1 Оценка выбросов вредных веществ в атмосферу

1.1 ОЦЕНКА ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ В ПЕРИОД СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ (2023-2025 ГГ.)

Строительство объектов по проекту «Подготовительные работы на участке строительства и остаток производственного инжиниринга для новых коксовых батарей с верхней загрузкой № 8 и 9 АО «АрселорМиттал Темиртау» планируется проводить в 2023-2025 гг. Общая продолжительность строительства составит 30 месяцев. Воздействие строительных работ на окружающую среду будет носить кратковременный характер.

В настоящем разделе описаны эмиссии загрязняющих веществ в атмосферу при проведении работ по строительству инженерных коммуникаций.

Расчеты эмиссий в атмосферу произведены на основании принятых проектных решений в соответствии с отраслевыми нормами технологического проектирования и отраслевыми методическими указаниями и рекомендациями по определению выбросов вредных веществ в атмосферу.

Заправка и ремонт строительной техники и автотранспорта в период проведения строительных работ на территории промышленной площадки АО «АрселорМиттал Темиртау» проводиться не будет. Бетон для строительных работ будет доставляться готовый, бетонно-растворного узла на территории строительной площадке не будет.

Согласно ПОС, на строительной площадке используется песок влажностью 4,2%. Согласно Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (Приложение 11 приказа Министра охраны окружающей среды от 18.04.2008 г. № 100-п) п. 2.5 при статическом хранении и пересыпке песка с влажностью 3% и более выбросы пыли принимаются равными 0.

Сыпучие материалы щебень и гравий складируются частями, но не всем объемом.

Перечень источников выбросов в атмосферный воздух на период строительства (2023-2025гг.):

Ист. загр. 6001 Разработка грунта экскаватором

Ист. загр. 6002 Разработка грунта бульдозером

Ист. загр. 6003 Буровые работы

Ист. загр. 6004 Склад грунта

Ист. загр. 6005 Склад щебня

Ист. загр. 6006 Склад гравия

Ист. загр. 6007 Склад ПГС

Ист. загр. 6008 Сварочные работы. Электроды Э42

Ист. загр. 6009 Сварочные работы. Электроды Э46

Ист. загр. 6010 Сварочные работы. Проволока С 08Г2С

Ист. загр. 6011 Сварочные работы. Полиэтиленовые трубы

Ист. загр. 6012 Лакокрасочные работы. Грунтовка ГФ-021

Ист. загр. 6013 Лакокрасочные работы. Грунтовка ВЛ-02

Ист. загр. 6014 Лакокрасочные работы. Грунтовка ВЛ-023

Ист. загр. 6015 Лакокрасочные работы. Грунтовка ХС-010

- Ист. загр. 6016 Лакокрасочные работы. Эмаль ПФ-115
- Ист. загр. 6017 Лакокрасочные работы. Эмаль ПФ-133
- Ист. загр. 6018 Лакокрасочные работы. Эмаль ХВ-124
- Ист. загр. 6019 Лакокрасочные работы. Эмаль ХВ-785
- Ист. загр. 6020 Лакокрасочные работы. Эмаль ХВ-1120
- Ист. загр. 6021 Лакокрасочные работы. Эмаль ХС-759
- Ист. загр. 6022 Лакокрасочные работы. Лак БТ-577
- Ист. загр. 6023 Лакокрасочные работы. Растворитель Р-4
- Ист. загр. 6024 Лакокрасочные работы. Растворитель № 648
- Ист. загр. 6025 Лакокрасочные работы. Уайт-спирит
- Ист. загр. 6026 Пила по дереву
- Ист. загр. 6027 Молоток отбойный
- Ист. загр. 6028 Шлифовальный станок
- Ист. загр. 6029 Сверлильный станок
- Ист. загр. 6030 Гидроизоляционные работы
- Ист. загр. 6031 Асфальтирование территории
- Ист. загр. 6032 Газовая резка металла
- Ист. загр. 6033 Газовая сварка металла пропан-бутановой смесью
- Ист. загр. 6034 Газовая сварка металла ацетилен-кислородным пламенем
- Ист. загр. 6035 Передвижная компрессорная установка ЗИФ-55
- Ист. загр. 6036 Экскаваторы ЭО-3322. Работа двигателя
- Ист. загр. 6037 Бульдозер ДЗ-42.Г. Работа двигателя
- Ист. загр. 6038 Самосвал КамАЗ-55111. Работа двигателя

Ист. 6001 Разработка грунта экскаватором

При выполнении земляных работ (по 8 часов в сутки) экскаватором «Драглайн» или «Обратная лопата» с ковшом вместимостью 1 м^3 и $0,65 \text{ м}^3$ при выемки глины и суглинка в объеме 880366,24 т в котлованах глубиной до 3 метров происходит выделение пыли неорганической с содержанием SiO_2 20-70%.

Ист. 6002 Разработка грунта бульдозером

При выполнении земляных работ (по 8 часов в сутки) бульдозером при насыпи глины и суглинка в объеме 67242,812 пыли неорганической с содержанием SiO_2 20-70%. Высота пересыпки грунта до 2 м. Влажность грунта 18%.

Ист. 6003 Буровые работы

В процессе строительства будет использоваться буровой станок СБШ-200. Средства пылеподавления или улавливание пыли: ВВП — водно-воздушное пылеподавление. Количество станков — 1. Грунт — суглинок. Время работы — 49 ч.

Выделяющиеся вещества: пыль неорганическая с содержанием SiO_2 20-70%.

Ист. 6004 Склад грунта

В процессе строительства растительный грунт будет складироваться с последующим использованием. Количество грунта — 67242,812 т. Склад открыт с 4-х сторон. Общая площадь склада составит 26 m^2 .

Выделяющиеся вещества: пыль неорганическая с содержанием SiO₂ 20-70%.

Ист. 6005 Склад щебня

В процессе строительства будет использоваться щебень фракции 5-70 мм. Количество щебня 7640,708 т. Склад открыт с 4-х сторон. Общая площадь склада составит 24 м².

Выделяющиеся вещества: пыль неорганическая с содержанием SiO₂ 20-70%.

Ист. 6006 Склад гравия

В процессе строительства будет использоваться гравий. Количество гравия -69,43 т. Склад открыт с 4-х сторон. Общая площадь склада составит 8 m^2 .

Выделяющиеся вещества: пыль неорганическая с содержанием SiO₂ 20-70%.

Ист. 6007 Склад ПГС

В процессе строительства будет использоваться ПГС. Количество ПГС 2011,26 т. Склад открыт с 4-х сторон. Общая площадь склада составит 12 m^2 .

Выделяющиеся вещества: пыль неорганическая с содержанием SiO₂ 20-70%.

Ист. 6008 Сварочные работы. Электроды Э42

На промышленной площадке будут проводиться сварочные работы. Расход электродов Э42 составит 19,0899538 т.

Загрязняющие вещества – оксид железа, марганец и его соединения в пересчете на марганец (IV) оксид.

Ист. 6009 Сварочные работы. Электроды Э46

На промышленной площадке будут проводиться сварочные работы. Расход электродов Э46 составит 16,93577232 т.

Загрязняющие вещества - оксид железа, марганец и его соединения в пересчете на марганец (IV) оксид, пыль неорганическая с содержанием SiO₂ 20-70%.

Ист. 6010 Сварочные работы. Проволока С 08Г2С

На промышленной площадке будут проводиться сварочные работы. Расход сварочной проволоки C08Г2C составит 1498,33 кг.

Загрязняющие вещества - оксид железа, марганец и его соединения в пересчете на марганец (IV) оксид, пыль неорганическая с содержанием SiO₂ 20-70%.

Ист. 6011 Сварочные работы. Полиэтиленовые трубы

На промышленной площадке будет проводиться сварка полиэтиленовых труб. Годовое время работы оборудования 150 ч.

При сварке полиэтиленовых труб из ПВХ в атмосферу выделяется СО и винил хлористый.

Ист. 6012 Лакокрасочные работы. Грунтовка ГФ-021

Лакокрасочные работы проводятся с пневматическим нанесением грунтовки ГФ-021 с расходом 3,58204992 т/г при часовом расходе 1,8 кг/ч.

Загрязняющие вещества – взвешенные частицы, ксилол.

Ист. 6013 Лакокрасочные работы. Грунтовка ВЛ-02

Лакокрасочные работы проводятся с ручным нанесением грунтовки ВЛ-02 с расходом 0,00184 т/г при часовом расходе 0,8 кг/ч.

Загрязняющие вещества – ксилол, бутан-1-ол, этанол, ацетон.

Ист. 6014 Лакокрасочные работы. Грунтовка ВЛ-023

Лакокрасочные работы проводятся с ручным нанесением грунтовки ВЛ-023 с расходом 0,0005379 т/г при часовом расходе 0,5 кг/ч.

Загрязняющие вещества – бутан-1-ол, этанол, толуол, бутилацетат, ацетон.

Ист. 6015 Лакокрасочные работы. Грунтовка ХС-010

Лакокрасочные работы проводятся с пневматическим нанесением грунтовки XC-010 с расходом 0,03014964 т/г при часовом расходе 0,8 кг/ч.

Загрязняющие вещества – взвешенные частицы, толуол, ацетон, бутилацетат.

Ист. 6016 Лакокрасочные работы. Эмаль ПФ-115

Лакокрасочные работы проводятся с пневматическим нанесением эмали ПФ-115 с расходом 6,02443701 т/г при часовом расходе 2,8 кг/ч.

Загрязняющие вещества – взвешенные частицы, ксилол, уайт-спирит.

Ист. 6017 Лакокрасочные работы. Эмаль ПФ-133

Лакокрасочные работы проводятся с пневматическим нанесением эмали $\Pi\Phi$ -133 с расходом 0,0666342 т/г при часовом расходе 0,8 кг/ч.

Загрязняющие вещества – взвешенные частицы, ксилол, уайт-спирит.

Ист. 6018 Лакокрасочные работы. Эмаль ХВ-124

Лакокрасочные работы проводятся с пневмиатическим нанесением эмали XB-124 с расходом 0,00852 т/г при часовом расходе 0,8 кг/ч.

Загрязняющие вещества – взвешенные частицы, ацетон, бутилацетат, толуол.

Ист. 6019 Лакокрасочные работы. Эмаль ХВ-785

Лакокрасочные работы проводятся с ручным нанесением эмали ХВ-785 с расходом 0,00303442 т/г при часовом расходе 0,4 кг/ч.

Загрязняющие вещества – ацетон, бутилацетат, толуол.

Ист. 6020 Лакокрасочные работы. Эмаль ХВ-1120

Лакокрасочные работы проводятся с ручным нанесением эмали ХВ-1120 с расходом 0,00471744 т/г при часовом расходе 0,8 кг/ч.

Загрязняющие вещества – ксилол, бутилацетат, толуол.

Ист. 6021 Лакокрасочные работы. Эмаль ХС-759

Лакокрасочные работы проводятся с пневматическим нанесением эмали ХС-759 с расходом 0,011875 т/г при часовом расходе 0,8 кг/ч.

Загрязняющие вещества – ацетон, циклогексанон, бутилацетат, толуол.

Ист. 6022 Лакокрасочные работы. Лак БТ-577

Лакокрасочные работы проводятся с пневматическим нанесением лака БТ-577 с расходом 0,2724611 т/г при часовом расходе 0,8 кг/ч.

Загрязняющие вещества – взвешенные частицы, ксилол, уайт-спирит.

Ист. 6023 Лакокрасочные работы. Растворитель Р-4

Лакокрасочные работы проводятся с использованием растворителя Р-4 с расходом 0,70178126 т/г при часовом расходе 1,8 кг/ч.

Загрязняющие вещества – ацетон, бутилацетат, толуол.

Ист. 6024 Лакокрасочные работы. Растворитель № 646

Лакокрасочные работы проводятся с использованием растворителя № 648 с расходом 0,00066179 т/г при часовом расходе 0,4 кг/ч.

Загрязняющие вещества – спирт н-бутиловый, спирт этиловый, бутилацетат, толуол.

Ист. 6025 Лакокрасочные работы. Уайт-спирит

Лакокрасочные работы проводятся с использованием уайт-спирита с расходом 1,02457018 т/г при часовом расходе 1,8 кг/ч.

Загрязняющие вещества – уайт-спирит.

Ист. 6026 Пила по дереву

На строительной площадке используется пила по дереву. Время работы станка – 12 ч/г.

Загрязняющие вещества – пыль древесная.

Ист. 6027 Молоток отбойный

На строительной площадке используется отбойный молоток. Время работы станка – 1420 ч/г.

Загрязняющие вещества – взвешенные частицы.

Ист. 6028 Шлифовальный станок

На строительной площадке используется шлифовальный станок. Время работы станка – 2377 ч/г.

Загрязняющие вещества – пыль абразивная, взвешенные частицы.

Ист. 6029 Сверлильный станок

На строительной площадке используется сверлильный станок. Время работы станка – 2414 ч/г.

Загрязняющие вещества – эмульсол.

Ист. 6030 Гидроизоляционные работы

Гидроизодяционные работы проводятся на площади $3564 \text{ m}^2 \text{ c}$ нанесением гидроизоляционного покрытия в 2 слоя.

Загрязняющие вещества – углеводороды предельные C_{12} - C_{19} .

Ист. 6031 Асфальтирование территории

Асфальтирование территории проводится на площади 5529 m^2 с нанесением гидроизодяционного покрытия в 2 слоя.

Загрязняющие вещества – углеводороды предельные C_{12} - C_{19} .

Ист. 6032 Газовая резка металлов

Работы по газовой резке производятся со сталью углеродистой толщиной до 5 мм. Режим работы — 3880 ч/г. Длина разрезаемого металла в час составляет 1 м.

Загрязняющие вещества — оксид железа, марганец и его соединения в пересчете на марганец (IV) оксид, диоксид азота, углерод оксид.

Ист. 6033 Газовая сварки металла пропан-бутановой смесью

Расход пропан-бутановой смеси – 1797,714 кг/г. Режим работы – 1438,2 ч/г.

При сварке металла пропан бутановой смесью в атмосферу выделяется диоксид азота.

Ист. 6034 Газовая сварки металла ацетилен-кислородным пламенем

Расход ацетилен-кислородного пламени – 4,575 кг/г. Режим работы – 4 ч/г.

При сварке металла пропан бутановой смесью в атмосферу выделяется диоксид азота.

Ист. 6035 Передвижная компрессорная установка ЗИФ-55

Передвижная компрессорная установка ЗИФ-55 (3 ед.), работает по 6 часов в сутки с расходом топлива 3,06 тонны за строительство и выделяющая следующие загрязняющие вещества: оксид азота (6), диоксид азота, углерод, сера диоксид, углерод оксид, бензапирен, формальдегид, углеводороды предельные **C12-C19.**

Ист. 6036-6038 Работа двигателей строительной техники

Источниками загрязнения атмосферного воздуха являются 38 неорганизованных источников.

Выбросы загрязняющих веществ в атмосферный воздух при строительстве носят кратковременный характер 2023—2025 гг., т.е. общая продолжительность строительства составляет 30 месяцев, и расчет будет произведен от объема работ.

1.1.1 ПЕРЕЧЕНЬ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, ВЫБРАСЫВАЕМЫХ В АТМОСФЕРУ В ПРОЦЕССЕ СТРОИТЕЛЬСТВА

Перечень загрязняющих веществ, выбрасываемых в атмосферу, класс опасности, а также предельно допустимые концентрации (ПДК) в атмосферном воздухе населенных мест приведены в таблице 1.1.

1.1.2 ПАРАМЕТРЫ ЭМИССИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ СТРОИТЕЛЬСТВЕ

Параметры эмиссий загрязняющих веществ в атмосферу на период строительства представлены в таблице 1.2. Учтены все источники выбросов загрязняющих веществ в атмосферу — неорганизованные. В соответствии с п. 13 «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» всем неорганизованным источниками присваивается с номера 6001 и далее. Приложение составлено с учетом требований ГОСТа 17.2.3.02-2014.

Перечень загрязняющих веществ, выбрасываемых в атмосферу в период строительства

Таблица 1.1

			1						таолица т.т
Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	КОВ	вещества,
веще-		разовая,	суточная,	безопасн.	ности	г/с	т/г	(М/ПДК)**а	усл.т/г
Ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (диЖелезо		0.04		3	0.01012	0.572247	14.3062	14.306175
	триоксид, Железа оксид) /в								
	пересчете на железо/ (274)								
0143	Марганец и его соединения /в	0.01	0.001		2	0.00121	0.0641408	223.4985	64.1408
	пересчете на марганца (IV) оксид/ (327)								
0301	Азота (IV) диоксид (Азота диоксид)	0.2	0.04		2	0.4397	0.347481	16.6162	8.687025
	(4)								
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		3	0.0698	0.0513	0	0.855
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		3	0.0372	0.0275	0	0.55
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		3	0.05821	0.0413	0	0.826
	Сернистый газ, Сера (IV) оксид) (516)								
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		4	0.5304095	0.281225	0	0.09374167
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.2			3	0.548591	3.082765	15.4138	15.413825
0621	Метилбензол (349)	0.6			3	0.481521	0.452323	0	0.75387167
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0.000001		1	0.000001	0.000001	0	1
0827	Хлорэтилен (Винилхлорид, Этиленхлорид) (646)		0.01		1	0.00000411	0.00000222	0	0.000222
1042	Бутан-1-ол (Бутиловый спирт) (102)	0.1			3	0.089189	0.000578	0	0.00578
1061	Этанол (Этиловый спирт) (667)	5			4	0.041148	0.000543		0.0001086

1	2	3	4	5	6	7	8	9	10
1210	Бутилацетат (Уксусной кислоты	0.1			4	0.209226	0.093666	0	0.93666
	бутиловый эфир) (110)								
1325	Формальдегид (Метаналь) (609)	0.05	0.01		2	0.0075	0.0055	0	0.55
1401	Пропан-2-он (Ацетон) (470)	0.35			4	0.32061	0.19165	0	0.54757143
1411	Циклогексанон (654)	0.04			3	0.0056	0.00059	0	0.01475
2732	Керосин (654*)			1.2		0.008722		0	
2752	Уайт-спирит (1294*)			1		0.790196	2.469853	2.4699	2.469853
2754	Алканы С12-19 /в пересчете на С/	1			4	2.87056	0.8509737	0	0.8509737
	(Углеводороды предельные С12-С19 (в								
	пересчете на С); Растворитель								
	РПК-265П) (10)								
2868	Эмульсол (смесь: вода - 97.6%,			0.05		0.0000055	0.00000435	0	0.000087
	нитрит натрия - 0.2%, сода								
	кальцинированная - 0.2%, масло								
	минеральное - 2%) (1435*)								
2902	Взвешенные частицы (116)	0.5	0.15		3	0.25739	1.89874	12.6583	12.6582667
2908	Пыль неорганическая, содержащая	0.3	0.1		3	0.27427	4.2970437	42.9704	42.970437
	двуокись кремния в %: 70-20 (шамот,								
	цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских месторождений)								
	(494)								
2930	Пыль абразивная (Корунд белый,			0.04		0.0068	0.1455	3.6375	3.6375
	Монокорунд) (1027*)								
2936	Пыль древесная (1039*)			0.1		0.078	0.00337	0	0.0337
	BCEFO:					7.13598311	14.87829677	331.6	171.562066

Примечания: 1. В колонке 9: "М" - выброс 3В,т/г; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) 0.1*ПДКм.р. или (при отсутствии ПДКм.р.) 0.1*ОБУВ;"а" - константа, зависящая от класса опасности 3В

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Параметры выбросов загрязняющих веществ в атмосферу в период строительства

Таблица 1.2

	ı	T		T	Τ	1	T_	1_	1_			T		Таолица
		Источники выделени:		Число	Наименование	Номер	Высо	Диа-		тры газовозд.с <i>к</i>			динаты ис	
Про		загрязняющих вещес	ТВ	часов	источника выброса	источ	та	метр	на выхо	оде из ист.выбро	ca	на	карте-схе	ие, м
изв	Цех			рабо-	вредных веществ	ника	источ	устья		_				
одс		Наименование	Коли	ты		выбро	ника	трубы	СКО	объем на 1	тем-	точечного и	сточ.	2-го кон
тво			чест	В		ca	выбро		рость	трубу, м3/с	пер.	/1-го конца	лин.	/длина, ш
			во	год			са,м	M	м/с		оС	/центра пло	щад-	площадн
			ист.									ного источн	ика	источни
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Разработка	1		Неорганизованный	6001	2	2				-662983	-589580	150
		грунта			источник									
		экскаватором												
		'												
001		Планировка и	1		Неорганизованный	6002	2	2				-662983	-589580	150
		засыпка грунта			источник									
		бульдозером			riero ilivili									
		оульдозером												
									1					
001		F	4	1)	C003	_	,				663003	E00E00	450
001		Буровые работы	1	49	Неорганизованный	6003	2	<u>'</u>				-662983	-589580	150
		1			источник									

	Наименование газоочистных	Вещества	Коэфф обесп	Средняя эксплуат	Код	Наименова	ние	Выбрось	і загрязняющих і	веществ	
	установок	рым	газо-	I	ще-	вещества					1
ца лин.	и мероприятий	произво-	очист	очистки/	_	Вещество	'	г/с	мг/нм3	т/г	Год
ирина	по сокращению	дится	кой,	тах.степ	CIBA			., 0	,	.,.	дос-
ого	выбросов	газо-	%	очистки%							тиже
ка	25.00000	очистка	,,,	0							ния
											пдв
Y2											' '
16	17	18	19	20	21	22		23	24	25	26
110						Пыль неорганическ содержащая двуок кремния в %: 70-20 шамот, цемент, пыл цементного производства - глинглинистый сланец, доменный шлак, пеклинкер, зола, кремнезем, зола уг казахстанских месторождений) (4 Пыль неорганическ содержащая двуок кремния в %: 70-20 шамот, цемент, пыл цементного производства - глинглинистый сланец, доменный шлак, пеклинкер, зола, кремнезем, зола, кремнезем, зола уг казахстанских	ись (ль на, есок, лей 94) кая, ись (ль	0.0467		0.2724	
110					2908	месторождений) (4 Пыль неорганическ		0.002		0.0003557	2023

		держащая двуокись		

Заявление о намечаемой деятельности

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Склад грунта	1		Неорганизованный источник	6004	2					-662983	-589580	150
001		Склад щебня	1		Неорганизованный источник	6005	2					-662983	-589580	150
001		Склад гравия	1		Неорганизованный источник	6006	2					-662983	-589580	150

		1								
16	17	18	19	20	21	22	23	24	25	26
110						шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,	0.0704		0.2829	2023
110						клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая,	0.0283		0.0259	2023

						кремн	жащая ді ия в %: 7 , цемент	0-20 (
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Склад ПГС	1		Неорганизованный источник	6007	2						-589580	150
001		Сварочный пост. Электроды Э42	1		Неорганизованный источник	6008	2					-662983	-589580	150
001		Сварочный пост. Электроды Э46	1		Неорганизованный источник	6009	2					-662983	-589580	150

16	17	18	19	20	21	22	23	24	25	26
110					2908	цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских	0.0562		0.0103	2023
110					0123	месторождений) (494) Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.00405		0.28578	2023
					0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.00047		0.0330256	2023
110					0123	Железо (II, III) оксиды (диЖелезо	0.00438		0.2664	2023

						014	оксид) на жел 13 Марга соедин	ид, Жело /в перес лезо/ (27- нец и его нения /в лете на м	:чете 4))		0.00046			0.028113	2023
Γ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	001		Сварочный пост. Проволока СВ	1	2932	Неорганизованный источник	6010	2						-589580	150

001	Сварочный пост. Полиэтиленовые трубы	1	1 Неор источ	ганизованны й іник	á 6	5011 2			-662983 -5	589580		150
16	17	18	19	20	21	22	23	24	2	25	26	
110				20	2908 0123 0143	(IV) оксид/ (327) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274) Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль	0.00011 0.00109 0.00027 0.00006	24		0.006944 0.011492 0.002847	2023	

1	10							0337	глинис домені клинке кремне казахст местор Углеро	одства - гый слан ный шла р, зола, езем, зол ганских ождениі д оксид (да, Угарь	ец, к, песок, па углей й) (494) (Окись		0.0000095			0.000005	2023	
	1	2	3	4	5		6		7	8	9	10	11	12	13	14	15	
	001		Лакокрасочные работы. Грунтовка ГФ- 021 Лакокрасочные работы. Грунтовка ВЛ-02	1		источни	изованный		5012	2						-589580 -589580		150 150
	0001		Лакокрасочные работы. Грунтовка ВЛ- 023	1		Неорган источни	изованный к	6	014	2					-662983	-589580		150

001	Лакокрасочные работы. Грунтовка ХС- 010	1	Неорганизованный источник	6015	2			-662983	-589580	150)
001	Лакокрасочные работы. Эмаль	1	Неорганизованный источник	6016	2			-662983	-589580	150)

16	17	18	19	20	21	22	23	24	25	26
					0827	Хлорэтилен (0.00000411		0.00000222	2023
						Винилхлорид,				
						Этиленхлорид) (646)				
110					0616	Диметилбензол (смесь	0.225		1.6119	2023
						о-, м-, п- изомеров)				
						(203)				
					2902	Взвешенные частицы (0.0825		0.59104	2023
						116)				
110					0616	Диметилбензол (смесь	0.010533		0.000087	2023
						о-, м-, п- изомеров)				
						(203)				
					1042	Бутан-1-ол (Бутиловый	0.042239		0.00035	2023
						спирт) (102)				
					1061	Этанол (Этиловый	0.023999		0.000397	2023
						спирт) (667)				
					1401	Пропан-2-он (Ацетон)	0.049507		0.00041	2023
						(470)				
110						Метилбензол (349)	0.001316		0.000005	
					1042	Бутан-1-ол (Бутиловый спирт) (102)	0.024728		0.000096	2023
					1061	Этанол (Этиловый	0.014033		0.000109	2023
					1001	спирт) (667)	0.014033		0.000109	2023
					1210	Бутилацетат (Уксусной	0.003258		0.000013	2023
						кислоты бутиловый				

110							062: 1210 140: 290:	(470) 1 Метил 5 Бутила кислот эфир) 1 Пропа (470) 2 Взвеш 116) 6 Димет	н-2-он (А бензол (З цетат (Ун ън бутило	349) ксусной овый цетон) истицы (л (смесь		0.023413 0.092311 0.023948 0.038711 0.022 0.175			0.0000 0.0125 0.0062 0.0052 0.0 1.35	24 20 52 20 52 20 52 20 53 20	023 023 023 023 023
1	2	3	4	5		6		7	8	9	10	11	12	13	14		15
001		ПФ-115 Лакокрасочные работы. Эмаль ПФ-133 Лакокрасочные работы. Эмаль XB-124	1		исто	рганизованный очник рганизованный очник		6017 6018	2						983 -589580 983 -589580		150 150
001		Лакокрасочные работы. Эмаль XB-785	1			рганизованный чник		6019	2					-6629	983 -589580		150

001		Лакокрасочные работы. Эмаль XB-1120	1		Неорг 1сточі	анизованный ник	i	6020	2				-66298	33 -589580		150
001		Лакокрасочные работы. Эмаль XC-759	1		Неорг источі	анизованный ник	í	6021	2				-66298	33 -589580		150
	16	17	18	1	L9	20	21		22	I	23	24		25	26	
		1,	10			20		(203)				2-7			20	
								l l	пирит (1294*)		0.175			1.3555		
							2902	2 Взвеш 116)	енные частицы (0.01283			0.99403	2023	
110							0616	Димет	илбензол (смесь п- изомеров)		0.055556			0.01666	2023	
							2752	` '	пирит (1294*)		0.05556			0.01666	2023	
							2902	Взвеш 116)	енные частицы (0.0333			0.01	2023	
110								l l	ібензол (349)		0.009399			0.000713		
							1210		ацетат (Уксусной гы бутиловый (110)		0.0072			0.000276	2023	
							1401		н-2-он (Ацетон)		0.0156			0.000598	2023	
								116)	енные частицы (0.049			0.002		
110									ібензол (349)		0.014188			0.000769		
							1210	-	ацетат (Уксусной гы бутиловый		0.009733			0.000266	2023	

	1401 N	фир) (110) Іропан-2-он (Ацетон) 0.021089 470)	0.000576	2023
110		, циметилбензол (смесь 0.002142	0.000091	2023
		-, м-, п- изомеров) 203)		
	0621 M	Летилбензол (349) 0.014165	0.001189	2023
	1210 Бу	утилацетат (Уксусной 0.031192	0.001324	2023
		ислоты бутиловый		
	ре	фир) (110)		
110	0621 M	Летилбензол (349)	0.001887	2023
		утилацетат (Уксусной 0.018339 ислоты бутиловый	0.00098	2023
		фир) (110)		
	1401 1401 1	Гропан-2-он (Ацетон) 0.04229	0.00226	2023
	(4	470)		

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
00)1	Лакокрасочные работы. Лак БТ- 577	1		Неорганизованный источник	6022	2					-662983	-589580	150	
00	01	Лакокрасочные работы. Растворитель Р- 4	1		Неорганизованный источник	6023	2					-662983	-589580	150	
00	01	Лакокрасочные работы. Растворитель № 648	1		Неорнагизованный источник	6024	2					-662983	-589580	150	

001	Лакокрасочные работы. Уайт- спирит	1		Неорганизованный источник	6025	2			-662983	-589580	150
001	Пила по дереву	1		Неорганизованный источник	6026	2			-662983	-589580	150
001	Молоток отбойный и перфор	1		Неорганизованный источник	6027	2			-662983	-589580	150
001	Шлифовальный станок	1		Неорганизованный источник	6028	2			-662983	-589580	150
001	Сверлильный	1	2414	Неорганизованный	6029	2			-662983	-589580	150

16	17	18	19	20	21	22	23	24	25	26
					1411	Циклогексанон (654)	0.0056		0.00059	2023
					2902	Взвешенные частицы (116)	0.021		0.001	2023
110					0616	Диметилбензол (смесь	0.08036		0.098527	2023
						о-, м-, п- изомеров) (203)				
					2752	Уайт-спирит (1294*)	0.05964		0.073123	2023
					2902	Взвешенные частицы (0.0247		0.03024	2023
						116)				
110					0621	Метилбензол (349)	0.31		0.435104	2023
					1210	Бутилацетат (Уксусной	0.06		0.084214	2023
						кислоты бутиловый				
						эфир) (110)				
					1401	Пропан-2-он (Ацетон) (470)	0.13		0.182463	2023
110					0621	Метилбензол (349)	0.022222		0.000132	2023
					1042	Бутан-1-ол (Бутиловый	0.022222		0.000132	2023

		спирт) (102)			
	1061	Этанол (Этиловый	0.003116	0.000037	2023
		спирт) (667)			
		Бутилацетат (Уксусной	0.055556	0.000331	2023
		кислоты бутиловый			
		эфир) (110)			
110	2752	Уайт-спирит (1294*)	0.5	1.02457	2023
110	2936	Пыль древесная (1039*	0.078	0.00337	2023
)			
110	2902	Взвешенные частицы (0.00166	0.04243	2023
		116)			
110		Взвешенные частицы (0.0104	0.225	2023
		116)			
		Пыль абразивная (0.0068	0.1455	2023
		Корунд белый,			
		Монокорунд) (1027*)			
110	2868	Эмульсол (смесь: вода	0.0000055	0.00000435	2023

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
00:	L	станок Гидроизоляционн ые работы	1		источник	6032	2						-589580	150

001	Асфальтирование	1	Неорганизованный источник	6033	2			-662983	-589580	150	
001	Газовая резка металла	1	Неорганизованный источник	6034	2			-662983	-589580	150	

16	17	18	19	20	21	22	23	24	25	26
						- 97.6%, нитрит натрия - 0.2%, сода кальцинированная - 0. 2%, масло минеральное - 2%) (1435*)				
110						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0.40906		0.2080907	2023

110		Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	2.2815	0.505183	2023
110		Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.0006	0.008575	2023
	0143	Марганец и его	0.00001	0.0001552	2023

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Сварка пропан-	1	1438.	Неорганизованный	6035	2					-662983	-589580	150
		бутаном			источник									
001		Сварка	1	4	Неорганизованный	6036	2					-662983	-589580	150
		ацетилен-			источник									

001	кислородом Компрессорная установка ЗИФ- 55	1	Неорганизованный источник	6037	2			-662983	-589580	150

16	17	18	19	20	21	22	23	24	25	26
						соединения /в				
						пересчете на марганца				
						(IV) оксид/ (327)				
					0301	Азота (IV) диоксид (0.0003		0.00458	2023
						Азота диоксид) (4)				
					0337	Углерод оксид (Окись	0.0004		0.00582	2023
						углерода, Угарный				
						газ) (584)				
110					0301	Азота (IV) диоксид (0.0033		0.027	2023
						Азота диоксид) (4)				

110	0301 Азота (IV) диоксид (Азота диоксид) (4)	0.007	0.000101 2	2023
110	0301 Азота (IV) диоксид (Азота диоксид) (4)	0.412	0.3158 2	2023
	0304 Азот (II) оксид (Азота оксид) (6)	0.067	0.0513 2	2023
	0328 Углерод (Сажа, Углерод черный) (583)	0.035	0.0275 2	2023
	0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (0.055	0.0413 2	2023
	IV) оксид) (516) 0337 Углерод оксид (Окись углерода, Угарный газ) (584)	0.36	0.2754 2	2023
	0703 Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001	0.000001 2	2023
	1325 Формальдегид (Метаналь) (609)	0.0075	0.0055 2	2023
	2754 Алканы С12-19 /в пересчете на С/ (Углеводороды	0.18	0.1377 2	2023
	предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)			

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Экскаваторы	1		Неорганизованный	6038	2					-662983	-589580	150
					источник									
						l	l							

001		Бульдозеры	1	Неор	оганизованный чник		6039	2				-6	62983	-589580		150
001		Самосвалы	1	Неористоч	оганизованный чник		6040	2				-6	62983	-589580		150
1	.6	17	18	19	20	21		2:	2	23	24			25	26	
110		±,	10	15			Азота ((IV) диоко	сид (0.003					2023	
						0304	Азот (І	диоксид) I) оксид (0.0005					2023	
						0328	Углеро	оксид) (6) од (Сажа, од черныі		0.0005					2023	

			0330	Ангидр	иоксид (ид серн	истый,		0.00061				2023
					тый газ,							
			0227		ид) (516)			0.043				2022
			0337		д оксид да, Угарі			0.043				2023
				газ) (58		ныи						
			2732		, -, н (654*)	١		0.0018				2023
110					II (054-) IV) диок			0.006				2023
					циоксид)							
			0304) оксид (0.001				2023
				Азота с	ксид) (6	5)						
			0328	Углеро	д (Сажа,	,		0.001				2023
				1	д черны							
			0330		иоксид (0.0012				2023
					ид серн							
					тый газ,							
			0227		ид) (516)			0.1061				2023
			0337	1	д оксид да, Угарі			0.1061				2023
				газ) (58		ныи						
			2732		, -, н (654*)	١		0.0036				2023
110					IV) диок			0.0081				2023
					циоксид)							
			0304) оксид (0.0013				2023
				Азота с	ксид) (6	5)						
			0328	Углеро	д (Сажа,	,		0.0007				2023
					д черны							
			0330		иоксид (0.0014				2023
					ид серн							
				Сернис	тый газ,	Cepa (
1 2 3	4	5	6	7	8	9	10	11	12	13	14	15
	•		, and the second	•								

1	1	1	I	1	I	1			l	1

16	17	18	19	20	21	22	23	24	25	26
					0337	IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.0209			2023
					2732	Керосин (654*)	0.003322			2023

1.1.3 РАСЧЕТ ЭМИССИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ ОТ ИСТОЧНИКОВ ПРИ СТРОИТЕЛЬСТВЕ В 2023-2025 ГОДАХ

Выбросы загрязняющих веществ в атмосферный воздух при строительстве носят кратковременный характер: период строительства продолжительностью 30 месяцев, работы разрознены по местоположению и времени, поэтому расчет будет произведен от объема работ.

Источник загрязнения 6001

Разработка грунта экскаватором

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-о).

Наименование материала		Глина	
Наименование источника выделения		Экскавато	р
Наименование	Символ	Ед. изм.	Итого
Кол-во переработ. грунта	Gчас	т/ч	60
Суммарное кол-во грунта	Gгод	т/период	880366,24
Вес. доля пыл. фракции в материале	k1		0,05
Доля пыли переходящая в аэрозоль	k2		0,02
Коэф. учитывающий метеоусловия	k3		1,2
Коэф. учитывающие местные условия	k4		1
Коэф. учитывающие влажность материала	k5		0,01
Коэф. учитывающие крупность материала	k7		0,5
Коэф.учитыв. высоту пересыпки	В		0,7
Эффективность средств пылепоподавления	η		0
2908 Пыль неорганическая - SiO2 (20-70%)			
Мсек (р)=((k1*k2*k3*k4*k5*k7*B*Gчас*1000000)/3600) * (1-η)		г/сек	0,07
Мгод(р)=k1*k2*k3*k4*k5* k7*B*Gгод*(1-η)		т/период	3,6975

Источник загрязнения 6002 Разработка грунта бульдозером

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-о).

Наименование материала		Глина	
Наименование источника выделения		Бульдозер	
Наименование	Символ	Ед. изм.	Итого
Кол-во переработ. грунта	Gчас	т/ч	40,0
Суммарное кол-во грунта	Gгод	т/период	67242,812
Вес. доля пыл. фракции в материале	K1		0,05
Доля пыли переходящая в аэрозоль	К2		0,02
Коэф. учитывающий метеоусловия	К3		1,2
Коэф. учитывающие местные условия	К4		1
Коэф. учитывающие влажность материала	K5		0,01
Коэф. учитывающие крупность материала	K7		0,5
Коэф.учитыв. высоту пересыпки	В		0,7
Эффективность средств пылепоподавления	η		0
2908 Пыль неорганическая - SiO2 (20-70%)			
Мсек (p)=(k1*k2*k3*k4*k5*k7*k8*k9*B*Gчас*1000000)*(1-η))/3600		г/сек	0,0467
Мгод(р)=k1*k2*k3*k4*k5* k7*k8*k9*B*Gгод*(1-η)		т/период	0,2724

Источник загрязнения 6003 Буровые работы

Методика расчета нормативов выбросов по производству строительных материалов. Приложение №11 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Буровой станок: СБШ-200

Общее количество работающих буровых станков данного типа, шт., N = 1

Количество одновременно работающих буровых станков данного типа, шт., N1 = 1

"Чистое" время работы одного станка данного типа, час/год, $_{}$ = 49

Крепость горной массы по шкале М.М.Протодьяконова: >3 - < = 4

Средняя объемная производительность бурового станка, м3/час(табл.3.4.1), V = 1.21

Тип выбуриваемой породы и ее крепость (f): известняки, углистые сланцы, конгломераты, f=4

Влажность выбуриваемого материала, %, VL = 22,12

Коэфф., учитывающий влажность выбуриваемого материала(табл.3.1.4), КБ = 0.01

Средства пылеподавления или улавливание пыли: ВВП - водно-воздушное пылеподавление

Удельное пылевыделение с 1 м3 выбуренной породы данным типом станков в зависимости от крепости породы, кг/м3(табл.3.4.2), $\mathbf{Q} = \mathbf{0.6}$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Максимальный разовый выброс одного станка, г/с (3.4.4), $G = V \cdot Q \cdot K5 / 3.6 = 1.21 \cdot 0.6 \cdot 0.01 / 3.6 = 0.002$

Валовый выброс одного станка, т/год (3.4.1), $M = V \cdot Q \cdot _T \cdot K5 \cdot 10^{-3} = 1.21 \cdot 0.6 \cdot 49 \cdot 0.01 \cdot 10^{-3} = 0.0003557$

Разовый выброс одновременно работающих станков данного типа, r/c, $_{\bf G}$ = ${\bf G}\cdot{\bf N1}$ = ${\bf 0.002}\cdot{\bf 1}$ = ${\bf 0.002}$

Валовый выброс от всех станков данного типа, т/год, $_M_ = M \cdot N = 0.0003557 \cdot 1 = 0.0003557$

Итоговая таблица:

Код	Наименование 3В	Выброс г/с	Выброс т/период
2908	Пыль неорганическая, содержащая двуокись	0.0020000	0.0003557
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения 6004

Склад грунта

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-о).

Источник выделения	Склад, пересыпка и хранение		
Наименование материала	Глина		
Наименование	Символ	Ед. изм.	Итого
Суммарное кол-во переработ. материала	Gчас	т/ч	60
Суммарное кол-во переработ. материала	Gгод	т/период	67242,812

Вес. доля пыл. фракции в материале (табл. 1)	k1		0,05
Доля пыли переходящая в аэрозоль (табл. 1)	k2		0,02
Коэф. учитывающий метеоусловия (табл. 2)	k3		1,2
Коэф. учитывающие местные условия (табл. 3)	k4		1
Коэф. учитывающие влажность материала (табл. 4)	k5		0,01
Коэф. учитывающие профиль повер-ти складир.материала (табл. 4)	k6		1,4
Коэф. учитывающие крупность материала (табл. 5)	k7		0,5
Унос пыли с одного квадратного метра фактической поверхности	q	г/м ² *с	0,002
Поверхность пыления в плане, м ²	F	M ²	26
Коэф.учитыв. высоту пересыпки (табл. 7)	В		0,7
Эффективность средств пылеподавления	η		0
2908 Пыль неорганическая - SiO2 (20-70%)		_	
Мсек (p)=((k1*k2*k3*k4*k5*k7*B*Gчас*10 ⁶)/3600)+(k3*k4*k5*k6*k7*q*F	:)*(1-η)	г/сек	0,0704
Мгод(р)=(k1*k2*k3*k4*k5*k7*B*Gгод)+((k3*k4*k5*k6*k7*q*F)*(1-η)		т/период	0,2829

Источник загрязнения 6005

Склад щебня

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-о).

Источник выделения	Склад, пересыпка и хранение Глина		ранение
Наименование материала			Глина
Наименование	Символ	Ед. изм.	Итого
Суммарное кол-во переработ. материала	Gчас	т/ч	30
Суммарное кол-во переработ. материала	Gгод	т/период	7640,708
Вес. доля пыл. фракции в материале (табл. 1)	k1		0,04
Доля пыли переходящая в аэрозоль (табл. 1)	k2		0,02
Коэф. учитывающий метеоусловия (табл. 2)	k3		1,2
Коэф. учитывающие местные условия (табл. 3)	k4		1
Коэф. учитывающие влажность материала (табл. 4)	k5		0,01
Коэф. учитывающие профиль повер-ти складир.материала (табл. 4)	k6		1,4
Коэф. учитывающие крупность материала (табл. 5)	k7		0,5
Унос пыли с одного квадратного метра фактической поверхности	q	г/м ² *с	0,002
Поверхность пыления в плане, м ²	F	M ²	16
Коэф.учитыв. высоту пересыпки (табл. 7)	В		0,7
Эффективность средств пылеподавления	η		0
2908 Пыль неорганическая - SiO2 (20-70%)			
Мсек (р)=((k1*k2*k3*k4*k5*k7*B*Gчас*10 ⁶)/3600)+(k3*k4*k5*k6*k7*q*F)*(1-η)		г/сек	0,0283
Мгод(р)=(k1*k2*k3*k4*k5*k7*B*Gгод)+((k3*k4*k5*k6*k7*q*F)*(1-η)		т/период	0,0259

Источник загрязнения 6006

Склад гравия

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-о).

Источник выделения	Склад, пересыпка и хранение		кранение	
Наименование материала	Гравий			
Наименование	Символ	Символ Ед. изм. Ито		
Суммарное кол-во переработ. материала	Gчас	т/ч	30	
Суммарное кол-во переработ. материала	Gгод	т/г.	69,43	
Вес. доля пыл. фракции в материале (табл. 1)	k1		0,01	
Доля пыли переходящая в аэрозоль (табл. 1)	k2		0,001	
Коэф. учитывающий метеоусловия (табл. 2)	k3		1,2	
Коэф. учитывающие местные условия (табл. 3)	k4		1	

Коэф. учитывающие влажность материала (табл. 4)	k5		0,01
Коэф. учитывающие профиль повер-ти складир.материала (табл. 4)	k6		1,4
Коэф. учитывающие крупность материала (табл. 5)	k7		0,5
Унос пыли с одного квадратного метра фактической поверхности	q	г/м ² *с	0,002
Поверхность пыления в плане, м ²	F	M ²	8
Коэф.учитыв. высоту пересыпки (табл. 7)	В		0,7
Эффективность средств пылеподавления	η		0
2908 Пыль неорганическая - SiO2 (20-70%)		-	
Мсек (p)=((k1*k2*k3*k4*k5*k7*B*Gчас*10 ⁶)/3600)+(k3*k4*k5*k6*k7*q*F)*(1-η)		г/сек	0,0005
Мгод(р)=(k1*k2*k3*k4*k5*k7*B*Gгод)+((k3*k4*k5*k6*k7*q*F)*(1-η)		т/г.	0,0001

Источник загрязнения 6007

Склад ПГС

Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-о).

Источник выделения	Склад, пересыпка и хранени		ранение
Наименование материала	ПГС		
Наименование	Символ	Ед. изм.	Итого
Суммарное кол-во переработ. материала	Gчас	т/ч	40
Суммарное кол-во переработ. материала	Gгод	т/г.	2011,26
Вес. доля пыл. фракции в материале (табл. 1)	k1		0,03
Доля пыли переходящая в аэрозоль (табл. 1)	k2		0,04
Коэф. учитывающий метеоусловия (табл. 2)	k3		1,2
Коэф. учитывающие местные условия (табл. 3)	k4		1
Коэф. учитывающие влажность материала (табл. 4)	k5		0,01
Коэф. учитывающие профиль повер-ти складир.материала (табл. 4)	k6		1,4
Коэф. учитывающие крупность материала (табл. 5)	k7		0,5
Унос пыли с одного квадратного метра фактической поверхности	q	Γ/M ² *C	0,002
Поверхность пыления в плане, м ²	F	M ²	12
Коэф.учитыв. высоту пересыпки (табл. 7)	В		0,7
Эффективность средств пылеподавления	η		0
2908 Пыль неорганическая - SiO2 (20-70%)			
Мсек (р)=((k1*k2*k3*k4*k5*k7*B*Gчас*10 ⁶)/3600)+(k3*k4*k5*k6*k7*q*F)*(1-η)		г/сек	0,0562
Мгод(р)=(k1*k2*k3*k4*k5*k7*B*Gгод)+((k3*k4*k5*k6*k7*q*F)*(1-η)		т/г.	0,0103

Источник загрязнения 6008

Сварочные работы. Электроды 342

РНД 211.2.02.03-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

Ссылки по тексту даны на таблицы, графики данной Методики.

Предусмотренные в рамках рабочего проекта электроды с типами наплавленного металла 342 выпускаются марками электродов АНО-6 (тип наплавленного металла 342).

Наименование параметра	ед. изм.	Значен. параметра
Расход применяемого сырья и материалов,В год	кг/год	19089,9538
Фактический максимальный расход применяемых сырья и материалов с учетом дискретности работы оборудования, Вчас	кг/час	0,97
Удельный показатель выброса (железа (II III) оксиды в пересчете на железо), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхт		14,97
Удельный показатель выброса (марганец и его соединения в пересчете на марганец IV оксид), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхт	г/кг	1,73
Удельный показатель выброса (сварочный аэрозоль), на единицу массы	г/кг	16,7

расходуемых (приготовляемых) сырья и материалов, Кхт			
Степень очистки воздуха в соответствующем аппарате, которым снабжается	доли	0	
группа технологических агрегатов, η	единиц	0	
Результаты расчета			
0123 железа (II III) оксиды в пересчете на железо			
Максимальный из разовых выброс Мсек=(Kxm*Bчас)/3600*(1-η)	г/с	0,00405	
Валовый выброс Мгод=(Вгод*Кхm)/1000000*(1-η)	т/год	0,28578	
0143 марганец и его соединения в пересчете на марганец IV оксид			
Максимальный из разовых выброс Мсек=(Kxm*Bчас)/3600*(1-η)	г/с	0,00047	
Валовый выброс Мгод=(Вгод*Kxm)/1000000*(1-η)	т/год	0,0330256	

Источник загрязнения 6009

Сварочные работы. Электроды 346

РНД 211.2.02.03-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

Ссылки по тексту даны на таблицы, графики данной Методики.

Наименование параметра	ед. изм.	Значен. параметра
Расход применяемого сырья и материалов,В год	кг/год	16935,77232
Фактический максимальный расход применяемых сырья и материалов с учетом дискретности работы оборудования, Вчас	кг/час	1,00
Удельный показатель выброса (железа (II III) оксиды в пересчете на железо), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхт	г/кг	15,73
Удельный показатель выброса (марганец и его соединения в пересчете на марганец IV оксид), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхm	г/кг	1,66
Удельный показатель выброса (пыль неорганическая SiO2 20-70%), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхm	г/кг	0,41
Удельный показатель выброса (сварочный аэрозоль), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхт	г/кг	17,8
Степень очистки воздуха в соответствующем аппарате, которым снабжается	доли	0
группа технологических агрегатов, η	единиц	U
Результаты расчета		
0123 железа (II III) оксиды в пересчете на железо		
Максимальный из разовых выброс Мсек=(Кхm*Вчас)/3600*(1-η)	г/с	0,00438
Валовый выброс Мгод=(Вгод*Кхm)/1000000*(1-η)	т/год	0,2664
0143 марганец и его соединения в пересчете на марганец IV оксид		
Максимальный из разовых выброс Мсек=(Кхm*Вчас)/3600*(1-η)	г/с	0,00046
Валовый выброс Мгод=(Вгод*Кхт)/1000000*(1-η)	т/год	0,028113
2908 пыль неорганическая SiO2 20-70%		
Максимальный из разовых выброс Мсек=(Кхm*Вчас)/3600*(1-η)	г/с	0,00011
Валовый выброс Мгод=(Вгод*Кхm)/1000000*(1-η)	т/год	0,006944

Источник загрязнения 6010

Сварочные работы. Проволока С 08Г2С

РНД 211.2.02.03-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

Ссылки по тексту даны на таблицы, графики данной Методики.

Предусмотренные в рамках рабочего проекта типы проволоки из-за отсутствия данных материалов в методике, принимаем по аналогу сварочной проволокой Св 08Г2С.

Наименование параметра	ед.	Значен.
	изм.	параметра

Расход применяемого сырья и материалов,В год	кг/год	1498,33
Фактический максимальный расход применяемых сырья и материалов с учетом		0,51
дискретности работы оборудования, Вчас		
Удельный показатель выброса (железа (II III) оксиды в пересчете на железо), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхт		7,67
Удельный показатель выброса (марганец и его соединения в пересчете на		
марганец IV оксид), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхm		1,9
Удельный показатель выброса (пыль неорганическая SiO2 20-70%), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхm		0,43
Удельный показатель выброса (сварочный аэрозоль), на единицу массы расходуемых (приготовляемых) сырья и материалов, Кхт		10
Степень очистки воздуха в соответствующем аппарате, которым снабжается	доли	0
группа технологических агрегатов, η	единиц	U
Результаты расчета		
0123 железа (II III) оксиды в пересчете на железо		
Максимальный из разовых выброс Мсек=(Kxm*Вчас)/3600*(1-η)	г/с	0,00109
Валовый выброс Мгод=(Вгод*Кхm)/1000000*(1-η)	т/год	0,011492
0143 марганец и его соединения в пересчете на марганец IV оксид		
Максимальный из разовых выброс Mceк=(Kxm*Bчac)/3600*(1-η)		0,00027
Валовый выброс Mгод=(Bгод*Kxm)/1000000*(1-η)		0,002847
2908 пыль неорганическая SiO2 20-70%		
Максимальный из разовых выброс Mceк=(Kxm*Bчac)/3600*(1-η)	г/с	0,00006
Валовый выброс Мгод=(Вгод*Kxm)/1000000*(1-η)		0,000644

Сварочные работы. Полиэтиленовые трубы

Методика расчета выбросов вредных веществ в атмосферу при работе с пластмассовыми материалами (Приложение №7 к приказу Министра окружающей среды РК от 18.04.2008 г. № 100-п).

Наименование параметра	ед. изм.	Значен. параметра		
Годовое время работы оборудования, Т	час	150,00		
Количество сварок в течении года, N	ед.	569,00		
Удельный показатель выброса оксида углерода, на одну сварку, qi	т/сварку	0,009		
Удельный показатель выброса винила хлористого, на одну сварку, qi	т/сварку	0,0039		
Результаты расчета				
0337 Оксид углерода				
Максимальный из разовых выброс Мсек=(Мгод*10³)/(Т*3600)	г/с	0,0000095		
Валовый выброс Мгод=q*N*10 ⁻⁶	т/год	0,000005		
0827 Винил хлористый				
Максимальный из разовых выброс Мсек=(Мгод*10³)/(Т*3600)	г/с	0,00000411		
Валовый выброс Мгод=q*N	т/год	0,00000222		

Источник загрязнения 6012

Лакокрасочные работы. Грунтовка ГФ-021

Марка <i>ЛКМ</i>	ГФ-021
Способ окраски	Пневмат
Фактический годовой расход ЛКМ, тонн <i>тф</i>	3,58204992

Общий валовый выброс, т/год	1,6119		
Общий максимальный из разовых выброс, г/сек	0,2250		
Валовый выброс 3В при сушке, т/год <i>М суш. год.</i>	1,208942		
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,168750		
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,402981		
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,056250		
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	100		
0616 ксилол			
Валовый выброс (нелетучей) сухой части аэрозоля краски, т/год Мн.окр год			
Макс-й разовый выброс нелетучей (сухой) части аэрозоля, г/сек <i>Мн.окр. сек.</i>	0,0825		
2902 Взвешенные частицы			
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. δ " $m{p}$			
Доля растворителя в ЛКМ, выделившегося при нанесении(табл. 3), % мас. $\delta' {m p}$	25		
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	45		
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa			
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, <i>m</i> m	1,80		

Лакокрасочные работы. Грунтовка ВЛ-02

Марка <i>ЛКМ</i>		
Способ окраски		
Фактический годовой расход ЛКМ, тонн <i>тф</i>		
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, <i>m</i> m	0,80	
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	-	
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	79	
Доля растворителя в ЛКМ, выделившегося при нанесении(табл. 3), % мас. $\delta' {m p}$	28	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' {m p}$	72	
1042 Бутан-1-ол		
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	24,06	
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек.</i>	0,011827	
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,000098	
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>		
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,000252	
Общий максимальный из разовых выброс, г/сек	0,042239	
Общий валовый выброс, т/год	0,000350	
1061 Этанол		
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	48,71	
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .		
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,000198	
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,000055	
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,000198	
Общий максимальный из разовых выброс, г/сек	0,023999	
Общий валовый выброс, т/год	0,000397	
1401 ацетон		
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	28,2	
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,013862	
	0,000115	

Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,035645
Валовый выброс 3В при сушке, т/год М суш. год.	0,000295
Общий максимальный из разовых выброс, г/сек	0,049507
Общий валовый выброс, т/год	0,000410
0616 ксилол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	6
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек.</i>	0,002949
Валовый выброс 3В при окраске, т/год М окр. год.	0,000024
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,007584
Валовый выброс 3В при сушке, т/год М суш. год.	0,000063
Общий максимальный из разовых выброс, г/сек	0,010533
Общий валовый выброс, т/год	0,000087

Лакокрасочные работы. Грунтовка ВЛ-023

Марка <i>ЛКМ</i>	ВЛ-023	
Способ окраски		
Фактический годовой расход ЛКМ, тонн <i>тф</i>		
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, <i>m</i> m	0,5	
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	-	
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	74	
Доля растворителя в ЛКМ, выделившегося при нанесении(табл. 3), % мас. $\delta' {m p}$	28	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' {m p}$	72	
1042 Бутан-1-ол		
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	24,06	
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,006924	
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000027	
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,017804	
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,000069	
Общий максимальный из разовых выброс, г/сек	0,024728	
Общий валовый выброс, т/год	0,000096	
1061 Этанол		
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	48,71	
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,014018	
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000054	
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>		
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,000054	
Общий максимальный из разовых выброс, г/сек	0,014033	
Общий валовый выброс, т/год	0,000109	
1401 ацетон		
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	22,78	
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,006556	
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000025	
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,016857	
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,000065	
Общий максимальный из разовых выброс, г/сек	0,023413	
Общий валовый выброс, т/год	0,000091	

0621 толуол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	1,28
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,000368
Валовый выброс 3В при окраске, т/год М окр. год.	0,000001
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,000947
Валовый выброс 3В при сушке, т/год М суш. год.	0,000004
Общий максимальный из разовых выброс, г/сек	0,001316
Общий валовый выброс, т/год	0,000005
1210 бутилацетат	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	3,17
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,000912
Валовый выброс 3В при окраске, т/год М окр. год.	0,000004
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,002346
Валовый выброс 3В при сушке, т/год М суш. год.	0,000009
Общий максимальный из разовых выброс, г/сек	0,003258
Общий валовый выброс, т/год	0,000013

Лакокрасочные работы. Грунтовка ХС-010

Марка <i>ЛКМ</i>	XC-010
Способ окраски	пневмат
Фактический годовой расход ЛКМ, тонн <i>mф</i>	0,03014964
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, <i>m</i> m	0,80
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	30
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	67
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	25
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' \pmb{p}$	75
2902 Взвешенные вещества	
Макс-й разовый выброс нелетучей (сухой) части аэрозоля, г/сек <i>Мн.окр. сек</i> .	0,0220
Валовый выброс (нелетучей) сухой части аэрозоля краски, т/год Мн.окр год	0,003
0621 толуол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	62
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,023078
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,003131
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,069233
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,009393
Общий максимальный из разовых выброс, г/сек	0,092311
Общий валовый выброс, т/год	0,012524
1401 ацетон	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	26
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,009678
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,001313
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,029033
Валовый выброс 3B при сушке, т/год <i>М суш. год.</i>	0,003939
Общий максимальный из разовых выброс, г/сек	0,038711
Общий валовый выброс, т/год	0,005252

1210 бутилацетат	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	62
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,023078
Валовый выброс 3В при окраске, т/год М окр. год.	0,003131
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,000870
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,003131
Общий максимальный из разовых выброс, г/сек	0,023948
Общий валовый выброс, т/год	0,006262

Лакокрасочные работы. Эмаль ПФ-115

РНД 211.2.02.05-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)

Марка ЛКМ	ПФ-115
Способ окраски	пневмат
Фактический годовой расход ЛКМ, тонн <i>тф</i>	6,02443701
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,	
<i>m</i> m	2,80
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	30
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	45
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' \pmb{p}$	25
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' {m p}$	75
2902 Взвешенные вещества	
Макс-й разовый выброс нелетучей (сухой) части аэрозоля, г/сек <i>Мн.окр. сек.</i>	0,01283
Валовый выброс (нелетучей) сухой части аэрозоля краски, т/год Мн.окр год	0,99403
0616 ксилол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	50
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,043750
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,338875
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,131250
Валовый выброс 3B при сушке, т/год <i>М суш. год.</i>	1,016624
Общий максимальный из разовых выброс, г/сек	0,1750
Общий валовый выброс, т/год	1,3555
2752 уайт-спирит	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	50
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,043750
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,338875
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,131250
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	1,016624
Общий максимальный из разовых выброс, г/сек	0,1750
Общий валовый выброс, т/год	1,3555

Источник загрязнения 6017

Лакокрасочные работы. Эмаль ПФ-133

Марка <i>ЛКМ</i>			ПФ-133
Способ окраски			пневмат
Фактический годовой расход ЛКМ, тонн г	пф		0,0666342

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,	
mm	0,80
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	30
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	50
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	25
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' \pmb{p}$	75
2902 Взвешенные вещества	
Макс-й разовый выброс нелетучей (сухой) части аэрозоля, г/сек Мн.окр. сек.	0,0333
Валовый выброс (нелетучей) сухой части аэрозоля краски, т/год Мн.окр год	0,01
0616 ксилол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	50
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,013889
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,004165
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,041667
Валовый выброс 3В при сушке, т/год М суш. год.	0,012494
Общий максимальный из разовых выброс, г/сек	0,055556
Общий валовый выброс, т/год	0,01666
2752 уайт-спирит	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	50
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,013889
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,004165
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,041667
Валовый выброс 3В при сушке, т/год М суш. год.	0,012494
Общий максимальный из разовых выброс, г/сек	0,055556
Общий валовый выброс, т/год	0,01666

Лакокрасочные работы. Эмаль ХВ-124

Марка <i>ЛКМ</i>	XB-124
Способ окраски	пневматич
Фактический годовой расход ЛКМ, тонн <i>тф</i>	0,00852
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, <i>m</i> m	0,80
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	30
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	27
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	25
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' {m p}$	75
2902 Взвешенные вещества	
Макс-й разовый выброс нелетучей (сухой) части аэрозоля, г/сек <i>Мн.окр. сек</i> .	0,049
Валовый выброс (нелетучей) сухой части аэрозоля краски, т/год Мн.окр год	0,002
1210 Бутилацетат	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	12
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,001800
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000069
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,005400
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,000207
Общий максимальный из разовых выброс , г/сек	0,007200
Общий валовый выброс, т/год	0,000276

1401 ацетон	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	26
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек.</i>	0,003900
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000150
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,011700
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,000449
Общий максимальный из разовых выброс, г/сек	0,015600
Общий валовый выброс, т/год	0,000598
0621 толуол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	62
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек.</i>	0,009300
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000357
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,000099
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,000357
Общий максимальный из разовых выброс, г/сек	0,009399
Общий валовый выброс, т/год	0,000713

Лакокрасочные работы. Эмаль ХВ-785

Марка <i>ЛКМ</i>	XB-785
Способ окраски	кистью
Фактический годовой расход ЛКМ, тонн <i>тф</i>	0,00303442
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, <i>m</i> m	0,4
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	73
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	28
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' {m p}$	72
1210 Бутилацетат	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	12
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,002725
Валовый выброс 3В при окраске, т/год М окр. год.	0,000074
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,007008
Валовый выброс 3В при сушке, т/год М суш. год.	0,000191
Общий максимальный из разовых выброс, г/сек	0,009733
Общий валовый выброс, т/год	0,000266
1401 ацетон	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	26
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,005905
Валовый выброс 3В при окраске, т/год М окр. год.	0,000161
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,015184
Валовый выброс 3В при сушке, т/год М суш. год.	0,000415
Общий максимальный из разовых выброс, г/сек	0,021089
Общий валовый выброс, т/год	0,000576
0621 толуол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	62
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,014081
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000385

Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,000107
Валовый выброс 3В при сушке, т/год <i>М суш. год.</i>	0,000385
Общий максимальный из разовых выброс, г/сек	0,014188
Общий валовый выброс, т/год	0,000769

Лакокрасочные работы. Эмаль ХВ-1120

РНД 211.2.02.05-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)

Марка <i>ЛКМ</i>	XB-1120
Способ окраски	кистью
Фактический годовой расход ЛКМ, тонн <i>тф</i>	0,00471744
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,	
<i>m</i> m	0,80
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	-
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	73
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	28
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. δ " $m{p}$	72
1210 Бутилацетат	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	37,43
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,008734
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,000371
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,022458
Валовый выброс 3В при сушке, т/год <i>М суш. год.</i>	0,000953
Общий максимальный из разовых выброс, г/сек	0,031192
Общий валовый выброс, т/год	0,001324
0616 ксилол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	2,57
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,000600
Валовый выброс 3В при окраске, т/год М окр. год.	0,000025
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,001542
Валовый выброс 3В при сушке, т/год М суш. год.	0,000065
Общий максимальный из разовых выброс, г/сек	0,002142
Общий валовый выброс, т/год	0,000091
0621 толуол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	60
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,014000
Валовый выброс 3B при окраске <i>,</i> т/год <i>М окр. год.</i>	0,000594
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,000165
Валовый выброс 3В при сушке, т/год <i>М суш. год.</i>	0,000594
Общий максимальный из разовых выброс, г/сек	0,014165
Общий валовый выброс, т/год	0,001189

Источник загрязнения 6021

Лакокрасочные работы. Эмаль ХС-759

Марка <i>ЛКМ</i>	XC-759
Способ окраски	Пневмат

Фактический годовой расход ЛКМ, тонн <i>тф</i>	0,011875
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, <i>m</i> m	0,80
Доля краски, потерянной в виде аэрозоля (% мас.) табл.З δa	30
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	69
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	25
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. δ " $m{p}$	75
2902 Взвешенные вещества	
Макс-й разовый выброс нелетучей (сухой) части аэрозоля, г/сек <i>Мн.окр. сек.</i>	0,021
Валовый выброс (нелетучей) сухой части аэрозоля краски, т/год <i>Мн.окр год</i>	0,001
1210 Бутилацетат	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	11,96
Максимальный из разовых выбросов ЗВ при окраске, г/с <i>М окр.сек.</i>	0,004585
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,000245
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,013754
Валовый выброс 3B при сушке, т/год <i>М суш. год.</i>	0,000735
Общий максимальный из разовых выброс, г/сек	0,018339
Общий валовый выброс, т/год	0,000980
1401 ацетон	•
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	27,58
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,010572
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,000565
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,031717
Валовый выброс 3B при сушке, т/год <i>М суш. год.</i>	0,001695
Общий максимальный из разовых выброс, г/сек	0,04229
Общий валовый выброс, т/год	0,002260
0621 толуол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	46,06
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,017656
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,000944
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,000262
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,000944
Общий максимальный из разовых выброс, г/сек	0,01792
Общий валовый выброс, т/год	0,001887
1411 циклогексанон	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	14,4
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,005520
Валовый выброс ЗВ при окраске, т/год Мокр. год.	0,000295
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,000082
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,000295
Общий максимальный из разовых выброс, г/сек	0,0056
Общий валовый выброс, т/год	0,00059

Лакокрасочные работы. Лак БТ-577

Марка <i>ЛКМ</i>	БТ-577
------------------	--------

Способ окраски	пневматич
Фактический годовой расход ЛКМ, тонн <i>тф</i>	0,2724611
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,	
<i>m</i> m	0,8
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	30
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	63
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	25
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta^{\prime\prime} {m p}$	75
2902 Взвешенные вещества	
Макс-й разовый выброс нелетучей (сухой) части аэрозоля, г/сек <i>Мн.окр. сек.</i>	0,0247
Валовый выброс (нелетучей) сухой части аэрозоля краски, т/год Мн.окр год	0,03024
0616 ксилол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	57,4
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,020090
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,024632
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,060270
Валовый выброс 3B при сушке, т/год <i>М суш. год.</i>	0,073896
Общий максимальный из разовых выброс, г/сек	0,080360
Общий валовый выброс, т/год	0,098527
2752 уайт-спирит	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	42,6
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,014910
Валовый выброс 3В при окраске, т/год М окр. год.	0,018281
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,044730
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,054842
Общий максимальный из разовых выброс, г/сек	0,059640
Общий валовый выброс, т/год	0,073123

Лакокрасочные работы. Растворитель Р-4

Марка <i>ЛКМ</i>	раст.Р-4
Способ окраски	ручной
Фактический годовой расход ЛКМ, тонн <i>тф</i>	0,70178126
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, mm	1,80
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	0
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	100
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	28
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' {m p}$	72
1401 ацетон	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	26
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,036400
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,051090
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,093600
Валовый выброс 3B при сушке, т/год <i>М суш. год.</i>	0,131373
Общий максимальный из разовых выброс, г/сек	0,130000
Общий валовый выброс, т/год	0,182463

1210 бутилацетат	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	12
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек.</i>	0,016800
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,023580
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,043200
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,060634
Общий максимальный из разовых выброс, г/сек	0,060000
Общий валовый выброс, т/год	0,084214
0621 толуол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	62
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек.</i>	0,086800
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,121829
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,223200
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,313275
Общий максимальный из разовых выброс, г/сек	0,310000
Общий валовый выброс, т/год	0,435104

Лакокрасочные работы. Растворитель №648

Марка <i>ЛКМ</i>	Nº646
Способ окраски	ручное
Фактический годовой расход ЛКМ, тонн <i>тф</i>	0,00066179
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,	
<i>m</i> m	0,40
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	0
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	100
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия (табл. 3), % мас. $\delta' {m p}$	28
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta ^{\prime \prime }{m p}$	72
1042 бутан-1-ол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	20
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,006222
Валовый выброс 3B при окраске, т/год <i>М окр. год.</i>	0,000037
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,016000
Валовый выброс ЗВ при сушке, т/год М суш. год.	0,000095
Общий максимальный из разовых выброс, г/сек	0,022222
Общий валовый выброс, т/год	0,000132
1061 этанол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	10
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,003111
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000019
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек.</i>	0,000005
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,000019
Общий максимальный из разовых выброс, г/сек	0,003116
Общий валовый выброс, т/год	0,000037
1210 Бутилацетат	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	50
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек</i> .	0,015556

Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000093
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,040000
Валовый выброс 3В при сушке, т/год М суш. год.	0,000238
Общий максимальный из разовых выброс, г/сек	0,055556
Общий валовый выброс, т/год	0,000331
621 толуол	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	20
Максимальный из разовых выбросов 3B при окраске, г/с <i>M окр.сек</i> .	0,006222
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,000037
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,016000
Валовый выброс 3В при сушке, т/год М суш. год.	0,000095
Общий максимальный из разовых выброс, г/сек	0,022222
Общий валовый выброс, т/год	0,000132

Лакокрасочные работы. Уайт-спирит

РНД 211.2.02.05-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)

	уайт-
Марка <i>ЛКМ</i>	спирит
Способ окраски	ручное
Фактический годовой расход ЛКМ, тонн <i>тф</i>	1,02457018
Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг,	
<i>m</i> m	1,8
Доля краски, потерянной в виде аэрозоля (% мас.) табл.3 δa	0
Доля летучей части (растворителя) в ЛКМ (табл.2), % мас. <i>fp</i>	100
Доля растворителя в ЛКМ, выделившегося при нанесении(табл. 3), % мас. $\delta' {m p}$	28
Доля растворителя в ЛКМ, выделившегося при сушке покрытия (табл. 3), % мас. $\delta'' {m p}$	72
2752 уайт-спирит	
Доля вещества в летучей части ЛКМ (табл.2), % мас, δx	100
Максимальный из разовых выбросов 3B при окраске, г/с <i>М окр.сек.</i>	0,140000
Валовый выброс ЗВ при окраске, т/год М окр. год.	0,286880
Максимальный из разовых выбросов 3B при сушке, г/с <i>M суш.сек</i> .	0,360000
Валовый выброс ЗВ при сушке, т/год <i>М суш. год.</i>	0,737691
Общий максимальный из разовых выброс а, г/сек	0,500000
Общий валовый выброс, т/год	1,024570

Источник загрязнения 6026

Пила по дереву

РНД 211.2.05.08-2004 Методика по расчету выбросов загрязняющих веществ в атмосферу предприятиями деревообрабатывающей промышленности

Станок токарный по дереву (не оборудован системой местных отсосов)

Удельный показатель пылеобразования (приложение 1), г/с, Q	0,39
Фактический годовой фонд времени работы оборудования, ч, Т	12
Коэффициент гравитационного оседания, k	0,2
Расчет выбросов пыли древесной (2936)	
Максимальный из разовых выбросов, Мсек=k×Q, г/с	0,078
Валовый выброс, Мгод=k×Q×T×3600×10 ⁻⁶ , т/год	0,00337

Молоток отбойный и перфоратор (глубокое сверление)

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004

Местный отсос пыли	не обеспечен		
Тип расчета	без охлаждения		
Вид оборудования		сверлильный	
Наименование вещества	Обозн.	ед. изм.	Значение
коэффициент гравитационного оседания	k		0,200
удельный выброс взвешенных веществ технологическим оборудованием (табл. 1)	Q	г/сек	0,0083
фактический годовой фонд времени работы одной единицы оборудования	Т	час	1420
степень очистки воздуха пылеулавливающим оборудованием (в долях единицы)	h		0,000
2902 Взвешенные частицы (116)			
Максимальный разовый выброс М _{сек} =k×Q×(1-η)	Мсек	г/сек	0,00166
Валовый выброс M _{год} =3600×Q×T×(1-η)×10^(-6)	Мгод	т/год	0,04243

Источник загрязнения 6028 Шлифовальный станок

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004

Местный отсос пыли		не обеспече	PH .
Тип расчета	без охлаждения		
Вид оборудования	шл	іифовальный (станок
Диаметр шлифовального круга, мм		300	
Наименование вещества	Обозн.	Ед. изм.	3начение
коэффициент гравитационного оседания	k		0,400
удельный выброс пыли образивной технологическим оборудованием (табл. 1)	Q	г/сек	0,017
удельный выброс взвешенных веществ технологическим оборудованием (табл. 1)	Q	г/сек	0,026
фактический годовой фонд времени работы одной единицы оборудования	Т	час	2377
степень очистки воздуха пылеулавливающим оборудованием (в долях единицы)	h		0,000
2930 Пыль абразивная (1046)			
Максимальный разовый выброс М _{сек} =k×Q×(1-η)	Мсек	г/сек	0,00680
Валовый выброс M _{год} =3600×Q×T×(1-η)×10^(-6)	Мгод	т/г.	0,1455
2902 Взвешенные частицы			
Максимальный разовый выброс М _{сек} =k×Q×(1-η)	Мсек	г/сек	0,01040
Валовый выброс M _{год} =3600×Q×T×(1-η)×10^(-6)	Мгод	т/г.	0,2225

Источник загрязнения 6029 Сверлильный станок

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004

Местный отсос пыли	не проводится	
Система вентиляции	на открытом воздухе	

Т	ип расчета	с охлаждением эмульсией содержащей эмульсола 3-10%
В	вид оборудования	Сверлильный

Наименование вещества	Обозн.	ед. изм.	Значение
мощность установленного оборудования	N	кВт	11,00000
удельные показатели выделения масла или эмульсола на 1 кВт мощности оборудования (табл. 7)	Q	г/сек	0,00000050
фактический годовой фонд времени работы одной единицы оборудования	Т	час	2414
2868 Эмульсол (1464)			
Максимальный разовый выброс Мсек=N×Q, г/с	Мсек	г/сек	0,00000550
Валовый выброс Мгод=3600×k×Q×T×10 ⁻⁶	Мгод	т/год	0,00000435

Гидроизоляционные работы

Источник выделения 001. Котел битумный.

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу МООС РК от 29.07.2011г. № 196. Ссылки по тексту даны на таблицы, графики данной Методики.

ох"), т/год 0,0008907
ы ("обратный выдох"), г/сек 0,04934
од • КОБ·В)/(10⁴·рж·(546+tжmax+tжmin)) 0,008907
сек 0²-(273+tжmax) 0,493
12-C19)
овоздушной смеси, вытесняемой из резервуаров во 12,3
кидкости в резервуаре, °C 140
кидкости в резервуаре, °C 100
187
и (Приложение 10) 2,5
ра поб (для Приложения 10) 3,4
ра (автогудронатора), м3
0,95
мое в резервуар в течение года, т/год 52,55541
риложению 8 1
ожение 8) 0,7
кение 9) 1
з жидкости при максимальной температуре жидкости, 19,91
4,20
в жидкости при минимальной температуре жидкости,

Источник выделения 002. Нанесение битума на поверхность.

qcp - количество углеводородов, испаряющихся с 1 м2 открытой поверхности (таблица 6.3 методики), г/м2*час	7,267
F - поверхность испарения, м ²	3564
t - время проведения работ, дней	20

tч - количество часов в смену, час	4
n - количество слоев нанесения битума	2
2754 предельные углеводороды (С12-С19)	
Максимальный из разовых выброс M =qcp*F/t*/3600, r/ceк	0,35972
Годовой выброс G=q _{cp} *F/t*tч*t*0,000001*n, т/год	0,2072

Асфальтирование территории

Источник выделения 001. Слив битума из машины

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу МООС РК от 29.07.2011г. № 196. Ссылки по тексту даны на таблицы, графики данной Методики.

Pt ^{min} — давление насыщенных паров жидкости при минимальной температуре	4,26
жидкости, мм.рт.ст	-,
${\sf P_t}^{\sf max}$ — давление насыщенных паров жидкости при максимальной температуре	19,91
жидкости, мм. рт. ст.	
КВ - опытный коэффициент (Приложение 9)	1
К _р ^{ср} — опытный коэффициент (Приложение 8)	0,7
К _р ^{тах} – опытный коэффициент, по приложению 8	1
В - количество жидкости, закачиваемое в резервуар в течение года, т/год	1361,97612
$ ho_{ m imes}$ - плотность жидкости, т/м 3	0,95
Единовременная емкость резервуара (автогудронатора), м3	7
Годовая оборачиваемость резервуара поб (для Приложения 10)	116
Коб - коэффициент оборачиваемости (Приложение 10)	2,5
m - молекулярная масса	187
$t_{\mathtt{w}}^{min}$ – минимальная температура жидкости в резервуаре, $^{\circ}C$	100
t _ж ^{max} – максимальная температура жидкости в резервуаре, °C	140
V_{4}^{max} — максимальный объем паровоздушной смеси, вытесняемой из резервуаров во время его закачки, м ³ /час	12,3
2754 предельные углеводороды (C12-C19)	
Выбросы "большое дыхание" М, г/сек	0.40242
M=(0,445·Pt·m·Kpmax·KB·Vчmax)/10²·(273+tжmax)	0,49343
Выбросы "большое дыхание" G, т/год	0.220024
G=(0,160·(Ptmax· KB+Ptmin)·m·Крср·КОБ·В)/(10⁴·рж·(546+tжmax+tжmin))	0,230834
Максимальные из разовых выбросы ("обратный выдох"), г/сек	0,0493
Годовые выбросы ("обратный выдох"), т/год	0,023083

Источник выделения 002. Разлив битума на поверхности.

qcp - количество углеводородов, испаряющихся с 1 м2 открытой поверхности (таблица 6.3 методики), г/м2*час	7,267
F - поверхность испарения, м ²	5529
t - время проведения работ, дней	10
tч - количество часов в смену, час	4
п-количество слоев битума	1
2754 предельные углеводороды (С12-С19)	
Максимальный из разовых выброс M = q _{cp*} F/t/3600, r/сек	1,1161
Годовой выброс G=(q _{cp} *F/t*tч)*t*0,000001*n, т/год	0,1607

Источник выделения 003. Укладка асфальтобетона.

	qcp - количество углеводородов, испаряющихся с 1 м2 открытой поверхности (таблица	7,267
--	---	-------

6.3 методики), г/м2*час	
F - поверхность испарения, м ²	5529
t - время проведения работ, дней	10
tч - количество часов в смену, час	4
n - количество слоев асфальтового покрытия	2
2754 предельные углеводороды (С12-С19)	
Максимальный из разовых выброс M=q _{cp} xF/t/3600, г/сек	1,1161
Годовой выброс G=(q _{cp} *F/t*tч)*t*0,000001*n, т/год	0,3214

Газовая резка металлов

РНД 211.2.02.03-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

Работы по газовой резке производятся со сталью углеродистой толщиной до 5 мм. Режим работы — 3880 часов в год. Длина разрезаемого металла в час составляет 1 метр.

Выброс железа оксид:

$$M_{\text{год}} = 2,21 * 3880 * (1-0) * 10^{-6} = 0,008575 \text{ т/год}$$

 $M_{\text{сек}} = (2,21*1,0/3600) * (1-0) = 0,0006 \text{ г/сек}.$

Выброс марганца и его соединений:

$$M_{roд} = 0.04*3880*(1-0)*10^{-6} = 0.0001552$$
 т/год; $M_{ce\kappa} = (0.04*1.0/3600)*(1-0) = 0.00001$ г/сек.

Выброс диоксида азота:

$$M_{rog}$$
 = 1,18 * 3880 * (1-0) * 10⁻⁶ = 0,00458 т/год; M_{cek} = (1,18 * 1,0)/3600* (1-0) = 0,0003 г/сек.

Выброс оксида углерода:

$$M_{\text{год}}$$
 = 1,5 * 3880 * (1-0) * 10⁻⁶ = 0,00582 т/год; $M_{\text{сек}}$ = (1,5 * 1,0)/3600 * (1-0) = 0,0004 г/сек.

Результаты расчета выбросов от поста газовой резки металлов

Nº	Наименование загрязняющих веществ	Количество заг	Количество загрязняющих веществ			
		г/с	т/за период монтажа			
0123	Железо (II) оксид	0,0006	0,008575			
0143	Марганец и его соединения	0,00001	0,0001552			
0301	Диоксид азота	0,0003	0,00458			
0337	Оксид углерода	0,0004	0,00582			
Итого		0,0013	0,0191302			

Источник загрязнения 6033

Газовая сварка металла пропан-бутановой смесью

РНД 211.2.02.03-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

Расход пропан-бутановой смеси

1797,714 кг/год.

Режим работы

1438,2 ч/год

Выбросы диоксида азота при газовой сварке составят:

$$M_{roд}$$
= 1797,714 * 15,0 * (1-0) * 10⁻⁶ = 0,027 т\год; $M_{ce\kappa}$ = 0,8 * 15,0 * (1-0) / 3600 = 0,0033 г\сек.

Результаты расчета выбросов от поста газовой сварки металлов

Nº	Наименование загрязняю дх веществ	Количество загрязняющих веществ		
		r/c	т/за период монтажа	

0301	Диоксид азота	0,0033	0,027
Итого		0,0033	0,027

Газовая сварка металла ацетилен-кислородным пламенем

РНД 211.2.02.03-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

Расход ацетилена – 4,575 кг/год,

Режим работы - 4 ч/год.

Выбросы диоксида азота при газовой сварке составят

$$M_{rod} = 4,575 \times 22,0 \times (1-0) \times 10^{-6} = 0,000101 \text{т/год};$$
 $M_{cek} = 1,144 * 22,0 * (1-0) \setminus 3600 = 0,007 \text{ г/сек}.$

Результаты расчета выбросов от поста сварки металлов ацетилен-кислородным

пламенем

Nº	Изимонование загразиваниих рошеств	Количество загрязняющих веществ		
IAZ	Наименование загрязняющих веществ	г/с	т/за период монтажа	
0301	Диоксид азота	0,007	0,000101	
Итого		0,007	0,000101	

Источник загрязнения 6035

Выбросы от работы компрессорной установки ЗИФ-55

"Методика выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Ссылки по тексту даны на таблицы, графики данной Методики.

Выброс вредного вещества на единицу полезной работы стационарной дизельной установки на режиме							
номинальной мощности (табл. 1 или 2), еі г/кВт*ч							
CO NOx CH C SO2 CH2O БП						БП	
7,2	10,3	3,6	0,7	1,1	0,15	0,000013	
Выброс вредного вещества на один кг дизельного топлива стационарной дизельной установки с учетом							
совокупности режимов (табл. 3 или 4), qi г/кг топлива							
СО	NOx	СН	С	SO2	CH2O	БΠ	
30	43	15	3	4,5	0,6	0,000055	

Количество компрессоров		шт	3
Время работы компрессорной установки в день	t	ч/сут	6
Время работы компрессорной установки в год	Т	ч/год	300
Производитель СДУ	Россия		
Состояние КУ	до капитального ремонта		
Группа КУ	A		
Расход топлива КУ за год	Вгод	Т	3,06
Эксплуатационная мощность КУ	Рэ	кВт	60
Удельный расход топлива на экспл./номин. режиме работы двигателя	bэ	г/кВт*ч	170
Температура отработавших газов	Тог	К	801,15

Расчет

Расход отработавших газов	Gor	кг/с	0,08894
Удельный вес отработавших газов	γог	кг/м3	0,3329
Объемный расход отработавших газов	Qог	м3/с	0,2671

0301 Азота (IV) диоксид

	Максимальный из разовых выброс, Мсек=еі * Рэ /3600	Мсек	г/сек	0,41200
--	--	------	-------	---------

Валовый выброс за год, Мгод = q * Вгод/1000	Мгод	т/год	0,31579
0304 Азот (II) оксид (6)			
Максимальный из разовых выброс, Мсек=ei * Рэ /3600	Мсек	г/сек	0,06695
Валовый выброс за год, Мгод = q * Вгод/1000	Мгод	т/год	0,05132
0328 Углерод (593)			
Максимальный из разовых выброс, Мсек=ei * Рэ /3600	Мсек	г/сек	0,03500
Валовый выброс за год, Мгод = q * Вгод/1000	Мгод	т/год	0,02754
0330 Сера диоксид (526)			
Максимальный из разовых выброс, Мсек=ei * Рэ /3600	Мсек	г/сек	0,05500
Валовый выброс за год, Мгод = q * Вгод/1000	Мгод	т/год	0,04131
0337 Углерод оксид (594)			
Максимальный из разовых выброс, Мсек=ei * Рэ /3600	Мсек	г/сек	0,36000
Валовый выброс за год, Мгод = q * Вгод/1000	Мгод	т/год	0,27540
0703 Бенз/а/пирен (54)			
Максимальный из разовых выброс, Мсек=ei * Рэ /3600	Мсек	г/сек	0,0000007
Валовый выброс за год, Мгод = q * Вгод/1000	Мгод	т/год	0,00000050
1325 Формальдегид (619)			
Максимальный из разовых выброс, Мсек=ei * Рэ /3600	Мсек	г/сек	0,00750
Валовый выброс за год, Мгод = q * Вгод/1000	Мгод	т/год	0,00551
2754 Углеводороды предельные С12-С19 (в пересчете на С (592))			
Максимальный из разовых выброс, Мсек=ei * Рэ /3600	Мсек	г/сек	0,18000
Валовый выброс за год, Мгод = q * Вгод/1000	Мгод	т/год	0,13770
итого			
Наименование 3В	г/се	к	т/год
0301 Азота (IV) диоксид		0,4120	0,3158
0304 Азот (II) оксид		0,067	0,0513
0328 Углерод		0,035	0,0275
0330 Сера диоксид		0,055	0,0413
0337 Углерод оксид		0,36	0,2754
0703 Бенз/а/пирен	0,0	000001	0,000001
1325 Формальдегид		0,0075	0,0055
2754 Углеводороды предельные С12-С19		0,18	0,1377

Экскаваторы ЭО-3322. Работа двигателя

Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе асфальтобетонных заводов, Приложение №12 к приказу МООС РК от 18.04.2008 г. № 100-п

Тип машины: Дорожно-строительные машины номинальной мощностью дизельного двигателя 36-60 кВт	
Экскаватор ЭО-3322	
Вид топлива , <i>TOPN</i> =	дизель
	Переходны
Тип периода -	й
Количество рабочих дней, дни, DN =	22
Количество машин данной группы, шт., <i>NK</i> =	2
Коэфф. Выпуска (выезда), А=	0,01
Наибольшее количество машин, работающих на территории в теч.30 мин, шт, <i>NK1</i> =	1
Суммарное время движения машины под нагрузкой в день, мин, <i>Tv1n</i> =	115,2

Суммарное время работы 1 машины на хол. ходу, мин, <i>TXS</i> =	57,60
Максимальное время работы под нагрузкой в течение 30 мин, <i>Tv2n=</i>	10
Макс.время работы машин на хол. ходу за 30 мин, мин , <i>TXM</i> =	1
Суммарное время движения машины без нагрузки в день, мин, <i>Tv1</i> =	115,2
Максимальное время движения машины без нагрузки в течение 30 мин, <i>Tv2</i> =	5
	<u> </u>
<u>Примесь:0301 Азота диоксид</u> Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6)	
удельный выорос при движений по территории с постоянной скоростью, г/мин, (таол.4.о) ML=	0,29
Удельные выбросы 3B при работе на холостом ходу, г/мин,(табл.4.2), <i>MXX</i> =	1,49
Выброс 3B в день при движении и работе на территории, г, M1=ML*L1+1.3*ML*L1N+MXX*TXS=	162,66
Максимальный разовый выброс 3B одним автомобилем, г за 30 мин, M2=ML*L2+1.3*ML*L2N+MXX*TXM=	6,71
Максимально разовый выброс 3B, г/сек , <i>G=M2*NK1/30/60=</i>	0,003728
Валовый выброс 3B, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i>	0,00007157
С учетом трансформации оксидов азота получаем:	
Примесь: 0301 Азот (IV) оксид (Азота диоксид)	
Максимальный разовый выброс, r/c , GS = 0.8 * G =	0,002982
Валовый выброс, т/год , _ <i>M</i> _ = 0.8 * <i>M</i> =	0,00005726
Примесь: 0304 Aзот (II) оксид (Азота оксид)	<u> </u>
Максимальный разовый выброс, r/c , GS = 0.13 * G =	0,000485
Валовый выброс, т/год , _M _ = 0.13 * M =	0,00000930
Примесь: 0330 Сера диоксид (526)	0,00000330
Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6)	
удельный выорос при движенийно территорий с постоянной скоростью, гумин, (таол.4.о) ML=	0,0522
Удельные выбросы 3B при работе на холостом ходу, г/мин,(табл.4.2), <i>MXX</i> =	0,15
Выброс 3B в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS</i> =	22,47
Максимально разовый выброс 3B одним автомобилем, г за 30 мин , $M2=ML*L2+1.3*ML*L2N+MXX*TXM=$	1,09
	1,00
Максимально разовый выброс 3В г/сек <i>G=M2*NK1/30/60=</i>	·
Максимально разовый выброс 3В, г/сек , <i>G=M2*NK1/30/60=</i> Валовый выброс 3В, т/сол <i>M=4*M1*NK*DN*10^(-6)=</i>	0,000605
Валовый выброс 3B, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i>	·
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)= Примесь:0337 Углерод оксид (594)</i> Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6)	0,000605
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)= Примесь:0337 Углерод оксид (594)</i> Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>ML=</i>	0,000605 0,00000989 1,296
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>ML=</i> Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.4.2), <i>MXX</i> =	0,000605
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> ———————————————————————————————————	0,000605 0,00000989 1,296
Валовый выброс 3B, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>МL=</i> Удельные выбросы 3B при работе на холостом ходу, г/мин, (табл.4.2), <i>МXX=</i> Выброс 3B в день при движении и работе на территории, г, <i>М1=ML*L1+1.3*ML*L1N+MXX*TXS=</i> Максимально разовый выброс 3B одним автомобилем, г за 30 мин, <i>М2=ML*L2+1.3*ML*L2N+MXX*TXM=</i>	0,000605 0,00000989 1,296 0,94 344,33 77,47
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>ML=</i> Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.4.2), <i>MXX=</i> Выброс 3В в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS=</i> Максимально разовый выброс 3В одним автомобилем, г за 30 мин,	0,000605 0,00000989 1,296 0,94 344,33
Валовый выброс 3B, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>МL=</i> Удельные выбросы 3B при работе на холостом ходу, г/мин, (табл.4.2), <i>МXX=</i> Выброс 3B в день при движении и работе на территории, г, <i>М1=ML*L1+1.3*ML*L1N+MXX*TXS=</i> Максимально разовый выброс 3B одним автомобилем, г за 30 мин, <i>М2=ML*L2+1.3*ML*L2N+MXX*TXM=</i>	0,000605 0,00000989 1,296 0,94 344,33 77,47
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>ML=</i> Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.4.2), <i>MXX=</i> Выброс 3В в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS=</i> Максимально разовый выброс 3В одним автомобилем, г за 30 мин, <i>M2=ML*L2+1.3*ML*L2N+MXX*TXM=</i> Максимально разовый выброс 3В, г/сек , <i>G=M2*NK1/30/60=</i>	0,000605 0,00000989 1,296 0,94 344,33 77,47 0,043040
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>МL=</i> Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.4.2), <i>МXX=</i> Выброс 3В в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS=</i> Максимально разовый выброс 3В одним автомобилем, г за 30 мин, <i>M2=ML*L2+1.3*ML*L2N+MXX*TXM=</i> Максимально разовый выброс 3В, г/сек , <i>G=M2*NK1/30/60=</i> Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i>	0,000605 0,00000989 1,296 0,94 344,33 77,47 0,043040
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)= Примесь:0337 Углерод оксид (594)</i> Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>МL=</i> Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.4.2), <i>МXX=</i> Выброс 3В в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS=</i> Максимально разовый выброс 3В одним автомобилем, г за 30 мин, <i>M2=ML*L2+1.3*ML*L2N+MXX*TXM=</i> Максимально разовый выброс 3В, г/сек , <i>G=M2*NK1/30/60=</i> Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)= Примесь:2732 Керосин (660*)</i> Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6)	0,000605 0,00000989 1,296 0,94 344,33 77,47 0,043040 0,00015150
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) мL= Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.4.2), мXX= Выброс 3В в день при движении и работе на территории, г, м1=ML*L1+1.3*ML*L1N+MXX*TXS= Максимально разовый выброс 3В одним автомобилем, г за 30 мин, м2=ML*L2+1.3*ML*L2N+MXX*TXM= Максимально разовый выброс 3В, r/сек , G=M2*NK1/30/60= Валовый выброс 3В, т/год , M=A*M1*NK*DN*10^(-6)= Примесь:2732 Керосин (660*) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) мL=	0,000605 0,00000989 1,296 0,94 344,33 77,47 0,043040 0,00015150
Валовый выброс ЗВ, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) мL= Удельные выбросы ЗВ при работе на холостом ходу, г/мин, (табл.4.2), мХХ= Выброс ЗВ в день при движении и работе на территории, г, м1=ML*L1+1.3*ML*L1N+MXX*TXS= Максимально разовый выброс ЗВ одним автомобилем, г за 30 мин, м2=ML*L2+1.3*ML*L2N+MXX*TXM= Максимально разовый выброс ЗВ, r/сек , G=M2*NK1/30/60= Валовый выброс ЗВ, т/год , м=A*M1*NK*DN*10^(-6)= Примесь:2732 Керосин (660*) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) мL= Удельные выбросы ЗВ при работе на холостом ходу, г/мин, (табл.4.2), мХХ= Выброс ЗВ в день при движении и работе на территории, г, м1=ML*L1+1.3*ML*L1N+MXX*TXS= Максимально разовый выброс ЗВ одним автомобилем, г за 30 мин,	0,000605 0,00000989 1,296 0,94 344,33 77,47 0,043040 0,00015150 0,162 0,31
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i> Примесь:0337 Углерод оксид (594) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) мL= Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.4.2), <i>MXX=</i> Выброс 3В в день при движении и работе на территории, г, м1=ML*L1+1.3*ML*L1N+MXX*TXS= Максимально разовый выброс 3В одним автомобилем, г за 30 мин, м2=ML*L2+1.3*ML*L2N+MXX*TXM= Максимально разовый выброс 3В, r/сек , G=M2*NK1/30/60= Валовый выброс 3В, т/год , M=A*M1*NK*DN*10^(-6)= Примесь:2732 Керосин (660*) Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) мL= Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.4.2), мXX= Выброс 3В в день при движении и работе на территории, г, м1=ML*L1+1.3*ML*L1N+MXX*TXS=	0,000605 0,00000989 1,296 0,94 344,33 77,47 0,043040 0,00015150 0,162 0,31 60,78

Примесь:0328 Углерод (593)

Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) ML=		
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,(табл.4.2), <i>МХХ</i> =		
Выброс 3B в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS</i> =	23,94	
Максимально разовый выброс 3B одним автомобилем, г за 30 мин, <i>M2=ML*L2+1.3*ML*L2N+MXX*TXM=</i>	0,90	
Максимально разовый выброс 3B, r/сек , <i>G=M2*NK1/30/60=</i>		
Валовый выброс 3B, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i>		

Код	Примесь	Выброс, г/с	т/год
0301	Азот (IV) (Азота диоксид)	0,003	
0304	Азот (II) (Азота диоксид)	0,0005	
0328	Углерод	0,0005	
	Сера диоксид (Ангидрид		
0330	сернистый)	0,00061	
0337	Углерод оксид	0,043	
2732	Керосин	0,0018	

Источник загрязнения 6037

Бульдозер Д3-42.Г. Работа двигателя

Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли, в том числе от асфальтобетонных заводов, Приложение №12 к пиказу МООС РК от 18.04.2008 №100-п

Тип машины: Дорожно-строительные машины номинальной мощностью дизельного двигателя 36-60	
кВт	
Бульдозер ДЗ-42.Г	
Вид топлива , <i>TOPN</i> =	дизель
Тип периода -	Переходный
Количество рабочих дней, дни, <i>DN</i> =	22
Количество машин данной группы, шт., NK =	2
Коэфф. Выпуска (выезда), А=	0,01
Наибольшее количество машин, работающих на территории в теч.30 мин, шт, <i>NK1</i> =	2
Суммарное время движения машины под нагрузкой в день, мин, Tv1n=	153,6
Суммарное время работы 1 машины на хол. ходу, мин, <i>TXS</i> =	76,80
Максимальное время работы под нагрузкой в течение 30 мин, <i>Tv2n=</i>	10
Макс.время работы машин на хол. ходу за 30 мин, мин , <i>TXM</i> =	1
Суммарное время движения машины без нагрузки в день, мин, Тv1=	153,6
Максимальное время движения машины без нагрузки в течение 30 мин, <i>Tv2</i> =	5
Daywag (0201 Azama dyaygud	•

Примесь:0301 Азота диоксид

Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>ML=</i>	0,29
Удельные выбросы 3B при работе на холостом ходу, г/мин,(табл.4.2), <i>MXX</i> =	1,49
Выброс 3B в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS=</i>	216,88
Максимальный разовый выброс 3В одним автомобилем, г за 30 мин, M2=ML*L2+1.3*ML*L2N+MXX*TXM=	6,71
Максимально разовый выброс 3В, г/сек , <i>G=M2*NK1/30/60=</i>	0,007456
Валовый выброс 3B, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i>	0,00009543

С учетом транс	формации оксидов	з азота получаем:
----------------	------------------	-------------------

Валовый выброс 3В, **т/год** , *M=A*M1*NK*DN*10^(-6)=*

<u>Примесь: 0301 Азот (IV) оксид (Азота диоксид)</u>	
Максимальный разовый выброс, r/c , GS = 0.8 * G =	0,005964
	0.00007634

Waterimanianian passasin balopoe, 17e , es = ele	0,003304
Валовый выброс, т/год , _M_ = 0.8 * M =	0,00007634
Примесь: 0304 Aзот (II) оксид (Азота оксид)	

Максимальный разовый выброс, r/c , GS = 0.13 * G =	0,000969
Валовый выброс, т/год , _M_ = 0.13 * M =	0,00001241

Примесь: 0330 Сера диоксид (526)	
Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>ML</i> =	0,0522
Удельные выбросы 3B при работе на холостом ходу, г/мин,(табл.4.2), <i>MXX</i> =	0,15
Выброс 3B в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS</i> =	29,96
Максимально разовый выброс 3В одним автомобилем, г за 30 мин , M2=ML*L2+1.3*ML*L2N+MXX*TXM=	1,09
Максимально разовый выброс 3B, г/сек , <i>G=M2*NK1/30/60=</i>	0,001211

<u>Примесь:0337 Углерод оксид (594)</u>	
Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>ML</i> =	1,296
Удельные выбросы 3B при работе на холостом ходу, г/мин, (табл.4.2), <i>MXX</i> =	0,94
Выброс 3B в день при движении и работе на территории, г, M1=ML*L1+1.3*ML*L1N+MXX*TXS=	458,79
Максимально разовый выброс 3B одним автомобилем, г за 30 мин, M2=ML*L2+1.3*ML*L2N+MXX*TXM=	95,52
Максимально разовый выброс 3B, г/сек , <i>G=M2*NK1/30/60=</i>	0,106133
Валовый выброс 3B. т/год . <i>M=A*M1*NK*DN*10^(-6)=</i>	0,00020187

<u>Примесь:2732 Керосин (660*)</u>	
Удельный выброс при движениипо территории с постоянной скоростью, г/мин,	0,162
(табл.4.6) <i>ML=</i>	<u>, </u>
Удельные выбросы 3B при работе на холостом ходу, г/мин,(табл.4.2), <i>МХХ</i> =	0,31
Выброс 3B в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS=</i>	81,04
Максимально разовый выброс 3B одним автомобилем, г за 30 мин, <i>M2=ML*L2+1.3*ML*L2N+MXX*TXM=</i>	3,23
Максимально разовый выброс 3В, г/сек , <i>G=M2*NK1/30/60=</i>	0,003584
Валовый выброс 3B. т/гол	0.00003566

Примесь:0328 Углерод (593)	
Удельный выброс при движениипо территории с постоянной скоростью, г/мин, (табл.4.6) <i>ML=</i>	0,036
Удельные выбросы 3B при работе на холостом ходу, г/мин,(табл.4.2), <i>MXX</i> =	0,25
Выброс 3B в день при движении и работе на территории, г, <i>M1=ML*L1+1.3*ML*L1N+MXX*TXS=</i>	31,92
Максимально разовый выброс 3B одним автомобилем, г за 30 мин, <i>M2=ML*L2+1.3*ML*L2N+MXX*TXM=</i>	0,90
Максимально разовый выброс 3В, г/сек , <i>G=M2*NK1/30/60=</i>	0,000998
Валовый выброс 3B, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i>	0,00001404

Код	Примесь	Выброс, г/с	т/год
0301	Азот (IV) (Азота диоксид)	0,006	
0304	Азот (II) (Азота диоксид)	0,001	
0328	Углерод	0,001	

0,00001318

	Сера диоксид (Ангидрид		
0330	сернистый)	0,0012	
0337	Углерод оксид	0,1061	
2732	Керосин	0,0036	

Примесь:0337 Углерод оксид (594)

Самосвал КамАЗ-55111. Работа двигателя

Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий, Приложение №3 к приказу МООС РК от 18.04.2008 №100-п

Тип машины: Грузовые автомобили производство стран СНГ грузоподъемность 8-16 тонн	I
Самосвал КамАЗ-55111	
Вид топлива , <i>TOPN</i> =	дизель
Тип периода -	Переходный
Количество рабочих дней, дни , DN =	22
Количество машин данной группы, шт., <i>NK</i> =	2
Коэфф. выпуска (выезда), А=	0,01
Наибольшее кол. дорожных машин , работ-х на территории в теч.30 мин,шт , <i>NK1</i> =	6
Суммарный пробег с нагрузкой, км/день , <i>L1N=</i>	0,1
Суммарное время работы 1 машины на хол. ходу, мин , <i>TXS</i> =	1
Макс. пробег с нагрузкой за 30 мин, км , <i>L2N</i> =	0,22
Макс.время работы машин на хол. ходу за 30 мин, мин , TXM =	1
Суммарный пробег 1 автомобиля без нагрузки по территории п/п, км, L1=	0,5
Максимальный пробег 1 автомобиля без нагрузки за 30 мин, км , <i>L2</i> =	0,22
Примесь:0301 Азота диоксид	
Пробеговые выбросы 3В, г/км, (табл.3.8) <i>ML=</i>	4
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,(табл.3.9) , <i>MXX</i> =	1
Выброс 3В в день при движении и работе на территории,г , $M1=ML*L1+1.3*ML*L1N+MXX*TXS=$	3,520000
Максимально разовый выброс 3В одним автомобилем, г за 30 мин , $M2=ML^*L2+1.3^*ML^*L2N+MXX^*TXM=$	3,024000
Максимально разовый выброс 3B, r/сек , <i>G=M2*NK1/30/60=</i>	0,010080
Валовый выброс 3В, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i>	0,000002
С учетом трансформации оксидов азота получаем: <u>Примесь: 0301 Азот (IV) оксид (Азота диоксид)</u>	
Максимальный разовый выброс, r/c , GS = 0.8 * G =	0,008064
Валовый выброс, т/год , _M_ = 0.8 * M =	0,00000124
<u>Примесь: 0304 Азот (II) оксид (Азота оксид)</u>	
Максимальный разовый выброс, г/с , GS = 0.13 * G =	0,001310
Валовый выброс, т/год , _M_ = 0.13 * M =	0,00000020
Примесь: 0330 Сера диоксид (526)	
Пробеговые выбросы ЗВ, г/км, (табл.З.8) <i>ML=</i>	0,603
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,(табл.3.9) , <i>MXX</i> =	0,1
Выброс 3В в день при движении и работе на территории,г , $M1=ML*L1+1.3*ML*L1N+MXX*TXS=$	0,479890
Максимально разовый выброс 3B одним автомобилем, г за 30 мин , M2=ML*L2+1.3*ML*L2N+MXX*TXM=	0,405118
Максимально разовый выброс 3B, г/сек , <i>G=M2*NK1/30/60=</i>	0,001350
Валовый выброс 3B, т/год , <i>M=A*M1*NK*DN*10^(-6)=</i>	0,00000021

	D -/ /5- 2.0\ A4/		6.66
Пробеговые выбросы 3		A 43/3/	6,66
	при работе на холостом ходу, г/мин,(табл.3.9)	·	2,9
Выброс 3В в д <i>M1=ML*L1+1.3*ML*L1N</i>	ень при движении и работе н I <i>+MXX*TXS=</i>	а территории,г	7,095800
Максимально разовы <i>M2=ML*L2+1.3*ML*L2N</i>		г за 30 мин	6,269960
Максимально разовый	выброс 3B, г/сек , <i>G=M2*NK1/30/60=</i>		0,020900
Валовый выброс 3В, т/г	од , M=A*M1*NK*DN*10^(-6)=		0,00000312
Примесь:2732 Керосин	<u>(660*)</u>		
Пробеговые выбросы 3	В, г/км, (табл.3.8) <i>ML=</i>		1,08
Удельные выбросы 3B	при работе на холостом ходу, г/мин,(табл.3.9)	, MXX=	0,45
Выброс 3B в д <i>M1=ML*L1+1.3*ML*L1N</i>	ень при движении и работе н <i>I+MXX*TXS</i> =	а территории,г	1,130400
Максимально разовы <i>M2=ML*L2+1.3*ML*L2N</i>	• • • • • • • • • • • • • • • • • • • •	г за 30 мин	0,996480
Максимально разовый	выброс 3B, г/сек , <i>G=M2*NK1/30/60=</i>		0,003322
Валовый выброс 3В, т/г	од , M=A*M1*NK*DN*10^(-6)=		0,00000050
Примесь:0328 Углерод	<u>(593)</u>		
Пробеговые выбросы 3	В, г/км, (табл.3.8) <i>ML=</i>		0,36
Удельные выбросы 3B	при работе на холостом ходу, г/мин,(табл.3.9)	, MXX=	0,04
Выброс 3В в д <i>M1=ML*L1+1.3*ML*L1N</i>	ень при движении и работе н I+MXX*TXS=	территории,г	, 0,266800
Максимально разовы <i>M2=ML*L2+1.3*ML*L2N</i>	, , , , , , , , , , , , , , , , , , , ,	г за 30 мин	, 0,222160
Максимально разовый	выброс 3B, г/сек , <i>G=M2*NK1/30/60=</i>		0,000741
Валовый выброс 3В, т/г	од , M=A*M1*NK*DN*10^(-6)=		0,00000012
Код	Примесь	Выброс, г/с	Выброс, т/год
0301	Азот (IV) (Азота диоксид)	0,0081	
0304	Азот (II) (Азота диоксид)	0,0013	
0328	Углерод (593)	0,0007	
0330	Сера диоксид (Ангидрид сернистый)	0,0014	
0337	Углерод оксид	0,0209	
2732	Керосин (660*)	0,003322	

1.2 ОЦЕНКА ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ В ПЕРИОД ЭКСПЛУАТАЦИИ

Выбросы от ЗРА и ФС — неорганизованный. Возможные аварийные выбросы доменного и коксового газа от запорно-регулирующей арматуры. Общее количество запорно-регулирующей арматуры, шт., N1 = 1, N1.1 = 1. Количество фланцев на одном запорном устройстве, шт., N2.1 = 2, N2.2 = 2. Выбросы загрязняющих веществ в атмосферу: метан.

Доменный газ

Аварийные выбросы (утечки) от ЗРА И ФС

Объемы аварийных выбросов (утечек) газа (г/с, т/год) от запорно-регулирующей арматуры (фланцевых соединений и уплотнений) до их ликвидации определяются по формуле

$$M = A * c * a * n_1 * n_2$$
, г/с $G = M * \tau$, т/год,

где A - расчетная величина аварийного выброса (утечки), равна 0,021 кг/ч = 0,0058 г/с;

c - массовая концентрация загрязняющего вещества в долях единицы: метана - 0,3,

a - расчетная доля уплотнений, потерявших свою герметичность: 0,293;

 n_1 - общее количество единиц запорно-регулирующей арматуры: 1;

 n_2 - количество фланцев на одном запорном устройстве: 2;

т - усредненное время эксплуатации запорно-регулирующей арматуры, потерявшей герметичность, 8 ч.

Подставив значения в формулу, получим:

$$M_{\text{CH}_4} = 0,0058 * 0,3 * 2 * 0,293 = 0,00051 \,\text{г/c};$$
 $G_{\text{CH}_4} = M_{\text{CH}_4} * 8 * 1 * 10^{-6} = 0,00051 * 8 * 1 * 10^{-6} = 0,00000000041 \,\text{т/гад};$

Объемный	расход:	$0.1 \mathrm{M}^3/$	сек.

Код	Примесь	Выброс г/с	Выброс т/г.
0410	Метан (727*)	0,00051	0,0000000041

Коксовый газ

Аварийные выбросы (утечки) от ЗРА И ФС

Объемы аварийных выбросов (утечек) газа (г/с, т/год) от запорно-регулирующей арматуры (фланцевых соединений и уплотнений) до их ликвидации определяются по формуле

$$M = A * c * a * n_1 * n_2$$
, г/с
 $G = M * \tau$, т/год,

где A - расчетная величина аварийного выброса (утечки), равна 0,021 кг/ч = 0,0058 г/с;

с - массовая концентрация загрязняющего вещества в долях единицы: метана — 23,4,

a - расчетная доля уплотнений, потерявших свою герметичность: 0,293;

 n_1 - общее количество единиц запорно-регулирующей арматуры: 1;

 n_2 - количество фланцев на одном запорном устройстве: 2;

т - усредненное время эксплуатации запорно-регулирующей арматуры, потерявшей герметичность, 8 ч.

Подставив значения в формулу, получим:

$$M_{\it CH_4}$$
 = 0,0058 * 23,4 * 2 * 0,293 = 0,039766 г/с; $G_{\it CH_4}$ = $M_{\it CH_4}$ * 8 * 1 * 10⁻⁶ = 0,039766 * 8 * 1 * 10⁻⁶ = 0,00000032 т/гад; Объемный расход: 0,1 м³/сек.

Код	Примесь	Выброс г/с	Выброс т/г.
0410	Метан (727*)	0,039766	0,00000032

Аварийные выбросы не нормируются.

итого

Код	Примесь	Выброс г/с	Выброс т/г.
0410	Метан (727*)	0,040276	0,0000003241