

Республика Казахстан

Товарищество с ограниченной ответственностью

«АСПМК-519»

(ТОО «АСПМК-519»)

Внешнее электроснабжение химического комплекса по переработке фосфатов

Рабочий проект

Пояснительная записка

Е530-0001-2063166-РП-01-0000-ПЗ

Генеральный директор

Главный инженер проекта

В.Х Ким

А.В. Афонин

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1. Общая часть.

1.1. Основания для выполнения рабочего проекта

Основанием для разработки рабочего проекта «Внешнее электроснабжение химического комплекса по переработке фосфатов» являются:

- Договор на разработку проектно-сметной документации по объекту «Внешнее электроснабжение химического комплекса по переработке фосфатов»;
- Техническое задание на разработку рабочего проекта «Внешнее электроснабжение химического комплекса по переработке фосфатов» (приложение к договору);
- Технические условия № 2 от 06.10.2022 г. на присоединение электрической станции ТОО «ЕвроХим-Каратау» к Л-154 и Л-155 выданные ТОО «ЕвроХим-Каратау»;
- Письмо KEGOC (филиал Южных МЭС) о согласовании ТУ ТОО «УвроХим-Каратау» № 01-09-04-02/7697 от $18.10.2022 \, \Gamma$.;

1.2. Исходные данные

Рабочий проект "Внешнее электроснабжение химического комплекса по переработке фосфатов»" выполнен с использованием данных:

— Отчеты по инженерно - геодезическим изысканиям выполненных ТОО «АСПМК-519» в августе 2022 г. и инженерно-геологическим изысканиям, выполненных ТОО «Innova Engineering Service» в октябре 2022 г..

Проект выполнен в соответствии с действующими в Республике Казахстан нормативными документами.

Сведения о подтверждении соответствия разработанной проектно — сметной документации государственным нормам, правилам, стандартам, техническим условиям и заданию на проектирование

Проектно-сметная документация разработана в соответствии с нормативными документами, действующими в РК и другими документами, приведенными ниже:

- CH PK 1.02-03-2011 «Порядок разработки, согласования, утверждения и состав проектной документации на строительство»,
- ОНТП 5-78 Общесоюзные нормы технологического проектирования ПС с высшим напряжением 35-750 кВ (издание 3, переработанное и дополненное);
- ОНТП ВЛ-78 Нормы технологического проектирования воздушных линий электропередачи напряжением 35 кВ и выше
- 407-03-456.87 Схемы принципиальные электрические распределительных устройств напряжением 6...750кВ подстанции.
- СП РК 4.04-114-2014 Нормы отвода земель для электрических сетей напряжением $0.4-1150~\mathrm{kB}.$
 - Правила устройства электроустановок РК (20.03.2015 г.)
 - Правила пользования электрической энергией (от 25.02.2015 г.)
 - Электросетевые правила РК (от 18.12.2014 г.)
 - Правила пожарной безопасности для энергетических предприятий

1.3. Объем проектирования

Проектом предусмотрено:

- Строительство двух одноцепных ВЛ 110 кВ от ПС 110/10 кВ "Рудничная-2" до мест отпаек от существующих ВЛ 110 кВ Л-154 и Л-155 «Опорная-Рудничная»;
- Строительство 2-х трансформаторной подстанции ПС 110/10 кВ «Рудничная-2», по типовой схеме 110-4H с двумя трансформаторами мощностью по 40 МВА;
 - Реконструкцию ячеек Л-154 и Л-155 ОРУ 110 кВ ПС «Опорная».

1.4. Продолжительность строительства.

Расчет продолжительности строительства выполнен в соответствии с СН РК 1.03-02-2014, СН РК 1.03-01-2013 и СП РК 1.03-101-2014 "ПРОДОЛЖИТЕЛЬНОСТЬ СТРОИТЕЛЬСТВА И ЗАДЕЛ В СТРОИТЕЛЬСТВЕ ПРЕДПРИЯТИЙ, ЗДАНИЙ И СООРУЖЕНИЙ".

Строительство проектируемых объектов, осуществляется параллельно, вследствие чего продолжительность строительства принимается по максимальному объекту.

В соответствии с приложением Γ . "Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений", разделом Γ 1.1. "Электроэнергетика", таблицей Γ 1.1.6 норма продолжительности строительства комплектной подстанции $110/10~\mathrm{kB}$ с двумя трансформаторами 40 MBA составляет 9 месяцев, в том числе подготовительный период -2,0 месяца, строительно-монтажные работы - 7,0 месяцев (монтаж оборудования - 4 месяца).

Реконструкция ячеек Л-154 и Л-155 ОРУ 110 кВ ПС «Опорная» (дополнительная установка 2-х блоков ТН 110 кВ). Расчетная продолжительность строительства принята директивно и составляет 1 месяц, подготовительные работы 0,2 месяца.

Строительство двух одноцепных ВЛ110 кВ общей протяженностью 3.6 км (2 одноцепные ВЛ 1.74 и 1.86 км) составляет 2,02 месяца.

В соответствии с приложением Γ . "Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений", разделом Γ 1.1. "Электроэнергетика", таблицей Γ 1.1.7 продолжительность строительства ВЛ 110 кВ составляет 2,5 месяца при протяженности 10 км.

В соответствии с СП РК 1.03-102-2014, продолжительность строительства объекта, параметры которого отличаются от приведенных в нормах, рассчитывается по методу линейной экстраполяции.

Минимальная продолжительность строительства при длине ВЛ 110 кВ 10 км составляет 2,5 месяца. Уменьшение длины составит (3,6-10) х 100%/10 =-64% Уменьшение нормы продолжительности строительства -64.0 х 0.3 =-19,2%

Продолжительность строительства с учетом экстраполяции

 $T_{BJI} = 2.5 \text{ x } (100-19.2)/100 = 2.02$

– Общая продолжительность -2.0 месяца; в т.ч. подготовительный период (15%) принят 0,3 месяца.

Учитывая возможность одновременного проведения работ по строительству вышеперечисленных объектов общая продолжительность строительства принимается по максимальной и составляет 9,0 месяцев, в том числе подготовительный период 2,0 месяца

Начало строительства - 2023 год

Окончание строительства - 2024 год.

В соответствии с заданием на проектирование выделение пускового комплекса проектом не предусматривается.

1.5. Местонахождение объекта строительства. Электроснабжение

Проектируемая ПС 110/10 кВ "Рудничная-2", проектируемые две одноцепные ВЛ 110 кВ от ПС 110/10 кВ «Рудничная-2» до места отпаек от существующих ВЛ 110 кВ

Л-154 и Л-155 и ПС 220/110/35 кВ «Опорная-Рудничная» располагаются в Жамбылской области в Сарысукском районе в 18 км юго-западнее г. Жанатас.

Станция Жанатас связана автомобильной и железной дорогами с г. Тараз.

Все материалы для строительства ВЛ 110 кВ и подстанции «Рудничная-2» доставляются железнодорожным транспортом до станции разгрузки "Жанатас" и далее, непосредственно автомобильным транспортом, до приобъектного склада по существующим автодорогам общего назначения с асфальтобетонным и щебеночным покрытием.

Далее на объекты строительства доставка оборудования осуществляется автомобильным транспортом по автодорогам общего назначения с асфальтобетонным и щебеночным покрытием общей протяженностью 18 км.

Согласно «Правил определения общего порядка отнесения зданий и сооружений к технически и (или) технологически сложным объектам» проектируемые подстанции напряжением 110 кВ и ВЛ 110 кВ являются объектами II (нормального) уровня ответственности, не относящимся к технически и технологически сложным объектам

2. Климатические, геологические и гидрологические условия площадки строительства.

2.1. Расчетные климатические условия

Климат рассматриваемого района разнообразный и имеет переходной характер. В холодное время года значительная часть территории имеет устойчивую морозную погоду. Резкие изменения погоды связаны с прорывом южных циклонов. Зимой прорывы южных циклонов сопровождаются интенсивным выносом теплых воздушных масс и, как следствие, оттепелями.

Характерной особенностью температурного режима весеннего сезона является неустойчивость погоды, частые возвраты холодов и поздние заморозки.

В июле-августе в связи с интенсивным прогревом появляется термическая депрессия, обуславливающая малооблачную жаркую погоду.

Согласно карты климатического районирования (СП РК 2.04-01-2017) участок строительства входит в $IV\Gamma$ подрайон строительства

Основные климатические характеристики сведены в таблицу.

Наименование показателя	Значение
Скорость ветра, м/с (скоростной напор ветра, даН/м²) V район по ветру	40 (100)
Толщина стенки гололеда мм III район по гололеду	20
Максимальная температура, °С	+45
Минимальная температура, °С	-41
Среднегодовая температура, °С	+10,8
Температура воздуха наиболее холодной пятидневки, °С	-21,1
Среднегодовая сумма осадков	262 мм
Среднегодовая продолжительность гроз	8.6 час
Преобладающее направление ветра	В, СВ, 3, ЮЗ
Район по снеговому покрову IV	1,8 КПА

Наименование показателя	Значение
Нормативная глубина промерзания грунта:	
- для суглинков	1.1 м
Сейсмичность района	7 баллов
Уровень грунтовых вод	не вскрыты

2.2. Расчетные геологические условия

На основании инженерно-геологических изысканий территория проектируемой площадки подстанции 110/10кВ "Рудничная-2» представлена тремя инженерно-геологическими элементами (ИГЭ):

- ИГЭ-2 суглинок светло-коричневый, твердый, с включением щебня, не просадочный.
- ИГЭ-4 дресвяные грунты с суглинистым заполнителем коры выветривания с включением щебня до 45 %.
 - ИГЭ-5 скальные грунты (доломиты)

По трассе прохождения ВЛ 110 кВ грунты представлены следующими инженерногеологическими элементами (ИГЭ):

- ИГЭ-1а почвенно-растительный слой мощностью до 0,2 м,
- ИГЭ-1 насыпной грунт из суглинка, щебня, дресвы, которыми сложены дорожные и железнодорожные полотна.
- ИГЭ-2 суглинок светло-коричневый, твердый, с включением дресвы, не просадочный.
- ИГЭ-3 суглинок светло-коричневый, твердый, с включением карбонатов, не просадочный.
- ИГЭ-4 дресвяные грунты с суглинистым заполнителем коры выветривания с включением щебня до 45 %.
 - ИГЭ-5 скальные грунты (доломиты).

Литологический разрез площадки ПС 220/110/10 кВ «Опорная», на которой предусмотрена реконструкция ячеек Л-154 и Л-155 представлен двумя инженерногеологическими элементами:

- ИГЭ-2 суглинок светло-коричневый, твердый, с включением дресвы, не просадочный.
 - ИГЭ-5 скальные грунты (доломиты).

Строительная группа грунтов по трудности разработки одноковшовым экскаватором, согласно по ЭСН РК 8.04-01-2015 :

- ИГЭ-1а Почвенно-растительный слой- 1 группа;
- ИГЭ-1 Насыпной грунт 2 группа;
- ИГЭ-2 Суглинки твердые с вкл. щебня 3 группа;
- ИГЭ-3 Суглинки твердые с вкл. карбонатов 3 группа;
- ИГЭ-4 –Дресвяные грунты 5 группа;
- ИГЭ 5 Скальные грунты 7 группа;

Коррозионная активность грунтов по отношению к углеродистой стали средняя и составляет от 25,7 до 36,1 Ом*м.

Степень агрессивного воздействия грунтов на бетонные и железобетонные конструкции марки по водонепроницаемости W_{4-14} по содержанию сульфатов для бетонов на портландцементе и шлакопортландцементе сильная и средняя, на сульфатостойких

цементах неагрессивная. По содержанию хлоридов для бетонов марок W_{4-8} грунты обладают средней агрессией.

Расчетные гидрологические условия.

На проектируемой площадке ΠC 110/10 кВ "Рудничная-2» и по трассе ВЛ 110 кВ грунтовые воды на глубине до 4 м не вскрыты.

3. Генеральный план.

3.1. Проектируемые ВЛ 110 кВ

Две одноцепные ВЛ 110 кВ строятся от ПС 110/10 кВ «Рудничная-2» до мест отпаек существующих ВЛ 110 кВ Λ -154 и Λ -155 «Опорная-Рудничная».

Трассы проектируемых ВЛ 110 кВ проходят по землям Жамбылской области Сарысуского района (в 18 км юго-западнее г. Жанатас) сначала в северо-восточном направлении (от места отпаек от существующих ВЛ 110 кВ Л-154 и Л-155)), а затем поворачивают в северо-западном направлении и проходят до Уг. 4, затем поворачивают на запад и заходят на ПС 110/10 кВ «Рудничная-2».

Проектируемая ВЛ состоит из двух одноцепных ВЛ 110 кВ (№ 1 Левой ВЛ и № 2 Правой ВЛ). Протяженность ВЛ равна 1736,8 м и 1863,2 м соответственно.

При своем прохождении ВЛ 110 кВ № 1 (Левая) и ВЛ № 2 (Правая) пересекают ВЛ 110 кВ, железнодорожные тупики ТОО «ЕвроХим-Каратау», автодорогу Шымкент-Жанатас, линию связи ТОО «Казфосфат», проектируемые железнодорожные тупики, проектируемый внутриплощадочный проезд ТОО «ЕвроХим-Каратау».

3.2. ПС 110/10 кВ "Рудничная-2"

Проектом предусмотрено строительство новой подстанции 110/10 кВ.

Проектируемая подстанция 110/10 кВ "Рудничная-2» расположена на территории химического комплекса по переработке фосфатов (специально отведенная площадка).

На отведенной под строительство площадке подстанции выполняется вертикальная планировка с учетом планировки всей площадки химического комплекса.

Площадка под строительство подстанции предварительно спланирована, плодородный слой снят. За основание принята отметка 654.0 м

Дополнительная планировка площадки ΠC выполнена с целью создание небольшого уклона (0.43 м) в западном направлении для отвода с территории дождевых и талых вод за пределы площадки.

Площадь отведенная под подстанцию составляет 0.51 га, площадь участка подстанции в пределах ограды 4800м^2 .

Абсолютная отметка нуля спланированной территории подстанции соответствует 654.3 - 654.73 м, уклон на запад. Слой подсыпки местного грунта спланированной площадки колеблется от 0.0 м до 0.37 м. Отсыпка выполняется местным грунтом с последующим трамбованием и доведением плотности грунта до 1,65 г/см³.

После выполнения планировки предусмотрена подсыпка ПГС толщиной 0,1 м, на участках озеленения — подсыпка плодородного грунта толщиной 10 см. Посев многолетних трав предусмотрен на свободной от застройки территории подстанции.

Для укрепления откосов площадки подстанции, предусмотрен слой плодородного грунта толщиной 10 см и посев многолетних трав.

Грунты по площадке подстанции 110/10кВ "Рудничная-2» представлена тремя инженерно-геологическими элементами (ИГЭ):

- ИГЭ-2 - суглинок светло-коричневый, твердый, с включением щебня, не просадочный.

- ИГЭ-4 дресвяные грунты с суглинистым заполнителем коры выветривания с включением щебня до 45 %.
 - ИГЭ-5 скальные грунты (доломиты)
 - Грунтовые воды на площадке строительство до глубины 4.0 м на выявлены.
 - Привязка объекта выполнена от границ отведенного участка.
 - Расположение оборудования на площадке ПС предусмотрено исходя из:
- Использования индустриальных методов производства строительно-монтажных работ;
- Ревизии, ремонта и испытания оборудования с применением машин, механизмов и передвижных лабораторий;
 - Проезда пожарных машин;
 - Доставки тяжеловесного оборудования с помощью автотранспортных средств.

На площадке подстанции предусматривается размещение следующих основных сооружений:

- силовые трансформаторы;
- токоограничивающие реакторы 10 кВ;
- линейные порталы 110 кВ;
- отдельно стоящие прожекторные мачты с молниеотводами;
- опоры под высоковольтное оборудование;
- блочно-модульное здание ЗРУ совмещенное с ОПУ;
- шинные мосты 10 кВ;
- подземный маслосборник емкостью 36 м³;
- подземный септик емкостью 4,5 3 ;
- водопроводный колодец;
- наземные железобетонные кабельные конструкции;

На территории строительства предусмотрены внутриплощадочные проезды и площадки с асфальтобетонным покрытием.

На проектируемой расширяемой части площадки ОРУ отсутствуют инженерные сооружения, требующие переноса (водопровод, канализация, теплотрасса).

По территории площадки подстанции проложены инженерные сети:

- хоз-питьевой водопровод В1;
- маслоотводы Н2;
- хоз-бытовая канализация К1.

Маслоотводы H2 проложены от маслоприемников трансформаторов до подземного маслосборника.

Внешнее ограждение подстанции принято сетчатым из панелей ограждения Gardis с креплением панелей на металлических столбах производства ТОО "Petrotall Droup". Тип системы ограждения "Классик". Панели ограждения, столбы и крепежные элементы изготовлены из оцинкованной стали и имеют дополнительную защиту порошковым полимерным покрытием.

Внешнее ограждение высотой 2,0 м, внутреннее 1,6 м.

3.3. Реконструкция ячеек Л-154 и Л-155 ОРУ 110 кВ ПС «Опорная»

Реконструкция линейных ячеек линий O154 и Л-155 включает в себя дополнительную установку в ячейках трансформаторов напряжения.

Распределительное устройство 110 кВ действующее, территория спланирована. Дополнительная планировка, организация подъезда прокладка инженерных сетей и выполнение ограждения ограждение не требуются.

Грунты по площадке ОРУ 110 кВ представлена двумя инженерно-геологическими элементами (ИГЭ):

- ИГЭ-2 суглинок светло-коричневый, твердый, с включением дресвы, не просадочный.
 - ИГЭ-5 скальные грунты (доломиты).

На площадке реконструируемых ячеек предусматривается размещение следующих основных сооружений:

– Опора под в/в оборудование (ТН 110 кВ);

4. Технологические решения

4.1. Проектируемые ВЛ 110 кВ.

Две одноцепные ВЛ 110 кВ от ПС 110/10 кВ «Рудничная-2» до мест отпаек существующих ВЛ 110 кВ Л-154 и Л-155 «Опорная-Рудничная»

Описание трасс ВЛ 110 кВ

Трассы проектируемых ВЛ 110 кВ проходят по землям Жамбылской области Сарысуского района (в 18 км юго-западнее г. Жанатас) сначала в северо-восточном направлении (от места отпаек от существующих ВЛ 110 кВ $\,$ Л-154 и $\,$ Л-155)), а затем поворачивают в северо-западном направлении и проходят до $\,$ Уг.4, затем поворачивают на запад и заходят на $\,$ ПС 110/10 кВ $\,$ «Рудничная-2».

Проектируемая ВЛ состоит из двух одноцепных ВЛ 110 кВ (№ 1 Левой ВЛ и № 2 Правой ВЛ). Протяженность ВЛ равна 1736,8 м и 1863,2 м соответственно.

Трасса ВЛ 110 кВ №1 (Левой ВЛ)

Левая ВЛ 110 кВ начинается от отпайки от существующей ВЛ 110 кВ (Л-155 «Опорная-Рудничная»). В пролете между опорами 1У110-5 № № 1 и 2 проектируемая ВЛ 110 кВ пересекает 2 существующие ВЛ 110 кВ. На Уг. 1 трассы ВЛ поворачивает влево на 12° и доходит до Уг. 2, пересекая автодорогу Шымкент-Жанатас, линию связи, подземные водопровод и кабель связи, на Уг. 2 трасса поворачивает влево на 23°, пересекает проектируемую автодорогу и доходит до Уг. 3, на котором поворачивает влево на 50° и следует до Уг. 4. На Уг. 4 ВЛ № 1 поворачивает влево на 52° и следует до Уг. 5, поворачивает влево на 33° и доходит до Уг. 6, пересекая железнодорожнй тупик ТОО «УвроХим-Комбината», затем трасса поворачивает вправо на 20° и приходит на концевую опору, пересекая железнодорожный тупик химкомбината, линию связи, автодорогу Шымкент-Жанатас, 2 проектируемых железнодорожных тупика, проектируемый внутриплощадочный проезд ТОО «ЕвроХим-Комбината» и поворачивая влево на 18° заходит на линейный портал 110 кВ проектируемой подстанции 110//10 кВ "Рудничная-2".

Трасса ВЛ 110 кВ №2 (Правой ВЛ).

Правая ВЛ 110 кВ начинается от отпайки от существующей ВЛ 110 кВ (Л-154 «Опорная-Рудничная»). В пролете между опорами 1У110-5 № № 1 и 2 проектируемая ВЛ 110 кВ пересекает 2 существующие ВЛ 110 кВ. На Уг.1 трассы ВЛ поворачивает влево на 12° и доходит до Уг. 2, пересекая автодорогу Шымкент-Жанатас, линию связи, подземные водопровод и кабель связи, проектируемую автодорогу, на Уг. 2 трасса поворачивает влево на 46°, и доходит до Уг. 3, на котором поворачивает влево на 34° и следует до Уг. 4. На Уг. 4 ВЛ № 2 поворачивает влево на 53° и следует до Уг. 5, поворачивает влево на 32° и доходит до Уг. 6, пересекая железнодорожнй тупик ТОО «УвроХим-Комбината», затем трасса поворачивает вправо на 20° и приходит на концевую опору, пересекая железнодорожный тупик химкомбината, линию связи, автодорогу

Шымкент-Жанатас, 2 проектируемых железнодорожных тупика, проектируемый внутриплощадочный проезд ТОО «ЕвроХим-Комбината» и, поворачивая влево на 31°, заходит на линейный портал 110 кВ проектируемой подстанции 110//10 кВ "Рудничная-2".

Технологические решения по ВЛ 110 кВ

В соответствии с техническими условиями проектом предусмотрено строительство двух одноцепных ВЛ 110 кВ от ПС 110/10 кВ «Рудничная-2» до мест отпаек существующих ВЛ 110 кВ Π -154 и Π -155 «Опорная-Рудничная».

На проектируемых ВЛ 110 кВ принят провод AC120/19. На каждой ВЛ 110 кВ предусмотрена подвеска троса со встроенным волоконно-оптическим кабелем OPGW 03A33z.

Соединение проводов AC120/19 в пролетах осуществляется овальными соединительными зажимами типа COAC-120-3, в шлейфах анкерно-угловых опор – соединительным шлейфовым зажимом ША-120-1.

Защита изоляции от обратных перекрытий осуществляется путем заземления всех опор. Величины сопротивлений заземляющих устройств опор выбраны в зависимости от удельного сопротивления грунтов и выполняются протяженными заземлителями из круглой стали диаметром 12 мм.

Анкерно-угловые опоры для ВЛ 110 кВ приняты металлические типа 1У110-3, 1У110-3+5 с подставкой 5м, 1У110-4а и 1У110-4+15а с подставкой 15м по типовому проекту 3.407.2-170.3, промежуточные металлические опоры 2П220-1-6,8 по типовому проекту 3.407.2-145.1. Для переходов под ВЛ 110 кВ приняты металлические анкерно-угловые опоры типа 1У110-5 с горизонтальным расположением проводов по типовому проекту 3.407.2-156.3.

Расчетный ветровой пролет опор $2\Pi 220$ -1-6,8 составляет 250 м, габаритный 235 м для ненаселенной местности и 225 м для населенной.

Металлические опоры устанавливаются на сборные ж/б фундаменты по чертежам типового проекта 3.407.1-144.

При установке на фундамент стальных опор ВЛ должно быть обеспечено плотное прилегание башмаков основания опоры к плоскости подножников, исключающее зазор между ними. Недопустимо смещение элементов опорной конструкции относительно проектных положений (несоосность взаимной установки элементов). Не допускается длительный перерыв между устройством котлованов и установкой фундаментов.

Обратную засыпку котлованов грунтом надлежит выполнять непосредственно после устройства и выверки фундаментов. Грунт должен быть тщательно уплотнен до объемного веса не менее 1,55 т/м³ путем послойного трамбования.

Вокруг опор выполнить отмостку местным грунтом. Отмостка должна иметь уклон от центра опоры не менее 0,003 и должна быть на 0,3 м шире засыпаемых пазух котлована.

В скальных грунтах фундаменты должны устанавливаться на щебеночную подготовку толщиной 10 см. В набухающих грунтах фундаменты устанавливаются на щебеночную (компенсирующую) подушку мощностью 50 см.

По опорам не допускать пропуска оросителей, а также водоотводных или нагорных канав ближе, чем на 10 метров от ноги опоры. Оросители или водоотводные канавы на участке приближения к опоре должны быть тщательно спланированы, а стенки и днища

их уплотнены или облицованы глинобетоном слоем до 15 см, на отрезке не менее 10 м по 5 м в каждую сторону от центра опоры.

Учитывая агрессивность грунтов к железобетону на сульфатостойком цементе фундаменты изготовить из бетона марки W8 по водопроницаемости на сульфатостойком цементе ГОСТ 22266-2013. Все фундаментные элементы покрыть гидроизоляцией из лака XП-734 в два слоя.

По трассе ВЛ 110 кВ имеются пересечения с инженерными сооружениями. Переходы через них выполняются на типовых опорах с соблюдением требуемых габаритных расстояний.

4.2. ПС 110/10кВ "Рудничная-2»

Настоящим проектом предусмотрено строительство новой подстанции 110/10 кВ, включающей в себя:

- открытое распределительное устройство ОРУ-110 кВ по схеме № 110-4Н (два блока с выключателями с неавтоматической перемычкой со стороны линий);
- установка силовых трансформаторов TSSN 7251 мощностью 40000 кВА напряжением 110/10 кВ;
 - установка сухих токоограничивающих реакторов РТСТГ 10-2500-0.45 У1;
- закрытое распределительное устройство ЗРУ-10 кВ с установкой шкафов КРУ в модульном здании по схеме 10(6)-1 (одна секционированные выключателем система шин), совмещенное с релейным щитом, ОПУ, с установленными трансформаторами собственных нужд 10/0,4 кВ мощностью 63 кВА;
 - шинные мосты 10 кВ;
 - кабельные трассы для прокладки силовых и контрольных кабелей.

На ОРУ-110 кВ предусмотрена установка высоковольтного оборудования, указанного в таблице 4.2.1

Таблица 4.2.1 Спецификация основного высоковольтного оборудования, монтируемого по данному проекту.

NºNº	Наименование	Ед.	Колич.		
п/п		измер.			
1. Трансформаторы силовые, реакторы токоограничивающие					
1.1	Трансформатор трехфазный двухобмоточный с РПН 40000 кВ, 115х9х1,78%/10,5 кВ типа TSSN 7251	к-т	2		
1.2	Заземлитель однополюсный комплектно с приводом ME BF2-123	ШТ	2		
1.3	Ограничитель перенапряжений 3EP4 060-1SD21-1NE1	ШТ	2		
1.4	Реактор сухой токоограничивающий (3 фазы), с монтажным комплектом и с навесами для каждой фазы типа РТСТГ 10-2500-0,45 У1	ШТ	2		

	2. Оборудование ОРУ 110 кВ		
2.1	Элегазовый колонковый выключатель 110 кВ, 1250 A, 25 кА комплектно с приводом (зав. чертеж 427-44102-501) 3AP1 FG 126	к-т	2
2.2	Разъединитель трехполюсный 110 В с одним заземляющим ножом, 1250A, 40 кА, (зав. чертеж 3Z-123-00288-002_0) с электро- двигательными приводами главных и заземляющих ножей 3DV8 3DN1 123-1	К-Т	2
2.3	Разъединитель трехполюсный 110 кВ, с двумя заземляющими ножами 1250A, 40 кА, (зав. чертеж 3Z-123-00288-001_0) с электро- двигательными приводами главных и заземляющих ножей 3DV8 3DN1 123-2	к-т	4
2.4	Трансформатор тока однофазный с масляной изоляцией 110 кВ, 400 A, 0.5S/10P/10P/10P, 300-400/5A (зав. чертеж H3-26245) IOSK-123	ШТ	6
2.5	Трансформатор напряжения однофазный емкостной с масляной изоляцией 110 кВ, $110000/\sqrt{3}$ / $100/\sqrt{3}$ / $100/\sqrt{3}$ / 100 , $0.5/3P/3P$ (зав. чертеж H3-45855) TCVT-123	ШТ	6
2.6	Ограничитель перенапряжений 110 кВ Комплектно: - Датчик 3EX5 060-1; - Монитор 3EX5 062-1; - Кабель соединительный 3 м 3EX5 963-0D (зав. чертеж GT S TSE AR / 27175430.0100 B01) 3EP4 111-2PF31-1NE1	ШТ	6
2.7	Шинная опора с оголовником MDG-4 для одного провода (зав. чертеж 2732R) C6-550-III	ШТ	6
	3. Блочно-модульное здание ЗРУ -10 кВ и оборудовани	е 10 кВ	
3.1	Блочно-модульное здание 36,0х6,0 м ЗРУ 10 кВ, совмещенное с ОПУ включающее в себя: - Комплектное распределительное устройство 10 кВ КРУ 10 кВ со сборными шинами 2500 А, 25 кА (18 ячеек), - Трансформаторы собственных нужд сухие с литой изоляцией 10/0,4 кВ 63 кВА (2 шт), - Щит распределения собственных нужд переменного тока, - Щит распределения собственных нужд постоянного тока, - Системы освещения, отопления, кондиционирования, вентиляции, кабельные конструкции	K-T	30
	Опорный изолятор 20 кВ ИОС 20-2000 УХЛ1	ШТ	
3.3	Ограничитель перенапряжений 10 кВ 3ЕК7 150-4СС4	ШТ	6

Распределительное устройство 10 кВ состоит из 18 ячеек:

- 2 вводные,
- 1 секционного выключателя,
- 1 секционного разъединителя,
- 2 трансформаторов напряжения,
- 2 трансформаторов собственных нужд,

- 2 реактор РТСТГ 10-2500-0,45 У1,
- 6 отходящие линий.

Шкафы КРУ-10 кВ устанавливаются в помещении ЗРУ-6 кВ с однорядным расположением ячеек.

Подключение силовых трансформаторов к вводным ячейкам КРУ-10 кВ –шинные мосты.

Модульное здание состоит из транспортабельных блоков со шкафами КРУ и другим оборудованием и поставляется комплектно.

Для питания собственных нужд (CH) предусматривается установка в БМЗ двух трансформаторов 10/0,4кВ мощностью по 63 кВА, подключаемых к I и II секциям шин 10кВ через выключатель.

Потребители (нагрузки) собственных нужд подключаются к двум шкафам (панелям) отходящих линий собственных нужд, работающих раздельно.

Щит собственных нужд 0,4 кВ поставляется комплектно с БМЗ.

Оперативный ток на подстанции принимается постоянный, напряжением 220B, источником является система бесперебойного питания типа ШПТ, имеющей в своем составе встроенные герметичные необслуживаемые аккумуляторные батареи.

Расчет токов КЗ выполнен для выбора оборудования и расчета РЗиА.

Результаты выполненных расчетов показали, что уровень токов K3 на шинах 10 кВ - 19,1 кА.

Линейные порталы ОРУ-110 кВ приняты железобетонными стойками ВС 140-257 с металлическими траверсами ТС1 типа ПЖС110-Я1.

Отдельно стоящие прожекторные мачты с молниеотводом (3шт) приняты ж/б. Стойка прожекторной мачты – СЦП 195-310.

Высоковольтное оборудование монтируется на металлические конструкции заводского изготовления, которые в свою очередь устанавливаются на ж/б стойки типа COH 52-39. Стойки COH 52-29 устанавливаются в копаные котлованы на фундамент Ф8.8.

На подстанции предусмотрена установка двух силовых трансформаторов типа TSSN 7251 мощностью 40 MBA напряжение 110/10 кВ. Установка силовых трансформаторов принята на монолитные фундаменты. Трансформаторные ямы выполнены из плит ПН32.9-1.

Установка токоограничивающих реакторов принята на монолитные фундаменты.

В качестве фундамента для блочно-модульного здания ЗРУ, совмещенного с ОПУ использованы ж/б стойки типа СОН 30-29, устанавливаемые в копаные котлованы на фундамент Ф8.8. Вокруг здания предусмотрена бетонная отмостка шириной 1 м.

Для исключения растекания масла в аварийной ситуации предусмотрен маслоприемник емкостью 36 м3, выполненный из железобетонных блоков.

Сброс масла из маслоприемников трансформаторов в маслосборник по аварийным маслопроводам из хризотилцементных труб диаметром 220мм.

Ошиновка ОРУ 110 кВ гибкая, выполнена проводом марки АС120/19.

Проектом приняты горизонтальные заземлители из круглой тали Д=16мм, вертикальные заземлители из круглой Д=16 мм длиной 3м.

Молниезащита подстанции выполняется с помощью молниеотводов, установленных на прожекторных мачтах и приемных линейных порталах.

Освещение территории выполнено с помощью прожекторов со светодиодными лампами типа, установленными на прожекторных мачтах.

Кабели прокладываются по территории ПС в железобетонных лотках, в местах перехода через дороги используются блоки БДЛ. Для защиты вторичных цепей от электромагнитных помех проектом предусмотрено:

- параллельно с кабельными лотками проложены полосы заземления с присоединением их к общему контуру заземления. При этом места присоединения должны быть удалены от спусков заземления молниеотводов и ограничителей перенапряжений минимум на 10 м;
- оборудование РЗА принято с минимальным напряжением срабатывания бинарных входов 0,6-0,8 Uн постоянного оперативного тока.

4.3. Реконструкция ячеек Л-154 иЛ-155 ОРУ 110 кВ ПС «Опорная»

В ячейках ОРУ 110 кВ Л-154 и Л-155 в рамках реконструкции предусматривается установка однофазных емкостных масляных трансформаторов напряжения 110 кВ типа TCVT-123.

Подключение трансформаторов выполнено проводом АС 120/19.

ТСН монтируются на стойках СОН 52-39. Стойки устанавливаются в копаные котлованы на фундамент Ф8.8.

5. Охрана труда и техника безопасности при эксплуатации

Охрана труда, техника безопасности и пожарная безопасность в строительстве и эксплуатации проектируемого объекта обеспечиваются принятием всех проектных решений в строгом соответствии с "Правилами устройств электроустановок Республики Казахстан", СН РК 1.03-05-2011 / СП РК 1.03-106-2012 «Охрана труда и техника безопасности в строительстве», СН РК 2.02-01-2014/ СП РК 2.02-101-2014 «Пожарная безопасность зданий и сооружений», Технический регламент "Общие требования к пожарной безопасности", требования которых учитывают условия безопасности труда, предупреждения производственного травматизма, профессиональных заболеваний, пожаров и взрывов.

В условиях угрозы завоза и распространения инфекционных заболеваний (COVID-19) предусматриваются дополнительные мероприятия по санитарно-эпидемиологическим условиям:

- дезинфекция салона автотранспорта перед каждым рейсом с последующим проветриванием при доставке рабочих на участки строительства;
- проведение инструктажа среди работников о необходимости соблюдения правил личной/общественной гигиены, а также отслеживание их неукоснительного соблюдения;
- использование медицинских масок или респираторов в течение рабочего дня с условием их своевременной смены;
- наличие антисептиков на рабочих местах, неснижаемого запаса дезинфицирующих, моющих и антисептических средств на каждом объекте;

- проверка работников в начале рабочего дня бесконтактной термометрией;
- исключение работы участков с большим скоплением работников (при возможности пересмотреть технологию рабочего процесса);
- организацию приема пищи в строго установленных местах, исключающая одновременный прием пищи и скопление работников из разных производственных участков, соблюдение расстояния между столами, количество посадочных мест за столом (не более 4), использование одноразовой посуды с последующим ее сбором и удалением;
- при проживании работников в общежитиях, в том числе и мобильных необходимо соблюдение санитарно-эпидемиологические требования и мер безопасности в целях предупреждения заражения COVID-19, обработка рук антисептиками, ежедневный мониторинг состояний здоровья работников, создания медпункта с изоляторами, влажная уборка бытовых помещений с дезинфекцией средствами вирулицидного действия не менее 2 раз в смену с обязательной дезинфекцией дверных ручек, выключателей, поручней, перил, контактных поверхностей (столов, стульев работников, оргтехники), мест общего пользования (гардеробные, комнаты приема пищи, отдыха, санузлы);

Для обеспечения требований охраны труда и техники безопасности необходимо также, чтобы строительно-монтажные, наладочные работы и эксплуатация электроустановок производились в соответствии с СН РК 1.03-05-2011, правилами техники безопасности при эксплуатации электроустановок, правилами техники безопасности при производстве электромонтажных работ на объектах, правилами пожарной безопасности при производстве строительно-монтажных работ на объектах. Перевозка грузов должна вестись в соответствии с инструкцией по перевозке крупногабаритных и тяжеловесных грузов автомобильным транспортом.

В тех случаях, когда требования в части расстояния от находящихся под напряжением элементов электроустановок до работающих машин и механизмов выполнить невозможно, необходимо отключать и заземлять эти электроустановки. Количество, продолжительность и время таких отключений должны быть указаны в проекте производства работ и согласованы с энергоснабжающей организацией.

6.1. Организация труда

Для обеспечения нормальных условий труда на подстанциях предусматривается:

- компоновка ОРУ-110 кВ, обеспечивающие возможность применения при ремонтах и эксплуатационном обслуживании автокранов, инвентарных устройств и средств малой механизации;
 - помещение управления для дежурного персонала;
- приточно-вытяжная вентиляция и кондиционирование помещений для дежурного персонала;
 - рабочее, аварийное освещение;
 - климат-контроль в помещении ЗРУ-6 кВ.

6.2. Мероприятия по электробезопасности

Рабочий проект подстанции и ВЛ выполнен в соответствии с требованиями:

- Правила устройства электроустановок (ПУЭ);
- Нормы технологического проектирования ПС и ВЛ с высшим напряжением 35-750 кВ изд.4;

- Типовых и руководящих материалов для проектирования;
- СНиП, правил противопожарных и взрывобезопасных норм проектирования зданий и сооружений, поэтому компоновочные, конструктивные, защитные решения, принятые в проекте, обеспечивают надежную, безопасную и рациональную эксплуатацию при неукоснительном выполнении действующих норм и правил, регламентирующих безопасное обслуживание оборудования и устройств и соблюдением «Правил техники безопасности при эксплуатации электроустановок», 2015 г.

Компоновка ОРУ типовая, обеспечивающая безопасное проведение работ и техническое обслуживание оборудования с применением автокранов, гидроподъемников, телескопических вышек, средств малой механизации.

Для исключения ошибочных действий персонала при производстве оперативных переключений в распределительных устройствах на ПС предусмотрена электромагнитная блокировка разъединителей и высоковольтных выключателей.

Безопасность персонала в зоне обслуживания электроустановок и за ее пределами в зоне влияния ПС от импульсных токов с молниеотводом и разрядников при работе защиты от замыкания на землю при повреждении изоляции, обеспечивается заземляющим устройством ПС.

Электробезопасность на ПС и ВЛ обеспечивается путем применения следующих мероприятий:

- надлежащей изоляции;
- соответствующих разрывов до токоведущих частей;
- защитного ограждения;
- осуществления контроля за состоянием изоляции;
- защитных заземляющих устройств;
- предупредительной сигнализации, надписей и плакатов;
- индивидуальных и групповых защитных средств.

В соответствии с "Правилами установления охранных зон объектов электрических сетей и особых условий использования земельных участков, расположенных в границах таких зон (Приказ Министра энергетики РК № 330 от 28.09.2017г.) вдоль линии электропередачи устанавливается охранная зона в виде земельного участка и воздушного пространства, ограниченных вертикальными плоскостями, отстоящими по обе стороны линии от проекций крайних проводов на поверхность земли (при не отклоненном их положении) на расстоянии 20 м для ВЛ 110 кВ. Работа в охранных зонах должна вестись с письменного согласия предприятий, в ведении которых находятся эти сети.

Строительство линии вблизи действующих ВЛ, находящихся под напряжением, должны выполняться с соблюдением нормируемых расстояний от проводов до работающих машин и механизмов, их надлежащего заземления и других мероприятий по обеспечению безопасности ведения работ.

В тех случаях, когда требования в части расстояния от находящихся под напряжением элементов электроустановок до работающих машин и механизмов выполнить невозможно, необходимо отключать и заземлять эти электроустановки.

– Категорически запрещается работа кранов и других механизмов под действующими ВЛ без их отключения и надежного заземления.

Выполнение этих мероприятий и следования их рекомендациям должно быть обязательным правилом эксплуатации на ПС и ВЛ, как постоянным персоналом, так и лицами, временно допущенными на ПС и ВЛ.

6.3. Охранные мероприятия

Охранные мероприятия на подстанциях предусматриваются в следующем объеме:

- ограда по периметру ПС;
- наружное освещение, включаемое при необходимости.

Для предохранения почвы от загрязнения сбросами масла при повреждении трансформаторов предусмотрены маслоприемники с маслоотводами и подземный маслосборник.

Для обеспечения требований охраны труда, техники безопасности и пожаробезопасности проектом предусматриваются:

- использование технически совершенного оборудования;
- использование для выполнения строительно-монтажных работ машин и механизмов, в конструкциях которых заложены принципы охраны труда.

6. Охрана труда при производстве строительно-монтажных работ.

Охрана труда, техника безопасности и пожарная безопасность в строительстве и эксплуатации проектируемого объекта обеспечиваются принятием всех проектных решений в строгом соответствии с "Правилами устройств электроустановок Республики Казахстан", СН РК 1.03-05-2011/ СП РК 1.03-106-2012 «Охрана труда и техника безопасности в строительстве», СН РК 2.02-01-2014/ СП РК 2.02-101-2014 «Пожарная безопасность зданий и сооружений», Технический регламент "Общие требования к пожарной безопасности", требования которых учитывают условия безопасности труда, предупреждения производственного травматизма, профессиональных заболеваний, пожаров и взрывов.

Для обеспечения требований охраны труда и техники безопасности необходимо также, чтобы строительно-монтажные, наладочные работы и эксплуатация электроустановок производились в соответствии с СН РК 1.03-05-2011, правилами техники безопасности при эксплуатации электроустановок, правилами техники безопасности при производстве электромонтажных работ на объектах, правилами пожарной безопасности при производстве строительно-монтажных работ на объектах. Перевозка грузов должна вестись в соответствии с инструкцией по перевозке крупногабаритных и тяжеловесных грузов автомобильным транспортом.

В тех случаях, когда требования в части расстояния от находящихся под напряжением элементов электроустановок до работающих машин и механизмов выполнить невозможно, необходимо отключать и заземлять эти электроустановки. Количество, продолжительность и время таких отключений должны быть указаны в проекте производства работ и согласованы с энергоснабжающей организацией.

Категорически запрещается работа кранов и других механизмов под действующими ВЛ без их отключения и надежного заземления.

7. Контроль качества работ

Методы производства работ при строительстве подстанций и ВЛ определяются строительной организацией при разработке проекта производства работ (ППР) в зависимости от имеющихся в наличии машин и механизмов.

Контроль качества строительно-монтажных работ осуществляется специальными службами, создаваемыми в строительной организации и оснащенными техническими средствами, обеспечивающими необходимую достоверность контроля, авторским надзором автора проекта, а также службами заказчика.