Твердые частицы

Расчет выбросов твердых частиц летучей золы и недогоревшего топлива (т/год. г/с). выбрасываемых в атмосферу с дымовыми газами котлоагрегатов в ед. времени. выполняется по формуле 2.1:

Птв = $B*\chi*Ar*(1-\eta)$

где: х - коэффициент. зависящий от типа топки (по табл.2.1)

η - доля твердых частиц. улавливаемых в золоуловителе

Ar - зольность топлива

В – расход топлива. т/год;

Оксид серы

Расчет выбросов оксидов серы в пересчете на SO_2 (т/год. г/с). выбрасываемых в атмосферу с дымовыми газами котлоагрегатов в ед. времени. выполняется по формуле 2.2:

$\Pi_{so2} = 0.02*B*S^{r}(1-\eta_{so2})*(1-\eta_{so2}).$ где:

Sr - содержание серы в топливе. %

n'so2 - доля оксидов серы. связываемых летучей золой топлива

n"so2 - доля оксидов серы. улавливаемых в золоуловителе

Оксид углерода

Расчет выбросов оксида углерода в единицу времени (т/год. г/с) выполняется по формуле 2.4:

$\Pi_{CO} = 0.001 * Cco * B * (1-q_4/100)$. где

Ссо - выход оксида углерода при сжигании топлива. кг/т. рассчитывается по формуле:

- q3 потери теплоты вследствие химической неполноты сгорания топлива. %
- R коэф.. учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива. обусловленной наличием в продуктах сгорания оксида углерода. для твердого топлива
- q4 потери теплоты вследствии механической неполноты сгорания топлива

$\Pi_{CO} = 0.001*B*Q^{P}_{H}*K_{CO}*(1-q_{4}/100)$. где

 K_{CO} - количество оксида углерода на единицу теплоты . выделяющейся при горении топлива (кг/ГДж). принимается по табл.2.1

Kco = 0.32

Окислы азота

Количество оксидов азота (в пересчете на NO) выбрасываемых в ед. времени (т/год. г/с) рассчитывается по формуле 2.7:

ПNOx = $0.001*B*Q_H^p*K_{NO}*(1-\beta)$. где

 K_{NO2} параметр. характеризующий количество оксидов азота. образующихся на 1 ГДж тепла (кг/ГДж)

β - коэф.. зависящий от степени снижения выбросов оксидов азота в результате применения технических решений:

Диоксид азота $\Pi_{NO2} = 0.8 * \Pi_{NOx}$ Оксид азота $\Pi_{NO} = 0.13 * \Pi_{NOx}$

	400 л
	6
Годовое время работы котла при тех.проверке. ч/год -	
Технические характеристики котла	
Номинальная теплопроизводительность котла. кВт -	30
Расход дизельного топлива. л/час -	2
Номинальный массовый расход топлива. кг/ч -	1.6628
КПД котла при полной нагрузке. % -	92.4
Температура отработанных газов. °С -	180

Характеристика топлива

Плотность при стандарт.условиях. кг/м³ -	831.4
Низшая теплота сгорания. Qi. МДж/кг-	42.75
Зольность топлива на рабочую массу. Аг. % -	0.025
Содержание серы в топливе. Sr	0.3
Массовая доля сероводорода [H2S]	-
Перевод низшей теплоты сгорания МДж/кг на кВт/кг -	11.87
Максимально-разовый расход топлива. В. (г/с) -	0.76
Валовый расход топлива. В. (т/год) -	0.01

Вспомоглательные величины для расчета:

	χ	η	η'so ₂	η"so ₂	q_3
ДТ	0.01	0	0.02	0	0.5
	R	q_4	C _{co}	K _{NO}	β
ДТ	0.65	0.5	13.89375	0.11	0

Итого выбросы составят:

		Котел б	итумный
Код	Примесь	передвижной. 400.	
		г/сек	т/год
0301	Азота диоксид	0.0029	0.000037
0304	Азота оксид	0.0005	0.000006
0328	Углерод (сажа)	0.0038	0.000050
0330	Сера диоксид	0.0105	0.000138
0337	Углерод оксид	0.0002	0.000002

Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли. в том числе от асфальтобетонных заводов

При хранении гудрона. переработке его в битум. нагреве битума и приготовлении асфальтобетона выделяются углеводороды

В том случае. если реакторная установка не обеспечена печью дожига. удельный выброс загрязняющего вещества (углеводородов) может быть принят в среднем 1 кг на 1 т готового битума

Согласно сметной документации. общее количество битума составит. тонн -

0.36

Следовательно. выброс углеводородов предельных (2754) составит. т/год -

0.00036

Максимальный разовый выброс углеводородов предельных составит. г/с -

0.00833

Источник загрязнения N 0011

ДЭС 4 кВт

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600. г/сек

где: еі-выброс

еі-выброс І-го вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности. г/кВт*ч.

определяем по таблице 1 или 2

Рэ-эксплуатационная мощность стационарной дизельной установки. кВт

Рэ = 4 к

Группа А – 1-73.6 кВт

Значение выбросов еі для различных групп стационарных диз. установок до капремонта

табл.1

группа		Выброс. г/кВт*ч					
	со	Nox	СН	С	SO ₂	CH ₂ O	БП
Α	7.2	10.3	3.6	0.7	1.1	0.15	0.000013
Б	6.2	9.6	2.9	0.5	1.2	0.12	0.000012
В	5.3	8.4	2.4	0.35	1.4	0.1	0.000011
Γ	7.2	10.8	3.6	0.6	1.2	0.15	0.000013

Валовый выброс і-го вещества за год стац. дизельной установки

Мгод=(g_i * Вгод)/1000. т/год

 g_{i} - выброс i-го вещества г/кг. приходящегося на один кг дизтоплива. опред. по табл.3

табл.4

Время работы 100 час

Валовый выброс і-го вещества за год стац. дизельной установки

Мгод=(g_i ∗ Вгод)/1000. т/год

Итого:

Vол	Примоси	г/сек без	т/год без
Код	Примесь	очистки	очистки
301	Азота (IV) диоксид (4)	0.0092	0.0045
304	Азот (II) оксид(6)	0.0012	0.000581
328	Углерод (593)	0.0008	0.000390
330	Сера диоксид (526)	0.0012	0.000585
337	Углерод оксид (594)	0.0080	0.0039
703	Бенз/а/пирен (54)	0.0000001	0.0000000072
1325	Формальдегид (619)	0.0002	0.000078
	Углеводороды предельные		
2754	С12-19 /в пересчете на С/	0.0040	0.0020
	(592)		

Источник загрязнения № 6009

Источник выделения 001

Разработка грунта бульдозером

Источники выбросов пыли являются неорганизованными и площадными с неустановившимся режимом выделения. В связи с этим выбросы пыли при проведении земляных работ определяются расчетным методом «Методика расчета нормативов выбросов от неорганизованных источников. приказ Министра ООС РК от 12 июня 2014 г. №221-Ө».

наименование	Обозн.	Ед.изм.	кол-во	Код BB	Макс. раз.выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*G*B	М год	т/год		2902	0.1307	0.0056
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*G*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.05			
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.02			
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5			
коэффициент. учитывающий влажность материала	K5		0.7			
коэффициент. учитывающий крупность материала	K7		0.2			
коэффициент. учитывающий высоту пересыпки	B'		0.7			
Максимальное количество перемещаемого материала	G	т/ч	20			
Максимальное количество перемещаемого материала	М	т/год	240			
Коэффициент гравитационного оседания	К		0.4			

Источник загрязнения № 6009

Источник выделения 002

Разработка грунта экскаватором

Источники выбросов пыли являются неорганизованными и площадными с неустановившимся режимом выделения. В связи с этим выбросы пыли при проведении земляных работ определяются расчетным методом «Методика расчета нормативов выбросов от неорганизованных источников. приказ Министра ООС РК от 12 июня 2014 г. №221-Ө».

наименование	Обозн.	Ед.изм.	кол-во	Код	Макс.	Валовый
				BB	раз.выброс.	выброс.
					г/сек	т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*G*B	М год	т/год		2902	0.1307	0.0075
Максимальный разовый выброс:	М сек	г/сек				
Пв=(K1*K2*K3*K4*K5*K7*G*10^6*B)/3600						
где: весовая доля пылевой фракции в	K1					
материале. Определяется путем отмывки и			0.05			
просева средней пробы с выделением			0.03			
фракции пыли размером 0 -200 мкм						
доля пыли (от всей массы пыли). переходящая	K2		0.02			
в аэрозоль			0.02			
коэффициент. учитывающий местные	К3		1.2			
метеоусловия. скорость ветра			1.2			
коэффициент. учитывающий местные условия.	K4					
степень защищенности узла от внешних			0.5			
воздействий. условия пылеобразования						
коэффициент. учитывающий влажность	K5		0.7			
материала			0.7			
коэффициент. учитывающий крупность	K7		0.2			
материала			0.2			
коэффициент. учитывающий высоту пересыпки	B'		0.7			
Максимальное количество перемещаемого	G	т/ч	20			
материала			20			
Максимальное количество перемещаемого	М	т/год				
материала			321			
Коэффициент гравитационного оседания	К		0.4			

Источник загрязнения № 6009

Источник выделения 003

<u>Экскаватор одноковшовый дизельный 0.5 м³ на гус. ходу</u>

Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя90кВтМощность двигателя л.с.122.3657376л.сРасход топлива:30.5914344кг/ч

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Азота диоксид	0.008	0.069	
0304	Азота оксид	0.0013	0.011	
0328	Сажа	0.0155	0.132	
0330	Сера диоксид	0.02	0.17	
0337	Углерод оксид	0.1	0.85	
0703	Бенз(а)пирен (г/т)	0.32	0.000003	
2732	Углеводороды (по керосину)	0.03	0.255	

Источник загрязнения № 6009

Источник выделения 004

Бульдозер.79 кВт

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 79
 кВт

 Мощность двигателя л.с.
 107.4099252
 л.с

Расход топлива: 26.85248131 кг/ч 0.000007459 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Двуокись азота	0.008	0.056	
0304	Оксид азота	0.0013	0.01	
0328	Сажа	0.0155	0.116	
0330	Серы оксид	0.02	0.15	
0337	Окись углерода	0.1	0.746	
0703	Бенз(а)пирен (г/т)	0.32	0.000002	
2732	Керосин	0.03	0.224	

Источник загрязнения № 6009

Источник загрязнения №005-007

Кран до 10 т на автомобильном ходу. кран 16 т на гусеничном ходу. кран 25 тонн на гусеничном ходу

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час

на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 100
 кВт

 Мощность двигателя л.с.
 135.9619307
 л.с

Расход топлива: 33.99048266 кг/ч 0.000009442 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0337	Окись углерода	0.1	0.94	
2732	Керосин	0.03	0.28	
0301	Двуокись азота	0.008	0.076	
0304	Оксид азота	0.0013	0.0123	
0328	Сажа	0.0000155	0.000146	
0330	Серы оксид	0.02	0.19	
0703	Бенз(а)пирен (г/т)	0.32	0.000003	

Источник загрязнения № 6009

Источник загрязнения №008

КАМАЗ

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя127кВтМощность двигателя л.с.172.67165л.сРасход топлива:43.167913кг/чВыбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вре	дных веществ
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.096
0304	Оксид азота	0.0013	0.016
0328	Сажа	0.0155	0.19
0330	Серы оксид	0.02	0.24

0337	Окись углерода	0.1	1.2
0703	Бенз(а)пирен	3.2E-07	0.000004
2732	Углеводороды по керосину	0.03	0.36

Источник загрязнения № 6009

Источник выделения №009

Катки дорожные самоходные на пневмоколесном ходу г/п 16 т

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период. град. С . Т = 27

Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)

Тип топлива: Дизельное топливо

Наибольшее количество автомобилей. выезжающих со стоянки в течении часа . NK1 = 1

Общ. количество автомобилей данной группы за расчетный период. шт. . NK = 1

Коэффициент выпуска (выезда) . А = 1

Экологический контроль не проводится

Время прогрева двигателя. мин (табл.2.20) . TPR = 4

Время работы двигателя на холостом ходу. мин . TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки. км. LB1 = 0.04

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки. км. LD1 = 0.06

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку. км. LB2 = 0.04

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку. км. LD2 = 0.06

Суммарный пробег по территории или помещению стоянки (выезд). км.

L1=(LB1+LD1)/2=(0.04+0.06)/2=0.05

Суммарный пробег по территории или помещению стоянки (въезд). км.

L2=(LB2+LD2)/2=(0.04+0.06)/2=0.05

Примесь:0337 Углерод оксид

Удельный выброс 3В при прогреве двигателя. г/мин. (табл.2.7) . MPR = 3

Пробеговые выбросы 3В. г/км. (табл.2.8) . ML = 7.5

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 2.9

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 3 * 4 + 7.5 * 0.05 + 2.9 * 1 = 15.275

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 7.5 * 0.05 + 2.9 * 1 = 3.275

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 15.275 * 1 / 3600 = 0.0042

Примесь:2732 Керосин

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.4

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 1.1

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.45

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.4 * 4 + 1.1 * 0.05 + 0.45 * 1 = 2.105

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 1.1 * 0.05 + 0.45 * 1 = 0.505

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 2.105 * 1 / 3600 = 0.000585

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 1

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 4.5

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 1

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 1 * 4 + 4.5 * 0.05 + 1 * 1 = 5.225

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 4.5 * 0.05 + 1 * 1 = 1.225

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 5.225 * 1 / 3600 = 0.0014513

С учетом трансформации оксидов азота получаем:

Примесь:0301 Азота диоксид

Максимальный разовый выброс. г/с. GS = 0.8 * G = 0.8 * 0.0014513 = 0.0012

Примесь:0304 Азота оксид

Максимальный разовый выброс. r/c. GS = 0.13 * G = 0.13 * 0.0014513 = 0.00019

Примесь:0328 Сажа

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.04

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.4

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 0.04

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.04 * 4 + 0.4 * 0.05 + 0.04 * 1 = 0.22

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 0.4 * 0.05 + 0.04 * 1 = 0.06

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.22 * 1 / 3600 = 0.0000611

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.113

Пробеговые выбросы ЗВ. г/км. (табл.2.8). ML = 0.78

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 0.1

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.113 * 4 + 0.78 * 0.05 + 0.1 * 1 = 0.591

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 0.78 * 0.05 + 0.1 * 1 = 0.139

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.65 * 1 / 3600 = 0.00016

Источник загрязнения № 6009

Источник загрязнения №010

Машина поливомоечная

Стоянка: Обособленная. имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период. град. С. Т = 27

Тип машины: Грузовые автомобили карбюраторные свыше 5 т до 8 т (СНГ)

Тип топлива: Неэтилированный бензин

Количество рабочих дней в году. дн.. DN = 365

Наибольшее количество автомобилей. выезжающих со стоянки в течение часа . NK1 = 1

Общ. количество автомобилей данной группы за расчетный период. шт.. NK = 1

Время прогрева двигателя. мин (табл.2.20). TPR = 4

Время работы двигателя на холостом ходу. мин. TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки. км. LB1 = 0.04

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки. км. LD1 = 0.06

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку. км. LB2 = 0.04

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку. км. LD2 = 0.06 Суммарный пробег по территории или помещению стоянки (выезд). км.

L1=(LB1+LD1)/2=(0.04+0.06)/2=0.05

Суммарный пробег по территории или помещению стоянки (въезд). км.

L2=(LB2+LD2)/2=(0.04+0.06)/2=0.05

Примесь:0337 Окись углерода

Удельный выброс 3В при прогреве двигателя. г/мин. (табл.2.7). MPR = 18

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 47.4

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 13.5

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 18 * 4 + 47.4 * 0.05 + 13.5 * 1 = 87.87

Выброс ЗВ при въезде 1-го автомобиля. грамм.

M2 = ML * L2 + MXX * TX = 47.4 * 0.05 + 13.5 * 1 = 15.87

Максимально разовый выброс 3B. r/cek. G = MAX(M1.M2) * NK1 / 3600 = 87.87 * 1 / 3600 = 0.0244

Примесь:2704 Бензин (нефтяной. малосернистый в пересчете на углерод)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 2.6

Пробеговые выбросы 3В. г/км. (табл.2.8) . ML = 8.7

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 2.2

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 2.6 * 4 + 8.7 * 0.05 + 2.2 * 1 = 13.035

Выброс 3B при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 8.7 * 0.05 + 2.2 * 1 = 2.635

Максимально разовый выброс ЗВ. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 13.035 * 1 / 3600 = 0.00362

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.2

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 1

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.2

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.2 * 4 + 1 * 0.05 + 0.2 * 1 = 1.05

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 1 * 0.05 + 0.2 * 1 = 0.25

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 1.05 * 1 / 3600 = 0.00029

С учетом трансформации оксидов азота получаем:

Примесь:0301 Азота диоксид

Максимальный разовый выброс. r/c. GS = 0.8 * G = 0.8 * 0.0002916 = 0.00023

Примесь:0304 Азота оксид

Максимальный разовый выброс. r/c. GS = 0.13 * G = 0.13 * 0.0002916 = 0.000038

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.028

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.18

Удельные выбросы 3В при работе на холостом ходу. г/мин. (табл.2.9). МХХ = 0.029

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.028 * 4 + 0.18 * 0.05 + 0.029 * 1 = 0.15

Выброс ЗВ при въезде 1-го автомобиля. грамм.

M2 = ML * L2 + MXX * TX = 0.18 * 0.05 + 0.029 * 1 = 0.038

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.15 * 1 / 3600 = 0.0000416

Источник загрязнения № 6009/011

<u>Вибратор</u>

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 179
 кВт

 Мощность двигателя л.с.
 243.3718559
 л.с

Расход топлива: 60.84296397 кг/ч 0.000016901 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.135
0304	Оксид азота	0.0013	0.022
0328	Сажа	0.0155	0.262
0330	Серы оксид	0.02	0.34
0337	Окись углерода	0.1	1.694
0703	Бенз(а)пирен (г/т)	0.32	0.000005
2732	Керосин	0.03	0.507

Источник загрязнения № 6009

Источник выделения № 012. 013. трактор . трамбовка

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 90
 кВт

 Мощность двигателя л.с.
 122.3657376
 л.с

Расход топлива: 30.5914344 кг/ч 0.000008498 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных вещест	
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.068
0304	Оксид азота	0.0013	0.011
0328	Сажа	0.0155	0.132
0330	Серы оксид	0.02	0.17
0337	Окись углерода	0.1	0.85
0703	Бенз(а)пирен (г/т)	0.32	0.000003
2732	Углеводороды по керосину	0.03	0.25

 Источник загрязнения №
 6009

 Источник выделения №
 014

Компрессоры передвижные

Методика расчета нормативов выбросов от неорганизованных источников. Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25 кг/л с. час. (0.23. табл. 0.13)

 Мощность двигателя:
 36
 кВт

 Мощность двигателя:
 48.94630
 л.с.

Расход топлива: 12.236574 кг/ч 0.000003 т/с

Выбросы вредных веществ при сгорании топлива

итого

Код ЗВ	Наименование	уд. выбросы т/т	г/сек
0337	Окись углерода	0.1	0.300000
2732	Углеводороды	0.03	0.090000
0301	Двуокись азота	0.008	0.024000
0304	Оксид азота	0.0013	0.003900
0328	Сажа	0.0155	0.046500
0330	Серы оксид	0.02	0.060000
0703	Бенз(а)пирен	0.00000032	0.000001

<u>Источник загрязнения № 6009</u>

Источник выделения №015

Сварочные работы. Электроды Э-42

Наименование процесса: сварка ручная электродуговая

Марка электрода: Э-42

Расход применяемого сырья и материалов - $B_{rog} = 123$ кг

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования: $B_{\text{час}} = 1$ кг/час Степень очистки воздуха - $\eta = 0$ %

валовый выброс 3В определяется по формуле:

 $M_{rod} = (B_{rod} * K_m^x / 10^6) * (1-\eta).$ т/год (формула 5.1)

Максимальный разовый выброс 3В определяется по формуле:

 $M_{cek} = (K_m^* + B_{vac}/3600)*(1-\eta).$ г/сек (формула 5.2)

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Kxm. г/кг (табл. 1)

сварочный аэрозоль - 9.20

в том числе:

железо (II) оксид - 8.37 марганец и его соединения - 0.83

итого

Код ЗВ	Наименование	Мсек	Мгод
0123	Железо (II) оксид	0.002325	0.001030
0143	Марганец и его соед-я	0.000231	0.000102

Источник загрязнения № 6009

<u>Источник выделения №016</u>

Сварочные работы. Электроды Э-50А

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса: сварка ручная

электродуговая

Марка электрода: Э50А (УОНИ 13/55)

Расход применяемого сырья и материалов - $B_{rog} =$

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования: $B_{\text{час}} = 0.4$ кг/час

Степень очистки воздуха -

Валовый выброс 3В определяется по формуле 5.1:

 $M_{rog} = (B_{rog} \times K_m^x/10^6) \times (1-\eta).$ т/год

Максимальный разовый выброс 3В определяется по формуле 5.2:

 $M_{ceκ}$ = ($K_m^x \times B_{vac}/3600$)×(1-η). r/ceκ

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Кхm. г/кг (табл. 1)

сварочный аэрозоль -		
в том ч	исле:	
	железо (II) оксид -	13.90
	марганец и его соединения -	1.09
	пыль неорганическая (20-70%) -	1.00
фторид	ы неорганические -	1.00
фтористые газообразные -		
азот ди	оксид -	2.70
углерод	д оксид -	13.30

итого

Код ЗВ	Наименование	Мсек	Мгод
0123	Железо (II) оксид	0.001544	0.000348
0143	Марганец и его соед-я	0.000121	0.000027
2908	Пыль неорганическая	0.000111	0.000025
0344	Фториды неорг-ие	0.000111	0.000025
0342	Фтористые газ-ые	0.000103	0.000023
0301	Азот диоксид	0.000300	0.000068
0337	Углерод оксид	0.001478	0.000333

ΚГ

%

0

η =

Источник загрязнения № 6009

<u>Источник выделения N 017.</u>

 Источник загрязнения №
 6001

 Источник выделения №
 012

Сварочные работы. Электроды Э-46

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса: сварка ручная электродуговая

Марка электрода: ОЗС 12 (Э-46)

Расход применяемого сырья и материалов -

В_{год} = 64 кг

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования:

0.4 кг/час

Степень очистки воздуха -

η = 0 %

Валовый выброс 3В определяется по формуле 5.1:

фториды неорганические -

$$M_{rod} = (B_{rod} \times K_m^x/10^6) \times (1-\eta).$$
 т/год

Максимальный разовый выброс 3В определяется по формуле 5.2:

$$M_{ceκ} = (K_m^x \times B_{vac}/3600) \times (1-\eta)$$
. r/ceκ

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Kxm. г/кг (табл. 1)

сварочный аэрозоль -	12.00
в том числе:	
железо (II) оксид -	8.90
марганец и его соединения -	0.80
хром (VI) -	0.50

итого

Код ЗВ	Наименование	Мсек	Мгод
0123	Железо (II) оксид	0.000989	0.000570
0143	Марганец и его соед-я	0.000089	0.000051
0203	Хром (VI)	0.000056	0.000032
0344	Фториды неорг-ие	0.000200	0.000115

 Источник загрязнения №
 6009

 Источник выделения №
 018

Аппарат для газовой резки и сварки

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса - газовая резка

Время работы источника - Т. ч/год -

Степень очистки воздуха. η -

Разрезаемый материал - сталь углеродистая. толщина - 4-20 мм

Сварочный аэрозоль

Удельный выброс сварочного аэрозоля. на ед-цу времени работы оборудования - Кх . г/ч - 200

в том числе:

марганец и его соединения. г/ч - 3

1.80

железо (II) оксид. г/ч - 197

Удельный выброс углерода оксида. на ед-цу времени работы оборудования - Кх . г/ч - 65

Удельный выброс азота диоксида. на ед-цу времени работы оборудования - Кх . г/ч -

Валовый выброс определяется по формуле:

Мгод = $(Kx \times T) / 10^6 \times (1 - \eta)$. τ /год (формула 6.1)

Максимально разовый определяется по формуле:

Мсек = (Kx / 3600) × (1 - η). r/c (формула 6.2)

итого

Код ЗВ	Наименование	Мсек	Мгод
0143	Марганец и его соединения	0.00083	0.00040
0123	Железо (II) оксид	0.05472	0.02620
0337	Углерод оксид	0.01806	0.00865
0301	Азота диоксид	0.01478	0.00708

Источник загрязнения № 6009

Источник выделения N 019. Машина шлифовальная

Станок плоскошлифовальный d= 250 мм

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Время работы источника в год. Т. ч/год -

11 1

Время работы источника в сутки. ч/сут -

пыль абразивная - 0.016

Удельный выброс на единицу оборудования - Q (табл.1). составит г/с:

пыль металлическая -

0.026

Согласно п.5.3.3 "при механической обработке металла выделяющаяся пыль металлическая классифицируется как взвешенные вещества"

Поправочный коэффициент при расчете твердых частиц - k. согласно п.5.3.2 -

0.2

Выбросы взвешенных веществ. образующихся при механической обработке металлов:

- а) валовый: **Мгод = 3600 \times k \times Q \times T / 10^6.** т/год. (формула 1)
- б) максимальный разовый: Мсек = $k \times Q$. г/сек (формула 2)

итого

Код 3В	Наименование	Мсек	Мгод
2902	Взвешенные в-ва	0.0052	0.0002
2930	Пыль абразивная	0.0032	0.0001

Источник загрязнения № 6009

Источник выделения № 020

Станок для резки арматуры

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Время работы источника в год. Т. ч/год -

5

1

Время работы источника в сутки. ч/сут -

пыль абразивная -

Удельный выброс на единицу оборудования - Q (табл.1) . составит г/с:

пыль металлическая -

0.203

Согласно п.5.3.3 "при механической обработке металла выделяющаяся пыль металлическая классифицируется как взвешенные вещества"

Поправочный коэффициент при расчете твердых частиц - k. согласно п.5.3.2 -

0.2

Выбросы взвешенных веществ. образующихся при механической обработке металлов:

а) валовый: **Мгод = 3600 \times k \times Q \times T / 10^6. т/год**. (формула 1)

Оценка воздействия на окружающую среду к рабочему проекту «Увеличение производственной мощности существующей птицефабрики до 120 тыс.тонн в живом весе в год с инженерной

инфраструктурой в Буландынском районе Акмолинской области PK» 3 очередь строительства

1012

53.2

б) максимальный разовый: Мсек = k × Q. г/сек (формула 2)

итого

Код ЗВ	Наименование	Мсек	Мгод
2902	Взвешенные в-ва	0.0406	0.000731

Источник загрязнения № 6009

Источник выделения №

021

Перфоратор

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Наименование процесса:

Сверление

Время работы источника в год:

T= 181 ·

Время работы источника в сутки:

4 ч/сут

Коэффициент гравитационного оседания:

k=

0.2

2902 Взвешенные вещества

Выбросы взвешенных веществ. образующихся при механической обработке металлов

а) валовый:

 $M_{rod} = 3600 \times k \times Q \times T / 10^6 =$

0.009

т/год (формула 1)

б) максимальный разовый:

 $M_{cek} = k \times Q =$

0.01400

г/с (формула 2)

Удельное выделение пыли технологическим

оборудованием (табл. 1-5)

Q=

0.07

г/с

Источник загрязнения № <u>6009</u>

Источник выделения №

022

дрель

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Наименование процесса:

Сверление

Время работы источника в год:

T=

41 ч

Время работы источника в сутки:

4 ч/сут

Коэффициент гравитационного оседания:

k=

0.2

2902 Взвешенные вещества

Выбросы взвешенных веществ. образующихся при механической обработке металлов

а) валовый:

 $M_{rod} = 3600 \times k \times Q \times T / 10^6 =$

0.002

т/год (формула 1)

б) максимальный разовый:

 $M_{cek} = k \times Q =$

0.01400

г/с (формула 2)

Удельное выделение пыли технологическим

оборудованием (табл. 1-5)

Q=

0.07

г/с

 Источник загрязнения №
 6009

 Источник выделения №
 023

Газовая сварка стали ацетилен-кислородным пламенем

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса - газовая сварка

Расход применяемого сырья и материалов -	В _{год} =	1.108	кг
Фактический максимальный расход применяемых сырья и			
материалов. с учетом дискретности работы оборудования:	$B_{\text{vac}} =$	0.2	кг/час
Степень очистки воздуха -	η =	0	%
Удельный выброс ацетилена. на ед-цу расхода материала -	Kx =	22	г/кг
ИТОГО			

Код 3В	Наименование	Мсек	Мгод
0301	Азота диоксид	0.001222	0.000024

Источник загрязнения № 6009 Источник выделения № 024

Пайка (олово-свинцовые припои)

Методика расчета выбросов ЗВ в атмосферу от автотранспортных предприятий Приказ Министра ООС РК от 18 апреля 2008 г. №100-п

Способ пайки: электропаяльник (40-60 Вт) Паяльный материал: ПОС-40 ПОС-30

> 38 масса израсходованного припоя за год кг/год свинец и его соединения 0.51 г/кг удельное выделение a (таблица 4.8): олова оксид 0.28 г/кг "чистое" время работы паяльником в год 3 ч/год

 $M_{rog} = q * t * 3600 * 10^{-6}$. т/год (формула 4.29)

M_{сек}=q. г/сек

итого

Код	Примесь	г/сек	т/год
0184	Свинец и его соединения	0.001794	0.00001938
0168	Олова оксид	0.000985	0.00001064

6009 Источник загрязнения № Источник выделения **№** 025

Покрасочные работ ГФ 021

Методика расчета выбросов ЗВ в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. марка -ΓΦ-021 Расход краски -0.05 Время сушки -24 час

тф - фактический годовой расход ЛКМ. т -

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6 (\phi op мула 3)$. где:

0.05

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
616	ксилол	100

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

б"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Goкp =
$$(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$$
 (формула 5). где:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

при сушке:

Goкp = ('mм × fp × δ ''p × δ x) × (1- η) / 10^6 (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.062500

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.052500	0.005625	0.0581
Диметилбензол	М. т/год	0.006300	0.016200	0.0225

Источник загрязнения№ 6009

Источник выделения №

026

Покрасочные работ

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. эмаль - ПФ-115

Расход краски - 0.658 т

Время сушки лака - 12 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.1

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

б'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
0616	ксилол	50
2752	уайт-спирит	50

29023 взвешенные вещества 30

 η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке.

Мокр =
$$(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$$
 (формула 4). где:

 δ "р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

**Gokp = (mm × fp ×
$$\delta$$
'p × δ x) × (1- η) / (10⁶ × 3.6) (формула 5). где:**

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

5.2

при сушке:

**Goкр = ('mм × fp ×
$$\delta$$
"p × δ x) × (1- η) / (10⁶ × 3.6) (формула 6). где:**

'mm - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) - Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

0.433333

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616 Vallage	G. г/сек	0.0910	0.0195	0.1105
0616 Ксилол	М. т/год	0.0063	0.0162	0.0225
2752 Уайт-спирит	G. г/сек	0.0910	0.0195	0.1105
2732 уамт-спирит	М. т/год	0.0063	0.0162	0.0225
2902 Взвешенные вещества	G. г/сек	0.0546	0.0000	0.0546
2302 взвешенные вещества	М. т/год	0.0038		0.0038

Источник загрязнения № 6009

Источник выделения №

027

Покрасочные работы. Растворитель уайт-спирит

Лак. марка - уайт-спирит

Расход краски - 0.0137 Т

тф - фактический годовой расход ЛКМ. т -

Время сушки лака - 1 час

0.0137

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

100

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

100

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

уайт-спирит	100
-------------	-----

 η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

 δ "р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

100

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

Goкp = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

028

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

1.00

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	
2752 Уайт-	G. г/сек	0.278
спирит	М. т/год	0.0137

Источник загрязнения № 6009

Источник выделения №

Покрасочные работы. Растворитель Р-4

Лак. марка - уайт-спирит

Расход краски - 0.0095 т Время сушки лака - 1 час

тф - фактический годовой расход ЛКМ. т -

0.0095

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

100

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

100

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

ацетон	26
бутилацетат	12
толуол	62

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

100

1.5

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-n) / 10^6$ (формула 3). где:

б"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

Gокр = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) - 1.00

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	
4.404.4	G. г/сек	0.072
1401 Ацетон	М. т/год	0.002
1210	G. г/сек	0.033
Бутилацетат	М. т/год	0.001
0621 Толуол	G. г/сек	0.172
	М. т/год	0.006

Источник загрязнения №

<u>6009</u>

Источник выделения №

029

Покрасочные работы. Лак битумный

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. эмаль - **БТ-177. БТ-123 (БТ-577)**

 Расход краски 0.211 т

 Время сушки лака 12 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.211

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

63

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δx
0616	ксилол	57.4
2752	уайт-спирит	42.6

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

 δ "р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Goкp = (mм × fp × \delta'p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 5). где:

mм - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

2.9

при сушке:

Goкр = ('mm × fp × \delta''p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 6). где:

'mm - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ 0.241667

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.0816	0.0175	0.0990
	М. т/год	0.0214	0.0549	0.0763
2752 Vaëz anunuz	G. г/сек	0.0605	0.0130	0.0735
2752 Уайт-спирит	М. т/год	0.0159	0.0408	0.0566

Источник загрязнения № 6009

Источник выделения N 030. Склад щебня фр. От 20 мм разгрузка

наименование	Обозн.	Ед.изм.	кол-во	Код BB	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс:	М год	т/год			•	
Пп=K1*K2*K3*K4*K5*K7*G*B				2908	0.0896	0.0020
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*Gпм*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в	K1					
материале. Определяется путем отмывки и						
просева средней пробы с выделением						
фракции пыли размером 0 -200 мкм			0.04			
доля пыли (от всей массы пыли).	K2					
переходящая в аэрозоль			0.02			
коэффициент. учитывающий местные	К3					
метеоусловия. скорость ветра			1.2			
коэффициент. учитывающий местные	K4					
условия. степень защищенности узла от						
внешних воздействий. условия						
пылеобразования			0.5			
коэффициент. учитывающий влажность	K5					
материала			0.6			
коэффициент. учитывающий крупность	K7					
материала			0.5			
коэффициент. учитывающий высоту	B'					
пересыпки			0.7			
Максимальное количество перемещаемого	Мпм	т/ч				
материала			8			

Максимальное количество перемещаемого	М				
материала		т/год	50		
Коэффициент гравитационного оседания	К		0.4		

Источник загрязнения № 6009

Источник выделения N 031. Склад щебня фр. От 20 мм хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год		2908	0.01310	0.085
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.3			
коэффициент. учитывающий влажность материала	K5		0.4			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	K7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	50			
время работы склада	Т	час/год	1800			

Источник загрязнения № 6009

Источник выделения N 032. Склад щебня фр. до 20 мм разгрузка

наименование	Обозн.	Ед.изм.	кол-во	Код	Макс.	Валовый
				BB	разовый	выброс.
					выброс.	т/год
					г/сек	
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*G*B	М год	т/год				
				2908	0.0896	0.0002
Максимальный разовый выброс:	М сек	г/сек				
Пв=(К1*К2*К3*К4*К5*К7*Gпм*10^6*В)/3600						
где: весовая доля пылевой фракции в	K1					
материале. Определяется путем отмывки и						
просева средней пробы с выделением						
фракции пыли размером 0 -200 мкм			0.04			
доля пыли (от всей массы пыли). переходящая	K2					
в аэрозоль			0.02			
коэффициент. учитывающий местные	К3					
метеоусловия. скорость ветра			1.2			
коэффициент. учитывающий местные условия.	K4					
степень защищенности узла от внешних						
воздействий. условия пылеобразования			0.5			
коэффициент. учитывающий влажность	K5					
материала			0.6			
коэффициент. учитывающий крупность	K7					
материала			0.5			

коэффициент.	учитывающий	высоту	B'				
пересыпки					0.7		
Максимальное	количество пере	емещаемого	Мпм	т/ч			
материала					8		
Максимальное	количество пере	емещаемого	М				
материала				т/год	5.64		
Коэффициент гр	авитационного осе	дания	К		0.4	•	

Источник загрязнения № 6009

Источник выделения N 033. Склад щебня фр. до 20 мм хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год			0.0240	0.3114
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5			
коэффициент. учитывающий влажность материала	K5		0.4			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	K7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	55			
время работы склада	T	час/год	3600			

Источник загрязнения № 6009

Источник выделения N 034. Склад песка разгрузка

наименование	Обозн.	Ед.изм.	количество	Код ВВ	Макси- мальный разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*M*B	М год	т/год				
IIII=K1 . K2 . K3 . K4 . K2 . K7 . IVI . B				2908	0.3584	0.0130
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*Мпм*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.05			
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.03			
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			

коэффициент. учитывающий местные	K4		0.5		
условия. степень защищенности узла от					
внешних воздействий. условия					
пылеобразования					
коэффициент. учитывающий влажность материала	K5		0.8		
коэффициент. учитывающий крупность материала	K7		0.8		
коэффициент. учитывающий высоту пересыпки	В′		0.7		
Максимальное количество перемещаемого материала	Мпм	т/ч	8		
Максимальное количество перемещаемого материала	M	т/год	80.32		
Коэффициент гравитационного оседания	К		0.4		

Источник загрязнения № 6009

Источник выделения N 035. Склад песка хранение

Источник выделения N 035. Склад песка			T	W DC		D
наименование	Обозн.	Ед.изм.	количество	Код ВВ	Максимальный разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс:	М год	т/год				
Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000					0.1048	1.359
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.5			
коэффициент. учитывающий влажность материала	K5		0.8			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	K7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	120			
время работы склада	Т	час/год	3600			

Источник загрязнения № 6009

Источник выделения N 036. Склад гравия разгрузка

	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс:	М год	т/год				
Ππ=K1*K2*K3*K4*K5*K7*M*B				2908	0.1434	0.0010
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*Мпм*10^6*B)/3600	М сек	г/сек				

где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.04		
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.02		
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2		
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.5		
коэффициент. учитывающий влажность материала	K5		0.4		
коэффициент. учитывающий крупность материала	K7		0.6		
коэффициент. учитывающий высоту пересыпки	B'		0.7		
Максимальное количество перемещаемого материала	Мпм	т/ч	16		
Максимальное количество перемещаемого материала	M	т/год	32		
Коэффициент гравитационного оседания	К	_	0.4	 	

Источник загрязнения № 6009

Источник выделения N 037. Склад гравия хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год			0.1048	0.679
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5			
коэффициент. учитывающий влажность материала	K5		0.8			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	K7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	120			_
время работы склада	Т	час/год	1800			

НАСОСНАЯ СТАНЦИЯ 2 ПОДЪЕМА СО СКВАЖИНАМИ

Источник загрязнения N 0012.

Источник выделения N 001. Котел битумный

Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

Вмакс - расход топлива в режиме номинальной тепловой мощности котла:

$$B_{\text{Makc}} = Q/(h^*Q_H^p)$$

где Q – теплопроизводительность по котлу

 $Q^p_{\ H}$ - низшая теплота сгорания топлива

h – КПД котельной установки.

Твердые частицы

Расчет выбросов твердых частиц летучей золы и недогоревшего топлива (т/год. г/с). выбрасываемых в атмосферу с дымовыми газами котлоагрегатов в ед. времени. выполняется по формуле 2.1:

Птв = $B*\chi*Ar*(1-\eta)$

где: χ - коэффициент. зависящий от типа топки (по табл.2.1)

η - доля твердых частиц. улавливаемых в золоуловителе

Ar - зольность топлива

В – расход топлива. т/год;

Оксид серы

Расчет выбросов оксидов серы в пересчете на SO_2 (т/год. г/с). выбрасываемых в атмосферу с дымовыми газами котлоагрегатов в ед. времени. выполняется по формуле 2.2:

$$\Pi_{so2} = 0.02*B*S^{r}(1-\eta_{so2})*(1-\eta_{so2}).$$
 где:

Sr - содержание серы в топливе. %

n'so2 - доля оксидов серы. связываемых летучей золой топлива

n"so2 - доля оксидов серы. улавливаемых в золоуловителе

Оксид углерода

Расчет выбросов оксида углерода в единицу времени (т/год. г/с) выполняется по формуле 2.4:

$\Pi_{CO} = 0.001*Cco*B*(1-q_4/100)$. где

Ссо - выход оксида углерода при сжигании топлива. кг/т. рассчитывается по формуле:

q3 - потери теплоты вследствие химической неполноты сгорания топлива. %

R - коэф.. учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива. обусловленной наличием в продуктах сгорания оксида углерода. для твердого топлива

q4 - потери теплоты вследствии механической неполноты сгорания топлива

$\Pi_{CO} = 0.001*B*Q^{P}_{H}*K_{CO}*(1-q_{4}/100)$. где

 K_{CO} - количество оксида углерода на единицу теплоты . выделяющейся при горении топлива (кг/ГДж). принимается по табл.2.1

Kco = 0.32

Окислы азота

Количество оксидов азота (в пересчете на NO) выбрасываемых в ед. времени (т/год. г/с) рассчитывается по формуле 2.7:

ПNOx = $0.001*B*Q_H^p*K_{NO}*(1-\beta)$. где

 ${
m K}_{
m NO2^-}$ параметр. характеризующий количество оксидов азота. образующихся на 1 ГДж тепла (кг/ГДж)

β - коэф.. зависящий от степени снижения выбросов оксидов азота в результате применения технических решений:

Диоксид азота $\Pi_{NO2} = 0.8*\Pi_{NOx}$ Оксид азота $\Pi_{NO} = 0.13*\Pi_{NOx}$

	400 л
Годовое время работы котла при тех.проверке. ч/год -	79.3
Технические характеристики котла	
Номинальная теплопроизводительность котла. кВт -	30
Расход дизельного топлива. л/час -	2
Номинальный массовый расход топлива. кг/ч -	1.6628
КПД котла при полной нагрузке. % -	92.4
Температура отработанных газов. °С -	180

Характеристика топлива

Плотность при стандарт.условиях. кг/м ³ -	831.4
Низшая теплота сгорания. Qi. МДж/кг-	42.75
Зольность топлива на рабочую массу. Аг. % -	0.025
Содержание серы в топливе. Sr	0.3
Массовая доля сероводорода [H2S]	-
Перевод низшей теплоты сгорания МДж/кг на кВт/кг -	11.87
Максимально-разовый расход топлива. В. (г/с) -	0.76
Валовый расход топлива. В. (т/год) -	0.13

Вспомоглательные величины для расчета:

	χ	η	η'so ₂	η''so ₂	q_3
ДТ	0.01	0	0.02	0	0.5
	R	q_4	C _{co}	K _{NO}	β
ДТ	0.65	0.5	13.89375	0.11	0

Итого выбросы составят:

Код	Примесь	Котел битумный передвижной. 400 л		
		г/сек	т/год	
0301	Азота диоксид	0.0029	0.000495	
0304	Азота оксид	0.0005	0.000080	
0328	Углерод (сажа)	0.0038	0.000659	
0330	Сера диоксид	0.0105	0.001817	
0337	Углерод оксид	0.0002	0.000033	

Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли. в том числе от асфальтобетонных заводов

При хранении гудрона. переработке его в битум. нагреве битума и приготовлении асфальтобетона выделяются углеводороды

В том случае. если реакторная установка не обеспечена печью дожига. удельный выброс загрязняющего вещества (углеводородов) может быть принят в среднем 1 кг на 1 т готового битума

Согласно сметной документации. общее количество битума составит. тонн -

20.3

Следовательно. выброс углеводородов предельных (2754) составит. т/год -

0.0203

Максимальный разовый выброс углеводородов предельных составит. г/с -

0.46991

Источник загрязнения N 0013

ДЭС 4 кВт

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600. г/сек

где: еі-выброс І-го вещества на единицу полезной работы стационарной

дизельной установки на режиме номинальной мощности. г/кВт*ч.

определяем по таблице 1 или 2

Рэ-эксплуатационная мощность стационарной дизельной установки. кВт

 $P \ni = 4$ к $B \intercal$

Группа А – 1-73.6 кВт

Значение выбросов еі для различных групп стационарных диз.установок до капремонта

табл.1

группа	Выброс. г/кВт*ч						
	со	Nox	СН	С	SO ₂	CH₂O	БП
Α	7.2	10.3	3.6	0.7	1.1	0.15	0.000013
Б	6.2	9.6	2.9	0.5	1.2	0.12	0.000012
В	5.3	8.4	2.4	0.35	1.4	0.1	0.000011
Γ	7.2	10.8	3.6	0.6	1.2	0.15	0.000013

Валовый выброс і-го вещества за год стац. дизельной установки

Мгод=(g_i * Вгод)/1000. т/год

 ${\sf g}_{\sf i}$ - выброс i-го вещества г/кг. приходящегося на один кг дизтоплива. опред. по табл. ${\sf 3}$

табл.4

Время работы 100 час

Валовый выброс і-го вещества за год стац. дизельной установки

Мгод= $(g_{i}* Bгод)/1000. \ т/год$ 0.13 тн

Итого:

Von	Примоси	г/сек без	т/год без	
Код	Примесь	очистки	очистки	
301	Азота (IV) диоксид (4)	0.0092	0.0045	
304	Азот (II) оксид(6)	0.0012	0.000581	
328	Углерод (593)	0.0008	0.000390	
330	Сера диоксид (526)	0.0012	0.000585	
337	Углерод оксид (594)	0.0080	0.0039	
703	Бенз/а/пирен (54)	0.00000001	0.0000000072	
1325	Формальдегид (619)	0.0002	0.000078	
	Углеводороды предельные			
2754	С12-19 /в пересчете на С/	0.0040	0.0020	
	(592)			

Источник загрязнения N 0014

ДЭС 60 кВт

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600. г/сек

где: еі-выброс І-го вещества на единицу полезной работы стационарной

дизельной установки на режиме номинальной мощности. г/кВт*ч.

определяем по таблице 1 или 2

Рэ-эксплуатационная мощность стационарной дизельной установки. кВт

Рэ = 60 кВт

Значение выбросов еі для различных групп стационарных диз.установок до капремонта

табл.1

Группа А - 1-73.6 кВт

группа		Выброс. г/кВт*ч					
	со	Nox	СН	С	SO ₂	CH ₂ O	БП
Α	7.2	10.3	3.6	0.7	1.1	0.15	0.000013
Б	6.2	9.6	2.9	0.5	1.2	0.12	0.000012
В	5.3	8.4	2.4	0.35	1.4	0.1	0.000011
Γ	7.2	10.8	3.6	0.6	1.2	0.15	0.000013

Итого:

V о п	Примоси	г/сек без	т/год без	
Код	Примесь	очистки	очистки	
301	Азота (IV) диоксид (4)	0.1373	0.0023	
304	Азот (II) оксид(6)	0.0179	0.000295	
328	Углерод (593)	0.0117	0.000198	
330	Сера диоксид (526)	0.0183	0.000297	
337	Углерод оксид (594)	0.1200	0.0020	
703	Бенз/а/пирен (54)	0.00000022	0.0000000036	
1325	Формальдегид (619)	0.0025	0.000040	
	Углеводороды предельные			
2754	С12-19 /в пересчете на С/	0.0600	0.0010	
	(592)			

<u>Источник загрязнения N 0015</u> ДЭС 100 кВт

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600. г/сек

где: еі-выброс І-го вещества на единицу полезной работы стационарной

дизельной установки на режиме номинальной мощности. г/кВт*ч.

определяем по таблице 1 или 2

Рэ-эксплуатационная мощность стационарной дизельной установки. кВт

Рэ= **100** кВт Группа Б – 73.6-736 кВт

Значение выбросов еі для различных групп стационарных диз.установок до капремонта

табл.1

группа				Выброс. г	/кВт*ч		
	со	Nox	СН	С	SO ₂	CH ₂ O	БП
Α	7.2	10.3	3.6	0.7	1.1	0.15	0.000013
Б	6.2	9.6	2.9	0.5	1.2	0.12	0.000012
В	5.3	8.4	2.4	0.35	1.4	0.1	0.000011
Γ	7.2	10.8	3.6	0.6	1.2	0.15	0.000013

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600. г/сек

время работы

38 час

Валовый выброс і-го вещества за год стац. дизельной установки

Мгод=(g_i * Вгод)/1000. т/год

1.121 т/год

Код	Примосі	г/сек без	т/год без
	Примесь	очистки	очистки
301	Азота (IV) диоксид (4)	0.213333	0.03587200
304	Азот (II) оксид(6)	0.027733	0.00466336
328	Углерод (593)	0.013889	0.00224200
330	Сера диоксид (526)	0.033333	0.00560500
337	Углерод оксид (594)	0.172222	0.02914600
703	Бенз/а/пирен (54)	0.000000333	0.00000006
1325	Формальдегид (619)	0.003333	0.00056050
2754	Углеводороды предельные С12- 19 /в пересчете на С/ (592)	0.080556	0.01345200

Источник загрязнения № 6010

Источник выделения 001

Разработка грунта бульдозером

Источники выбросов пыли являются неорганизованными и площадными с неустановившимся режимом выделения. В связи с этим выбросы пыли при проведении земляных работ определяются расчетным методом «Методика расчета нормативов выбросов от неорганизованных источников. приказ Министра ООС РК от 12 июня 2014 г. №221-Ө».

наименование		Ед.изм.	кол-во	Код	Макс.	Валовый
				BB	раз.выброс.	выброс.
					г/сек	т/год
Валовый выброс:	М год	т/год				
Пп=K1*K2*K3*K4*K5*K7*G*B				2902	0.1307	50.7822
Максимальный разовый выброс:	М сек	г/сек				
Пв=(K1*K2*K3*K4*K5*K7*G*10^6*B)/3600						
где: весовая доля пылевой фракции в	K1		0.05			
материале. Определяется путем отмывки и			0.05			

					1
просева средней пробы с выделением					
фракции пыли размером 0 -200 мкм					
доля пыли (от всей массы пыли). переходящая	K2		0.02		
в аэрозоль			0.02		
коэффициент. учитывающий местные	К3		4.3		
метеоусловия. скорость ветра			1.2		
коэффициент. учитывающий местные условия.	K4				
степень защищенности узла от внешних			0.5		
воздействий. условия пылеобразования					
коэффициент. учитывающий влажность	K5		0.7		
материала			0.7		
коэффициент. учитывающий крупность	K7		0.2		
материала			0.2		
коэффициент. учитывающий высоту	B'		0.7		
пересыпки			0.7		
Максимальное количество перемещаемого	G	т/ч	20		
материала			20		
Максимальное количество перемещаемого	М	т/год			
материала			2159109		
Коэффициент гравитационного оседания	К		0.4		

Источник загрязнения № 6010

Источник выделения 002

Разработка грунта экскаватором

Источники выбросов пыли являются неорганизованными и площадными с неустановившимся режимом выделения. В связи с этим выбросы пыли при проведении земляных работ определяются расчетным методом «Методика расчета нормативов выбросов от неорганизованных источников. приказ Министра ООС РК от 12 июня 2014 г. №221-Ө».

наименование	Обозн.	Ед.изм.	кол-во	Код BB	Макс. раз.выброс.	Валовый выброс.
					г/сек	т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*G*B	М год	т/год		2902	0.1307	10.0182
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*G*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.05			
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.02			
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5			
коэффициент. учитывающий влажность материала	K5		0.7			
коэффициент. учитывающий крупность материала	K7		0.2			
коэффициент. учитывающий высоту пересыпки	В/		0.7			
Максимальное количество перемещаемого материала	G	т/ч	20	_		
Максимальное количество перемещаемого материала	М	т/год	425946			
Коэффициент гравитационного оседания	К		0.4			

Источник загрязнения № 6010

Источник выделения 003

<u>Экскаватор одноковшовый дизельный 0.5 м³ на гус. ходу</u>

Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя90кВтМощность двигателя л.с.122.3657376л.сРасход топлива:30.5914344кг/ч

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т	г/сек
0301	Азота диоксид	0.008	0.069
0304	Азота оксид	0.0013	0.011
0328	Сажа	0.0155	0.132
0330	Сера диоксид	0.02	0.17
0337	Углерод оксид	0.1	0.85
0703	Бенз(а)пирен (г/т)	0.32	0.000003
2732	Углеводороды (по керосину)	0.03	0.255

Источник загрязнения № 6010

Источник выделения 004

Бульдозер.79 кВт

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 79
 кВт

 Мощность двигателя л.с.
 107.4099252
 л.с

Расход топлива: 26.85248131 кг/ч 0.000007459 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Двуокись азота	0.008	0.056	
0304	Оксид азота	0.0013	0.01	
0328	Сажа	0.0155	0.116	
0330	Серы оксид	0.02	0.15	
0337	Окись углерода	0.1	0.746	
0703	Бенз(а)пирен (г/т)	0.32	0.000002	
2732	Керосин	0.03	0.224	

Источник загрязнения № 6010

Источник загрязнения №005-007

Кран до 10 т на автомобильном ходу. кран 16 т на гусеничном ходу. кран 25 тонн на гусеничном ходу

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час

на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 100
 кВт

 Мощность двигателя л.с.
 135.9619307
 л.с

Расход топлива: 33.99048266 кг/ч 0.000009442 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0337	Окись углерода	0.1	0.94	
2732	Керосин	0.03	0.28	
0301	Двуокись азота	0.008	0.076	

0304	Оксид азота	0.0013	0.0123
0328	Сажа	0.0000155	0.000146
0330	Серы оксид	0.02	0.19
0703	Бенз(а)пирен (г/т)	0.32	0.000003

Источник загрязнения № 6010

Источник загрязнения №008

КАМАЗ

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя127кВтМощность двигателя л.с.172.67165л.сРасход топлива:43.167913кг/чВыбросы вредных веществ при сгорании топлива

выоросы вредных веществ при сторании топлива				
Код	Вредный компонент	Выбросы вре	дных веществ	
вещества		уд. выбросы т/т	г/сек	
0301	Двуокись азота	0.008	0.096	
0304	Оксид азота	0.0013	0.016	
0328	Сажа	0.0155	0.19	
0330	Серы оксид	0.02	0.24	
0337	Окись углерода	0.1	1.2	
0703	Бенз(а)пирен	3.2E-07	0.000004	
2732	Углеводороды по керосину	0.03	0.36	

Источник загрязнения № 6010

Источник выделения №009. 010

Катки дорожные самоходные на пневмоколесном ходу г/п 16 т. автопогрузчик

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период. град. С . Т = 27

Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)

Тип топлива: Дизельное топливо

Наибольшее количество автомобилей. выезжающих со стоянки в течении часа . NK1 = 1

Общ. количество автомобилей данной группы за расчетный период. шт. . NK = 1

Коэффициент выпуска (выезда) . А = 1

Экологический контроль не проводится

Время прогрева двигателя. мин (табл.2.20) . TPR = 4

Время работы двигателя на холостом ходу. мин . ТХ = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки. км. LB1 = 0.04

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки. км. LD1 = 0.06

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку. км. LB2 = 0.04

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку. км. LD2 = 0.06

Суммарный пробег по территории или помещению стоянки (выезд). км.

L1=(LB1+LD1)/2=(0.04+0.06)/2=0.05

Суммарный пробег по территории или помещению стоянки (въезд). км.

L2=(LB2+LD2)/2=(0.04+0.06)/2=0.05

Примесь:0337 Углерод оксид

Удельный выброс 3В при прогреве двигателя. г/мин. (табл.2.7) . MPR = 3

Пробеговые выбросы 3В. г/км. (табл.2.8) . ML = 7.5

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 2.9

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 3 * 4 + 7.5 * 0.05 + 2.9 * 1 = 15.275

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 7.5 * 0.05 + 2.9 * 1 = 3.275

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 15.275 * 1 / 3600 = 0.0042

Примесь:2732 Керосин

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.4

Пробеговые выбросы 3B. г/км. (табл.2.8). ML = 1.1

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.45

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.4 * 4 + 1.1 * 0.05 + 0.45 * 1 = 2.105

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 1.1 * 0.05 + 0.45 * 1 = 0.505

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 2.105 * 1 / 3600 = 0.000585

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3В при прогреве двигателя. г/мин. (табл.2.7). MPR = 1

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 4.5

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 1

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 1 * 4 + 4.5 * 0.05 + 1 * 1 = 5.225

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 4.5 * 0.05 + 1 * 1 = 1.225

Максимально разовый выброс 3В. r/сек. G = MAX(M1.M2) * NK1 / 3600 = 5.225 * 1 / 3600 = 0.0014513

С учетом трансформации оксидов азота получаем:

Примесь:0301 Азота диоксид

Максимальный разовый выброс. r/c. GS = 0.8 * G = 0.8 * 0.0014513 = 0.0012

Примесь:0304 Азота оксид

Максимальный разовый выброс. r/c. GS = 0.13 * G = 0.13 * 0.0014513 = 0.00019

Примесь:0328 Сажа

Удельный выброс 3В при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.04

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.4

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 0.04

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.04 * 4 + 0.4 * 0.05 + 0.04 * 1 = 0.22

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 0.4 * 0.05 + 0.04 * 1 = 0.06

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.22 * 1 / 3600 = 0.0000611

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.113

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.78

Удельные выбросы ЗВ при работе на холостом ходу. г/мин. (табл.2.9) . МХХ = 0.1

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.113 * 4 + 0.78 * 0.05 + 0.1 * 1 = 0.591

Выброс 3B при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 0.78 * 0.05 + 0.1 * 1 = 0.139

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.65 * 1 / 3600 = 0.00016

Источник загрязнения № 6010

<u>Источник загрязнения №011</u>

Машина поливомоечная

Стоянка: Обособленная. имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период. град. С. Т = 27

Тип машины: Грузовые автомобили карбюраторные свыше 5 т до 8 т (СНГ)

Тип топлива: Неэтилированный бензин

Количество рабочих дней в году. дн.. DN = 365

Наибольшее количество автомобилей. выезжающих со стоянки в течение часа . NK1 = 1

Общ. количество автомобилей данной группы за расчетный период. шт.. NK = 1

Время прогрева двигателя. мин (табл.2.20). TPR = 4

Время работы двигателя на холостом ходу. мин. TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки. км. LB1 = 0.04

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки. км. LD1 = 0.06

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку. км. LB2 = 0.04

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку. км. LD2 = 0.06 Суммарный пробег по территории или помещению стоянки (выезд). км.

L1=(LB1+LD1)/2=(0.04+0.06)/2=0.05

Суммарный пробег по территории или помещению стоянки (въезд). км.

L2=(LB2+LD2)/2=(0.04+0.06)/2=0.05

Примесь:0337 Окись углерода

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 18

Пробеговые выбросы ЗВ. г/км. (табл.2.8). ML = 47.4

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 13.5

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 18 * 4 + 47.4 * 0.05 + 13.5 * 1 = 87.87

Выброс 3В при въезде 1-го автомобиля. грамм.

M2 = ML * L2 + MXX * TX = 47.4 * 0.05 + 13.5 * 1 = 15.87

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 87.87 * 1 / 3600 = 0.0244

Примесь:2704 Бензин (нефтяной. малосернистый в пересчете на углерод)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 2.6

Пробеговые выбросы 3В. г/км. (табл.2.8) . ML = 8.7

Удельные выбросы 3В при работе на холостом ходу. г/мин. (табл.2.9). MXX = 2.2

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 2.6 * 4 + 8.7 * 0.05 + 2.2 * 1 = 13.035

Выброс 3B при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 8.7 * 0.05 + 2.2 * 1 = 2.635

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 13.035 * 1 / 3600 = 0.00362 РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.2

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 1

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.2

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.2 * 4 + 1 * 0.05 + 0.2 * 1 = 1.05

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 1 * 0.05 + 0.2 * 1 = 0.25

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 1.05 * 1 / 3600 = 0.00029

С учетом трансформации оксидов азота получаем:

Примесь:0301 Азота диоксид

Максимальный разовый выброс. r/c. GS = 0.8 * G = 0.8 * 0.0002916 = 0.00023

Примесь:0304 Азота оксид

Максимальный разовый выброс. г/с. GS = 0.13 * G = 0.13 * 0.0002916 = 0.000038

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Удельный выброс 3В при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.028

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.18

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.029

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.028 * 4 + 0.18 * 0.05 + 0.029 * 1 = 0.15

Выброс ЗВ при въезде 1-го автомобиля. грамм.

M2 = ML * L2 + MXX * TX = 0.18 * 0.05 + 0.029 * 1 = 0.038

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.15 * 1 / 3600 = 0.0000416

Источник загрязнения № 6010/012

Вибратор

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 179
 кВт

 Мощность двигателя л.с.
 243.3718559
 л.с

Расход топлива: 60.84296397 кг/ч 0.000016901 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.135
0304	Оксид азота	0.0013	0.022
0328	Сажа	0.0155	0.262
0330	Серы оксид	0.02	0.34
0337	Окись углерода	0.1	1.694
0703	Бенз(а)пирен (г/т)	0.32	0.000005
2732	Керосин	0.03	0.507

Источник загрязнения № 6010

Источник выделения № 013. 014. трубоукладчик. машины бурильные

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 90
 кВт

 Мощность двигателя л.с.
 122.3657376
 л.с

 Раскол толичись
 20.5014344
 услугия

Расход топлива: 30.5914344 кг/ч 0.000008498 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредн	ых веществ
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.068
0304	Оксид азота	0.0013	0.011
0328	Сажа	0.0155	0.132
0330	Серы оксид	0.02	0.17
0337	Окись углерода	0.1	0.85
0703	Бенз(а)пирен (г/т)	0.32	0.000003
2732	Углеводороды по керосину	0.03	0.25

Источник загрязнения № 6010

Источник выделения № 015. Автогрейдеры

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 90
 кВт

 Мощность двигателя л.с.
 122.3657376
 л.с

 20.5014344
 л.с

Расход топлива: 30.5914344 кг/ч 0.000008498 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредн	ых веществ
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.07
0304	Оксид азота	0.0013	0.011
0328	Сажа	0.0155	0.132
0330	Серы оксид	0.02	0.17
0337	Окись углерода	0.1	0.85

0703	Бенз(а)пирен (г/т)	0.32	0.000003
2732	Углеводороды по керосину	0.03	0.255

 Источник загрязнения №
 6010

 Источник выделения №
 016

Компрессоры передвижные

Методика расчета нормативов выбросов от неорганизованных источников. Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25 кг/л с. час. (0.23. табл. 0.13)

 Мощность двигателя:
 36
 кВт

 Мощность двигателя:
 48.94630
 л.с.

Расход топлива: 12.236574 кг/ч 0.000003 т/с

Выбросы вредных веществ при сгорании топлива

итого

Код ЗВ	Наименование	уд. выбросы т/т	г/сек
0337	Окись углерода	0.1	0.300000
2732	Углеводороды	0.03	0.090000
0301	Двуокись азота	0.008	0.024000
0304	Оксид азота	0.0013	0.003900
0328	Сажа	0.0155	0.046500
0330	Серы оксид	0.02	0.060000
0703	Бенз(а)пирен	0.00000032	0.000001

Источник загрязнения № 6010

<u>Источник выделения №017</u>

 Источник загрязнения №
 6001

 Источник выделения №
 005

Сварочные работы

Наименование процесса: сварка ручная электродуговая

Марка электрода: ОМА-2 (Э-42)

Расход применяемого сырья и материалов - $B_{rod} = 1097$ кг

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования: $B_{\text{час}} = 10$ кг/час Степень очистки воздуха - $\eta = 0$ %

Степень очистки воздуха -Валовый выброс 3В определяется по формуле:

 $M_{rod} = (B_{rod} * K_m^x / 10^6) * (1-\eta).$ т/год (формула 5.1)

Максимальный разовый выброс 3В определяется по формуле:

 $M_{cek} = (K_m^* + B_{vac}/3600)*(1-\eta).$ г/сек (формула 5.2)

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Kxm. г/кг (табл. 1)

сварочный аэрозоль - 9.20

в том числе:

железо (II) оксид - 8.37 марганец и его соединения - 0.83

итого

Код ЗВ	Наименование	Мсек	Мгод
0123	Железо (II) оксид	0.0233	0.0092
0143	Марганец и его соед-я	0.0023	0.0009

Источник загрязнения № 6010

Источник выделения №018

6001 Источник загрязнения № 006 Источник выделения №

Сварочные работы

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса: сварка ручная электродуговая

Марка электрода: Э42А (УОНИ 13/45)

Расход применяемого сырья и материалов -В_{год} =

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования: кг/час 0 %

Степень очистки воздуха -

Валовый выброс 3В определяется по формуле 5.1:

 $M_{rod} = (B_{rod} \times K_m^x/10^6) \times (1-\eta)$. т/год

Максимальный разовый выброс 3В определяется по формуле 5.2:

 $M_{cek} = (K_m^x \times B_{vac}/3600) \times (1-\eta). \ r/cek$

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Кхт. г/кг (табл. 1)

сварочный аэрозоль -	16.31			
в том числе:				
железо (II) оксид -	10.69			
марганец и его соединения -	0.92			
пыль неорганическая (20-70%) -	1.40			
фториды неорганические -	3.30			
фтористые газообразные -				
азот диоксид -				
углерод оксид -	13.30			

итого

Код ЗВ	Наименование	Мсек	Мгод
0123	Железо (II) оксид	0.0148	0.0006
0143	Марганец и его соед-я	0.0013	0.000055
2908	Пыль неорганическая	0.0019	0.000084
0344	Фториды неорг-ие	0.0046	0.000198
0342	Фтористые газ-ые	0.0010	0.000045
0301	Азот диоксид	0.0021	0.000090
0337	Углерод оксид	0.0185	0.000798

ΚГ

Источник загрязнения № 6010

Источник выделения №019

 Источник загрязнения №
 6001

 Источник выделения №
 007

Сварочные работы

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса: сварка ручная электродуговая

Марка электрода: Э50А (УОНИ 13/55)

Расход применяемого сырья и материалов - $B_{rog} = 62$ кг

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования: $B_{\text{час}} = 2$ кг/час

Степень очистки воздуха - $\eta = 0$ %

Валовый выброс 3В определяется по формуле 5.1:

 $M_{rod} = (B_{rod} \times K_m^x/10^6) \times (1-\eta).$ т/год

Максимальный разовый выброс 3В определяется по формуле 5.2:

 M_{cek} = ($K_m^x \times B_{vac}/3600$)×(1-η). r/cek

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Kxm. г/кг (табл. 1)

сварочный аэрозоль -				
в том числе:				
	железо (II) оксид -	13.90		
	марганец и его соединения -	1.09		
	пыль неорганическая (20-70%) -	1.00		
фториды неорганические -		1.00		
фтористые газообразные -		0.93		
азот дио	ксид -	2.70		
углерод (оксид -	13.30		

итого

Код ЗВ	Наименование		Мсек	Мгод
0123	Железо (II) оксид		0.0077	0.0009
0143	Марганец и его соед-я		0.0006	0.0001
2908	Пыль неорганическая		0.0006	0.0001
0344	Фториды неорг-ие		0.0006	0.0001
0342	Фтористые газ-ые		0.0005	0.0001
0301	Азот диоксид		0.0015	0.0002
0337	Углерод оксид		0.0074	0.0008

<u>Источник загрязнения № 6010</u>

Источник выделения N 020.

Сварочные работы. Электроды Э-46

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса: сварка ручная электродуговая

Марка электрода: ОЗС 12 (Э-46)

Расход применяемого сырья и материалов - $B_{rog} = 4.1$ кг

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования:

 $B_{\text{vac}} =$

кг/час

Степень очистки воздуха -

η =

%

Валовый выброс 3В определяется по формуле 5.1:

$$M_{rod} = (B_{rod} \times K_m^x/10^6) \times (1-\eta).$$
 т/год

Максимальный разовый выброс 3В определяется по формуле 5.2:

$$M_{ce\kappa} = (K_{m}^{x} \times B_{vac}/3600) \times (1-\eta).$$
 г/сек

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Кхт. г/кг (табл. 1)

12.00 сварочный аэрозоль -

в том числе:

8.90 железо (II) оксид -0.80 марганец и его соединения -0.50 хром (VI) -

1.80 фториды неорганические -

итого

Код ЗВ	Наименование	Мсек	Мгод
0123	Железо (II) оксид	0.000989	0.000036
0143	Марганец и его соед-я	0.000089	0.000003
0203	Хром (VI)	0.000056	0.000002
0344	Фториды неорг-ие	0.000200	0.000007

Источник загрязнения №

6010

Источник выделения №

021

Пайка (олово-свинцовые припои)

Методика расчета выбросов 3В в атмосферу от автотранспортных предприятий Приказ Министра ООС РК от 18 апреля 2008 г. №100-п

Способ пайки: электропаяльник (40-60 Вт)

Паяльный материал: ПОС-40 ПОС-30

масса израсходованного припоя за год m удельное выделение (табл.4.8):

11 кг/год свинец и его соединения 0.51 г/кг

q олова оксид 0.28 г/кг "чистое" время работы паяльником в год

3 ч/год

$M_{rod} = q * t * 3600 * 10^{-6}$. т/год

(формула 4.29)

M_{cek} =q. г/сек

итого

Код	Примесь	г/сек	т/год
0184	Свинец и его соединения	0.000519	0.00000561
0168	Олова оксид	0.000285	0.00000308

Источник загрязнения № 6010 Источник выделения № 022

Аппарат для газовой резки и сварки

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса - газовая резка

Время работы источника - Т. ч/год -

29

Степень очистки воздуха. η -

0

Разрезаемый материал - сталь углеродистая. толщина - 4-20 мм

Сварочный аэрозоль

Удельный выброс сварочного аэрозоля. на ед-цу времени работы оборудования - Kx . r/ч -

200

в том числе:

марганец и его соединения. г/ч -

3

железо (II) оксид. г/ч -

197

Удельный выброс углерода оксида. на ед-цу времени работы оборудования - Кх . г/ч -

65

Удельный выброс азота диоксида. на ед-цу времени работы оборудования - Кх. г/ч -

53.2

Валовый выброс определяется по формуле:

Мгод = $(Kx \times T) / 10^6 \times (1 - \eta)$. т/год (формула 6.1)

Максимально разовый определяется по формуле:

Мсек = (Kx / 3600) × (1 - η). r/c (формула 6.2)

итого

Код ЗВ	Наименование	Мсек	Мгод
0143	Марганец и его соединения	0.00083	0.00009
0123	Железо (II) оксид	0.05472	0.00571
0337	Углерод оксид	0.01806	0.00189
0301	Азота диоксид	0.01478	0.00154

Источник загрязнения № 6010

Источник выделения N 023. Машина шлифовальная

Источник загрязнения № 6001 **Источник выделения №** 045 **Станок плоскошлифовальный d= 250 мм**

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Время работы источника в год. Т. ч/год -

15

Время работы источника в сутки. ч/сут -

2

Удельный выброс на единицу оборудования - Q (табл.1). составит г/с:

пыль абразивная пыль металлическая - 0.016 0.026

Согласно п.5.3.3 "при механической обработке металла выделяющаяся пыль металлическая классифицируется как взвешенные вещества"

Поправочный коэффициент при расчете твердых частиц - k. согласно п.5.3.2 -

0.2

Выбросы взвешенных веществ. образующихся при механической обработке металлов:

- а) валовый: **Мгод = 3600 \times k \times Q \times T / 10^6. т/год**. (формула 1)
- б) максимальный разовый: Мсек = k × Q. г/сек (формула 2)

итого

Код ЗВ	Наименование	Мсек	Мгод
2902	Взвешенные в-ва	0.0052	0.0003
2930	Пыль абразивная	0.0032	0.0002

Источник загрязнения № 6010

Источник выделения №

024

Дрель

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Наименование процесса: Сверление

Время работы источника в год: T= 31 Время работы источника в сутки: 4 ч/сут

Коэффициент гравитационного оседания: 0.2 k=

2902 Взвешенные вещества

Выбросы взвешенных веществ. образующихся при механической обработке металлов

а) валовый:

0.002 $M_{rod} = 3600 \times k \times Q \times T / 10^6 =$ т/год (формула 1)

б) максимальный разовый:

0.01400 $M_{cek} = k \times Q =$ г/с (формула 2)

Удельное выделение пыли технологическим

Q= 0.07 оборудованием (табл. 1-5) г/с

Источник загрязнения № 6010 025 Источник выделения №

Сварка полиэтиленовых труб

Вид обрабатываемого материала: сварка полиэтиленовых труб. тройников.

Количество время на один стык 0.067 часов Количество стыков 3051 IIIT. Т. время работы оборудования (агрегатов для сварки) 1186 ч

Валовый выброс ЗВ определяется по формуле:

M = O * кол-во стыков/ 1000 000. т/год

Максимальный разовый выброс 3В определяется по формуле:

оксид углерода

С = М * 1000 000/Т/3600. г/сек

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - О

> винил хлористый 0.0039 0.009

Итого:

Код ЗВ			
вещества	Наименование	г/сек	т/год
0827	Винил хлористый	0.00000279	0.0000119
0337	Оксид углерода	0.00000600	0.0000275

6010 Источник загрязнения № 026 Источник выделения №

Покрасочные работ ГФ 021

Методика расчета выбросов 3B в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

ГФ-021 Лак. марка -Расход краски -0.156 Т Время сушки -24

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6 (\phi op мула 3)$. где:

тф - фактический годовой расход ЛКМ. т -0.156

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -45

28 δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
616	ксилол	100

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Goкp = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

при сушке:

Goкp = ('mм × fp × δ ''p × δ x) × (1- η) / 10^6 (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) - 0.062500

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.052500	0.0056	0.0581
Диметилбензол	М. т/год	0.019656	0.0505	0.0702

Источник загрязнения №

<u>6010</u>

Источник выделения №

027

Лак. эмаль - ХВ-784

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. эмаль - XB-784 Расход - 0.771

Расход - 0.771 т Время сушки - 1 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.771

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

84

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

16

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код З	В	Наименование	δχ
1210		бутилацетат	13.02
0616		ксилол	65.24
1401		ацетон	21.74

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр =
$$(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$$
 (формула 4). где:

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

84

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Gokp = (mm × fp × \delta'p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 5). где:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

5.2

при сушке:

Gokp = ('mм × fp × \delta''p × \deltax) × (1-\eta) / 10⁶ (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

5.200000

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
1210 Бутилацетат	G. г/сек	0.025276	0.132700	0.1580
1210 Бугилацетат	М. т/год	0.013492	0.070831	0.0843
0616 Ксилол	G. г/сек	0.126653	0.664926	0.7916
ООТО КСИЛОЛ	М. т/год	0.067603	0.354917	0.4225
1401 4	G. г/сек	0.042205	0.221574	0.2638
1401 Ацетон	М. т/год	0.022528	0.118269	0.1408

 Источник загрязнения №
 6010

 Источник выделения №
 028

Покрасочные работы. Растворитель бензин

Марка - бензин

Расход - 0.023 т Время сушки лака - 1 час

тф - фактический годовой расход ЛКМ. т -

0.04

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

100

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

100

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

бензин 100

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6 (формула 3)$. где:

 $\frac{1}{1}$ $\frac{1}$

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

100

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

Goкp = $(m \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

'тмм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

1.00

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	
2704	G. г/сек	0.278
Бензин	М. т/год	0.04

Источник загрязнения № 6010

Источник выделения **№**

029

Покрасочные работы. Растворитель уайт-спирит

Лак. марка - уайт-спирит

Расход краски - 0.0089 Т

Время сушки лака - 1 час

тф - фактический годовой расход ЛКМ. т -

0.0089

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

100

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

100

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

уайт-спирит 100

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6 (\phi op мула 3)$. где:

 δ "р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

100

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

Goкp = (mм × fp × δ 'p × δ x) × (1- η) / (10^6 × 3.6) (формула 5). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

1.00

1.5

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс		
2752 Уайт-	G. г/сек	0.278	
спирит	М. т/год	0.0089	

Источник загрязнения № 6010

Источник выделения №

030

Покрасочные работ МС-17

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

эмаль MC-17 Расход краски - 0.0023 т

Время сушки - 24 ча

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-n) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.0023

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

δх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
616	ксилол	100

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке.

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

б"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

57

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Gокр = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

при сушке:

Goкp = ('mм × fp × δ ''p × δ x) × (1- η) / 10^6 (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.062500

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.052500	0.004453	0.0570
Диметилбензол	М. т/год	0.000290	0.000590	0.0009

Источник загрязнения №

6010

Источник выделения №

031

Покрасочные работы. Лак битумный

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. эмаль -

БТ-177. БТ-123 (БТ-577)

Расход краски -

0.157 т

Время сушки лака -

12 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.157

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

63

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2

_

Код ЗВ	Наименование	δχ
0616	ксилол	57.4
2752	уайт-спирит	42.6

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр =
$$(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$$
 (формула 4). где:

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске

**Goкр = (mm × fp ×
$$\delta$$
'p × δ x) × (1- η) / (10⁶ × 3.6) (формула 5). где:**

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

2.9

при сушке:

**Goкр = ('mm × fp ×
$$\delta$$
"p × δ x) × (1- η) / (10⁶ × 3.6) (формула 6). где:**

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.241667

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.0816	0.0175	0.0990
Диметилбензол	М. т/год	0.0159	0.0409	0.0568
2752 Vaëz anunuz	G. г/сек	0.0605	0.0130	0.0735
2752 Уайт-спирит	М. т/год	0.0118	0.0303	0.0421

Источник загрязнения №

6010

Источник выделения №

032

Покрасочные работ

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. эмаль -

MA-15.11

Расход краски -

0.13 т

Время сушки лака -

12 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = (m\phi \times fp \times \delta'p \times \delta x) × (1-\eta) / 10⁶ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.13

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
0616	ксилол	50
2752	уайт-спирит	50

29023 взвешенные вещества

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр =
$$(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$$
 (формула 4). где:

б"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

30

при окраске:

**Gokp = (mм × fp ×
$$\delta$$
'p × δ x) × (1- η) / (10⁶ × 3.6) (формула 5). где:**

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

5.2

при сушке:

**Gokp = ('mm × fp ×
$$\delta$$
''p × δ x) × (1- η) / (10⁶ × 3.6) (формула 6). где:**

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.433333

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616 Ксилол	G. г/сек	0.0910	0.0195	0.1105
OOTO KCN/IO/I	М. т/год	0.0082	0.0211	0.0293
2752 Vaŭz agunuz	G. г/сек	0.0910	0.0195	0.1105
2752 Уайт-спирит	G. г/сек М. т/год	0.0082	0.0211	0.0293
2902 Взвешенные	G. г/сек	0.0546	0.0000	0.0546
вещества	М. т/год	0.0049		0.0049

 Источник загрязнения №
 6010

 Источник выделения №
 033

Покрасочные работ

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

 Лак. эмаль ПФ-115

 Расход краски 0.028 т

 Время сушки лака 12 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.028

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
0616	ксилол	50
2752	уайт-спирит	50
29023	взвешенные вещества	30

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке.

Мокр =
$$(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$$
 (формула 4). где:

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

**Goкр = (mм × fp ×
$$\delta$$
'p × δ x) × (1- η) / (10⁶ × 3.6) (формула 5). где:**

mм - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

5.2

при сушке:

**Gokp = ('mm × fp ×
$$\delta$$
''p × δ x) × (1- η) / (10⁶ × 3.6) (формула 6). где:**

'тмм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.433333

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616 Ксилол	G. г/сек	0.0910	0.0195	0.1105
0010 KCN/IO/I	М. т/год	0.0018	0.0045	0.0063
2752 Vaŭz egunuz	G. г/сек	0.0910	0.0195	0.1105
2752 Уайт-спирит	G. г/сек М. т/год	0.0018	0.0045	0.0063
2902 Взвешенные	G. г/сек	0.0546	0.0000	0.0546
вещества	М. т/год	0.0011		0.0011

Источник загрязнения № 6010

Источник выделения N 034. Склад щебня фр. От 20 мм разгрузка

источник выделения N 034. Склад щеоня фр. наименование	Обозн.	Ед.изм.	кол-во	Код	Макс.	Валовый
				ВВ	разовый	выброс. т/год
					выброс.	
					г/сек	
Валовый выброс:	М год	т/год				
Пп=K1*K2*K3*K4*K5*K7*G*B	• • •			2908	0.0896	0.0476
Максимальный разовый выброс:	М сек	г/сек				
Пв=(К1*К2*К3*К4*К5*К7*Gпм*10^6*В)/3600						
где: весовая доля пылевой фракции в	K1					
материале. Определяется путем отмывки и						
просева средней пробы с выделением						
фракции пыли размером 0 -200 мкм			0.04			
доля пыли (от всей массы пыли).	K2					
переходящая в аэрозоль			0.02			
коэффициент. учитывающий местные	К3					
метеоусловия. скорость ветра			1.2			
коэффициент. учитывающий местные	K4					
условия. степень защищенности узла от						
внешних воздействий. условия						
пылеобразования			0.5			
коэффициент. учитывающий влажность	K5					
материала			0.6			
коэффициент. учитывающий крупность	K7					
материала			0.5			
коэффициент. учитывающий высоту	B'					
пересыпки			0.7			
Максимальное количество перемещаемого	Мпм	т/ч				
материала			8			
Максимальное количество перемещаемого	М					
материала		т/год	1180			
Коэффициент гравитационного оседания	К		0.4			

Источник загрязнения № 6010

Источник выделения N 035. Склад щебня фр. От 20 мм хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс.	Валовый
					разовый выброс.	выброс. т/год
					г/сек	1710д
Валовый выброс:	М год	т/год				
Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000				2908	0.01310	0.085
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				

коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2		
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.3		
коэффициент. учитывающий влажность материала	K5		0.4		
коэффициент. учитывающий площадь складируемого материала	К6		1.3		
коэффициент. учитывающий высоту пересыпки	K7		0.7		
унос пыли с1м2 фактической поверхности	q		0.002		
Поверхность пыления в плане	F	кв.м	50		
время работы склада	Т	час/год	1800		

Источник загрязнения № 6010

Источник выделения N 036. Склад щебня фр. до 20 мм разгрузка

	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*M*B	М год	т/год		2908	0.1434	0.0008
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*Мпм*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.04			
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.02			
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5			
коэффициент. учитывающий влажность материала	K5		0.4			
коэффициент. учитывающий крупность материала	К7		0.6			
коэффициент. учитывающий высоту пересыпки	B'		0.7			
Максимальное количество перемещаемого материала	Мпм	т/ч	16			
Максимальное количество перемещаемого материала	М	т/год	24.8			
Коэффициент гравитационного оседания	К		0.4			l

Источник загрязнения № 6010

Источник выделения N 037. Склад щебня фр. до 20 мм хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс.	Валовый
					разовый	выброс.
					выброс.	т/год
					г/сек	
Валовый выброс:	М год	т/год				
Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000					0.0240	0.3114
Максимальный разовый выброс:	М сек	г/сек				
Пв=K3*K4*K5*K6*K7*q*F						
коэффициент. учитывающий местные	K3		1.2			
метеоусловия. скорость ветра						
коэффициент. учитывающий местные	K4		0.5			
условия. степень защищенности узла от						
внешних воздействий. условия						
пылеобразования						
коэффициент. учитывающий влажность	K5		0.4			
материала						
коэффициент. учитывающий площадь	К6		1.3			
складируемого материала						
коэффициент. учитывающий высоту	K7		0.7			
пересыпки						
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	55			
время работы склада	T	час/год	3600			

Источник загрязнения № 6010

Источник выделения N 038. Склад песка разгрузка

наименование	Обозн.	Ед.изм.	количество	Код ВВ	Макси- мальный разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*M*B	М год	т/год		2908	0.3584	0.3004
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*Мпм*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.05			
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.03			
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.5			
коэффициент. учитывающий влажность материала	K5		0.8			
коэффициент. учитывающий крупность материала	K7		0.8			
коэффициент. учитывающий высоту пересыпки	В′		0.7			

Максимальное количество перемещаемого	Мпм	т/ч	8		
материала					
Максимальное количество перемещаемого материала	М	т/год	1862.4		
Коэффициент гравитационного оседания	К		0.4		

Источник загрязнения № 6010

Источник выделения N 039. Склад песка хранение

наименование	Обозн.	Ед.изм.	количество	Код ВВ	Максимальный разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год			0.1048	1.359
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5			
коэффициент. учитывающий влажность материала	K5		0.8			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	K7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	120			
время работы склада	Т	час/год	3600			

СКЛАД ГОТОВОЙ ПРОДУКЦИИ

Источник загрязнения № 6011

Источник загрязнения №001-003

Кран до 10 т на автомобильном ходу. кран 16 т на гусеничном ходу. кран 25 тонн на гусеничном ходу

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час

на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 100
 кВт

 Мощность двигателя л.с.
 135.9619307
 л.с

Расход топлива: 33.99048266 кг/ч 0.000009442 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т	г/сек
0337	Окись углерода	0.1	0.94
2732	Керосин	0.03	0.28
0301	Двуокись азота	0.008	0.076
0304	Оксид азота	0.0013	0.0123
0328	Сажа	0.0000155	0.000146
0330	Серы оксид	0.02	0.19
0703	Бенз(а)пирен (г/т)	0.32	0.000003

Источник загрязнения № 6011

Источник загрязнения №004

КАМАЗ самосвалы

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя127кВтМощность двигателя л.с.172.67165л.сРасход топлива:43.167913кг/чВыбросы вредных веществ при сгорании топлива

Код Вредный компонент		Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Двуокись азота	0.008	0.096	
0304	Оксид азота	0.0013	0.016	
0328	Сажа	0.0155	0.19	
0330	Серы оксид	0.02	0.24	
0337	Окись углерода	0.1	1.2	
0703	Бенз(а)пирен	3.2E-07	0.000004	
2732	Углеводороды по керосину	0.03	0.36	

Источник загрязнения № 6011/005

Трамбовка

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 179
 кВт

 Мощность двигателя л.с.
 243.3718559
 л.с

Расход топлива: 60.84296397 кг/ч 0.000016901 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.135
0304	Оксид азота	0.0013	0.022
0328	Сажа	0.0155	0.262
0330	Серы оксид	0.02	0.34
0337	Окись углерода	0.1	1.694
0703	Бенз(а)пирен (г/т)	0.32	0.000005
2732	Керосин	0.03	0.507

Источник загрязнения № 6011

Источник выделения №006

 Источник загрязнения №
 6001

 Источник выделения №
 006

Сварочные работы. Электроды Э-42

Наименование процесса: сварка ручная электродуговая

Марка электрода: Э-42

Расход применяемого сырья и материалов - $B_{rog} = 1084$ кг

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования: $B_{\text{час}} = 2$ кг/час Степень очистки воздуха - $\eta = 0$ %

Валовый выброс 3В определяется по формуле:

 $M_{rod} = (B_{rod} * K_m^x / 10^6) * (1-\eta).$ т/год (формула 5.1)

Максимальный разовый выброс 3В определяется по формуле:

 $M_{ce\kappa}$ = ($K_m^* * B_{vac}/3600$)*(1- η). г/сек (формула 5.2)

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Kxm. г/кг (табл. 1)

сварочный аэрозоль - 9.20

в том числе:

железо (II) оксид - 8.37 марганец и его соединения - 0.83

итого

Код ЗВ	Наименование		Мсек	Мгод
0123	Железо (II) оксид		0.004650	0.009073
0143	Марганец и его соед-я		0.000461	0.000900

Источник загрязнения №

6011

Источник выделения №

007

Аппарат для газовой резки и сварки

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса - газовая резка

Время работы источника - Т. ч/год -

344

Степень очистки воздуха. η -

0

200

3

Разрезаемый материал - сталь углеродистая. толщина - 4-20 мм

Сварочный аэрозоль

Удельный выброс сварочного аэрозоля. на ед-цу времени работы оборудования - Кх . г/ч -

в том числе:

марганец и его соединения. г/ч -

железо (II) оксид. г/ч -

197

Удельный выброс углерода оксида. на ед-цу времени работы оборудования - Кх. г/ч -

я - Kx . г/ч - 65

Удельный выброс азота диоксида. на ед-цу времени работы оборудования - Кх. г/ч -

53.2

Валовый выброс определяется по формуле:

Мгод = (Кх × T) / 10^6 × (1 - \eta). т/год (формула 6.1)

Максимально разовый определяется по формуле:

Мсек = $(Kx / 3600) \times (1 - \eta)$. r/c (формула 6.2)

ИТОГО

Код ЗВ	Наименование	Мсек	Мгод
0143	Марганец и его соединения	0.00083	0.00103
0123	Железо (II) оксид	0.05472	0.06777
0337	Углерод оксид	0.01806	0.02236
0301	Азота диоксид	0.01478	0.01830

Источник загрязнения № 6011

Источник выделения N 008. Машина шлифовальная

Станок плоскошлифовальный d= 250 мм

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Время работы источника в год. Т. ч/год -

55

 Время работы источника в сутки. ч/сут 2

 Удельный выброс на единицу
 пыль абразивная 0.016

 оборудования - Q (табл.1) . составит г/с:
 пыль металлическая 0.026

Согласно п.5.3.3 "при механической обработке металла выделяющаяся пыль металлическая классифицируется как взвешенные вещества"

Поправочный коэффициент при расчете твердых частиц - k. согласно п.5.3.2 - 0.2

Выбросы взвешенных веществ. образующихся при механической обработке металлов:

- а) валовый: **Мгод = 3600 \times k \times Q \times T / 10^6.** τ /**год**. (формула 1)
- б) максимальный разовый: Мсек = k × Q. г/сек (формула 2)

итого

Код ЗВ	Наименование		Мсек	Мгод
2902	Взвешенные в-ва		0.0052	0.0010
2930	Пыль абразивная		0.0032	0.0006

Источник загрязнения № 6011

Источник выделения №

009

Дрель

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Наименование процесса: Сверление

 Время работы источника в год:
 T=
 57
 ч

 Время работы источника в сутки:
 4
 ч/сут

 Коэффициент гравитационного оседания:
 k=
 0.2

2902 Взвешенные вещества

Выбросы взвешенных веществ. образующихся при механической обработке металлов

а) валовый:

 $M_{rog} = 3600 \times k \times Q \times T / 10^6 = 0.003$ т/год (формула 1)

б) максимальный разовый:

 $\mathbf{M}_{\mathsf{cek}} = \mathbf{k} \times \mathbf{Q} = 0.01400$ г/с (формула 2)

Удельное выделение пыли технологическим

оборудованием (табл. 1-5) **Q=** 0.07 г/с

 Источник загрязнения №
 6011

 Источник выделения №
 010

перфоратор

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Наименование процесса: Сверление

 Время работы источника в год:
 T=
 307 ч

 Время работы источника в сутки:
 4 ч/сут

 Коэффициент гравитационного оседания:
 k=
 0.2

2902 Взвешенные вещества

Выбросы взвешенных веществ. образующихся при механической обработке металлов

а) валовый:

 M_{rog} = 3600 × k × Q × T / 10⁶ = 0.015 т/год (формула 1)

б) максимальный разовый:

 $\mathbf{M}_{\mathsf{cek}} = \mathbf{k} \times \mathbf{Q} = 0.01400$ г/с (формула 2)

Удельное выделение пыли технологическим оборудованием (табл. 1-5)

Q = 0.07

г/с

 Источник загрязнения №
 6011

 Источник выделения №
 011

Покрасочные работ ГФ 021

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. марка - ГФ-021 Расход краски - 0.05 т Время сушки - 24 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.05

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

б'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

3 - 28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δx
616	ксилол	100

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Gокр = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

при сушке:

Goкp = ('mм × fp × δ ''p × δ x) × (1- η) / 10^6 (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.062500

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.052500	0.0056	0.0581
Диметилбензол	М. т/год	0.006300	0.0162	0.0225

Источник загрязнения № 6011

Источник выделения № 012

Покрасочные работы. Растворитель уайт-спирит

Лак. марка - уайт-спирит

Расход краски - 0.07 т Время сушки лака - 1 ча

тф - фактический годовой расход ЛКМ. т -

0.07

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

100

б'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

уайт-спирит 100

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6 (\phi op мула 3)$. где:

 δ "р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

100

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

mм - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

Gокр = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

'тмм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

1.00

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс		
2752 Уайт-	G. г/сек 0.27		
спирит	М. т/год	0.07	

Источник загрязнения №

6011

Источник выделения №

013

Покрасочные работ

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. эмаль -

ПФ-115

Расход краски -

0.45 т

Время сушки лака -

12 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.45

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
0616	ксилол	50
2752	уайт-спирит	50
29023	взвешенные вещества	30

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр =
$$(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$$
 (формула 4). где:

б''р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске.

Goкр = (mm × fp × \delta'p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 5). где:

mм - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

5.2

при сушке:

Goкp = ('mm × fp × \delta"p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 6). где:

'mm - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) - Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

0.433333

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616 Ксилол	G. г/сек	0.0910	0.0195	0.1105
OOTO KCNJIOJI	М. т/год	0.0284	0.0729	0.1013
2752 Ve še eeuro	G. г/сек	0.0910	0.0195	0.1105
2752 Уайт-спирит	М. т/год	0.0284	0.0729	0.1013
2902 Взвешенные	G. г/сек	0.0546	0.0000	0.0546
вещества	М. т/год	0.0170		0.0170

Источник загрязнения № 6011

Источник выделения N 014. Склад щебня фр. От 20 мм разгрузка

источник выделения и 014. Склад щеоня фр. 01		1 1	I	.,		
наименование	Обозн.	Ед.изм.	кол-во	Код	Макс.	Валовый
				BB	разовый	выброс. т/год
					выброс.	
					г/сек	
Валовый выброс:	М год	т/год				
Ππ=K1*K2*K3*K4*K5*K7*G*B				2908	0.0896	0.0008
Максимальный разовый выброс:	М сек	г/сек				
Пв=(К1*К2*К3*К4*К5*К7*Gпм*10^6*В)/3600						
где: весовая доля пылевой фракции в	K1					
материале. Определяется путем отмывки и						
просева средней пробы с выделением						
фракции пыли размером 0 -200 мкм			0.04			
доля пыли (от всей массы пыли).	K2					
переходящая в аэрозоль			0.02			
коэффициент. учитывающий местные	К3					
метеоусловия. скорость ветра			1.2			
коэффициент. учитывающий местные	K4					
условия. степень защищенности узла от						
внешних воздействий. условия						
пылеобразования			0.5			
коэффициент. учитывающий влажность	K5					
материала			0.6			
коэффициент. учитывающий крупность	K7					
материала			0.5			
коэффициент. учитывающий высоту	B'					
пересыпки			0.7			
Максимальное количество перемещаемого	Мпм	т/ч				
материала			8			
Максимальное количество перемещаемого	М					
материала		т/год	20.64			
Коэффициент гравитационного оседания	К		0.4			

Источник загрязнения № 6011

Источник выделения N 015. Склад щебня фр. От 20 мм хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год		2908	0.01310	0.085
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.3			
коэффициент. учитывающий влажность материала	K5		0.4			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	К7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	50			
время работы склада	Т	час/год	1800			

Бройлерные площадки (№9-12) газоснабжение

Источник загрязнения N 0016.

Источник выделения N 001. Котел битумный

Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

Вмакс - расход топлива в режиме номинальной тепловой мощности котла:

$$B_{\text{макс}} = Q/(h^*Q^p_H)$$

где Q – теплопроизводительность по котлу

 $Q^{p}_{ \ H}$ - низшая теплота сгорания топлива

h – КПД котельной установки.

Твердые частицы

Расчет выбросов твердых частиц летучей золы и недогоревшего топлива (т/год. г/с). выбрасываемых в атмосферу с дымовыми газами котлоагрегатов в ед. времени. выполняется по формуле 2.1:

Птв = $B*\chi*Ar*(1-\eta)$

где: χ - коэффициент. зависящий от типа топки (по табл.2.1)

η - доля твердых частиц. улавливаемых в золоуловителе

Ar - зольность топлива

В – расход топлива. т/год;

Оксид серы

Расчет выбросов оксидов серы в пересчете на SO_2 (т/год. г/с). выбрасываемых в атмосферу с дымовыми газами котлоагрегатов в ед. времени. выполняется по формуле 2.2:

$$\Pi_{so2} = 0.02*B*S^{r}(1-\eta_{so2})*(1-\eta_{so2}).$$
 где:

Sr - содержание серы в топливе. %

η'so2 - доля оксидов серы. связываемых летучей золой топлива

n"so2 - доля оксидов серы. улавливаемых в золоуловителе

Оксид углерода

Расчет выбросов оксида углерода в единицу времени (т/год. г/с) выполняется по формуле 2.4:

$$\Pi_{CO} = 0.001 * Cco * B * (1-q_4/100)$$
. где

Ссо - выход оксида углерода при сжигании топлива. кг/т. рассчитывается по формуле:

q3 - потери теплоты вследствие химической неполноты сгорания топлива. %

R - коэф.. учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива. обусловленной наличием в продуктах сгорания оксида углерода. для твердого топлива

q4 - потери теплоты вследствии механической неполноты сгорания топлива

 $\Pi_{CO} = 0.001*B*Q^{P}_{H}*K_{CO}*(1-q_{4}/100)$. где

 K_{CO} - количество оксида углерода на единицу теплоты . выделяющейся при горении топлива (кг/ГДж). принимается по табл.2.1

Kco = 0.32

Окислы азота

Количество оксидов азота (в пересчете на NO) выбрасываемых в ед. времени (т/год. г/с) рассчитывается по формуле 2.7:

$\Pi NOx = 0.001*B* Q_H^p *K_{NO}*(1-\beta).$ где

параметр. характеризующий количество оксидов азота. образующихся на 1 ГДж K_{NO2}^{-}

^{NO2} тепла (кг/ГДж)

 $_{\beta}$ - коэф.. зависящий от степени снижения выбросов оксидов азота в результате

применения технических решений:

Диоксид азота $\Pi_{\text{NO2}} = 0.8*\Pi_{\text{NOx}}$ Оксид азота $\Pi_{\text{NO}} = 0.13*\Pi_{\text{NOx}}$

	400 л
Годовое время работы котла при тех.проверке. ч/год -	4
Технические характеристики котла	
Номинальная теплопроизводительность котла. кВт -	30
Расход дизельного топлива. л/час -	2
Номинальный массовый расход топлива. кг/ч -	1.6628
КПД котла при полной нагрузке. % -	92.4
Температура отработанных газов. °С -	180

Характеристика топлива

Плотность при стандарт.условиях. кг/м³ -	831.4
Низшая теплота сгорания. Qi. МДж/кг-	42.75
Зольность топлива на рабочую массу. Аг. % -	0.025
Содержание серы в топливе. Sr	0.3
Массовая доля сероводорода [H2S]	-

Перевод низшей теплоты сгорания МДж/кг на кВт/кг -	11.87
Максимально-разовый расход топлива. В. (г/с) -	0.76
Валовый расход топлива. В. (т/год) -	0.10944

Вспомоглательные величины для расчета:

	χ	η	η'so ₂	η"so ₂	q_3
ДТ	0.01	0	0.02	0	0.5
	R	q_4	C _{co}	K _{NO}	β
ДТ	0.65	0.5	13.89375	0.11	0

Итого выбросы составят:

Код	Примесь	Котел битумны передвижной. 40	
		г/сек	т/год
0301	Азота диоксид	0.00286	0.00041
0304	Азота оксид	0.00047	0.00007
0330	Сера диоксид	0.00447	0.00064
0337	Углерод оксид	0.01051	0.00151
0328	Углерод (сажа)	0.00019	0.00003

Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли. в том числе от асфальтобетонных заводов

При хранении гудрона. переработке его в битум. нагреве битума и приготовлении асфальтобетона выделяются углеводороды

В том случае. если реакторная установка не обеспечена печью дожига. удельный выброс загрязняющего вещества (углеводородов) может быть принят в среднем 1 кг на 1 т готового битума

Согласно сметной документации. общее количество битума составит. тонн -

128.82

Следовательно. выброс углеводородов предельных (2754) составит. т/год -

0.1288

Максимальный разовый выброс углеводородов предельных составит. г/с -

0.0381

Источник загрязнения N 0017

ДЭС 4 кВт

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600. г/сек

где: ei-выброс I-го вещества на единицу полезной работы стационарной

дизельной установки на режиме номинальной мощности. г/кВт*ч.

определяем по таблице 1 или 2

Рэ-эксплуатационная мощность стационарной дизельной установки. кВт

Рэ = 4 кВ

Группа А – 1-73.6 кВт

Значение выбросов еі для различных групп стационарных диз.установок до капремонта

табл.1

группа		Выброс. г/кВт*ч				
	со	Nox	СН	С	SO ₂	CH ₂ O
Α	7.2	10.3	3.6	0.7	1.1	0.15
Б	6.2	9.6	2.9	0.5	1.2	0.12
В	5.3	8.4	2.4	0.35	1.4	0.1
Γ	7.2	10.8	3.6	0.6	1.2	0.15

Валовый выброс і-го вещества за год стац. дизельной установки

Мгод=(g_i * Вгод)/1000. т/год

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600. г/сек

Время работы

13 час

Валовый выброс і-го вещества за год стац. дизельной установки

Мгод=(g_i * Вгод)/1000. т/год

0.2145 тн

Итого:

V о п	Примоси	г/сек без	т/год без
Код	Примесь	очистки	очистки
301	Азота (IV) диоксид (4)	0.0092	0.0074
304	Азот (II) оксид(6)	0.0012	0.000959
328	Углерод (593)	0.0008	0.000644
330	Сера диоксид (526)	0.0012	0.000965
337	Углерод оксид (594)	0.0080	0.0064
703	Бенз/а/пирен (54)	0.0000001	0.000000118
1325	Формальдегид (619)	0.0002	0.000129
2754	Углеводороды предельные C12- 19 /в пересчете на C/ (592)	0.0040	0.0032

Источник загрязнения № 6012

Источник выделения 001

Разработка грунта бульдозером

Источники выбросов пыли являются неорганизованными и площадными с неустановившимся режимом выделения. В связи с этим выбросы пыли при проведении земляных работ определяются расчетным методом «Методика расчета нормативов выбросов от неорганизованных источников. приказ Министра ООС РК от 12 июня 2014 г. №221-Ө».

наименование	Обозн.	Ед.изм.	кол-во	Код	Макс.	Валовый
				BB	раз.выброс.	выброс.
					г/сек	т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*G*B	М год	т/год		2902	0.1307	0.1487
Максимальный разовый выброс:	М сек	г/сек				
Пв=(K1*K2*K3*K4*K5*K7*G*10^6*B)/3600						
где: весовая доля пылевой фракции в	K1					
материале. Определяется путем отмывки и			0.05			
просева средней пробы с выделением			0.00			
фракции пыли размером 0 -200 мкм						
доля пыли (от всей массы пыли). переходящая	K2		0.02			
в аэрозоль						
коэффициент. учитывающий местные	К3		1.2			
метеоусловия. скорость ветра						
коэффициент. учитывающий местные условия.	K4					
степень защищенности узла от внешних			0.5			
воздействий. условия пылеобразования						
коэффициент. учитывающий влажность	K5		0.7			
материала						
коэффициент. учитывающий крупность	K7		0.2			
материала	,					
коэффициент. учитывающий высоту пересыпки	B [/]		0.7			
Максимальное количество перемещаемого	G	т/ч	20			
материала			20			
Максимальное количество перемещаемого	М	т/год				
материала			6324			
Коэффициент гравитационного оседания	К		0.4			

Источник загрязнения № 6012

Источник выделения 002

Разработка грунта экскаватором

Источники выбросов пыли являются неорганизованными и площадными с неустановившимся режимом выделения. В связи с этим выбросы пыли при проведении земляных работ определяются расчетным методом «Методика расчета нормативов выбросов от неорганизованных источников. приказ Министра ООС РК от 12 июня 2014 г. №221-Ө».

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. раз.выброс.	Валовый выброс.
				DD	г/сек	т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*G*B	М год	т/год		2902	0.1307	0.1261
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*G*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.05			
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.02			
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.5			
коэффициент. учитывающий влажность материала	K5		0.7			
коэффициент. учитывающий крупность материала	K7		0.2			
коэффициент. учитывающий высоту пересыпки	В/		0.7			
Максимальное количество перемещаемого материала	G	т/ч	20			
Максимальное количество перемещаемого материала	М	т/год	5361			
Коэффициент гравитационного оседания	К		0.4			

Источник загрязнения № 6012

Источник выделения 003

Экскаватор одноковшовый дизельный 0. 5 м³ на гус. ходу

Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя90кВтМощность двигателя л.с.122.3657376л.сРасход топлива:30.5914344кг/ч

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Азота диоксид	0.008	0.069	
0304	Азота оксид	0.0013	0.011	
0328	Сажа	0.0155	0.132	
0330	Сера диоксид	0.02	0.17	
0337	Углерод оксид	0.1	0.85	
0703	Бенз(а)пирен (г/т)	0.32	0.000003	
2732	Углеводороды (по керосину)	0.03	0.255	

Источник загрязнения № 6012

Источник выделения 004

Бульдозер.79 кВт

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 79
 кВт

 Мощность двигателя л.с.
 107.4099252
 л.с

Расход топлива: 26.85248131 кг/ч 0.000007459 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.056
0304	Оксид азота	0.0013	0.01
0328	Сажа	0.0155	0.116
0330	Серы оксид	0.02	0.15
0337	Окись углерода	0.1	0.746
0703	Бенз(а)пирен (г/т)	0.32	0.000002
2732	Керосин	0.03	0.224

Источник загрязнения № 6012

Источник загрязнения №005-007

Кран до 10 т на автомобильном ходу. кран 16 т на гусеничном ходу. кран 25 тонн на гусеничном ходу

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час

на 1 лошадиную силу мощности для дизельных двигателей — $0.25 {\rm kr}/{\rm л}$ с. час.

 Мощность двигателя
 100
 кВт

 Мощность двигателя л.с.
 135.9619307
 л.с

Расход топлива: 33.99048266 кг/ч 0.000009442 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т г/се	
0337	Окись углерода	0.1	0.94
2732	Керосин	0.03	0.28
0301	Двуокись азота	0.008	0.076
0304	Оксид азота	0.0013	0.0123
0328	Сажа	0.0000155	0.000146
0330	Серы оксид	0.02	0.19
0703	Бенз(а)пирен (г/т)	0.32	0.000003

Источник загрязнения № 6012

Источник загрязнения №008

КАМАЗ

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя127кВтМощность двигателя л.с.172.67165л.сРасход топлива:43.167913кг/чВыбросы вредных веществ при сгорании топлива

- and be a set of bedress and a set of set o				
Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Двуокись азота	0.008	0.096	
0304	Оксид азота	0.0013	0.016	
0328	Сажа	0.0155	0.19	
0330	Серы оксид	0.02	0.24	
0337	Окись углерода	0.1	1.2	
0703	Бенз(а)пирен	3.2E-07	0.000004	
2732	Углеводороды по керосину	0.03	0.36	

Источник загрязнения № 6012

Источник выделения №009

<u>Катки дорожные самоходные на пневмоколесном ходу г/п 16 т</u>

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период. град. С . Т = 27

Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)

Тип топлива: Дизельное топливо

Наибольшее количество автомобилей. выезжающих со стоянки в течении часа . NK1 = 1

Общ. количество автомобилей данной группы за расчетный период. шт. . NK = 1

Коэффициент выпуска (выезда). А = 1

Экологический контроль не проводится

Время прогрева двигателя. мин (табл.2.20) . TPR = 4

Время работы двигателя на холостом ходу. мин . TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки. км. LB1 = 0.04

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки. км. LD1 = 0.06

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку. км. LB2 = 0.04

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку. км. LD2 = 0.06

Суммарный пробег по территории или помещению стоянки (выезд). км.

L1=(LB1+LD1)/2=(0.04+0.06)/2=0.05

Суммарный пробег по территории или помещению стоянки (въезд). км.

L2=(LB2+LD2)/2=(0.04+0.06)/2=0.05

Примесь:0337 Углерод оксид

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 3

Пробеговые выбросы 3В. г/км. (табл.2.8) . ML = 7.5

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 2.9

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 3 * 4 + 7.5 * 0.05 + 2.9 * 1 = 15.275

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 7.5 * 0.05 + 2.9 * 1 = 3.275

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 15.275 * 1 / 3600 = 0.0042

Примесь:2732 Керосин

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.4

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 1.1

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.45

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.4 * 4 + 1.1 * 0.05 + 0.45 * 1 = 2.105

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 1.1 * 0.05 + 0.45 * 1 = 0.505

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 2.105 * 1 / 3600 = 0.000585

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 1

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 4.5

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 1

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 1 * 4 + 4.5 * 0.05 + 1 * 1 = 5.225

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 4.5 * 0.05 + 1 * 1 = 1.225

Максимально разовый выброс 3В. r/сек. G = MAX(M1.M2) * NK1 / 3600 = 5.225 * 1 / 3600 = 0.0014513

С учетом трансформации оксидов азота получаем:

Примесь:0301 Азота диоксид

Максимальный разовый выброс. r/c. GS = 0.8 * G = 0.8 * 0.0014513 = 0.0012

Примесь:0304 Азота оксид

Максимальный разовый выброс. r/c. GS = 0.13 * G = 0.13 * 0.0014513 = 0.00019

Примесь:0328 Сажа

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.04

Пробеговые выбросы 3B. г/км. (табл.2.8). ML = 0.4

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 0.04

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.04 * 4 + 0.4 * 0.05 + 0.04 * 1 = 0.22

Выброс 3B при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 0.4 * 0.05 + 0.04 * 1 = 0.06

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.22 * 1 / 3600 = 0.0000611

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.113

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.78

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.1

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.113 * 4 + 0.78 * 0.05 + 0.1 * 1 = 0.591

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 0.78 * 0.05 + 0.1 * 1 = 0.139

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.65 * 1 / 3600 = 0.00016

Источник загрязнения № 6012

Источник загрязнения №010

Машина поливомоечная

Стоянка: Обособленная. имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период. град. С. Т = 27

Тип машины: Грузовые автомобили карбюраторные свыше 5 т до 8 т (СНГ)

Тип топлива: Неэтилированный бензин

Количество рабочих дней в году. дн.. DN = 365

Наибольшее количество автомобилей. выезжающих со стоянки в течение часа . NK1 = 1

Общ. количество автомобилей данной группы за расчетный период. шт.. NK = 1

Время прогрева двигателя. мин (табл.2.20). TPR = 4

Время работы двигателя на холостом ходу. мин. TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки. км. LB1 = 0.04

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки. км. LD1 = 0.06

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку. км. LB2 = 0.04

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку. км. LD2 = 0.06

Суммарный пробег по территории или помещению стоянки (выезд). км.

L1=(LB1+LD1)/2=(0.04+0.06)/2=0.05

Суммарный пробег по территории или помещению стоянки (въезд). км.

L2=(LB2+LD2)/2=(0.04+0.06)/2=0.05

Примесь:0337 Окись углерода

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 18

Пробеговые выбросы ЗВ. г/км. (табл.2.8). ML = 47.4

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 13.5

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 18 * 4 + 47.4 * 0.05 + 13.5 * 1 = 87.87

Выброс 3В при въезде 1-го автомобиля. грамм.

M2 = ML * L2 + MXX * TX = 47.4 * 0.05 + 13.5 * 1 = 15.87

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 87.87 * 1 / 3600 = 0.0244

Примесь:2704 Бензин (нефтяной. малосернистый в пересчете на углерод)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 2.6

Пробеговые выбросы 3В. г/км. (табл.2.8) . ML = 8.7

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 2.2

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 2.6 * 4 + 8.7 * 0.05 + 2.2 * 1 = 13.035

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 8.7 * 0.05 + 2.2 * 1 = 2.635 Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 13.035 * 1 / 3600 = 0.00362 РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.2

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 1

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.2

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.2 * 4 + 1 * 0.05 + 0.2 * 1 = 1.05

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 1 * 0.05 + 0.2 * 1 = 0.25 Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 1.05 * 1 / 3600 = 0.00029

С учетом трансформации оксидов азота получаем:

Примесь:0301 Азота диоксид

Максимальный разовый выброс. r/c. GS = 0.8 * G = 0.8 * 0.0002916 = 0.00023

Примесь:0304 Азота оксид

Максимальный разовый выброс. г/с. GS = 0.13 * G = 0.13 * 0.0002916 = 0.000038

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.028

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.18

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). МХХ = 0.029

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.028 * 4 + 0.18 * 0.05 + 0.029 * 1 = 0.15

Выброс 3В при въезде 1-го автомобиля. грамм.

M2 = ML * L2 + MXX * TX = 0.18 * 0.05 + 0.029 * 1 = 0.038

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.15 * 1 / 3600 = 0.0000416

Источник загрязнения № 6012/011

Вибратор

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 179
 кВт

 Мощность двигателя л.с.
 243.3718559
 л.с

Расход топлива: 60.84296397 кг/ч 0.000016901 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.135
0304	Оксид азота	0.0013	0.022
0328	Сажа	0.0155	0.262
0330	Серы оксид	0.02	0.34
0337	Окись углерода	0.1	1.694
0703	Бенз(а)пирен (г/т)	0.32	0.000005
2732	Керосин	0.03	0.507

Источник загрязнения № 6012

Источник выделения № 012. 013. трактор . асфальтоукладчик

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 90
 кВт

 Мощность двигателя л.с.
 122.3657376
 л.с

Расход топлива: 30.5914344 кг/ч 0.000008498 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредн	ых веществ
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.068
0304	Оксид азота	0.0013	0.011
0328	Сажа	0.0155	0.132
0330	Серы оксид	0.02	0.17
0337	Окись углерода	0.1	0.85
0703	Бенз(а)пирен (г/т)	0.32	0.000003
2732	Углеводороды по керосину	0.03	0.25

Источник загрязнения № 6012

Источник выделения № 014. Автогрейдеры. трубоукладчик

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 90
 кВт

 Мощность двигателя л.с.
 122.3657376
 л.с

 20.5044244
 л.с
 30.5044244

Расход топлива: 30.5914344 кг/ч 0.000008498 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредн	ых веществ
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.07
0304	Оксид азота	0.0013	0.011
0328	Сажа	0.0155	0.132
0330	Серы оксид	0.02	0.17
0337	Окись углерода	0.1	0.85
0703	Бенз(а)пирен (г/т)	0.32	0.000003
2732	Углеводороды по керосину	0.03	0.255

 Источник загрязнения №
 6012

 Источник выделения №
 015

Компрессоры передвижные

Методика расчета нормативов выбросов от неорганизованных источников. Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25 кг/л с. час. (п.23. табл.13)

 Мощность двигателя:
 36
 кВт

 Мощность двигателя:
 48.94630
 л.с.

Расход топлива: 12.236574 кг/ч 0.000003 т/с

Выбросы вредных веществ при сгорании топлива

итого

Код ЗВ	Наименование	уд. выбросы т/т	г/сек
0337	Окись углерода	0.1	0.300000
2732	Углеводороды	0.03	0.090000
0301	Двуокись азота	0.008	0.024000
0304	Оксид азота	0.0013	0.003900
0328	Сажа	0.0155	0.046500
0330	Серы оксид	0.02	0.060000
0703	Бенз(а)пирен	0.0000032	0.000001

<u>Источник загрязнения № 6012</u> Источник выделения №016

Сварочные работы

Наименование процесса: сварка ручная электродуговая

Марка электрода: ОМА-2 (Э-42)

Расход применяемого сырья и материалов - $B_{rog} = 107$ кг

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования: $B_{\text{час}} = 2$ кг/час

Степень очистки воздуха - η = 0 %

Валовый выброс 3В определяется по формуле:

 $M_{ron} = (B_{ron} * K_m^x / 10^6) * (1-\eta).$ т/год (формула 5.1)

Максимальный разовый выброс 3В определяется по формуле:

 $M_{cek} = (K_m^* + B_{qac}/3600)*(1-\eta).$ г/сек (формула 5.2)

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Kxm. г/кг (табл. 1)

сварочный аэрозоль - 9.20

в том числе:

железо (II) оксид - 8.37

марганец и его соединения - 0.83

итого

Код ЗВ	Наименование		Мсек	Мгод
0123	Железо (II) оксид		0.0047	0.0009
0143	Марганец и его соед-я		0.0005	0.0001

Источник загрязнения № 6012

Источник выделения N 017. Машина шлифовальная

Источник загрязнения № 6001 **Источник выделения №** 045

Станок плоскошлифовальный d= 250 мм

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Время работы источника в год. Т. ч/год -

Время работы источника в сутки. ч/сут -

Удельный выброс на единицу пыль абразивная - 0.016

оборудования - Q (табл.1) . составит г/с: металлическая -

пыль

Согласно п.5.3.3 "при механической обработке металла выделяющаяся пыль металлическая классифицируется как взвешенные вещества"

Поправочный коэффициент при расчете твердых частиц - k. согласно п.5.3.2

Выбросы взвешенных веществ. образующихся при механической обработке металлов:

а) валовый: **Мгод = 3600 \times k \times Q \times T / 10^6.** т/год. (формула 1)

б) максимальный разовый: Мсек = $k \times Q$. r/сек (формула 2)

итого

Код ЗВ	Наименование	Мсек	Мгод
2902	Взвешенные в-ва	0.0052	0.0002
2930	Пыль абразивная	0.0032	0.0001

Источник загрязнения № 6012

Источник выделения №

018

перфоратор

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Наименование процесса:

Сверление

Время работы источника в год:

T= 33

Время работы источника в сутки:

4 ч/сут

Коэффициент гравитационного оседания:

k=

0.2

2902 Взвешенные вещества

Выбросы взвешенных веществ. образующихся при механической обработке металлов

а) валовый:

 $M_{roa} = 3600 \times k \times Q \times T / 10^6 =$

0.002

т/год (формула 1)

б) максимальный разовый:

 $M_{cek} = k \times Q =$

0.01400

г/с (формула 2)

Удельное выделение пыли технологическим

оборудованием (табл. 1-5)

Q=

0.07

г/с

Источник загрязнения №

<u>6012</u>

Источник выделения №

019

дрель

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Наименование процесса:

Сверление

Время работы источника в год:

T= 21

Время работы источника в сутки:

4 ч/сут

Коэффициент гравитационного оседания:

k=

0.2

2902 Взвешенные вещества

Выбросы взвешенных веществ. образующихся при механической обработке металлов

а) валовый:

 $M_{rod} = 3600 \times k \times Q \times T / 10^6 =$

0.001

т/год (формула 1)

б) максимальный разовый:

 $M_{cek} = k \times Q =$

0.01400

г/с (формула 2)

Удельное выделение пыли технологическим

оборудованием (табл. 1-5)

Q=

0.07

г/с

Источник загрязнения №

6012

Источник выделения №

020

Аппарат для газовой сварки и резки

Наименование процесса: газовая резка

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004. Астана. 2004

Время работы источника - Т. ч/год -

104

Степень очистки воздуха. η -

0

Разрезаемый материал - сталь углеродистая. толщина - 5 мм

Сварочный аэрозоль

Удельный выброс сварочного аэрозоля. на ед-цу времени работы оборудования - Кх . г/ч - 74 в том числе:

марганец и его соединения. г/ч - 1.1

железо (II) оксид. г/ч - 72.9

Удельный выброс углерода оксида. на ед-цу времени работы оборудования - Кх . г/ч -

Удельный выброс азота диоксида. на ед-цу времени работы оборудования - Кх . г/ч -

Валовый выброс определяется по формуле:

Мгод = $(Kx \times T) / 10^6 \times (1 - \eta)$. т/год (формула 6.1)

Максимально разовый определяется по формуле:

Мсек = $(Kx / 3600) \times (1 - \eta)$. r/c (формула 6.2)

итого

Код ЗВ	Наименование	Мсек	Мгод
0143	Марганец и его соединения	0.000306	0.000114
0123	Железо (II) оксид	0.020250	0.007582
0337	Углерод оксид	0.013750	0.005148

 Источник загрязнения №
 6012

 Источник выделения №
 021

Покрасочные работ ГФ 021

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

 Лак. марка ГФ-021

 Расход краски 0.133
 т

 Время сушки 24
 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

mф - фактический годовой расход ЛКМ. т -

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 - 28

δх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ	
616	ксилол	100	

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

0.133

49.5

<u>при сушке</u>

Мокр =
$$(m\phi \times fp \times \delta''p \times \delta x) \times (1-n) / 10^6$$
 (формула 4). где:

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Goкp =
$$(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$$
 (формула 5). где:

mм - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

при сушке:

Gокр = ('mм × fp ×
$$\delta$$
''p × δ x) × (1- η) / 10^6 (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) - 0.062500

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.052500	0.005625	0.0581
Диметилбензол	М. т/год	0.016758	0.043092	0.0599

Источник загрязнения № 6012

Источник выделения № 022

Покрасочные работы. Растворитель Р-4

Лак. марка

 Расход краски 0.0096
 т

 Время сушки лака 1
 час

mф - фактический годовой расход ЛКМ. т -

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 - δ'p - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл. 3 -

δх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

ацетон	26
бутилацетат	12
толуол	62

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

 δ "р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

Gокр = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

'тмм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс			
1401 Augrau	G. г/сек	0.072		
1401 Ацетон	М. т/год	0.0025		
1210	G. г/сек	0.0333		
Бутилацетат	М. т/год	0.0012		
0621 To myon	G. г/сек	0.172		
0621 Толуол	М. т/год	0.0060		

 Источник загрязнения №
 6012

 Источник выделения №
 023

Покрасочные работы. Лак битумный

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. эмаль - **БТ-177. БТ-123 (БТ-577)**

Расход краски - 0.014 т

0.0096

100

100

0

1.5

1.00

Время сушки лака -

12 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.014

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

63

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

03

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2

-

Код ЗВ	Наименование	δx
0616	ксилол	57.4
2752	уайт-спирит	42.6

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Goкр = (mм × fp × \delta'p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 5). где:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

2.9

при сушке:

Goкp = ('mm × fp × \delta''p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.241667

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.0816	0.0175	0.0990
Диметилбензол М. т/год	М. т/год	0.0014	0.0036	0.0051
2752 Voës esupus	G. г/сек	0.0605	0.0130	0.0735
2752 Уайт-спирит	М. т/год	0.0011	0.0027	0.0038

 Источник загрязнения №
 6012

 Источник выделения №
 024

Покрасочные работ

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

 Лак. эмаль ПФ-115

 Расход краски 0.45 т

 Время сушки лака 12 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = (m\phi \times fp \times \delta'p \times \delta x) × (1-\eta) / 10⁶ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.168

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

б'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
0616	ксилол	50
2752	уайт-спирит	50

29023 взвешенные вещества 30

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

 δ "р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Goкр = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

mм - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

5.2

при сушке:

Goкp = ('mm × fp × \delta''p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.433333

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616 Vougo	G. г/сек	0.0910	0.0195	0.1105
0616 Ксилол	М. т/год	0.0106	0.0272	0.0378
2752 1/2 ×	G. г/сек	0.0910	0.0195	0.1105
2752 Уайт-спирит	М. т/год	0.0106	0.0272	0.0378
2902 Взвешенные	G. г/сек	0.0546	0.0000	0.0546
вещества	М. т/год	0.0064		0.0064

Источник загрязнения № 6012

Источник выделения N 025. Склад щебня фр. От 20 мм разгрузка

наименование	Обозн.	Ед.изм.	кол-во	Код	Макс.	Валовый
				BB	разовый	выброс. т/год
					выброс.	
					г/сек	
Валовый выброс:	М год	т/год				
Пп=K1*K2*K3*K4*K5*K7*G*B				2908	0.0896	0.0597
Максимальный разовый выброс:	М сек	г/сек				
Пв=(К1*К2*К3*К4*К5*К7*Gпм*10^6*В)/3600						
где: весовая доля пылевой фракции в	K1					
материале. Определяется путем отмывки и						
просева средней пробы с выделением						
фракции пыли размером 0 -200 мкм			0.04			
доля пыли (от всей массы пыли).	K2					
переходящая в аэрозоль			0.02			
коэффициент. учитывающий местные	K3					
метеоусловия. скорость ветра			1.2			
коэффициент. учитывающий местные	K4					
условия. степень защищенности узла от						
внешних воздействий. условия						
пылеобразования			0.5			

коэффициент. учитывающий влажность	K5				
материала			0.6		
коэффициент. учитывающий крупность	K7				
материала			0.5		
коэффициент. учитывающий высоту	B^{\prime}				
пересыпки			0.7		
Максимальное количество перемещаемого	Мпм	т/ч			
материала			8		
Максимальное количество перемещаемого	М				
материала		т/год	1480		
Коэффициент гравитационного оседания	К		0.4		

Источник загрязнения № 6012

Источник выделения N 026. Склад щебня фр. От 20 мм хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год		2908	0.01310	0.085
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек		2300	0.01310	0.003
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.3			
коэффициент. учитывающий влажность материала	K5		0.4			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	K7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	50			
время работы склада	Т	час/год	1800			

Источник загрязнения № 6012

Источник выделения N 027. Склад щебня фр. до 20 мм разгрузка

	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс:	М год	т/год				
Пп=K1*K2*K3*K4*K5*K7*M*B				2908	0.1434	0.0221
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*Мпм*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.04			
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.02			

коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2		
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5		
коэффициент. учитывающий влажность материала	K5		0.4		
коэффициент. учитывающий крупность материала	K7		0.6		
коэффициент. учитывающий высоту пересыпки	В′		0.7		
Максимальное количество перемещаемого материала	Мпм	т/ч	16		
Максимальное количество перемещаемого материала	М	т/год	686		
Коэффициент гравитационного оседания	К		0.4		<u> </u>

Источник загрязнения № 6012

Источник выделения N 028. Склад щебня фр. до 20 мм хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год			0.0240	0.3114
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5			
коэффициент. учитывающий влажность материала	K5		0.4			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	K7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	55			
время работы склада	Т	час/год	3600			

Источник загрязнения № 6012

Источник выделения N 029. Склад песка разгрузка

наименование	Обозн.	Ед.изм.	количество	Код	Макси-	Валовый
				BB	мальный разовый выброс.	выброс. т/год
					г/сек	
Валовый выброс:	М год	т/год				
Пп=K1*K2*K3*K4*K5*K7*M*B				2908	0.3584	0.2000

Максимальный разовый выброс:	М сек	г/сек		
Пв=(K1*K2*K3*K4*K5*K7*Мпм*10^6*B)/3600				
где: весовая доля пылевой фракции в	K1		0.05	
материале. Определяется путем отмывки и				
просева средней пробы с выделением				
фракции пыли размером 0 -200 мкм				
	K2		0.03	
11 (NΖ		0.03	
переходящая в аэрозоль				
коэффициент. учитывающий местные	К3		1.2	
метеоусловия. скорость ветра				
коэффициент. учитывающий местные	K4		0.5	
условия. степень защищенности узла от				
внешних воздействий. условия				
пылеобразования				
коэффициент. учитывающий влажность	K5		0.8	
материала				
коэффициент. учитывающий крупность	K7		0.8	
материала	107		0.0	
<u>'</u>	-/			
коэффициент. учитывающий высоту	B'		0.7	
пересыпки				
Максимальное количество перемещаемого	Мпм	т/ч	8	
материала				
Максимальное количество перемещаемого	М	т/год	42.0	
материала		. ,	1240	
Коэффициент гравитационного оседания	К		0.4	
травитационного оседании			.	

Источник загрязнения № 6012

Источник выделения N 030. Склад песка хранение

наименование	Обозн.	Ед.изм.	количество	Код ВВ	Максимальный разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год			0.1048	1.359
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.5			
коэффициент. учитывающий влажность материала	K5		0.8			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			
коэффициент. учитывающий высоту пересыпки	K7		0.7			
унос пыли с1м2 фактической поверхности	q		0.002			
Поверхность пыления в плане	F	кв.м	120			
время работы склада	T	час/год	3600			

Источник загрязнения № 6012

Источник выделения N 031. Склад гравия разгрузка

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс.	Валовый
					разовый	выброс.
					выброс.	т/год
					г/сек	
Валовый выброс:	М год	т/год				
Пп=K1*K2*K3*K4*K5*K7*M*B					0.1048	0.00787
Максимальный разовый выброс:	М сек	г/сек				
Пв=(К1*К2*К3*К4*К5*К7*Мпм*10^6*В)/3600						
где: весовая доля пылевой фракции в	K1					
материале. Определяется путем отмывки и			0.03			
просева средней пробы с выделением			0.03			
фракции пыли размером 0 -200 мкм						
доля пыли (от всей массы пыли).	K2		0.04			
переходящая в аэрозоль						
коэффициент. учитывающий местные	К3		1.2			
метеоусловия. скорость ветра						
коэффициент. учитывающий местные	K4					
условия. степень защищенности узла от			0.5			
внешних воздействий. условия пылеобразования						
коэффициент. учитывающий влажность	K5					
материала	KJ		0.6			
коэффициент. учитывающий крупность	K7					
материала	K7		0.6			
коэффициент. учитывающий высоту	B'					
пересыпки			0.7			
Максимальное количество перемещаемого	Мпм	т/ч				
материала			5.2			
Максимальное количество перемещаемого	М	т/год	100.4			
материала			108.4			
Коэффициент гравитационного оседания	К		0.4			

<u>Источник загрязнения № 6012</u>

Источник выделения N 032. Склад гравия хранение

наименование	Обозн.	Ед.изм.	кол-во	Код ВВ	Макс. разовый выброс. г/сек	Валовый выброс. т/год
Валовый выброс: Пп=K3*K4*K5*K6*K7*q*F*3600*T/1000000	М год	т/год			0.1048	0.679
Максимальный разовый выброс: Пв=K3*K4*K5*K6*K7*q*F	М сек	г/сек				
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	К4		0.5			
коэффициент. учитывающий влажность материала	K5		0.8			
коэффициент. учитывающий площадь складируемого материала	К6		1.3			

коэффициент. учитывающий высоту пересыпки	K7		0.7		
унос пыли с1м2 фактической поверхности	q		0.002		
Поверхность пыления в плане	F	кв.м	120		
время работы склада	Т	час/год	1800		

ЗДАНИЕ МЯСОКОСТНОГО ОТДЕЛЕНИЯ. МОДЕРНИЗАЦИЯ.

Источник загрязнения № 6013

Источник выделения 001

Разработка грунта бульдозером

Источники выбросов пыли являются неорганизованными и площадными с неустановившимся режимом выделения. В связи с этим выбросы пыли при проведении земляных работ определяются расчетным методом «Методика расчета нормативов выбросов от неорганизованных источников. приказ Министра ООС РК от 12 июня 2014 г. №221-Ө».

наименование	Обозн.	Ед.изм.	кол-во	Код	Макс.	Валовый
		'' -		BB	раз.выброс.	выброс.
					г/сек	т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*G*B	М год	т/год		2902	0.1307	0.0047
Максимальный разовый выброс: Пв=(K1*K2*K3*K4*K5*K7*G*10^6*B)/3600	М сек	г/сек				
где: весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 -200 мкм	K1		0.05			
доля пыли (от всей массы пыли). переходящая в аэрозоль	K2		0.02			
коэффициент. учитывающий местные метеоусловия. скорость ветра	К3		1.2			
коэффициент. учитывающий местные условия. степень защищенности узла от внешних воздействий. условия пылеобразования	K4		0.5			
коэффициент. учитывающий влажность материала	K5		0.7			
коэффициент. учитывающий крупность материала	K7		0.2			
коэффициент. учитывающий высоту пересыпки	В′		0.7			
Максимальное количество перемещаемого материала	G	т/ч	20			
Максимальное количество перемещаемого материала	М	т/год	199			
Коэффициент гравитационного оседания	К		0.4			

Источник загрязнения № 6013

Источник выделения 002

Разработка грунта экскаватором

Источники выбросов пыли являются неорганизованными и площадными с неустановившимся режимом выделения. В связи с этим выбросы пыли при проведении земляных работ определяются расчетным методом «Методика расчета нормативов выбросов от неорганизованных источников. приказ Министра ООС РК от 12 июня 2014 г. №221-Ө».

наименование	Обозн.	Ед.изм.	кол-во	Код	Макс.	Валовый
				BB	раз.выброс.	выброс.
					г/сек	т/год
Валовый выброс: Пп=K1*K2*K3*K4*K5*K7*G*B	М год	т/год				
				2902	0.1307	0.0039

NA	N4	-1		
Максимальный разовый выброс:	М сек	г/сек		
Пв=(K1*K2*K3*K4*K5*K7*G*10^6*B)/3600				
где: весовая доля пылевой фракции в	K1			
материале. Определяется путем отмывки и				
просева средней пробы с выделением			0.05	
· · · · · · · · · · · · · · · · · · ·				
фракции пыли размером 0 -200 мкм				
доля пыли (от всей массы пыли). переходящая	K2		0.02	
в аэрозоль			0.02	
коэффициент. учитывающий местные	К3			
метеоусловия. скорость ветра			1.2	
	14.4			
коэффициент. учитывающий местные условия.	K4			
степень защищенности узла от внешних			0.5	
воздействий. условия пылеобразования				
коэффициент. учитывающий влажность	K5			
	IN.5		0.7	
материала				
коэффициент. учитывающий крупность	K7		0.2	
материала			0.2	
коэффициент. учитывающий высоту пересыпки	B'		0.7	
, , , , , , , , , , , , , , , , , , , ,			0.7	
Максимальное количество перемещаемого	G	т/ч	20	
материала			20	
Максимальное количество перемещаемого	М	т/год		
материала		, -, ,	166	
	1/			
Коэффициент гравитационного оседания	К		0.4	

Источник загрязнения № 6013

Источник выделения 003

<u>Экскаватор одноковшовый дизельный 0.5 м³ на гус. ходу</u>

Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя90кВтМощность двигателя л.с.122.3657376л.сРасход топлива:30.5914344кг/ч

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Азота диоксид	0.008	0.069	
0304	Азота оксид	0.0013	0.011	
0328	Сажа	0.0155	0.132	
0330	Сера диоксид	0.02	0.17	
0337	Углерод оксид	0.1	0.85	
0703	Бенз(а)пирен (г/т)	0.32	0.000003	
2732	Углеводороды (по керосину)	0.03	0.255	

Источник загрязнения № 6013

Источник выделения 004

Бульдозер.79 кВт

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 79
 кВт

 Мощность двигателя л.с.
 107.4099252
 л.с

Расход топлива: 26.85248131 кг/ч 0.000007459 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Двуокись азота	0.008	0.056	
0304	Оксид азота	0.0013	0.01	
0328	Сажа	0.0155	0.116	
0330	Серы оксид	0.02	0.15	
0337	Окись углерода	0.1	0.746	
0703	Бенз(а)пирен (г/т)	0.32	0.000002	
2732	Керосин	0.03	0.224	

Источник загрязнения № 6013

Источник загрязнения №005-007

Кран до 10 т на автомобильном ходу. кран 16 т на гусеничном ходу. кран 25 тонн на гусеничном ходу

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час

на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 100
 кВт

 Мощность двигателя л.с.
 135.9619307
 л.с

Расход топлива: 33.99048266 кг/ч 0.000009442 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0337	Окись углерода	0.1	0.94	
2732	Керосин	0.03	0.28	
0301	Двуокись азота	0.008	0.076	
0304	Оксид азота	0.0013	0.0123	
0328	Сажа	0.0000155	0.000146	
0330	Серы оксид	0.02	0.19	
0703	Бенз(а)пирен (г/т)	0.32	0.000003	

Источник загрязнения № 6013

Источник загрязнения №008

КАМАЗ

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

Мощность двигателя127кВтМощность двигателя л.с.172.67165л.сРасход топлива:43.167913кг/чВыбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Двуокись азота	0.008	0.096	
0304	Оксид азота	0.0013	0.016	
0328	Сажа	0.0155	0.19	
0330	Серы оксид	0.02	0.24	
0337	Окись углерода	0.1	1.2	
0703	Бенз(а)пирен	3.2E-07	0.000004	
2732	Углеводороды по керосину	0.03	0.36	

Источник загрязнения № 6013

<u>Источник выделения №009</u>

Автопогрузчик

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период. град. С . Т = 27

Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)

Тип топлива: Дизельное топливо

Наибольшее количество автомобилей. выезжающих со стоянки в течении часа . NK1 = 1

Общ. количество автомобилей данной группы за расчетный период. шт. . NK = 1

Коэффициент выпуска (выезда) . А = 1

Экологический контроль не проводится

Время прогрева двигателя. мин (табл.2.20) . TPR = 4

Время работы двигателя на холостом ходу. мин . TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки. км. LB1 = 0.04

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки. км. LD1 = 0.06

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку. км. LB2 = 0.04

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку. км. LD2 = 0.06

Суммарный пробег по территории или помещению стоянки (выезд). км.

L1=(LB1+LD1)/2=(0.04+0.06)/2=0.05

Суммарный пробег по территории или помещению стоянки (въезд). км.

L2=(LB2+LD2)/2=(0.04+0.06)/2=0.05

Примесь:0337 Углерод оксид

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 3

Пробеговые выбросы 3В. г/км. (табл.2.8) . ML = 7.5

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 2.9

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 3 * 4 + 7.5 * 0.05 + 2.9 * 1 = 15.275

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 7.5 * 0.05 + 2.9 * 1 = 3.275

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 15.275 * 1 / 3600 = 0.0042

Примесь:2732 Керосин

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.4

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 1.1

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.45

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.4 * 4 + 1.1 * 0.05 + 0.45 * 1 = 2.105

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 1.1 * 0.05 + 0.45 * 1 = 0.505

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 2.105 * 1 / 3600 = 0.000585

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 1

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 4.5

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 1

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 1 * 4 + 4.5 * 0.05 + 1 * 1 = 5.225

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 4.5 * 0.05 + 1 * 1 = 1.225

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 5.225 * 1 / 3600 = 0.0014513

С учетом трансформации оксидов азота получаем:

Примесь:0301 Азота диоксид

Максимальный разовый выброс. r/c. GS = 0.8 * G = 0.8 * 0.0014513 = 0.0012

Примесь:0304 Азота оксид

Максимальный разовый выброс. r/c. GS = 0.13 * G = 0.13 * 0.0014513 = 0.00019

Примесь:0328 Сажа

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.04

Пробеговые выбросы 3B. г/км. (табл.2.8). ML = 0.4

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 0.04

Выброс ЗВ при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.04 * 4 + 0.4 * 0.05 + 0.04 * 1 = 0.22

Выброс 3B при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 0.4 * 0.05 + 0.04 * 1 = 0.06

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.22 * 1 / 3600 = 0.0000611

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.113

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.78

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.1

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.113 * 4 + 0.78 * 0.05 + 0.1 * 1 = 0.591

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 0.78 * 0.05 + 0.1 * 1 = 0.139

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.65 * 1 / 3600 = 0.00016

Источник загрязнения № 6013

Источник загрязнения №010

Машина поливомоечная

Стоянка: Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период. град. С. Т = 27

Тип машины: Грузовые автомобили карбюраторные свыше 5 т до 8 т (СНГ)

Тип топлива: Неэтилированный бензин

Количество рабочих дней в году. дн.. DN = 365

Наибольшее количество автомобилей. выезжающих со стоянки в течение часа . NK1 = 1

Общ. количество автомобилей данной группы за расчетный период. шт.. NK = 1

Время прогрева двигателя. мин (табл.2.20). TPR = 4

Время работы двигателя на холостом ходу. мин. TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки. км. LB1 = 0.04

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки. км. LD1 = 0.06

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку. км. LB2 = 0.04

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку. км. LD2 = 0.06

Суммарный пробег по территории или помещению стоянки (выезд). км.

L1=(LB1+LD1)/2=(0.04+0.06)/2=0.05

Суммарный пробег по территории или помещению стоянки (въезд). км.

L2=(LB2+LD2)/2=(0.04+0.06)/2=0.05

Примесь:0337 Окись углерода

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 18

Пробеговые выбросы ЗВ. г/км. (табл.2.8). ML = 47.4

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . МХХ = 13.5

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 18 * 4 + 47.4 * 0.05 + 13.5 * 1 = 87.87

Выброс 3В при въезде 1-го автомобиля. грамм.

M2 = ML * L2 + MXX * TX = 47.4 * 0.05 + 13.5 * 1 = 15.87

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 87.87 * 1 / 3600 = 0.0244

Примесь:2704 Бензин (нефтяной. малосернистый в пересчете на углерод)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 2.6

Пробеговые выбросы 3B. г/км. (табл.2.8). ML = 8.7

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9) . MXX = 2.2

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 2.6 * 4 + 8.7 * 0.05 + 2.2 * 1 = 13.035

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 8.7 * 0.05 + 2.2 * 1 = 2.635

Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 13.035 * 1 / 3600 = 0.00362 РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.2

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 1

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.2

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.2 * 4 + 1 * 0.05 + 0.2 * 1 = 1.05

Выброс 3В при въезде 1-го автомобиля. грамм. M2 = ML * L2 + MXX * TX = 1 * 0.05 + 0.2 * 1 = 0.25 Максимально разовый выброс 3В. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 1.05 * 1 / 3600 = 0.00029 С учетом трансформации оксидов азота получаем:

Примесь:0301 Азота диоксид

Максимальный разовый выброс. r/c. GS = 0.8 * G = 0.8 * 0.0002916 = 0.00023

Примесь:0304 Азота оксид

Максимальный разовый выброс. г/с. GS = 0.13 * G = 0.13 * 0.0002916 = 0.000038

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Удельный выброс 3B при прогреве двигателя. г/мин. (табл.2.7). MPR = 0.028

Пробеговые выбросы 3В. г/км. (табл.2.8). ML = 0.18

Удельные выбросы 3B при работе на холостом ходу. г/мин. (табл.2.9). MXX = 0.029

Выброс 3В при выезде 1-го автомобиля. грамм.

M1 = MPR * TPR + ML * L1 + MXX * TX = 0.028 * 4 + 0.18 * 0.05 + 0.029 * 1 = 0.15

Выброс 3В при въезде 1-го автомобиля. грамм.

M2 = ML * L2 + MXX * TX = 0.18 * 0.05 + 0.029 * 1 = 0.038

Максимально разовый выброс 3B. г/сек. G = MAX(M1.M2) * NK1 / 3600 = 0.15 * 1 / 3600 = 0.0000416

Источник загрязнения № 6013/011

Вибратор

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 179
 кВт

 Мощность двигателя л.с.
 243.3718559
 л.с

 Воли от принадаминателя по принад

Расход топлива: 60.84296397 кг/ч 0.000016901 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ	
вещества		уд. выбросы т/т	г/сек
0301	Двуокись азота	0.008	0.135
0304	Оксид азота	0.0013	0.022
0328	Сажа	0.0155	0.262
0330	Серы оксид	0.02	0.34
0337	Окись углерода	0.1	1.694
0703	Бенз(а)пирен (г/т)	0.32	0.000005
2732	Керосин	0.03	0.507

Источник загрязнения № 6013

Источник выделения № 012. трамбовка

Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0.25кг/л с. час.

 Мощность двигателя
 90
 кВт

 Мощность двигателя л.с.
 122.3657376
 л.с

Расход топлива: 30.5914344 кг/ч 0.000008498 т/с

Выбросы вредных веществ при сгорании топлива

Код	Вредный компонент	Выбросы вредных веществ		
вещества		уд. выбросы т/т	г/сек	
0301	Двуокись азота	0.008	0.068	
0304	Оксид азота	0.0013	0.011	
0328	Сажа	0.0155	0.132	
0330	Серы оксид	0.02	0.17	
0337	Окись углерода	0.1	0.85	
0703	Бенз(а)пирен (г/т)	0.32	0.000003	
2732	Углеводороды по керосину	0.03	0.25	

Источник загрязнения № 6013

Источник выделения №013

Источник загрязнения № 6001 Источник выделения № 005

Сварочные работы

Наименование процесса: сварка ручная электродуговая

Марка электрода: ОМА-2 (Э-42)

Расход применяемого сырья и материалов -B_{год} = 34.5 ΚГ

Фактический максимальный расход применяемых сырья и

материалов. с учетом дискретности работы оборудования: кг/час η= Степень очистки воздуха -%

Валовый выброс 3В определяется по формуле:

 $M_{rod} = (B_{rod} * K_m^x / 10^6) * (1-\eta).$ т/год (формула 5.1)

Максимальный разовый выброс 3В определяется по формуле:

 M_{cek} = ($K_m^* B_{vac}/3600$)*(1- η). г/сек (формула 5.2)

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - Кхт. г/кг (табл. 1)

сварочный аэрозоль -9.20

в том числе:

железо (II) оксид -8.37 марганец и его соединения -0.83

итого

Код ЗВ	Наименование		Мсек	Мгод
0123	Железо (II) оксид		0.0047	0.0003
0143	Марганец и его соед-я		0.0005	0.0000

Источник загрязнения № 6013 Источник выделения № 014

Аппарат для газовой резки и сварки

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004. Астана. 2004

Наименование процесса - газовая резка

Время работы источника - Т. ч/год -

Степень очистки воздуха. η -

Разрезаемый материал - сталь углеродистая. толщина - 4-20 мм

29

0

Сварочный аэрозоль

200 Удельный выброс сварочного аэрозоля. на ед-цу времени работы оборудования - Кх. г/ч -

в том числе:

марганец и его соединения. г/ч -

197

3

железо (II) оксид. г/ч -

Удельный выброс углерода оксида. на ед-цу времени работы оборудования - Кх. г/ч -

65

Удельный выброс азота диоксида. на ед-цу времени работы оборудования - Кх. г/ч -

53.2

Валовый выброс определяется по формуле:

Мгод = (Kx × T) / 10^6 × (1 - η). т/год (формула 6.1)

Максимально разовый определяется по формуле:

итого

Мсек = $(Kx / 3600) \times (1 - \eta)$. r/c (формула 6.2)

Код 3В	Наименование	Мсек	Мгод
0143	Марганец и его соединения	0.00083	0.00009
0123	Железо (II) оксид	0.05472	0.00571
0337	Углерод оксид	0.01806	0.00189
0301	Азота диоксид	0.01478	0.00154

Источник загрязнения № 6013

Источник выделения N 015. Машина шлифовальная

Станок плоскошлифовальный d= 250 мм

Методика расчета выбросов ЗВ в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Время работы источника в год. Т. ч/год -

15

Время работы источника в сутки. ч/сут -

2

Удельный выброс на единицу оборудования - Q (табл.1) . составит г/с: пыль абразивная пыль металлическая - 0.016 0.026

Согласно п.5.3.3 "при механической обработке металла выделяющаяся пыль металлическая

классифицируется как взвешенные вещества"

Поправочный коэффициент при расчете твердых частиц - к. согласно п.5.3.2

0.2

Выбросы взвешенных веществ. образующихся при механической обработке металлов:

- а) валовый: **Мгод = 3600 \times k \times Q \times T / 10^6.** τ /год. (формула 1)
- б) максимальный разовый: Мсек = $k \times Q$. r/сек (формула 2)

итого

Код ЗВ	Наименование	Мсек	Мгод
2902	Взвешенные в-ва	0.0052	0.0003
2930	Пыль абразивная	0.0032	0.0002

Источник загрязнения № 6013

Источник выделения №

016

Дрель

Методика расчета выбросов ЗВ в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Наименование процесса:

Сверление

Время работы источника в год:

T=

31 ч

Время работы источника в сутки: 4 ч/сут

Коэффициент гравитационного оседания: **k=** 0.2

2902 Взвешенные вещества

Выбросы взвешенных веществ. образующихся при механической обработке металлов

а) валовый:

$$M_{rog} = 3600 \times k \times Q \times T / 10^6 = 0.002$$
 т/год (формула 1)

б) максимальный разовый:

$$\mathbf{M}_{\mathsf{cek}} = \mathbf{k} \times \mathbf{Q} = 0.01400$$
 г/с (формула 2)

Удельное выделение пыли технологическим

оборудованием (табл. 1-5) **Q=** 0.07 г/с

 Источник загрязнения №
 6013

 Источник выделения №
 017

Сварка полиэтиленовых труб

Вид обрабатываемого материала: сварка полиэтиленовых труб. тройников.

 Количество время на один стык
 0.067 часов

 Количество стыков
 1071 шт.

 Т. время работы оборудования (агрегатов для сварки)
 240 ч

Валовый выброс ЗВ определяется по формуле:

M = O * кол-во стыков/ 1000 000. т/год

Максимальный разовый выброс 3В определяется по формуле:

С = М * 1000 000/Т/3600. г/сек

Удельные показатели выбросов загрязняющих веществ при сварке и наплавке металла (на единицу массы расходуемых сварочных материалов) - О

винил хлористый 0.0039

оксид углерода 0.009

Итого:

Код ЗВ			
вещества	Наименование	г/сек	т/год
0827	Винил хлористый	0.00000484	0.0000042
0337	Оксид углерода	0.00001100	0.0000096

 Источник загрязнения №
 6013

 Источник выделения №
 018

Покрасочные работ ГФ 021

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

 Лак. марка ГФ-021

 Расход краски 0.0011
 т

 Время сушки 24
 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

mф - фактический годовой расход ЛКМ. т - 0.0011

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код ЗВ	Наименование	δχ
616	ксилол	100

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

0

при сушке:

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

δ"р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Gокр = $(mm \times fp \times \delta'p \times \delta x) \times (1-\eta) / (10^6 \times 3.6)$ (формула 5). где:

mm - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

1.5

при сушке:

Gокр = ('mм × fp × δ ''p × δ x) × (1- η) / 10^6 (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.062500

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616	G. г/сек	0.052500	0.005625	0.0581
Диметилбензол	М. т/год	0.000139	0.000356	0.0005

6013

Источник загрязнения №

Источник выделения № 019

Покрасочные работ

Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величине удельных выбросов). РНД 211.2.02.05-2004г

Лак. эмаль - **ПФ-115**

 Расход краски 0.0316
 т

 Время сушки лака 12
 час

Валовый выброс индивидуальных летучих компонентов определяется по формуле.т/год:

при окраске:

Мокр = $(m\phi \times fp \times \delta'p \times \delta x) \times (1-\eta) / 10^6$ (формула 3). где:

тф - фактический годовой расход ЛКМ. т -

0.0316

fp - доля летучей части (растворителя) в ЛКМ. (%. мас.). табл. 2 -

45

δ'р - доля растворителя в ЛКМ. выделившегося при нанесении покрытия. (%. мас.). табл.3 -

28

бх - содержание компонента "х" в летучей части ЛКМ. (%. мас.). табл.2 -

Код 3В	Наименование	δχ
0616	ксилол	50
2752	уайт-спирит	50

29023 взвешенные вещества

η - степень очистки воздуха газоочистным оборудованием (в долях единицы) -

30

при сушке:

Мокр = $(m\phi \times fp \times \delta''p \times \delta x) \times (1-\eta) / 10^6$ (формула 4). где:

 δ "р - доля растворителя в ЛКМ. выделившегося при сушке покрытия. (%. мас.). табл.3 -

72

Максимально разовый выброс летучих компонентов ЛКМ расчитывается по формуле. г/сек:

при окраске:

Gokp = (mм × fp × \delta'p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 5). где:

mм - фактический максимальный часовой расход ЛКМ. с учетом дискретности работы оборудования (кг/час). по паспортным данным -

5.2

при сушке:

Goкр = ('mm × fp × \delta''p × \deltax) × (1-\eta) / (10⁶ × 3.6) (формула 6). где:

'тм - фактический максимальный часовой расход ЛКМ. с учетом времени сушки (кг/час) -

0.433333

Общий валовый или максимальный выброс по каждому компоненту летучей части ЛКМ

рассчитывается по формуле:

Мобщ = Мокр + Мсуш (формула 7)

итого:

Компонент	Выброс	окраска	сушка	общее
0616 Veuron	G. г/сек	0.0910	0.0195	0.1105
0616 Ксилол	М. т/год	0.0020	0.0051	0.0071
2752 Уайт-спирит	G. г/сек	0.0910	0.0195	0.1105
2732 уайт-спирит	М. т/год	0.0020	0.0051	0.0071
2902 Взвешенные	G. г/сек	0.0546	0.0000	0.0546
вещества	М. т/год	0.0012		0.0012

ПЕРИОД ЭКСПЛУАТАЦИИ

ИНКУБАТОР.

Расчет выбросов при газации инкубатора (формалин)

Для дезинфекции помещения инкубатора используют формалин. В процессе нагревания формалина происходит выделение формальдегида необходимого для обеззараживания помещений птичников.

Выброс формальдегида в г/с от инкубатора определен согласно данным проекта нормативов предельно допустимых выбросов вредных веществ в атмосферу для АО «Усть-Каменогорская птицефабрика» на 2013-2017 годы (заключение ГЭЭ № КZ90VCY00002635 от 15.11.2013 г.) и составляет 0,0029 г/с. Валовый выброс в атмосферу формальдегида составит (т/год):

 $\Pi = M \times T \times 3600 \times 10-6$

где: М – выброс формальдегида, г/с;

Т – время выброса, ч;

Nº	Наименование	Загрязняющее	Концентрация	Объем	Время	Выброс	в атмосферу
ист.	источника	вещество	С,мг/м3	V,m3/c	работы,ч	г/с	т/год
<u>№1142</u>	Инкубатор	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№1143</u>	Инкубационный шкаф 1-9	1325 - формальдегид	0,21	0,603	8760	0,00013	0,037
<u>№1144</u>	Выводной шкаф 1-12	1325 - формальдегид	0,21	0,603	8760	0,00013	0,0492

Источник загрязнения №1145

Источник выделения №001

Дымовая труба. Высота - 10 м, диаметр - 0,35 м

Годовое время работы котла, ч/год -	
Валовый расход топлива, В, (тыс.м³/год) -	236,86

Технические характеристики котла

Номинальный массовый расход топлива, м ³ /ч -	33,798
Номинальная теплопроизводительность котла, кВт -	1040
КПД котла при полной нагрузке, % -	0,93
Температура отработанных газов, °С -	180

Характеристика топлива

Плотность при стандарт.условиях, кг/м ³ -	540
Низшая теплота сгорания, Qi, Мдж/м³-	35,78
Зольность топлива на рабочую массу, Аг, % -	-
Содержание серы в топливе, Sr -	0,024
Массовая доля сероводорода [H2S]	-
Перевод низшей теплоты сгорания МДж/м³ на кВт/м³ -	9,94
Максимально-разовый расход топлива, В, (л/с, г/с) -	9,388

Вспомоглательные величины для расчета:

	χ	η	η'so ₂	η"so ₂	q_3
газ	-	-	0	0	0,5
	R	q_4	C _{co}	K _{NO}	β
газ	0,5	0,5	8,945	0,1	0

ИТОГО выбросы составят:

Von	Примоси	ист.0001/001	
Код	Примесь	г/сек	т/год
0301	Азота диоксид	0,0269	0,6780
0304	Азота оксид	0,0044	0,1102
0330	Сера диоксид	0,0045	0,1137
0337	Углерод оксид	0,0836	2,1081

Источник загрязнения №1146

Источник выделения №001

Резервуар для хранения газа V =25 м³

общий расход газа составит:	18540	м.куб.
плотность паровой фазы газа -	2,019	кг/м.куб (по ПБС)
следовательно, расход газа -	37432,26	кг
плотность жидкой фазы газа -	577	кг/м.куб (по ПБС)
следовательно, расход газа -	64,873934	м.куб/год
то есть, расход газа на 1 резервуар составит -	64,873934	м.куб/год
объем резервуара -	25	м.куб.
максимальная заполняемость резервуара -	85	%
Следовательно, кол-во заправок (макс.) составит:	3	раз
Chuoc iis iiiuansoe docae callea iis aemosasoeosoe		

Сброс из шлангов после слива из автогазовозов $\Pi = V \times K1 \times O \times X \times n$, кг/расчетный период

11 - VE ~ KI ~ P ~ X ~ 11, K	ii) pacaembini	CPIO
V - объем шланга,	0,0048	мЗ

К1 - коэф. приведения к н.у. объемов СУГ в общее - 2,489 зависимости от температуры и давления -

ho - плотность паровой фазы газа при нормальных условиях - 2,019 кг/м3 X - концентрация газа в паровой фазе СУГ в долях единицы - 0,9382 зима n - количество слитых автоцистерн 160 раз

Годовой выброс:

зимний, летний период

 Π = 3,620911 кг/год = 0,003621 т/год

Секундный выброс:

 $\Pi = 0,018859 \text{ r/cek}$

ИТОГО выбросы составят:

код ЗВ	Наименование	г/сек	т/год
0402	Бутан	0,018859	0,003621

Инкубатор. Слесарные мастерские

 Источник загрязнения №
 1147

 Источник выделения №
 001

Сверлильный станок

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

Марка станка - 2М112

 Время работы источника в год, Т, ч/год 1200

 Время работы источника в сутки, ч/сут 8

 Мощность основного двигателя - N, кВт 2,3

Уд. выброс пыли металлической на ед-цу оборудования - Q (табл.4), составит г/с: 0,0012

Согласно п.5.3.3 "при механической обработке металла выделяющаяся пыль металлическая классифицируется как взвешенные вещества"

Поправочный коэффициент при расчете твердых частиц - k, согласно п.5.3.2 -

0,2

Выбросы взвешенных веществ, образующихся при механической обработке металлов:

- а) валовый: **Мгод = 3600 \times k \times Q \times T / 10^6, т/год**, (формула 1)
- б) максимальный разовый: Мсек = k × Q, г/сек (формула 2)

итого

Код ЗВ	Наименование	Мсек	Мгод
2902	Взвешенные в-ва	0,00024	0,001037

 Источник загрязнения №
 1143

 Источник выделения №
 002

Точильный

Методика расчета выбросов 3В в атмосферу при механической обработке металлов (по величине удельных выбросов). РНД 211.2.02.06-2004г

 Время работы источника в год, Т, ч/год 1200

 Время работы источника в сутки, ч/сут 4

 Удельный выброс на единицу оборудования пыль абразивная 0,008

 Q (табл.1) , составит г/с:
 пыль металлическая 0,0012

Согласно п.5.3.3 "при механической обработке металла выделяющаяся пыль металлическая классифицируется как взвешенные вещества"

Поправочный коэффициент при расчете твердых частиц - k, согласно п.5.3.2 -

0,2

Выбросы взвешенных веществ, образующихся при механической обработке металлов:

а) валовый: **Мгод = 3600 \times k \times Q \times T / 10^6, т/год**, (формула 1)

б) максимальный разовый: Мсек = $k \times Q$, r/сек (формула 2)

итого

Код 3В	Наименование	Мсек	Мгод
2902	Взвешенные в-ва	0,00024	0,001037
2930	Пыль абразивная	0,0016	0,006912

 Источник загрязнения №
 6140

 Источник выделения №
 001

Пожарная машина

Методика расчета нормативов выбросов от неорганизованных источников. Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө Выбросы токсичных веществ газов при работе карьерных машин. Расход топлива в кг/час на 1 лошадиную силу мощности для дизельных двигателей — 0,25 кг/л с. час. (п.23, табл.13)

 Мощность двигателя:
 79
 кВт

 Мощность двигателя:
 107,40993
 л.с.

Расход топлива: 26,852481 кг/ч 0,000007 т/с

Выбросы вредных веществ при сгорании топлива

итого

Код ЗВ	Наименование	уд. выбросы т/т	г/сек
0337	Окись углерода	0,1	0,700000
2732	Углеводороды	0,03	0,210000
0301	Двуокись азота	0,008	0,056000
0304	Оксид азота	0,0013	0,009100
0328	Сажа	0,0155	0,108500
0330	Серы оксид	0,02	0,140000
0703	Бенз(а)пирен	0,00000032	0,000002

БРОЙЛЕРНЫЕ 9-12

Расчет на 1 птичник.

<u>Всего птичников 48 шт, на каждом птичнике вытяжные вентиляторы в количестве 17 шт.</u>
<u>Всего 12*4=48</u>

Б	П	9

Источник загрязнения №№	1148/001-1152/001, 1153-1164- 1 птичник
Источник загрязнения №№	1171/001-1175/001, 1176-1187- 2 птичник
Источник загрязнения №№	1188/001-1192/001, 1193-1204— 3 птичник
Источник загрязнения №№	1205/001-1209/001, 1210-1221- 4 птичник
Источник загрязнения №№	1222/001-1226/001, 1227-1238- 5 птичник
Источник загрязнения №№	1239/001-1243/001, 1244-1255 — 6 птичник
Источник загрязнения №№	1256/001-1260/001, 1261-1272- 7 птичник
Источник загрязнения №№	1273/001-1277/001, 1278-1289- 8 птичник
Источник загрязнения №№	1290/001-1294/001, 1295-1306 – 9 птичник
Источник загрязнения №№	1307/001-1311/001, 1312-1323- 10 птичник
Источник загрязнения №№	1324/001-1328/001, 1329-1340 – 11 птичник
Источник загрязнения №№	1341/001-1345/001, 1346-1357- 12 птичник

БП10

Источник загрязнения №№	1358/001-1362/001, 1363-1376- 1 птичник
Источник загрязнения №№	1384/001-1388/001, 1389-1400- 2 птичник
Источник загрязнения №№	1401/001-1405/001, 1406-1417- 3 птичник
Источник загрязнения №№	1418/001-1422/001, 1423-1434– 4 птичник
Источник загрязнения №№	1435/001-1439/001, 1440-1451– 5 птичник
Источник загрязнения №№	1452/001-1456/001, 1457-1468 — 6 птичник
Источник загрязнения №№	1469/001-1473/001, 1474-1485- 7 птичник
Источник загрязнения №№	1486/001-1490/001, 1491-1502- 8 птичник
Источник загрязнения №№	1503/001-1507/001, 1508-1519 – 9 птичник
Источник загрязнения №№	1520/001-1524/001, 1525-1536- 10 птичник
Источник загрязнения №№	1537/001-1541/001, 1542-1553 – 11 птичник

Источник загрязнения №№	1454/001-1558/001, 1559-1570- 12 птичник
	<u>БП11</u>
Источник загрязнения №№	1571/001-1575/001, 1576-1587- 1 птичник
Источник загрязнения №№	1594/001-1598/001, 1599-1610- 2 птичник
Источник загрязнения №№	1611/001-1615/001, 1616-1627- 3 птичник
Источник загрязнения №№	1628/001-1632/001, 1633-1644- 4 птичник
Источник загрязнения №№	<u> 1645/001-1649/001, 1650-1661– 5 птичник</u>
Источник загрязнения №№	<u> 1662/001-1666/001, 1667-1678 — 6 птичник</u>
Источник загрязнения №№	1679 /001-1683/001, 1684-1695— 7 птичник
Источник загрязнения №№	1696/001-1700/001, 1701-1712- 8 птичник
Источник загрязнения №№	<u> 1713/001-1717/001, 1718-1729 – 9 птичник</u>
Источник загрязнения №№	1730/001-1734/001, 1735-1746— 10 птичник
Источник загрязнения №№	1747/001-1751/001, 1752-1763 – 11 птичник
Источник загрязнения №№	1764/001-1768/001, 1769-1780- 12 птичник
	<u>БП12+</u>
Источник загрязнения №№	1781/001-1785/001, 1786-1797– 1 птичник
Источник загрязнения №№	1804/001-1808/001, 1809-1920— 2 птичник
Источник загрязнения №№	1821/001-1825/001, 1826-1837— 3 птичник
Источник загрязнения №№	1838/001-1842/001, 1843-1854– 4 птичник
Источник загрязнения №№	1855/001-1859/001, 1860-1871- 5 птичник
Источник загрязнения №№	1872/001-1876/001, 1877-1888 — 6 птичник
Источник загрязнения №№	1889/001-1893/001, 1894-1905- 7 птичник
Источник загрязнения №№	1906/001-1910/001, 1911-1922- 8 птичник
Источник загрязнения №№	1923/001-1927/001, 1928-1939 – 9 птичник
Источник загрязнения №№	1940/001-1944/001, 1945-1956– 10 птичник
Источник загрязнения №№	1957/001-1961/001, 1962-1973 – 11 птичник
Источник загрязнения №№	1974/001-1978/001, 1979-1991- 12 птичник

Бройлерные

Источник

Литература: Согласно рекомендациям по расчету выделений (выбросов) 3В в атмосферный воздух от объектов животноводства (Приложение № 7 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории):

Максимальный разовый выброс рассчитывается по формуле:

$$M_{CeK} = \frac{Q*M*N}{10^8}$$
, Γ / ceK ,

где:

Q – удельный выброс в атмосферный воздух 3В (мкг/(c´1 центнер живой массы);

М – средняя масса одного животного, кг;

N – количество голов животных в помещении (на площадке), шт.

Валовый выброс рассчитывается по формуле:

$$M_{\Gamma O \mathcal{I}} = \frac{M_{\text{сек}} * T * 3600}{10^6}, \text{т/год},$$

где: Мсек – максимальный разовый выброс (по формуле (4.1)), г/с;

Т – годовой фонд рабочего времени, час/год.

Период содержания в загонах: 6480 час/год

Удельный выброс в атмосферный воздух 3В при содержании и откорме птицы (мкг/(c´1 центнер живой массы))

Наименование 3В или	Q, кура [1,45]	М, масса 1	N, кол-	Т, годовой	Макс.	Валовый
группы 3В, код ключевого	{718}	птицы	во голов	фонд времени	Разовый	выброс,

компонента				час/год	г/сек	т/год
Аммиак, 0303	14,5	2,5	2643	6480	0,0009581	0,0074501
Сероводород, 0333	0,8	2,5	2643	6480	0,0000529	0,0004110
Метан, 0410	57,4	2,5	2643	6480	0,0037927	0,0294921
Метанол, 1052	0,58	2,5	2643	6480	0,0000383	0,0002980
Фенол, 1071	0,18	2,5	2643	6480	0,0000119	0,0000925
Этилформиат, 1246	1,68	2,5	2643	6480	0,0001110	0,0008632
Пропиональдегид, 1314	0,67	2,5	2643	6480	0,0000443	0,0003442
Гексановая кислота, 1531	0,75	2,5	2643	6480	0,0000496	0,0003853
Диметилсульфид, 1707	3,79	2,5	2643	6480	0,0002504	0,0019473
Метантиол, 1715	0,0036	2,5	2643	6480	0,0000002	0,0000018
Метиламин, 1849	0,26	2,5	2643	6480	0,0000172	0,0001336
Пыль меховая, 2920	20,7	2,5	2643	6480	0,0013678	0,0106356

Нагреватель воздуха DXA100 в БП — 6 шт в каждом Источник загрязнения №

1148/002-1152/002 1 птичник 1171/002-1175/002 2 птичник 1188/002-1192/002 3 птичник 1205/002-1209/002 4 птичник 1222/002-1226/002) 5 птичник 1239/002-1243/002 6 птичник 1256/002-1260/002 7 птичник 1273/002-1277/002 8 птичник 1290/002-1294/002 9 птичник 1307/002-1311/002 10 птичник 1324/002-1328/002 11 птичник 1341/002-1345/002 12 птичник

БП10

БП-9

1358/002-1362/002 1 птичник 1384/002-1388/002 2 птичник 1401/002-1405/002 3 птичник 1418/002-1422/002 4 птичник 1435/002-1439/002) 5 птичник 1452/002-1456/002 6 птичник 1469/002-1473/002 7 птичник 1486/002-1490/002 8 птичник 1503/002-1507/002 9 птичник 1537/002-1541/002 11 птичник 1554/002-1558/002 12 птичник

БП11

1571/002-1575/002 1 птичник 1594/002-1598/002 2 птичник 1611/002-1615/002 3 птичник 1628/002-1632/002 4 птичник 1645/002-1649/002) 5 птичник 1662/002-1666/002 6 птичник 1678/002-1683/002 7 птичник 1696/002-1700/002 8 птичник 1713/002-1717/002 9 птичник 1730/002-1734/002 10 птичник 1747/002-1751/002 11 птичник 1764/002-1768/002 12 птичник

1781/002-1785/002 1 птичник+

1804/002-1808/002 2 птичник+ 1821/002-1825/002 3 птичник+ 1938/002-1842/002 4 птичник+ 1855/002-1959/002) 5 птичник+ 1872/002-1876/002 6 птичник+ 1889/002-1893/002 7 птичник+ 1906/002-1910/002 8 птичник+ 1923/002-1927/002 9 птичник+ 1940/002-1944/002 10 птичник+ 1957/002-1961/002 11 птичник+ 1974/002-1978/002 12 птичник+

Нагреватель воздуха DXA100 в БП – 6 шт в каждом

Годовое время работы котла, ч/год -	6480
Валовый расход топлива, В, (тыс.м³/год) -	21,02

Технические характеристики котла

Номинальный массовый расход топлива, м ³ /ч -	3,243
Номинальная теплопроизводительность котла, кВт -	99,8
КПД котла при полной нагрузке, % -	0,93
Температура отработанных газов, °С -	180

Характеристика топлива

Плотность при стандарт.условиях, кг/м ³ -	540
Низшая теплота сгорания, Qi, Мдж/м³-	35,78
Зольность топлива на рабочую массу, Аг, % -	-
Содержание серы в топливе, Sr -	0,024
Массовая доля сероводорода [H2S]	-
Перевод низшей теплоты сгорания МДж/м ³ на кВт/м ³ -	9,94
Максимально-разовый расход топлива, В, (л/с, г/с) -	0,901

Вспомоглательные величины для расчета:

	χ	η	η'so ₂	η"so ₂	q_3
газ	-	-	0	0	0,5
	R	q_4	C _{co}	K _{NO}	β
газ	0,5	0,5	8,945	0.1	0

ИТОГО выбросы составят:

Von	Примос	ист.0001/001		
Код	Примесь	г/сек	т/год	
0301	Азота диоксид	0,0026	0,0602	
0304	Азота оксид	0,0004	0,0098	
0330	Сера диоксид	0,0004	0,0101	
0337	Углерод оксид	0,0080	0,1871	

Нагреватель воздуха DXA70 в БП – 1 шт в каждом

Источник загрязнения № <u>БП9</u>

> 1148/003- 1 птичник 1171/003 -2 птичник

1188/003-3 птичник

1205/003 -4 птичник

1222/003 -5 птичник

1239/003 -6 птичник

1256/003 -7 птичник

1273/003 -8 птичник

<u>1290/003 –9 птичник</u>

1307/003-10 птичник

1324/003 -11 птичник

1341/003 -12 птичник

БП-10

1358	3/003 <u>—</u>	<u> 1 птичник</u>

1384/003 -2 птичник

<u> 1401/003 – 3 птичник</u>

1418/003 -4 птичник

1435/003 -5 птичник

<u>1452/003 –6 птичник</u>

1469/003 –7 птичник

<u>1486/003 –8 птичник</u>

<u>1503/003 –9 птичник</u>

1520/003-10 птичник

1537/003 -11 птичник

1554/003 -12 птичник

1571/003-1 птичник

<u>1594/003 –2 птичник</u>

<u>1611/003 – 3 птичник</u>

<u>1628/003 –4 птичник</u>

1645/003 -5 птичник

1662/003 -6 птичник

1679/003 -7 птичник

1696/003 -8 птичник

1713/003 - 9 птичник

<u>1730/003–10 птичник</u>

1747/003 -11 птичник

1764/003 –12 птичник

1781/003-1 птичник+

<u>1804/003 –2 птичник+</u>

<u>1821/003 – 3 птичник+</u>

1838/003 –4 птичник+

1855/003 -5 птичник+

<u>1872/003 –6 птичник+</u>

1889/003 -7 птичник+

<u>1906/003 –8 птичник+</u> 1923/003 - 9 птичник+

1940/003-10 птичник+

1954/003 -11 птичник+ 1974/003 -12 птичник+

Нагреватель воздуха DXA70 в БП – 1 шт в каждом

Годовое время работы котла, ч/год -	6480
Валовый расход топлива, В, (тыс.м³/год) -	14,74

Технические хапактепистики котла

reximilation xapakieprierrikii konna	
Номинальный массовый расход топлива, м ³ /ч -	2,275
Номинальная теплопроизводительность котла, кВт -	70
КПД котла при полной нагрузке, % -	0,93
Температура отработанных газов. °С -	180

Характеристика топлива

Плотность при стандарт.условиях, кг/м ³ -	540
Низшая теплота сгорания, Qi, Мдж/м³-	35,78
Зольность топлива на рабочую массу, Аг, % -	-
Содержание серы в топливе, Sr -	0,024
Массовая доля сероводорода [H2S]	-
Перевод низшей теплоты сгорания МДж/м ³ на кВт/м ³ -	9,94
Максимально-разовый расход топлива, В, (л/с, г/с) -	0,632

Вспомоглательные величины для

расчета:

	χ	η	η'so ₂	η"so ₂	q_3
газ	-	-	0	0	0,5
	R	q_4	C _{co}	K _{NO}	β
газ	0,5	0,5	8,945	0,1	0

ИТОГО выбросы составят:

Vo.	Пантас	ист.000	01/001
Код	Примесь	г/сек	т/год
0301	Азота диоксид	0,0018	0,0422
0304	Азота оксид	0,0003	0,0069
0330	Сера диоксид	0,0003	0,0071
0337	Углерод оксид	0,0056	0,1312

Бройлерные

Расчет выбросов при газации птичников (формалин)

Для дезинфекции помещений птичников используют формалин. В процессе нагревания формалина происходит выделение формальдегида необходимого для обеззараживания помещений птичников.

Выброс формальдегида в г/с от птичников определен согласно данным проекта нормативов предельно допустимых выбросов вредных веществ в атмосферу для АО «Усть-Каменогорская птицефабрика» на 2013-2017 годы (заключение ГЭЭ № КZ90VCY00002635 от 15.11.2013 г.) и составляет 0,0029 г/с (для одноэтажных птичников). Одновременно обрабатывается только один птичник. Валовый выброс в атмосферу формальдегида по птичникам составит (т/год):

$\Pi = M \times T \times 3600 \times 10-6$

где: М – выброс формальдегида, г/с;

Т – время выброса, ч;

№ ист.	Наименование источника	Загрязняющее вещество	Концентрация С,мг/м3	Объем V,м3/c	Время работы,ч	Выброс	в атмосферу
						г/с	т/год
			БП-9				
<u>№№1148/004,</u> <u>1149/003-</u> <u>1164/003</u>	Птичник №1	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№6143</u>	Дизбарьер санпропускник	1325 - формальдегид	0,21	0,603	1200	0,00013	0,0005616
<u>Nº№1171/004,</u> <u>1172/003-</u> <u>1187/003</u>	Птичник №2	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>Nº№1188/004,</u> <u>1189/003-</u> <u>1195/003</u>	Птичник №3	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>Nº№1205/004,</u> <u>1206/003-</u> <u>1221/003</u>	Птичник №4	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409

NºNº1222/004,						<u> </u>		
1223/003-	Птичник №5	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1238/003	THE THE STATE OF T	формальдегид	0,21	0,003	2400	0,00013	0,00113403	
<u>N</u> 2N21239/004,								
1240/003-	Птичник №6	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1255/003		формальдегид	-,	0,003	2400	0,00013	3,22==2 122	
NºNº1256/004,								
1257/003-	Птичник №7	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1272/003		формальдегид	,	,		,	,	
NºNº1273/004,		4005						
1274/003-	Птичник №8	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1289/003		формальдегид						
NºNº1290/004,		4225						
1291/003-	Птичник №9	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1306/003		формальдегид						
NºNº1307/004,		1325 -						
<u>1308/003-</u>	Птичник №10	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409	
<u>1323/003</u>		формальдегид						
<u>№№1324/004,</u>		1325 -						
<u>1326/003-</u>	Птичник №11	тэгэ - формальдегид	0,21	0,603	2466	0,00013	0,00115409	
1340/003		формальдегид						
<u>№№1341/004,</u>		1325 -						
<u>1342/003-</u>	Птичник №12	формальдегид	0,21	0,603	2466	0,00013	0,00115409	
<u>1357/003</u>		формальдегид						
	T	T	БП10	1		1		
<u>№№1358/004,</u>		1325 -						
1359/003-	Птичник №1	формальдегид	0,21	0,603	2466	0,00013	0,00115409	
1376/003								
<u>№6158</u>	Дизбарьер	1325 -	0,21	0,603	1200	0,00013	0,0005616	
NoNo1204/004	санпропускник	формальдегид						
<u>№№1384/004,</u> 1385/003-	Птичник №2	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1400/003	TITINGHUK NYZ	формальдегид	0,21	0,003	2400	0,00013	0,00113409	
NºNº1401/004,								
1402/003-	Птичник №3	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1417/003	THE THE STATE OF T	формальдегид	0,21	0,003	2400	0,00013	0,00113403	
<u>NºNº1418/004,</u>								
1419/003-	Птичник №4	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1434/003		формальдегид	-,	2,300		2,23020	-,	
NºNº1435/004,		105-						
1436/003-	Птичник №5	1325 -	0,21	0,603	2466	0,00013	0,00115409	
1451/003		формальдегид	•			,	·	
<u>Nº№1452/004,</u>		1325 -						
1453/003-			0,21	0,603	2466	0,00013	0,00115409	
1468/003		формальдегид						
NºNº1469/004,		1325 -						
<u>1470/003-</u>	Птичник №7	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409	
<u>1485/003</u>		формальдегид						
<u>№№1486/004,</u>		1325 -						
<u>1487/003-</u>	Птичник №8	тэгэ - формальдегид	0,21	0,603	2466	0,00013	0,00115409	
<u>1502/003</u>		формальдегид						
NºNº1503/004,		1325 -						
<u>1504/003-</u>	Птичник №9	формальдегид	0,21	0,603	2466	0,00013	0,00115409	
<u>1519/003</u>		4-6-шальдегид						

<u>№№1520/004,</u> <u>1521/003-</u> 1536/003	Птичник №10	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
№№1537/004, 1538/003- 1553/003	Птичник №11	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1524/004,</u> <u>1554/003-</u> <u>1570/003</u>	Птичник №12	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
			БП11				
<u>№№1571/004,</u> <u>1572/003-</u> <u>1587/003</u>	Птичник №1	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№6173</u>	Дизбарьер санпропускник	1325 - формальдегид	0,21	0,603	1200	0,00013	0,0005616
<u>№№1594/004,</u> <u>1595/003-</u> 1610/003	Птичник №2	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1611/004,</u> <u>1612/003-</u> 1627/003	Птичник №3	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
№№1628/004, 1629/003- 1644/003	Птичник №4	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
№№1645/004, 1646/003- 1661/003	Птичник №5	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1662/004,</u> <u>1663/003-</u> 1678/003	Птичник №6	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1679/004,</u> <u>1680/003-</u> 1695/003	Птичник №7	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1696/004,</u> <u>1697/003-</u> <u>1712/003</u>	Птичник №8	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>Nº№1713/004,</u> <u>1714/003-</u> <u>1729/003</u>	Птичник №9	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1730/004,</u> <u>1731/003-</u> <u>1746/003</u>	Птичник №10	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1747/004,</u> <u>1748/003-</u> <u>1763/003</u>	Птичник №11	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1764/004,</u> <u>1765/003-</u> <u>1780/003</u>	Птичник №12	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
			БП12			_	
<u>Nº№1781/004,</u> <u>1782/003-</u> <u>1797/003+</u>	Птичник №1	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№6188+</u>	Дизбарьер санпропускник	1325 - формальдегид	0,21	0,603	1200	0,00013	0,0005616

				,			
<u>№№1804/004,</u> <u>1805/003-</u> <u>1820/003+</u>	Птичник №2	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1821/004,</u> <u>1822/003-</u> <u>1837/003+</u>	Птичник №3	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1838/004,</u> <u>1839/003-</u> 1854/003+	Птичник №4	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1855/004,</u> <u>1856/003-</u> 1871/003+	Птичник №5	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1872/004,</u> <u>1873/003-</u> 1888/003+	Птичник №6	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
№№1889/004, 1890/003- 1905/003+	Птичник №7	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>N₂№1906/004,</u> 1907/003- 1922/003 +	Птичник №8	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
NºNº1923/004, 1924/003- 1939/003+	Птичник №9	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
№№1940/004, 1941/003- 1956/003+	Птичник №10	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1957/004,</u> <u>1958/003-</u> <u>1973/003+</u>	Птичник №11	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409
<u>№№1974/004,</u> <u>1975/003-</u> <u>1991/003+</u>	Птичник №12	1325 - формальдегид	0,21	0,603	2466	0,00013	0,00115409

Источник загрязнения Кормобункер (всего 48 штук)

Неорганизованый источник

N 6141, 6145-6155 (БП-9)+	
N 6156, 6160-6170 (БП-10)+	
N 6171, 6175-6185 (БП-11)+	
N 6186, 6190-6200 (БП-12)+	

Список литературы: 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п, 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов Материал: Зерно (пшеница)

Примесь: 2937 Пыль зерновая /по грибам хранения/

Влажность материала, % , *VL* = **2**

Коэфф., учитывающий влажность материала(табл.4), КБ = 0.8

Операция: Переработка

Скорость ветра (среднегодовая), M/c, **G3SR = 4.2**

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), **КЗSR = 1.2**

Скорость ветра (максимальная), M/c, **G3 = 12**

Коэфф., учитывающий максимальную скорость ветра(табл.2), *КЗ = 2.3*

Коэффициент, учитывающий степень защищенности узла(табл.3), К4 = 0.01

Размер куска материала, мм, *G7* = 6

Коэффициент, учитывающий крупность материала(табл.5), К7 = 0.6

Доля пылевой фракции в материале(табл.1), K1 = 0.01

Доля пыли, переходящей в аэрозоль(табл.1), К2 = 0.03

Суммарное количество перерабатываемого материала, τ /час, G = 5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.7), В = 0.7

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.01 \cdot 10$

 $0.03 \cdot 2.3 \cdot 0.01 \cdot 0.8 \cdot 0.6 \cdot 5 \cdot 10^{6} \cdot 0.7 / 3600 = 0.00322$

Время работы узла переработки в год, часов, RT2 = 1781

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.01 \cdot 0.03 \cdot$

 $1.2 \cdot 0.01 \cdot 0.8 \cdot 0.6 \cdot 5 \cdot 0.7 \cdot 1781 = 0.01077$

Максимальный разовый выброс , г/сек, *G* = 0.00322

Валовый выброс , т/год , **M = 0.01077**

Итого выбросы от источника выделения: 001 Кормобункер

Код	Наименование 3В	Выброс г/с	Выброс т/год	
2937	Пыль зерновая /по грибам хранения/ (487)	0.00322	0.01077	

Источник загрязнения N 1165 (БП-9), 1378 (БП10), 1588 (БП11)+, 1798 (БП12)+ (всего 4 штук) Источник выделения N 001, Организованный источник, ДЭС 550 кВт

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600, г/сек

где:

еі-выброс І-го вещества на единицу полезной работы стационарной дизельной установки на режиме

номинальной мощности, г/кВт*ч, определяем по таблице 1

Рэ-эксплуатационная мощность стационарной дизельной установки, кВт кВт

Рэ= 550 Группа Б – 73,6-736 кВт

Значение выбросов еі для различных групп стационарных диз.установок до капремонта

табл.1

группа				Выброс, г	⁻/кВт*ч		
	со	Nox	СН	С	SO ₂	CH₂O	БП
Α	7,2	10,3	3,6	0,7	1,1	0,15	0,000013
Б	6,2	9,6	2,9	0,5	1,2	0,12	0,000012
В	5,3	8,4	2,4	0,35	1,4	0,1	0,000011
Γ	7,2	10,8	3,6	0,6	1,2	0,15	0,000013

Валовый выброс і-го вещества за год стац. дизельной установки

Мгод= $(g_{i} * Bгод)/1000, т/год$

g_i- выброс i-го вещества г/кг, приходящегося на один кг дизтоплива, опред. по табл.3

Значение выбросов еі для различных групп стационарных диз.установок до капремонта

табл.3

группа			Выброс, г/кВт*ч				
	со	Nox	СН	С	SO ₂	CH ₂ O	БП
Α	30	43	15	3	4,5	0,6	0,000055
Б	26	40	12	2	5	0,5	0,000055
В	22	35	10	1,5	6	0,4	0,000045
Γ	30	45	15	2,5	5	0,6	0,000055

Максимальный выброс і-го вещества опред. по формуле:

Мсек =(ei *Рэ)/3600, г/сек

V о п	Примосі	г/сек без
Код	Примесь	очистки
0301	Азота (IV) диоксид (4)	1,173333
0304	Азот (II) оксид(6)	0,152533
0328	Углерод (593)	0,076389
0330	Сера диоксид (526)	0,183333
0337	Углерод оксид (594)	0,947222
0703	Бенз/а/пирен (54)	0,000001833
1325	Формальдегид (619)	0,018333
2754	Углеводороды предельные С12- 19 /в пересчете на С/ (592)	0,443056

Источник загрязнения №

<u>1166-1168 (БΠ-9)+</u>

1379-1381 (БП10)+

1589-1591 (БП11)+

1799-1801 (БП12)+

В здании санпропускника настенный газовый котел Logamax U072-35K, производитель - Buderus, мощность - 35,0кВт –3 шт

Годовое время работы котла, ч/год -	6480
Валовый расход топлива, В, (тыс.м³/год) -	7,37

Технические характеристики котла

Номинальный массовый расход топлива, м ³ /ч -	
Номинальная теплопроизводительность котла, кВт -	35
КПД котла при полной нагрузке, % -	0,93
Температура отработанных газов, °С -	180

Характеристика топлива

Плотность при стандарт.условиях, кг/м³ -	540
Низшая теплота сгорания, Qi, Мдж/м³-	35,78
Зольность топлива на рабочую массу, Ar, % -	-
Содержание серы в топливе, Sr -	0,024
Массовая доля сероводорода [H2S]	-

Перевод низшей теплоты сгорания МДж/м³ на кВт/м³ -	9,94
Максимально-разовый расход топлива, В, (л/с, г/с) -	0,316

Вспомоглательные величины для

расчета:

	χ	η	η'so ₂	η"so ₂	q_3
газ	-	-	0	0	0,5
	R	q_4	C _{co}	K _{NO}	β
газ	0,5	0,5	8,945	0,1	0

ИТОГО выбросы составят:

V о п	Примосі	ист.0001/001	
Код	Примесь	г/сек	т/год
0301	Азота диоксид	0,0009	0,0211
0304	Азота оксид	0,0001	0,0034
0330	Сера диоксид	0,0002	0,0035
0337	Углерод оксид	0,0028	0,0656

Источник загрязнения №1169, 1170 (БП9), 1382, 1383 (БП10), 1592, 1593 (БП11), 1802, 1803 (БП12) Источник выделения №001

Резервуардля хранения газа V =50 м³

общий расход газа составит:	75850	м.куб.
плотность паровой фазы газа -	2,019	кг/м.куб (по ПБС)
следовательно, расход газа -	153141,15	кг
плотность жидкой фазы газа -	577	кг/м.куб (по ПБС)
следовательно, расход газа -	265,40927	м.куб/год
то есть, расход газа на 1 резервуар составит -	265,40927	м.куб/год
объем резервуара -	50	м.куб.
максимальная заполняемость резервуара -	85	%
Следовательно, кол-во заправок (макс.) составит:	5	раз

Сброс из шлангов после слива из автогазовозов

$\Pi = V \times K1 \times \rho \times X \times n$, кг/расчетный период

V - объем шланга, 0,0048 м3

К1 - коэф. приведения к н.у. объемов СУГ в общее - 2,489

зависимости от температуры и давления -

р - плотность паровой фазы газа при нормальных условиях - 2,019 кг/м3
 Х - концентрация газа в паровой фазе СУГ в долях единицы - 0,9382 зима
 п - количество слитых автоцистерн 120 раз

Годовой выброс:

зимний, летний период

П = 2,715683 кг/год = 0,002716 т/год

Секундный выброс:

П = 0,018859 г/сек

ИТОГО выбросы составят:

код ЗВ	Наименование	г/сек	т/год
0402	Бутан	0,018859	0,002716

<u>Источник выброса №6142 (БП-9), 6157 (БП10)+, 6172 (БП 11) , 6187 (БП12)+</u> ЛОС (нефтеловушка) (4 шт)

Площадь очистных сооружений составляет 3.0 m^2

Среднегодовая температура воздуха 10 °C

Температура воздуха в летний период − 20 °C (дневная)

10 °С (ночная)

Число дневных часов Lдн.= 16 часов, ночных Lн = 8 часов

Скорость ветра на высоте 20 см над поверхностью равна 0,5 м/сек.

Результаты лабораторной разгонки ловушечного нефтепродукта и характеристику каждой фракции принимаем по таб.5 «Методики определения выбросов загрязняющих веществ в атмосферу на предприятиях Госкомнефтепродукта».

Количество паров углеводородов с 1 м^2 поверхности при температуре воздуха 20 $^{\circ}$ C; 10 $^{\circ}$ C

G =
$$\sum$$
 (40,35 + 30,75 x V) x 10⁻³ x P_{sn} x X_i x M_n

Где: n – число фракций;

P_{sn} – давление насыщенных паров каждой фракции;

X_i - мольная доза n-й фракции в испаряющейся углеводородной смеси;

Mn – молярная масса n – й фракции;

 $Q_{_{\! H}}$ – количество паров углеводородов, испаряющихся с 1 M^2 поверхности в ночное время;

 $Q_{\text{дн}}$ – количество паров углеводородов, испаряющихся с 1 м 2 поверхности в дневное время.

 $Q_{H} = (40.35 + 30.75 \times 0.5) \times 10^{-3} \times (54.5 \times 0.081 \, \text{V} 142 + 1.33 \times 0.172 \, \text{V} 128) = 3.1 \, \text{r/m}^{2} \, \text{y}$

 $Q_{DH} = (40,35 + 30,75 \times 0,5) \times 10^{-3} \times (119,75 \times 0,081 \sqrt{142} + 6,65 \times 0,172 \sqrt{128}) = 7,2 \text{ r/m}^2 \text{ y}$

 $Q_{cp} = (7.2 \times 16 + 3.1 \times 8)/24 = 5.8 \text{ r/m}^2 \text{ y}$

Мощность выброса до мероприятий:

 $M = 5.8 \times 3.0 / 3600 = 0.0005 r/c$

Так как очистные сооружения перекрыты на 100%, мощность выброса сокращается на 90%.

 $M = 0.010 \times 0.10 = 0.001 \text{ r/c}$

Годовые выбросы углеводородов от очистных сооружений составят:

До мероприятий:

 $Q_{rog} = 8,76 \times Q_{co} \times F \times 10^{-3} = 8,76 \times 5,8 \times 3,0 \times 10^{-3} = 0,15 \text{ т/год}$

После мероприятий:

 $Q_{rod} = 0.15 \times 0.1 = 0.015 \text{ т/год}$

Источник загрязнения N 6144 (БП9), 6159 (БП10), 6174 (БП11), 6189 (БП12) (4 шт)

Источник выделения N 002, Паркинг на 5 автомобилей

Стоянка: Обособленная, имеющая непосредственный выезд на дорогу общего пользования (расчетная схема 1)

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

Период хранения: Переходный период хранения (t>-5 и t<5)

Температура воздуха за расчетный период, град. С, Т = 0

Тип машины: Легковые автомобили дизельные рабочим объемом свыше 1.8 до 3.5 л

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 365

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа, NK1 = 20

Общ. количество автомобилей данной группы за расчетный период, шт., NK = 5

Коэффициент выпуска (выезда), А = 1

Экологический контроль не проводится

Время прогрева двигателя, мин (табл.2.20), TPR = 4

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, LB1 = 0.05

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LD1 = 0.07

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2 = 0.05

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2 = 0.07

Суммарный пробег по территории или помещению стоянки (выезд), км, L1=(LB1+LD1)/2=(0.05+0.07)/2 = 0.06

Суммарный пробег по территории или помещению стоянки (въезд) , км, L2=(LB2+LD2)/2=(0.05+0.07)/2=0.06

Примесь: 0337 Углерод оксид (594)

Удельный выброс 3B при прогреве двигателя, г/мин, (табл.2.4), MPR = 0.477

Пробеговые выбросы 3B, г/км, (табл.2.5), ML = 1.98

Удельные выбросы 3B при работе на холостом ходу, г/мин, (табл.2.6), MXX = 0.2

Выброс 3В при выезде 1-го автомобиля, грамм, M1=MPR·TPR+ML·L1+MXX·TX=0.477·4+1.98·0.06 + 0.2·1 = 2.227

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 1.98 \cdot 0.06 + 0.2 \cdot 1 = 0.319$

Максимально разовый выброс 3B, г/сек, G = MAX(M1,M2)·NK1 / 3600 = 2.227·8 / 3600 = 0.00495

Примесь: 2732 Керосин (660*)

Удельный выброс 3B при прогреве двигателя, г/мин, (табл.2.4), MPR = 0.153

Пробеговые выбросы 3В, г/км, (табл.2.5), ML = 0.45

Удельные выбросы 3B при работе на холостом ходу, г/мин, (табл.2.6), МХХ = 0.1

Выброс 3В при выезде 1-го автомобиля, грамм, M1=MPR·TPR+ML·L1+MXX·TX=0.153·4+0.45·0.06 + 0.1·1 = 0.739

Выброс 3В при въезде 1-го автомобиля, грамм, M2 = ML·L2 + MXX·TX = 0.45·0.06 + 0.1·1 = 0.127

Максимально разовый выброс 3B, г/сек, G = MAX(M1,M2)·NK1 / 3600 = 0.739·8 / 3600 = 0.001642

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя, г/мин, (табл.2.4), MPR = 0.2

Пробеговые выбросы 3В, г/км, (табл.2.5), ML = 1.9

Удельные выбросы 3B при работе на холостом ходу, г/мин, (табл.2.6), MXX = 0.12

Выброс 3В при выезде 1-го автомобиля, грамм, M1=MPR·TPR+ML·L1+MXX·TX = 0.2·4 + 1.9·0.06 + 0.12·1 = 1.034

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 1.9 \cdot 0.06 + 0.12 \cdot 1 = 0.234$

Максимально разовый выброс 3B, г/сек, G = MAX(M1,M2)·NK1 / 3600 = 1.034·8 / 3600 = 0.0023