			Вима: Ст/ПД		Um	, , , , ,
		2908	Пыль неорганическая: 70-20%	SiO2		2,333300		0000000	3		10,569		0,5	10,56		0,5	
%	0	0 6021	Транспортировка хвостов в	1	3	13,0	0,0	o lo		0	0	1,0	3798,0	4326,0	3803,0	4331,0	2,00
"			чашу хвостохранилища			, .	-,-	1		Ĭ	Ĭ	.,,	0.00,0	,		,	_,,,,
		Код в-ва	Наименование вещества			Зыброс, (г/с) В		F	Лето:	Ст/ПД	K Xm	Um 3	Вима: Ст/ПД	ΩK Xm	Um	
		2908	Пыль неорганическая: 70-20%	SiO2		0,031800		0,0000000	3	2.0.0.	0,144	37,1	0,5	0.14		0,5	
%	0		Выгрузка хвостов в чаше	1	3	13,0				0	0,111	1,0	2442,0				2,00
'			хвостохранилища	'		10,0	0,00	<u> </u>		Ĭ	ĭ	1,0	2112,0	10.0,0	2 1 17 ,0	10.10,0	2,50
L		Код в-ва	Наименование вещества		<u> </u>	Зыброс. (r/c\		F	Лето:	Ст/ПД	K Xm	Um 3	I Вима: Ст/ПД	ДК Xm	Um	
		2908	Пыль неорганическая: 70-20%	SiO2		2,333330(,	0.0000000	3	11610.	10.569		0.5	има. Сп/пд 10,56	•	0,5	
%	0		Разравнивание хвостов в	1	3	13,0				0	10,309	1,0	3875,0				2,00
/0	"		•		اد	13,0	0,00	ا ا		십	띡	1,0	3073,0	2133,0	3000,0	2140,0	۷,00
	1		чаше хвостохранилища		<u> </u>	21.6555 /	r/o\ D	116pac /=/-\		Потог	 Cm/ПДI	K Xm	ll C	I Вима: Ст/ПЛ	∐K Xm	Um	
		Код в-ва	Наименование вещества		ı	Выброс, (1/C) B	ыброс, (т/г)	г	nero:	СП/ПД	v vu	UIII 3	оима: Сті/ПД	dv VIII	UIII	

Vert Ne nn Ne Ne vert Наименование месточника Вар. Trill Высброс (ric) Выброс (0,5	37,1	,550	7,5	1 0,5	37,	7,550		3	,0000000	0 0	1,666700		SiO2	Пыль неорганическая: 70-20%	800	29		
праец цеха цеха нист. (м) устъя (м) (гВС (м) гВС (м) раст. (м) V1-ос. (м) V2-ос. (м) V	2,00	1802,0	3450,0	7,0	1797,0	3445,0	1,0	0	0	0	0	0,00	13,0	3	1	Выгрузка скального грунта	6026	C	0	
Вастрой Ва	Ширина													Тип	Вар.	Наименование источника	№ ист.		№ пл.	
Код она		Ү2-ос. (м)	2-ос. (м)	м) Х	Ү1-ос. (м)	Х1-ос. (м)	рел.	(°C)) FB(устья (м)	ист. (м)	'				цеха		-
2908 Пыль неорганическая: 70-20% SiO2 0,5600000 0,00000000 3 2,537 37,1 0,5 2,537 37,1 0,5	(м)	Llm	· Vm		2mm: Cm/F	a IIm S	/ Vn	^m/□[lozo:			r/o\ Pr	Pulifingo /		$oxed{oxed}$	Houseougnouse nouseofne	D D0	Von		расч.
№ 0 0 6027 Выгрухая сакального грунта 1 3 13.0 0.00 0 0 0 1.0 3455 1807,0 3460,0 1812,0 371,0 0.5 1807,0 3460,0 1812,0 371,0 0.5 1807,0 3460,0 1812,0 371,0 0.5 1807,0 3460,0 1812,0 371,0 0.5 1807,0 3460,0 1812,0 371,0 0.5 1807,0 3460,0 371,0 0.5 1807,0 3460,0 371,0 0.5 1807,0 3460,0 371,0 0.5 1807,0 3460,0 371,0 0.5 1807,0 3460,0 346									ieio.							·				
Код в-ва	2,00						,		n		,			3	1				0	%
2908 Пыль неорганическая: 70-20% SiO2 0,40000000 0,0000000 3 1,812 37,1 0,5 1,812 37,1 0,5 % 0 0 0 0 0 0 0 0 0 0 0 0 0 268-00 1734 (J 288-98) 1734 (J 288-98) 1734 (J 288-98) 1734 (J 289-88 188-88 Наименование вещества Buброс (r/c) Buброс (r/r) F Лего: Cm/ПДК Xm Um 3има: Cm/ПДК Xm <									-					_	<u>-</u> -1					
№ 0 0 6030 Выгрузка скального грунта 1 3 13,0 0,00 0 0 0 1,0 2864,0 1734,0 2869,0 1739,1											. , , ,	,		•						
Код в-ва	2,00		2869,0	4,0	1734,0		1,0		0	0	0	0,00	13,0	3	1	Выгрузка скального грунта			0	%
% 0 0 6031Планировочные работы бульдозерами 1 3 13,0 0,00 0 0 0 1,0 3152,0 3896,0 3157,0 3901,0 Код в-ва деля в намиченование вещества дочных в такжения в та		Um	Xm	n/ПДК	Зима: Ст/Г	n Um 3	K Xn	Ст/ПД	Іето:	FЛє	іброс, (т/г)	г/с) Вь	Выброс, (1			Код		
Бульдозерами								2,537			,0000000		0,560000		SiO2			29		
Код в-ва Наименование вещества 2908 Пыль неорганическая: 70-20% SiO2 0,4000000 0,00000000 3 1,812 37,1 0,5 1,812	2,00	3901,0	3157,0	6,0	3896,0	3152,0	1,0	0	0	0	0	0,00	13,0	3	1			C	0	%
№ 0 0 6032 Разработка наносов жостов 1 3 13,0 0,00 0 0 0 1,0 3042,0 2350,0 3047,0 2355,0														<u> </u>		<u> </u> бульдозерами	(
% 0 0 6032 Рэработка наносов хвостов бульдозерами 1 3 13,0 0,00 0 0 1,0 3042,0 2350,0 3047,0 2355,0 Код в-ва Рамменование вещества 2908 Пыль неорганическая: 70-20% SIO2 Выброс, (г/с) 1,6667000 Выброс, (г/г) 0,0000000 3 7,550 37,1 0,5 7,550 37,1 0,5 % 0 0 6033 Погрузка хвосов 1 1 3 13,0 0,00 0 0 0 0 1,0 2099,0 3637,0 2104,0 3642,6 % 0 0 6034 Транспортуркака хвостов в 1 1 3 13,0 0,00 0 0 1,0 2099,0 3637,0 2104,0 3642,0 % 0 0 6034 Транспортуркака хвостов в 1 1 3 13,0 0,00 0 0 1,0 2299,0 3637,0 2204,0 3747,0 % 0 0 6035 Выгрузка хвостох вание вещества 2908 Выброс, (г/с) выброс, (г/с) Выброс, (г/с) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Іето:</td> <td></td> <td></td> <td>,</td> <td></td> <td>!</td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td>									Іето:			,		!		·				
Код в-ва Наименование вещества Выброс, (т/с) Выброс, (т/с) Выброс, (т/с) Быброс,						- , -	- ,				í				SiO2	,			1	
Код в-ва 2908 Наименование вещества 2908 Выброс, (г/с) по 1,6667000 Выброс, (г/с) 0,0000000 Выброс, (г/с) 0,0000000 Выброс, (г/с) 3,750 37,1 0,5 7,550 37,1 0,5 37,3 0,5 37,3 1,0,5 37,3 1,0,5 37,1 0,5 37,3 1,0,5 37,1 0,5 37,1	2,00	2355,0	3047,0	0,0	2350,0	3042,0	1,0	0	0	0	0	0,00	13,0	3	1			C	0	%
98 Пыль неорганическая: 70-20% SiO2 1,6667000 0,0000000 3 7,550 37,1 0,5 7,550 37,1 0,5 % 0 0 0 0 0 0 0 0 1,0 2099,0 3637,0 2104,0 3642,0 Код в-ва 2908 Наименование вещества 1 увостохранилища Выброс, (т/с) 243333000 Выброс, (т/г) 2,3333000 0,0000000 3 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 2277,0 3742,0 2282,0 3747,0 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569										<u> </u>	L									
№ 0 0 6033 Погрузка хвосов 1 3 13,0 0,00 0 0 0 1,0 2099,0 3637,0 2104,0 3642,0 Код в-ва 2908 Пыль неорганическая: 70-20% SiO2 Выброс, (г/с) 2,3333000 Выброс, (г/с) 0,0000000 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 10,569 37,1 0,5 37,47,0 2282,0 3747,0 3742,0 2282,0 3747,0 3742,0 2282,0 3747,0 3742,0 2282,0 3747,0 3742,0 2282,0 3747,0 3742,0 2282,0 3747,0 3642,0 3684,0 2684,0 3684,0 2684,0 3684,0 2684,0 3684,0 2684,0 3684,0 2684,0 3684,0 2684,0 3684,0 2689,0 3689,0									Іето:					ļ						
Код в-ва Наименование вещества Выброс, (г/с) Выброс, (г/с) Выброс, (г/г) Транспортировка хвостов в 1 3 13,0 0,00 0 0 0 0 1,0 2277,0 3742,0 2282,0 3747,0 2282,0	1 000								<u> </u>						SIO2					0/
98 Пыль неорганическая: 70-20% SiO2 2,3333000 0,0000000 3 10,569 37,1 0,5 10,569 37,1 0,5 % 0 0 6034 Транспортировка хвостов в чашку хвостохранилища 1 3 13,0 0,00 0 0 0 1,0 2277,0 3742,0 2282,0 3747,0 % 0 0 6035 Выгрузка хвостов в чаше хвостохранилища 1 3 13,0 0,00 0 0 0 0 1,0 2684,0 3684,0 2689,0 3689,0 % 0 0 6035 Выгрузка хвостов в чаше хвостохранилища 1 3 13,0 0,00 0 0 0 1,0 2684,0 3684,0 2689,0 3689,0 % 0 0 6036 Разравнивание хвостохранилища 1 3 13,0 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	2,00												- , -	_					U	%
% 0 0 6034 Транспортировка хвостов в нашу хвостохранилища 1 3 13,0 0,00 0 0 0 1,0 2277,0 3742,0 2282,0 3747,0 Код в-ва делов в нашу хвостохранилища Наименование вещества пыль неорганическая: 70-20% SiO2 Выброс, (г/с) до									іето:					ļ		·				
Наименование вещества	2,00								٥					2	3102					0/
Код в-ва Наименование вещества 2908 Пыль неорганическая: 70-20% SiO2 3 13,0 0,00 0 0 0 0 0 1,0 2684,0 3684,0 2689,0 3689,€	, 2,00	3747,0	2202,0	۷,0	3/42,	2211,0	1,0	۷	٧		١	0,00	13,0	اد	'		1		0	/0
2908 Пыль неорганическая: 70-20% SiO2 0,0318000 0,0000000 3 0,144 37,1 0,5 0,144 37,1 0,5 % 0 0 6035 Выгрузка хвостохранилища 1 3 13,0 0,00 0 0 0 1,0 2684,0 3684,0 2689,0 3689,0 Код в-ва 2908 Наименование вещества 2908 Выброс, (г/с) 2,3333000 0,0000000 3 0 0 0 1,0 2684,0 3684,0 2689,0 3689,0 % 0 0 6036 Разравнивание хвосохранилища 3 13,0 0,00 0 0 0 0 1,0 2694,0 3694,0 2699,0 3699,0 Учет при при расч. Код в-ва Наименование вещества пра неорганическая: 70-20% SiO2 Выброс, (г/с) Выброс, (г/с) Выброс, (г/с) Выброс, (т/г) Гели Тамиенование вещества ист. (м) Коорд.		Llm	· Ym		<u> 1</u> Зима: Ст/Г	n IIm 3	Υ Yπ	Ст/ПГ	leto.	F Πα	<u> </u> δρος (τ/ε)	[/c) RL	Bullings (Кол		
% 0 0 6035 Выгрузка хвостов в чаше хвостохранилища 1 3 13,0 0,00 0 0 0 1,0 2684,0 3684,0 2689,0 3689,0 Код в-ва дров Наименование вещества горов Выброс, (г/с) выброс, (г/с) выброс, (т/с) выброс, (т/г) выброс, (т									1610.							·				
Код в-ва	2,00					- , -	- /		0		<u> </u>			3	1				0	%
Код в-ва 2908 Наименование вещества Пыль неорганическая: 70-20% SiO2 Выброс, (г/с) 2,3333000 Выброс, (т/г) 0,0000000 Быброс, (т/г) 1,0000000	_,,,,	, , ,		.,•]	,	.,.	Ĭ				,,,,,	, .]		1	•		, ,
2908 Пыль неорганическая: 70-20% SiO2 2,3333000 0,0000000 3 10,569 37,1 0,5 10,569 37,1 0,5 % 0 0 6036 Разравнивание хвостов в чаше хвосохранилища 1 3 13,0 0,00 0 0 0 1,0 2694,0 3694,0 2699,0 3699,0 Учет при расч. Код в-ва драсч. Наименование вещества прасч. Выброс, (г/с) выброс, (г/с) выброс, (г/г) выброс, (т/г) выброс, (т/г) гвс (м/с) г		Um	Xm	л/ПДК	Зима: Ст/Г	n Um 3	K Xm	Cm/ΠΔ	Іето:	FЛe	брос. (т/г)	г/с) Вь	Выброс. (I			Кол	l l	
Наименование вещества деят. Наименование источника Вар. Тип Высота ист. (м) Устья (м) ГВС (куб.м/с) ТВС (куб																·				
Код в-ва дыль неорганическая: 70-20% SiO2 1,6667000 0,00000000 3 7,550 37,1 0,5	2,00	3699,0	2699,0	4,0	3694,0	2694,0	1,0	0	0	0	0	0,00	13,0	3	1	Разравнивание хвостов в	6036	C	0	%
Учет при расч. № пл. цеха Пыль неорганическая: 70-20% SiO2 1,666700 / мст. (м) 0,0000000 / мст. (м) 3 7,550 / мст. (м) 37,1 / 0,5 7,550 / мст. (м) 37,1 / 0,5 <td></td> <td> </td> <td></td> <td>·</td> <td> '</td> <td></td> <td>наше хвосохранилища</td> <td></td> <td></td> <td></td> <td></td>													·	'		наше хвосохранилища				
Учет при расч. № пл. цеха при расч. № ист. цеха при расч. Наименование источника Вар. Тип высота ист. (м) устья (м) расч. Диаметр (куб.м/с) Объем ГВС (м/с) гВС (°С) Скорость ГВС (м/с) гВС (°С) Темп. ГВС (°С) рел. Коэф. Х1-ос. (м) У1-ос. (м) У1-ос. (м) Х2-ос. (м) У2-ос. (м) У2-ос. (м) У2-ос. (м) У2-ос. (м) У2-ос. (м) У2-ос. (м) % 0 0 6039 Выгрузка скального грунта 1 3 13,0 0,00 0 0 0 1,0 960,0 1479,0 965,0 1484,0 Код в-ва 2908 Наименование вещества Пыль неорганическая: 70-20% SiO2 Выброс, (г/с) 0,5600000 Выброс, (т/г) 3 2,537 37,1 0,5 2,537 37,1 0,5 % 0 0 6040 Бульдозерная планировка скального грунта 1 3 13,0 0,00 0 0 0 0 0 0 970,0 1489,0 975,0 1494,0		Um	. Xm	п/ПДК	Зима: Ст/Г	n Um 3	K Xm	Ст/ПД	Іето:	F Ле	іброс, (т/г)	г/с) Вь	Выброс, (1	Наименование вещества	в-ва	Код		
при расч. цеха расч. цеха расч. цеха расч. цеха расч. при расч. гаст. (м) расч. гаст. (м) рустья (м) расч. гаст. (м) расч. <									_											
код в-ва 2908 Пыль неорганическая: 70-20% SiO2 Выброс, (г/с) 0,5600000 Выброс, (т/г) 0,5600000 Быброс, (т/г) 0,5600000 Биброс, (т/г) 0,5600000 Пыль неорганическая: 70-20% SiO2 Выброс, (т/г) 0,5600000 Пыль неорганическая: 70-20% SiO2 Выброс, (т/г) 0,5600000 Паль неорганическая: 70-20% SiO2 Выброс, (т/г) 0,5600000 Паль неорганическая: 70-20% SiO2 Выброс, (т/г) 0,5600000 Паль неорганическая: 70-20% SiO2 Паль неоргани	Ширина							МΠ.	ь То					Тип	Вар.	Наименование источника	№ ист.		№ пл.	
% 0 0 6039 Выгрузка скального грунта 1 3 13,0 0,00 0 0 0 1,0 960,0 1479,0 965,0 1484,0 Код в-ва Розва Пыль неорганическая: 70-20% SiO2 Выброс, (г/с) Выброс, (г/с) Выброс, (т/г) Выброс, (т/г) F Лето: Ст/ПДК Хт Um Зима: Ст/ПДК Хт Um О,5 % 0 6040 Бульдозерная планировка 1 3 13,0 0,00 0 0 0 0 1,0 970,0 1489,0 975,0 1494,0		Ү2-ос. (м)	2-ос. (м)	м) Х	Ү1-ос. (м)	Х1-ос. (м)	рел.	(°C)	;) FB(устья (м)	ист. (м)	'				цеха		
Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Xm Um Зима: Ст/ПДК Xm Um 2908 Пыль неорганическая: 70-20% SiO2 0,5600000 0,00000000 3 2,537 37,1 0,5 2,537 37,1 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	(M)	1404.0	005.0	0.0	1 1 1 70 /	000.0	1.0	0	^			0.00	10.0	<u> </u>	-	2	0000		0	•
2908 Пыль неорганическая: 70-20% SiO2 0,5600000 0,0000000 3 2,537 37,1 0,5 2,537 37,1 0,5 % 0 0 6040 Бульдозерная планировка 1 3 13,0 0,00 0 0 0 1,0 970,0 1489,0 975,0 1494,0 скального грунта 0 <td>2,00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l O</td> <td>70</td>	2,00								•										l O	70
% 0 0 6040 Бульдозерная планировка 1 3 13,0 0,00 0 0 1,0 970,0 1489,0 975,0 1494,0 1494,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-							ieio.		. , , ,	,								
Скального грунта	2,00						- ,	,	n					3	1				٥	%
	2,00	1757,0	373,0	5,0	1709,	570,0	1,0	٦	~	1		0,00	10,0		']				"	/0
Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Xm Um Зима: Ст/ПДК Xm Um		Llm	Xm		 Зима: Ст/г	n Um 3	K Xm	 Cm/ПЛ	јето.	L F Πε	<u>.</u> .брос (т/г)	r/c) Rh	Выброс (Кол		<u> </u>
2908 Пыль неорганическая: 70-20% SiO2 0,4000000 0,0000000 3 1,812 37,1 0,5 1,812 37,1 0,5																·				
	2,00								0	0	í – – – – – – – – – – – – – – – – – – –			3	1		6043	C	0	%
Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Xm Um Зима: Ст/ПДК Xm Um			,	- , -	,		- , -	Cm/ΠΔ	1ето:	F Ле		-,	, .		, <u> </u>			Код		

		29	08	Пыль неорганическая: 70-20%	SiO2	0.5	600000	(0,0000000	3		2,537	37.1	1 0,5	2,537	7 37,1	0,5	
%	0	0		Планировочные работы	1	3	13,0	0.00	· ·		0	0	1,0	2115,0		2120,0	2556,0	2,00
		_		бульдозерами			, .	-,				-	-,-	,-		,,	,-	_,,
L	1	Код	в-ва	Наименование вещества	L	Выб	рос, (г/с) Bı	ыброс, (т/г)	F	Лето:	Cm/ПДІ	₹ Xm	Um 3	има: Ст/ПД	IK Xm	Um	
		29	08	Пыль неорганическая: 70-20%	SiO2	0,4	000000		0,0000000	3		1,812	37,1	1 0,5	1,812	2 37,1	0,5	
%	0	0	6045	Разработка наносов хвостов	1	3	13,0	0,00	0		0	0	1,0	4145,0	2578,0	4150,0	2583,0	2,00
				бульдозерами														
		Код		Наименование вещества		Выб	рос, (г/с) Bi	ыброс, (т/г)	F	Лето:	Cm/ПДI	₹ Xm	Um 3	има: Ст/ПД	IK Xm	Um	
		29		Пыль неорганическая: 70-20%	SiO2		667000		0,0000000	3		7,550	37,1		7,550		0,5	
%	0	0	6046	Погрузка хвостов	1	3	13,0	0,00	0		0	0	1,0	4155,0		4160,0	2593,0	2,00
		Код		Наименование вещества			рос, (г/с		ыброс, (т/г)	F	Лето:	Cm/ПДŀ			вима: Ст/ПД		Um	
		29		Пыль неорганическая: 70-20%	SiO2		333000		0,0000000	3		10,569	37,1		10,56		0,5	
%	0	0	6047		1	3	13,0	0,00	0		0	0	1,0	1589,0	3742,0	1594,0	3747,0	2,00
				чашу хвостохранилища														
		Код		Наименование вещества			рос, (г/с		ыброс, (т/г)	F	Лето:	Cm/ПДŀ			има: Ст/ПД		Um	
		29		Пыль неорганическая: 70-20%	SiO2		502000		0,0000000	3	_	0,227	37,1		0,227		0,5	
%	0	0	6048	Выгрузка хвостов в чаше	1	3	13,0	0,00	0		0	0	1,0	1599,0	3752,0	1604,0	3757,0	2,00
				хвостохранилища					<u> </u>									
		Код		Наименование вещества	0:00		рос, (г/с		ыброс, (т/г)	F	Лето:	Ст/ПД			вима: Ст/ПД		Um	
0/	1 0		08	Пыль неорганическая: 70-20%	SIO2		333000		0,0000000	3	0	10,569	37,1		10,56		0,5	0.00
%	0	0	6049	Разравнивание хвостов в	1	3	13,0	0,00	0		U	0	1,0	1430,0	1366,0	1435,0	1371,0	2,00
		16		чаше хвостохранилища				\ D				0 /00	, V			716 16		
Учет	№ пл.	Код №	в-ва № ист.	Наименование вещества Наименование источника	Вар.	выо Тип Вы	рос, (г/с		ыброс, (т/г) Объем	F Скоро		_Ст/ПД⊦ емп.	< Xm (оэф.	<u>Um 3</u> Коорд.	има: Ст/ПД Коорд.	lK Xm Коорд.	Um Коорд.	Ширина
при	MY IIII.	цеха	INº MCI.	паименование источника	вар.									хоорд. X1-ос. (м)				
																		источ
		цоли				ИС	г. (м) ус	лья (м)		I DC (N	и/c) ГВ	C (C)	рел.	х 1-ос. (м)	11-0C. (M)	A2-00. (M)	Ү2-ос. (м)	источ. (м)
расч.			08	Пыль неорганическая: 70-20%	SiO2		, ,		(куб.м/с)	3	//C) I B	` ′		` ,	, ,	` ,	` ,	источ. (м)
расч.		29			SiO2	1,6	667000	((куб.м/с) 0,0000000	3	0	7,550 0	37,1	I 0,5	7,550	37,1	0,5	(м)
	0	29	6052	Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества	SiO2	1,6 3 Выб	667000 13,0 poc, (r/c	0,00	(куб.м/с) 0,0000000	3		7,550	37,1 1,0	0,5 3483,0	7,550	37,1	` ,	(м)
расч.	0	29	6052 в-ва 08	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20%	1	1,6 3 Выб	667000 13,0	0,00 B	(куб.м/с) 0,0000000 0	3	0	7,550 0	37,1 1,0	0,5 3483,0 Um 3	7,550 2296,0 Вима: Ст/ПД 2,537	37,1 3488,0 1K Xm 7 37,1	0,5 2301,0 Um 0,5	(M) 2,00
расч.	0	29 0 Код	6052 в-ва 08	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20%	1	1,6 3 Выб	667000 13,0 poc, (r/c	0,00 B	(куб.м/с) 0,0000000 0 0 ыброс, (т/г) 0,0000000	3 F 3	0	7,550 0 Ст/ПДН	37,1 1,0	0,5 3483,0 Um 3	7,550 2296,0 Вима: Ст/ПД 2,537	37,1 3488,0 JK Xm	0,5 2301,0 Um	(M)
расч. %	0	29 0 Код 29	6052 в-ва 08	Выгрузка скального грунта Наименование вещества	1	1,6 3 Выб 0,5	667000 13,0 poc, (r/c	0,00 () Bi	(куб.м/с) 0,0000000 0 0 ыброс, (т/г) 0,0000000	3 F 3	0 Лето:	7,550 0 Ст/ПДН 2,537	37,1 1,0 \(Xm 37,1	0,5 3483,0 Um 3	7,550 2296,0 Вима: Ст/ПД 2,537	37,1 3488,0 1K Xm 7 37,1	0,5 2301,0 Um 0,5	(M)
расч. %	0	29 0 Код 29 0 Код	6052 в-ва 08 6053 в-ва	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка	1	1,6 3 Выб 0,5	667000 13,0 poc, (r/c	0,00 () Bi () 0,00	(куб.м/с) 0,0000000 0 0 ыброс, (т/г) 0,0000000	3 F 3	0 Лето:	7,550 0 Ст/ПДН 2,537	37,1 1,0 \langle Xm 37,1 1,0	1 0,5 3483,0 Um 3 1 0,5 3493,0	7,550 2296,0 Вима: Ст/ПД 2,537	37,1 3488,0 1K Xm 7 37,1 3498,0	0,5 2301,0 Um 0,5 2311,0	(M)
%	0	29 0 Код 29 0 Код 29	6052 в-ва 08 6053 в-ва 08	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20%	SiO2	1,6 3 Выб 0,5 3 Выб 0,4	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c	0,00 0,00 0,00 0,00	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3	0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812	37,1 1,0 (Xm 37,1 1,0 (Xm 37,1	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3	7,550 2296,0 има: Ст/П, 2,537 2306,0 има: Ст/П,	3488,0 3488,0 QK Xm 7 37,1 3498,0 QK Xm 2 37,1	0,5 2301,0 Um 0,5 2311,0 Um 0,5	2,00 2,00
расч. %		29 0 Код 29 0 Код 29	6052 в-ва 08 6053 в-ва 08 6056	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта	1 SiO2 1	1,6 3 Выб 0,5 3 Выб 0,4 3	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0	0,000 0,000 0,000 0,000	(куб.м/с) 0,000000 0 0,0000000 0,0000000 0 0,000000	3 F 3	0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812	37,1 1,0 Xm 37,1 1,0 Xm 37,1 1,0	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0	7,550 2296,0 има: Ст/П 2,537 2306,0 има: Ст/П 1,812 3615,0	37,1 3488,0 4K Xm 7 37,1 3498,0 4K Xm 2 37,1 4087,0	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0	2,00 2,00
%	0	29 0 Код 29 0 Код 29 0 Код	6052 в-ва 08 6053 в-ва 08 6056 в-ва	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества	1 SiO2 1 SiO2	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c	0,000 0,000 0,000 0,000 0,000	(ky6.м/c) 0,0000000 0 0,0000000 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812 0 Ст/ПДН	37,1 1,0 Xm 37,1 1,0 Xm 37,1 1,0 Xm	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3	7,550 2296,0 има: Ст/ПД 2,537 2306,0 има: Ст/ПД 1,812 3615,0 има: Ст/ПД	37,1 3488,0 QK Xm 7 37,1 3498,0 QK Xm 2 37,1 4087,0 QK Xm	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um	2,00 2,00
% %	0	29 0 Код 29 0 Код 29 0 Код 29	6052 в-ва 08 6053 в-ва 08 6056 в-ва 08	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20%	1 SiO2 1 SiO2	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c 200000	(0,000	(ky6.м/c) 0,0000000 0 0,0000000 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812 0 Ст/ПДН 5,073	37,1 1,0 (Xmm 37,1 1,0 (Xmm 37,1 1,0 (Xmm 37,1	Um 3 1 0,5 3483,0 1 0,5 3493,0 1 0,5 4082,0 Um 3 1 0,5	7,550 2296,0 има: Ст/П, 2,537 2306,0 има: Ст/П, 1,812 3615,0 има: Ст/П,	37,1 3488,0 QK Xm 7 37,1 3498,0 QK Xm 2 37,1 4087,0 QK Xm 3 37,1	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5	2,00 2,00 2,00
%	0	29 0 Код 29 0 Код 29 0 Код 29	6052 в-ва 08 6053 в-ва 08 6056 в-ва 08	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы	1 SiO2 1 SiO2	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c	0,000 0,000 0,000 0,000 0,000	(ky6.м/c) 0,0000000 0 0,0000000 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812 0 Ст/ПДН	37,1 1,0 Xm 37,1 1,0 Xm 37,1 1,0 Xm	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3	7,550 2296,0 има: Ст/П, 2,537 2306,0 има: Ст/П, 1,812 3615,0 има: Ст/П,	37,1 3488,0 QK Xm 7 37,1 3498,0 QK Xm 2 37,1 4087,0 QK Xm	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um	2,00 2,00 2,00
м %	0	29 0 Код 29 0 Код 29 0 Код 29	6052 в-ва 08 6053 в-ва 08 6056 в-ва 08 6057	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами	1 SiO2 1 SiO2	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c 200000 13,0	(0 0,000 0,0	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Сm/ПДH 2,537 0 Сm/ПДH 1,812 0 Сm/ПДH 5,073	37,1 1,0 (Xm 37,1 1,0 (Xm 37,1 1,0 (Xm 37,1	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3 1 0,5	7,550 2296,0 има: Ст/ПД 2,537 2306,0 има: Ст/ПД 1,812 3615,0 има: Ст/ПД 5,070 3625,0	37,1 3488,0 4K Xm 7 37,1 3498,0 4K Xm 2 37,1 4087,0 4K Xm 3 37,1 4097,0	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0	2,00 2,00 2,00
% %	0	29 0 Код 29 0 Код 29 0 Код 29	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества	SiO2 1 SiO2 1 SiO2 1	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c 200000 13,0 poc, (r/c	(0,000	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Сm/ПДH 2,537 0 Сm/ПДH 1,812 0 Сm/ПДH 5,073 0 Сm/ПДH	37,1 1,0 (Xm 37,1 1,0 (Xm 37,1 1,0 (Xm 37,1 1,0	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 4092,0 Um 3	7,550 2296,0 мма: Ст/П, 2,533 2306,0 мма: Ст/П, 1,812 3615,0 мма: Ст/П, 5,073 3625,0	37,1 3488,0 3K Xm 7 37,1 3498,0 QK Xm 2 37,1 4087,0 QK Xm 3 37,1 4097,0 QK Xm	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0	2,00 2,00 2,00
% %		29 0 Код 29 0 Код 29 0 Код 29	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества Пыль неорганическая: 70-20%	SiO2 1 SiO2 1 SiO2 1	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c 200000 13,0 poc, (r/c 200000 13,0 poc, (r/c 000000	(0,000	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Сm/ПДH 2,537 0 Сm/ПДH 1,812 0 Сm/ПДH 5,073 0 Сm/ПДH	37,1 1,0 (Xm 37,1 1,0 (Xm 37,1 1,0 (Xm 37,1 1,0 (Xm, 37,1	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3 1 0,5 4092,0 Um 3	7,550 2296,0 дима: Ст/ПД 2,533 2306,0 дима: Ст/ПД 1,812 3615,0 дима: Ст/ПД 5,073 3625,0	37,1 3488,0 3K Xm 7 37,1 3498,0 3K Xm 2 37,1 4087,0 3K Xm 4097,0 3K Xm 4097,0	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0 Um 0,5	2,00 2,00 2,00 2,00
% %	0	29 0 Код 29 0 Код 29 0 Код 29	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba 08 6133	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества Пыль неорганическая: 70-20% Газовая резка	SiO2 1 SiO2 1 SiO2 1	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3 Выб 0,8	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c 200000 13,0 poc, (r/c 000000 13,0 poc, (r/c 000000 13,0	(0,000	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812 0 Ст/ПДН 5,073 0 Ст/ПДН 3,624	37,1 1,0 (Xm 37,1 1,0	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 4092,0 Um 3 1 0,5 4092,0	7,550 2296,0 има: Ст/ПД 2,533 2306,0 има: Ст/ПД 1,812 3615,0 има: Ст/ПД 5,073 3625,0 има: Ст/ПД 3,624 3661,0	37,1 3488,0 3K Xm 7 37,1 3498,0 3K Xm 2 37,1 4087,0 3K Xm 4097,0 3K Xm 4097,0 3K Xm 4097,0	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0 Um 0,5 3666,0	2,00 2,00 2,00 2,00
% %		29 0 Код 29 0 Код 29 0 Код 29 0 Код	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba 08 6133 B-Ba	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества Пыль неорганическая: 70-20% Газовая резка Наименование вещества	SiO2 1 SiO2 1 SiO2 1 SiO2 1 SiO2 1	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3 Выб 0,8 3 Выб	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000	(0 0,000	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Cm/ПДH 2,537 0 Cm/ПДH 1,812 0 Cm/ПДH 5,073 0 Cm/ПДH 3,624 0 Cm/ПДH	37,1 1,0 (Xm 37,1	Um 3 1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3 1 0,5 4092,0 Um 3 1 0,5	7,550 2296,0 има: Ст/ПД 2,533 2306,0 има: Ст/ПД 1,812 3615,0 има: Ст/ПД 5,073 3625,0 има: Ст/ПД 3,624 3661,0 има: Ст/ПД	37,1 3488,0 3K Xm 7 37,1 3498,0 3K Xm 2 37,1 4087,0 3K Xm 4097,0 3K Xm 4 37,1 3669,0 3K Xm	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0 Um 0,5 3666,0 Um	2,00 2,00 2,00 2,00
% %		29 0 Код 29 0 Код 29 0 Код 29	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba 08 6133 B-Ba	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества Пыль неорганическая: 70-20% Газовая резка Наименование вещества дижелезо триоксид (Железа окси,	SiO2 1 SiO2 1 SiO2 1 SiO2 1 SiO2 1	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3 Выб 0,8 3 Выб	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c 200000 13,0 poc, (r/c 000000 13,0 poc, (r/c 000000 13,0	(0 0,000	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812 0 Ст/ПДН 5,073 0 Ст/ПДН 3,624	37,1 1,0 (Xm 37,1 1,0	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3 1 0,5 4092,0 Um 3 1 0,5 4092,0 Um 3	7,550 2296,0 има: Ст/ПД 2,533 2306,0 има: Ст/ПД 1,812 3615,0 има: Ст/ПД 5,073 3625,0 има: Ст/ПД 3,624 3661,0	37,1 3488,0 3K Xm 7 37,1 3498,0 37,1 4087,0 4087,0 4097,0 37,1 4097,0 4097,0 4097,0 4097,0 4097,0 4097,0 4097,0	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0 Um 0,5 3666,0	2,00 2,00 2,00 2,00
% %		29 0 Код 29 0 Код 29 0 Код 29 0 Код 29	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba 08 6133 B-Ba 23	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества Пыль неорганическая: 70-20% Газовая резка Наименование вещества дижелезо триоксид (железа окси, ресчете на железо)	SiO2 1 SiO2 1 SiO2 1 SiO2 1 Д) (в пе	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3 Выб 0,8 3 Выб	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0	(0,000	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812 0 Ст/ПДН 5,073 0 Ст/ПДН 3,624 0 Ст/ПДН 0,062	37,1 1,0 (Xm 37,1 1,0	Um 3 1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3 1 0,5 4092,0 Um 3 1 0,5 3664,0 Um 3	7,550 2296,0 има: Ст/ПД 2,537 2306,0 има: Ст/ПД 1,812 3615,0 има: Ст/ПД 5,073 3625,0 има: Ст/ПД 3,62 има: Ст/ПД 0,062	37,1 3488,0 3K Xm 7 37,1 3498,0 3K Xm 2 37,1 4087,0 3K Xm 3 37,1 4097,0 3K Xm 4 37,1 3669,0 3K Xm 4 37,1 3669,0 3K Xm 4 37,1	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0 Um 0,5 3666,0 Um 0,5	2,00 2,00 2,00 2,00
% %		29 0 Код 29 0 Код 29 0 Код 29 0 Код	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba 08 6133 B-Ba 23	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества Пыль неорганическая: 70-20% Газовая резка Наименование вещества дижелезо триоксид (Железа окси,	SiO2 1 SiO2 1 SiO2 1 SiO2 1 Д) (в пе	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3 Выб 0,8 3 Выб	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000	(0,000	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Cm/ПДH 2,537 0 Cm/ПДH 1,812 0 Cm/ПДH 5,073 0 Cm/ПДH 3,624 0 Cm/ПДH	37,1 1,0 (Xm 37,1	Um 3 1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3 1 0,5 4092,0 Um 3 1 0,5 3664,0 Um 3	7,550 2296,0 има: Ст/ПД 2,533 2306,0 има: Ст/ПД 1,812 3615,0 има: Ст/ПД 5,073 3625,0 има: Ст/ПД 3,624 3661,0 има: Ст/ПД	37,1 3488,0 3K Xm 7 37,1 3498,0 3K Xm 2 37,1 4087,0 3K Xm 3 37,1 4097,0 3K Xm 3 37,1 3669,0 3K Xm 4 37,1 3669,0 3K Xm 4 37,1	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0 Um 0,5 3666,0 Um	2,00 2,00 2,00 2,00
м % % % % % % % % % % % % % % % % % % %		29 0 Код 29 0 Код 29 0 Код 29 0 Код 29	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba 08 6133 B-Ba 23 43	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества Пыль неорганическая: 70-20% Газовая резка дижелезо триоксид (Железа окси, ресчете на железо) Марганец и его соединения (в пере	SiO2 1 SiO2 1 SiO2 1 SiO2 1 Д) (в пе	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3 Выб 0,8 3 Выб 0,8	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0	(0,000 (0,0) (0,000 (0,0) (0,000 (0,0) (0,000 (0,0) (0,000 (0,0) (0,0) (0,000 (0,0) (0,0	(куб.м/с) 0,0000000 0 0,0000000 0 0,0000000 0 0,000000	3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812 0 Ст/ПДН 5,073 0 Ст/ПДН 3,624 0 Ст/ПДН 0,062	37,1 1,0 (Xm 37,1 1,0	Um 3 1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3 1 0,5 4092,0 Um 3 1 0,5 3664,0 Um 3	7,550 2296,0 има: Ст/ПД 2,537 2306,0 има: Ст/ПД 1,812 3615,0 има: Ст/ПД 5,073 3625,0 има: Ст/ПД 3,62 има: Ст/ПД 0,062	37,1 3488,0 3K Xm 7 37,1 3498,0 3K Xm 2 37,1 4087,0 3K Xm 3 37,1 4097,0 3K Xm 4 37,1 3669,0 3K Xm 2 74,1	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0 Um 0,5 3666,0 Um 0,5	2,00 2,00 2,00 2,00
м % % % % % % % % % % % % % % % % % % %		29 0 Код 29 0 Код 29 0 Код 29 0 Код 29	6052 B-Ba 08 6053 B-Ba 08 6056 B-Ba 08 6057 B-Ba 08 6133 B-Ba 23 43	Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Бульдозерная планировка скального грунта Наименование вещества Пыль неорганическая: 70-20% Выгрузка скального грунта Наименование вещества Пыль неорганическая: 70-20% Планировочные работы бульдозерами Наименование вещества Пыль неорганическая: 70-20% Газовая резка Наименование вещества диЖелезо триоксид (Железа окси, ресчете на железо) Марганец и его соединения (в перемарганца (IV) оксид)	SiO2 1 SiO2 1 SiO2 1 SiO2 1 Д) (в пе	1,6 3 Выб 0,5 3 Выб 0,4 3 Выб 1,1 3 Выб 0,8 3 Выб 0,8 0,8 0,4	667000 13,0 poc, (r/c 600000 13,0 poc, (r/c 000000 13,0 poc, (r/c 200000 13,0 poc, (r/c 000000 13,0 poc, (r/c 000000 13,0 poc, (r/c 000000 00000 000000 000000 000000	(0 0,000 0,0	(куб.м/с) 0,0000000 0 0 siброс, (т/г) 0,0000000	3 F 3 F 3 F 3	0 Лето: 0 Лето: 0 Лето:	7,550 0 Ст/ПДН 2,537 0 Ст/ПДН 1,812 0 Ст/ПДН 5,073 0 Ст/ПДН 3,624 0 Ст/ПДН 0,062 0,036	37,1 1,0 (Xm 37,1 1,0	1 0,5 3483,0 Um 3 1 0,5 3493,0 Um 3 1 0,5 4082,0 Um 3 1 0,5 4092,0 Um 3 1 0,5 3664,0 Um 3 1 0,5 3664,0 Um 3 1 0,5	7,550 2296,0 дима: Ст/ПД 2,537 2306,0 дима: Ст/ПД 1,812 3615,0 дима: Ст/ПД 5,073 3625,0 дима: Ст/ПД 3,624 3661,0 дима: Ст/ПД 0,062	37,1 3488,0 3K Xm 7 37,1 3498,0 QK Xm 2 37,1 4087,0 QK Xm 3 37,1 4097,0 QK Xm 4 37,1 3669,0 QK Xm 2 74,1 4 74,1	0,5 2301,0 Um 0,5 2311,0 Um 0,5 3620,0 Um 0,5 3630,0 Um 0,5 3666,0 Um 0,5	2,00 2,00 2,00 2,00

%	0	0 6	134	Сварочные работы	1	3	13,0	0,	,00	0		0	0	1,0	3674,0	3671,0	3679,0	3676,0	2,00
	•	Код в-ва		Наименование вещества			Выброс, (Выброс, (т/г))	F J	1ето:	Cm/ПДI	K Xm		Зима: Ст/П	ДК Xm	Um	
		0301		Азота диоксид (Азот (IV) оксы	1Д)		0,002600		0,0000000		1		0,006	74,		0,00		0,5	
%	0	0 6	135	Сварочные работы	1	3	13,0	0,	,00	0		0	0	1,0	2773,0	3016,0	2778,0	3021,0	2,00
		Код в-ва		Наименование вещества			Выброс, (Выброс, (т/г))		1ето:				Зима: Ст/П		Um	
		0123		диЖелезо триоксид (Железа окси,	д) (в пе) -	0,013800	00	0,0000000		1		0,016	74,	1 0,5	0,01	6 74,1	0,5	
-	I I	NI- NI-		ресчете на железо)	_	_	In 1	-	100	1			. 1.		10	1 14	1 10		
Учет при	№ пл.	№ № цеха	ист.	Наименование источника	Вар.	ІИП	Высота ист. (м)				Скорост ГВС (м/с			∢оэф. рел.	Коорд. X1-ос. (м)	Коорд.	Коорд. X2-ос. (м)	Коорд. Ү2-ос. (м)	Ширина источ.
расч.		цеха					ист. (м)	устья ((м) ГБС (куб.м/с)		BC (M/C	פין״	(C)	pen.	Х 1-OC. (M)	11-0C. (M)	A2-00. (M)	12-00. (M)	источ. (м)
pac 1.	<u> </u>	0143		Марганец и его соединения (в пере	CUETE	на	0.000800	00	0.0000000	<u>' </u>	1		0,036	74,	1 0,5	0.03	6 74,1	0,5	(IVI)
		0110		марганца (IV) оксид)	0 1010		0,00000	,,	0,0000000		•		0,000	, ,,	. 0,0	0,00	, ,,,	0,0	
		0301		Азота диоксид (Азот (IV) оксы	1Д)		0,000600	00	0,0000000		1		0,001	74,		0,00	1 74,1	0,5	
		0337		Углерод оксид	,		0,005300		0,0000000		1		0,000	74,		0,00		0,5	
		0342		Фториды газообразные			0,000300		0,0000000		1		0,007	74,		0,00		0,5	
		0344		Фториды плохо растворимь			0,001300		0,0000000		1		0,003	74,		0,00		0,5	
0/	1 0	2908	400	Пыль неорганическая: 70-20%	SIO2		0,000640		0,0000000	<u> </u>	11	<u> </u>	0,001	74,		0,00		0,5	0.00
%	0	0 6	136	Использование грунтовки ГФ-021	1	3	13,0	0,	,00	0		0	0	1,0	1520,0	1591,0	1525,0	1596,0	2,00
		Код в-ва	э	Наименование вещества			Выброс, (г/с)	Выброс, (т/г))	F J	1ето:	Cm/ПДІ	К Xm	ı Um	Зима: Ст/П	ДК Xm	Um	
		0616		Диметилбензол (Ксилол) (смесь и	зомерс	В	0,375100	00	0,0000000		1		0,850	74,	1 0,5	0,85	0 74,1	0,5	
				о-, м-, п-)															
		2902		Взвешенные частицы			0,137500		0,0000000		1		0,125	74,		0,12		0,5	
%	0	0 6		Использование мастики МБ-50	1	3	13,0	0,	,00	0		0	0	1,0	1274,0	1645,0	1279,0	1650,0	2,00
		Код в-ва		Наименование вещества			Выброс, (,	Выброс, (т/г))	F J	1ето:	Cm/ПДŀ			Зима: Ст/П		Um	
		0616		Диметилбензол (Ксилол) (смесь и	зомерс	В	0,301300	00	0,0000000		1		0,682	74,	1 0,5	0,68	2 74,1	0,5	
		0750		О-, М-, П-)			0.00000		0.000000				0.404	74.	4 0.5	0.40	. 7	٥.5	
		2752 2902		Уайт-спирит Взвешенные частицы			0,223600 0,092500		0,0000000 0,0000000		1		0,101 0,084	74, ⁻ 74, ⁻		0,10 0.08		0,5 0,5	
%	0		120	Использование ПФ -115	4					ol		0	0,084	1,0	1284,0				2,00
70	U	Код в-ва		Наименование вещества	- 1	- 3	ы тэ,о Выброс, (, 00 	,		<u>∪</u>]ето:	∪ _[Cm/ПДŀ			<u> Л 1635,0</u> Зима: Ст/П		Um	2,00
		0616		Паименование вещества Диметилбензол (Ксилол) (смесь и:	ROMEDO	ıR	0,187500		0,0000000)	1	ieio.	0,425	74,		олма. Спілі 0,42		0,5	
		0010		О-, М-, П-)	JOIVIOPO		0,107000	,,	0,0000000		•		0,420	, ,	. 0,0	0,42	0 77,1	0,0	
		2752		Уайт-спирит			0,187500	00	0,0000000		1		0,085	74,	1 0,5	80,0	5 74,1	0,5	
		2902		Взвешенные частицы			0,137500		0,0000000		1		0,125	74,	1 0,5	0,12	5 74,1	0,5	
%	0	0 6	139	Гидроизоляция	1	3	13,0	0,	,00	0		0	0	1,0	1301,0	3170,0	1306,0	3175,0	2,00
		Код в-ва	а	Наименование вещества			Выброс, (Выброс, (т/г))	F J	1ето:	Cm/ПДŀ			Зима: Ст/П		Um	
_		2754		Углеводороды предельные С12	2-C19		0,000014		0,0000000		11	_	0,000	74,		0,00		0,5	
%	0			Использование керосина	1	3	- , -		,	0		0	0	1,0	1311,0				2,00
		Код в-ва		Наименование вещества			Выброс, (Выброс, (т/г)			1ето:				Зима: Ст/П		Um	
Учет	№ пл.		ист.	Наименование источника	Вар.	Тип	Высота	Диаме	тр Объем		Скорост			(оэф.	Коорд.	Коорд.	Коорд.	Коорд.	Ширина
при расч.		цеха					ист. (м)	устья ((м) ГВС (куб.м/с)		ГВС (м/с	ווי	("0)	рел.	Х1-ос. (м)	Y1-ос. (м)	Х2-ос. (м)	Ү2-ос. (м)	источ. (м)
расч.	11	2732		 Керосин			0,555600	00	0,0000000	<u></u>	1		0,210	74,	1 0,5	0,21	<u>l </u>	0,5	(IVI)
%	0		141	Использование ксилола	1	3				ol		0	0,210	1,0	3451,0				2,00
		Код в-ва		Наименование вещества	- ',		, то,о Выброс, (,	Выброс, (т/г)	_		<u>о</u> 1ето:	-			<u>3</u> ј <u>2043,0</u> Зима: Ст/П		Um	۷,00
		0616		Диметилбензол (Ксилол) (смесь и	зомерс	В	0.555600		0.0000000	,	1 ,	.0.0.	1,258	74,		1,25		0,5	
				О-, М-, П-)			3,22230		.,		-		.,	,	,-	1,20	,,	-1=	
%	0	0 6	142	Использование уайт -	1	3	13,0	0,	,00	0		0	0	1,0	3461,0	2655,0	3466,0	2660,0	2,00
				-					•			•				-			

			спирита												
	•	Код в-ва	Наименование вещества		Выброс, (г/с)	Выброс, (т/г)	F	Лето:	Cm/ПДК	Xm	Um Зима	а: Ст/ПДК	Xm	Um	
		2752	Уайт-спирит		0,5556000	0,0000000	1		0,252	74,1	0,5	0,252	74,1	0,5	
%	0	0 6143	3 Шлифовальные работы	1	3 13,0	0,00		0	0	1,0	3471,0	2665,0	3476,0	2670,0	2,00
		Код в-ва	Наименование вещества		Выброс, (г/с)	Выброс, (т/г)	F	Лето:	Cm/ПДК	Xm	Um Зима	а: Ст/ПДК	Xm	Um	
		2902	Взвешенные частицы		0,0076000	0,0000000	1		0,007	74,1	0,5	0,007	74,1	0,5	
		2930	Пыль абразивная (Корунд белый, І	Ионоко-	0,0050000	0,0000000	1		0,057	74,1	0,5	0,057	74,1	0,5	
			рунд)												
%	0		7 Выгрузка щебня фр. 40-80 мм	1	3 13,0	0,00		0	0	1,0	2100,0	3378,0	2105,0	3383,0	2,00
		Код в-ва	Наименование вещества		Выброс, (г/с)	Выброс, (т/г)	F	Лето:	Cm/ПДК	Χm	Um Зима	а: Ст/ПДК	Xm	Um	
		2908	Пыль неорганическая: 70-20%	SiO2	1,1200000	0,0000000	3		5,073	37,1	0,5	5,073	37,1	0,5	
%	0	0 6148	В Разработка щебня	1	3 13,0	0,00		0	0	1,0	1205,0	2693,0	1210,0	2698,0	2,00
			(перемещение)												
		Код в-ва	Наименование вещества		Выброс, (г/с)	Выброс, (т/г)	F	Лето:	Cm/ПДК	Xm	Um Зима	а: Ст/ПДК	Xm	Um	
		2908	Пыль неорганическая: 70-20%	SiO2	0,8000000	0,0000000	3		3,624	37,1	0,5	3,624	37,1	0,5	
+	0	0 6150	ОАвтотранспорт	1	3 13,0	0,00		0	0	1,0	3474,0	4029,0	3479,0	4034,0	2,00
		Код в-ва	Наименование вещества		Выброс, (г/с)	Выброс, (т/г)	F	Лето:	Cm/ПДК	Χm	Um Зима	а: Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) окси	д)	0,2175000	0,0000000	1		0,493	74,1	0,5	0,493	74,1	0,5	
		0328	Углерод (Сажа)		0,3371000	0,0000000	1		1,018	74,1	0,5	1,018	74,1	0,5	
		0330	Сера диоксид (Сернистый ангид	црид)	0,4349000	0,0000000	1		0,394	74,1	0,5	0,394	74,1	0,5	
		0337	Углерод оксид		2,1745000	0,0000000	1		0,197	74,1	0,5	0,197	74,1	0,5	
		0703	Бенз/а/пирен (3,4-Бензпирен	,	0,0000070	0,0000000	1		0,317	74,1	0,5	0,317	74,1	0,5	
		2754	Углеводороды предельные С12	-C19	0,6524000	0,0000000	1		0,296	74,1	0,5	0,296	74,1	0,5	

Выбросы источников по веществам

Учет:

"%" - источник учитывается с исключением из фона;

"+" - источник учитывается без исключения из фона;

"-" - источник не учитывается и его вклад исключается из фона.

При отсутствии отметок источник не учитывается.

Источники, помеченные к учету знаком «-» или непомеченные (« »), в общей сумме не учитываются

Типы источников:

1 - точечный;

2 - линейный;

3 - неорганизованный;

4 - совокупность точечных, объединенных для расчета в один площадной;

5 - неорганизованный с нестационарной по времени мощностью выброса;

6 - точечный, с зонтом или горизонтальным направлением выброса;

7 - совокупность точечных с зонтами или горизонтальным направлением выброса;

8 - автомагистраль.

Вещество: 0123 диЖелезо триоксид (Железа оксид) (в пересчете на железо)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	6133	3	%	0,0547000	1	0,0619	74,10	0,5000	0,0619	74,10	0,5000
0	0	6135	3	%	0,0138000	1	0,0156	74,10	0,5000	0,0156	74,10	0,5000

Итого:	0.0685000	0,0776	0.0776	
12.1.0.0.	-,	, ,,,,,,	7,01.0	

Вещество: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6133	3	%	0,0008000	1	0,0362	74,10	0,5000	0,0362	74,10	0,5000
0	0	6135	3	%	0,0008000	1	0,0362	74,10	0,5000	0,0362	74,10	0,5000
Итог	0:				0,0016000		0,0725			0,0725		

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	0	149	1	%	0,0091000	1	0,0513	47,42	0,6336	0,0450	52,09	0,7061
0	0	6133	3	%	0,0148000	1	0,0335	74,10	0,5000	0,0335	74,10	0,5000
0	0	6134	3	%	0,0026000	1	0,0059	74,10	0,5000	0,0059	74,10	0,5000
0	0	6135	3	%	0,0006000	1	0,0014	74,10	0,5000	0,0014	74,10	0,5000
0	0	6150	3	+	0,2175000	1	0,4926	74,10	0,5000	0,4926	74,10	0,5000
Итог	o:				0,2446000		0,5847			0,5784		

Вещество: 0304 Азот (II) оксид (Азота оксид)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	149	1	%	0,0015000	1	0,0042	47,42	0,6336	0,0037	52,09	0,7061
Итог	o:				0,0015000		0,0042			0,0037		

Вещество: 0328 Углерод (Сажа)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	149	1	%	0,0008000	1	0,0060	47,42	0,6336	0,0053	52,09	0,7061
0	0	6150	3	+	0,3371000	1	1,0180	74,10	0,5000	1,0180	74,10	0,5000
Итог	0:	<u> </u>	<u> </u>		0,3379000		1,0240		·	1,0233		•

Вещество: 0330 Сера диоксид (Сернистый ангидрид)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	149	1	%	0,0012000	1	0,0027	47,42	0,6336	0,0024	52,09	0,7061
0	0	6150	3	+	0,4349000	1	0,3940	74,10	0,5000	0,3940	74,10	0,5000
Итог	0:				0,4361000		0,3967			0,3964		

Вещество: 0337 Углерод оксид

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	149	1	%	0,0080000	1	0,0018	47,42	0,6336	0,0016	52,09	0,7061
0	0	6133	3	%	0,0181000	1	0,0016	74,10	0,5000	0,0016	74,10	0,5000
0	0	6135	3	%	0,0053000	1	0,0005	74,10	0,5000	0,0005	74,10	0,5000
0	0	6150	3	+	2,1745000	1	0,1970	74,10	0,5000	0,1970	74,10	0,5000
Итог	0:				2,2059000		0,2009			0,2007		

Вещество: 0342 Фториды газообразные

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Χm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6135	3	%	0,0003000	1	0,0068	74,10	0,5000	0,0068	74,10	0,5000
Ито	·o:				0,0003000		0,0068			0,0068		

Вещество: 0344 Фториды плохо растворимые

N	ō	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
								Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
С)	0	6135	3	%	0,0013000	1	0,0029	74,10	0,5000	0,0029	74,10	0,5000
Ит	0 0 6135 3 % r oro :				0,0013000		0,0029			0,0029			

Вещество: 0616 Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)

Итого)):	0141	<u> </u>	70	1.4195000	- 1	3,2150	74,10	0,5000	3.2150	74,10	0,5000
Λ	0	6141	2	%	0.5556000	1	1.2584	74.10	0.5000	1,2584	74.10	0.5000
0	0	6138	3	%	0,1875000	1	0,4247	74,10	0,5000	0,4247	74,10	0,5000
0	0	6137	3	%	0,3013000	1	0,6824	74,10	0,5000	0,6824	74,10	0,5000
0	0	6136	3	%	0,3751000	1	0,8495	74,10	0,5000	0,8495	74,10	0,5000

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	149	1	%	1,000000e-8	1	0,0011	47,42	0,6336	0,0010	52,09	0,7061
0	0	6150	3	+	0,0000070	1	0,3171	74,10	0,5000	0,3171	74,10	0,5000
Итог							0,3182			0,3181		

Вещество: 1325 Формальдегид

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	149	1	%	0,0002000	1	0,0045	47,42	0,6336	0,0040	52,09	0,7061
Итог					0,0002000		0,0045			0,0040		

Вещество: 2732 Керосин

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6140	3	%	0,5556000	1	0,2097	74,10	0,5000	0,2097	74,10	0,5000
Итог	0 0 6140 3 %				0,5556000		0,2097			0,2097		

Вещество: 2752 Уайт-спирит

Nº	Nº	Nº	Тип	Учет	Выброс	Ŧ		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6137	3	%	0,2236000	1	0,1013	74,10	0,5000	0,1013	74,10	0,5000
0	0	6138	3	%	0,1875000	1	0,0849	74,10	0,5000	0,0849	74,10	0,5000
0	0	6142	3	%	0,5556000	1	0,2517	74,10	0,5000	0,2517	74,10	0,5000
Итог	o:				0,9667000		0,4379			0,4379	•	

Вещество: 2754 Углеводороды предельные С12-С19

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	149	1	%	0,0040000	1	0,0045	47,42	0,6336	0,0040	52,09	0,7061
0	0	6139	3	%	0,0000140	1	0,0000	74,10	0,5000	0,0000	74,10	0,5000
0	0	6150	3	+	0,6524000	1	0,2955	74,10	0,5000	0,2955	74,10	0,5000
Итог	,						0,3000			0,2995		

Вещество: 2902 Взвешенные частицы

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	6136	3	%	0,1375000	1	0,1246	74,10	0,5000	0,1246	74,10	0,5000
0	0	6137	3	%	0,0925000	1	0,0838	74,10	0,5000	0,0838	74,10	0,5000
0	0	6138	3	%	0,1375000	1	0,1246	74,10	0,5000	0,1246	74,10	0,5000
0	0	6143	3	%	0,0076000	1	0,0069	74,10	0,5000	0,0069	74,10	0,5000
Итог					0,3751000		0,3398			0,3398		

Вещество: 2908 Пыль неорганическая: 70-20% SiO2

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
						ŀ	Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	6007	3	%	1,6800000	3	7,6099	37,05	0,5000	7,6099	37,05	0,5000
0	0	6008	3	%	1,2000000	3	5,4357	37,05	0,5000	5,4357	37,05	0,5000
0	0	6013	3	+	11,1760200	3	50,6242	37,05	0,5000	50,6242	37,05	0,5000
0	0	6017	3	%	1,6800000	3	7,6099	37,05	0,5000	7,6099	37,05	0,5000
0	0	6018	3	%	1,2000000	3	5,4357	37,05	0,5000	5,4357	37,05	0,5000
0	0	6019	3	%	1,6667000	3	7,5497	37,05	0,5000	7,5497	37,05	0,5000
0	0	6020	3	%	2,3333000	3	10,5692	37,05	0,5000	10,5692	37,05	0,5000
0	0	6021	3	%	0,0318000	3	0,1440	37,05	0,5000	0,1440	37,05	0,5000
0	0	6022	3	%	2,3333000	3	10,5692	37,05	0,5000	10,5692	37,05	0,5000
0	0	6023	3	%	1,6667000	3	7,5497	37,05	0,5000	7,5497	37,05	0,5000
0	0	6026	თ	%	0,5600000	3	2,5366	37,05	0,5000	2,5366	37,05	0,5000
0	0	6027	3	%	0,4000000	3	1,8119	37,05	0,5000	1,8119	37,05	0,5000
0	0	6030	3	%	0,5600000	3	2,5366	37,05	0,5000	2,5366	37,05	0,5000
0	0	6031	3	%	0,4000000	3	1,8119	37,05	0,5000	1,8119	37,05	0,5000
0	0	6032	3	%	1,6667000	3	7,5497	37,05	0,5000	7,5497	37,05	0,5000

<u>0</u> Итог о	0 o:	6148	3	%	0,8000000 49,6904600	3	3,6238 225,0819	37,05	0,5000	3,6238 225,0819	37,05	0,5000
0	0	6147	3	%	1,1200000	3	5,0733	37,05	0,5000	5,0733	37,05	0,5000
0	0	6135	3	%	0,0006400	1	0,0010	74,10	0,5000	0,0010	74,10	0,5000
0	0	6057	3	%	0,8000000	3	3,6238	37,05	0,5000	3,6238	37,05	0,5000
0	0	6056	3	%	1,1200000	3	5,0733	37,05	0,5000	5,0733	37,05	0,5000
0	0	6053	3	%	0,4000000	3	1,8119	37,05	0,5000	1,8119	37,05	0,5000
0	0	6052	3	%	0,5600000	3	2,5366	37,05	0,5000	2,5366	37,05	0,5000
0	0	6049	3	%	1,6667000	3	7,5497	37,05	0,5000	7,5497	37,05	0,5000
0	0	6048	3	%	2,3333000	3	10,5692	37,05	0,5000	10,5692	37,05	0,5000
0	0	6047	3	%	0,0502000	3	0,2274	37,05	0,5000	0,2274	37,05	0,5000
0	0	6046	3	%	2,3333000	3	10,5692	37,05	0,5000	10,5692	37,05	0,5000
0	0	6045	3	%	1,6667000	3	7,5497	37,05	0,5000	7,5497	37,05	0,5000
0	0	6044	3	%	0,4000000	3	1,8119	37,05	0,5000	1,8119	37,05	0,5000
0	0	6043	3	%	0,5600000	3	2,5366	37,05	0,5000	2,5366	37,05	0,5000
0	0	6040	3	%	0,4000000	3	1,8119	37,05	0,5000	1,8119	37,05	0,5000
0	0	6039	3	%	0,5600000	3	2,5366	37,05	0,5000	2,5366	37,05	0,5000
0	0	6036	3	%	1,6667000	3	7,5497	37,05	0,5000	7,5497	37,05	0,5000
0	0	6035	3	%	2,3333000	3	10,5692	37,05	0,5000	10,5692	37,05	0,5000
0	0	6034	3	%	0,0318000	3	0,1440	37,05	0,5000	0,1440	37,05	0,5000
0	0	6033	3	%	2,3333000	3	10,5692	37,05	0,5000	10,5692	37,05	0,5000

Вещество: 2930 Пыль абразивная (Корунд белый, Монокорунд)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	6143	3	%	0,0050000	1	0,0566	74,10	0,5000	0,0566	74,10	0,5000
Итог				0,0050000		0,0566			0,0566			

Выбросы источников по группам суммации

Учет:

"%" - источник учитывается с исключением из фона;

"+" - источник учитывается без исключения из фона;

"-" - источник не учитывается и его вклад исключается из фона. 3 - неорганизованный;

При отсутствии отметок источник не учитывается.

»), в общей сумме не учитываются

Типы источников:

- 1 точечный:
- 2 линейный;

- 4 совокупность точечных, объединенных для расчета в один
- Источники, помеченные к учету знаком «-» или непомеченные (« 5 неорганизованный с нестационарной по времени мощностью
 - 6 точечный, с зонтом или горизонтальным направлением выброса;

7 - совокупность точечных с зонтами или горизонтальным направлением выброса;

8 - автомагистраль.

Группа суммации: 6009

Nº	Nº	Nº	Тип	Учет	Код	Выброс	F	Лето			Зима			
							•	Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/c)	
0	0	149	1	%	0301	0,0091000	1	0,0513	47,42	0,6336	0,0450	52,09	0,7061	
0	0	149	1	%	0330	0,0012000	1	0,0027	47,42	0,6336	0,0024	52,09	0,7061	
0	0	6133	3	%	0301	0,0148000	1	0,0335	74,10	0,5000	0,0335	74,10	0,5000	
0	0	6134	3	%	0301	0,0026000	1	0,0059	74,10	0,5000	0,0059	74,10	0,5000	
0	0	6135	3	%	0301	0,0006000	1	0,0014	74,10	0,5000	0,0014	74,10	0,5000	
0	0	6150	3	+	0301	0,2175000	1	0,4926	74,10	0,5000	0,4926	74,10	0,5000	
0	0	6150	3	+	0330	0,4349000	1	0,3940	74,10	0,5000	0,3940	74,10	0,5000	
Итого):					0,6807000		0,9814	·		0,9748			

Группа суммации: 6039

Nº	Nº	Nº	Тип	Учет	Код	Выброс	F	Лето			Зима			
								Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/c)	
0	0	149	1	%	0330	0,0012000	1	0,0027	47,42	0,6336	0,0024	52,09	0,7061	
0	0	6135	3	%	0342	0,0003000	1	0,0068	74,10	0,5000	0,0068	74,10	0,5000	
0	0	6150	3	+	0330	0,4349000	1	0,3940	74,10	0,5000	0,3940	74,10	0,5000	
Итого	:					0,4364000		0,4035			0,4032			

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Наименование вещества Предельно Допустимая Концентрация				Фоновая	
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
	диЖелезо триоксид (Железа оксид) (в пересчете на желе- зо)	ПДК с/с * 10	0,0400000	0,4000000	1	Нет	Нет
0143	Марганец и его соединения (в пересчете на марганца (IV) ок- сид)	ПДК м/р	0,0100000	0,0100000	1	Нет	Нет
	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0,2000000	0,2000000	1	Нет	Нет
0304	Азот (II) оксид (Азота оксид)	ПДК м/р	0,4000000	0,4000000	1	Нет	Нет
0328	Углерод (Сажа)	ПДК м/р	0,1500000	0,1500000	1	Нет	Нет

	Сера диоксид (Сернистый ангидрид)	ПДК м/р	0,5000000	0,5000000	1	Нет	Нет
0337	Углерод оксид	ПДК м/р	5,0000000	5,0000000	1	Нет	Нет
0342	Фториды газообразные	ПДК м/р	0,0200000	0,0200000	1	Нет	Нет
0344	Фториды плохо растворимые	ПДК м/р	0,2000000	0,2000000	1	Нет	Нет
0616	Диметилбензол (Ксилол) (с-	ПДК м/р	0,2000000	0,2000000	1	Нет	Нет
	месь изомеров о-, м-, п-)						
0703	Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с * 10	0,0000010	0,0000100	1	Нет	Нет
1325	Формальдегид	ПДК м/р	0,0500000	0,0500000	1	Нет	Нет
2732	Керосин	ОБУВ	1,2000000	1,2000000	1	Нет	Нет
2752	Уайт-спирит	ОБУВ	1,0000000	1,0000000	1	Нет	Нет
2754	Углеводороды предельные С12-С19	ПДК м/р	1,0000000	1,0000000	1	Нет	Нет
2902	Взвешенные частицы	ПДК м/р	0,5000000	0,5000000	1	Нет	Нет
	Пыль неорганическая: 70-20% SiO2	ПДК м/р	0,3000000	0,3000000	1	Нет	Нет
	Пыль абразивная (Корунд белый, Монокорунд)	ОБУВ	0,0400000	0,0400000	1	Нет	Нет
6009	Азота диоксид, серы диоксид	Группа	-	-	1	Нет	Нет
	Серы диоксид и фтористый водород	Группа	-	-	1	Нет	Нет

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Перебор метеопараметров при расчете Набор-автомат

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области

Расчетные площадки

Nº	Тип	Полное описание площадки	Ширина,	Шаг,	Высота,	Комментарий

		Коорд серед		• • •	Координаты середины					
		X	Υ	X	Υ		X	Υ		
1	Заданная	0	2625	5500	2625	5250	250	250	13	

Вещества, расчет для которых не целесообразен Критерий целесообразности расчета E3=0,01

Код	Наименование	Сумма Ст/ПДК
0304	Азот (II) оксид (Азота оксид)	0,0042314
0342	Фториды газообразные	0,0067946
0344	Фториды плохо растворимые	0,0029443
1325	Формальдегид	0,0045135

Максимальные концентрации и вклады по веществам (расчетные площадки)

Вещество: 0123 диЖелезо триоксид (Железа оксид) (в пересчете на железо)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концент	р. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
		ПДК))				исключения
3750	3750		0,05	224	0,50	0,000	0,000
	Площадка	а Цех	Исто	чни Вкла	двд. ПДК	Вклад %	
			К				
	0	0	613	33	0,05	99,14	

Вещество: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид)

Площадка: 1

Коорд Х(м) Коорд Ү(м) К	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
-------------------------	---------------	------------	------------	--------------	--------

		ПДН	()				исключения
3750	3750		0,03	224	0,50	0,000	0,000
	Площадка	Цех	Источни к	Вкла	двд. ПДК	Вклад %	
	0	0	6133		0,03	96,67	

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концентр. ПДК)	. (д. Напр.	ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
3500	4000	(0,36	323	0,50	0,000	0,000
	Площадка	а Цех І	Источни	Вкла	д в д. ПДК	Вклад %	
	0	0 Веше	6150 ество: 0328	Углер	0,36 од (Сажа)	100,00	

Площадка: 1

Поле максимальных концентраций

	Коорд Х(м)	Коорд Ү(м)	Концент	гр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК	()				исключения
Ī	3500	4000		0,73	323	0,50	0,000	0,000
		Площадка	а Цех	Исто	чни Вкла	двд. ПДК	Вклад %	
				К	•			
		0	0	61	50	0,73	100,00	

Вещество: 0330 Сера диоксид (Сернистый ангидрид)

Площадка: 1

Коорд Х(м)	Коорд Ү(м)	Концентр. (д. ПДК)	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
3500	4000	0,28	323	0,50	0,000	0,000
	Ппошалка	a Hex Исто	чни Вкпа	лвл ПЛК	Вклал %	

Вещество: 0337 Углерод оксид

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концент ПДН		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
3500	4000		0,14	323	0,50	0,000	0,000
	Площадка	а Цех	Исто	очни Вкла	двд. ПДК	Вклад %	_
			K	(
	0	0	61	50	0,14	100,00	

Вещество: 0616 Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концент		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
		ПДК))				исключения
3500	2750		1,10	204	0,50	0,000	0,000
	Площадка	а Цех	Исто	чни Вкла	двд. ПДК	Вклад %	
			К				
	0	0	614	41	1,09	99,85	

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Площадка: 1

Коорд Х(м)	Коорд Ү(м)	Концент		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
		ПДН	')				исключения
3500	4000		0,23	323	0,50	0,000	0,000
	Площадка	а Цех	Исто	чни Вкла	двд. ПДК	Вклад %	
			К				
	0	0	615	50	0,23	100,00	

Вещество: 2732 Керосин

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
		ПДК)				исключения
1250	3250	0,20	137	0,50	0,000	0,000
	Площадка			двд. ПДК	Вклад %	
	0		к 40	0,20	100,00	
		Вещес ⁻	гво: <mark>2752 У</mark> айт	г-спирит		

Площадка: 1

Поле максимальных концентраций

Кос	орд Х(м)	Коорд Ү(м)	Концен		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДІ	K)				исключения
	3500	2750		0,23	202	0,50	0,000	0,000
		Площадка	а Цех	Исто	очни Вкла	двд. ПДК	Вклад %	
				К	(
		0	0	61	42	0,23	99,97	

Вещество: 2754 Углеводороды предельные С12-С19

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концент	гр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
		ПДК	()				исключения
3500	4000		0,21	323	0,50	0,000	0,000
	Площадка	а Цех	Исто	чни Вкла	двд. ПДК	Вклад %	
			К				
	0	0	615	50	0,21	100,00	

Вещество: 2902 Взвешенные частицы

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен	гр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
		ПДІ	()				исключения
1250	1750		0,19	161	0,50	0,000	0,000
	Площадка	а Цех	Исто	очни Вкла	двд. ПДК	Вклад %	
			K	(
	0	0	61	38	0,11	60,41	

Вещество: 2908 Пыль неорганическая: 70-20% SiO2

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концент	гр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
		пдк	()				исключения
2500	3000		28,59	243	0,50	0,000	0,000
	Площадка	а Цех	Исто	очни Вкла	двд. ПДК	Вклад %	_
			K	(
	0	0	60	13	28,51	99,72	

Вещество: 2930 Пыль абразивная (Корунд белый, Монокорунд)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен		Напр.ветра	Скор.ветра	Фон (д. ПДК)	
		ПДІ	()				исключения
3500	2750		0,05	198	0,50	0,000	0,000
	Площадка	а Цех	Исто	очни Вкла	двд. ПДК	Вклад %	
			K	(
	0	0	61	43	0,05	100,00	

Вещество: 6009 Азота диоксид, серы диоксид

Площадка: 1

Коорд Х(м)	Коорд Ү(м)	Концент ПДК		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
3500	4000		0.64	323	0.50	0.000	0,000
	Площадка	а Цех	Исто	чни Вкла	двд. ПДК	Вклад %	,
			К				
	0	0	61	50	0,64	100,00	

0 0 6150 0,64 100, Вещество: **6039** Серы диоксид и фтористый водород

Площадка: 1

Коорд Х(м)	Коорд Ү(м)	Концен	гр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
		ПДН	()				исключения
3500	4000		0,28	323	0,50	0,000	0,000
	Площадка	а Цех	Исто	чни Вкла	двд. ПДК	Вклад %	
			К				
	0	0	615	50	0,28	100,00	

Приложение 9. Календарный график проведения рекультивационных работ

															2	023	год													
Вид работ		апр	елі	,		,	чай			и	юнь			ин	оль		a	вгу	ст	Ι,	ен	гябј	ь	o	ктя	брь			ібрь сабр	
	I	II	Ш	IV	I	I	I III	ΙIV	I	II	Ш	IV	I	II	Ш	IV	I	II I	ш	V I	П	Ш	IV	I	п	Ш	IV	I I	ш	IV
Устройство насыпи под сосредоточенные выпуски CB-5, CB-5a (1 этап)																														
Удлинение сосредоточенных выпусков СВ-5, СВ-5A (этап 1)																														
Удлинение дренажного водовода DN200 (этап 1)																														
Рекультивация откосов восточной ограждающей дамбы на участке 1p																										#	#			
Рекультивация откосов северной ограждающей дамбы на участке 1o																														
Рекультивация откосов северной ограждающей дамбы на участке 2o																														
Рекультивация откосов западной ограждающей дамбы на участке 3o																														

														20)24	год						_	_	_	_	_	_	_	_	
Вид работ		апр				май		Ļ	ию				ию				вгу				нтя					брь			оябр	
Наращивание насыпи под сосредоточенные выпуски CB-5, CB-5a (этап 2)	1	II	111	IV	1 1	1 11	IIV	ı	11	111	IV	1	11	111	IV	1	II I	11 1	IV I	1	11 1	11	IV	I	11	ш	IV	II	1 11	IIV
Перенос сосредоточенных выпусков СВ-5, СВ-5а (этап 2)																														
Перенос дренажного водовода DN200 (этап 2)																														
Формирование дрены вдоль низового откоса на участке пригруза																														
Формирование дрены вдоль низового откоса																														
Формирование пригруза																	ŧ	ŧ	ŧ	ŧ			=	Ħ		=				
Рекультивация гребня восточной ограждающей дамбы на участке 1p																														
Рекультивация гребня северной ограждающей дамбы на участке 10																														
Рекультивация гребня северной ограждающей дамбы на участке 2o																														
Рекультивация гребня западной ограждающей дамбы на участке 3o																														
Ремонт поверхности хвостохранилища и ограждающих дамб																														

Вид работ	91	прел	Th.	_	_	май	_	_	и	юні	_	1	ш	оль	025	авг	ver	ce	нтя	เก็กเ	. 1	-	ктя	ıñnı	. 1	_	юяб	n K
Бид раобі		11 II		V I				/ 1				T																
Рекультивация дренажного канала																												
Восстановление системы КИА																							Π					
Ремонт поверхности хвостохранилища и ограждающих дамб					F																							

														202€	5-20	41 ı	ΌД												\neg
Вид работ		апр	Эел	ь		М	ай	Т)	1ЮН	Ь		ИН	оль			авгу					брь			ябрь			рабр	ь
· ·	Τ	II	Ш	IV	Ι	П	шг	V .	П	пп	111	1	II	Ш	IV	Ι	П	Ш	V :	П	ПП	ПІХ	П	П	Ш	IV	П	ПП	HV
Ремонт поверхности хвостохранилища и								\perp	\perp		\perp			\blacksquare						\perp					ı				
ограждающих дамб						F		Ŧ	Ŧ	Ŧ	T	T	F	Ħ	7	=	7	7	Ŧ	Ŧ	Ŧ	Ħ	П	Т	Ħ	7	Ŧ	Ħ	Ħ

Вид работ		апр					ай			ин	онь		Ė		2 го оль	д		аві				ент					ябрі	
	I	II	Ш	ΙV	I	II	Ш	IV	I	II	Ш	IV	I	II	Ш	IV	Ι	II	III	IV	I	II	Ш	IV	I	II	Ш	IV
Демонтаж сосредоточенных сбросов CB-5 и CB-5A																												
Рекультивация пляжей хвостохранилища (участок																												
№ 4)																												
													_	204	3 го	л												7
Вид работ	-	апр	ел	ь		М	ай			ин	онь		r		оль	щ		аві	ve	г		ент	ябі	ь		жт	ябрі	
F	I			IV	I	_	_	IV	I	_	_	IV	I			IV				IV		II					Ш	
Рекультивация пляжей хвостохранилища (участок																												
№ 4)		ı	Ħ						Ħ		Ħ	ı											Ħ	Ħ				
																-						-						_
													- 3		4 го	д												
Вид работ	Ļ	апр			Ļ		ай		Ļ		онь		Ţ		оль			аві				ент					ябры	
D v	1	111	Ш	IV	I	11	Ш	IV	1	11	Ш	IV	I	11	Ш	IV	I	11	Ш	IV	I	11	Ш	IV	1	П	III	IV
Рекультивация пляжей хвостохранилища (участок																												
№ 4)																												
Демонтаж и тампонирование конструкций ВК-2																												
Демонтаж и тампонирование конструкций ВК-3																												
Демонтаж Вл-0,4 кВ																												

												- 2	2045	5-20	16 гг												
Вид работ	•	фев	рал	њ		МЯ	рт		-	пр	ель			май	i		ин	нь			ин	ль			авг	уст	
	I	II	Ш	IV	I	II	Ш	IV	I	II	Ш	IV	I	II I	ΙΙΙV	I	II	Ш	IV	I	II	Ш	IV	I	II	Ш	IV
Внесение удобрений																											
Посев многолетних трав																											

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ «ҚАЗГИДРОМЕТ» ШАРУАШЫЛЫҚ ЖҮРГІЗУ ҚҰҚЫҒЫНДАҒЫ РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК КӘСШОРНЫ

МИНИСТЕРСТВО ЭКОЛОГИИ
И ПРИРОДНЫХ РЕСУРСОВ
РЕСПУБЛИКИ КАЗАХСТАН
РЕСПУБЛИКАНСКОЕ
ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ
НА ПРАВЕ ХОЗЯЙСТВЕННОГО
ВЕДЕНИЯ «КАЗГИДРОМЕТ»

010000, Астана қаласы, Мәңгілік Ел даңғылы, 11/1 тел: 8(7172) 79-83-93, 79-83-84 факс: 8(7172) 79-83-44, info@meteo.kz

03-3-04/8 B4F2847BCE9E4CA9 15.03.2023 010000, г. Астана, проспект Мангилик Ел, 11/1 тел: 8(7172) 79-83-93, 79-83-84 факс: 8(7172) 79-83-44, info@meteo.kz

ТОО «Корпорация Казахмыс»

РГП «Казгидромет» рассмотрев Ваши письма от 06.03.2023г. № 01/1029, предоставляет метеорологическую информацию по метеорологическим станциям МС Кульжамбай, Бесоба, Толе би, Саяк, Балхаш, Баршатас, Шемонаиха, Жезказган, Караганда СХОС.

Информация прилагается на 9листах.

Заместитель генерального директора

С. Саиров

Издатель ЭЦП - ҰЛТТЫҚ КУӘЛАНДЫРУШЫ ОРТАЛЫҚ (GOST), САИРОВ СЕРИК, РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ НА ПРАВЕ ХОЗЯЙСТВЕННОГО ВЕДЕНИЯ "КАЗГИДРОМЕТ" МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН, BIN990540002276

Исп. Н. Камиибаева, А. Шаяхметова Тел. 8(7172)798366

https://seddoc.kazhydromet.kz/C90sdG

Электрондық құжатты тексеру үшін: https://sed.kazhydromet.kz/verify мекен-жайына өтіп, қажетті жолдарды толтырыңыз. Электрондық құжаттың көшірмесін тексеру үшін қысқа сілтемеге өтіңіз немесе QR код арқылы оқыңыз. Бұл құжат, «Электрондық құжат және электрондық цифрлық қолтаңба туралы» Қазақстан Республикасының 2003 жылғы 7 қаңтарда шыққан Заңының 7-бабының 1-тармағына сәйкес, қағаз құжатпен тең дәрежелі болып табылады. / Для проверки электронного документа перейдите по адресу: https://sed.kazhydromet.kz/verify и заполните необходимые поля. Для проверки копии электронного документа перейдите по короткой ссылке или считайте QR код. Данный документ согласно пункту 1 статьи 7 3PK от 7 января 2003 года «Об электронном документе и электронной цифровой подписи» равнозначен документу на бумажном носителе.

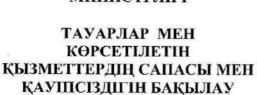

Климатические данные по МС Жезказган

Наименование	МС Жезказган
Средняя максимальная температура воздуха самого жаркого месяца (июль) за год	+31,6°C
Средняя минимальная температура воздуха самого холодного месяца (январь) за год	-18,0°C
Скорость ветра, повторяемость превышения которой за год составляет 5%	9 м/с
Средняя скорость ветра за год	3,4 м/с
Среднее количество осадков за год	184 мм
Среднее количество дней с жидкими осадками за год	62 дня
Среднее количество дней с твердыми осадками за год	48 дней
Количество дней с устойчивым снежным покровом	114 дней

Повторяемость направления ветра и штилей (%) и роза ветров

Направление	C	CB	В	ЮВ	Ю	Ю3	3	C3	Штиль
Год	13	18	20	8	8	12	10	11	16

Роза ветров



Исп.: А.Шаяхметова Тел. 8(7172)798302 вн.1152

№ исх: 21-6/13320 от: 27.11.2019

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ДЕНСАУЛЫҚ САҚТАУ МИНИСТРЛІГІ

КОМИТЕТІ

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ КАЗАХСТАН

КОМИТЕТ КОНТРОЛЯ КАЧЕСТВА И БЕЗОПАСНОСТИ ТОВАРОВ И УСЛУГ

010000, Нұр-Сұлтан қаласы, Есіл ауданы,
Мәңгілік Ел даңғылы, 8
Министрліктер үйі, 10-кіреберіс
тел: +7(7172) 74-27-03, +7(7172) 74-27-04

010000, город Нур-Султан, район Есиль, проспект Моңгілік Ел 8 Дом министерств, 10 польезд тел: +7(7172) 74-27-03, +7(7172) 74-27-04

No

ТОО «Научноисследовательский центр «Биосфера Казахстан» 100012, город Караганды, ул. Мустафина, 7/2

На № 1-1004 от 8 ноября 2019 года

Комитет контроля качества и безопасности товаров и услуг Министерства здравоохранения Республики Казахстан (далее - Комитет) рассмотрев вышеуказанное письмо, сообщает следующее.

Действующими документами государственного санитарноэпидемиологического нормирования установление санитарно-защитной зоны для поисковых, геологоразведочных и оценочных работ, а также временных ремонтных, строительных работ и рекультивации нарушенных земель не регламентировано.

Вместе с тем, Комитетом разработан проект приказа Министра здравоохранения Республики Казахстан «Об утверждении Санитарных правил «Санитарно-эпидемиологические требования по установлению санитарно-защитной зоны производственных объектов», в котором ваши предложения учтены.

Данным проектом приказа можете ознакомиться на интернет-ресурсе Министерства здравоохранения Республики Казахстан www.mz.gov.kz.

Заместитель Председателя Комитета

Н. Садвакасов

26.11.2019

Приложение 5.

		Иотонни	к выделені	a pormani	MIOHHIV DO	aarn																									Выбро	с загрязня	нощего в	вещества					
		источни			источник		ч	исло ча	сов раб	оты, в	год					Параметры газовоздушно смеси на выход источника выбр	е из	на карт	е Наимено вание	,		Степочист			202	23 год	2024	год	202	5 год	2026 - 2	20241 гг.	204:	2 год	2043	3 год	204-	4 год	
Произе	одство, цех	Наименова ние	д ПП (2023г.) ПП (2024г.)	ПП (2025г.)	ПП (2042г.)	ПП (2044г.)	ПП (2023г.)	IIII (2024r.)	ПП (2026 - 2041г.)	ПП (2042г.)	IIII (2043r.) IIII (2044r.)	Наимень вание источни а выброса вредных веществ	Номер к источн ика а выбро х са	источн	етр устья трубы	объе жоро 1 сть, и/сек у, м3/с	точечног о источ. /1-го конца лин. /центра площадн ого источник а	2-го конца лин./длі на, ширина площаді ого источни а	газоочис тных установо к и меропри ятий по сокраще нию выбросоп	котором у произво дится	Коэф. обеспечен ности газооочит ски		Фак	Код Наименов в- ание ва Dещества	г/сек	т/год	г/сек	т/год	г/сек	т/год	г/сек	т/год	г/сек	т/год	г/сек	т/год	г/сек	т/год	Год дост и- жен ия ПДВ
																	X1 X2	Y1 Y2	:																				1
1	2	3		4		_	5					7	9	10	11		4 15	16		18			20				23	24	25	26			27	28	29	30	31	32	43
																	орация Казахм ция хвосохрани																						
о насыпи под сосредото енные выпуски	сосредоточе	скального грунта фр. 0-300 мм (среднее 150 мм) с			-	-	769		-	-	-	Экскава ор	т 6001		неорга	низованный		-	-	-		-		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,560000 0000	0 1,550200 0000													2023
СВ-5, СВ 5а (1 этап)	погрузкой Транспорт ировка скального грунта с карьера Анненский	2 -		-		769		-	-		Автотра спорт	н 6002		неорга	низованный	-	-	-	-		-	-	290 Пыль 8 неоргани ческая 70- 20% SiO2	0,188400 0000	0,521600 0000													2023
		Выгрузка скального грунта Планировь			-		769		-	-		Автотра спорт Бульдоз				низованный								290 Пыль 8 неоргани ческая 70- 20% SiO2 290 Пыль	0000	0 1,550200 0000 0 1,107300													2023
V×	V	а скального грунта (гребня насыпи)					243					р												8 неоргани ческая 70- 20% SiO2	0000	0000													2023
о насыпи под	полотна с уплотнение м	Разработка скального					243					Экскава ор	0000		псорга	низованный								8 неоргани ческая 70- 20% SiO2	0000	0000													2023
34(13)4		Транспорт ировка скального грунта с карьера Анненский	2 -		-	-	243		-	-		Автотра спорт				низованный	-	-	-	-		-		290 Пыль 8 неоргани ческая 70- 20% SiO2	0000	0,164800 0000													2023
		Выгрузка скального грунта Планирово			-	- -	243		-	-		Автотра спорт Бульдоз				низованный	-							290 Пыль 8 неоргани ческая 70- 20% SiO2 290 Пыль	0000	0 1,466900 0000 0 1,047800													2023
Уллинени	е Расчистка	чные работы бульдозеро м					2+3		-			р				низованный								8 неоргани ческая 70- 20% SiO2 290 Пыль	0000														2023
	б/у труб от пульпы	пульпы с погрузкой Транспорт	!		-		9		-	_		ор				низованный								8 неоргани ческая 70- 20% SiO2	0000														2023
		ировка пульпы на хвостохран илище Выгрузка	ı H				9					спорт				низованный								8 неоргани ческая 70- 20% SiO2	0000	0000													2023
		пульпы							-			спорт	. 0011		псорга	шиж ованны н								8 неоргани ческая 70- 20% SiO2	0000														2023

		Планирово 1 чные работы бульдозеро	 - -	-	- 9	- -	-	- -	- Бульдо р	зе 6012	неорганизованный	8	Пыть 0,833300 0,027200
Рекультива ция откосов восточной ограждаю		а Выполажи 2 вание	 	-	- 308		-		- Бульдо р	3e 6013	неорганизованный	290 8	ПБыть 1,250000 13,87200 неоргани 0 00 ческая 70-20% SiO2
щей дамбь на участке 1 р	d .	Планировк 2 а выположен ных поверхнос тей	 	-	- 326 4		-		- Бульдо р	3e 6014	неорганизованный	290 8	ПБшь 0,833300 9,792000
	Нанесение скального грунта на поверхность откосов	Разработка 2 скального грунта с	 	-	- 112		-		- Экскан ор	ат 6015	неорганизованный	8	Пыть 1,680000 6,773800 неоргани 0 0 ческая 70-20% SiO2
		Транспорт 6 ировка скального грунта с карьера Анненский	 		- 112		-		- Автотр спор	ан 6016	неорганизованный	8	Illiam 0,822500 3,316300
		Выгрузка 6 скального грунта	 	-	- 112		-		- Автотр	ан 6017	неорганизованный	8	Пыль 1,680000 (6,773800 неоргани 0 0 ческая 70-20% SIGO2
		Бульдозер 2 ная планировк а скального	 	-	- 112 0	-	-		- Бульдо р	ise 6018	неорганизованный	8	Пыль 1,200000 4,838400 неоргани 0 0 ческая 70-20% SiO2
Рекультива ция откосов северной ограждаю	откосов северной	грунта Разработка 1 наносов хвостов с бульдозера ми	 	-	- 298		-		- Бульдо р	3e 6019	неорганизованный	8	Пыль 1,666700 1,785000 неоргани 00 00 ческая 70-20% SiO2
щей дамбы на участке 1 о	и участке 1 о	Погрузка 1 хвостов	 	-	- 298		-	-	p	ise 6020	неорганизованный	8	Пыть 2,33300 2,499000 неоргани 00 00 неоргани 70-20% SiO2 SiO2 SiO2 SiO3 Sio3
		Транспорт 2 ировка хвостов в чашу хвостохран илища	 	= -	- 298		-		- Автотр	ан 6021	неорганизованный	8	Illiam
		Выгрузка 2 хвостов в чаше хвостохран илища	 	-	- 298		-		- Автотр	ан 6022	неорганизованный	8	Пыль 2,333300 2,499000 неоргани 0 0 ческая 70-20% SiO2
		Разравнива 1 ние хвостов в чаше хвостохран	 	-	- 298		-		- Бульдо р	3e 6023	неорганизованный	8	III.str. 1,666700 1,785000
	Перекрытие скальным грунтом	илища Разработка 1 скального грунта с погрузкой	 		- 221		-		- Экскае ор	ат 6024	неорганизованный	8	Пыль 0.56000 (0.44450) неоргани 0 0 ческая 70-20% SiO2
		Транспорт 2 ировка скального грунта с карьера	 	-	- 221		=		- Автотр	ан 6025	неорганизованный	8	ITISITE
		Анненский Выгрузка 2 скального грунта	 	-	- 221		-		- Автотр		неорганизованный	8	Пыль 0,56000 (0,44450) неоргани 0 0 ческая 70-20% SiO2
		Бульдозер 1 ная планировк а скального	 	-	- 221		-		- Бульдо р	зе 6027	неорганизованный	290 8	Пыль 0,400000 0,317500 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	крепления дамбы на	грунта 1 и Разработка скального грунта с погрузкой	 	-	- 618		-		- Экскае ор	ат 6028	неорганизованный	8	Пыль 0.560000 1.244700 неоргани 0 0 0 ческая 70-20% SiO2

	очистки откосов	Транспорт 2 ировка скального грунта	-	- - -	- -	- 618	3 -	- -	-	- -	Автотран спорт	6029	неорганизованный		8 E	0 Пыль 0,225200 0,501000 неоргани 0 0 ческая 70-20% SiO2	2023
		Выгрузка 2 скального грунта	=		-	- 618	3 =	= =	= '	,	Автотран спорт	6030	неорганизованный		290 I 8 E 7	Illiams	2023
		Планирово 1 чные работы бульдозеро м	-		-	- 618	3 -		-	:	Бульдозе р	6031	неорганизованный		290 I 8 F 7	ПБшть 0,400000 0,889100 пеоргани 0 0 ческая 70-20% SiGO2	2023
Рекультива ция откосов северной ограждаю	откосов северной	Разработка 1 наносов хвостов бульдозера	-			- 425	5 -		-	:	Бульдозе р	6032	неорганизованный		290 I 8 E 7	Пыль 1,666700 2,550000 пеоргани 0 0 ческая 70- 20% SiO2	2023
	участке 2 о		-		-	- 425	5 -		-	:	Бульдозе р	6033	неорганизованный		290 I 8 F 7	Пыль 2,333300 3,570000 пеоргани 0 0 ческая 70- 20% SiO2	2023
		Транспорт 2 ировка хвостов в чашу хвостохран илища	-		-	- 425	5 -		-	,	Автотран спорт	6034	неорганизованный		8 E	Пыль 0,031800 0,048700 неоргани 0 0 ческая 70-20% SiO2	2023
		Выгрузка 2 хвостов в чаше хвостохран илища	-		-	- 425			-		Автотран спорт		неорганизованный		8 H	Пыль 2,333300 3,570000 неоргани 0 0 ческая 70-20% SiO2 = 5	2023
		Разравнива 1 ние хвостов в чаше хвостохран илища	-		- -	- 425	5 -		-	- - :	Бульдозе р	6036	неорганизованный		8 E	Пыль 1,666700 2,550000 неоргани 0 0 ческая 70- 20% SiO2	2023
	Перекрытие скальным грунтом	Разработка 1 скального грунта с погрузкой	-			- 315	5 -	-	-	:	Экскават ор	6037	неорганизованный		8 F	Пыль 0,560000 0,635000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2023
		Транспорт 2 ировка скального грунта с карьера Анненский	-		=	- 315	5 -	= =	=	,	Автотран спорт	6038	неорганизованный		8 E	Пыль 0,225200 0,255400 неоргани 0 0 ческая 70-20% SiO2	2023
		Выгрузка 2 скального грунта	-		-	- 315	5 -		-	,	Автотран спорт	6039	неорганизованный		8 F	Пыль 0,560000 0,635000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2023
		Бульдозер 1 ная планировк а скального	-			- 315	5 -		-	:	Бульдозе р	6040	неорганизованный		290 I 8 E	ПБыть 0,400000 0,453600 пеоргани 0 0 ческая 70-20% SiO2	2023
	Ремонт конструкций крепления дамбы на участках	грунта Разработка 1 скального грунта с погрузкой	-			- 983	3 -		-	:	Экскават ор	6041	неорганизованный		8 H	D Пыль 0,560000 1,981300 пеоргани 0000 0000 ческая 70-20% SiO2	2023
	очистки очистки откосов	Транспорт 2 ировка скального грунта	-			- 983	3 -		-	,	Автотран спорт	6042	неорганизованный		290 I 8 E	Dilbars 0,225200 0,796900	2023
		Выгрузка 2 скального грунта	-		-	- 983	3 -		-	,	Автотран спорт	6043	неорганизованный		290 I 8 F 7	ПБыть 0,560000 1,981300 пеоргани 0000 0000 ческая 70-20% SiO2 SiO2 SiO2 SiO2 SiO2 SiO2 SiO2 SiO2	2023
		Планирово 1 чные работы бульдозеро м	-		-	- 983	3 -		-	:	Бульдозе р	6044	неорганизованный		290 I 8 E 7	ПБшть по 10 пБшть	2023
Рекультива ция откосов западной ограждаю	Разработка наносов хвостов	Разработка 1 наносов хвостов бульдозера ми	-			- 850	-		-	- - :	Бульдозе р	6045	неорганизованный		290 I 8 F 7	Пыль 1,666700 5,100000 пеоргани 0000 0000 ческая 70- 20% SiO2	2023
щей дамбы на участке 3 о		Погрузка 1 хвостов	-		-	- 850) -		-	:	Бульдозе р	6046	неорганизованный		290 I 8 E	Пыль 2,333300/7,140000 неоргани 0000 0000 ческая	2023

				1 1	1 1		1 1		ı			70- 20% SiO2		1				
		Транспорт ировка хвостов в чашу хвостохран	2 -	 	- 850		-	 - Автот		неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,050200 0000	0,153600 0000				202:
		илища Выгрузка хвостов в чаше хвостохран	2 -	 	- 850		-	 - Автот	ран 6048	неорганизованный		290 Пыль 8 неоргани ческая 70- 20%	2,333300 0000	7,140000 0000				202
		илища Разравнива ние хвостов в чаше хвостохран	1 -	 	- 850			 - Бульд р	o3e 6049	неорганизованный		SiO2 290 Пыль 8 неоргани ческая 70- 20% SiO2	1,666700 0000	5,100000 0000				202:
	Перекрытие скальным грунтом	илища	1 -	 	- 630		-	 Экска ор 		неорганизованный		290 Пыль 8 неоргани ческая 70- 20%	0,560000 0000	1,270100 0000				202:
		Транспорт ировка скального грунта с карьера	2 -	 	- 630		-	 - Автот		неорганизованный		SiO2 290 Пыль 8 неоргани ческая 70- 20% SiO2	0,225200 0000	0,510800 0000				202:
		Анненский Выгрузка скального грунта	2 -	 	- 630		-	 - Автот		неорганизованный		290 Пыль 8 неоргани ческая 70- 20%	0,560000 0000	1,270100 0000				202:
		Бульдозер ная планировк а скального	1 -	 	- 630		-	 - Бульд	o3e 6053	неорганизованный		SiO2 290 Пыль 8 неоргани ческая 70- 20% SiO2	0,400000	0,907200 0000				202:
	Ремонт конструкций крепления дамбы на	грунта Разработка скального грунта с погрузкой	1 -	 	- 761		-	 Экска ор 		неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	1,120000 0000	3,066000				202:
	участках очистки откосов	Транспорт ировка скального грунта	2 -	 	- 761		: -	 - Автот		неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,249700 0000	0,684100 0000				202:
		Выгрузка скального грунта	2 -	 	- 761		-	 - Автот		неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	1,120000 0000	3,066000 0000				202:
		Планирово чные работы бульдозеро м		 	- 761	-	-	 - Бульд р	озе 6057	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,800000	2,190000 0000				202:
ние насыпи под сосредоточ енные	выпуски	скального грунта фр. 0-300 мм (среднее 150 мм) с		 		504 -		 - Экскі ор	ват 6058	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2		(0,560000 1,016100 0000 0000			2024
выпуски СВ-5, СВ- 5а (2 этап)		погрузкой Транспорт ировка скального грунта с карьера	- 2	 		504	-	 - Автот		неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2		(0,188400 0,341800 0000 0000			202-
		Анненский Выгрузка скального грунта	- 2	 		504	-	 - Автот		неорганизованный		290 Пыль 8 неоргани ческая 70- 20%		(0,560000 1,016100 0000			202-
		Планировк а скального грунта (гребня	- 1	 		504	-	 - Бульд	озе 6061	неорганизованный		SiO2 290 Пыль 8 неоргани ческая 70- 20% SiO2		(0,400000 0,725800 0000			202-
	Устройство дорожного полотна с уплотнение	Разработка скального	- 1	 		113 -	-	 - Экска ор		неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2			1,680000 0,678200 0000 0000			202-

		погрузкой																
		Транспорт - ировка скального грунта с карьера	2 -	 		113 -	-		- Автотр	ан 6063	неорганизованный		че 70	Тыль 0,18840 0000 геская 0000 геская 0502	0,076600			2024
		Анненский Выгрузка - скального грунта	2 -	 -		113 -	-		- Автотр спор	ан 6064	неорганизованный		че 70	Тыль 1,68000 пеоргани 0000 гоская 70-20% гоская 70-20%	0,678200			2024
		Планирово - чные работы бульдозеро м	1 -	 -		113 -	-		- Бульдо р	3e 6065	неорганизованный		290 Пл 8 не че 70		0,484400			2024
Перенос сосредото енных выпусков СВ-5, СВ-	и б/у труб от пульпы	Разработка пульпы с погрузкой	1 -	 		9 -	-		- Бульдо р	зе 6066	неорганизованный		290 Пі 8 не че 70		0,038100			2024
5а (2 этап)		Транспорт - ировка пульпы	1 -	 -		9 -	-		- Автотр спор		неорганизованный		290 Пі 8 не че 70		0,000300			2024
		Выгрузка - пульпы	1 -	 -		9 -	-		- Автотр спор	ан 6068	неорганизованный		290 Пі 8 не че 70		0,038100			2024
		Планирово - чные работы бульдозеро м	1 -	 		9 -	-		- Бульдо р		неорганизованный		че 70	пеоргани 0000 пеская 70- 20% SiO2				2024
	ı		1 -	 -	- -	274 -	-	- -	- Бульдо р	зе 6070	неорганизованный		че 70	Тыль юсеоргани особо ос	0,393400			2024
l p	Нанесение скального грунта на поверхность гребня		1 -	 -		273 -	=	= =	- Экскав ор	ar 6071	неорганизованный		че 70	Пыль 0,560000 осогон 0000 осо	0,550400			2024
	ограждающе й дамбы участка 1 р	Транспорт - ировка скального грунта с карьера Анненский	2 -	 -	1	273 -	-	- -	- Автотр спор	ан 6072	неорганизованный		че 70	Тыль 0,274200 0000 пеская 70-20% SiO2	0,269500			2024
		Выгрузка - скального грунта	2 -	 -		273 -	-		- Автотр спор		неорганизованный		че 70	Тыль 0,56000 веоргани 0000 веская 70-20% SiO2	0,550400			2024
		Бульдозер - ная планировк а скального грунта	1 -	 -	1	273 -	-	- -	- Бульдо р	3e 6074	неорганизованный		че 70	Тыль (0,40000 (000) (00	0,393100			2024
	ı	Планировк -	1 -	 -		296 -	-		- Бульдо р	зе 6075	неорганизованный		че 70	Тыль 0,40000 веоргани веская 00-20% SiO2	0,425200			2024
1 0	Нанесение	Разработка - скального грунта с	1 -	 -		294 -	-		- Экскан ор		неорганизованный		8 не че 70	Тыль 0,56000 пеоргани 0000 геская 70-20% гібо2	0,592700			2024
		Транспорт - ировка скального грунта с карьера Анненский	2 -	 -	= =	294 -	=		- Автотр спор	ан 6077	неорганизованный		290 Пі 8 не че 70	Тыль 0,22520	0,238400			2024
		Выгрузка - скального грунта	2 -	 		294 -	-		- Автотр спор	ан 6078	неорганизованный		че 70	Тыль 0,56000 ееоргани ееокая 0000 ееокая 002 біо2	0,592700			2024

		Бульдозер - ная планировк а скального	1 -	- -	- -	- 29	4 - -	- -	- Бульдоз р	se 6079	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,400000	0,423400 0000	2024
Рекультива ция гребня северной ограждаю щей дамбы на участке	Планировка поверхности гребня	грунта Планировк - а поверхнос ти гребня бульдозеро	1 -			- 60	5		- Бульдоз р	se 6080	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,40000	0,870000 0000	2024
2 0	Нанесение скального грунта на поверхность гребня	скального грунта с	1 -			- 60	5		 Экскава ор 	нт 6081	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,560000	1,219300 0000	2024
	ограждающе й дамбы участка 2 о	ировка скального грунта с карьера	2 -			- 60	5		- Автотра спорт	ын 6082	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,225200 0000	0,490500 0000	2024
		Анненский Выгрузка - скального грунта	2 -			- 60	5		- Автотра спорт	ин 6083	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,560000	1,219300 0000	2024
		Бульдозер - ная планировк а скального	1 -			- 60	5		- Бульдоз р	se 6084	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,400000	0,870900 0000	2024
Рекультива ция гребня западной ограждаю щей дамбы на участке	Планировка поверхности гребня	грунта Планировк а поверхнос ти гребня бульдозеро м	1 -			- 56	9		- Бульдоз р	se 6085	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,800000	1,637500 0000	2024
3 0	Нанесение скального грунта на поверхность гребня	Разработка -	1 -			- 57	0		- Экскава ор	нт 6086	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	1,120000 0000	2,294600 0000	2024
	ограждающе й дамбы участка 3 о	ировка	2 -			- 57	0		- Автотра спорт	ын 6087	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,225200 0000	0,462100 0000	2024
		Выгрузка - скального грунта	2 -			- 57	0		- Автотра спорт	н 6088	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	1,120000	2,294600 0000	2024
		Бульдозер - ная планировк а скального	1 -			- 57	0		- Бульдоз р	se 6089	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,800000	1,639000 0000	2024
Формиров ание дрены вдоль низового	Срезка болотной растительно сти	грунта Срезка - болотной растительн ости с погрузкой	1 -			- 11	7		- Бульдоз р	se 6090	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	1,120000	0,471700 0000	2024
откоса на участке пригруза		Транспорт - ировка болотной растительн ости	2 -			- 11			спорт		неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0000	0,062900 0000	2024
		Выгрузка - болотной растительн ости	2 -			- 11	7 - -		- Автотра спорт	ан 6092	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	1,120000	0,471700 0000	2024
	Формирован ие дрены из скального грунта	Разработка - скального грунта с погрузкой	1 -			- 29	5		- Экскава ор	нт 6093	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	1,120000	1,189200 0000	2024
		Транспорт - ировка скального грунта	2 -			- 29	5		- Автотра спорт	ан 6094	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	0,425900 0000	0,452300 0000	2024
		Выгрузка - скального грунта -	2 -			- 29	5		- Автотра спорт	ан 6095	неорганизованный		290 Пыль 8 неоргани ческая 70- 20% SiO2	1,120000	1,189200 0000	2024

		Планирово - чные работы бульдозеро	1 -	- -	- -	- 29	5 - -	- -	Бульдозе р	6096	неорганизованный		299	Пыль неоргани ческая 70- 20% SiO2	0,800000	0,849400 0000			2024
Формиров ание дрены вдоль низового	Срезка болотной растительно сти	Срезка - болотной	1 -			- 27	8		Бульдозе р		неорганизованный		294	О Пыль неоргани ческая 70- 20% SiO2	0000	1,118600 0000			2024
откоса		Транспорт ировка болотной растительн ости	2 -			- 27			- Автотран спорт		иеорганизованный		8	Пыль неоргани ческая 70- 20% SiO2	0000	0,149400 0000			2024
		Выгрузка - болотной растительн ости	2 -			- 27			- Автотран спорт		неорганизованный		8	ческая 70- 20% SiO2	0000	1,118600 0000			2024
	Формирован ие дрены из скального грунта вдоль низового	Разработка скального грунта с погрузкой	2 -			- 48			- Экскават ор		неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2	0000	1,957600 0000			2024
	откоса	Транспорт - ировка скального грунта	4 -			- 48			- Автотран спорт		неорганизованный		8	ческая 70- 20% SiO2	0,425900 0000	0000			2024
		Выгрузка - скального грунта	4 -			- 48			- Автотран спорт		неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2	0000	1,957600 0000			2024
		Планирово - чные работы бульдозеро м	2 -			- 48			Бульдозе р		неорганизованный		8	ческая 70- 20% SiO2	0000	1,398300 0000			2024
Формиров ание пригруза	Отсыпка пригруза	Разработка - скального грунта с погрузкой	2 -			- 74			- Экскават ор		неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2	0000	4,504600 0000			2024
		Транспорт - ировка скального грунта	6 -			- 74			- Автотран спорт		неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2	0000	1,713300 0000			2024
		Выгрузка - скального грунта	6 -			- 74			- Автотран спорт		неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2	0000	4,504600 0000			2024
		Планировк а горизонтал ьных и наклонных поверхнос тей	2 -			- 74	5		Бульдозе р	6107	неорганизованный		8) Пыль неоргани ческая 70- 20% SiO2	1,200000	3,217500 0000			2024
Рекультива ция дренажног о канала	Очистка русла дренажного канала	Очистка русла дренажног о канала от наносов с погрузкой	- 1				595 -		- Экскават ор	6108	неорганизованный		290 8	О Пыль неоргани ческая 70- 20% SiO2			1,66670 3,57000 0000 0000		2025
		Транспорт ировка хвостов в чашу хвостохран	- 2				595 -		- Автотран спорт	6109	неорганизованный		294	Пыль неоргани ческая 70- 20% SiO2			0,05020 0000 0000 0000		2025
		илища Выгрузка - хвостов в чаше хвостохран илища	- 2				595 -		- Автотран спорт	6110	неорганизованный			Пыль неоргани ческая 70- 20% SiO2			2,33330 4,99800 0000 0000		2025
		Разравнива - ние хвостов в чаше хвостохран илища	- 1				595 -		Бульдозе р	6111	неорганизованный		299	Пыль			1,66670 3,57000 0000 0000		2025
	откосов и дна	Разработка - скального грунта с погрузкой	- 1				840 -		- Экскават ор	6112	неорганизованный		299	Пыль неоргани ческая 70- 20% SiO2			0,56000 0000 0000		2025

	скальным грунтом	Транспорт - ировка скального грунта с карьера Анненский	- 2	- -	-		- :	840 -	-	-	- Автотра спорт		неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2		0,27420	0 0,82920								2025
		Выгрузка - скального грунта	- 2		-		- 1	840 -	-	1	- Автотра спорт	н 6114	неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2		0,5600 0000	0 1,69340 0000								2025
		Бульдозер - ная планировк а скального грунта	- 1		-		- :	840 -	-	-	- Бульдоз р	e 6115	неорганизованный		290 8	ПБиль неоргани ческая 70- 20% SiO2		0,40000	0 1,20960 0000								2025
	скальным грунтом наносов из	Разработка - скального грунта с погрузкой	- 1		-		- 4	441 -	-	1	- Экскава ор	т 6116	неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2		0,56000	0,88910								2025
	дренажного канала	Транспорт - ировка скального грунта с карьера	- 2		-			441 -	-	-	 Автотра спорт 	н 6117	неорганизованный		290 8	SiO2 ПБиль неоргани ческая 70- 20% SiO2		0,27420 0000	0,43530 0000								2025
		Выгрузка - скального грунта	- 2		-		- 4	441 -	-	-	- Автотра спорт	н 6118	неорганизованный		8	Пыль неоргани ческая 70-20%		0,5600	0,88910								2025
		Бульдозер - ная планировк а скального	- 1		-			441 -	-	-	- Бульдоз р	e 6119	неорганизованный		290 8	SiO2 Пыль неоргани ческая 70- 20% SiO2			0,63500								2025
Ремонт поверхнос ти хвостохран илища и	Ремонт поверхности хвостохрани лища и ограждающ	грунта Разработка - скального грунта с погрузкой	2 2	2 2	: -			140 700	0 700	-	- Экскава ор	т 6120	неорганизованный		8	Пыль 1,68000 неоргани 9000 70-20% SiO2		200 1,6800 0 0000		1,68000 0000		1,68000 0000	4,233600 000				2024
ограждаю щих дамб	их дамб	Транспорт - ировка скального грунта	6 6	6 6				140 700	0 700	-	- Автотра спорт	н 6121	неорганизованный		290 8		00 4,515 000	300 0,8959 0 0000	0 4,51530 0000	0,89590 0000	2,25770 0000	0,89590 0000	2,257700 000				2024
		Выгрузка - скального грунта	6 6	6 6	-		140	140 700	0 700	-	 Автотра спорт 	н 6122	неорганизованный		290 8		00 8,467 000	200 1,6800 0 0000	0 8,46720 0000	1,68000 0000		1,68000 0000					2024
		Бульдозер - ная планировк а скального грунта	2 2	2 2	-			140 700	0 700	-	- Бульдоз р	e 6123	неорганизованный		290 8			000 1,2000 0 0000	0 6,04800 0000	1,20000 0000		1,20000 0000	3,024000 000				2024
Система КИА	Восстановле ние системы КИА	Буровые -	- 1		-		- :	388 -	-	-	 Буровоі станок 	6124	неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2		0,1000	0,13970 0000								2024
Рекультива ция пляжей хвостохран илища	Рекультивац ия пляжей хвостохрани лища			- 3	3	3 -	-		502 4	502 5 4		т 6125	неорганизованный		290 8	Пыль неоргани ческая 70- 20% SiO2					:	3,36000 0000	60,77200 0000				60,77200 0000 2042
(участок № 4)		Транспорт - ировка скального грунта		- 9	9	9 -	-			502 5 4	02 Автотра 4 спорт	н 6126	неорганизованный		290 8	ПБЛБ неоргани ческая 70- 20% SiO2						1,34390 0000	24,30630 0000	1,34390 0000			24,30630 0000 2042
		Выгрузка - скального грунта		- 9	9	9 -	-		502 4	502 5	02 Автотра 4 спорт	н 6127	неорганизованный		290 8	Пыль неоргани ческая 70- 20% SiO2					ì	3,36000 0000	60,77200 0000	3,36000 0000	50,77200 3 0000	3,36000 0000	60,77200 0000 2042
		Бульдозер - ная планировк а скального грунта		- 3	3	3 -	-		502 4	502 5	02 Бульдоз 4 р	e 6128	неорганизованный		290 8	SIO2 Пыль неоргани ческая 70- 20% SiO2					:	2,40000 0000	43,40860 0000	2,40000 0000		2,40000 4 0000	43,40860 2042 0000
Демонтаж и тампониро вание конструкц	Засыпка устья водосбросн ых колодцев ВК-2, ВК-3	Разработка - скального грунта с погрузкой			-	1 -	-		-	- 1	0 Экскава ор	т 6129	неорганизованный		8	Пыль неоргани ческая 70- 20% SiO2										1,12000 0000	0,036900 2044

Service	и засыпка пространств а образованно го после	Транспорт - ировка скального грунта	- -		-	1 -	-	- -	-	- 10	Автотран спорт	н 6130	неорганизованный						46	органи ская - 20%							0,29860 0000	0,010
1 1 1 1 1 1 1 1 1 1	установки фундаментн	скального			-	1 -	-		-	- 10		н 6131	неорганизованный						290 II 8 HG 46 70	иль органи ская - 20%								
Control Cont		чные работы			-	1 -	-		-	- 10		e 6132	неорганизованный						290 П 8 не че 70	иль органи ская - 20%								
Part		м Газовая 1	1 1	- 1	-	10 20	20	5 -	10	- 10	О Сварочн	н 6133	неорганизованный	-		-												
Part	работы	резка										r																
Part																					0000	0000	0000	000	0000	000	0000	1
Part																				лерода 0,018								
Part																												
Part		Сварочные 2	1 1	- 1	-	1 9	6	2 -	2	- 2	Сварочн	6134	неорганизованный	_		_												
Part											ый		F															
Part			3 2	- 1	-	1 694	4 475	98 -	13	- 13	Сварочн	н 6135	неорганизованный	-		-									0,02270		0,02270	70 0,0
Part		раооты										r							143 M	рганец 0,0008	0,0010 0,0015	00 0,001000 0,	0,0090	0010	0,00110	0,000017	0,00110	0,0
Part																			ec		0000	0000	000 (500	0000	000	0000	'
Part																			290 П									
Part																			46	ская	0000	0000	1000	500	0000	000	0000	١
Part																			Si	02)								
Part																			342 Ф е	ористы 0,0003								
Part																			ес	единен								
Part																												
Part																			344 Ф	ориды 0,0013								
Part																					0,0011 0,0008	00 0,001100 0,	00070 0,0	0020	0,00070	0,000020	0,00070	70 0,0
Michael Belian																			337 У	лерода 0,0053	0,0096 0,0067	00 0,009700 0,	0,0580	0160	0,00590	0,000200	0,00590	0,0
Part colling Part			1 1	- 1	-	1 127	7 127	6 -	1	- 1		ч 6136	неорганизованный	-		-			290 B	вешенн 0,1375	0,06270 0,1375	00 0,062700 0,	0,000 0,000	0090	0,05960	0,000200	0,05960	60 0,0
Remotive of the content of the con	е работы	грунтовки										r							че	стицы								
		ГФ-021																	616 K	илол 0,3751								
Misson M			1 1	- 1	-	1 269	269	80 -	56	- 56		ч 6137	неорганизованный	-	-	-		- -										
Part											аппарат	г							ча 275 У:	тицы йт- 0,2230	6 0,2160 0,2236	00 0,216000 0,	14910 0,0	2150	0,22360	0,044500	0,2236	0,0
Herolatous Her																			2 cr	ирит	0000	0000	0000 0	000	0000	000	0000)
Authorition Financial Programs Financial Prog		Marraman 1	1 1			250	250	6			Поимолог	n 6120	uaamrauuraanauu võ								0000	0000	0000 0	000				
First Characterist First C		ание ПФ-	' '			- 250	230	٦	-		ный		неорі анизованный	·					2 ы									
Exercise Progression Fixed Progression		113									аппарат																	
Парвивов Рация и предержания и преджания и																					5 0,1688 0,1875	00 0,168800 0,	06250 0,0	0120				
работы В В В В В В В В В В В В В В В В В В В	Гидроизоля	Гидроизол 1	1 1	- 1	-	1 50	50	50 -	25	- 25	Установі	к 6139	неорганизованный	-		-			275 У	леводо 0,0000	14 0,000002 0,0000	14 0,000002 0,	0,0001	0000			0,0000	
Покрасочны редоты вание контонно не дайте контонно не дайте контонно не дайте вайте вай		яция																	п	едельн	500 0000	5000	1000 2	500	6000	500	6000	
в работы кересина ание кересина в работы канина в работы кересина в работы канинка в работы кересина в работы кересина <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				9)								
кероснів Непользов 1 2 2 4 1 1 2 2 2 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 1	- 1	-	1 41	41	9 -	9	- 9	Покраска	a 6140	неорганизованный	-	- -	-			273 K	росин 0,5556	6 0,0811 0,5556	00 0,081100 0,	27770 0,0 0000 0	0870 000				
## A CONTRICT OF THE PROPERTY		керосина	1 1		-	- 31	31	1 -	1.		Покрасы	a 6141	неорганизованный	_		-	-		616 K	илол 0.555	6 0.0620 0.5556	00 0.062000 0	25000 0 0	0090				
Heronano I 1 1 1 2 3 4 5 5 5 5 5 5 5 5 5		ание				51	-				110Apack	0.71	neop announning							0,000								
Спирит		Использов 1	1 1		-	- 60	60	1 -	-		Покраска	a 6142	неорганизованный	-		-			275 У	йт- 0,5550	6 0,1200 0,5556	00 0,120000 0,	25000 0,0	0090				1
ные работы машинки машинки ыные машинки ыные машинки 0000 0000 0000 0000 0000 0000 0000 0000 неорганизованный 290 Взвешенн 0,0076 0 0,0099 0,007600 0,010500 0,00760 0,004400 0,00760 0,004400 0,00760 0,0000		спирит																					1000 C	200				
Машинка Машинка			3 -	- 2	-	2 361	1 383	- -	162	- 162		a 6143	неорганизованный															
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000											машинка	a	неорганизованный						Я		6 0,0099 0,0076	00 0,010500			0,00760	0,004400		
		1 1	1 1	1 1	1 1						1		*			- 1			2 60	/								

е работы	ание растворите																			1						0000				000			000
	ля Р-4																			121 Бутилаце 0 тат					01670 0. 0000	00010			330 0,00	00400			3330 000
																				621 Толуол						00090			230 0,00				7230
																										0000				00			000
	Использов		1 -			- 2	-	-		Покраси	a 6145		неорганизованный	-	-	-	-	-	-	 290 Взвешенн 	I					00020							
	ание ХВ-																			2 ые					0000	0000							
	124														_					частицы 140 Ацетон				0.	06590 0.	20050							
																				1						0000							
																				121 Бутилаце				0,		00025							
																				0 тат						0000							
																				621 Толуол					15720 0, 0000								
	Использов		1			- 1	-	-		Покраст	a 6146	-			_					290 Взвешени						0000							
	ание ГФ -		1 -	-		- 1	-	-		Покраси	a 0140									2 ые	1					0000							
	0119																			частицы													
																				616 Ксилол					13050 0.								
D	D	1 1	1 1	1 1	1 24	20 7	202	102	102 102		н 6147									- 290 Пыль	1 120000	0.121600	1 120000			0000	1 12000	1,13800 1,12	000 0 40	0200 1 1	2000 0 40	9700 1 1	2000
Ремонт дорог	Выгрузка щебня фр.	1 1	1 1	1 1 1	1 34	28 /	282	102	102 102	спорт	H 6147		неорганизованный	-	-	-	-	-	-	 290 Пыль 8 неоргани 	0000	0000	0000	0,112400 1,				0000 1,12					2000
дорог	40-80 мм									enop1										ческая	0000	0000	0000		,,,,,		0000	0000					
																				70- 20%													
										1										SiO2													
	Разработка (перемеще	1 1	1 1	1 1	1 34	28 /	282	102	102 102		и 6148		неорганизованный	-	-	-	-	-	-	 290 Пыль 8 неоргани 	0000	0000	0000					0,81290 0,80 0000 00					0000
	ние) щебня									дер										ческая	0000	0000	0000	0000	,000	0000	0000	0000 00	00 0	00 0	000	50 00	000
	автогрейде																			70- 20%													
	ром																			SiO2													
Выработка		3 3	1 -	3 -	3 155	250 200	0 -	264	- 264	ДЭС	0149	2	0,2 4 0,12 12)						337 Углерода оксил	0,008000	0,300000	0,008000			0000			0,60 00 0,60	00000			0800 000
электроэнер гии	,					0		1 0	0				36							304 Азота				0.083900 0.					00 0,11				0150
																				оксид	0000					0000				00			000
																				301 Азота				0,516000 0,					910 0,68				0910
																				диоксид	0000	0000				0000		- 00		00			000
																				275 Углеводо	0,004000	0,150000 0000		0,225000 0,		03000			0400 0,30 00 0	00000			0400 000
																				4 роды предельн	0000	0000	0000	0000	0000	0000		00	00 0	00		0.	000
																				ые С12-													
																				C19													
																				328 Сажа				0,045000 0,					0,06				0080
																				(углерод черный)	0000	0000	0000	0000	0000	0000		00	00 0	00		- 00	000
															-					330 Диоксид	0.001200	0.045000	0.001200	0,067500 0,	00120 0	00900		0.00	0120 0,09	00000		0.0	0120
																				серы	0000					0000				00			000
												1								132 Формальд									0,01				0020
																ļ	1			5 егид	0000	0000	0000			0000				00			000
																				703 Бенз(а)пи рен	0,000000	0,000000 6000		0,000000 0, 8000 0		00000				00001			0000 010
	1						+	\vdash		1	+	1			_	<u> </u>	_	1		рен							7.37590	15,6998 19,6			3839 189		
																																	0014

Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в период НМУ (1 режим НМУ)

			0000									:	Характерис	гика источни	ков, на котор	ых провод	ится снижені	не выбросов								
			ие выбр	Координ	наты источні схеме, м		те					Параметр	ы газовозд	иной смеси	на выходе из	з источника	и характери	стика выбро	сов после сог	кращения вы	бросов					%
График работы источника	Цех, участок (номер режима ра предприятия в период НМУ		которым проводится сокращен	Номер в карте- схеме объекта	точечного источника центра группы и источнико или одног конца линейного источника		го	диамет , источни выбросов	к скорост	ь объем м3/с	температур: °С		МОП	цность выбро	сов без учета	ı мероприя	гий, г/с			Moi	цность выбро	осов после	е мероприять	т й, г/с		эффективности мероприятий,
η			цества, по котс	(города	X1/Y1	X2/Y2						2023 год	2024 год	2025 год	2026 - 2041	2042 год	2043 год	2044 год	2023 год	2024 год	2025 год	2026 - 204	2042 год	2043 год	2044 год	Степень эфо
			Ben									2023 ГОД	202410Д	2023 ГОД	ГГ.	2042 10д	2043 ГОД	2044 год	2023 ГОД	202410Д	2023 ГОД	IT.	2042 10Д	2043 ГОД	2044 10Д	
1	2	3	4	5	6	7	8	9	10	11	12			ma	13							14				15
	Разработка										Первыи ре	жим работы	предприят	ия при НМЗ	′											
769	скального грун 0-300 мм (сред 150 мм) с погр	iee зкој	2908	6001								0,560000	0,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,44800000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
769	Устройство насып скального грун под карьера Аннен	а с выбросов по	2908	6002			-					0,188400	0,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,15072000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
769	сосредоточенные выпуски (пирса) грунта		2908	6003								0,560000	0,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,44800000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
769	Планировка скального грун (гребня насып	ra	2908	6004								0,400000	0,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,32000000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
243	Разработка скального груг 0-20 мм (среде мм) с погрузко	е 1 Мероприятия по	2908	6005								1,680000	0,0000000	0,00000000	0,00000000	0,0000000	0,00000000	0,00000000	1,34400000	0,00000000	0,0000000	0,000000	0,00000000	0,00000000	0,00000000	20
243	Устройство Транспортирог дорожного полотн скального груг с уплотнением карьера Аннен	а с первому режиму	2908	6006								0,188400	0,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,15072000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
243	Выгрузка скал грунта	ного предприятия при НМУ	2908	6007								1,680000	0,0000000	0,00000000	0,000000000	0,0000000	0,0000000	0,00000000	1,34400000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
243	Планировочнь работы бульдо		2908	6008								1,200000	0,0000000	0,00000000	0,000000000	0,0000000	0,0000000	0,00000000	0,96000000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
9	Разработка пул погрузкой	Мероприятия по	2908	6009								1,166700	0,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,93336000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
9	Транспортиров Расчистка б/у трупульны на от пульны хвостохранили	выбросов по	2908	6010								0,009800	0,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,00784000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
9	Выгрузка пуль	предприятия при	-	6011								1,166700	0,0000000	0,00000000		0,0000000	0,0000000		0,93336000	0,00000000					0,00000000	20
9	Планировочнь работы бульдо	epoi	2908	6012								0,833300	0,0000000	0,00000000	0,00000000	0,0000000	0,00000000	0,00000000	0,66664000	0,00000000	0,0000000	0,0000000	0,00000000	0,000000000	0,00000000	20
3082	Выполаживани хвостов на отк Выполаживание	сах выбросов по	2908	6013								1,250000	0,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	1,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
3264	хвостов на откоса Планировка выположенны: поверхностей	первому режиму работы предприятия при НМУ	2908	6014								0,833300	0,0000000	0,00000000	0,00000000	0,0000000	0,00000000	0,00000000	0,66664000	0,00000000	0,0000000	0,000000	0,00000000	0,00000000	0,00000000	20

112		Разработка скального грунта с		2908	6015	 	 	 	 	1,680000	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	1,34400000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
	Нанесение	погрузкой	Мероприятия по сокращению																				
112	скального грунта поверхность	Транспортировка скального грунта с карьера Анненский	выбросов по первому режиму работы	2908	6016	 	 	 	 	0,822500	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,65800000	0,00000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
112	откосов	Выгрузка скального грунта	предприятия при НМУ	2908	6017	 	 	 	 	1,680000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	1,34400000	0,00000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
112		Бульдозерная планировка скального грунта		2908	6018	 	 	 	 	1,200000	0,0000000	0,0000000	0,00000000	0,00000000	0,000000000	0,96000000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
298		Разработка наносов хвостов бульдозерами		2908	6019	 	 	 	 	1,666700	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	1,33336000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000,0	20
298	Очистка откосов	Погрузка хвостов	Мероприятия по сокращению	2908	6020	 	 	 	 	2,333300	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	1,86664000	0,000000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
298	северной ограждающей дамбы на участке	Транспортировка хвостов в чашу хвостохранилища	выбросов по первому режиму работы	2908	6021	 	 	 	 	0,031800	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,02544000	0,000000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
298	o	Выгрузка хвостов в чаше хвостохранилища	предприятия при НМУ	2908	6022	 	 	 	 	2,333300	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,000000000	1,86664000	0,000000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
298		Разравнивание хвостов в чаше хвостохранилища		2908	6023	 	 	 	 	1,666700	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,000000000	1,33336000	0,00000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
221		Разработка скального грунта с погрузкой	Мероприятия по	2908	6024	 	 	 	 	0,560000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,000000000	0,44800000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
221	Перекрытие	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по первому режиму	2908	6025	 	 	 	 	0,225200	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,18016000	0,000000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
221	скальным грунто	Выгрузка скального грунта	работы предприятия при	2908	6026	 	 	 	 	0,560000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44800000	0,000000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
221		Бульдозерная планировка	НМУ	2908	6027	 	 	 	 	0,400000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,32000000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
618	Ремонт	скального грунта Разработка скального грунта с погрузкой		2908	6028	 	 	 	 	0,560000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44800000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
618	конструкций	Транспортировка	сокращению выбросов по	2908	6029	 	 	 	 	0,225200	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,18016000	0,000000000	0.0000000	0,0000000	,000000000	0,00000000	0,00000000	20
618	крепления дамбы участках очисткі откосов		первому режиму работы предприятия при	2908	6030	 	 	 	 	0,560000	0,0000000		0,00000000		0,00000000 0,000000000				0,0000000				20
618		Планировочные работы бульдозеро:	НМУ	2908	6031	 	 	 	 	0,400000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,32000000	0,000000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
425		Разработка наносов хвостов бульдозерами		2908	6032	 	 	 	 	1,666700	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	1,33336000	0,00000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
425		Погрузка хвостов	Мероприятия по	2908	6033	 	 	 	 	2,333300	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	1,86664000	0,000000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
425	ограждающей	Транспортировка хвостов в чашу хвостохранилища	сокращению выбросов по первому режиму	2908	6034	 	 	 	 	0,031800	0,0000000	0,0000000	0,00000000	0,00000000	0,000000000	0,02544000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
425	дамбы на участке о	Выгрузка хвостов в чаше хвостохранилища	работы предприятия при НМУ	2908	6035	 	 	 	 	2,333300	0,0000000	0,0000000	0,00000000	0,00000000	0,000000000 0,000000000	1,86664000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
425		Разравнивание хвостов в чаше хвостохранилища		2908	6036	 	 	 	 	1,666700	0,0000000	0,0000000	0,00000000	0,00000000	0,000000000	1,33336000	0,00000000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
315		Разработка скального грунта с погрузкой	Мероприятия по	2908	6037	 	 	 	 	0,560000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44800000	0,00000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
315	Перекрытие скальным грунто	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по первому режиму	2908	6038	 	 	 	 	0,225200	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,18016000	0,00000000	0,0000000,0	0,0000000	,000000000	0,000000000	0,00000000	20
315	-халыным групто	Выгрузка скального грунта	работы предприятия при	2908	6039	 	 	 	 	0,560000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44800000	0,00000000	0,00000000	0,0000000	,00000000	0,000000000	0,00000000	20
315		Бульдозерная планировка скального грунта	НМУ	2908	6040	 	 	 	 	0,400000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,32000000	0,00000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20

	٦	D 5	1	1 г		<u> </u>	 1			-	7			I	ı	1	ı	ı	1	1	1		ı	1
98	3	Разработка скального грунта с	Мероприятия по	2908	6041		 	 			 0,560000	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44800000	0,000000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
98	Ремонт конструкций	погрузкой Транспортировка	сокращению выбросов по	2908	6042						 0,225200	0,0000000	0.0000000	0,00000000	0.0000000	0,00000000 0,00000000	0.18016000	0.00000000	0.0000000	0.0000000	00000000	0.00000000	0,00000000	20
98:	участках очистк	Выгрузка скальног	первому режиму работы	2009	6043		 	 			 0,560000	0,0000000		0,00000000	· ·	0,00000000 0,000000000							0,00000000	20
98	откосов	грунта Планировочные	предприятия при НМУ	2908	6044			 			 0,400000	0,0000000	*	0,00000000		0,00000000 0,00000000				0,0000000		*		20
		работы бульдозеро Разработка наносог																·						
85		хвостов бульдозерами		2908	6045		 	 			 1,666700	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	1,33336000	0,000000000	0,0000000	0,0000000),000000000	0,00000000	0,000000000	20
85	0	Погрузка хвостов	Мероприятия по сокращению	2908	6046		 	 			 2,333300	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	1,86664000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
85	Разработка нанос	Транспортировка с хвостов в чашу хвостохранилища	выбросов по первому режиму	2908	6047		 	 			 0,050200	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,04016000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
850	хвостов	Выгрузка хвостов н	работы предприятия при НМУ	2908	6048		 	 			 2,333300	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	1,86664000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
85)	хвостохранилища Разравнивание хвостов в чаше	111013	2908	6049			 			 1,666700	0,0000000	0.00000000	0,00000000	0.0000000	0,0000000,0 0,0000000,0	1,33336000	0,0000000,0	0.0000000	0.0000001	00000000	0.0000000	0,00000000,0	20
		хвостохранилища Разработка																·						
63	0	скального грунта с погрузкой	Мероприятия по	2908	6050		 	 			 0,560000	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44800000	0,000000000	0,0000000	0,0000000	0,000000000	0,00000000	0,00000000	20
63	Перекрытие	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по первому режиму	2908	6051		 	 			 0,225200	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,18016000	0,00000000	0,0000000	0,0000000	0,000000000	0,00000000	0,00000000	20
63	скальным грунто	Выгрузка скальног грунта	работы предприятия при	2908	6052		 	 			 0,560000	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44800000	0,00000000	0,0000000	0,0000000	000000000	0,00000000	0,00000000	20
63	0	Бульдозерная планировка	НМУ	2908	6053		 	 			 0,400000	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,32000000	0,000000000	0,0000000	0,0000000	0,00000000	0,00000000	0,000000000	20
76	1	скального грунта Разработка скального грунта с	Мероприятия по	2908	6054			 			 1,120000	0,0000000	0.0000000	0.00000000	0.00000000	0,0000000,0 00000000,0	0,89600000	0,0000000,0	0.0000000	0,0000000	00000000	0.00000000	0.00000000	20
	Ремонт	погрузкой Транспортировка	сокращению выбросов по												.,,			·	·		,		.,	
76	крепления дамбы	скального грунта Выгрузка скальног	первому режиму работы	2908	6055		 	 			 0,249700	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,19976000	0,00000000	0,0000000	0,0000000	0,000000000	0,00000000	0,00000000	20
76	откосов	грунта Планировочные	предприятия при		6056		 	 			 1,120000	0,0000000	0,00000000			0,00000000 0,000000000	0,89600000	0,000000000	0,0000000			0,00000000		20
76	1	работы бульдозеро	111/13	2908	6057		 	 			 0,800000	0,0000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,64000000	0,000000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
50-		Разработка скального грунта ф 0-300 мм (среднее 150 мм) с погрузко	Monormuguuguug	2908	6058		 	 			 0,000000	0,5600000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,44800000	0,0000000	0,000000	0,00000000	0,00000000	0,00000000	20
50	сосредоточенны	Транспортировка скального грунта с ⁶ карьера Анненский	выбросов по первому режиму	2908	6059		 	 			 0,000000	0,1884000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,15072000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
50-	выпуски (пирса	Выгрузка скальног грунта	работы предприятия при НМУ	2908	6060		 	 			 0,000000	0,5600000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,44800000	0,0000000	0,0000000	0,000000000	0,00000000	0,000000000	20
50	4	Планировка скального грунта		2908	6061		 	 			 0,000000	0,4000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,32000000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
		(гребня насыпи) Разработка																						
11:	3	скального грунта ф 0-20 мм (среднее 10 мм) с погрузкой	 Мероприятия по сокращению 	2908	6062		 	 			 0,000000	1,6800000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	1,34400000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
11:	Устройство дорожного полот	Транспортировка скального грунта с		2908	6063		 	 			 0,000000	0,1884000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,15072000	0,0000000	0,0000000	0,000000000	0,00000000	0,00000000	20
11:	с уплотнением	карьера Анненский Выгрузка скальног грунта	работы предприятия при НМУ	2908	6064		 	 			 0,000000	1,6800000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	1,34400000	0,00000000	0,0000000	0,00000000	0,00000000	0,000000000	20
113		грунта Планировочные работы бульдозеро	1	2908	6065		 	 			 0,000000	1,2000000		0,00000000		0,00000000 0,000000000		· ·		0,0000000			·	20
9		Разработка пульпь с погрузкой		2908	6066		 	 			 0,000000	1,1667000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,93336000	0,0000000	0,0000000	0,00000000	0,00000000	0,00000000	20
9	Расчистка б/у тру от пульпы	Транспортировка	выбросов по первому режиму	2908	6067		 	 			 0,000000	0,0098000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,00784000	0,0000000	0,0000000	0,000000000	0,00000000	0,00000000	20
9		пульпы Выгрузка пульпы	работы предприятия при	2908	6068		 	 			 0,000000	1,1667000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,93336000	0,00000000	0,0000000	0,000000000	0,00000000	0,000000000	20
									,							-								_

9		Планировочные	НМУ	2908	6069	 	 	 	 	 0.000000	0.8333000	0.00000000	0.000000000	0.00000000	0,00000000 0,00000000	0.00000000	0.66664000	0.0000000	0.0000000	.000000000	0.000000000	0.000000000	20
274	Планировка поверхности гребы	работы бульдозеро Планировка поверхности гребн: бульдозером	Мероприятия по сокращению выбросов по первому режиму работы предприятия пре		6070	 	 	 	 	 0,000000					0,00000000 0,00000000								
273		Разработка скального грунта с погрузкой	Мероприятия по	2908	6071	 	 	 	 	 0,000000	0,5600000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,44800000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
273	Нанесение скального грунта поверхность гребн	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по первому режиму	2908	6072	 	 	 	 	 0,000000	0,2742000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,21936000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
273	ограждающей дамбы участка 1	Выгрузка скального грунта	работы предприятия при	2908	6073	 	 	 	 	 0,000000	0,5600000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,44800000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
273		Бульдозерная планировка скального грунта	НМУ	2908	6074	 	 	 	 	 0,000000	0,4000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,32000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
296	Планировка поверхности гребь	Планировка	Мероприятия по сокращению выбросов по первому режиму работы предприятия при НМУ	2908	6075	 	 	 	 	 0,000000,0	0,4000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,32000000	0,000000,0	0,00000000	,000000000	0,00000000	0,00000000,0	20
294	.,,	Разработка скального грунта с погрузкой	Мероприятия по	2908	6076	 	 	 	 	 0,000000	0,5600000	0,00000000	0,00000000	0,00000000	0,0000000,0	0,00000000	0,44800000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
294	Нанесение скального грунта п поверхность гребн ограждающей	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по первому режиму	2908	6077	 	 	 	 	 0,000000	0,2252000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,18016000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
294	дамбы участка 1	Выгрузка скального грунта	работы предприятия при НМУ	2908	6078	 	 	 	 	 0,000000	0,5600000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,44800000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
294		Бульдозерная планировка скального грунта	HIVIY	2908	6079	 	 	 	 	 0,000000	0,4000000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,32000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
605	Планировка поверхности гребь	Планировка	Мероприятия по сокращению выбросов по первому режиму работы предприятия при НМУ	2908	6080	 	 	 	 	 0,000000,0	0,4000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,32000000	0,000000,0	0,000000,0	,000000000	0,00000000	0,00000000,0	20
605		Разработка скального грунта с погрузкой	Мероприятия по	2908	6081	 	 	 	 	 0,000000	0,5600000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,44800000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
605	поверхность гребы	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по первому режиму работы	2908	6082	 	 	 	 	 0,000000	0,2252000	0,0000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,18016000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
605	дамбы участка 2		раооты предприятия при НМУ	2908	6083	 	 	 	 	 0,000000	0,5600000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,44800000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
605		Бульдозерная планировка скального грунта		2908	6084	 	 	 	 	 0,000000	0,4000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,32000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
569	Планировка поверхности гребн	Планировка поверхности гребна бульдозером	Мероприятия по сокращению выбросов по первому режиму работы предприятия при НМУ	2908	6085	 	 	 	 	 0,000000	0,8000000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,0000000	0,64000000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
570	Нанесение	Разработка скального грунта с погрузкой	сокращению	2908	6086	 	 	 	 	 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,0000000,0	0,00000000	0,89600000	0,0000000	0,0000000	,000000000	0,00000000	0,00000000	20
570		Транспортировка скального грунта с карьера Анненский	выбросов по первому режиму работы предприятия при	2908	6087	 	 	 	 	 0,000000	0,2252000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,18016000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20
570	-	Выгрузка скального грунта	НМУ	2908	6088	 	 	 	 	 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,89600000	0,0000000	0,0000000	,00000000	0,00000000	0,00000000	20

		г						1	1		-	7			İ	1 1	1	1	1	i	i i	İ		ı	1 1
570		Бульдозерная планировка скального грунта		2908	6089					 		 0,000000	0,8000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,64000000	0,0000000	0,0000000	00000000	0,00000000	0,00000000	20
117		Срезка болотной растительности с	Мероприятия по сокращению	2908	6090					 		 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,89600000	0,0000000	0,0000000	000000000	0,00000000	0,00000000	20
117		погрузкой Транспортировка болотной	выбросов по первому режиму работы	2908	6091					 		 0,000000	0,1493000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,11944000	0,00000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
117		растительности Выгрузка болотной растительности	предприятия при НМУ	2908	6092					 		 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,89600000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
295		Разработка скального грунта с		2908	6093					 		 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,89600000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
295	Формирование	погрузкой Транспортировка скального грунта	сокращению выбросов по первому режиму	2908	6094					 		 0,000000	0,4259000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,34072000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
295	грунта	Выгрузка скального грунта	работы предприятия при	2908	6095					 		 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,89600000	0,0000000	0,0000000	00000000	0,00000000	0,00000000	20
295		Планировочные работы бульдозерог	НМУ	2908	6096					 		 0,000000	0,8000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,64000000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
278		Срезка болотной растительности с погрузкой	Мероприятия по сокращению	2908	6097					 		 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,89600000	0,0000000	0,0000000	00000000	0,00000000	0,00000000	20
278	Срезка болотной растительности	Транспортировка болотной растительности	выбросов по первому режиму работы	2908	6098					 		 0,000000	0,1493000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,11944000	0,00000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
278	-	Выгрузка болотной растительности	предприятия при НМУ	2908	6099					 		 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,89600000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
486		Разработка скального грунта с погрузкой	Мероприятия по сокращению	2908	6100					 		 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,000000000 0,000000000	0,00000000	0,89600000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
486		Транспортировка скального грунта	выбросов по первому режиму	2908	6101					 		 0,000000	0,4259000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,34072000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
486	грунта вдоль низового откоса	D	работы предприятия при	2908	6102					 		 0,000000	1,1200000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,89600000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
486		Планировочные работы бульдозерог	НМУ	2908	6103					 		 0,000000	0,8000000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,64000000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
745		Разработка скального грунта с погрузкой	Мероприятия по	2908	6104	-				 		 0,000000	1,6800000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	1,34400000	0,0000000	0,0000000	00000000	0,00000000	0,00000000	20
745	-	Транспортировка скального грунта	сокращению выбросов по	2908	6105					 		 0,000000	0,6388000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,51104000	0,0000000	0,0000000 0,	00000000	0,00000000	0,000000000	20
745	Отсыпка пригруз	Выгрузка скального грунта	первому режиму работы	2908	6106					 		 0,000000	1,6800000	0,00000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	1,34400000	0,0000000	0,0000000	00000000	0,00000000	0,00000000	20
745		Планировка горизонтальных и наклонных	предприятия при НМУ	2908	6107					 		 0,000000	1,2000000	0,00000000	0,00000000	0,00000000	0,000000000	0,00000000	0,96000000	0,0000000	0,0000000 0,	00000000	0,00000000	0,00000000	20
595		поверхностей Очистка русла дренажного канала от наносов с		2908	6108					 		 0,000000	0,0000000	1,66670000	0,00000000	0,000000000	0,00000000 0,00000000	0,00000000	0,000000000	1,3333600	0,0000000 0,	00000000	0,00000000	0,00000000	20
		погрузкой Транспортировка	Мероприятия по сокращению				_																		
595	Очистка русла дренажного канал	хвостов в чашу хвостохранилища Выгрузка хвостов в	выбросов по первому режиму	2908	6109		-			 		 0,000000	0,0000000	0,05020000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,00000000	0,0401600	0,0000000 0,	00000000	0,00000000	0,00000000	20
595		чаше хвостохранилища	работы предприятия при НМУ	2908	6110					 		 0,000000	0,0000000	2,33330000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,00000000	1,8666400	0,0000000	00000000	0,00000000	0,00000000	20
595		Разравнивание хвостов в чаше хвостохранилища		2908	6111					 		 0,000000	0,0000000	1,66670000	0,00000000	0,00000000	0,000000000 0,000000000	0,00000000	0,00000000	1,3333600	0,0000000 0,	00000000	0,00000000	0,00000000	20
840		Разработка скального грунта с погрузкой	Мероприятия по	2908	6112					 		 0,000000	0,0000000	0,56000000	0,00000000	0,00000000	0,00000000 0,000000000	0,00000000	0,00000000	0,4480000	0,0000000	00000000	0,00000000	0,00000000	20
840	Закрепление откосов и дна дренажного канал	Транспортировка скального грунта с	сокращению выбросов по первому режиму	2908	6113					 		 0,000000	0,0000000	0,27420000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,00000000	0,2193600	0,0000000 0,	00000000	0,00000000	0,00000000	20
840	скальным грунтог	карьера Анненский Выгрузка скального грунта	работы предприятия при НМУ	2908	6114					 		 0,000000	0,0000000	0,56000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,00000000	0,4480000	0,0000000 0,	00000000	0,00000000	0,00000000	20
840		Бульдозерная планировка	11171.7	2908	6115					 		 0,000000	0,0000000	0,40000000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,000000000	0,3200000	0,0000000 0,	00000000	0,00000000	0,00000000	20

		скального грунта		[ĺ						1	
441		Разработка скального грунта с	Maria	2908	6116		 	 		 	0,000000	0,0000000	0,56000000	0,00000000	0,0000000 0,0000	0,00000000	0,00000000	0,00000000	0,4480000 0,000000	0,000000000 0,000	00000 0,000	000000	20
441	Перекрытие скальным грунтом	погрузкой Транспортировка скального грунта с	Мероприятия по сокращению выбросов по	2908	6117		 	 		 	0,000000	0,0000000	0,27420000	0,00000000	0,0000000 0,0000	0000000000	0,00000000	0,00000000	0,2193600 0,000000	0,000000000 0,000	00000 0,000	000000	20
441	наносов из дренажного канал	карьера Анненскии Выгрузка скального	работы	2008	6118		 	 		 	0,000000	0,0000000	0,56000000	0,00000000	0,000,0	000000000	0,00000000	0,00000000	0,4480000 0,000000	0,00,00000000,0	000,0 000000	000000	20
441		грунта Бульдозерная планировка	предприятия при НМУ	2908	6119		 	 		 	0,000000	0.0000000		0.00000000		0,00000000				0.0000000000000000000000000000000000000		000000	20
		скального грунта Разработка											, , , , , , , , , ,					·					
1400		скального грунта с погрузкой	Мероприятия по сокрашению	2908	6120		 	 		 	0,000000	1,6800000	1,68000000	1,68000000	1,68000000 0,0000	0,00000000	0,00000000	1,34400000	1,3440000 1,344000	1,34400000 0,000	00000 0,000	000000	20
	Ремонт поверхност хвостохранилища	Транспортировка скального грунта Выгрузка скального	выбросов по первому режиму	2908	6121		 	 		 	0,000000	0,8959000	0,89590000			-				0,71672000 0,000		000000	20
1400	ограждающих дам	грунта Бульдозерная	работы предприятия при	2908	6122		 	 		 	0,000000	1,6800000	1,68000000	1,68000000	1,6800000 0,0000	0,00000000	0,00000000	1,34400000	1,3440000 1,344000	1,34400000 0,000	000,0000000	000000	20
1400		планировка скального грунта	НМУ	2908	6123		 	 		 	0,000000	1,2000000	1,20000000	1,20000000	1,20000000 0,0000	0,0000000	0,00000000	0,96000000	0,9600000 0,960000	0,96000000 0,000	0,000 0,000	000000	20
			Мероприятия по сокращению																				
388		Буровые работы пр организации КИА	первому режиму	2908	6124		 	 		 	0,000000	0,0000000	0,10000000	0,00000000	0,00000000 0,0000	0,0000000	0,00000000	0,00000000	0,0800000 0,000000	0,000000000 0,000	0,000 0,000	000000	20
			работы предприятия при НМУ																				
5024		Разработка скального грунта с	Мероприятия по	2908	6125		 	 		 	0,000000	0,0000000	0,00000000	0,00000000	3,36000000 3,3600	0000 3,36000000	0,00000000	0,00000000	0,0000000 0,000000	2,68800000 2,688	300000 2,688	800000	20
5024	Рекультивация	погрузкой Транспортировка	сокращению выбросов по	2908	6126		 	 		 	0,000000	0,0000000	0,00000000	0,00000000	1,3439000(1,3439	000(1,34390000	0,00000000	0,00000000	0,000000,0 0,000000,0	1,07512000 1,075	512000 1,075	512000	20
5024	пляжей хвостохранилища	скального грунта Выгрузка скального	первому режиму работы	2908	6127		 	 		 	0,000000	0,0000000	0,00000000	0,00000000	3,36000000 3,3600	000(3,36000000	0,000000000	0,00000000	0,0000000 0,000000	2,68800000 2,688	300000 2,688	800000	20
5024		грунта Бульдозерная планировка	предприятия при НМУ	2908	6128		 	 		 	0,000000	0,0000000	0,00000000	0,00000000	2,4000000 2,4000	000(2,40000000	0,00000000	0,00000000	0,0000000 0,000000	1,92000000 1,920	000000 1,920	000000	20
	Засыпка устья	скального грунта Разработка																					
10	водосбросных колодцев ВК-2, ВН		сокращению	2908	6129		 	 		 	0,000000	0,0000000	0,00000000	0,00000000	0,00000000 0,0000	0000 1,12000000	0,00000000	0,00000000	0,0000000 0,000000	0,000000000 0,000	000000 0,896	600000	20
10	3 и засыпка пространства образованного	Транспортировка скального грунта	выбросов по первому режиму работы	2908	6130		 	 		 	0,000000	0,0000000	0,00000000	0,00000000	0,00000000 0,0000	0000 0,29860000	0,00000000	0,00000000	0,0000000 0,000000	0,000000000 0,000	000000 0,238	888000	20
10	после установки фундаментных	грунта	предприятия при НМУ	2908	6131		 	 		 	0,000000	0,0000000	0,00000000	0,00000000	0,0000000 0,0000	000(1,12000000	0,00000000	0,00000000	0,0000000 0,000000	0,000000000 0,000	000000 0,896	600000	20
10	блоков	Планировочные работы бульдозерог		2908	6132		 	 		 	0,000000	0,0000000	0,00000000	0,00000000	0,00000000 0,0000	0,80000000	0,00000000	0,00000000	0,0000000 0,000000	0,000000000 0,000	000000 0,640	000000	20
				123			 	 		 	0,054700	0,0547000	0,05470000	0,00000000	0,05470000 0,0000	0,05470000	0,04376000	0,04376000	0,0437600 0,000000	0,04376000 0,000	000000 0,043	376000	20
-		Газовая резка		143	6133		 	 		 	0,000800	0,0008000	0,00080000	0,00000000	0,00080000 0,0000	000080000	0,00064000	0,00064000	0,0006400 0,000000	0,00064000 0,000	00000 0,000	064000	20
				337		1	 	 	-	 	0,018100	0,0181000	0,01810000	0,00000000	0,01810000 0,0000	0,0181000	0,01448000	0,01448000	0,0144800 0,000000	0,01448000 0,000	000000 0,014	448000	20
			Мероприятия по	301		-1	 	 		 	0,014800	0,0148000	0,01480000	0,00000000	0,01480000 0,0000	0,01480000	0,01184000	0,01184000	0,0118400 0,000000	0,01184000 0,000	000000 0,011	184000	20
-		Сварочные работы	сокращению выбросов по	301	6134		 	 		 	0,002600	0,0039000	0,00420000	0,00000000	0,00310000 0,0000	0,00310000	0,00208000	0,00312000	0,0033600 0,000000	0,00248000 0,000	000000 0,002	248000	20
	Сварочные работи		первому режиму работы	123			 	 		 	0,013800	0,0310000	0,01670000	0,00000000	0,02270000 0,0000	0000 0,02270000	0,01104000	0,02480000	0,0133600 0,000000	0,01816000 0,000	000000 0,018	816000	20
			предприятия при	143			 	 		 	0,000800	0,0015000	0,00090000	0,00000000	0,00110000 0,0000	0,00110000	0,00064000	0,00120000	0,0007200 0,0000000	0,00088000 0,000	00000 0,000	088000	20
			НМУ	2908			 	 		 	0,000640	0,0008100	0,00065000	0,00000000	0,00068000 0,0000	0,00068000	0,00051200	0,00064800	0,0005200 0,000000	0,00054400 0,000	000,00	054400	20
		Сварочные работы		342	6135		 	 		 	0,000300	0,0004000	0,00030000	0,00000000	0,00030000 0,0000	000000000000000000000000000000000000000	0,00024000	0,00032000	0,0002400 0,000000	0,00024000 0,000	000,0 000000	024000	20
				344			 	 		 	0,001300	0,0017000		0,00000000						0,00120000 0,000		120000	20
				301			 	 		 	0,000600	0,0008000		0,00000000		-,	0,00048000	,		0,00056000 0,000		056000	20
				337			 	 		 	0,005300	0,0067000	0,00580000	0,00000000	0,00590000 0,0000	0,00590000	0,00424000	0,00536000	0,0046400 0,000000	0,00472000 0,000	00000d 0,004	472000	20

1	II	1	1 1	1		-	1	1 1		1	1		۱ ۱			İ	1 1	1	I.	1 1		1	1	ĺ	1	1
-		Использование грунтовки ГФ-021	29	902	6136		 						0,137500	0,1375000	0,04580000	0,00000000	0,05960000	0,00000000 0,05960000	0,11000000	0,11000000	0,0366400	0,0000000 0,0	4768000	0,00000000	0,04768000	20
			6	16			 						0,375100	0.3751000	0.12510000	0.00000000	0.16250000	0,00000000 0,16250000	0.30008000	0.30008000	0.1000800	0.0000000 0.1	3000000	0.000000000	0.13000000	20
			l —	902			 						0,092500	0,0925000			0.09250000	0,00000000 0,09250000				0,0000000 0,0				20
	Покрасочные работы	Использование		752	6137		 						0,223600	0,2236000		0,00000000	- 1	0,00000000 0,22360000	0,17888000		0,1192800					20
	pacersi	мастики МБ-50		16	0157								0,301300	0,3013000			0,30130000	0,00000000 0,30130000				0,0000000 0,2		· ·		20
				902									0,137500	0,3013000		· ·	0,00000000			, and the second		0,0000000 0,0		· ·		20
		Использование ПФ	<u>-</u>		6120		 									,										
-		115	0	16	6138		 						0,187500	0,1875000			0,00000000			· ·		0,0000000 0,0		· ·		20
			2	752			 						0,187500	0,1875000	0,06250000	0,00000000	0,00000000	0,00000000 0,00000000	0,15000000	0,15000000	0,0500000	0,0000000 0,0	00000000	0,00000000	0,00000000	20
-	Гидроизоляционн работы	Гидроизоляция	2	754	6139		 						0,000014	0,0000140	0,00001400	0,00000000	0,00000600	0,00000000 0,00000600	0,00001120	0,00001120	0,0000112	0,0000000 0,0	0000480	0,00000000	0,00000480	20
-	Покрасочные	Использование керосина	2'	732	6140	-	 						0,555600	0,5556000	0,27770000	0,00000000	0,55560000	0,00000000 0,55560000	0,44448000	0,44448000	0,2221600	0,0000000 0,4	4448000	0,00000000	0,44448000	20
-	работы	Использование ксилола	6	16	6141		 						0,555600	0,5556000	0,25000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44448000	0,44448000	0,2000000	0,0000000 0,0	0000000	0,00000000	0,00000000	20
		Использование уай спирит	2	752	6142		 						0,555600	0,5556000	0,25000000	0,00000000	0,00000000	0,00000000 0,00000000	0,44448000	0,44448000	0,2000000	0,0000000 0,0	0000000	0,00000000	0,00000000	20
-	Шлифовальные работы	: Шлифовальные машинки	29	930	6143		 						0,005000	0,0050000	0,00000000	0,00000000	0,00500000	0,00000000 0,00500000	0,00400000	0,00400000	0,0000000	0,0000000 0,0	0400000	0,00000000	0,00400000	20
	раооты	машинки	29	902			 						0,007600	0,0076000	0,00000000	0,00000000	0,00760000	0,00000000 0,00760000	0,00608000	0,00608000	0,0000000	0,0000000 0,0	0608000	0,00000000	0,00608000	20
		Использование	14	401	6144		 						0,000000	0,0000000	0,03610000	0,00000000	0,07230000	0,00000000 0,07230000	0,00000000	0,00000000	0,0288800	0,00000000	5784000	0,00000000	0,05784000	20
		растворителя Р-4	12	210	0111		 						0,000000	0,0000000	0,01670000	0,00000000	0,03330000	0,00000000 0,03330000	0,00000000	0,00000000	0,0133600	0,0000000 0,0	2664000	0,00000000	0,02664000	20
			6	21			 						0,000000	0,0000000	0,08610000	0,00000000	0,17230000	0,00000000 0,17230000	0,00000000	0,00000000	0,0688800	0,0000000 0,1	3784000	0,00000000	0,13784000	20
	Покрасочные		l —	902			 						0,000000	0,0000000			0,00000000			0,00000000		0,00000000				20
	работы		1.	401	-		 						0,000000	0,0000000			0,00000000	0,00000000 0,00000000				0,0000000 0,0		·		20
		Использование XB 124	1	210	6145								0,000000	0,0000000			0.00000000			0,00000000		0,0000000 0,0				20
-				21	-																					20
							 						0,000000	0,0000000		0,00000000		0,00000000 0,00000000	0,00000000	0,00000000	0,1257600				0,00000000	
		Использование ГФ 0119		902	6146								0,000000	0,0000000		0,00000000		0,00000000 0,00000000	0,00000000			0,0000000 0,0				20
		0117	0	16			 						0,000000	0,0000000	0,13050000	0,00000000	0,00000000	0,00000000 0,00000000	0,00000000	0,00000000	0,1044000	0,0000000 0,0	00000000	0,00000000	0,00000000	20
-		Выгрузка щебня фр 40-80 мм	29	808	6147		 						1,120000	1,1200000	1,12000000	1,12000000	1,12000000	1,12000000 1,12000000	0,89600000	0,89600000	0,8960000	0,8960000 0,8	9600000	0,89600000	0,89600000	20
-	Ремонт дорог	Разработка (перемещение) щебня автогрейдером	29	908	6148		 	-				***	0,800000	0,8000000	0,80000000	0,80000000	0,80000000	0,80000000 0,80000000	0,6400000	0,64000000	0,6400000	0,640000 0,6	4000000	0,64000000	0,64000000	20
			3	37									0,008000	0,0080000	0,00800000	0,00000000	0,00800000	0,00000000 0,00800000	0,00640000	0,00640000	0,0064000	0,0000000 0,0	0640000	0,00000000	0,00640000	20
			3	04									0,001500	0,0015000	0,00150000	0,00000000	0,00150000	0,00000000 0,00150000	0,00120000	0,00120000	0,0012000	0,0000000 0,0	0120000	0,00000000	0,00120000	20
	Principar		3	01									0,009100	0,0091000	0,00910000	0,00000000	0,00910000	0,00000000 0,00910000	0,00728000	0,00728000	0,0072800	0,0000000 0,0	0728000	0,00000000	0,00728000	20
-	Выработка электроэнергии	дэс	2	754	0149		 	- 2	0,2	4	0,1256	120	0,004000	0,0040000	0,00400000	0,00000000	0,00400000	0,00000000 0,00400000	0,00320000	0,00320000	0,0032000	0,0000000 0,0	0320000	0,00000000	0,00320000	20
			3	28									0,000800	0,0008000	0,00080000	0,00000000	0,00080000	0,00000000 0,00080000	0,00064000	0,00064000	0,0006400	0,0000000 0,0	0064000	0,00000000	0,00064000	20
				30									0,001200	0,0012000			0,00120000	0,00000000 0,00120000				0,0000000 0,0				20
				325									0,000200	0,0002000			0,00020000					0,0000000 0,0				20
				03									0.00000001	0,00000001		0,00000000		0,00000000 0,000000001								20
		1	/	03		_	 						0,0000000					12,3839000 17,5572860				5,900720 15				
													30,0090340	→ /,9301240	19,0204040	7,37390000	19,0/43860	12,3039000 17,3372860	40,08/2432	20,2000992	15,2163/1	5,900/200 15	,7390088	9,90/1200	14,0438288	

Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в период НМУ (2 режим НМУ)

				I m			IVIC	hombi	титин	по сокра	ащенин	о выо	росов заг	рязняющ	их вещест	вватмос	феру в пе	риод пит.	у (2 режи	vi 111v1 <i>3</i>)								
				росоі											Характер	истика источ	ников, на ко	торых прово	дится сниже	ние выбросо	В							
				е выбр		цинаты и карте-сх		ка на						Парамет	ры газовозду	шной смеси	на выходе и	з источника	и характерис	тика выброс	ов после сон	сращения і	выбросов					
График работы источника	Цех, участок (ном предприятия в		Мероприятия на период неблагоприятных метеорологическим условий	которым пр	Номер на карте- схеме объекта (города)		ика, на вто и ко иков лин ого исто а	орого онца ейного очника	высота, м	диаметр источника выбросов, м		,объем, м3/с	гемпература °С	ı,	МОЩ	ность выбро	сов без учета	а мероприяти	й, г/с			Mo	ощность выб	бросов посл	е мероприяті	тй, г∕с		ь эффективности мероприятий, %
				Вещества, по		X1/Y	1 X	2/Y2						2023 год	2024 год	2025 год	2026 - 2041 гг.	2042 год	2043 год	2044 год	2023 год	2024 год	2025 год	2026 - 2041 гг.	2042 год	2043 год	2044 год	Степень
1	2	2	3	4	5	6		7	8	9	10	11	12				13							14				15
													Второї	й режим раб	оты предпри	ятия при Н	МУ											
769		Разработка скального грунта фр. 0-300 мм (среднее 150 мм) с погрузкой	- Мероприятия по	2908	6001									0,560000	0,0000000	0,00000000	0,00000000,0	0,00000000	0,00000000	0,000000000	0,336000000	00,000000	0,000000	0,0000000	0,000000000	0,00000000	000000000,000	40
769	Устройство насыпи под сосредоточенные выпуски (пирса)	с карьера Анненский	сокращению выбросов по второму режиму работы	2908	6002									0,188400	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,113040000	00,000000	0,000000	0,0000000	0,000000000	0,000000000	0,000000000	40
769	bbillyeur (impeu)	Выгрузка скального грунта	предприятия при НМУ	2908	6003									0,560000	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,336000000	00,0000000	0,000000	0,0000000	0,000000000	0,00000000	0,000000000	40
769		Планировка скального грунта (гребня насыпи)		2908	6004									0,400000	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,24000000	00,000000	0,000000	0,0000000	0,000000000	0,000000000	0000000000	40
243		Разработка скального грунта фр. 0-20 мм (среднее 10 мм) с погрузкой	Мероприятия по сокрашению	2908	6005									1,680000	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	1,008000000	00,000000	0,000000	0,0000000	0,000000000	0,000000000	00,000000000	40
243	Устройство дорожного полотна с уплотнением	Транспортировка а скального грунта а с карьера Анненский	выбросов по второму режиму работы предприятия при	2908	6006									0,188400	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,113040000	00,000000	0,000000	0,0000000	0,000000000	0,000000000	0,000000000	40
243		Выгрузка скального грунта	LIMA	2908	6007									1,680000	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	1,008000000	0,0000000	0,000000	0,0000000	0,000000000	0,00000000	00,000000000	40
243		Планировочные работы бульдозером		2908	6008									1,200000	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,720000000	00,0000000	0,000000	0,0000000	0,000000000	0,000000000	0,000000000	40
9		Разработка пульпы с погрузкой	Мероприятия по сокращению	2908	6009									1,166700	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,700020000	0,000000	0,000000	0,0000000	0,000000000	0,00000000	0,000000000	40
9	Расчистка б/у труб от пульпы	Транспортировка пульпы на хвостохранилище	выбросов по второму режиму	2908	6010									0,009800	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,005880000	0,0000000	00,000000	0,0000000	0,000000000	0,000000000	0,000000000	40
9		Выгрузка пульпы Планировочные	работы предприятия при НМУ	2908	6011	-								1,166700	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,700020000	0,000000	0,000000	0,0000000	0,000000000	0,000000000	0,000000000	40
9		работы бульдозером Выполаживание	Мероприятия по	2908	6012	-								0,833300	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,499980000	0,0000000	0,000000	0,0000000	0,000000000	0,000000000	000000000000000000000000000000000000000	40
3082	Выполаживание хвостов на откосах	хвостов на откосах	сокращению выбросов по второму режиму	2908	6013									1,250000	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,750000000	0,000000	0,000000	0,0000000	0,000000000	0,000000000	00,000000000	40
3264		выположенных поверхностей	работы предприятия при	2908	6014	-								0,833300	0,0000000	0,00000000	0,000000000	0,00000000	0,00000000	0,000000000	0,499980000	00,0000000	0,000000	0,0000000	0,000000000	0,000000000	0,000000000	40

			НМУ											1						1
1120		Разработка скального грунта с погрузкой	Мероприятия по	2908	6015	 	 	 	 	1,680000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000001,008000000	0,00000000 0,0000000	0,0000000	0,000000000	0,0000000000,0000000000	40
1120	Нанесение скального грунта на поверхность откосов	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по второму режиму работы	2908	6016	 	 -	 	 	0,822500	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,493500000	0,00000000 0,0000000	0,0000000	0,000000000,0	000000000,0000000000,0	40
1120		Выгрузка скального грунта	предприятия при НМУ	2908	6017	 	 	 	 	1,680000	0,0000000	0,000000000 0,0000000000	0,00000000	0,00000000	0,0000000001,008000000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000,000000000	40
1120		Бульдозерная планировка скального грунта		2908	6018	 -	 	 	 	1,200000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,720000000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
298		Разработка наносов хвостов бульдозерами	Monormugawa wa	2908	6019	 	 	 	 	1,666700	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000001,000020000	0,00000000 0,00000000	0,0000000	0,000000000	0,00000000,000000000	40
298	Очистка откосов северной	Погрузка хвостов	Мероприятия по сокращению выбросов по	2908	6020	 	 	 	 	2,333300	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000001,399980000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
298	ограждающей	Транспортировка хвостов в чашу хвостохранилища	второму режиму работы	2908	6021	 -	 	 	 	0,031800	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,019080000	0,00000000	0,0000000	0,000000000	0,00000000,000000000	40
298	o	Выгрузка хвостов в чаше хвостохранилиша	предприятия при НМУ	2908	6022	 	 	 	 	2,333300	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000001,399980000	0,00000000	0,0000000	0,000000000	0,000000000,0000000000	40
298		Разравнивание хвостов в чаше хвостохранилища		2908	6023	 	 	 	 	1,666700	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000001,000020000	0,00000000 0,00000000	0,0000000	0,000000000	0,000000000,0000000000	40
221		Разработка скального грунта		2908	6024	 	 	 	 	0,560000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,336000000	0,00000000 0,00000000	0,0000000	0,000000000	0,000000000,0000000000	40
221	Пополити	с погрузкой Транспортировка скального грунта	Мероприятия по сокращению выбросов по	2908	6025	 	 	 	 	0,225200	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,135120000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
221	Перекрытие скальным грунтом	с карьера Анненский Выгрузка	второму режиму работы	2000	6026					0.550000		0.0000000000000000000000000000000000000	0.0000000	0.0000000						
221		скального грунта Бульдозерная	предприятия при НМУ			 	 	 	 	0,560000					0,000000000000,336000000					40
221		планировка скального грунта		2908	6027	 	 	 	 	0,400000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,240000000	0,00000000 0,0000000	0,0000000	0,000000000	0,00000000000,0000000000	40
618	Ремонт	Разработка скального грунта с погрузкой	Мероприятия по сокрашению	2908	6028	 	 	 	 	0,560000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,336000000	0,00000000 0,00000000	0,0000000	0,000000000	0,00000000,0000000000	40
618	конструкций крепления дамбы на	Транспортировка скального грунта	выбросов по второму режиму	2908	6029	 	 	 	 	0,225200	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,135120000	0,00000000 0,00000000	0,0000000	0,000000000	0,000000000,0000000000	40
618	участках очистки откосов	Выгрузка скального грунта	работы предприятия при	2908	6030	 	 	 	 	0,560000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,000000000000,336000000	0,00000000 0,0000000	0,0000000	0,000000000	0,0000000000,0000000000	40
618		Планировочные работы бульдозером	НМУ	2908	6031	 -	 	 	 	0,400000	0,0000000	0,000000000 0,0000000000	0,00000000	0,00000000	0,000000000000,240000000	0,00000000 0,0000000	0,0000000	0,000000000	0,00000000,0000000000	40
425		Разработка наносов хвостов бульдозерами		2908	6032	 	 	 	 	1,666700	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000001,000020000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
425	0	Погрузка хвостов	Мероприятия по	2908	6033	 	 	 	 	2,333300	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000001,399980000	0,00000000 0,0000000	0,0000000	0,000000000	0,0000000000,0000000000	40
425	Очистка откосов северной ограждающей	Транспортировка хвостов в чашу хвостохранилища	сокращению выбросов по второму режиму	2908	6034	 -	 	 	 	0,031800	0,0000000	0,000000000	0,00000000	0,00000000	0,000000000000,019080000	0,00000000 0,00000000	0,0000000	0,000000000	0,0000000000,0000000000	40
425	дамбы на участке 2 о	Выгрузка хвостов в чаше хвостохранилища	работы предприятия при НМУ	2908	6035	 	 	 	 	2,333300	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000001,399980000	0,00000000 0,0000000	0,0000000	0,000000000	0,00000000,000000000,0	40
425		Разравнивание хвостов в чаше хвостохранилища		2908	6036	 	 	 	 	1,666700	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000001,000020000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
315		Разработка скального грунта с погрузкой	Мероприятия по сокращению	2908	6037	 	 	 	 	0,560000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,000000000000,336000000	0,00000000 0,00000000	0,0000000	0,000000000	0,000000000,0000000000	40
315	Перекрытие скальным грунтом	Транспортировка скального грунта с карьера Анненский	выбросов по второму режиму работы предприятия при	2908	6038	 	 	 	 	0,225200	0,0000000	0,000000000 0,0000000000	0,00000000	0,00000000	0,000000000000,135120000	0,00000000 0,00000000	0,0000000	0,000000000	0,00000000,0000000000	40
315		Выгрузка	НМУ	2908	6039	 	 	 	 	0,560000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,336000000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40

		скального грунта		[1		1				1
315		Бульдозерная планировка скального грунта		2908	6040	 	 	 	 	0,400000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,240000000 0,00000000 0,0000000 0,0000000	00,000000000000000000000000000000000000	000 40
983	_	Разработка скального грунта с погрузкой	Мероприятия по	2908	6041	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000	0.00000000 0.00000000 0.0000000000 0.336000000 0.00000000 0.0000000 0.0000000	00,000000000,0000000000,00000000	000 40
983	Ремонт конструкций	Транспортировка скального грунта	сокращению выбросов по	2908	6042	 	 	 	 	0,225200	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,0000000000,135120000 0,00000000 0,0000000 0,0000000	00,00000000,0000000000,000000000	000 40
983	крепления дамбы н участках очистки	Выгрузка скального грунта	второму режиму работы	2908	6043	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,00000000000,3360000000 0,00000000 0,00000000	00,000000000,0000000000,000000000	000 40
983	откосов	Планировочные работы бульдозером	предприятия при НМУ	2908	6044	 	 	 	 	0,400000	0,0000000	0,00000000	0,000000000	0.00000000 0.00000000 0.000000000 0.240000000 0.00000000 0.0000000 0.0000000	00,000000000,0000000000,00000000	000 40
850		Разработка наносов хвостов бульдозерами		2908	6045	 	 	 	 	1,666700	0,0000000	0,00000000	0,000000000	0.00000000 0.00000000 0.000000000 1.000020000 0.00000000 0.0000000 0.0000000	00,000000000,0000000000,00000000	000 40
850		Погрузка хвостов	1 1	2908	6046	 	 	 	 	2,333300	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 1,399980000 0,00000000 0,00000000 0,0000000	00,000000000,0000000000,00000000	000 40
850	Разработка наносог хвостов	хвостохранилища	сокращению выбросов по второму режиму	2908	6047	 	 	 	 	0,050200	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,030120000 0,00000000 0,0000000 0,0000000	00,00000000,000000000,00000000	000 40
850		Выгрузка хвостов в чаше хвостохранилища	работы предприятия при НМУ	2908	6048	 	 	 	 	2,333300	0,0000000	0,00000000	0,000000000	0,0000000 0,0000000 0,00000000 1,399980000 0,0000000 0,0000000 0,0000000	00,000000000,000000000,00000000	000 40
850		Разравнивание хвостов в чаше хвостохранилища		2908	6049	 	 	 	 	1,666700	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 1,000020000 0,00000000 0,00000000 0,0000000 0,000000	00,000000000,0000000000,00000000	000 40
630		Разработка скального грунта с погрузкой	Мероприятия по	2908	6050	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,336000000 0,00000000 0,0000000 0,0000000 0,000000	00,000000000,000000000,00000000	000 40
630	Перекрытие скальным грунтом	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по второму режиму работы	2908	6051	 	 	 	 	0,225200	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,135120000 0,00000000 0,00000000 0,0000000	00,00000000000,0000000000,00000000	000 40
630		Выгрузка скального грунта	предприятия при	2908	6052	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,336000000 0,00000000 0,00000000 0,0000000	00,0000000000,00000000000,00000000	000 40
630		Бульдозерная планировка скального грунта	HIVIY	2908	6053	 	 	 	 	0,400000	0,0000000	0,00000000	0,000000000	0.00000000 0.00000000 0.000000000 0.240000000 0.00000000 0.0000000 0.0000000	00,000000,00000000,000000000,000	000 40
761	Payour	Разработка скального грунта с погрузкой	Мероприятия по	2908	6054	 	 	 	 	1,120000	0,0000000	0,00000000	0,000000000	0.00000000 0.00000000 0.000000000 0.672000000 0.00000000 0.0000000 0.0000000	00,000000,00000000,000000000,000	000 40
761	Ремонт конструкций	Транспортировка скального грунта	сокращению выбросов по	2908	6055	 	 	 	 	0,249700	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,149820000 0,00000000 0,0000000 0,0000000	00,0000000000,00000000000,00000000	000 40
761	крепления дамбы н участках очистки откосов	Выгрузка скального грунта	второму режиму работы предприятия при	2908	6056	 	 	 	 	1,120000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,672000000 0,00000000 0,0000000 0,0000000	00,00000000,0000000000,000000000	000 40
761	OTROCOB	Планировочные работы бульдозером	нредприятия при НМУ	2908	6057	 	 	 1	 	0,800000	0,0000000	0,00000000	0,000000000	0.00000000 0.00000000 0.000000000 0.480000000 0.00000000 0.0000000 0.0000000	0000000,000000000,0000000000,00	000 40
504		Разработка скального грунта фр. 0-300 мм (среднее 150 мм) с погрузкой	Мероприятия по	2908	6058	 	 	 	 	0,000000	0,5600000	0,00000000	0,000000000,0	0,00000000 0,00000000 0,000000000 0,000000	0000000,000000000,0000000000,000	900 40
504	Наращивание насыпи под сосредоточенные	Транспортировка скального грунта с карьера	сокращению выбросов по второму режиму работы	2908	6059	 	 	 	 ***	0,000000	0,1884000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,000000	00,000000000000000000000000000000000000	000 40
504	выпуски (пирса)	Анненский Выгрузка	предприятия при НМУ	2908	6060	 	 	 	 	0,000000	0,5600000	0,00000000	0,000000000	0,00000000 0,00000000 0,0000000000,000000	00,00000000,0000000000,00000000	000 40
504		скального грунта Планировка скального грунта (гребня насыпи)		2908	6061	 	 	 	 	0,000000	0,4000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,000000	00,00000000000,0000000000,00000000	000 40
113	Устройство дорожного полотна	Разработка скального грунта фр. 0-20 мм (среднее 10 мм) с	Мероприятия по сокращению выбросов по второму режиму	2908	6062	 	 	 	 	0,000000	1,6800000	0,00000000	0,000000000	0,0000000 0,0000000 0,00000000 0,0000000	00,0000000,000000000,0000000000,00	000 40
113	с уплотнением	Транспортировка скального грунта с карьера Анненский	работы	2908	6063	 	 	 	 	0,000000	0,1884000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,000000	00,00000000,000000000,00000000	000 40

										7	ı		
113	Выгрузка скального грунта		2908	6064		 	 	 	 	0,000000	1,6800000	0,00000000 0,00000000 0,00000000 0,000000	40
113	Планировочные работы бульдозером		2908	6065		 	 	 1	 	0,000000	1,2000000	0,00000000 0,00000000 0,00000000 0,000000	40
9	Разработка пульпы с погрузкой	Мероприятия по	2908	6066		 	 	 	 	0,000000	1,1667000	0.00000000 0.00000000 0.00000000 0.000000	40
9 Расчистка б/у труб	Транспортировка	сокращению выбросов по	2908	6067		 	 	 	 	0,000000	0,0098000	0,00000000 0,00000000 0,00000000 0,000000	40
9 от пульпы	Выгрузка пульпы	второму режиму работы	2908	6068		 	 	 1	 	0,000000	1,1667000	0.00000000 0.00000000 0.00000000 0.000000	40
9	Планировочные работы бульдозером	предприятия при НМУ	2908	6069		 	 	 	 	0,000000	0,8333000	0,00000000 0,00000000 0,00000000 0,000000	40
274 Планировка поверхности гребня	Планировка поверхности гребня бульдозером	Мероприятия по сокращению выбросов по второму режиму работы предприятия при НМУ	2908	6070		 	 	 	 	0,00000,0	0,4000000	0,00000000 0,00000000 0,00000000 0,000000	40
273	Разработка скального грунта с погрузкой	Мероприятия по	2908	6071		 	 	 	 	0,000000	0,5600000	0,00000000 0,00000000 0,00000000 0,000000	40
273 Нанесение скального грунта на поверхность гребня ограждающей		сокращению выбросов по второму режиму работы	2908	6072		 	 	 	 	0,000000	0,2742000	0,00000000 0,00000000 0,00000000 0,000000	40
273 дамбы участка 1 р		предприятия при НМУ	2908	6073		 	 	 	 	0,000000	0,5600000	0,00000000 0,00000000 0,00000000 0,000000	40
273	Бульдозерная планировка скального грунта		2908	6074		 	 	 	 	0,000000	0,4000000	0,00000000 0,00000000 0,00000000 0,000000	40
296 Планировка поверхности гребня	Планировка поверхности гребня бульдозером	Мероприятия по сокращению выбросов по второму режиму работы предприятия при НМУ	2908	6075		 	 	 	 	0,000000	0,4000000	0,00000000 0,00000000 0,00000000 0,000000	40
294	Разработка скального грунта с погрузкой	Мероприятия по	2908	6076		 	 	 	 	0,000000	0,5600000	0,00000000 0,00000000 0,00000000 0,000000	40
	с карьера Анненский	сокращению выбросов по второму режиму работы	2908	6077		 	 	 	 	0,000000	0,2252000	0,00000000 0,00000000 0,00000000 0,000000	40
294 дамбы участка 1 о	Выгрузка скального грунта	предприятия при НМУ	2908	6078		 	 	 	 	0,000000	0,5600000	0,00000000 0,00000000 0,00000000 0,000000	40
	Бульдозерная планировка скального грунта		2908	6079		 	 	 	 	0,000000	0,4000000	0,00000000 0,00000000 0,00000000 0,000000	40
605 Планировка поверхности гребня	Планировка поверхности гребня бульдозером	Мероприятия по сокращению выбросов по второму режиму работы предприятия при НМУ	2908	6080		 	 	 	 	0,000000	0,4000000	0,00000000 0,00000000 0,00000000 0,000000	40
605	Разработка скального грунта с погрузкой	Мероприятия по	2908	6081		 	 	 	 	0,000000	0,5600000	0,00000000 0,00000000 0,00000000 0,000000	40
Нанесение 605 скального грунта на поверхность гребня ограждающей	Анненский	Мероприятия по сокращению выбросов по второму режиму работы	2908	6082		 	 	 	 	0,000000	0,2252000	0.00000000 0.00000000 0.00000000 0.000000	40
605 дамбы участка 2 о	Выгрузка скального грунта	предприятия при НМУ	2908	6083		 	 	 	 	0,000000	0,5600000	0,00000000 0,000000000 0,00000000 0,000000	40
605	Бульдозерная планировка		2908	6084					 	0.000000	0.4000000	0.00000000 0.000000000 0.00000000 0.000000	40

569	Планировка поверхности гребня	Планировка поверхности гребня бульдозером	Мероприятия по сокращению выбросов по второму режиму работы предприятия при НМУ	2908	6085			 	 	 	0,000000	0,8000000	0,00000000 0,000000000	0,00000000	0,00000000	0.0000000000000000000000000000000000000	0,48000000 0,0000000	0,0000000	0,000000000	000000000,0000000000,0	40
570		Разработка скального грунта с погрузкой	Мероприятия по	2908	6086		-	 	 	 	0,000000	1,1200000	0,000000000 0,000000000	0,00000000	0,00000000	0,0000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,00000000,000000000,0	40
570	Нанесение скального грунта на поверхность гребня	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по второму режиму	2908	6087			 	 	 	0,000000	0,2252000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,13512000 0,0000000	0,0000000	0,000000000	0,00000000,000000000	40
570	ограждающей дамбы участка 3 о		работы предприятия при НМУ	2908	6088			 	 	 	0,000000	1,1200000	0,000000000 0,000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000,0	40
570		Бульдозерная планировка		2908	6089			 	 	 	0,000000	0,8000000	0,000000000 0,0000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,48000000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
117		скального грунта Срезка болотной растительности с погрузкой	Мероприятия по сокрашению	2908	6090			 	 	 	0,000000	1,1200000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,00000000,000000000,0	40
117	Срезка болотной растительности	Погрузкой Транспортировка болотной растительности	выбросов по	2908	6091			 	 	 	0,000000	0,1493000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,08958000 0,0000000	0,0000000	0,000000000	000000000,0000000000,0	40
117		Выгрузка болотной растительности	предприятия при НМУ	2908	6092			 	 	 	0,000000	1,1200000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,00000000,0000000000,0	40
295		Разработка скального грунта с погрузкой	Мероприятия по	2908	6093			 	 	 	0,000000	1,1200000	0,000000000 0,0000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
295	Формирование	Транспортировка скального грунта	сокращению выбросов по	2908	6094			 	 	 	0,000000	0,4259000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,25554000 0,0000000	0,0000000	0,000000000	0,00000000,000000000,0	40
295	дрены из скального грунта	Выгрузка скального грунта	второму режиму работы предприятия при	2908	6095		-	 	 	 	0,000000	1,1200000	0,00000000 0,000000000	0,00000000	0,00000000	0,000000000,000000000	0,67200000 0,0000000	0,0000000	0,000000000	000000000,0000000000,0	40
295		Планировочные работы бульдозером	НМУ	2908	6096			 	 	 	0,000000	0,8000000	0,000000000,0000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,48000000 0,0000000	0,0000000	0,000000000	000000000,0000000000,0	40
278		Срезка болотной растительности с погрузкой	Мероприятия по сокращению	2908	6097			 	 	 	0,000000	1,1200000	0,000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,00000000,000000000,0	40
278	Срезка болотной растительности	Транспортировка болотной растительности	выбросов по второму режиму работы	2908	6098			 	 	 	0,000000	0,1493000	0,000000000 0,0000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,08958000 0,0000000	0,0000000	0,000000000	000000000,0000000000,0	40
278		Выгрузка болотной растительности	предприятия при НМУ	2908	6099		-	 	 	 	0,000000	1,1200000	0,00000000 0,000000000	0,00000000	0,00000000	0,0000000000,000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,00000000,000000000,0	40
486		Разработка скального грунта с погрузкой	Мероприятия по сокращению	2908	6100		-	 	 	 	0,000000	1,1200000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,00000000,000000000	40
486	Формирование дрены из скального грунта вдоль		выбросов по второму режиму	2908	6101			 	 	 	0,000000	0,4259000	0,000000000 0,000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,25554000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
486	низового откоса	Выгрузка скального грунта Планировочные	работы предприятия при	2908	6102			 	 	 	0,000000	1,1200000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,000000000	0,67200000 0,0000000	0,0000000	0,000000000	0,00000000,0000000000,0	40
486		гланировочные работы бульдозером	НМУ	2908	6103		-	 	 	 	0,000000	0,8000000	0,000000000 0,0000000000	0,00000000	0,00000000	0,000000000,0000000000	0,48000000 0,00000000	0,0000000	0,000000000	0,000000000,0000000000	40
745		Разработка скального грунта с погрузкой	Мероприятия по	2908	6104			 	 	 	0,000000	1,6800000	0,000000000 0,0000000000	0,00000000	0,00000000	0,00000000000,0000000000	1,00800000 0,0000000	0,0000000	0,000000000	0,000000000,0000000000	40
745		Транспортировка скального грунта	сокращению выбросов по	2908	6105			 	 	 	0,000000	0,6388000	0,000000000 0,000000000	0,00000000	0,00000000	0,00000000,000000000,0	0,38328000 0,0000000	0,0000000	0,000000000	000000000,0000000000	40
745	Отсыпка пригруза	Выгрузка скального грунта	второму режиму работы предприятия при	2908	6106		-	 	 	 	0,000000	1,6800000	0,000000000 0,0000000000	0,00000000	0,00000000	0,0000000000,0000000000	1,00800000 0,0000000	0,0000000	0,000000000	0,0000000000,0000000000	40
745		Планировка горизонтальных и наклонных поверхностей	нредприятия при НМУ	2908	6107		-	 	 	 	0,000000	1,2000000	0,00000000 0,000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,72000000 0,0000000	0,0000000	0,000000000	000000000,0000000000,0	40
595	Очистка русла дренажного канала	Очистка русла дренажного канала от наносов с погрузкой	Мероприятия по сокращению выбросов по второму режиму работы	2908	6108			 	 	 	0,000000	0,0000000	1,66670000 0,0000000000	0,00000000	0,00000000	0,0000000000000000000000000000000000000	0,00000000 1,0000200	0,0000000	0,000000000	0,00000000,0000000000	40

		h-		1 1		 1	1				٦	1	l I	II.	ı	l I	l I	i .	1 1	1 1	1
595		Транспортировка хвостов в чашу хвостохранилища	предприятия при НМУ	2908	6109	 -			 		 0,000000	0,0000000	0,05020000 0,0000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,00000000 0,0301200	0,0000000	0,000000000	0,00000000,0000000000	40
595		Выгрузка хвостов в чаше хвостохранилища		2908	6110	 -			 		 0,000000	0,0000000	2,33330000 0,0000000000	0,00000000	0,00000000	0,00000000000,00000000000	0,00000000 1,3999800	0,0000000	0,000000000	0,000000000,0000000000	40
595		Разравнивание хвостов в чаше хвостохранилища		2908	6111	 -			 		 0,000000	0,0000000	1,66670000 0,0000000000	0,00000000	0,00000000	0,000000000,0000000000,0	0,00000000 1,0000200	0,0000000	0,000000000	0,00000000,0000000000	40
840		Разработка скального грунта с погрузкой	Мероприятия по	2908	6112	 			 		 0,000000	0,0000000	0,56000000 0,000000000	0,00000000	0,00000000	0,000000000,0000000000	0,00000000 0,3360000	0,0000000	0,000000000	0,00000000,000000000	40
840	Закрепление откосов и дна дренажного канала	Транспортировка скального грунта с карьера Анненский	сокращению выбросов по второму режиму	2908	6113	 			 		 0,000000	0,0000000	0,27420000 0,000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,00000000 0,1645200	0,0000000	0,000000000	000000000,00000000000	40
840	скальным грунтом	Выгрузка скального грунта	работы предприятия при	2908	6114	 			 		 0,000000	0,0000000	0,56000000 0,000000000	0,00000000	0,00000000	0,00000000000,0000000000	0,00000000 0,3360000	0,0000000	0,000000000	0,0000000000,0000000000	40
840		Бульдозерная планировка скального грунта	НМУ	2908	6115	 			 		 0,000000	0,0000000	0,40000000 0,0000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,00000000 0,2400000	0,0000000	0,000000000	0,000000000,0000000000	40
441		Разработка скального грунта с погрузкой		2908	6116	 			 		 0,000000	0,0000000	0,56000000 0,0000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,00000000 0,3360000	0,0000000	0,000000000	0,000000000,0000000000	40
441	Перекрытие скальным грунтом наносов из	Транспортировка скального грунта	Мероприятия по сокращению выбросов по второму режиму	2908	6117	 -			 		 0,000000	0,0000000	0,27420000 0,000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,00000000 0,1645200	0,0000000	0,000000000	0,00000000,0000000000	40
441		Выгрузка скального грунта	работы предприятия при	2908	6118	 			 		 0,000000	0,0000000	0,56000000 0,000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,00000000 0,3360000	0,0000000	0,000000000	0,000000000,0000000000,0	40
441		Бульдозерная планировка скального грунта	НМУ	2908	6119	 			 		 0,000000	0,0000000	0,40000000 0,0000000000	0,00000000	0,00000000	0,0000000000,0000000000	0,00000000 0,2400000	0,0000000	0,000000000	0,000000000,0000000000	40
1400		Разработка скального грунта с погрузкой	Мероприятия по	2908	6120	 			 		 0,000000	1,6800000	1,68000000 1,680000000	1,68000000	0,00000000	0,0000000000,0000000000	1,00800000 1,0080000	1,0080000	1,008000000	0,00000000,0000000000	40
	Ремонт поверхности	Транспортировка скального грунта	сокращению выбросов по	2908	6121	 			 		 0,000000	0,8959000	0,89590000 0,895900000	0,89590000	0,00000000	0,0000000000,0000000000	0,53754000 0,5375400	0,5375400	0,537540000	0,000000000,0000000000	40
1400	хвостохранилища и ограждающих дамб	Выгрузка скального грунта	второму режиму работы	2908	6122	 			 		 0,000000	1,6800000	1,68000000 1,680000000	1,68000000	0,00000000	0,00000000000,0000000000	1,00800000 1,0080000	1,0080000	1,008000000	0,0000000000,0000000000	40
1400		Бульдозерная планировка скального грунта	предприятия при НМУ	2908	6123	 			 		 0,000000	1,2000000	1,20000000 1,200000000	1,20000000	0,00000000	0,0000000000,0000000000	0,72000000 0,7200000	0,7200000	0,720000000	0,000000000,0000000000	40
	Восстановление системы КИА	Буровые работы при организации КИА	Мероприятия по сокращению выбросов по второму режиму работы предприятия при НМУ	2908	6124	 -			 		 0,000000	0,0000000	0,10000000 0,000000000	0,00000000	0,00000000	0,0000000000000000000000000000000000000	0,00000000 0,0600000	0,0000000	0,000000000	0,00000000,0000000000,0	40
5024		Разработка скального грунта с погрузкой	Мероприятия по сокращению	2908	6125	 			 		 0,000000	0,0000000	0,000000000 0,000000000	3,36000000	3,36000000	3,3600000000,0000000000	0,0000000,0	0,0000000	2,016000000	2,0160000002,0160000000	40
5024	Рекультивация пляжей	Транспортировка скального грунта	выбросов по второму режиму	2908	6126	 -			 		 0,000000	0,0000000	0,00000000 0,000000000	1,34390000	1,34390000	1,3439000000,0000000000	0,00000000 0,0000000	0,0000000	0,806340000	0,8063400000,806340000	40
5024	хвостохранилища	Выгрузка скального грунта	работы предприятия при	2908	6127	 			 		 0,000000	0,0000000	0,00000000 0,000000000	3,36000000	3,36000000	3,3600000000,000000000	0,00000000 0,0000000	0,0000000	2,016000000	2,0160000002,016000000	40
5024		Бульдозерная планировка скального грунта	НМУ	2908	6128	 -			 		 0,000000	0,0000000	0,00000000 0,000000000	2,40000000	2,40000000	2,4000000000,0000000000	0,00000000 0,0000000	0,0000000	1,440000000	1,4400000001,440000000	40
10	Засыпка устья водосбросных колодцев ВК-2, ВК-	Разработка скального грунта с погрузкой	Мероприятия по сокращению	2908	6129	 			 	-	 0,000000	0,0000000	0,000000000 0,000000000	0,00000000	0,00000000	1,1200000000,0000000000	0,00000000	0,0000000	0,000000000	0,0000000000,672000000	40
10	3 и засыпка пространства	Транспортировка скального грунта	выбросов по второму режиму	2908	6130	 			 		 0,000000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,2986000000,0000000000	0,00000000 0,0000000	0,0000000	0,000000000	0,00000000000,179160000	40
10	образованного после установки	Выгрузка скального грунта	работы предприятия при	2908	6131	 			 		 0,000000	0,0000000	0,000000000 0,000000000	0,00000000	0,00000000	1,1200000000,0000000000	0,00000000 0,0000000	0,0000000	0,000000000	0,00000000000,672000000	40
10	фундаментных блоков	Планировочные работы бульдозером	НМУ	2908	6132	 			 		 0,000000	0,0000000	0,00000000 0,000000000	0,00000000	0,00000000	0,8000000000,000000000	0,00000000 0,0000000	0,0000000	0,000000000	0,0000000000,480000000	40

			7	1						1				ı	ı	1 1	1 1	1 1	1	ı	I I	1 1	
				123		 							0,054700	0.0547000	0.05470000	0,0000000000 0,05470000	0.00000000 0.0547000	000.0328200000.032820	00 0.0328200	0.0000000	0.0328200000.000000000	00.032820000	40
													.,,	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
-		Газовая резка		143	6133	 							0,000800	0,00080000	0,00080000	0,00080000 0,00080000	0,00000000 0,0008000	000,0004800000,000480	00 0,0004800	0,0000000	0,0004800000,000000000	0,000480000	40
				337		 							0,018100	0,0181000	0,01810000	0,000000000 0,01810000	0,00000000 0,0181000	000,0108600000,010860	00 0,0108600	0,0000000	0,0108600000,000000000	0,010860000	40
				301		 							0,014800	0,0148000	0,01480000	0,000000000 0,01480000	0,00000000 0,0148000	00,0088800,000,008880	00 0,0088800	0,0000000	0,008880000,000000000	00,008880000	40
-		Сварочные работы		301	6134	 							0,002600	0,0039000	0,00420000	0,000000000 0,00310000	0,00000000 0,0031000	00,0015600000,002340	00 0,0025200	0,0000000	0,0018600000,000000000	0,001860000	40
	Сварочные работы			123		 							0,013800	0,0310000	0,01670000	0,000000000 0,02270000	0,00000000 0,0227000	000,0082800000,018600	00 0,0100200	0,0000000	0,0136200000,000000000	00,013620000	40
				143		 							0,000800	0,0015000	0,00090000	0,000000000 0,00110000	0,00000000 0,0011000	000,0004800000,000900	00 0,0005400	0,0000000	0,0006600000,000000000	0,000660000	40
				2908		 							0,000640	0,0008100	0,00065000	0,000000000 0,00068000	0,00000000 0,0006800	000,0003840000,000486	00 0,0003900	0,0000000	0,0004080000,000000000	00,000408000	40
		Сварочные работы		342	6135	 							0,000300	0,0004000	0,00030000	0,000000000 0,00030000	0,00000000 0,0003000	000,0001800000,000240	00 0,0001800	0,0000000	0,0001800000,000000000	0,000180000	40
		padorisi		344		 							0,001300	0,0017000	0,00140000	0,000000000 0,00150000	0,00000000 0,0015000	000,0007800000,001020	00 0,0008400	0,0000000	0,000900000,000000000	00,000900000	40
				301		 							0,000600	0,00080000	0,00070000	0,000000000 0,00070000	0,00000000 0,0007000	000,0003600000,000480	00 0,0004200	0,0000000	0,0004200000,000000000	00,000420000	40
				337		 							0,005300	0,0067000	0,00580000	0,000000000 0,00590000	0,00000000 0,0059000	000,0031800000,004020	00 0,0034800	0,0000000	0,0035400000,000000000	00,003540000	40
		Использование грунтовки ГФ-		2902	6136	 							0,137500	0,1375000	0,04580000	0,000000000 0,05960000	0,00000000 0,0596000	000,0825000000,082500	00 0,0274800	0,0000000	0,0357600000,000000000	00,035760000	40
		021		-	0150																		
				616		 							0,375100		-	0,000000000 0,16250000							40
	Покрасочные	Использование		2902		 							0,092500	0,0925000		0,000000000 0,09250000							40
-	работы	мастики МБ-50		2752	6137	 							0,223600	0,2236000		0,000000000 0,22360000		+					40
			Мероприятия по сокращению	616		 							0,301300	0,3013000		0,000000000 0,30130000	<u> </u>	+					40
		Использование	выбросов по	2902		 							0,137500	0,1375000	0,04580000						0,0000000000,000000000		40
-		ПФ-115	второму режиму работы		6138	 							0,187500	0,1875000	-	0,00000000 0,00000000	H	+					40
			предприятия при НМУ	2752		 	-						0,187500	0,1875000	0,06250000	0,000000000 0,00000000	0,00000000 0,0000000	000,11250000000,112500	00 0,0375000	0,0000000	0,00000000000,000000000	00,000000000	40
-	Гидроизоляционны работы	^е Гидроизоляция		2754	6139	 	-						0,000014	0,0000140	0,00001400	0,000000000 0,00000600	0,00000000 0,0000060	00,0000084000,000008	40 0,0000084	0,0000000	0,0000036000,000000000	0,000003600	40
	·		1																				
-		Использование керосина		2732	6140	 							0,555600	0,5556000	0,27770000	0,000000000 0,55560000	0,00000000 0,5556000	000,3333600000,333360	00 0,1666200	0,0000000	0,3333600000,000000000	00,333360000	40
	Покрасочные	1																					
-	работы	Использование ксилола		616	6141	 	-						0,555600	0,5556000	0,25000000	0,000000000 0,00000000	0,00000000 0,0000000	000,3333600000,333360	00 0,1500000	0,0000000	0,0000000000,000000000	0,000000000	40
		Использование уайт-спирит		2752	6142	 							0,555600	0,5556000	0,25000000	0,000000000 0,00000000	0,00000000 0,00000000	000,3333600000,333360	00 0,1500000	0,0000000	0,000000000,000000000	00,000000000	40
_				2930							l		0,005000	0,0050000	0,00000000	0,000000000 0,00500000	0.00000000 0.0050000	000 0030000000 003000	00 0 0000000	0.0000000	0.0030000000 00000000	0.003000000	40
	Шлифовальные работы	Шлифовальные машинки			6143	 							,										
	•			2902		 							0,007600	0,0076000	0,00000000	0,000000000 0,00760000	0,00000000 0,0076000	000,0045600000,004560	00 0,0000000	0,0000000	0,0045600000,0000000000	0,004560000	40
				1401		 							0,000000	0.0000000	0.03610000	0.0000000000 0.07230000	0.00000000 0.0723000		00 0 0216600	0.0000000	0.0433800000.00000000	0.043380000	40
		Использование		1401	6144								0,000000	0,0000000	0,03010000	0,000000000 0,07230000	0,0000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00 0,0210000	0,0000000	0,0433800000,00000000	30,043300000	40
		растворителя Р-4		1210	0144	 							0,000000	0,0000000	0,01670000	0,000000000 0,03330000	0,00000000 0,0333000	000,0000000000,000000	00 0,0100200	0,0000000	0,0199800000,000000000	0,019980000	40
				621		 							0,000000	0,0000000	0,08610000	0,000000000 0,17230000	0,00000000 0,1723000	000,000000000,000000	00 0,0516600	0,0000000	0,1033800000,000000000	00,103380000	40
	Покрасочные		1	2902		 							0,000000	0,0000000		0,000000000 0,00000000							40
	работы	Использование		1401		 							0,000000	0,0000000	0,06590000	0,000000000 0,00000000	0,00000000 0,00000000	00,0000000000,000000	00 0,0395400	0,0000000	0,0000000000,000000000	0,000000000	40
		ХВ-124		1210	6145	 							0,000000	0,0000000	0,03040000	0,000000000 0,00000000	0,00000000 0,00000000	000,0000000000,000000	00 0,0182400	0,0000000	0,000000000,0000000000	0,000000000	40
-				621		 							0,000000	0,0000000	0,15720000	0,000000000 0,00000000	0,00000000 0,00000000	00,0000000000,000000	00 0,0943200	0,0000000	0,000000000,000000000	00,000000000	40
		Использование	1	2902		 							0,000000	0,0000000		0,000000000 0,00000000							40
		ГФ - 0119		616	6146	 							0,000000	0,0000000		0,000000000 0,00000000							40
		1	_		1	 1 1	ı	1	П	1	1	ı			1	1 1	1 '	1 '		l .	I		

	Выгрузка щебня фр. 40-80 мм	2908 614	17									1,120000	1,1200000	1,12000000	1,120000000	1,12000000	1,12000000	1,120000000	0,67200000	0,67200000	0,6720000	0,6720000	0,67200000	0,67200000	0,672000000	40
- Ремонт дорог	Разработка (перемещение) щебня автогрейдером	2908 614	18									0,800000	0,8000000	0,80000000	0,800000000	0,80000000	0,80000000	0,800000000	0,480000000	0,4800000	0,4800000	0,4800000	0,48000000	0,48000000	0,48000000	40
		337										0,008000	0,0080000	0,00800000	0,000000000	0,00800000	0,00000000	0,008000000	0,004800000	0,00480000	0,0048000	0,0000000	0,004800000	0,000000000	0,004800000	40
		304										0,001500	0,0015000	0,00150000	0,000000000	0,00150000	0,00000000	0,001500000	0,000900000	0,00090000	0,0009000	0,0000000	0,000900000	0,000000000	0,000900000	40
Выработка		301										0,009100	0,0091000	0,00910000	0,000000000	0,00910000	0,00000000	0,009100000	0,005460000	0,00546000	0,0054600	0,0000000	0,005460000	0,000000000	0,005460000	40
электроэнергии	дэс	2754 014	19		-		- :	2 0,2	4	0,1256	120	0,004000	0,0040000	0,00400000	0,000000000	0,00400000	0,00000000	0,004000000	0,002400000	0,00240000	0,0024000	0,0000000	0,002400000	0,000000000	0,002400000	40
		328										0,000800	0,0008000	0,00080000	0,000000000	0,00080000	0,00000000	0,000800000	0,000480000	0,00048000	0,0004800	0,0000000	0,000480000	0,000000000	0,000480000	40
		330										0,001200	0,0012000	0,00120000	0,000000000	0,00120000	0,00000000	0,001200000	0,000720000	0,00072000	0,0007200	0,0000000	0,000720000	0,000000000	0,000720000	40
		1325										0,000200	0,0002000	0,00020000	0,000000000	0,00020000	0,00000000	0,000200000	0,000120000	0,00012000	0,0001200	0,0000000	0,000120000	0,000000000	0,000120000	40
		703										0,00000001	0,00000001	0,00000001	0,000000000	0,00000001	0,00000000	0,000000010	0,000000006	0,00000001	0,0000000	0,0000000	0,000000000	0,000000000	0,000000006	40
	·											58,60905401	47,95012401	19,02046401	7,37590000	19,67458601	12,38390000	17,55728601	35,1654324	28,7700744	11,4122784	4,4255400	11,8047516	7,4303400	10,5343716	

Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в период НМУ (3 режим НМУ)

			H G			.,,,,,	onpin,		conp			лоросов					в период нигу (3 р									
			ыброс	Коопл	цинаты ис	сточника	а на										на которых проводится с									
			ние вн		карте-схе	еме, м							П	араметры г	азовоздушно	й смеси на ві	ыходе из источника и хар	актеристика	выбросов посл	е сокращен	ия выбросов					%
График работы источника	Цех, участок (номер режима работы предприятия в период НМУ)	Мероприятия на период неблагоприятных метеорологически условий		Номер на карте- схеме объекта (города	точечно источнии центра группы источния или одно конца линейно источния X1/Y1	ка, а втор кон линей ого источ	нца и́ного иника вы	диам сотаисточ м выбрс м	никасі	коростью м/с		температура °С	ı.	моі	цность выбр	осов без учет	а мероприятий, г/с			М	Лощность вы	бросов посл	е мероприятиі	й, г/с		
			Вещества										2023 год	2024 год	2025 год	2026 - 2041 гг.	2042 год 2043 год	2044 год	2023 год	2024 год	2025 год	2026 - 204 гг.	2042 год	2043 год	2044 год	Cre
1	2	3	4	5	6	7	7	8 9		10	11	12				13						14				15
												Тре	тий режим	работы пр	едприятия п	ри НМУ										
769	Разработка скального грунта фр. 0-300 мм (среднее 150 мм) с погрузкой		2908	6001									0,560000	0,0000000	0,00000000	0,000000000	0,00000000,000000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
769	Устройство насыпи транспортировка скального грунта с карьера Анненский	Полная остановка проведения работ		6002									0,188400	0,0000000	0,00000000	0,000000000	0,00000000,000000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
769	выпуски (пирса) Выгрузка скального грунта	проведения расот	2908	6003									0,560000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
769	Планировка скального грунта (гребня насыпи)		2908	6004									0,400000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
243	Разработка скального грунта фр. 0-20 мм (среднее 10 мм) с погрузкой		2908	6005									1,680000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	0 100
243	Устройство Транспортировка	Полная остановка проведения работ		6006									0,188400	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
243	Выгрузка скального грунта		2908	6007									1,680000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
243	Планировочные работы бульдозером		2908	6008									1,200000	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
9	Разработка пульпы с погрузкой		2908	6009									1,166700	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
9	Транспортировка пульпы на хвостохранилище	Полная остановка	2908	6010									0,009800	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
9	Выгрузка пульпы	проведения работ	2908	6011					-				1,166700	0,0000000	0,00000000	0,000000000	0,0000000,0 00000000,0	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
9	Планировочные работы бульдозером		2908	6012									0,833300	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
3082	Выполаживание хвостов на откосах	Полная остановка	2908	6013									1,250000	0,0000000	0,00000000	0,000000000	0,00000000,000000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
3264	хвостов на откосах Планировка выположенных поверхностей	проведения работ	2908	6014					. [0,833300	0,0000000	0,00000000	0,000000000	0,00000000 0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100

1120		Разработка скального грунта с погрузкой		2908	6015	 	 	 	 	1,680000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000000000	000000	0,000000000	100
1120 c	Нанесение кального грунта н поверхность	Транспортировка	Полная остановка проведения работ	2908	6016	 	 	 	 	0,822500	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
1120		Выгрузка скального грунта		2908	6017	 	 	 	 	1,680000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
1120		Бульдозерная планировка скального грунта		2908	6018	 	 	 	 	1,200000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,0000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
298		Разработка наносов хвостов бульдозерами		2908	6019	 	 	 	 	1,666700	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,0000000000	000000	0,000000000	100
298	Очистка откосов	Погрузка хвостов		2908	6020	 	 	 	 	2,333300	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
298	северной ограждающей эмбы на участие !	Транспортировка хвостов в чашу	Полная остановка проведения работ	2908	6021	 	 	 	 	0,031800	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,0000000000 0,000	000000	0,000000000	100
298	0	хвостохранилища Выгрузка хвостов в чаше хвостохранилища		2908	6022	 	 	 	 	2,333300	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
298		Разравнивание хвостов в чаше хвостохранилища		2908	6023	 	 	 	 	1,666700	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
221		Разработка скального грунта с погрузкой		2908	6024	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
221	Перекрытие	Транспортировка скального грунта с карьера Анненский	Полная остановка	2908	6025	 	 	 	 	0,225200	0,0000000	0,00000000	0,00000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
221	кальным грунтом	Выгрузка скального грунта	проведения работ	2908	6026	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
221		Бульдозерная планировка скального грунта		2908	6027	 	 	 	 	0,400000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
618		Разработка скального грунта с погрузкой		2908	6028	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
618	Ремонт конструкций	Транспортировка	Полная остановка	2908	6029	 	 	 	 	0,225200	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
618	эепления дамбы н участках очистки	Выгрузка скального грунта	проведения работ	2908	6030	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,0000000000	000000	0,000000000	100
618	откосов	Планировочные работы бульдозером		2908	6031	 	 	 	 	0,400000	0,0000000	0,00000000	0,00000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
425		Разработка наносов хвостов бульдозерами		2908	6032	 	 	 	 	1,666700	0,0000000	0,00000000	0,00000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
425		Погрузка хвостов		2908	6033	 	 	 	 	2,333300	0,0000000	0,00000000	0,00000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,0000000000 0,000	000000	0,000000000	100
425	Очистка откосов северной ограждающей	Транспортировка хвостов в чашу хвостохранилища	Полная остановка проведения работ	2908	6034	 	 	 	 	0,031800	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
425	амбы на участке 2 о	Выгрузка хвостов в чаше хвостохранилища	проведения расси	2908	6035	 	 	 	 	2,333300	0,0000000	0,00000000	0,00000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
425		Разравнивание хвостов в чаше хвостохранилища		2908	6036	 	 	 	 	1,666700	0,0000000	0,00000000	0,00000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
315		Разработка скального грунта с погрузкой		2908	6037	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,00000000	0,000000000	0,0000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
315	Перекрытие	Транспортировка скального грунта с карьера Анненский	Полная остановка	2908	6038	 	 	 	 	0,225200	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
315	скальным грунтом	Выгрузка скального грунта	проведения работ	2908	6039	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100
315		Бульдозерная планировка скального грунта		2908	6040	 	 	 	 	0,400000	0,0000000	0,00000000	0,00000000 0,00000000	0,00000000	0,00000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000	000000	0,000000000	100

		Разработка																			
983	Ремонт	скального грунта с погрузкой		2908	6041	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
983	конструкций репления дамбы н	Транспортировка скального грунта	Полная остановка	2908	6042	 	 	 	 	0,225200	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
983	участках очистки откосов	Выгрузка скального грунта	проведения работ	2908	6043	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
983	откосов	Планировочные работы		2908	6044	 	 	 	 	0,400000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
850		бульдозером Разработка наносов хвостов		2908	6045	 	 	 	 	1,666700	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
850		бульдозерами Погрузка хвостов		2908	6046	 	 	 	 	2,333300	0,0000000	0,000000000	0,000000000 0,00000000	0.00000000	0.000000000	0,000000000	0,00000000 0,0000000,0	0,0000000	0,000000000 0,000000000	0,000000000	100
	Разработка наносо	Транспортировка вхвостов в чашу	Полная остановка	2908	6047	 	 	 	 	0,050200		-	0,000000000 0,00000000			<u> </u>			0,000000000 0,000000000	0,000000000	100
850	хвостов	хвостохранилища Выгрузка хвостов в чаше	проведения работ_	2908	6048	 	 	 	 	2,333300	0,0000000	0,00000000	0,00000000,00000000,0	0,00000000	0.000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,00000000,0	0,000000000	100
850		хвостохранилища Разравнивание		2908	6049					1,666700			0,000000000 0,00000000,0							0,000000000	100
850		хвостов в чаше хвостохранилища		2900	0049	 	 	 	 	1,000700	0,0000000	0,0000000	0,00000000	70,0000000	0,00000000	0,00000000	0,0000000	0,0000000	0,00000000	0,00000000	100
630		Разработка скального грунта с погрузкой		2908	6050	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
630	Перекрытие	Транспортировка скального грунта с карьера Анненский	Полная остановка	2908	6051	 	 	 	 	0,225200	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
630	скальным грунтом	Выгрузка скального грунта	проведения расот	2908	6052	 	 	 	 	0,560000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
630		Бульдозерная планировка скального грунта		2908	6053	 	 	 	 	0,400000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
761		Разработка скального грунта с		2908	6054	 	 	 	 	1,120000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
761	Ремонт конструкций	погрузкой Транспортировка	П	2908	6055	 	 	 	 	0,249700	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
761	репления дамбы н участках очистки	скального грунта Выгрузка скального грунта	Полная остановка проведения работ	2908	6056	 	 	 	 	1,120000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
761	откосов	Планировочные работы		2908	6057	 	 	 	 	0,800000	0,0000000	0,00000000	0,00000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
		бульдозером Разработка																			
504		скального грунта фр. 0-300 мм (среднее 150 мм) с		2908	6058	 	 	 	 	0,000000	0,5600000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,0000000,0	0,0000000	0,000000000 0,000000000	0,000000000	100
504	Наращивание насыпи под сосредоточенные	погрузкой Транспортировка скального грунта с	Полная остановка проведения работ	2908	6059	 	 	 	 	0,000000	0,1884000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
504	выпуски (пирса)	карьера Анненский Выгрузка	· · · ·	2908	6060	 	 	 	 	0,000000	0.5600000	0.00000000	0,000000000 0,00000000	0.00000000	0.000000000	0.000000000	0.00000000 0.0000000	0.0000000	0,000000000,0	0,000000000	100
504		скального грунта Планировка скального грунта		2908	6061	 		 	 	0,000000	-								0,000000000 0,000000000	0,000000000	
		(гребня насыпи) Разработка								-,	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,			-,		-,	.,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
113		скального грунта фр. 0-20 мм		2908	6062	 	 	 	 	0,000000	1,6800000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
	Устройство	(среднее 10 мм) с погрузкой Транспортировка																			\perp
113		аскального грунта с карьера Анненский	Полная остановка проведения работ	2908	6063	 	 	 	 	0,000000	0,1884000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
113		Выгрузка скального грунта		2908	6064	 	 	 	 	0,000000	1,6800000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,0000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
113		Планировочные работы бульдозером		2908	6065	 	 	 	 	0,000000	1,2000000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
9		Разработка пульпь с погрузкой	Полная остановка проведения работ	2908	6066	 	 	 	 	0,000000	1,1667000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000,0	0,000000000	100

9		Транспортировка		2908	6067					0,000000	0.000000	0.0000000	0.00000000	0,00000000 0,00000000 0,000000000 0,000000	0,000,000	0.0000000	0.0000000	0.000000000	0.00000000	0,000000000	100
9		пульпы		2908	6068	 		 	 	 0,000000				0,00000000 0,00000000 0,000000000 0,00000					0,000000000	0,000000000	
9		Выгрузка пульпы Планировочные		2908	0008	 		 	 	 0,000000	1,1007000	0,0000000	0,00000000	0,00000000 0,00000000 0,00000000 0,00000	0,0000000	0,0000000	0,0000000	0,00000000	0,000000000	0,000000000	100
9		работы бульдозером		2908	6069	 		 	 	 0,000000	0,8333000	0,00000000	0,000000000	0,00000000 0,00000000 0,00000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
274	Планировка поверхности гребн	Планировка поверхности ягребня бульдозером	Полная остановка проведения работ		6070	 		 	 	 0,000000	0,4000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
273	Нанесение	Разработка скального грунта с погрузкой		2908	6071	 		 	 	 0,000000	0,5600000	0,00000000	0,000000000	0,0000,000 0,0000000,00000000 0,00000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
273	скального грунта н поверхность гребн	Транспортировка скального грунта с карьера Анненский		2908	6072	 		 	 	 0,000000	0,2742000	0,00000000	0,000000000	0,0000000 0,00000000 0,000000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
273	ограждающей дамбы участка 1 р	Drieminico		2908	6073	 		 	 	 0,000000	0,5600000	0,00000000	0,000000000	0,0000000 0,00000000 0,00000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
273		Бульдозерная планировка		2908	6074	 		 	 	 0,000000	0,4000000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
296	Планировка поверхности гребн	скального грунта Планировка поверхности ягребня бульдозером	Полная остановка проведения работ	2908	6075	 		 	 	 0,00000,0	0,4000000	0,00000000	0,000000000	0,00000000 0,00000000 0,00000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000,0	0,00000000,0	100
294		Разработка скального грунта с погрузкой		2908	6076	 		 	 	 0,000000	0,5600000	0,00000000	0,000000000	0,000,000 0,0000000,0 0,00000000,0 0,000000	0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
294	Нанесение скального грунта н поверхность гребн	Транспортировка скального грунта с карьера Анненский		2908	6077	 		 	 	 0,000000	0,2252000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,0000	0000000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
294	ограждающей дамбы участка 1 с	Director		2908	6078	 		 	 	 0,000000	0,5600000	0,00000000	0,000000000	0,00000000 0,00000000 0,00000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
294		Бульдозерная планировка скального грунта		2908	6079	 		 	 	 0,000000	0,4000000	0,00000000	0,000000000	0,0000000 0,00000000 0,00000000 0,0000	0000000,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
605	Планировка поверхности гребна	Планировка поверхности	Полная остановка проведения работ		6080	 		 	 	 0,000000	0,4000000	0,00000000	0,000000000	0,0000000 0,00000000 0,000000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
605		Разработка скального грунта с погрузкой		2908	6081	 		 	 	 0,000000	0,5600000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,00000	0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
605	Нанесение скального грунта н	Транспортировка аскального грунта с	Полная остановка	2908	6082	 		 	 	 0,000000	0,2252000	0,00000000	0,000000000	0,0000000 0,00000000,0 000000000 0,0000	0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
605	ограждающей	якарьера Анненский Выгрузка	проведения работ	2908	6083	 		 	 	 0,000000	0,5600000	0,00000000	0,000000000	0,00000000 0,00000000 0,000000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
605	дамоы участка 2 С	скального грунта Бульдозерная планировка		2908	6084	 		 	 	 0,000000	0,4000000	0,00000000	0,000000000	0,00000000 0,00000000 0,00000000 0,0000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
569	Планировка поверхности гребн:	скального грунта Планировка поверхности ягребня бульдозером	Полная остановка проведения работ		6085	 		 	 	 0,000000	0,8000000	0,00000000	0,000000000	0,0000000 0,00000000 0,00000000 0,00000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
570		Разработка скального грунта с погрузкой		2908	6086	 		 	 	 0,000000	1,1200000	0,00000000	0,000000000	0,000,000 0,0000000,000000000 0,00000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
570	Нанесение скального грунта н поверхность гребн ограждающей	Транспортировка аскального грунта с якарьера Анненский	Полная остановка проведения работ	2908	6087	 		 	 	 0,000000	0,2252000	0,00000000	0,000000000	0,0000,000 0,0000000,000000000,00000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
570	дамбы участка 3 с			2908	6088	 	-	 	 	 0,000000	1,1200000	0,00000000	0,00000000	0,00000,0 000000000,0 00000000,0 0000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
570		Бульдозерная планировка скального грунта		2908	6089	 		 	 	 0,000000	0,8000000	0,00000000	0,000000000	0,00000000 0,000000000 0,000000000 0,000000	0,00000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100

		la										ı		I	I						
117		Срезка болотной растительности с погрузкой		2908	6090	 	 	 	 	0,000000	1,1200000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
117	Срезка болотной растительности	Транспортировка болотной растительности	Полная остановка проведения работ	2908	6091	 	 	 	 	0,000000	0,1493000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
117		Выгрузка болотной растительности		2908	6092	 	 	 	 	0,000000	1,1200000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
295		Разработка скального грунта с погрузкой		2908	6093	 	 	 	 	0,000000	1,1200000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
295	Формирование	Транспортировка скального грунта	Полная остановка	2908	6094	 	 	 	 	0,000000	0,4259000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
295	грунта	Выгрузка скального грунта Планировочные	проведения работ	2908	6095	 	 	 	 	0,000000	1,1200000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
295		работы бульдозером		2908	6096	 	 	 	 	0,000000	0,8000000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
278		Срезка болотной растительности с погрузкой		2908	6097	 	 	 	 	0,000000	1,1200000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
278	Срезка болотной растительности	Транспортировка болотной	Полная остановка проведения работ	2908	6098	 	 	 	 	0,000000	0,1493000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
278		растительности Выгрузка болотной растительности		2908	6099	 	 	 	 	0,000000	1,1200000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
486		Разработка скального грунта с погрузкой		2908	6100	 	 	 	 	0,000000	1,1200000	0,00000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,0000000000	0,000000000	100
486	Формирование дрены из скального	Транспортировка Оскального грунта	Полная остановка	2908	6101	 	 	 	 	0,000000	0,4259000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
486	грунта вдоль низового откоса	Выгрузка скального грунта	проведения работ	2908	6102	 	 	 	 	0,000000	1,1200000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
486		Планировочные работы бульдозером		2908	6103	 	 	 	 	0,000000	0,8000000	0,00000000	0,0000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
745		Разработка скального грунта с погрузкой		2908	6104	 	 	 	 	0,000000	1,6800000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,000000000	0,000000000	100
745	_	Транспортировка скального грунта	Полная остановка	2908	6105	 	 	 	 	0,000000	0,6388000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
745	Отсыпка пригруза	скального грунта	проведения работ	2908	6106	 	 	 	 	0,000000	1,6800000	0,00000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
745		Планировка горизонтальных и наклонных поверхностей		2908	6107	 	 	 	 	0,000000	1,2000000	0,00000000	0,000000000	0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,000000000,0	0,000000000	100
595		Очистка русла дренажного канала от наносов с погрузкой		2908	6108	 	 	 	 	0,000000	0,0000000	1,66670000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
595	Очистка русла	Транспортировка хвостов в чашу	Полная остановка	2908	6109	 	 	 	 	0,000000	0,0000000	0,05020000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
595	дренажного канала	а Выгрузка хвостов в чаше	проведения работ	2908	6110	 	 	 	 	0,000000	0,0000000	2,33330000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
595		хвостохранилища Разравнивание хвостов в чаше		2908	6111	 	 	 	 	0,000000	0,0000000	1,66670000	0.000000000 0.00000000.0	0,00000000	0.0000000000	0,00000000,0	0,0000000,0	0,0000000	0,00000000,0 000000000,0	0,000000000	100
		хвостохранилища Разработка																			
840		скального грунта с погрузкой		2908	6112	 	 	 	 	0,000000	0,0000000	0,56000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
840	Закрепление откосов и дна дренажного канал:	а карьера Анненский	Полная остановка проведения работ	2908	6113	 	 	 	 	0,000000	0,0000000	0,27420000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
840	скальным грунтом	Выгрузка скального грунта		2908	6114	 	 	 	 	0,000000	0,0000000	0,56000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
840		Бульдозерная планировка скального грунта		2908	6115	 	 	 	 	0,000000	0,0000000	0,40000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,0000000,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
							 						1 1		1		1				الصد

		,			1	 	1	 1	1			r			ı				ı		,	
441		Разработка скального грунта с погрузкой		2908	6116	 		 		 	0,000000	0,0000000	0,56000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
441	Перекрытие скальным грунтом	Транспортировка скального грунта с	Полная остановка	2908	6117	 		 		 	0,000000	0,0000000	0,27420000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
441	наносов из дренажного канала	карьера Анненский Выгрузка скального грунта	проведения работ	2908	6118	 		 		 	0,000000	0,0000000	0,56000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
441		Бульдозерная планировка		2908	6119	 		 		 	0,000000	0,0000000	0,40000000	0,000000000 0,000000000	0,00000000	0,000000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
1400		скального грунта Разработка скального грунта с		2908	6120	 		 		 	0,00000,0	1 6800000	1 68000000	1 680000000 1 68000000	0.00000000	0.000000000	0.000000000	0.00000000 0.0000000	0.0000000	0,000000000 0,000000000	0,000000000	0 100
	D	погрузкой Транспортировка			6121			 		 				0,895900000 0,89590000								
	Ремонт поверхності хвостохранилища и ограждающих дамб	скального грунта Выгрузка	Полная остановка проведения работ	2908	6122	 		 		 	0,000000			1,680000000 1,68000000								
1400	or panagaron, m. game	скального грунта Бульдозерная планировка		2908	6123			 		 	0,000000	1,2000000		1,200000000 1,20000000							0,000000000	
1400		скального грунта		2906	0123	 		 		 	0,000000	1,200000	1,2000000	1,200000000 1,20000000	0,0000000	0,00000000	0,00000000	0,0000000	0,000000	0,00000000	0,00000000	100
	Восстановление системы КИА	Буровые работы при организации КИА	Полная остановка проведения работ	2908	6124	 		 		 	0,000000	0,0000000	0,10000000	0,000000000 0,00000000	0,00000000	0,000000000	0,000000000	0,00000000	0,0000000	0,000000000	0,000000000	100
5024		Разработка скального грунта с погрузкой		2908	6125	 		 		 	0,000000	0,0000000	0,00000000	0,000000000 3,36000000	3,36000000	3,360000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000	100
5024	Рекультивация пляжей	Транспортировка скального грунта	Полная остановка	2908	6126	 		 		 	0,000000	0,0000000	0,00000000	0,000000000 1,34390000	1,34390000	1,343900000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
5024	хвостохранилища	Выгрузка скального грунта	проведения работ	2908	6127	 		 		 	0,000000	0,0000000	0,00000000	0,000000000 3,36000000	3,36000000	3,360000000	0,000000000	0,00000000 0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
5024		Бульдозерная планировка скального грунта		2908	6128	 		 		 	0,000000	0,0000000	0,00000000	0,000000000 2,40000000	2,40000000	2,400000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
10	Засыпка устья водосбросных колодцев ВК-2, ВК	Разработка скального грунта с погрузкой		2908	6129	 		 		 	0,000000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	1,120000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000	0,000000000	100
10	3 и засыпка пространства	Транспортировка скального грунта	Полная остановка	2908	6130	 		 		 	0,000000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,298600000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
10	образованного после установки	Выгрузка скального грунта	проведения работ	2908	6131	 		 		 	0,000000	0,0000000	0,00000000	0,000000000 0,00000000	0,00000000	1,120000000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
10	фундаментных блоков	Планировочные работы бульдозером		2908	6132	 		 		 	0,000000	0,0000000	0,00000000	0,000000000 0,000000000	0,00000000	0,800000000	0,000000000	0,00000000	0,0000000	0,000000000 0,000000000	0,000000000	100
				123		 		 		 	0,054700	0,0547000	0,05470000	0,000000000 0,05470000	0,00000000	0,054700000	0,000000000	0,00000000	0,0000000	0,000000000,0	0,000000000	100
-		Газовая резка		143	6133	 		 		 	0,000800			0,000000000 0,00080000		1			0,0000000	0,000000000 0,000000000	0,000000000	100
				337		 		 		 	0,018100			0,000000000 0,01810000					-	0,000000000 0,000000000	0,000000000	_
_		Сварочные работы		301	6134	 		 		 	0,002600			0,000000000 0,01480000 0,000000000 0,00310000					-	0,000000000 0,000000000	0,000000000	_
	Сварочные работы	-r - Passan		123		 		 		 	0,013800	0,0310000		0,000000000 0,02270000				0,00000000 0,0000000		0,000000000 0,000000000	0,000000000	
			П	143		 		 		 	0,000800			0,000000000 0,00110000						0,000000000 0,000000000	0,000000000	100
			Полная остановка проведения работ	2908		 		 		 	0,000640	0,0008100	0,00065000	0,000000000 0,00068000	0,00000000	0,000680000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
		Сварочные работы		342	6135	 		 		 	0,000300	0,0004000	0,00030000	0,000000000 0,00030000	0,00000000	0,000300000	0,000000000	0,0000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
				344		 		 		 	0,001300	0,0017000	0,00140000	0,000000000 0,00150000	0,00000000	0,001500000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
				301		 		 		 	0,000600			0,000000000 0,00070000						0,000000000 0,000000000	0,000000000	
				337		 		 		 	0,005300	0,0067000	0,00580000	0,000000000 0,00590000	0,00000000	0,005900000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100
-	Покрасочные работы	Использование грунтовки ГФ-021		2902	6136	 		 		 	0,137500	0,1375000	0,04580000	0,000000000 0,05960000	0,00000000	0,059600000	0,000000000	0,00000000	0,0000000	0,000000000	0,000000000	100
				616		 		 		 	0,375100	0,3751000	0,12510000	0,000000000 0,16250000	0,00000000	0,162500000	0,000000000	0,00000000 0,0000000	0,0000000	0,000000000 0,000000000	0,000000000	100

			2902		 							0,092500	0,0925000	0,03080000	0,000000000	0,09250000 0,00000000 0,09250000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
-		Использование мастики МБ-50	2752	6137	 							0,223600	0,2236000	0,14910000	0,000000000	0,22360000 0,00000000 0,22360000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
		side Tirkii IVID-30	616		 							0,301300	0,3013000	0,20090000	0,000000000	0,30130000 0,00000000 0,30130000	0,000000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
			2902		 							0,137500	0,1375000	0,04580000	0,000000000	0,00000000 0,00000000 0,00000000	0,000000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
-		Использование ПФ-115	616	6138	 							0,187500	0,1875000	0,06250000	0,000000000	0,00000000 0,00000000 0,00000000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
		ΠΦ-113	2752		 							0,187500	0,1875000	0,06250000	0,000000000	0,00000000 0,00000000 0,00000000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
-	Гидроизоляционны работы	¹⁶ Гидроизоляция	2754	6139	 							0,000014	0,0000140	0,00001400	0,000000000	0,00000600 0,00000000 0,00000600	00 0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
-	П	Использование керосина	2732	6140	 							0,555600	0,5556000	0,27770000	0,000000000	0 0,55560000 0,00000000 0,55560000	00 0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
_	Покрасочные работы	Использование	616	6141								0,555600	0.5556000	0.25000000	0.00000000	0,0000000,0 00000000,0 00000000,0 0	000000000 0,000000000 00	0 0,0000000	0.0000000	0,000000000	0.00000000	0.000000000	100
_		ксилола Использование			 													-					-
		уайт-спирит	2752	6142	 	-						0,555600	0,5556000	0,25000000	0,0000000000	0,00000000 0,00000000 0,00000000	0,000000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
-	Шлифовальные работы	Шлифовальные машинки	2930	6143	 							0,005000	· ·			0,00500000 0,00000000 0,00500000	<u>'</u>	,	, and the second	0,000000000			
	1		2902		 							0,007600	0,0076000	0,00000000	0,000000000	0,00760000 0,00000000 0,00760000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
_		Использование	1401	6144	 							0,000000	0,0000000	0,03610000	0,000000000	0,07230000 0,00000000 0,07230000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
		растворителя Р-4	1210		 							0,000000	0,0000000	0,01670000	0,000000000	0,03330000 0,00000000 0,03330000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
			621		 							0,000000	0,0000000	0,08610000	0,000000000	0,17230000 0,00000000 0,17230000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
	Покрасочные		2902		 							0,000000	0,0000000	0,02810000	0,000000000	0,00000000 0,00000000 0,00000000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
	работы	Использование	1401		 							0,000000	0,0000000	0,06590000	0,000000000	0,00000000 0,00000000 0,00000000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
		ХВ-124	1210	6145	 							0,000000	0,0000000	0,03040000	0,000000000	0,00000000 0,00000000 0,00000000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
-			621		 							0,000000	0,0000000	0,15720000	0,000000000	00000000,0 00000000,0 00000000,0 0	00000000,0 000000000,0 00	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
		Использование ГФ	2902		 							0,000000	0,0000000	0,04420000	0,000000000	00000000,0 00000000,0 00000000,0	00000000,0 000000000,0 00	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
		- 0119	616	6146	 							0,000000	0,0000000	0,13050000	0,000000000	00000000,0 00000000,0 00000000,0	00000000,0 000000000,0 00	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
-		Выгрузка щебня фр. 40-80 мм	2908	6147	 							1,120000	1,1200000			D 1,12000000 1,12000000 1,12000000				0,000000000	0,000000000	0,000000000	100
	Ремонт дорог	**																					\perp
-	1	Разработка (перемещение) щебня автогрейдером	2908	6148	 							0,800000	0,8000000	0,80000000	0,800000000	0,80000000 0,80000000 0,80000000	0,00000000 0,0000000	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
			337									0,008000	0,0080000	0,00800000	0,000000000	0,00800000 0,00000000 0,00800000	0,0000000,0	0,0000000	0,0000000	0,000000000	0,000000000	0,000000000	100
			304									0,001500	0.0015000	0.00150000	0.000000000	0,00150000 0,00000000 0,00150000	000000000 0,000000000 00	0.0000000	0.0000000	0,000000000	0.000000000	0,000000000	100
			301									0,009100	1		-	0,00910000 0,00000000 0,00910000				,	0,000000000	0,000000000	100
-	Выработка электроэнергии	ДЭС	2754	0149	 		2	0,2	4	0,1256	120	0,004000		-	-	0.00400000 0.00000000 0.00400000				,			_
	электроэпертии		328									0,000800	0,0008000		0.00000000	' ' '			0,0000000	· ·	0,000000000	0.000000000	
			330									0,001200	· ·			0 0,00120000 0,00000000 0,00120000	1 ' 1			· ·	0,000000000	0,00000000	
			1325									0,000200	0,0002000		0,000000000		+ '		0,0000000	0,000000000	0,000000000	0.000000000	100
			703									0.0000000				0.00000001 0.00000000 0.00000000	<u> </u>			,	0,000000000		
<u> </u>			103			+				+ +		-,	9 47,9501240			10 6745960 12 2920000		,		,			100
												1	1	1	7,37590000	19,0743800 12,3839000 17,5572860	01 0,0000000 0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	