РАСЧЕТ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ

1. Расчет выбросов вредных веществ при сжигании топлива в котельной

Список литературы:

- 1. Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы: "КазЭКОЭКСП", 1996.
- 2. Тепловой расчет котельных агрегатов (Нормативный метод) /под ред. Н.В. Кузнецова/.-М.: Энергия,1973.
- 3. Методика определения нормативов эмиссий в окружающую среду (утв. приказом Министра охраны ООС РК от 16 апреля 2012 года № 100-ө).

В качестве топлива используется уголь месторождения «Каражыра».

Согласно сертификата, угольная продукция ТОО «Каражыра» имеет следующие показатели:

- зольность на сухое состояние топлива A^d 19,8%;
- массовая доля общей серы на сухое состояние топлива S^d 0,4%;
- \bullet низшая теплота сгорания рабочего топлива Q^{r}_{i} 19460 КДж/кг (4650 ккал/кг);
 - массовая доля общей влаги в рабочем состоянии топлива W^r 14%.

Для проведения расчетов выбросов загрязняющих веществ при сжигании топлива, согласно [1] учитываются показатели зольности и общей серы, в пересчете на рабочее состояние.

Показатель зольности на рабочее состояние:

 $A_p = A^d x([(100-W_p)]/100) = 19.8 x ([(100-14]/100) = 17.03\%)$

Показатель серы общей на рабочее состояние:

 $S_p = S^d x([(100-W_p)]/100) = 0.4 x ([(100-14]/100) = 0.344\%$

где: A^d – показатель зольности на сухое состояние топлива, %;

 S^d – показатель массовой доли общей серы на сухое состояние топлива, %;

 W^{r} - массовая доля общей влаги в рабочем состоянии топлива, %.

Характеристика угля представлена в таблице 1.1.

Месторождение	Марка	Зольность	Содерж.	Влажност	Калорийность
		A^p ,%	серы S ^p , %	ь W ^p , %	МДж/кг / Ккал/кг
1	2	3	4	5	6
Уголь «Каражыра»	Д (рядовой)	17,03	0,344	14,0	19,460 / 4650

Расчет выбросов твердых частиц

Выбросы твердых веществ (летучая зола и недогоревшее топливо) определяется по формуле [1]:

$$M_{TB} = B \times A^{P} \times f \times (1 - n_{3}), \Gamma/c, T/год,$$

где В - расход топлива, г/с, т/год;

 A^{P} - зольность сжигаемого топлива, (таблица 1.1.);

f - коэффициент, характеризующий тип топки и вид топлива, [1].

n₃ - доля твердых частиц, улавливаемых в золоуловителе.

Расчет выбросов *пыли неорганической с содержанием SiO_2 70-20% при сжигании угля в котельной» (ист.0013):*

$$M_{TB} = 53,6 \times 17,03 \times 0,0023 \times (1-0,8) = 0,4199 \ г/c$$
 $M_{TB} = 900 \times 17,03 \times 0,0023 \times (1-0,8) = 7,0504 \ т/год$

Расчет выбросов диоксида серы

Количество оксидов серы в пересчете на SO_2 , выбрасываемых в атмосферу с дымовыми газами при сжигании жидкого и твердого топлива, рассчитывают по формуле [1]:

$$Mso_2 = 0.02 \times B \times S^p \times (1-n'so_2) \times (1-n''so_2),$$

где S^p - содержание серы в топливе на расчетную массу, (таблица 1.1), %;

 $n'so_2$ - доля окислов серы, связываемых летучей золой, (n'=0.1 для угля, n'=0.02 для масла) [1]:

n"so₂ - доля окислов серы, улавливаемых в газоуловителе, принимается равной нулю для сухих золоуловителей [1].

Расчет выбросов *диоксида серы* при сжигании угля в котельной» (ист.0013):

$$\mathbf{M}_{so} = 0.02 \text{ x } 53.6 \text{ x } 0.344 \text{ x } (1-0.1) \text{ x } (1-0) = 0.3319 \text{ г/c}$$
 $\mathbf{M}_{so} = 0.02 \text{ x } 900.0 \text{ x } 0.344 \text{ x } (1-0.1) \text{ x } (1-0) = 5.5728 \text{ т/год}$

Расчет выбросов оксида углерода

Количество оксида углерода, выбрасываемого в атмосферу (г/с, т/год) при сжигании жидкого и твердого топлива рассчитывают по формуле [1]:

$$Mco = 0.001 \times Cco \times B \times (1-q4/100)$$

где Ссо - выход оксида углерода при сжигании топлива, кг/т, или:

$$Cco = q3 \times R \times QH$$

- q3 потери вследствие химической неполноты сгорания топлива, %. Для угля q3=2, для масла q3=0,5 [1] ;
 - R коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива, обусловленную наличием в продуктах неполного сгорания оксида углерода, для угля R=1, для масла R=0.65 [1];
- q4- потери теплоты, вызванные механической неполнотой сгорания топлива, для угля q4=7, для масла q4=0 [1].

Расчет выбросов *оксида углерода* при сжигании угля в котельной» (ист.0013):

$$C_{co}=2 \ x \ 1,0 \ x \ 19,46=38,92 \ \kappa \Gamma/T$$
 $Mc=0,001 \ x \ 38,92 \ x \ 53,6 \ x \ (1-7,0/100)=1,9401 \ \Gamma/c$ $M\Gamma=0,001 \ x \ 38,92 \ x \ 900,0 \ x \ (1-7,0/100)=32,5760 \ T/\Gamma O J$

Выбросы окислов азота

Количество окислов азота, выбрасываемых в атмосферу (т/год, г/с), рассчитывают по формуле [1]

$$Mno = 0.001 \times B \times QH \times Kno_x \times (1-b),$$

где: Он - теплота сгорания натурального топлива, МДж/кг (табл.1.1);

- Кпо параметр, характеризующий количество окислов азота в кг, образующихся на один ГДж тепла, принимается по рис.2.1 [1];
- b коэффициент, учитывающий степень снижения выбросов окислов азота в результате применения технических средств, b=0.

Согласно [3] при расчете загрязнения атмосферы и определении выбросов для всех видов технологических процессов и транспортных средств следует учитывать полную или частичную трансформацию поступающих в атмосферу окислов азота. Для этого установленное по расчету количество выбросов окислов азота (M_{NOx}) в пересчете на NO_2 разделяется на составляющие оксид азота (NO) и диоксид азота (NO_2) . Коэффициенты трансформации от NO_x принимаются на уровне максимальной установленной

трансформации, т.е. $0.8 - для NO_2$ и 0.13 - для NO. Тогда раздельные выбросы будут определяться по формулам:

Диоксид азота (т/год, г/с):
$$M_{NO2} = (0,001 \text{ x B x Q}^p\text{H x K}_{NO2} \text{ x (1-b)}) \text{ x 0,8}$$

Оксид азота (т/год, г/с):
$$\mathbf{M}_{\mathrm{NO}} = (0,001 \text{ x B x } \mathbf{Q}^{\mathrm{p}}\mathbf{H} \text{ x } \mathbf{K}_{\mathrm{NO}2} \text{ x } (1\text{-b})) \text{ x } 0,13$$

Расчет выбросов *диоксида азота* при сжигании угля в котельной» (ист.0013):

$$M_{NO2} = (0,001 \text{ x } 53,6 \text{ x } 19,460 \text{ x } 0,22 \text{ x } (1-0)) \text{ x } 0,8 = 0,1836 \text{ г/c}$$
 $M_{NO2} = (0,001 \text{ x } 900,0 \text{ x } 19,460 \text{ x } 0,22 \text{ x } (1-0)) \text{ x } 0,8 = 3,0825 \text{ т/год}$

Расчет выбросов *оксида азота* при сжигании угля в котельной» (ист.0013):

$$M_{NO} = (0,001 \text{ x } 53,6 \text{ x } 19,460 \text{ x } 0,22 \text{ x } (1-0)) \text{ x } 0,13 = 0,0298 \text{ г/с}$$
 $M_{NO} = (0,001 \text{ x } 900,0 \text{ x } 19,460 \text{ x } 0,22 \text{ x } (1-0)) \text{ x } 0,13 = 0,5009 \text{ т/год}$

Таблица 1.2 - Результаты расчетов выбросов ЗВ от котельной

	438	Харатери	стика то	плива										Расу				X B	Результаты	расчета
Источник выброса (выделения)	Наименование источника выделения	Вид	Зольность , Ар, % (максим./среднее)	Содержание серы, Sp, % (максим./среднее)	Калорийность, Орн, МДж/кг	f	h' SO2	h" SO2	KNO2	Ссо	×	q3	q4	Γ/C	т/год	Загрязняющее вещество	Код ЗВ	Доля твердых частиц, улавливаемых золоуловителе, пз	M, r/c	G, т/год
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
			ı	T	I		1 1		Ī	T		1						ı		1
0013	Бытовой	Уголь	<u>25</u>	0,7	19,26	0,0035	0,1	0	0,2146	9,63	1	0,5	5,5	137,5	2309	Азота диоксид	0301		0,4547	7,6348
	теплогенератор	м-ние	21,00	0,4					,					ŕ		Азота оксид	0304		0,0739	1,2407
		Карагандинский														Серы диоксид	0330		1,7325	16,6248
																Углерода оксид	0337		1,2513	21,0127
																Пыль неорг. с содержанием SiO ₂ 70-20%	2908	0,8	2,4063	33,9423
0013	Бытовой	Уголь	<u>17,03</u>	0,344	19,46	0,0023	0,1	0	0,22	38,92	1	2	7	53,6	900	Азота диоксид	0301		0,1836	3,0825
	теплогенератор	м-е "Каражыра"	17,03	0,344												Азота оксид	0304		0,0298	0,5009
																Серы диоксид	0330		0,3319	5,5728
																Углерода оксид	0337		1,9401	32,5760

									Пыль неорган. 70- 20% SiO2	2908	0,8	0,4199	7,0504
			•						Азота диоксид	0301		0,6383	10,7173
									Азота оксид	0304		0,1037	1,7416
									Серы диоксид	0330		2,0644	22,1976
									Углерода оксид	0337		3,1914	53,5887
									Пыль неорган. 70-	2908			
									20% SiO2			2,8262	40,9927

2. Расчет выбросов загрязняющих веществ от склада угля, зерна

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. №221—Ө.

Максимально-разовый выброс *пыли неорганической: менее 20% двуокиси кремния*, определяется по формуле [1]:

$$M_{cek} = A + B = (K_1 \times K_2 \times K_3 \times K_4 \times K_5 \times K_7 \times G \times 10^6 \times B/3600) +$$

$+ (K_3 \times K_4 \times K_5 \times K_6 \times K_7 \times q \times F), \Gamma/c$

где А – выбросы при переработке (ссыпка, перевалка, перемещение) материала, г/с;

В – выбросы при статическом хранении материала;

 K_1 - весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

К2 - доля пыли (от всей массы пыли), переходящая в аэрозоль;

 K_3 - коэффициент, учитывающий местные метеоусловия и принимаемый в соответствии с табл.2 [1];

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования. Берется по данным табл.3 [1];

 K_5 - коэффициент, учитывающий влажность материала и принимаемый в соответствии с данными табл.4 [1];

 K_6 — коэффициент, учитывающий профиль поверхности складируемого материала и определяемым как соотношение $F_{\phi a \kappa r}/F$. Значение K_6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

 K_7 - коэффициент, учитывающий крупность материала и принимаемый в соответствии с табл. 5 [1];

 $F_{\varphi a \kappa \tau}$ — фактическая поверхность материала с учетом рельефа его сечения (учитывать только площадь, на которой производятся погрузочно-разгрузочные работы);

F – поверхность пыления в плане, м1;

q' – унос пыли с $1m^2$ фактической поверхности в условиях, когда K4=1; K5=1, принимается в соответствии с данными табл.6 [1];

В' - коэффициент, учитывающий высоту пересыпки и принимаемый в соответствии с таблицы 7 [1]. Склады и хвостохранилища рассматриваются как равномерно распределенные источники пылевыделения.

G – суммарное количество перерабатываемого материала, т/час.

Валовый выброс при пересыпке определяется:

$$Q_{\Gamma}^{nepechnka}$$
 = K1 x K2 x K3 x K4 x K5 x K7 x G₁ x B['], т/год

где G_1 – суммарное количество перерабатываемого материала, т/год

Валовый выброс при хранении определяется:

$$Q_T^{xpanenue} = q^{xpanenue} x t x (365-Tc) x 3600 x 10-6, т/год$$

где $q^{xpanenue}$ – максимально-разовый выброс при хранении, г/с;

t – время хранения, ч/сут;

T_c – годовое количество суток с устойчивым снежным покровом, сут, T_c=165.

Пример расчета выбросов *пыли неорганической с содержанием* SiO_2 *менее* 20% при пересыпке угля (ист.6001):

$$q = 0.03 \text{ x } 0.02 \text{ x } 1.4 \text{ x } 0.005 \text{ x } 0.01 \text{ x } 0.5 \text{ x } 3.1 \text{ x } 10^6 \text{ x } 0.7 \text{ / } 3600 = 0.000013 \text{ г/c}$$
 $Q_{\Gamma}^{nepecbinka} = 0.03 \text{ x } 0.02 \text{ x } 1.4 \text{ x } 0.005 \text{ x } 0.01 \text{ x } 0.5 \text{ x } 3209.0 \text{ x } 0.7 = 0.000047$ $_{\text{T/год}}$

Результаты расчетов и исходные данные приведены в таблице 2.1.

2. Выбросы ЗВ от склада угля

N ист	Наименование	К1	К2	К3	К4	К5	К6	К7	B'	Gчас	Gгод	q'	S	Загрязняющее	Код	n	Результать	ы расчетов
IN MCI	источника									т/час	т/год			вещество	3B		г/с	т/год
1	2	3	4	5	6	7	8	9	12	13	14	15	16	17	18	19	20	21
6001	Склад угля																	
	Пересыпка	0,03	0,02	1,4	0,005	0,01	-	0,5	0,7	3,1	3209	-	-	Пыль неорганическая менее 20% SiO2	2909	0	0,000013	0,000047
									Cı	слад зер	она							
6003	Разгрузка с автотранспорта на склад	зерно	0,01	0,03	1	0,01	0,7	-	0,6	0,6	25	50187	-	Пыль зерновая	2937		0,00263	0,019
	Погрузка со склада	зерно	0,01	0,03	1	0,01	0,7	-	0,6	0,6	25	50187	-				0,00263	0,019

3. Расчет выбросов загрязняющих веществ от склада золы

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. №221— Θ .
- 2. Методика расчета нормативов размещения золошлаковых отходов для котельных различной мощности, работающих на твердом топливе.Приложение 10 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г. № 221-Ө.

Зола, образующая при сжигании угля, складируется в закрытый контейнер временного хранения, с последующей передачей сторонней организации. Выбросов загрязняющих веществ при хранении золы не происходит, т.к. контейнер закрытый.

Максимально-разовый выброс *пыли неорганической: 70-20% двуокиси кремния*, определяется по формуле [1]:

$$M_{cek} = A + B = (K_1 \times K_2 \times K_3 \times K_4 \times K_5 \times K_7 \times G \times 10^6 \times B/3600) +$$

$+ (K_3 \times K_4 \times K_5 \times K_6 \times K_7 \times q \times F), \Gamma/c$

где А – выбросы при переработке (ссыпка, перевалка, перемещение) материала, г/с;

- В выбросы при статическом хранении материала;
- K_1 весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;
 - К₂ доля пыли (от всей массы пыли), переходящая в аэрозоль;
- К₃ коэффициент, учитывающий местные метеоусловия и принимаемый в соответствии с табл.2 [1];
- K_4 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования. Берется по данным табл.3 [1];
- K_5 коэффициент, учитывающий влажность материала и принимаемый в соответствии с данными табл.4 [1];
- K_6 коэффициент, учитывающий профиль поверхности складируемого материала и определяемым как соотношение $F_{\phi a \kappa r}/F$. Значение K_6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;
- K_7 коэффициент, учитывающий крупность материала и принимаемый в соответствии с табл. 5 [1];
- $F_{\varphi a \kappa \tau}$ фактическая поверхность материала с учетом рельефа его сечения (учитывать только площадь, на которой производятся погрузочно-разгрузочные работы);
 - F поверхность пыления в плане, M^2 ;
- q' унос пыли с 1м² фактической поверхности в условиях, когда K4=1; K5=1, принимается в соответствии с данными табл.6 [1];
- В' коэффициент, учитывающий высоту пересыпки и принимаемый в соответствии с таблицы 7 [1]. Склады и хвостохранилища рассматриваются как равномерно распределенные источники пылевыделения.
 - G суммарное количество перерабатываемого материала, т/час.

Валовый выброс при пересыпке определяется:

$Q_{\Gamma}^{nepechnka}$ = K1 x K2 x K3 x K4 x K5 x K7 x G₁ x B[/], т/год

где G_1 – суммарное количество перерабатываемого материала, т/год

Валовый выброс при хранении определяется:

$$Q_{r}^{xpahenue} = q^{xpahenue} x t x (365-Tc) x 3600 x 10-6, т/год$$

где $q^{xpanenue}$ – максимально-разовый выброс при хранении, г/с;

t – время хранения, ч/сут;

T_c – годовое количество суток с устойчивым снежным покровом, сут, T_c=165.

Золошлаковые отходы образуются в результате сгорания твердого топлива в котловом агрегате.

Количество золошлаковых отходов, включающих в себя шлак и золу, уловленную в золоуловителях, рассчитывается по формулам [2]:

$$\mathbf{M}_{31110} = \mathbf{M}_{1117} + \mathbf{M}_{30,1161}$$

$$M_{\text{шл}}=0,01 \times B \times A_p - N_3$$
, т/год

$$M_{30лы}=N_3 \times \eta_{3V}$$
, т/год

где $M_{\text{шл}}$ – количество шлака, образовавшегося при сжигании угля, т/год;

 $M_{30лы}$ — количество золы, уловленной в золоуловителях, т/год;

В – годовой расход угля, т/год;

Ар – зольность угля, %;

 η_{3y} – эффективность золоуловителя;

$$N_3 = 0.01 \times B \times (\alpha \times Ap + q4 \times QT / 32680),$$

где: q4 – потери тепла вследствие механической неполноты сгорания угля, q4 = 7.0;

Qт – теплота сгорания топлива, кДж/кг;

32680 кДж/кг – теплота сгорания условного топлива;

 α - доля уноса золы из топки, $\alpha = 0.25$.

Пример расчета золошлаковых отходов:

$$M_{\text{ил}}$$
 = 0,01 x 900,0 x 17,03 – 75,8322 = 77,4378 т/год N_3 = 0,01 x 900,0 x (0,25 x 17,03 + 7 x 19460 / 32680) = 75,8322 т/год $M_{30лы}$ = 75,8322 x 0,0 = 0,0 т/год M_{3IIIO} = 77,4378 + 0,0 = 77,4378т/год (уголь Каражыра) M_{3IIIO} = 358,09 (уголь Карагандинский)

Пример расчета выбросов *пыли неорганической: 70-20% двуокиси кремния* при пересыпке золы (ист.6002):

$$q = 0.06 \text{ x } 0.04 \text{ x } 1.4 \text{ x } 0.1 \text{ x } 0.1 \text{ x } 0.8 \text{ x } 2.42 \text{ x } 10^6 \text{ x } 0.4 \text{ / } 3600 = 0.00723 \ г/с$$
 $Q_{\Gamma}^{nepecbinka} = 0.06 \text{ x } 0.04 \text{ x } 1.4 \text{ x } 0.1 \text{ x } 0.1 \text{ x } 0.8 \text{ x } 435.53 \text{ x } 0.4 = 0.00468 \ т/год$

Результаты расчетов сведены в таблицу 3.1.

N	Наименование	К1	К2	К3	К4	К5	К6	К7	B'	Gчас	Gгод	q'	S	Загрязняющее	Код	n	Результаты	і расчетов
ист	источника									т/час	т/год			вещество	3B		г/с	т/год
1	2	3	4	5	6	7	8	9	12	13	14	15	16	17	18	19	20	21
6002	Склад золы																	
	Пересыпка	0,06	0,04	1,4	0,1	0,1	-	0,8	0,4	2,42	435,53	-	-	Пыль неорганическая 70-20% SiO2	2908	0	0,00723	0,00468
											Итого	по ист.(5002:	Пыль неорганическая 70-20% SiO2	2908	0		

4. Расчет выбросов от навозохранилищ

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории. Астана, 2014 г.

Валовые выбросы рассчитываются по формуле:

$$M = (S * q * T * 3600) / 106, m / 200, (4.3)$$

где: S - средняя площадь бурта навоза, м2;

q - удельный показатель выброса загрязняющего вещества, г/с на 1 м2 навоза (таблица 9 согласно приложению 2 к настоящей Методике);

Т - время работы навозохранилища, час.

Максимальный разовый выброс рассчитывается по формуле:

$$Mc=S$$
мак $c*q$, ϵ/c (4.4)

где Sмакс - максимальная возможная площадь бурта навоза, м2.

В качестве примера приводим расчет выбросов аммиака от площадки для временного хранения навоза и навозосодержащего осадка (ист.6001):

$$M_{cek}=74000 x\ 0,00002839=2,10086\ г/c$$
 Мгод = 74000 x 0,00002839 x 8760 x 3600 / $10^6=66,25272\ т/год$

Расчет выбросов по сероводороду проводится аналогично. Удельные выделения загрязняющих веществ и результаты расчетов сведены в таблицу 4.1

Таблица 4 - Выбросы загрязняющий веществ при хранении навоза

			Годовой	Удельный			Выбрось	ı 3B
Номер источника выделение	Наименование источника выделения	Площадь бурта навоза, м2	фонд рабочего времени, Т, час/год.	выброс в г/с на 1 м2 открытой поверхности	Загрязняющие вещества	код ЗВ	г/с	т/год
1	2	4	5	6	7	8	9	10
6004	Лагуны	74000	8760	0,00002839	Аммиак	0303	2,10086	66,25272
				0,0000022	Сероводород	0333	0,1628	5,13406

5. Расчет выбросов при дезинфекции раствором каустической содой

Список литературы:

1. Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. – Алматы: "КазЭКОЭКСП", 1996.

Расчет выбросов вредных веществ при дезинфекции поверхностей каустической содой производится на основании удельных показателей. На предприятии используется каустическая сода, водный раствор которой имеет щелочную реакцию, при этом в атмосферу выделяется аэрозоль щелочи NaOH.

Годовое количество вредных веществ, выбрасываемых в атмосферу, определяется по формуле:

$$\Pi = Y \times F \times T \times 3,6 \times 10^{-3}$$
, т/год

где Y — удельный показатель выделения ингредиента, $\Gamma/(M^2 \times C)$ площади зеркала раствора (Y=0,0056);

F – площадь зеркала раствора, 163 м²;

Т – годовой фонд рабочего времени, Т=62 ч.

Максимальный выброс определяется:

$$M = Y \times f$$
, Γ/c

где f - площадь влажной поверхности, м²;

Годовой выброс гидроксида натрия определяется по формуле:

$$\Pi = 0.0056 \text{ x } 163 \text{ x } 62 \text{ x } 3.6 \text{ x } 10^{-3} = 0.2037 \text{ т/год}$$

Максимальный секундный выброс будет равен:

$$M = 0.0056 \times 163 = 0.9128 \text{ r/c}$$

Результаты расчета представлены в таблице 3.

Таблица 5. Выбросы вредных веществ при дезинфекции загонов

Номер загона	F, м²	Номер источника	Наименование загрязняющего вещества	Выб	росы
				г/с	т/год
1	2	3	4	5	6
			Отделение		
дезинфекция	163	6005	NaOH	0,9128	0,2037

6. Расчет выбросов загрязняющих веществ от прачечной

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории. Астана, 2014.

Для стирки одежды используют стиральный порошок «Миф», «Лоск». В атмосферу выделяются: динатрий карбонат, синтетическое моющее средство.

Складское хранение органических растворителей и других летучих соединений осуществляется в герметичной таре, без выделения вредных веществ.

Расчет выбросов вредных веществ в атмосферу от прачечной при применении стирального порошка, производится на основании удельных показателей [1].

Количество вредных веществ, выделяемых в процессе приготовления раствора для стирки, определяем по формуле:

$$Mc = Q_{VA}$$
, Γ/c

$$M_{\Gamma} = M_{c} \times T \times 3600/10^{6}$$
, т/год

где ${\tt q}$ - удельный показатель выделения загрязняющего вещества, г/с;

Т - время работы, ч/год.

Расчет выбросов *диНатрия карбоната* при работе стиральной машинки (ист.000301):

$$Mc = 0.00006478 \text{ r/c}$$

$$M_{\Gamma} = 0,00006478 \text{ x } 1750 \text{ x } 3600 / 10^6 = 0,000408 \text{ т/год}$$

Результаты расчета представлены в таблице 6.1.

Таблица 6.1 - Выбросы загрязняющих веществ при работе прачечной

№ ист.	Наименование оборудования	t, ч/год	q, г/с	Код ЗВ	Загрязняющее вещество	Выб	росы
		1,104		J.D		г/с	т/год
1	2	3	4	5	6	7	8
000001	Стиральная машина	1770	0,00006478	0155	диНатрий карбонат	0,00006478	0,000408
000301	производительность 36 кг/ч	1750	0,0001505	2744	Синтетическое моющее средство	0,0001505	0,000948
000202	Стиральная машина	1750	0,00006478	0155	диНатрий карбонат	0,00006478	0,000408
000302	производительность 36 кг/ч	1750	0,0001505	2744	Синтетическое моющее средство	0,0001505	0,000948
000202	Стиральная машина	1770	0,00006478	0155	диНатрий карбонат	0,00006478	0,000408
000303	производительность 36 кг/ч	1750	0,0001505	2744	Синтетическое моющее средство	0,0001505	0,000948
			H 0002	0155	диНатрий карбонат	0,00019434	0,001224
			Итого по ист.0003:	2744	Синтетическое моющее средство	0,0004515	0,002844

7. Расчет выбросов загрязняющих веществ при дезинфекции

При обработке оборудования, помещений, поверхностей санитарных приборов, используется раствор хлора. В растворе 30% активного хлора, причем часть его в количестве 10% теряется в процессе хранения, оставшиеся 20% активного хлора, идут на дезинфекцию. Практика показала, что половина этого хлора идет на реакцию с различными минеральными примесями, содержащимися в воде и на окисление органических веществ. Этот хлор выпадает в осадок. На разрушение бактериальных клеток расходуется лишь незначительная часть хлора. В атмосферу выделяется 10 % хлора.

Количество хлора, выделившегося в атмосферу за год, находится по формуле:

$$M = m x n, \tau/\Gamma o д$$

где m – годовой расход хлорной извести, т;

n – количество хлора, %.

При определении максимального выброса (г/с) используется выражение:

$$Mc = Mr \times 10^6/(3600 \times T), r/c$$

где Т - время дезинфекции, ч/год, ч/год.

Пример расчета выбросов *хлора* при дезинфекции помещений и оборудования в здании (ист.6003):

$$M = 0.025 \times 0.1 = 0.0025 \text{ T/год}$$

$$Mc = 0.0025 \times 10^6 / (3600 \times 1095) = 0.00063 \text{ r/c}$$

Результаты расчета сведены в таблицу 7.1.

Таблица 7.1 - Результаты расчетов выбросов вредных веществ при дезинфекции

№	Наименование	Время	Количество	Расход	Код	Загрязняющее	Выбр	осы
ист.	места дезинфекции	работы, t, ч/год	хлора, п, %	хлора, m, т/год	3B	вещество	г/с	т/год
1	2	3	4	5	6	7	8	9
			3 ,	ание				
6003	Помещения, оборудования	1095	0,1	0,025	0349	Хлор	0,00063	0,0025
0004	Сан.узлы	730	0,1	0,015	0349	Хлор	0,00057	0,0015
0005	Сан.узлы	730	0,1	0,015	0349	Хлор	0,00057	0,0015

0006 Сан.узлы 730 0,1 0,015 0349 Хлор 0,00057 0,0

8. Расчет выбросов вредных веществ от сварочных постов

Список литературы:

1. Методика определения валовых выбросов вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения. Астана, 2014 г.

Электросварочные работы

При выполнении сварочных работ атмосферный воздух загрязняется сварочным аэрозолем, в состав которого, в зависимости от вида сварки, марок электродов и флюса, входят вредные для здоровья оксиды металлов (марганца, хрома, алюминия и др.), газообразные (фтористые соединения, оксиды углерода, азота и др.).

Количество образующихся при сварке пыли и газов принято характеризовать валовыми выделениями, отнесенными к 1 кг расходуемых материалов.

Определение количества выделяющихся вредных веществ (г/с, т/год) производится по формулам в зависимости от расхода электродов [1]:

$$Mc = (K^x_m \times B_{vac})/3600 \times (1-n), \Gamma/c$$

$$Mc = K^{x}_{m} x B_{\text{год}} x 10^{-6} x (1-n), т/год$$

где: B_{rog} – расход применяемого сырья и материалов, кг/год;

 $B_{\text{час}}$ — фактический максимальный расход применяемых сырья и материалов, с учетом дискретности работы оборудования, кг/час.;

 K_m^x – удельный показатель выброса загрязняющих веществ «х» на единицу массы расходуемых (приготовляемых) сырья и материалов, г/кг;

n - степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

В качестве примера приводим расчет выбросов взвешенных веществ при использовании электродов марки MP-4 (ист.601901):

$$Mc = (9.7 \times 1.8)/3600 \times (1-0) = 0.00485 \text{ r/c}$$

$$Mc = 9.7 \times 1850 \times 10^{-6} \times (1-0) = 0.01795 \text{ т/год}$$

Удельные валовые выделения и результаты расчетов приведены в таблице 8.1

Газовая резка металлов

При газовой резке металлов атмосферный воздух загрязняется сварочным аэрозолем, в состав которого входит оксид марганца, оксида железа, оксид углерода и оксиды азота.

Количество образующихся при газовой резке пыли и газов принято характеризовать валовыми выделениями, отнесенными к 1 м разрезаемого материала. Определение количества выделяющихся вредных веществ производится по формуле [1]:

$$Mc = K_0^x \times L_y / 3600 \times (1-n), r/c$$

$$M_{\Gamma} = K_{6}^{x} x L_{4} x 10^{-6}, T/\Gamma од$$

где K_0^x – удельный показатель выброса вещества «х», на единицу времени работы оборудования, при толщине разрезаемого металла б;

 $L_{\rm q}$ – длина реза, м/ч;

 L_{Γ} – длина реза, м/год;

В качестве примера приводим расчет выбросов взвешенных веществ при газовой резке металлов (ист.601902):

$$Mc = 8,73 \times 2,0 / 3600 = 0,00485 \text{ r/c}$$

$$M_{\Gamma} = 8,73 \times 3500 \times 10^{-6} = 0,03056 \text{ т/год}$$

Удельные валовые выделения, образующиеся при резке металлов и результаты расчетов, сведены в таблицу 8.1

Таблица 8.1- Результаты расчетов выбросов при сварочных работах

Источник выброса	Процесс	Марка	Толщина металла,	свар	сход очных риалов	Длин	а реза	Время работы	Удел. выдел. G, г/кг, г/час	Загрязняющее вещество	Код ЗВ	Выделе	ение ЗВ
		материала	MM	кг/час	кг/год	м.п./час	м.п./год					г/с	т/год
1	2	3	4	5	6			7	8	9	10	11	12
					Mexai	ническая	мастерс	кая (ATI	I)				
6006	Электросварочный аппарат	MP-4		1,8	1850			1028	0,4	Фтористые газ.соед	0342	0,0002	0,00074
01									9,9	Железа оксид	0123	0,00495	0,01832
									1,1	Марганец и его соед.	0143	0,00055	0,00204
6006	Газорезательный аппарат	пропан	20			2	3500	1750	8,87	Железа оксид	0123	0,00493	0,03105
02									0,13	Марганец и его соед.	0143	0,00007	0,00046
									2,4	Азота диоксид	0301	0,00133	0,0084
									2,93	Оксид углерода	0337	0,00163	0,01026
										Фтористые газ.соед	0342	0,0002	0,00074
										Железа оксид	0123	0,00988	0,04937
								Итог	го по ист.6006:	Марганец и его соед.	0143	0,00062	0,0025
										Азота диоксид	0301	0,00133	0,0084
										Оксид углерода	0337	0,00163	0,01026