«ҚАЗАҚСТАН РЕСПУБЛИКАСЫ
ЭКОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР
МИНИСТРЛІГІ ЭКОЛОГИЯЛЫҚ РЕТТЕУ
ЖӘНЕ БАҚЫЛАУ КОМИТЕТІ «ТҮРКІСТАН
ОБЛЫСЫ БОЙЫНША ЭКОЛОГИЯ
ДЕПАРТАМЕНТІ»
РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК
МЕКЕМЕСІ

Казақстан Республикасы, Туркістан облысы,

Номер: KZ94VVX00206577

Дата: 10.04.2023
РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ
УЧРЕЖДЕНИЕ
«ДЕПАРТАМЕНТ ЭКОЛОГИИ ПО
ТУРКЕСТАНСКОЙ ОБЛАСТИ КОМИТЕТА
ЭКОЛОГИЧЕСКОГО РЕГУЛИРОВАНИЯ И
КОНТРОЛЯ МИНИСТЕРСТВА ЭКОЛОГИИ И
ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ

КАЗАХСТАН»

Республика Казахстан, Туркестанская область, город Туркестан, микрорайон Жаңа Қала, улица 32, здание 16 (Дом областных территориальных органов

министерств).

Түркістан қаласы, Жаңа қала шағын ауданы, 32 көшесі, ғимарат 16 (Министрліктердің облыстық аумақтық	
органдары үйі).	
Телефон - 8(72533) 59-6-06	
Электрондық мекен жайы: Turkistan-ecodep@ecogeo.gov.kz	

Телефон - 8(72533) 59-6-06 Электронный адрес: Turkistan-ecodep@ecogeo.gov.kz

АО «НАК «Казатомпром»

Заключение по результатам оценки воздействия на окружающую среду Отчета о возможных воздействиях на рабочий проект «Проекта опытнопромышленной добычи на месторождении урана «Инкай» участка №3

Сведения об инициаторе намечаемой деятельности: АО «НАК «Казатомпром» в лице руководителя А.Х. Акжолова, БИН - 970240000816, 010000, РК, г. Астана, район «Есиль», улица Сығанақ, строение №17/12, тел: 8(7172)45-81-01, nac@kazatomprom.kz.

Согласно пп. 2.6 п. 2 раздела 2 к приложению 1 Экологического кодекса Республики Казахстан от 2 января 2021 года № 400-VI 3PK, подземная добыча твердых полезных ископаемых.

Вместе с этим, деятельность АО «НАК «Казатомпром» согласно пп. 3.1 п. 3 раздела 1 приложению 2 Экологического кодекса Республики Казахстан, добыча и обогащение твердых полезных ископаемых, за исключением общераспространенных полезных ископаемых, относиться к I категории.

Сведения о документах, подготовленных в ходе оценки воздействия на окружающую среду:

1.Заключение об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействия намечаемой деятельности от 09.08.2022 года за №KZ92VWF00072707;

2.Отчет о возможных воздействиях к проекту «Опытно-промышленной добычи месторождения урана «Инкай»;

3. Протокол общественных слушаний от 15.03.2023 года.

Общие описания видов намечаемой деятельности

Месторождение Инкай участок №3, в административном отношении, входит в состав Туркестанской и Кызылординской областей Республики Казахстан.

Проектом предусматривается проведение добычи урана способом подземного скважинного выщелачивания на месторождении урана Инкай участка $N \ge 3$ с запасами урана категорий C_1 и C_2 .

Данным проектом предусмотрено бурение скважин ежегодно с 2024 по 2029 гг, кроме 2027 года. В 2027 году проектом предусматривается только добыча урана без проведения буровых работ. В 2028-2029 годы планируется бурение контрольных скважин.

Производство предназначено для отработки урансодержащих руд методом подземного скважинного выщелачивания сернокислыми растворами на месте залегания.

Технология добычи урана методом подземного скважинного выщелачивания и переработки продуктивных растворов является замкнутой и безотходной.

АО «НАК «Казатомпром» является недропользователем по Контракту на разведку урана на участке №3 месторождения Инкай (рег. №4615-ТПИ-МЭ от 25.06.2018 г.).

Горно-подготовительные работы, в целом, включают в себя:

- бурение технологических и наблюдательных скважин проектных блоков, а также бурение контрольных скважин (предусматривается настоящим Проектом);
- монтаж участковых технологических узлов, совмещающих в себе узлы распределения выщелачивающих и узлы приема продуктивных растворов (УПРР) (по отдельному проекту на строительство);
- монтаж технологических узлов приготовления выщелачивающих растворов (ТУЗ) (по отдельному проекту на строительство);
- монтаж узлов технологических (УТ) для управления потоками растворов ПР и ВР (по отдельному проекту на строительство);
- монтаж вторичных трубопроводов для аккумуляции растворов со скважин поблочно и подачи их в магистральные трубопроводы до фактических для осуществления транспортировки растворов между пескоотстойниками ПР/ВР и ГТП (по отдельному проекту на строительство);
- прокладку воздушных линий электропередач напряжением 10 кВ до КТПН 10/0,4 кВ геотехнологического поля для питания погружных насосов и энергообеспечения технологических блоков в целом (по отдельному проекту на строительство);
- прокладку кабельных линий электропередач напряжением 0,4 кВ от КТПН 10/0,4 кВ до распределительных щитов (ЩР), расположенных на технологических блоках (по отдельному проекту на строительство);
- прокладку и строительство подъездных путей (дорог) от пром. площадки рудника ПСВ до участков работ (по отдельному проекту на строительство);
- автоматизацию и диспетчеризацию геотехнологического полигона (по отдельному проекту);
- внутриблочную обвязку скважин технологических блоков, которая заключается в монтаже раствороподъёмных средств в откачных скважинах погружных насосов (по отдельному проекту на строительство);
- обустройстве оголовников технологических (откачных и закачных) скважин и подключении их к соответствующим растворопроводам (по отдельному проекту на строительство);
- обвязке закачных и откачных скважин и узлов распределения ВР и приёма ПР, расположенных в УПРР (по отдельному проекту на строительство).

Производственная программа предусматривает постепенный ввод технологических блоков с соответствующим движением запасов с учетом погашения. Планируемый прирост вскрытых запасов увязывается с графиком выполнения буровых работ. Величина прироста готовых к добыче запасов определяется календарным планом добычи урана, графиком обвязки и временем закисления.

Подземное скважинное выщелачивание является способом разработки рудных месторождений без поднятия руды на поверхность путем избирательного перевода ионов природного урана в продуктивный раствор непосредственно в недрах. С этой целью через скважины, пробуренные с поверхности, в рудную зону подают химический реагент (раствор серной кислоты), способный переводить минералы урана в растворимую форму. Раствор, пройдя путь от закачной скважины до откачной, поднимается с помощью технических средств (насосов) на поверхность, поступает в технологические узлы приема продуктивных растворов и по трубопроводам транспортируется на установку для его переработки.

При скважинном выщелачивании не происходит существенного изменения структурного состояния недр, так как не производится выемка горнорудной массы. В процессе скважинного выщелачивания в подвижное состояние в недрах переходит и выводится на поверхность менее 5% твердого материала, по сравнению со 100% при горных разработках урана. Отпадает необходимость строительства хвостохранилищ для хранения отходов повышенного уровня радиации. После отработки рудных тел и промывки технологических блоков водой происходит постепенное восстановление естественных окислительно - восстановительных

условий и процесс рекультивации состава подземных вод рудовмещающих водоносных горизонтов.

Таким образом, способ подземного скважинного выщелачивания, является более экономичным и экологически безопасным методом добычи урана по сравнению с шахтным и карьерным способами.

Технологический процесс промышленной добычи урана на месторождении и процесс переработки в ЦППР состоит из следующих стадий:

- сооружение эксплуатационных геотехнологических блоков;
- подача в недра слабых растворов серной кислоты (выщелачивающих растворов) для перевода урана в раствор;
- электронасосный раствороподъём урансодержащих (продуктивных) растворов из скважин;
 - сбор продуктивных растворов с добычного полигона (геотехнологических блоков);
- транспортировка продуктивных растворов по технологическому трубопроводу на действующий перерабатывающий комплекс в пескоотстойники ПР ЦППР;
- сорбционное извлечение комплексных уранил-сульфатных ионов из сернокислых продуктивных растворов на перерабатывающей установке завода;
- десорбция урана с насыщенного сорбента с получением десорбатов на перерабатывающей установке ЦППР;
- переработка урансодержащих десорбатов на аффинажном производстве завода до желтого кека или закиси-окиси урана;
 - транспортировка возвратных растворов по трубопроводам на полигоны ПСВ;
- «подкисление» возвратных растворов серной кислотой, с целью получения выщелачивающих растворов;
 - закачивание выщелачивающих растворов в скважины добычного полигона.

Атмосферный воздух. Основными источниками выбросов 3В в атмосферу являются: передвижной компрессор; сварочный агрегат; ДЭС; заправка; работа бульдозера; выемка грунта; обратная засыпка; каротажная станция; машина для PBP; топливозаправщик; сварка.

Основными загрязняющими веществами, выбрасываемых в атмосферу: железо (II, III) оксиды; марганец и его соединения; азот (II) оксид; азота (IV) диоксид; углерод (Сажа); углерод оксид; сера диоксид; бенз/а/пирен; керосин; алканы С12-19 /в пересчете на С/; пыль неорганическая, содержащая 70-20% двуокиси кремния; сероводород; фтористые газообразные соединения /в пересчете на фтор/; формальдегид.

Анализ результатов показал, что границе СЗЗ и в расчетных точках концентрации ЗВ, выбрасываемых источниками загрязнения, не превышают ПДК. Объем выбросов ЗВ в атмосферу составляет на 2024 год – 2,9667 г/сек, 4,44662 т/год; на 2025 год – 2,964098 г/сек, 4,4376 т/год; на 2026 год – 2,967898 г/сек, 4,451301 т/год; на 2028 год – 2,95629819 г/сек, 4,40909132 т/год; на 2029 год – 2,95559819 г/сек, 4,40625132 т/год.

Водные ресурсы. Для питьевых целей планируется использовать привозную бутилированную воду. Водоснабжение для хоз. бытовых и технических нужд предусмотрено привозное. Привозная вода хранится в отдельном помещении или под навесом в емкостях, установленных на площадке с твердым покрытием. Емкости для хранения воды изготавливаются из материалов, разрешенных к применению для этих целей на территории РК. Чистка, мытье и дезинфекция емкостей для хранения и перевозки привозной воды производится не реже одного раза в десять календарных дней и по эпидемиологическим показаниям. Внутренняя поверхность механически очищается, промывается с полным удалением воды, дезинфицируется. После дезинфекции емкость промывается, заполняется водой и проводится бактериологический контроль воды. Вода, используемая для питьевых и хозяйственно-бытовых нужд, соответствует документам государственной системы санитарно-эпидемиологического нормирования.

Потенциальным источником воздействия на поверхностные воды на стадии горноподготовительных работ будут являться сточные воды.

При проведении горно-подготовительных на проектируемом участке будут формироваться следующие виды сточных вод: хозяйственно - бытовые сточные воды; отработанные буровые растворы; откачные воды при освоении скважин.

Хозяйственно - бытовые сточные воды (хозфекальные) будут образовываться в результате жизнедеятельности персонала буровой бригады. Потребление воды в хозяйственно-питьевых целях на стадии горно-подготовительных работ на нужды строительного персонала будет организовано по децентрализованной схеме, за счет поставки бутилированной воды питьевого качества. Хозяйственно - бытовые стоки будут характеризоваться типичным составом, подобным составу стоков, образующихся в жилом секторе. По своим характеристикам данный вид сточных вод может быть подвергнут очистке на биологических очистных сооружениях по типовой для хозяйственно - бытовых стоков схеме.

Для сбора хозяйственно - бытовых сточных вод, в целях исключения поступления загрязняющих веществ и микроорганизмов на водосборные площади, на стадии горноподготовительных работ планируется размещение биотуалетов, снабженных водоизолированными сборниками хозфекальных стоков. Вывоз хозяйственно - бытовых сточных вод, образующихся на стадии горно-подготовительных работ осуществляется на основании договора со специализированной организацией.

Буровые сточные воды. Для технических нужд на стадии горно - подготовительных работ вода используется в приготовлении бурового и цементного растворов. Буровой и цементный растворы готовятся за пределами участка работ (на производственной базе буровой организации) и доставляются на участок в готовом виде. Буровой раствор в объеме 20 м³ завозится на каждую скважину.

Буровой раствор буровым насосом нагнетается в скважину и, подняв из нее выбуренную породу, поступает в циркуляционную систему буровой установки. Глинистый раствор и буровой шлам собираются в зумпф объемом 24 m^3 , который соединен канавкой с отстойником объемом 24 m^3 . В отстойнике собирается осветленный буровой раствор, используемый повторно. При достижении рудного горизонта канавка на основной зумпф перекрывается, буровой раствор из скважины направляется в специальный зумпф, объемом 3 m^3 , который соединен с отстойником рабочего зумпфа. По окончании разбуривания рудного горизонта раствор из скважины направляется снова в отстойник рабочего зумпфа.

Буровые сточные воды образуются при отстаивании отработанных буровых растворов и используются повторно. По окончании бурения каждой скважины отработанный буровой раствор согласно расчету с требованиями пунктов 383 и 384 «Правил обеспечения промышленной безопасности при геологоразведке, добыче и переработке урана» доставляются во временные пескоотстойники возвратных растворов, находящиеся на территории геотехнологических полей подготавливаемых к отработки блоков с последующей доставкой ее в рабочий пескоотстойник возвратных растворов, находящийся на промышленной площадке.

При бурении скважин на действующих блоках геотехнологического поля, откачка воды из основного зумпфа допускается производить через линию ремонтно-восстановительных работ или вывезти в бассейн ремонтно-восстановительных работ.

Отванные воды при освоении скважин. Освоение скважины ведется установкой УОС. Первые 16 м³ раствора сбрасываются в зумпф. Далее воды, образуемые при освоении, доставляются во временные пескоотстойники возвратных растворов, находящиеся на территории геотехнологических полей подготавливаемых к отработке блоков с последующей доставкой ее в рабочий пескоотстойник возвратных растворов, находящийся на промышленной площадке. Объем откачиваемой воды зависит от гидрогеологических свойств скважины и определяется по факту образования.

Возможными источниками загрязнения подземных вод на проектируемом геотехнологическом поле при его эксплуатации являются:

- фильтрационные утечки вредных веществ из трубопроводов и других сооружений технологического цикла;
- загрязненные участки геотехнологического поля (полигона скважин);

- пути транспортировки технологических растворов по магистральным трубопроводам;
- места складирования отходов производства;
- попадание продуктивных и выщелачивающих растворов в безрудные горизонты за счет нарушения целостности обсадки технологических скважин;
- остаточная кислотность подземных вод в продуктивном горизонте после выщелачивания.

Сброс сточных вод в водные объекты, на рельеф местности или в недра проектными решениями не предусматривается. Следовательно, расчеты количества сбросов загрязняющих веществ в окружающую среду, в целях заполнения декларации о воздействии не предполагается.

Отводы. В процессе производственной деятельности на предприятии образуются отходы производства и потребления.

На период строительства полигона ПСВ предполагается образование отходов производства и потребления, из них: промасленная ветошь, отходы покрасочных материалов (ЛКМ); твердо - бытовые отходы (ТБО), огарки сварочных электродов, строительные отходы буровой шлам.

Вывод: Представленный отчета о возможных воздействиях на рабочий проект «Проекта опытно-промышленной добычи на месторождении урана «Инкай» участка №3 не допускается к реализации намечаемой деятельности согласно замечаниям, указанных в настоящем заключении.

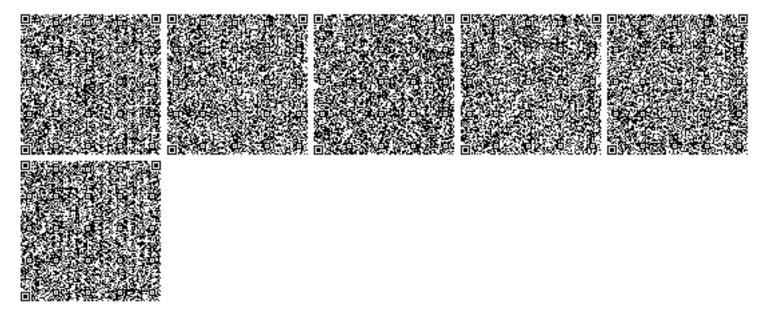
Возможные воздействия намечаемой деятельности на окружающую среду, предусмотренные пп. 27 п. 25 Главы 3 «Инструкции по организации и проведению экологической оценки», утвержденного приказом Министра экологии, геологии и природных ресурсов РК от 30.07.2021 года за №280 (далее - Инструкция) присутствуют, то есть в отчете о возможных воздействиях: осуществляет выбросы загрязняющих (в том числе токсичных, ядовитых или иных опасных) веществ в атмосферу, которые могут привести к нарушению экологических нормативов или целевых показателей качества атмосферного воздуха, а до их утверждения — гигиенических нормативов.

1.Замечание №1 не устранено. Согласно п.1 ст. 329 Экологического кодекса РК (далее Кодекс) в Отчете имеет место несоответствия принципам иерархии, то есть буровые шламы захорониваются в проектируемые шламонакопители. Согласно п.2 ст.325 Кодекса захоронение отходов это складирование отходов в местах, специально установленных для их безопасного хранения в течение неограниченного срока, без намерения их изъятия. Также, отходы бурения (буровой шлам) не может быть использован в качества сырья для рекультивации, так как его нерадоиактивность не определена лабораторными анализами. Буровой шлам не должен подлежат захоронению в шламонакопителях и зумпфах.

- 2.Замечание №9 не устранено. Не внесены изменения таблице 9.1.7 на стр. 132 Отчёта, то есть наименование не изменено.
- 3.Замечание №11 не устранено. На стр.129 Отчёта не указаны сведения о конструкции шламонакопителя (вместимость, количество проектируемых) размещающий буровой шлам и их основании.

В целом Отчёт носит формальный характер и не соответствует требованиям Экологического законодательства.

Руководитель департамента


К. Калмахан

Исп. Бейсенбаева Б. Тел: 8(72533) 59-627

Руководитель департамента

Қалмахан Қанат Қалмаханұлы

