Ист. №0001

Выбросы при работе дизель-генератора, мощностью 4 кВт

Расчет произведен согласно п.6 РНД 211.2.02.04-2004 «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок», Астана, 2004 г.

Максимальный выброс i-го вещества: $M_{cek} = e_i * P_3 / 3600, \, r/c;$ Валовый выброс i-го вещества за год: $M_{rog} = q_i * B_{rog} / 1000, \, r/rog.$

Исходные данные:

Рэ - эксплуатац. мощность стационарной дизельной установки, принимаем сред. знач., кВт	4
Вгод - расход топлива за год, тонн	0,0086

Расчетные данные:

 e_i – выброс i-го вредного вещества на ед. полезной работы стационарной дизельной установки группы A в режиме номинальной мощности (принимаем по табл.1), г/кBт $_*$ ч:

e_{co}	e_{NOx}	e_{CH}	${ m e}_{_{ m C}}$	$\mathrm{e}_{\mathrm{so}_2}$	$\rm e_{CH2O}$	$e_{\scriptscriptstyle B\Pi}$
7,2	10,3	3,600	0,7	1,1	0,150	0,000013

 q_i — выброс i-го вредного вещества, приходящегося на 1 кг диз. топлива, при работе стационарной дизельной установки группы A с учетом совокупности режимов, составляющих эксплуатационный цикл (принимаем по табл. 3), г/кг топлива:

q_{co}	q_{NOx}	\mathbf{q}_{CH}	$ m q_{C}$	$ m q_{SO2}$	$ m q_{CH2O}$	$q_{\scriptscriptstyle m B\Pi}$
30	43	15,000	3,000	4,5	0,600	0,00006

Коэффициенты пересчета NOx на NO₂ и NO (в соответствии с п. 4.5 «Методики…»):

NO_2	0,8
NO	0,13

Выбросы вредных веществ при работе диз. установки:

код ЗВ	Наименование ЗВ	г/с	т/год
0337	Оксид углерода	0,0080	0,0003
0301	Диоксид азота	0,0092	0,0003
0304	Оксид азота	0,0015	0,00005
2754	Углеводороды C_{12} - C_{19}	0,0040	0,0001
0328	Сажа	0,0008	0,00003
0330	Диоксид серы	0,0012	0,00004
1325	Формальдегид	0,0002	0,00001
0703	Бенз(а)пирен	0,00000001	0,0000000005

Расчет выбросов при работе генератора буровой установки Источник №0002

Расчет проводился согласно РНД 211.2.02.04-2004 "Методика расчета выбросов загрязняющих веществ в атм-ру

от стационарных дизельных установок", Астана 2004г.

о п.।	Наименование параметра	Ед. изм.	Значение
1	2	3	4
1	Значения выброса для различных групп, е ₁		
	Оксид углерода	г/кВт*час	6,2
	Оксиды азота		9,6
	Углеводороды C_{12} - C_{19}		2,9
	Сажа		0,5
	Диоксид серы		1,2
	Формальдегид		0,12
	Бензапирен		0,000012
	Мощность двигателя	кВт	50,0
2	Расход дизельного топлива, Вгод	т/год	22,4
3	Время работы генератора, Т	ч/год	3862,0
4	Расчёт выбросов при работе бурового станка:		
	Максимально разовый выброс вредных веществ $M=e_1{}^*P_{\gamma}/3600$		
	. 3	г/с	0.1066667
	Диоксид азота Оксид азота	170	0,1066667 0,0173333
	Сажа		0,0069444
	Диоксид серы		0,0166667
	Оксид углерода		0,0861111
	Бензапирен		0,0000002
	Формальдегид		0,0016667
	Углеводороды С ₁₂ -С ₁₉		0,0402778
	Значения выброса для различных групп, q1	$\Gamma/\mathrm{K}\Gamma$	
	Оксид углерода		26
	Оксиды азота		40
	Углеводороды $\mathrm{C}_{12} ext{-}\mathrm{C}_{19}$		12
	Сажа		2,0
	Диоксид серы		5,0
	Формальдегид		0,5
	Бензапирен		0,000055
	Валовый выброс вредных веществ		
	M = q*B/1000	1	0.5152000
	Диоксид азота	т/год	0,7152000
	Оксид азота Сажа		0,1162200
	Сажа Диоксид серы		0,0447000 0,1117500
	диоксид серы Оксид углерода		0,5811000
1	Бензапирен		0,0000012
	Benjumpen		0,0000012

0,0111750	Формальдегид	
0,2682000	Углеводороды C_{12} - C_{19}	

Ист. №0003

Выбросы при работе компрессора

Расчет произведен согласно п.6 РНД 211.2.02.04-2004 «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок», Астана, 2004 г.

Максимальный выброс і-го вещества: $M_{cek} = e_{i} * P_{9} / 3600, \, \text{г/c};$ Валовый выброс і-го вещества за год: $M_{rog} = q_{i} * B_{rog} / 1000, \, \text{т/год}.$

Исходные данные:

Рэ - эксплуатац. мощность стационарной дизельной установки, принимаем сред. знач., кВт	37
Вгод - расход топлива за год, тонн	1,10

Расчетные данные:

 e_i – выброс i-го вредного вещества на ед. полезной работы стационарной дизельной установки группы A в режиме номинальной мощности (принимаем по табл. 1), r/kB_{T*} ч:

e_{co}	e_{NOx}	e_{CH}	$\mathrm{e}_{_{\mathrm{C}}}$	$\mathrm{e}_{\mathrm{SO2}}$	$\rm e_{CH2O}$	$e_{\scriptscriptstyle B\Pi}$
7,2	10,3	3,600	0,7	1,1	0,150	0,000013

 q_i — выброс i-го вредного вещества, приходящегося на 1 кг диз. топлива, при работе стационарной дизельной установки группы A с учетом совокупности режимов, составляющих эксплуатационный цикл (принимаем по табл. 3), г/кг топлива:

q_{co}	q_{NOx}	q_{CH}	$ m q_{C}$	q_{SO2}	$q_{ m CH2O}$	$q_{\scriptscriptstyle m B\Pi}$
30	43	15,000	3,000	4,5	0,600	0,00006

Коэффициенты пересчета NOx на NO₂ и NO (в соответствии с п. 4.5 «Методики...»):

NO_2	0,8
NO	0,13

Выбросы вредных веществ при работе диз. установки:

код ЗВ	Наименование ЗВ	г/с	т/год
0337	Оксид углерода	0,0740	0,0330
0301	Диоксид азота	0,0847	0,0378
0304	Оксид азота	0,0138	0,0061
2754	Углеводороды C_{12} - C_{19}	0,0370	0,0165
0328	Сажа	0,0072	0,0033
0330	Диоксид серы	0,0113	0,0050
1325	Формальдегид	0,0015	0,0007
0703	Бенз(а)пирен	0,00000013	0,00000006

Источник № 0004. Выбросы при работе битумного котла

Для разогрева битума на площадке используется битумный котел.

Время работы битумного котла

2,27 час/период

Расход дизтоплива составит

0,02 тонн

или

2,2 г/сек

Состав и основные характеристики дизтоплива:

Ar - содержание негорючих примесей, %	0,025
Sr - содержание серы, %	0,3
Q - теплота сгорания топлива, МДж/кг	42,75
р - плотность кг/л	0,8

Твердые вещества (сажа)

 $\Pi_{TB} = B*Ar*x*(1-h)$

где: x= 0,01

	В (расход)	Ar	X	M	
П (г/сек)	2,2	0,025	0,01	0,000551	г/сек
П (т/пер)	0,018	0,025	0,01	0,000005	т/пер

Серы диоксид

 Π so = 0,02*B*Sr*(1-h)

где: h= 0,02

	В (расход)	Sr	M	
П (г/сек)	2,2	0,3	0,0130	г/сек
П (т/пер)	0,018	0,3	0,0001	т/пер

Углерода оксид

 Π co = 0,001*C*B*(1-q4/100)

где:

$$C = q3*R*Q$$

q3		R		Q	C
	0,5		0,65	42,75	13,89
		_			

$$q4 = 0$$

	В (расход)	C	M	
П (г/сек)	2,2	13,89	0,0306	г/сек
П (т/пер)	0,018	13,89	0,0003	т/пер

$$\Pi$$
nox = 0,001*B*Q*Kn

где
$$Kn = 0.07$$

	В (расход)	Q	M	
П (г/сек)	2,2	42,75	0,0066	г/сек
П (т/пер)	0,018	42,75	0,0001	т/пер

Азот диоксид:

M	
0,0053	г/сек
0,000043	т/пер

Азот оксид:

M	
0,0009	г/сек
0,000007	т/пер

Бензапирен

Mмp=V*C/1000000, г/c

Мгод=1,1*10-9*С*V1г*В, т/год V1г= V0г+0,3* V0в

$$C = 0.5$$
 $MK\Gamma/M3$ $V = 0.3$ $M3/c$

 $V_{0B} = 11,48 \text{ m}3/\text{k}\text{G}$

- справочник по котельным установкам малой мощности

веществ различными производствами»

пр. 2,1 «Сборник методик по расчету выбросов в атмосферу загрязняющих

V0r = 10,62 m3 /cV1r = 14,06

Мсек	0,0000002	г/сек
Мпер	0,000000000	т/пер

Углеводороды С12-С19

строительной отрасли, в том числе от асфальтобетонных заводов", Приложение №12 удельный выброс загрязняющего вещества (углеводородов) может быть принят в среднем 1

Расход битума согласно смете

6,55 тонн/период

Мсек	0,2004	г/сек
Мпер	0,0066	т/пер

Всего выбросов от битумного котла:

Код ЗВ	Наименование 3В	Величина выбросов		
	паименование 3В	г/сек	т/пер	
328	Сажа	0,0006	0,000005	
330	Серы диоксид	0,0130	0,0001	
337	Углерода оксид	0,0306	0,0003	
301	Азота диоксид	0,0053	0,00004	
304	Азота оксид	0,0009	0,00001	
703	Бенз(а)пирен	0,0000002	0,0000000001	
2754	Углеводороды С12-С19	0,2004	0,0066	

Ист. №0005

Выбросы при работе дизель-генератора сварочного агрегата

Расчет произведен согласно п.6 РНД 211.2.02.04-2004 «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок», Астана, 2004 г.

Максимальный выброс i-го вещества: $M_{cek} = e_i * P_3 / 3600, \, \text{г/c};$ Валовый выброс i-го вещества за год: $M_{rog} = q_i * B_{rog} / 1000, \, \text{т/год}.$

Исходные данные:

Рэ - эксплуатац. мощность стационарной дизельной установки, принимаем сред. знач., кВт	4,5
Вгод - расход топлива за год, тонн	0,5

Расчетные данные:

 e_i – выброс i-го вредного вещества на ед. полезной работы стационарной дизельной установки группы A в режиме номинальной мощности (принимаем по табл.1), г/кBт $_*$ ч:

e_{co}	e_{NOx}	e_{CH}	${ m e}_{_{ m C}}$	$\mathrm{e}_{\mathrm{SO2}}$	$\rm e_{CH2O}$	$e_{\scriptscriptstyle m B\Pi}$
7,2	10,3	3,600	0,7	1,1	0,150	0,000013

 q_i — выброс i-го вредного вещества, приходящегося на 1 кг диз. топлива, при работе стационарной дизельной установки группы A с учетом совокупности режимов, составляющих эксплуатационный цикл (принимаем по табл. 3), г/кг топлива:

q_{co}	q_{NOx}	$q_{ m CH}$	$ m q_{\scriptscriptstyle C}$	q_{SO2}	$q_{ m CH2O}$	$q_{\scriptscriptstyle \mathrm{B\Pi}}$
30	43	15,000	3,000	4,5	0,600	0,00006

Коэффициенты пересчета NOx на NO_2 и NO (в соответствии с п. 4.5 «Методики...»):

NO_2	0,8
NO	0,13

Выбросы вредных веществ при работе диз. установки:

код ЗВ	Наименование ЗВ	г/с	т/год
0337	Оксид углерода	0,0090	0,0140
0301	Диоксид азота	0,0103	0,0161
0304	Оксид азота	0,0017	0,0026
2754	Углеводороды C_{12} - C_{19}	0,0045	0,0070
0328	Сажа	0,0009	0,0014
0330	Диоксид серы	0,0014	0,0021
1325	Формальдегид	0,0002	0,0003
0703	Бенз(а)пирен	0,00000002	0,00000003

Расчет выбросов пыли при снятии плодородного слоя Источник №6001

№	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,01
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,001
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, к7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, к9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		0,4
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	108,34
12	Суммарное количество перерабатваемого материала в течение года	т/год	3250,060
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*Guac*1000000/3600*(1-\eta)$	г/с	0,000217
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Groд*(1-\eta)$	т/год	0,0000234

Расчет выбросов пыли при работе бульдозера Источник №6002

$\mathcal{N}_{\underline{0}}$	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,01
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,001
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, к7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, к9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		0,4
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	63,56
12	Суммарное количество перерабатваемого материала в течение года	т/год	12712,447
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*G*4ac*1000000/3600*(1-\eta)$	г/с	0,000127
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Groд*(1-\eta)$	т/год	0,0000915

Расчет выбросов пыли при работе экскаватора Источник №6003

$N_{\underline{0}}$	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,01
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,001
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, к7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, к9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		0,4
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	119,25
12	Суммарное количество перерабатваемого материала в течение года	т/год	42931,180
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*Guac*1000000/3600*(1-\eta)$	г/с	0,000239
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Groд*(1-\eta)$	т/год	0,0003091

Расчет выбросов пыли при работе на отвале Источник №6004

$N_{\underline{0}}$	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,01
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,001
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, k7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, к9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		0,4
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	117,37
12	Суммарное количество перерабатваемого материала в течение года	т/год	23474,110
13	Эффективность средств пылеподавления, в долях единицы, п		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*G*4ac*1000000/3600*(1-\eta)$	г/с	0,000235
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Grog*(1-\eta)$	т/год	0,0001690

Расчёт выбросов вредных веществ при транспортировке Пыление при движении по дорогам, сдув пыли с кузовов самосвалов

Ист. 6005

Летоди	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
1	Автосамосвал		
2	Количество автосамосвалов		1
4	Крепость по шкале проф. М. М. Протодьяконова:		814
	вскрыша	, 3	
5	Плотность материала, p _p	T/M^3	2,6
6	Коэффициент, учитывающий среднюю грузоподъемность а/с, С1		1
7	Коэффициент, учитывающий среднюю скорость а/с, С2		2,75
8	Коэффициент, учитывающий состояние дорог а/с, С3		1
9	Коэффициент, учитывающий влажность материала, ${f k}_5$		0,1
10	Коэффициент, учитыв. долю пыли, уносимой в атмосферу, C_7		0,01
11	Число ходок (туда+обратно) всего транспорта в час, N		1
12	Средняя протяженность одной ходки (км), L	KM	3
13	Пылевыделение в атмосферу на 1 км пробега, q ₁	г/км	1450
14	Коэффициент, учитывающий профиль поверхности материала		
	на платформе, С4		1,3
15	Коэффициент, учитывающий среднюю скорость обдува		
	материала, С5		1,13
16	Пылевыделение с единицы фактической поверхности материала		
	на платформе, q'	г/м ² *c	0,002
17	Площадь открытой поверхности транспортируемого материала, S	м ²	23
18	Количество дней с устойчивым снежным покровом, Тсп		113
19	Количество дней с осадками в виде дождя, Тд		89
20	Расчёт выбросов пыли при транспортировке руды:		
20,1	Максимально разовый выброс пыли при движении а/с по дорогам:		
	$M_{\text{cek}} = \frac{C_1 * C_2 * C_3 * k_5 * C_7 * N * L * q_1}{3600}$		
	3600		
20.2		г/с	0,004
20,2	Максимально разовый выброс пыли при сдуве пыли с кузовов а/с:		
	$M_{cek} = C_4 * C_5 * k_5 * q' * S * n$		0.005=5
21		г/с	0,00676
21	Всего максимально-разового выброса пыли	г/с	0,0107449

22	Валовый выброс пыли:		
22.1	при движении а/с по дорогам:		
	$M_{rog} = 0.0864 * M_{cek} * (365 - (T_{cii} + T_{ij}))$		
		т/год	0,05616
22.2	при сдуве пыли с кузовов а/с:		
	$M_{rog} = 0.0864 * M_{cek} * (365 - (T_{cii} + T_{ij}))$		
		т/год	0,09517
23	Всего валового выброса пыли	т/год	0,1513226

Примечание

¹⁾ Данные, полученные от технологов.

^{2) &}quot;Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Мин.ООС РК ;100-п от 18.04.2008 г.)

Расчет выбросов пыли при разгрузочных работах Источник №6006

No॒	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,01
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,001
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, к7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, k9		0,1
10	Коэффициент учитывающий высоту пересыпки, В		1,5
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	119,25
12	Суммарное количество перерабатваемого материала в течение года	т/год	42931,180
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*Guac*1000000/3600*(1-\eta)$	г/с	0,000447
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Gгод*(1-\eta)$	т/год	0,0005796

Расчёт выбросов пыли, сдуваемой с поверхности отвала Источник №6007

$N\!$	Наименование параметра	Ед. изм.	Значение
1	2	3	4
1	Отвал		
2	Коэффициент, учитывающий местные метеоусловия, \mathbf{k}_3		1,0
3	Коэффициент, учитывающий местные условия, степень		
	защищенности узла от внешних воздействий, ${ m k_4}$		1,0
4	Коэффициент, учитывающий влажность материала, ${ m k}_{ m 5}$		0,10
5	Коэффициент, учитывающий профиль поверхности, ${f k}_6$		1,3
	Коэффициент, учитывающий крупность материала, \mathbf{k}_7		0,2
6	Поверхность пыления в плане, S	M^2	12
	Унос пыли с 1 м ² поверхности, q'	г/м ² *c	0,002
7	Эффективность применяемых средств пылеподавления, п		0,85
8	Количество дней с устойчивым снежным покровом, Тсп		113
9	Количество дней с осадками в виде дождя, Тд		89
10	Расчёт выбросов пыли от экскавации:		
	Максимально разовый выброс пыли:		
	$M = k_3 * k_4 * k_5 * k_6 * k_7 * q' * S$	г/с	0,000090
	Валовый выброс пыли:		
	$M = 0.0864 * k_3 * k_4 * k_5 * k_6 * k_7 * q' * S * [365 - (Tc\pi + T\pi)] * (1-\eta)$	т/год	0,0012633

Примечание:

Расчет проводился согласно "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Мин. ООС РК от 18.04.2008 г.)

Расчет выбросов пыли при разгрузке горной массы

Источник №6008

No	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,01
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,001
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, k7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, к9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		1
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	36,83
12	Суммарное количество перерабатваемого материала в течение года	т/год	1104,992
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*Gчас*1000000/3600*(1-\eta)$	г/с	0,000184
	Валовый выброс пыли:		
	$M_{rod} = k1*k2*k3*k4*k5*k7*k8*k9*B*Grod*(1-\eta)$	т/год	0,0000199

Расчет выбросов пыли при пересыпке щебня Источник №6009

№	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
1	Количество экскаваторов, т	шт.	1
2	Весовая доля пылевой фракции в материале, k1		0,02
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,01
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, к7		0,5
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, к9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		1
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	21,84
12	Суммарное количество перерабатваемого материала в течение года	т/год	2184,0
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*G*4ac*1000000/3600*(1-\eta)$	г/с	0,001820
	Валовый выброс пыли:		
	$M_{rod} = k1*k2*k3*k4*k5*k7*k8*k9*B*Groд*(1-\eta)$	т/год	0,000655

Расчет выбросов пыли при пересыпке песка

Источник №6010

$N_{\underline{0}}$	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,05
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,03
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, к7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, k9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		1
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	0,47
12	Суммарное количество перерабатваемого материала в течение года	т/год	4,68
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*Guac*1000000/3600*(1-\eta)$	г/с	0,000351
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Grog*(1-\eta)$	т/год	0,000013

Расчет выбросов пыли при пересыпке песчано-гравийной смеси Источник №6011

$N_{\underline{0}}$	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,03
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,04
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, k7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, к9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		1
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	2,34
12	Суммарное количество перерабатваемого материала в течение года	т/год	234,00
13	Эффективность средств пылеподавления, в долях единицы, п		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*Gчас*1000000/3600*(1-\eta)$	г/с	0,001404
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Grog*(1-\eta)$	т/год	0,000505

Расчет выбросов пыли при пересыпке цемента

Источник №6012

$N_{\underline{0}}$	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,04
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,03
4	Коэфициент, учитывающий местные метеоусловия, k3		1
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, k7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, к9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		1
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	8,37
12	Суммарное количество перерабатваемого материала в течение года	т/год	837,2
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*G*ac*1000000/3600*(1-\eta)$	г/с	0,005023
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Groд*(1-\eta)$	т/год	0,001808

Расчет выбросов пыли при пересыпке глины

Источник №6013

$N_{\underline{0}}$	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
2	Весовая доля пылевой фракции в материале, k1		0,05
3	Доля пыли с размерами частиц 0-50мкм (от всей массы пыли),		
	переходящая в аэрозоль, k2		0,02
4	Коэфициент, учитывающий местные метеоусловия, k3		1,2
5	Коэффициент, учитывающий местные условия степень защищенности		
	узла от внешних воздействий, условия пылеобразования, k4		1
6	Коэффициент, учитывающий влажность материала, k5		0,1
7	Коэффициент учитывающий крупность материала, k7		0,6
8	Поправочный коэффициент для различных материалов в зависимости		
	от типа грейфера, k8=1		1
9	Поправочный коэффициент при мощном залповым сборе		
	материала при разгрузке автосамосвала, k9		0,2
10	Коэффициент учитывающий высоту пересыпки, В		1
11	Производительность узла пересыпки или количество		
	перерабатываемого материала, Gчас	т/ч	1,13
12	Суммарное количество перерабатваемого материала в течение года	т/год	9,000
13	Эффективность средств пылеподавления, в долях единицы, η		0,85
14	Расчёт выбросов пыли:		
	Максимально разовый выброс пыли:		
	$M_{cek} = k1*k2*k3*k4*k5**k7*k8*k9*B*G*4ac*1000000/3600*(1-\eta)$	г/с	0,000675
	Валовый выброс пыли:		
	$M_{rog} = k1*k2*k3*k4*k5*k7*k8*k9*B*Groд*(1-\eta)$	т/год	0,0000194

Расчёт выбросов пыли при бурении Источник №6014

"Методика	Наименование параметра	Ед. изм.	Значение
1	2	3	4
1	Техническая производительность бурового станка, Q	м/ч	18,7
2	Диаметр скважины, D	M	0,125
3	Время работы станков, Т	ч/год	3865
	Коэффициент, учитывающий среднюю влажность выбуриваемого материала, \mathbf{k}_5		0,10
5	Удельное пылевыделение с 1 м ³ выбуренной породы, q	кг/м ³	0,6
6	Объемная производительность бурового станка: $V=0.785*Q*d^2$	м ³ /ч	0,230
7	Расчёт выбросов пыли при бурении скважин: Максимально разовый выброс пыли: $M = V*q*k_5/3,6$	г/с	0,0039587
	Валовый выброс пыли: $M = V^*q^*T^*k_5^*10^{-3}$	т/год	1,7625865

Примечание:

Расчет проводился согласно "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Мин. ООС РК от 18.04.2008 г.)

газовая резка

Источник №6015

№	Наименование, обозначение,		Величина
п.п.	формула и расчёт		
1	пропано-бутановая резка	час/год	36
2	Удельное выделение загрязняющего вещества Кх:	г/ч	
	марганец и его соедино	ения	1,1
	оксид (II) же	леза	72,9
	оксид угле	рода	49,5
	диоксид а	зота	39
3	Расчет количества загрязняющих веществ:		
	Максимально разовый выброс вредных веществ:		
	$M = Kx * (1-\eta) / 3600$	г/с	
	марганец и его соедино	ения	0,0003056
	оксид (II) же	леза	0,02025
	оксид угле	оода	0,01375
	диоксид а	зота	0,01083
	Валовый выброс вредных веществ:		
	$M = Kx * T (1-\eta) / 10^6$	т/год	
	марганец и его соедине	ения	0,0000396
	оксид (II) же	леза	0,0026
	оксид угле	оода	0,00178
	диоксид а	зота	0,00140

Источник № 6016. Гидроизоляционные работы

Испарение предельных углеводородов, приведенных к лигроину, рассчитываются на основании производственной программы работ.

Температура пропиточной смеси 160°С. Скорость нанесения покрытия 2 км/час при ширине прохода 2,0 м, что соответствует Интенсивность испарения определяется по формуле:

$$Z = 10-6 * n * M0,5 * p, \Gamma/cek*M2$$

n – коэффициент испарения, для скорости 1,0 м/сек = 4,6;

М - молекулярная масса 254;

р - парциальное давление испарения, определяемое по уравнению Антуана - 576,52 КПа:

$$Z = 10-6 * 4,6 * 2540,5 * 576,52 = 0,042 \ r/(cek*m2)$$

Количество испарившегося битума в течение 10 минут с учетом скорости застывания определяется по формуле:

$$T = Z * p * T$$
,

где: Т - масса испарившегося; Z - интенсивность испарения; P - поверхность испарения; т - продолжительность испарения, Максимально-разовый выброс с учетом производительности автогудронатора и скорости остывания (одновременность

$$M = 42.0 \ \Gamma/(\text{cek*M2}) \ / \ 1000 \ \text{M2} = 0.042 \ \Gamma/\text{cek}$$

Площадь покрытий битумом наодин слой составит - 500 м2

Следовательно, валовый выброс углеводородов составит:

М, г/сек	Тсек	Ѕ, м2	М, т/пер
0,042	200	500	0,0042

Всего выбросов от обмазки битумом:

Код ЗВ	Наименование 3В	Величина выбросов	
код зв		г/сек	т/пер
2754	Углеводороды предельные С12-	0,042	0,0042

Расчет выбросов вредных веществ при проведении сварочных работ Источник №6017

№	Наименование, обозначение,		Величина
п.п.	формула и расчёт		
1	Электроды, Э42		
2	Времы работы	час/год	260
3	Расход электродов, Вгод	КГ	538
4	Расход электродов, Вчас	КГ	2,07
5	Удельное выделение загрязняющего вещества Кх:		
	оксид железа	$\Gamma/\kappa\Gamma$	14,97
	марганец и его соединения	$\Gamma/\mathrm{K}\Gamma$	1,7
6	Расчет количества загрязняющих веществ:		
	Валовый выброс вредных веществ:		
_	$M = Broд * Kx * (1-\eta) / 10^6$		
	оксид железа	т/год	0,008054
	марганец и его соединения	т/год	0,000931
	Максимально разовый выброс вредных веществ:		
	M= Вчас * Kx * (1-ŋ) / 3600		
	оксид железа	г/с	0,008605
	марганец и его соединения	г/с	0,000994

No	Наименование, обозначение,	Ед.изм.	Величина
п.п.	формула и расчёт		
1	Электроды, Э50А		
2	Времы работы	час/год	260
3	Расход электродов, Вгод	КΓ	11,3
4	Расход электродов, Вчас	КΓ	0,04
5	Удельное выделение загрязняющего вещества Кх:		
	оксид железа	$\Gamma/\kappa\Gamma$	13,9
	марганец и его соединения	$\Gamma/\kappa\Gamma$	1,1
	пыль неорганическая SiO ₂ 20-70%	$\Gamma/\kappa\Gamma$	1
	фториды	$\Gamma/\kappa\Gamma$	1
	фтористые соединения	$\Gamma/\kappa\Gamma$	0,93
	диоксид азота	$\Gamma/\kappa\Gamma$	2,7
	оксид углерода	$\Gamma/\kappa\Gamma$	13,3
6	Расчет количества загрязняющих веществ:		
	Валовый выброс вредных веществ:		
	$M = Broд * Kx * (1-ŋ) / 10^6$		
	оксид железа	т/год	0,000157
	марганец и его соединения	т/год	0,000012
	пыль неорганическая SiO ₂ 20-70%	т/год	0,000011
	фториды	т/год	0,000011
	фтористые соединения	т/год	0,000011
	диоксид азота	т/год	0,000031
	оксид углерода	т/год	0,000150
	Максимально разовый выброс вредных веществ:		
	$M = B \text{ ac } * \text{ Kx } * (1 - \eta) / 3600$		
	оксид железа	г/с	0,000168
	марганец и его соединения	г/с	0,000013
	пыль неорганическая SiO ₂ 20-70%	г/с	0,000012
	фториды	г/с	0,000012
	фтористые соединения	г/с	0,000011
	диоксид азота	г/с	0,000033
	оксид углерода	г/с	0,000161

	Итого выбросы от сварочных работ:		
1	Общий валовый выброс:		
	оксид железа	т/год	0,008211
	марганец и его соединения	т/год	0,000943
	пыль неорганическая SiO_2 20-70%	т/год	0,000011
	фториды	т/год	0,000011
	фтористые соединения	т/год	0,000011
	диоксид азота	т/год	0,000031
	оксид углерода	т/год	0,000150
2	Общий максимальный разовый выброс:		
	оксид железа	г/с	0,008772
	марганец и его соединения	г/с	0,001008
	пыль неорганическая SiO ₂ 20-70%	г/с	0,000012
	фториды	Γ/c	0,000012
	фтористые соединения	г/с	0,000011
	диоксид азота	г/с	0,000033
	оксид углерода	г/с	0,000161

Расчет выбросов загрязняющих веществ в атмосферу от покрасочного поста Источник №6018

No	Наименование, обозначение,		Ед.изм.	Величина
п.п.	формула и расчёт			
1	2		3	4
1	Грунтовка ГФ 021			
2	Времы работы		час/год	500
3	Расход ЛКМ, $ m_{\varphi} $		т/год	0,00174
4	Расход ЛКМ , m _м		кг/час	0,003
5	Доля летучей части (растворителя) в ЛКМ, $f_{\rm p}$, табл. 2		%	45
6	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ', табл. 3	3	%	28
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3		%	72
8	Содержание загрязняющего компонента в летучей части ЛКМ, бх, табл. 2:		%	
	кс	илол		100,00
9	Расчет количества загрязняющего вещества, выбрасываемых при окраске:		т/год	
	$M_{\text{oxp}}^{x} = \frac{m_{\phi} \times f_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6}} \times (1 - \eta),$ kc	илол		0,000219
10	Расчет количества загрязняющего вещества, выбрасываемых при сушке:		т/год	
11	$M_{cyu}^{x} = \frac{m_{\phi} \times f_{p} \times \delta_{p}^{''} \times \delta_{x}}{10^{6}} \times (1-\eta),$ ко	илол	7/0	0,000564
11	гасчет количества загрязняющего вещества, выорасываемых при окраске:		г/с	
12	Расчет количества загрязняющего вещества, выбрасываемых при сушке:	гилол	г/с	0,000122
		илол		0,000313
13	Общий максимальный разовый выброс:		г/с	
		илол		0,000435
14	Общий валовый выброс:		т/год	
	KC	илол		0,000783

№	Наименование, обозначение,	Ед.изм.	Величина
п.п.	формула и расчёт		
1	2	3	4
1	Растворитель, ацетон		
2	Времы работы	час/год	500
3	Расход ЛКМ, $ m_{\varphi} $	т/год	0,00113
4	Расход ЛКМ , $m_{\scriptscriptstyle M}$	кг/час	0,002
5	Доля летучей части (растворителя) в ЛКМ, f_p , табл. 2	%	100
6	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ' , табл. 3	%	28
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3	%	72
8	Содержание загрязняющего компонента в летучей части ЛКМ, бх, табл. 2: ацетон	%	100

9	Расчет количества загрязняющего вещества, выбрасываемых при окраске: $M_{\text{oxp}}^{\text{x}} = \frac{m_{\varphi} \times f_{\text{p}} \times \delta_{\text{p}}^{\text{i}} \times \delta_{\text{p}}}{10^6} \times (1-\eta),$	т/год	0,000316
10	Расчет количества загрязняющего вещества, выбрасываемых при сушке: $M_{\text{суш}}^x = \frac{m_\phi \times f_p \times \delta_p^{''} \times \delta_x}{10^6} \times (1-\eta),$	т/год	0,000814
11	Расчет количества загрязняющего вещества, выбрасываемых при окраске: $M_{\text{okp}}^{x} = \frac{m_{_{M}} \times f_{_{p}} \times \delta_{_{p}}^{'} \times \delta_{_{x}}}{10^{6} \times 3.6} \times (1 - \eta),$	г/с	0,000176
12	Расчет количества загрязняющего вещества, выбрасываемых при сушке: $M_{\text{суш}}^x = \frac{m_{_M} \times f_{_p} \times \delta_p^{,,} \times \delta_x}{10^6 \times 3.6} \times (1-\eta),$	г/с	0,000452
13 14	Общий валовый выброс: ацетон Общий максимальный разовый выброс:	т/год	0,001130
	ацетон	г/с	0,000628
№	Наименование, обозначение,	Ед.изм.	Величина
п.п.	формула и расчёт		
1	2	3	4
1	Растворитель, №649	,	500
2	Времы работы	час/год	500
3 4	Расход ЛКМ, m _ф	т/год	0,000009
5	Pacxog ЛКМ, m _м	кг/час	0,00002
3	Доля летучей части (растворителя) в ЛКМ, f _p , табл. 2	%	100
-			
6	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, 8', табл. 3	%	28
7	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ' , табл. 3 Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3	% %	28 72
		, •	
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, 8′′, табл. 3	%	
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δx , табл. 2:	%	72
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δ х, табл. 2: спирт н-бутиловый	%	72 20
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ", табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δх, табл. 2: спирт н-бутиловый этилцеллозольв	%	72 20 30
7 8	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δx , табл. 2: спирт н-бутиловый этилцеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при окраске: спирт н-бутиловый	%	72 20 30
7 8	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δ х, табл. 2: спирт н-бутиловый этилцеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при окраске:	% %	72 20 30 50
7 8	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δx , табл. 2: спирт н-бутиловый этилцеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при окраске: спирт н-бутиловый	% % т/год	72 20 30 50 0,000001
7 8	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δ х, табл. 2: спирт н-бутиловый этилцеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при окраске: спирт н-бутиловый $\mathbf{M}_{\mathrm{okp}}^{\mathrm{x}} = \frac{\mathbf{m}_{\mathrm{d}} \times \mathbf{f}_{\mathrm{p}} \times \delta_{\mathrm{p}}^{\mathrm{r}} \times \delta_{\mathrm{x}}}{1\mathrm{O}^{\mathrm{o}}} \times (1-\eta)$, этилцеллозольв	% % т/год т/год	72 20 30 50 0,000001 0,000001
7 8	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δ х, табл. 2: спирт н-бутиловый этилцеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при окраске: спирт н-бутиловый $\mathbf{M}_{\text{окр}}^{\times} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{p} \times \delta_{p}^{*} \times \delta_{x}}{1 0^{6}} \times (1 - \boldsymbol{\eta}), \qquad \text{этилцеллозольв ксилол}$ Расчет количества загрязняющего вещества, выбрасываемых при сушке:	% % т/год т/год т/год	72 20 30 50 0,000001 0,000001 0,000001
7 8	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δ х, табл. 2: спирт н-бутиловый этилицеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при окраске: спирт н-бутиловый $\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{\mathbf{p}} \times \delta_{\mathbf{p}}^{\mathbf{y}} \times \delta_{\mathbf{x}}}{10^6} \times (1-\eta),$ этилицеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при сушке: $\mathbf{M}_{\text{суш}}^{\mathbf{x}} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{\mathbf{p}} \times \delta_{\mathbf{p}}^{\mathbf{y}} \times \delta_{\mathbf{x}}}{10^6} \times (1-\eta),$ спирт н-бутиловый	% % T/roд T/roд T/roд T/roд	72 20 30 50 0,000001 0,000001 0,000001
7 8	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δ х, табл. 2: спирт н-бутиловый этилцеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при окраске: спирт н-бутиловый $\mathbf{M}_{\text{окр}}^{\times} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{p} \times \delta_{p}^{*} \times \delta_{x}}{1 0^{6}} \times (1 - \boldsymbol{\eta}), \qquad \text{этилцеллозольв ксилол}$ Расчет количества загрязняющего вещества, выбрасываемых при сушке:	% % т/год т/год т/год	72 20 30 50 0,000001 0,000001 0,000001
7 8	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δ х, табл. 2: спирт н-бутиловый этилицеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при окраске: спирт н-бутиловый $\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{\mathbf{p}} \times \delta_{\mathbf{p}}^{\mathbf{y}} \times \delta_{\mathbf{x}}}{10^6} \times (1-\eta),$ этилицеллозольв ксилол Расчет количества загрязняющего вещества, выбрасываемых при сушке: $\mathbf{M}_{\text{суш}}^{\mathbf{x}} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{\mathbf{p}} \times \delta_{\mathbf{p}}^{\mathbf{y}} \times \delta_{\mathbf{x}}}{10^6} \times (1-\eta),$ спирт н-бутиловый	% % T/roд T/roд T/roд T/roд	72 20 30 50 0,000001 0,000001 0,000001

l	1	спирт н-бутиловый	г/с	0,000000
	$M_{\text{oxp}}^{x} = \frac{m_{\text{M}} \times f_{\text{p}} \times \delta_{\text{p}}^{'} \times \delta_{\text{x}}}{10^{6} \times 3.6} \times (1 - \eta),$	этилцеллозольв	г/с	0,000000
	$10^{10} \times 3.6$	ксилол	г/с	0,000001
12	Расчет количества загрязняющего вещества, выбрасываемых п		1/0	0,000001
1.2	The let worm recisal sat president of between but a but of the but	спирт н-бутиловый	г/с	0,000001
	$\mathbf{M}_{\text{cym}}^{x} = \frac{\mathbf{m}_{M} \times \mathbf{f}_{p} \times \mathbf{\delta}_{p}^{"} \times \mathbf{\delta}_{x}}{10^{6} \times 3.6} \times (1 - \eta),$	этилцеллозольв	г/с	0,000001
	$10^6 \times 3.6$	ксилол	г/с	0,000002
13	Общий валовый выброс:			-,,,,,,,,
	•	спирт н-бутиловый	т/год	0,000002
		этилцеллозольв	т/год	0,000003
		ксилол	т/год	0,000005
14	Общий максимальный разовый выброс:			
		спирт н-бутиловый	г/с	0,000001
		этилцеллозольв	г/с	0,000002
		ксилол	г/с	0,000003
№	Наименование, обозначение,		Ед.изм.	Величина
п.п.	формула и расчёт			
1	2		3	4
1	Лак БТ-577			
2	Времы работы		час/год	500
3	Расход ЛКМ, тф		т/год	0,012
4	Расход ЛКМ , m _м		кг/час	0,02400
5	Доля летучей части (растворителя) в ЛКМ, \mathbf{f}_{p} , табл. 2		%	63
6	Доля растворителя в ЛКМ, выделившегося при нанесении покр	рытия, δ', табл. 3	%	28
7	Доля растворителя в ЛКМ, выделившегося при сушке покрыти	ія, δ'', табл. 3	%	72
8	Содержание загрязняющего компонента в летучей части ЛКМ,	δх, табл. 2:	%	
		уайт-спирит		42,6
		ксилол		57,4
9	Расчет количества загрязняющего вещества, выбрасываемых п	ри окраске:		
		уайт-спирит	т/год	0,000902
	$\mathbf{M}_{\mathrm{oxp}}^{\mathrm{x}} = rac{\mathbf{m}_{\mathrm{q}} imes \mathbf{f}_{\mathrm{p}} imes \mathbf{\delta}_{\mathrm{p}}^{'} imes \mathbf{\delta}_{\mathrm{x}}^{'}}{10^{6}} imes (1-\eta),$	ксилол	т/год	0,001215
10	Расчет количества загрязняющего вещества, выбрасываемых п	ри сушке:		
	$\mathbf{M}_{\mathrm{cym}}^{\mathrm{x}} = \frac{\mathbf{m}_{\mathrm{\phi}} imes \mathbf{f}_{\mathrm{p}} imes \mathbf{\delta}_{\mathrm{p}}^{\circ} imes \mathbf{\delta}_{\mathrm{x}}}{10^{\circ}} imes (1 - \eta),$	уайт-спирит	т/год	0,002319
		ксилол	т/год	0,003124
11	Расчет количества загрязняющего вещества, выбрасываемых п	_		0.005
	$\mathbf{M}_{\mathrm{osp}}^{\mathrm{x}} = rac{\mathbf{m}_{\mathrm{xx}} imes \mathbf{f}_{\mathrm{p}} imes \mathbf{\delta}_{\mathrm{p}}^{'} imes \mathbf{\delta}_{\mathrm{x}}}{10^{6} imes 3.6} imes (1-\eta),$	уайт-спирит	г/с	0,000501
10	Dearway wayyyyaagaa aaragaygaayaa	ксилол	г/с	0,000675
12	Расчет количества загрязняющего вещества, выбрасываемых п	ри сушке: уайт-спирит	n/a	0.001200
	$\mathbf{M}_{\text{cynii}}^{x} = \frac{\mathbf{m}_{_{\mathrm{M}}} \times \mathbf{f}_{_{\mathrm{p}}} \times \mathbf{\delta}_{_{\mathrm{m}}}^{\cdots} \times \mathbf{\delta}_{_{\mathrm{x}}}}{10^{6} \times 2.6} \times (1 - \eta),$		г/c	0,001288
13	10° × 3.6 Общий валовый выброс:	ксилол	г/с	0,001736
13	общий биловой войорос.	уайт-спирит	т/год	0,003221
		уант-спирит ксилол	т/год	0,003221
14	Обший максимальный разовый выброс:	Kensiosi	1/10Д	0,004337
	Tangan Marana Passasia Garapet.	уайт-спирит	г/с	0,001789
		ксилол	г/с	0,002411
No	Наименование, обозначение,		Ед.изм.	Величина
п.п.	формула и расчёт			
	1171			,

Грунтовка эпоксидная Времы работы		
• •		
	час/год	500
Расход ЛКМ, тф	т/год	0,0476
Расход ЛКМ , m _м	кг/час	0,095
Доля летучей части (растворителя) в ЛКМ, $\mathbf{f_p}$, табл. 2	%	29
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ' , табл. 3	%	28
Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3	%	72
Содержание загрязняющего компонента в летучей части ЛКМ, бх, табл. 2:	%	
ацето	I	24
бутилацета	r	46
ксило	I	30
Расчет количества загрязняющего вещества, выбрасываемых при окраске:		
ацето	т/год	0,000928
$\mathbf{M}_{\text{окр}}^{\mathrm{x}} = \frac{\mathbf{m}_{\phi} \times 1_{\mathrm{p}} \times \delta_{\mathrm{p}} \times \delta_{\mathrm{x}}}{10^{6}} \times (1 - \eta),$ бутилацета:	г т/год	0,001778
10	т/год	0,001160
Расчет количества загрязняющего вещества, выбрасываемых при сушке:		
с с'' с ацетог	т/год	0,002385
$\mathbf{M}_{\mathrm{cyrr}}^{\mathrm{x}} = \frac{\mathbf{m}_{\mathrm{\phi}} \times 1_{\mathrm{p}} \times \mathbf{\delta}_{\mathrm{p}} \times \mathbf{\delta}_{\mathrm{x}}}{0_{\mathrm{p}} \times 0_{\mathrm{p}}} \times (1 - \eta),$ бутилацета	г т/год	0,004572
	т/год	0,002982
Расчет количества загрязняющего вещества, выбрасываемых при окраске:		
ацето	г/с	0,000515
$\mathbf{M}^{x} = \frac{\mathbf{m}_{x} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x}}{\mathbf{K}_{p} \times \mathbf{f}_{p} \times \mathbf{f}_{p} \times \mathbf{f}_{p}} \times (1 - \mathbf{n}).$ бутилацета	г г/с	0,000988
		0,000644
Расчет количества загрязняющего вещества, выбрасываемых при сушке:		.,
ацето	г/с	0.001325
$\mathbf{M}^{x} = \frac{\mathbf{m}_{M} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x}}{\mathbf{K}_{p} \times \delta_{p} \times \delta_{x}} \times (1 - \mathbf{n}),$ бутилацета	г г/с	0,002540
		0,001656
Общий валовый выброс:		.,
•	т/год	0,003313
·	, ,	0,006350
•		0,004141
		-,
•	г/с	0.001841
· ·		0,003528
		0,002301
	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ' , табл. 3 Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δx , табл. 2: ацетог бутилацетат ксилог Расчет количества загрязняющего вещества, выбрасываемых при окраске: $\mathbf{M}_{\text{окр}}^{\mathbf{x}} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{\mathbf{p}} \times \delta_{\mathbf{p}}^{\mathbf{y}} \times \delta_{\mathbf{x}}}{10^{6}} \times (1-\eta), \qquad \qquad$	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ' , табл. 3 Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ' , табл. 3 Содержание загрязняющего компонента в летучей части ЛКМ, δx , табл. 2: $M_{\text{окр}}^{\times} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6}} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{окр}}^{\times} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\Phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сунн}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сун}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_{\text{сун}}^{\times} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1-\eta),$ $M_$

№	Наименование, обозначение,	Ед.изм.	Величина
п.п.	формула и расчёт		
1	2	3	4
1	Растворитель, Р-4		
2	Времы работы	час/год	500
3	Расход ЛКМ, m_{ϕ}	т/год	0,01735
4	Расход ЛКМ , m _м	кг/час	0,035
5	Доля летучей части (растворителя) в ЛКМ, f_p , табл. 2	%	100
6	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ' , табл. 3	%	28
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3	%	72
8	Содержание загрязняющего компонента в летучей части ЛКМ, δx , табл. 2:	%	
	ацетон		26
	бутилацетат		12
	толуол		62
9	Расчет количества загрязняющего вещества, выбрасываемых при окраске:		
	$m_{\star} \times f_{\star} \times \delta'_{\star} \times \delta$		
	$\mathbf{M}_{ m okp}^{ m x} = rac{\mathbf{m}_{ m \phi} imes \mathbf{f}_{ m p} imes \mathbf{\delta}_{ m p} imes \mathbf{\delta}_{ m x}}{10^6} imes (1-\eta),$	т/год	0,001263
	бутилацетат	т/год	0,000583
	oy i maqerar	1/10д	0,000383
	толуол	т/год	0,003012
10	Расчет количества загрязняющего вещества, выбрасываемых при сушке:		
	$\mathbf{M}_{\text{суш}}^{\text{x}} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \boldsymbol{\delta}_{p}^{''} \times \boldsymbol{\delta}_{\text{x}}}{10^{6}} \times (1 - \eta),$ ацетон	m/no.m	0,003248
	106 бутилацетат	т/год т/год	0,003248
	толуол	т/год	0,007745
11	Расчет количества загрязняющего вещества, выбрасываемых при окраске:	1/10д	0,007743
	ацетон	г/с	0,000702
	$\mathbf{M}_{\text{окр}}^{\text{x}} = \frac{\mathbf{m}_{\text{м}} \times \mathbf{f}_{\text{p}} \times \delta_{\text{p}}^{'} \times \delta_{\text{x}}}{10^{6} \times 3.6} \times (1 - \eta),$ бутилацетат	г/с	0,000324
	$10^6 \times 3.6$ толуол	г/с	0,001673
12	Расчет количества загрязняющего вещества, выбрасываемых при сушке:	-	.,
	ацетон	г/с	0,001804
	$\mathbf{M}_{\text{суш}}^{\mathrm{x}} = \frac{\mathbf{m}_{\mathrm{x}} \times \mathbf{f}_{\mathrm{p}} \times \delta_{\mathrm{p}}^{\mathrm{y}} \times \delta_{\mathrm{x}}}{10^{6} \times 3.6} \times (1 - \eta),$ бутилацетат	г/с	0,000833
	10° × 3.6 толуол	г/с	0,004303
13	Общий валовый выброс:		
	ацетон	т/год	0,004511
	бутилацетат	т/год	0,002082
		,	0.010353
	толуол	т/год	0,010757
14	Общий максимальный разовый выброс:		
	ацетон	г/с	0,002506
	бутилацетат	г/с	0,001157
	толуол	г/с	0,005976

No	Наименование, обозначение,		Ед.изм.	Величина
п.п.	формула и расчёт			
1	2		3	4
1	Растворитель, ксилол			
2	Времы работы		час/год	500
3	Расход ЛКМ, тф		т/год	0,0034
4	Расход ЛКМ , $m_{\scriptscriptstyle M}$		кг/час	0,007
5	Доля летучей части (растворителя) в ЛКМ, $f_{\rm p}$, табл. 2		%	100
6	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ' , табл. 3	;	%	28
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3		%	72
8	Содержание загрязняющего компонента в летучей части ЛКМ, бх, табл. 2:		%	
	кс	илол		100
9	Расчет количества загрязняющего вещества, выбрасываемых при окраске:			
	$M_{\text{okp}}^{x} = \frac{m_{\phi} \times f_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6}} \times (1 - \eta),$	илол	т/год	0,000952
10	Расчет количества загрязняющего вещества, выбрасываемых при сушке:			
	$M_{\text{cym}}^{x} = \frac{m_{\phi} \times f_{p} \times \delta_{p}^{"} \times \delta_{x}}{10^{6}} \times (1 - \eta),$	илол	т/год	0,002448
11	Расчет количества загрязняющего вещества, выбрасываемых при окраске:			
	$M_{\text{osp}}^{x} = \frac{m_{\text{m}} \times f_{\text{p}} \times \delta_{\text{p}}^{'} \times \delta_{\text{x}}}{10^{6} \times 3.6} \times (1 - \eta),$	илол	г/с	0,000529
12	Расчет количества загрязняющего вещества, выбрасываемых при сушке:			
	$M_{\text{cym}}^{x} = \frac{m_{\text{M}} \times f_{\text{p}} \times \delta_{\text{p}}^{"} \times \delta_{\text{x}}}{10^{6} \times 3.6} \times (1 - \eta),$	илол	г/с	0,001360
13	Общий валовый выброс:			
	KC	илол	т/год	0,003400
14	Общий максимальный разовый выброс:			
		илол	г/с	0,001889
№	Наименование, обозначение,		Ед.изм.	Величина
п.п.	формула и расчёт			
1	2		3	4
1	Эмаль ХВ-124		,	500
2	Времы работы		час/год	500
3 4	Расход ЛКМ, тф		т/год	0,0323
4	Расход ЛКМ , m _м		кг/час	0,065

5	Доля летучей части (растворителя) в ЛКМ, \mathbf{f}_{p} , табл. 2	%	27
6	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, δ' , табл. 3	%	28
7	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, δ'' , табл. 3	%	72
8	Содержание загрязняющего компонента в летучей части ЛКМ, δx , табл. 2:	%	
	ацет	он	26
	бутилаце	ат	12
	толу	ол	62
9	Расчет количества загрязняющего вещества, выбрасываемых при окраске:		
	auer	он т/год	0,000635
	$\mathbf{M}_{\mathrm{okp}}^{\mathrm{x}} = \frac{\mathbf{m}_{\mathrm{\phi}} imes \mathbf{f}_{\mathrm{p}} imes \delta_{\mathrm{p}} imes \delta_{\mathrm{x}}}{10^{6}} imes (1 - \eta),$ бутилаце:	ат т/год	0,000293
	толу	ол т/год	0,001514
10	Расчет количества загрязняющего вещества, выбрасываемых при сушке:		
	m vf vS''vS	он т/год	0,001633
	$\mathbf{M}_{\text{суш}}^{\text{x}} = \frac{\mathbf{m}_{\phi} \times \mathbf{f}_{p} \times \delta_{p} \times \delta_{x}}{10^{6}} \times (1 - \eta),$ бутилаце	ат т/год	0,000753
	106 толу	ол т/год	0,003893
11	Расчет количества загрязняющего вещества, выбрасываемых при окраске:		
	m v f v S' v S	он г/с	0,000353
	$\mathbf{M}_{\text{oxp}}^{x} = \frac{\mathbf{m}_{\text{M}} \times \mathbf{f}_{\text{p}} \times \delta_{\text{p}} \times \delta_{\text{x}}}{10^{6} \times 2.6} \times (1 - \eta),$ бутилаце:	ат г/с	0,000163
	10 × 3.0 толу	ол г/с	0,000841
12	Расчет количества загрязняющего вещества, выбрасываемых при сушке:		
	auer	он г/с	0,000907
	$\mathbf{M}_{\text{суш}}^{\text{x}} = \frac{\mathbf{m}_{\text{x}} \times \mathbf{f}_{\text{p}} \times \mathbf{\delta}_{\text{p}} \times \mathbf{\delta}_{\text{x}}}{1.0^{6} \times 2.6} \times (1 - \eta),$ бутилаце:	ат г/с	0,000419
	10° × 3.6	ол г/с	0,002163
13	Общий валовый выброс:		
	ацет	он т/год	0,002267
	бутилаце	ат т/год	0,001047
	толу	ол т/год	0,005407

14	Общий максимальный разовый выброс:	
	ацетон	0,001260
	бутилацетат толуол	0,000581 0,003004

Итого выбросы ЗВ от источника №6018

код ЗВ	Наименование ЗВ		Выбросы
	Общий максимальный разовый выброс:		
616	ксилол	г/с	0,007038
621	толуол	г/с	0,008980
1042	спирт н-бутиловый	г/с	0,000001
1119	этилцеллозольв	г/с	0,000002
1210	бутилацетат	г/с	0,005266
1401	ацетон	г/с	0,006234
2752	уайт-спирит	г/с	0,001789
	Общий валовый выброс:		
616	ксилол	т/год	0,012668
621	толуол	т/год	0,016164
1042	спирт н-бутиловый	т/год	0,000002
1119	этилцеллозольв	т/год	0,000003
1210	бутилацетат	т/год	0,009478
1401	ацетон	т/год	0,011221
2752	уайт-спирит	т/год	0,003221

Источник №6019 Расчет выбросов вредных веществ от сверлильного станка

N_{2}	Наименование, обозначение,	Размер-	Величина	
п.п.	формула, расчёт и примечание	ность		
1	2	3	4	
1	Расчет выбросов вредных веществ производится по формулам:			
	Максимально разовый выброс:			
	$M_{cek} = k*Q$			
	Валовый выброс вредных веществ:			
	$M_{rog} = 3600 * k * Q * T/1000000$			
2	Время работы оборудования, Т	час/год	1	
3	Коэффициент гравитационного оседания, к		0,20	
5	Удельное выделение пыли технологическим оборудованием, Q			
	взвешенные вещества		0,0011	
6	Итого выбросы ВВ составляют:			
	Максимально разовый выброс:			
2902	взвешенные вещества	г/с	0,00022	
	Валовый выброс вредных веществ:			
	взвешенные вещества	т/год	0,000001	

Расчет выбросов вредных веществ от шлифовального станка Источник №6020

N₂	Наименование, обозначение,	Размер-	Величина
п.п.	формула, расчёт и примечание	ность	
1	2	3	4
1	Расчет выбросов вредных веществ производится по формулам:		
	Максимально разовый выброс:		
	$M_{cek} = k*Q$		
	Валовый выброс вредных веществ:		
	$M_{rog} = 3600 * k * Q * T/1000000$		
2	Время работы оборудования, Т	час/год	19
3	Коэффициент гравитационного оседания, к		0,2
5	Удельное выделение пыли технологическим оборудованием, Q	г/с	
	пыль абразивная		0,055
	взвешенные вещества		0,126
6	Итого выбросы BB составляют:		
	Максимально разовый выброс:	г/с	
	пыль абразивная		0,011
	взвешенные вещества		0,0252
	Валовый выброс вредных веществ:	т/год	
	пыль абразивная		0,000752
	взвешенные вещества		0,001724

Расчет выбросов вредных веществ от деревообработки Источник №6021

№	Наименование, обозначение,	Размер- ность	Величина
п.п.	формула, расчёт и примечание		
1	2	3	4
1	Расчет выбросов вредных веществ производится по формулам:		
	Максимально разовый выброс:		
	$M_{cek} = k*Q$		
	Валовый выброс вредных веществ:		
	$M_{rog} = 3600 * k * Q * T/1000000$		
2	Время работы оборудования, Т	час/год	50,00
3	Коэффициент гравитационного оседания, к		0,2
5	Удельное выделение пыли технологическим оборудованием, Q	г/с	
	пыль древесная		0,5600
6	Итого выбросы ВВ составляют:		
	Максимально разовый выброс:		
	пыль древесная	г/с	0,112
	Валовый выброс вредных веществ:		
	пыль древесная	т/год	0,020160

Ист. №6022

Выбросы от ДВС авто и спецтехники на участке работ

(бульдозер, экскаваторы, автопогрузчик, бортовые машины и самосвалы)

Расчет выбросов загрязняющих веществ при работе и движении автомобилей по территории площадки производится в соответствии с п. 3.4 Методики расчета выбросов загрязняющих веществ от автотранспортных предприятий (прил. 3к Приказу Министра ООС РК от 18.04.2008 г. № 100-п).

Валовый выброс рассчитывается по формуле:

$$M = A * M1 * Nk * Dn * 10^{-6}, т/год.$$

Максимальный разовый выброс от 1 автомобиля данной группы рассчитывается по формуле:

$$M2 = M1 * L2 + 1,3 * M1 * L2n + Mxx * Txs, г/30 мин.$$

Максимальный разовый выброс от автомобилей данной группы рассчитывается по формуле:

$$G = M2 * Nk1 / 1800, \Gamma/cek.$$

Исходные данные:

Грузоподъемность	до 16
Режим работы на 1 участке, час/период	2640
Кол-во рабочих дней в период	330
Режим работы, час/сут	8
Скорость движения, км/час	5
Пробег автомобиля без нагрузки по тер-рии площадки - L1, км/день	25
Пробег автомобиля с нагрузкой по тер-рии площадки - L1,n км/день	25
Суммарн. время работы двигателя на холостом ходу в день - Txs, мин	3
Максимальный пробег автомобиля без нагрузки за 30 мин - L2, км	1,56
Максимальный пробег автомобиля с нагрузкой за 30 мин L2,n км	1,56
Макс. время работы на холостом ходу за 30 мин - Txs, мин	0,19
Коэффициент выпуска (выезда) - А	4
Общее кол-во единиц техники - Nk	33
Кол-во рабочих дней в теплом периоде - От	210
Кол-во рабочих дней в холодном периоде - Dx	120

Расчетные данные:

Пробеговый выброс вещества автомобилем при движении по территории площадки - М1, г/км (принимают по табл. 3,8 Методики [11])

Период	CO	СН	Nox	C	SO_2
Т (тепл.время года)	6,1	1	4	0,3	0,54
Т (холод.время года)	7,4	1,2	4	0,4	0,67

Удельные выбросы загрязняющих вществ на холостом ходу - Мхх, г/мин (принимают по табл. 3.9. Методики)