ПРОЕКТНАЯ КОМПАНИЯ "АНТАЛ"

А15А0F7, РК, г .Алматы, бульвар Бухар Жырау 33, БЦ «Женис», оф.50 тел: (727) 376 33 42, 376 36 52, эл. почта: office@antal.kz

УТВЕРЖДАЮ

и.о. Директора ТОО «Атыгай Голд

Майнинг»/

_Н.В. Горбунов

2022 г.

ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

К

«Плану горных работ по добыче руды с месторождения Атыгай (Берсуат), 1-я очередь в Костанайской области»

Ген. директор ТОО "АНТАЛ"

П.А. Цеховой

Исп. директор ТОО "АНТАЛ"

leay.

М.Б. Аманкулов

СПИСОК ИСПОЛНИТЕЛЕЙ

Экологическая часть:

Ведущий инженер-эколог

Ю.А. Киселева

Ведущий инженер-эколог

М.Р. Ахметова

Инженер-эколог

А.Ф. Хаматова

Инженер-эколог

А.М. Кравченко

Нормоконтроль:

Ведущий специалист

И.В. Храбрых

СОДЕРЖАНИЕ

	Введение			
1.1	Общие сведения района расположения объекта			
1.2	Современное состояние окружающей среды	15		
1.2.1	Характеристика климатических условий	15		
1.2.2	Геологическое строение месторождения	18		
1.2.2.1	Вещественный состав минерального сырья	25		
1.2.3	Физико-географическое положение	28		
1.2.4	Существующее состояние горных работ	30		
1.2.5	Характеристика современного состояния воздушной среды	31		
1.2.6	Поверхностные воды	31		
1.2.7	Подземные воды	32		
1.2.8	Качество подземных и поверхностных вод	33		
1.2.9	Характеристика современного состояния почвенного покрова	34		
1.2.10	Характеристика растительного мира района	34		
1.2.11	Характеристика животного мира района	35		
1.2.12	Особо-охраняемые природные территории	35		
1.2.12.1	Памятники истории и культуры	36		
1.2.13	Описание изменений окружающей среды, в случае отказа от	36		
1.2.13	намечаемой деятельности	30		
1.3	Информация о категории земель и целях ее использования	41		
1.4	Информация о месторождении	43		
1.5	Описание планируемых к применению наилучших доступных	56		
	технологий			
1.6	Характеристика воздействий на окружающую среду	58		
1.6.1	Воздействие на атмосферный воздух	58		
1.6.2	Воздействие на водные ресурсы	59		
1.6.2.1	Водоснабжение	59		
1.6.2.2	Водоотведение	60		
1.6.2.3	Карьерный водоотлив	62		
1.6.2.4	Анализ результатов расчета ПДС загрязняющих веществ	63		
1.6.3	Воздействия намечаемой деятельности на поверхностные воды	66		
	района			
1.6.4	Воздействия намечаемой деятельности на подземные воды района	67		
1.6.5	Характеристика ожидаемого воздействия на почвенный покров	67		
1.6.6	Воздействия намечаемой деятельности на недра	71		
1.7	Ожидаемые виды, характеристики и количество отходов	75		
1.7.1	Расчет образования отходов на предприятии	76		
1.7.2	Программа управления отходами	77 84		
1.7.3	Система управления отходами			
		80		
1.7.4	Мероприятия, обеспечивающие снижение негативного влияния	89		
1.7.4	размещаемых отходов на окружающую среду и здоровье населения	89		
1.7.4	размещаемых отходов на окружающую среду и здоровье населения Оценка воздействия отходов на окружающую среду	89 90		
1.7.5	размещаемых отходов на окружающую среду и здоровье населения Оценка воздействия отходов на окружающую среду Отходы образуемые в результате осуществления пост утилизации	90		
	размещаемых отходов на окружающую среду и здоровье населения Оценка воздействия отходов на окружающую среду			

	населения, участков, на которых могут быть обнаружены	
	выбросы, сбросы и иные негативные воздействия намечаемой	
	деятельности на окружающую среду, с учетом их характеристик	
	и способности переноса в окружающую среду; участков	
	извлечения природных ресурсов и захоронения отходов	
2.1	Объекты месторождения	95
2.2	Запасы месторождения	97
3	Варианты осуществления намечаемой деятельности	99
3.1	Обоснование типоразмера горнотранспортного оборудования	101
4	Компоненты природной среды	103
	Жизнь и (или) здоровье людей, условия их проживания и	
4.1	деятельности	103
4.2	Биоразнообразие растительного мира, природные ареалы растений, экосистемы	105
4.3	Биоразнообразие животного мира, природные ареалы диких	107
4.3	животных, пути миграции диких животных, экосистемы	10/
4.4	Генетические ресурсы	107
4.5	Земли (в том числе изъятие земель)	108
1.0	Почвы (в том числе включая органический состав, эрозию,	100
4.6	уплотнение, иные формы деградации)	108
4.6.1	Механические нарушения почв	109
4.6.2	Дорожная дигрессия	109
4.6.3	Ветровая и водная эрозия	110
4.6.4	Загрязнение почв отходами производства	111
4.7	Воды (в том числе гидроморфологические изменения, количество и	112
4.0	качество вод)	112
4.8	Атмосферный воздух	112
4.9	Сопротивляемость к изменению климата экологических и социально-	113
4.10	экономических систем	112
4.10	Материальные активы	113
4.11	Объекты историко-культурного наследия (в том числе архитектурные и археологические)	113
4.12	Ландшафты	114
5	Описание возможных существенных воздействия	115
	Обоснование предельных количественных и качественных	
6	показателей эмиссий, физических воздействий на окружающую	118
	среду	
6.1	Источники выбросов	118
6.2	Физические воздействия	167
7	Обоснование показателей и выбора операций по управлению	172
7	отходами и накоплению отходов по их видам	173
0	Обоснование предельных объемов захоронения отходов по их	176
8	видам	176
9	Вероятность возникновения аварий и опасных природных явлений	178
9.1	Вероятность возникновения аварий и инцидентов	179
9.1.1	•	184
7.1.1	Блок-схема анализа вероятных сценариев возникновения и развития	104

	аварий, инцидентов						
_	Возможные неблагоприятные последствия для окружающей среды,						
9.2	которые могут возникнуть в результате инцидента, аварии						
9.3							
	Тохиологиноские данные о пастроделении опасного вошества на						
9.3.1	опасном объекте	194					
9.4	Мероприятия по обеспечению промышленной безопасности и	197					
9.4	защите населения	197					
9.4.1	Система оповещения						
9.4.2	Средства и мероприятия по защите людей	199					
9.4.3	Противопожарная защита	202					
9.4.4	Резервы финансовых и материальных ресурсов	202					
9.4.5	Организации медицинского обеспечения в случае аварий, инцидентов	203					
9.4.6	Информирование общественности	204					
9.4.6.1	Порядок информирования населения и местного исполнительного органа	204					
9.5	Профилактика и ранее предупреждение инцидентов аварий, их последствий	205					
10	Меры по предотвращению, сокращению, смягчению выявленных существенных воздействий планируемой	210					
10	выявленных существенных воздействий планируемой деятельности на окружающую среду	210					
11	Меры по сохранению и компенсации потери биоразнообразия	218					
	Мероприятия по обеспечению охраны редких и находящихся под	218					
11.1	угрозой исчезновения видов растений в случае обнаружения						
11.2	Мероприятия по обеспечению охраны редких и охраняемых видов	210					
11.2	животных в случае обнаружения	219					
11.3	Мониторинг растительного и животного мира	222					
12	Оценка возможных необратимых воздействий на окружающую	223					
12	среду						
13	Производственный мониторинг компонентов окружающей	224					
	среды						
1.4	Цели, масштабы и сроки проведения послепроектного анализа,						
14	требования к его содержанию, сроки предоставления отчетов о	227					
	послепроектном анализе уполномоченному органу Способы и меры восстановления окружающей среды на случаи						
15	прекращения намечаемой деятельности, определенные на	229					
	начальной стадии ее осуществления	>					
	Описание методологии исследований и сведения об источниках						
16	экологической информации, использованной при составлении	231					
	отчета о возможных воздействиях						
	Описание трудностей, возникших при проведении исследований						
17	и связанных с отсутствием технических возможностей и	232					
	недостаточным уровнем современных научных знаний						
18	Краткое нетехническое резюме	232					
4	ПРИЛОЖЕНИЯ						
1	Лицензия ТОО «Антал» №1714P от 26.11.2014 г.						
2	Заключение об определении сферы охвата оценки воздействия на						

	окружающую среду №KZ20VWF00073518 от 18.08.2022 г.				
3	1-03/1240 59B/6D6320644A3C от 20.12.2021. Справка Казгилромет о фоновых концентрациях №28-06-57/199				
4					
5	Справка Казгидромет о НМУ №28-03-37/44 7BC4A1AB0E834CB7 от 20.01.2022 г.				
6	Письмо РГУ «Тобол-Торгайская бассейновая инспекция по регулированию использования и охране водных ресурсов Комитета по водным ресурсам Министерства экологии, геологии и природных ресурсов Республики Казахстан» от 22.09.2022 №3Т-2022-02373628				
7	Справка Кампетинского пасуора о наличии заман пасного фонда				
8	Ответ РЦГИ «Казгеоинформ» от 05.01.22 г. №26-14-03101				
9	Заявление о намечаемой деятельности KZ09RYS00264728 от 04.07.2022 г.				
10	Расчет выбросов загрязняющих веществ в атмосферу				
11	Карты изолиний приземных концентраций загрязняющих веществ				
12	Письмо по согласованию общественных слушаний				
13	Объявление в газете				
14	Эфирная справка				
15	Уведомление с Министерства индустрии и инфраструктурного развития РК №04-2-18/23592 от 08.07.2022 г. на разработку проектной документации				
16	Научное заключение по выявлению объектов историко-культурного наследия № АЭ-18 от 22.09.2022 г				

ВВЕДЕНИЕ

Основанием для составления настоящего «Плана горных работ по добыче руды с месторождения Атыгай (Берсуат), 1-я очередь» в Костанайской области», послужил Договор $A\Gamma M - 41/2021$ от 16 ноября 2021 г. между TOO «Атыгай Γ олд Майнинг» (Заказчик) и ТОО «АНТАЛ» (Исполнитель).

Работы осуществлялись Исполнителем на основании Государственной лицензии на природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности 01714Р от 26 ноября 2014 г представленное в Приложении 1.

Право недропользования на месторождении золотоносных руд Атыгай принадлежит ТОО «Атыгай Голд Майнинг» на основании Контракта №2639 от 05.05.2008 г.

Право недропользования на месторождении золотосодержащих руд Атыгай принадлежит ТОО «Атыгай Голд Майнинг» на основании Контракта №2639 от 05.05.2008 г. В рамках контрактной территории предполагается разработка участков Центр-Юг, Маржан, Берсуат, Восточный-Султан, на каждый из которых будет получена отдельная лицензия на добычу. Данным проектом рассматривается разработка участка Берсуат на основании уведомления с Министерства индустрии и инфраструктурного развития РК №04-2-18/23592 от 08.07.2022 г. на разработку проектной документации, которая включает в себя План горных работ и План ликвидации.

руд Атыгай (Берсуат) расположено Месторождение золотосодержащих Житикаринском районе Костанайской области Республики Казахстан, в 75 км к западу от г. Житикара.

Данным планом горных работ разработка месторождения Атыгай предусматривается открытым способом в контурах двух карьеров. Максимальная производительность по добыче руды из карьеров составит 26,094 тыс. тонн в год. Общий срок эксплуатации карьеров составит 1 год.

Площадь участка ведения горных работ составляет – 61,1977 Га.

Согласно Раздела 1, Приложения 1 Экологического Кодекса РК планируемая деятельность относится к п.2.2 «карьеры и открытая добыча твердых полезных территории, превышающей 25 га». Вид деятельности ископаемых на рассматриваемому объекту, для которого проведение оценки воздействия на окружающую среду является обязательной.

Согласно пп.3.1, п.3, Раздела 1, Приложения 2 Экологического Кодекса РК «добыча и обогащение твердых полезных ископаемых, за исключением общераспространенных полезных ископаемых» намечаемая деятельность относится к объектам I категории, оказывающих негативное воздействие на окружающую среду.

Согласно, статьи 72 Экологического Кодекса РК разрабатывается Отчет о возможных воздействиях с учетом содержания заключения об определении сферы охвата воздействия на окружающую среду. Заключение ПО chepe №KZ20VWF00073518 от 18.08.2022 г. представлено в Приложении 2.

На этапе отчета «О возможных воздействиях» приведена обобщенная характеристика природной среды в районе деятельности предприятия, рассмотрены основные направления хозяйственного использования территории и определены принципиальные позиции согласно, статьи 72 ЭК РК.

При выполнении отчета «О возможных воздействиях» определены потенциально возможные изменения в компонентах окружающей и социально-экономической среды при реализации намечаемой деятельности. Также определены качественные и количественные параметры намечаемой деятельности (выбросы, производства и потребления, площади земель, отводимые во временное и постоянное пользование и т.д.).

Определение санитарно-защитной зоны предприятия является одним из основных воздухоохранных мероприятий, обеспечивающих требуемое качество атмосферного воздуха в населенных пунктах.

Согласно санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденным Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2, месторождение относится к объектам 1 класса опасности с СЗЗ не менее 1000 м (Раздел 3, п.11, пп. 5 производства по добыче полиметаллических руд).

В соответствии с пп. 1) п. 4 ст. 12 и приложения 2 Экологического Кодекса РК, а также «Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246» рассматриваемый объект относится к 1 категории объектов, оказывающих негативное воздействие на окружающую среду.

Основанием для выполнения проектных работ послужили следующие материалы:

- 1. Договор $A\Gamma M 41/2021$ от 16 ноября 2021 г. на выполнение работ.
- 2. Уведомление с Министерства индустрии и инфраструктурного развития РК №04-2-18/23592 от 08.07.2022 г. на разработку проектной документации, которая включает в себя План горных работ и План ликвидации
- 3. Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI.
- 4. Водный кодекс Республики Казахстан, от 9 июля 2003 г. №481;
- 5. Земельный кодекс Республики Казахстан от 20.06.2003 года №442-II;
- 6. Инструкция по организации и проведению экологической оценки, утв. Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан, № 280 от 30 июля 2021 года.
- 7. Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека, утвержденным Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2.
- 8. Методика определения нормативов эмиссий в окружающую среду, утв. приказом Министра экологии, геологии и природных ресурсов РК от 10.03.2021 г. №63.
- 9. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Астана. Приложение №11 к Приказу МООС №100-п от 18.04.08г.
- 10. Методика разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п.
- 11. Программный комплекс ЭРА (ПК-Эра), НПП «Логос-Плюс», Новосибирск, 2021 г.

Адрес заказчика:

ТОО «Атыгай Голд Майнинг» Республика Казахстан, Костанайская область, г. Житикара, 4 мкр, д. 5А

Тел/факс: 8 714 35-2-59-44 e-mail: office@atgm.kz

Адрес разработчика:

ТОО «АНТАЛ» г.Алматы, Бухар Жырау 33, БЦ «Женис», оф.50, тел/факс 8(727) 376-33-42, e-mail: office@antal.kz БИН – 920940000013 Банк получателя: АО «БанкЦентрКредит» БИН банка: 981141000668 ИИК - КZ708562203102903396 БИК КСЈВКZКХ

ОБЩИЕ СВЕДЕНИЯ РАЙОНА РАСПОЛОЖЕНИЯ ОБЪЕКТА 1.1

Месторождение золотосодержащих руд Атыгай (Берсуат) расположено в Житикаринском районе Костанайской области Республики Казахстан, в 75 км к западу от г. Житикара.

Ближайшим к месторождению работ населенным пунктом является п. Хозрет, расположенный на расстоянии 17 км на запад от границы участка. Площадь участка ведения горных работ составляет – 61,1977 Га (в границах лицензионной территории). Воздействия на поселок не будет оказываться, в связи с их удаленностью от участка ведения работ.

Координаты угловых точек участка добычи приведены в таблице 1.1.

T ~ 1	4 7	T /				_
Ιορπιπιο Ι		K AAM TIIIIATII	VEHODITY	TOTION	VIIIOCTICO	ποριππ
таолина г	—	Координаты	VIJIUBBIA	TOMER	vaacika	лооычи
т истинди т	• •	ссординалы	TUIODDIN	10 1010	, 100 1100	ACCDI III

Номер	Координаты угловых точек лицензионной территории		
угловых точек	Северная широта	Восточная долгота	
1	51°55'57.09"	60°12'25.55"	
2	51°56'9.41"	60°13'0.20"	
3	51°55'47.76"	60°13'21.27"	
4	51°55'34.40"	60°12'47.34"	

Месторождение выявлено в 2010 году в ходе геологоразведочных работ ТОО «Кустанайская поисково-съемочная экспедиция» в пределах Западно-Хазретской площади. Ранее месторождение Атыгай (Берсуат) не разрабатывалось ни открытым ни подземным способом.

Данным планом горных работ разработка предусматривается открытым способом в контурах двух карьеров. Подготовку горных пород к выемке предусматривается осуществлять при помощи буровзрывных работ.

Режим горных работ - круглосуточный (2 смены по 12 часов), 365 рабочих дней в году. Работы ведутся вахтовым методом – две вахты в месяц. Продолжительность вахты – 15 рабочих дней.

Максимальная производительность по добыче руды из карьеров Берсуат составит 26,094 тыс. тонн в год. Эксплуатация Карьеров Берсуат запланирована на 2029 год.

Ориентировочный срок разработки месторождения составит 1 год. После добычи запасов, предусмотренных к открытой добыче разработанным Планом горных работ, карьеры будут законсервированы до последующей отработки оставшихся руд.

На рисунке 1.1 приведено расположение участка работ относительно государственных границ соседних стран. Западная граница площади проходит вдоль государственной границы Республики Казахстан с Россией. Планируемая площадка ведения горных работ располагается в непосредственной близости от границы с Российской Федерацией. Объекты располагаются в 4,52 км от Казахстано-Российской границы. Ближайший населенный пункт Российской Федерации – Екатериновка, расположен в восточном направлении, на расстоянии 16,3 км от территории площадки ведения горных работ.

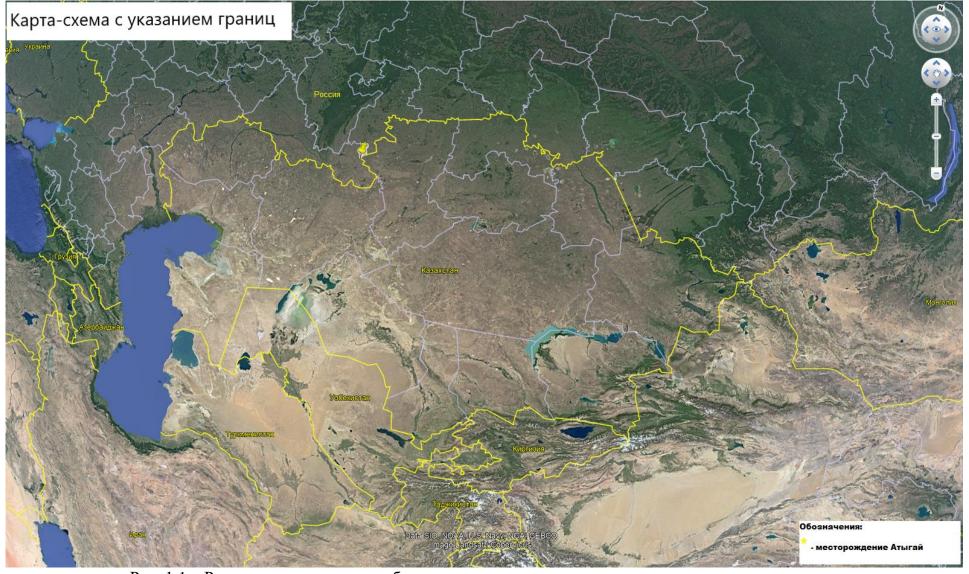


Рис. 1.1 – Расположение участка работы относительно государственных границ соседних стран

На рисунке 1.2 приведена ситуационная карта-схема площадки размещения месторождения.

На рисунке 1.3 приведена карта-схема с проектируемыми объектами горного производства.

На рисунке 1.4 приведена карта с нанесенной санитарно-защитной зоной (СЗЗ) (1000 м) относительно п.Хозрет и п. Екатериновка РФ. Расстояние от СЗЗ до поселка Хозрет составляет около 16 км; до п. Екатериновка составляет 15,3 км.

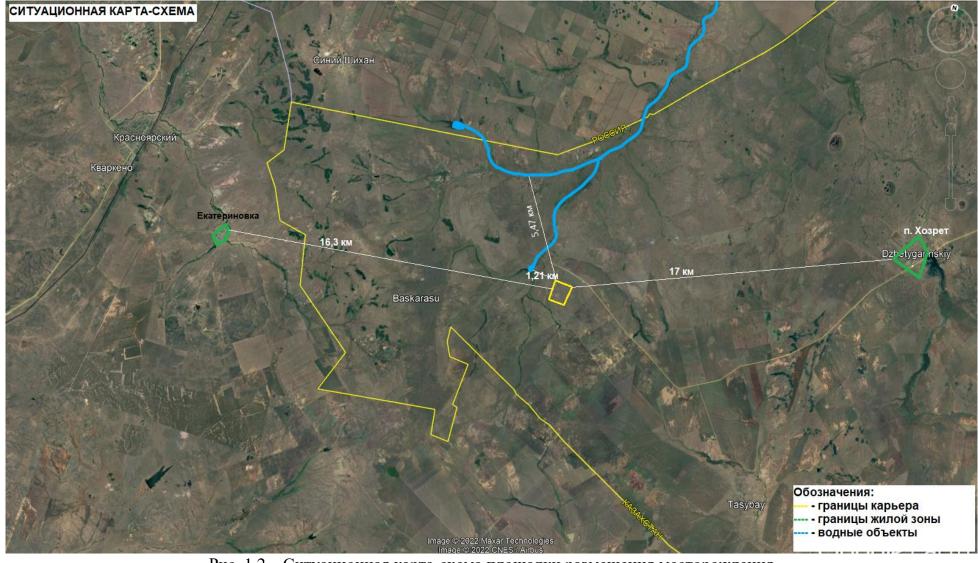


Рис. 1.2 – Ситуационная карта-схема площадки размещения месторождения

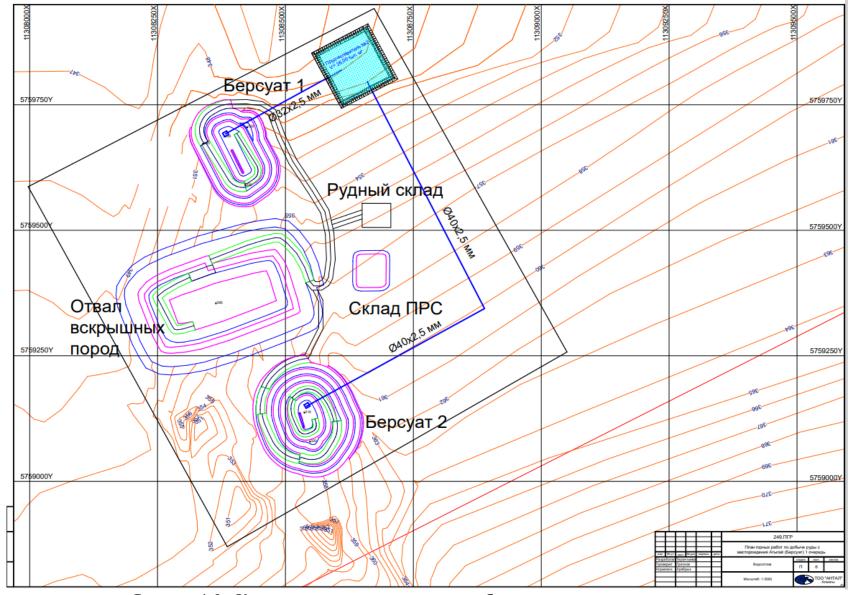
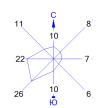



Рисунок 1.3 - Карта-схема с проектируемыми объектами горного производства

Город : 003 Костанайская обл. Жетикаринскй Объект : 0003 План горных работ по добыче руды с месторождения Атыгай (Берсуат) Вар.№ 1 ПК ЭРА v3.0 Модель: МРК-2014 6007 0301+0330



Рис. 1.4 – Ситуационная карта-схема с нанесенной санитарно-защитной зоной (СЗЗ), 1000 м.

1.2 СОВРЕМЕННОЕ СОСТОЯНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ

1.2.1 Характеристика климатических условий

Климат района резко континентальный с холодной зимой и жарким засушливым летом. Максимальные значения годовых температур: в июле $+40^{\circ}$ C; в январе -38° C. Норма осадков по данным метеостанции г. Тобол -294 мм, в том числе жидких и смешанных – 181 мм. Суточный максимум осадков 5% вероятности превышения – 42 мм. Среднегодовое испарение с водной поверхности – 710 мм. Средняя высота снежного покрова за зиму составляет 25 см, нормативная снеговая нагрузка 120 кг/м².

Преобладающее направление ветра юго-западное и северо-восточное.

Максимальная глубина нулевой изотермы (глубина проникновения температуры 0°С в грунт) 98% обеспеченности составляет 230 см. Средний максимум глубины промерзания под снежным покровом равен 106 см. Расчётная нормативная глубина промерзания почвы составляет для суглинка 164 см, супеси и песков 208 см.

В течение года в среднем наблюдается 59 дней без солнца. Число ясных дней по общей облачности составляет около 90 дней. Суммарный приток солнечной радиации за год, при средних условиях, достигает 4623 мдж/м². Доля рассеянной солнечной радиации составляет 2091 мдж/м². Радиационный баланс за год при средних условиях облачности составляет 1707 мдж/м².

Продолжительность солнечного сияния в год составляет 2245 часов. Среднегодовая температура воздуха составляет - (+2,1° C), среднемесячная температура января равна - (- 17,0°C), июля- (+ 20,4°C), температура наиболее холодной пяти дневки составляет (- 35°C).

холодным месяцем является январь средней Самым co месячной температурой (- 17.0°C) и абсолютным минимумом температуры (- 51°C).

Самым тёплым месяцем в году является июль со средней многолетней температурой (+26,7°С). Абсолютный максимум температуры за многолетний период достигал в июле месяце (+42°C), а абсолютный минимум составил (+3°C).

строительно-климатического районирования территория относится к климатическому подрайону 1В (СП РК 2.04.01-2017).

Среднегодовая абсолютная влажность воздуха составляет среднегодовая относительная влажность составляет 70 %. Среднегодовой дефицит влажности равен 4,7 мб.

Наибольшие значения влажности воздуха отмечаются в зимний период (80-82%).

Среднегодовое количество осадков составляет 317 мм, сумма осадков за тёплый период равна 237 мм, за холодный период – 80 мм.

Самое раннее появление снежного покрова наблюдается 21 сентября, при средней дате – 24 октября. Самый ранний сход снежного покрова начинается 23 марта, при средней дате – 13 апреля. Число дней со снежным покровом составляет 150 дней. Средний из наибольших декадных высот снежного покрова – 56 см. Средняя плотность составляет 0.28, минимальная -0.25, максимальная 0.36. Средний запас воды в снеге составляет 70 мм, наибольший – 139 мм, минимальный -33 MM.

Нормативное значение снеговой нагрузки на 1 м² согласно СНиП РК 2.04.01-2001, таблица № 4 составляет 0,70 кПа (70 кгс/м2) – (II снеговой район).

Нормативная глубина промерзания глинистых составляет 2,10 м, песчаных грунтов 2,52м, максимальная в малоснежные зимы достигает 2,80м.

Среднегодовая скорость ветра составляет – 4,4 м/сек. Расчётные скорости ветра возможные раз в 5 лет составляют 28 м/сек.; в 10 лет -30 м/сек, в 15 лет -32м/сек; в 20 лет -34 м/сек; в 25 лет -37 м/сек. Зимой преобладают ветры южного направления; летом – северного, северо-западного направления.

Согласно СНиП РК 2.04.01-2001 таблица 5 и карты № 3 по ветровому району исследуемая территория относится к III району. Нормативное значение ветрового давления составляет $0.38 \text{ кПа} (38 \text{ кгс/м}^2)$.

Метеорологические характеристики И коэффициенты, определяющие загрязняющих веществ атмосфере рассеивания В ПО предоставленным по метеостанции Житикара за период 2020 год приведены в таблице 1.2.1, а также в Приложении 2. Роза ветров представлена на рисунке 1.2.1.

Таблица 1.2.1 Метеорологические коэффициенты, характеристики И определяющие условия рассеивания

определиощие условии рассенвании	
Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы, А	200
Коэффициент рельефа местности в городе	1
Среднегодовая роза ветров, %:	
С	10
СВ	8
В	7
ЮВ	6
Ю	10
ЮЗ	26
3	22
C3	11
Штиль	12
Скорость ветра, повторяемость превышений которой составляет 5%, м/с	11
Средняя скорость ветра за год, м/с	3,4
Количество дней с устойчивым снежным покровом	129
Количество дней с дождем	77

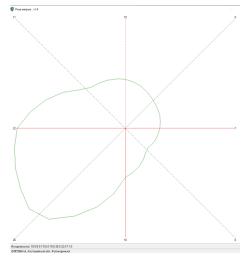


Рис. 1.2.1 - Роза ветров, составленная по данным РГП «Казгидромет».

Согласно справке филиала РГП «Казгидромет» Министерства Экологии, Геологии и Природных Ресурсов РК по Костанайской области на месте разрабатываемого проекта мониторинг за состоянием атмосферного воздуха, в связи с отсутствием стационарных постов наблюдения, не производится, представлена в Приложении 2. В расчетах фон не учитывался.

Оценка качества атмосферного воздуха

Согласно данным информационного бюллетеня о состоянии окружающей среды Костанайской области наблюдения за состоянием атмосферного воздуха в п.Житикара не проводятся. Ближайшим населенным пунктом, где проводится мониторинг является город Костанай, расположен в 277 км к востоку от участка ведения работ.

Наблюдения за состоянием атмосферного воздуха на территории г. Костанай проводятся на 4 стационарных постах, представлено на рисунке 1.2.2.

В целом по городу определяется до 4 показателей: 1) диоксид серы; 2) оксид углерода; 3) диоксид азота; 4) оксид азота.

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в таблице 1.2.2.

Номер поста	Сроки отбора	Проведение наблюдений	Адрес поста	Определяемые примеси
1	3 раза	ручной отбор проб	ул. Каирбекова, 379; жилой район	взвешенные частицы
3	в сутки	(дискретные методы)	ул. Дощанова, 43, центр города	(пыль), диоксид серы, оксид углерода, диоксид азота
2	каждые 20 минут	D WOMBON IDWOM	ул. Бородина район дома № 142	взвешенные частицы РМ-10, оксид углерода, диоксид и
4		в непрерывном режиме	ул. Маяковского- Волынова	оксид азота, диоксид серы, мощность эквивалентной дозы гама излучения

Таблица 1.2.2 – Характеристика загрязнения атмосферного воздуха

Общая оценка загрязнения атмосферы. По данным стационарной сети наблюдений (рис.1.2.2), уровень загрязнения атмосферного воздуха оценивался как повышенного уровня загрязнения, определялся значениями СИ равным 2 (повышенный уровень) и $H\Pi = 3\%$ (повышенный уровень) по диоксиду азота в районе поста №2 (ул. Бородина район дома № 142) (рис. 1, 2). Среднемесячные концентрации загрязняющих веществ не превышали ПДК. Максимально-разовые концентрации взвешенных частиц (пыль) составляла 2,0 ПДКм.р., диоксида азота – 2 ПДКм.р., диоксида серы – 1,8 ПДКм.р., оксида углерода – 1,0 ПДКм.р., оксида азота – 1,0 ПДКм.р., концентрации остальных загрязняющих веществ не превышали ПДК. (таблица 1). Случаи высокого загрязнения (ВЗ) и экстремально высокого загрязнения (ЭВЗ) атмосферного воздуха не обнаружены.

Средние концентрации и максимальные разовые концентрации загрязняющих веществ не превышали ПДК.

Многолетнее увеличение показателя «наибольшая повторяемость» отмечено в основном за счет взвешенных частиц РМ 10. Загрязнение воздуха взвешенными частицами РМ 10 свидетельствует о загрязнение воздуха города пылью как природного происхождения от почвы, не прикрытой растительностью, так и

антропогенного происхождения: выбросы с котельных, печное отопление частного сектора, автотранспорт, истирание дорожного полотна и т.д.

Рис. 1.2.2 – Карта места расположения поста наблюдений и метеостанции в г. Костанай

1.2.2 Геологическое строение месторождения

По геолого-структурным признакам и пространственному размещению золотого оруденения на месторождении Атыгай выделено восемь участков (с севера на юг): Аксай, Суходольский, Атыгай, Баскарасу (северо-западная часть месторождения), Горониколаевский, Гучковский, Промежуточный и Фартовый (юго-восточная часть месторождения). Участки характеризуются своими особенностями геологического строения, а также масштабами оруденения. В пределах указанных участков расположены одноименные бывшие золоторудные прииск.

расположены в Участки приконтактовых зонах Синешиханского составу Джаныспайского интрузивных массивов, которые ПО петрохимическим характеристикам, а также характеру металлогении относятся к диорит-гранодиорит-плагиогранитовому интрузивному комплексу среднего карбона. В тектоническом отношении площадь расположена в зоне влияния западного и восточного взбросов Синешиханского горста.

Характеризуемые участки сложены нерасчлененным вулканогенноосадочным комплексом пород палеозоя, который прорывается нижнего габбро, интрузивными массивами серпентинитов, гранитоидов, сопровождающихся дайковыми телами диабазов, спессартитов, плагиогранитаплитов.

По вышеуказанным образованиям развиты площадные и линейные коры выветривания мезозойского возраста, перекрытые континентальными образованиями неоген-четвертичной системы.

Породы фундамента в тектонически ослабленных зонах претерпели интенсивные гидротермально-метасоматические преобразования, которые

сопровождались окварцеванием, березитизацией, сульфидной минерализацией и привели к образованию кварцевых метасоматитов и золоторудных тел.

Месторождение Атыгай относится к гидротермальному генетическому типу золотосульфидно-кварцевой (среднеглубинной) рудной формации. По количеству сульфидов месторождение Атыгай отнесено к малосульфидной группе.

Северо-западная часть золоторудного месторождения Атыгай относится к гидротермальному генетическому типу золотосульфидно-кварцевой (средне глубинной) рудной формации.

По набору и взаимоотношениям основных рудных и нерудных минералов выделяется 3 стадии минералообразования:

- золото-пирит-арсенопиритовая (1-ая продуктивная);
- золото-полисульфидная (2-ая продуктивная);
- кварц-карбонатная (безрудная).

По количеству сульфидов зоны рудной минерализации отнесены к малосульфидной группе.

Юго-восточная часть месторождения относится к гидротермальному золотосульфидно-кварцевой (среднеглубинной) рудной генетическому ТИПУ формации. По набору и взаимоотношениям основных рудных и нерудных минералов выделяется 4 стадии минералообразования:

- золотокварцевая (1-ая продуктивная);
- золото-пирит-арсенопиритовая (2-ая продуктивная);
- золото-полисульфидная (3-я продуктивная).

По количеству сульфидов данные участки отнесены к убогосульфидной группе.

Нижний палеозой. Нерасчлененный (РZ1)

Северо-западная часть месторождения (участки Аксай, Суходольский, Атыгай, Баскарасу). Осадочно-метаморфическая толща указанного возраста прослеживается в виде непрерывной полосы с юго-восточного на северо-западный месторождения. Толща сложена чередующимися полимиктовыми песчаниками, алевропесчаниками, серицит-кварцевыми, кварцхлорит-серицитовыми, кварц-магнетит-хлоритовыми, кварц-полевошпатовыми, углистыми сланцами прослоями и линзами кварцитов. толщу пород, характеризующуюся постепенными алевропесчаники слагают взаимопереходами от мелкозернистых алевропесчаников к более крупнозернистым разностям – песчаникам. Состав обломков кварц-полевошпатовый, обломки угловатой и округлой формы. Цемент составляет 35-40% от объема породы. Цемент по составу глинисто-хлоритовый, хлорит-серицитовый с примесью гидроокислов железа. Из акцессорных минералов встречаются циркон и сфен. Рудная минерализация представлена редкой равномерно рассеянной вкрапленностью пирита кубического и пентагондодекаэдрического габитусов. Встречаются также зерна удлиненно-вытянутой и неправильной форм.

В зоне контакта с гранитоидами Синешиханского интрузива отложения толщи интенсивно метаморфизованы, что выражается появлении бластоалевролитовых структур с практически полной бластопсаммитовых, перекристаллизацией цемента. Участками песчаники и алевролиты настолько перекристаллизованы, что представляют собой кристаллические сланцы слюдистополевошпат-кварцевого состава. При этом участками довольно просматриваются реликты псаммитовой структуры.

Кварц-хлорит-серицитовые, кварц-магнетит-хлоритовые, углистохлоритовые сланцы распространены повсеместно и представляют собой породы цвета, сланцеватой текстуры, микролепидобластовой, темно-зеленого микропорфиро-бластовой структур, содержащие в своём составе, перечисленных минералов, криптозернистые агрегаты эпидота, актинолит, скопления чешуек мусковита, рассеянную сульфидную минерализацию, новообразованный Окварцевание кварц. сланцев отмечается разноориентирован-ным трещинкам, а также вдоль плоскостей рассланцевания, в наиболее ослабленных участках породы образуют гнездовые скопления кварца, создающие узловатую текстуру породы. Кварц нескольких разновидностей: от крупнозернистой. тонкомелкосреднезер-нистой ДО Форма изометрично-неправильная. Сланцы катаклазированы, пропитаны гидроокислами железа.

Серицит-кварцевые сланцы представляют собой тонкозернистую породу мономинерального состава, сложенную кварцем с незначительной примесью кварца ориентированы в Зерна одном направлении, параллельную сланцеватую текстуру породы. Сланцы послойно пропитаны гидроокислами рассекаются трещинками поперек сланцеватости, железа, последние выполнены кварцем и лимонитом.

Акцессорные минералы представлены единичными зернами циркона.

Микрокварцит слюдистый гематитизированный откартирован в районе участка Суходольский. Порода светло-серого цвета с участками интенсивной гематитизации. Микроскопически порода состоит из изометричных зерен кварца с полигональными, прямоугольными контурами. Размер зерен - ≤ 0.05 -0.1 мм. прослои микрозернистого, новообразованного кварца. Отмечены мусковита ориентированы в одном направлении. Порода по разноориентированным трещинкам пропитана гематитом, вследствие чего приобретает вишневокрасный цвет.

Эффузивно-осадочные образования нижнего палеозоя распространены в пределах участка Баскарасу и представлены туфами и туфобрекчиями андезитовых и андезитобазальтовых порфиритов представляют собой породы темно-зеленого цвета, брекчиевидной текстуры. Сложены крупными пирокластами андезитовых или андезитобазальтовых порфиритов, размером от 1-2 до 10 и более мм. Кроме того, обломки могут быть представлены кремнисто-серицитовыми сланцами, кварцем, альбитизированными зернами полевого шпата размером 0,3-0,6 мм. Обломки полуокатанной редко окатанной и угловатой формы. Мелкие осколки альбита, землистые агрегаты эпидота слагают связующую массу. В обломках кварца отмечены многочисленные мелкие, червеобразной формы вростки бледнозеленого турмалина, который характеризуется высоким рельефом и бледнофиолетовыми цветами интерференции. Структура породы кристаллолитокластическая.

Юго-восточная месторождения (участки Горониколаевский, часть Гучковский, Промежуточный и Фартовый). Осадочные образования нижнепалеозойского возраста распространены на всех характеризуемых участках, вулканогенные породы зафиксированы в пределах Гучковского и Промежуточного участков.

Сланцы юго-восточной части месторождения по составу отличаются от сланцев в северо-западной части в результате контактово-метасоматического

воздействия Джаныспайскго гранитоидного массива и интрузий основного и ультраосновного составов.

Среди сланцев юго-восточной части выделены следующие разновидности: кварц-полевошпат-хлоритовые, кварц-полевошпат-хлорит-серицитовые с гранатом и без; кварц-гранат-двуслюдяные, углисто-кремнисто-серицитовые, углистоглинистые, кварц-серицит-ставролитовые.

Наиболее широко распространены кварц-полевошпат-хлоритовые и кварцполевошпат-хлорит-серицитовые сланцы. Вышеуказанные разновидности сланцев зеленовато-серого, представляют собой породу темно-серого, участками красновато-И желтовато-серого цветов, мелкозернистого строения, минерализованную окварцованную, сульфидами, сланцеватой текстуры. Сульфидная приурочена минерализация К участкам окварцевания или тонкораспылена по всей массе породы.

Отличительной особенностью этих сланцев является наличие мелких, бесцветных, изометричных зерен граната, содержащихся в количестве ~ 25% и создающих порфиробластовую структуру породы.

В гидротермально-измененных сланцах отмечается наличие маломощных (первые мм), разноориентированных прожилков кварца, развитие чешуек и пластинок мусковита, ориентированных вкрест сланцеватости. Сульфидная минерализация имеет как рассеянный характер, так и приуроченность к зальбандам кварцевых прожилков.

Структура охарактеризованных выше сланцев реликтовая алевритовая, лепидогранобластовая, порфиробластовая. Текстура – сланцеватая, слоистая, микроплойчатая, брекчиевидная.

Кварц-полевошпат-гранат-двуслюдяные сланцы зафиксированы на Горониколаевском и Промежуточном участках.

В сланцах содержится рассеянная сульфидная минерализация, представленная идиоморфными кристаллами кубического облика, ксеноморфными зернами, размер которых составляет 0,5-0,6 мм. Вкрест сланцеватости порода рассечена кварцевыми прожилками, мощность которых составляет 0,3-0,5 мм. Прожилки содержат вкрапленность сульфидов, приуроченных к их зальбандам, а также землистые агрегаты эпидота.

Кремнисто-серицитовые сланцы и углисто-глинистые сланцы отмечены в пределах Гучковского, Промежуточного и Горониколаевского участков представляют собой породы темно-серого до черного цвета, сланцеватой, микроплойчатой, брекчиевидной текстуры и сложены кварцем, серицитом и углистым веществом.

Кварц-серицит-ставролитовые сланцы, отмечены на Гучковском участке, состоят из микроскопических зерен кварца и чешуек серицита-мусковита.

Для породы характерна сланцеватость, сохраняющаяся и в новообразованиях ставролита (гелицитовая структура). Стрктура породы порфиробластовая, гелицитовая. Текстура сланцеватая, пятнистая, микроплойчатая.

Песчаники, алевропесчаники, алевролиты в разрезе нижнепалеозойских отложений, характеризуются взаимными переходами. Они образуют прослои и линзы мощностью от первых метров до нескольких метров среди сланцев и являются, как и сланцы, рудовмещающими породами золотого оруденения. Породы имеют серый, зеленовато-серый, светло-серый цвет; гидротермальноизмененные разновидности – желто-бурый, коричневато-бурый цвета, массивную

текстуру и средне-мелкозернистую структуру. распространены как кварцевые мономинеральные, так и кварц-полевошпатовые разности.

Среди пород нижнепалеозойского осадочного комплекса отмечены прослои эффузивов основного состава, представленные базальтами, миндалекамен-ными разновидностями базальтов зеленокаменно-измененными базальтамиспиллитами. Эти породы вскрыты поисково-оценочными скважинами Гучковском и Промежуточном участках.

Макроскопически это породы зеленовато-серого цвета массивные или слабо рассланцованные, тонкозернистого строения. Ha зеленовато-сером выделяются светлые вкрапленники полевого шпата в виде лейст и идиоморфных табличек, а также светло-серых образований изометрично-неправильной формы.

Миндалекаменные разновидности базальтов состоят из микролитов роговой обманки, развитой по плагиоклазу, в межзерновом пространстве которых присутствует альбит, как в виде идиоморфных табличек и ксеноморфных зерен, так и в виде агрегатов радиально-лучистого строения.

В породе отмечены миндалины размером 1-2 мм овальной и округлой формы, выполненные бледно-зеленым хлоритом или серого цвета карбонатом. В значительном количестве развит эпидот в виде землистых прозрачных агрегатов и кристаллически зернистых образований.

Спиллиты состоят из тонких и расщепленных лейст альбитизированного и соссюритизированного плагиоклаза длиной около 0,3-0,5 мм, связанных альбитом, эпидотом, хлоритом, серицитом. В массе вторичных минералов незначительно распространена рудная минерализация. Порода рассечена трещинками мощностью 1,0-1,5 мм, выполненными эпидотом и кварцем.

Мезозойские образования (MZ)представлены выветривания, развитой по осадочным, метаморфическим и интрузивным породам. По времени образования кора выветривания относится к триас-юрскому периодам.

Преобладающими являются структурные коры выветривания глинистощебенистого состава. Щебенисто-глинистые, дресвяно-глинистые и глинистые коры выветривания имеют подчиненное значение. Цвет коры выветривания зависит от состава исходных пород, а также от характера гидротермальнометасоматических изменений, которым оказались подвержены первичные породы.

Наиболее распространенной является кора выветривания, развитая по вулканогенно-осадочным образованиям нижнего палеозоя, представленным переслаивающимися кварц-полевошпат-хлоритовыми, кварц-полевошпат-хлоритсерицитовыми сланцами с гранатом и без граната, кварц-гранат-двуслюдистыми углисто-кремнисто-серицитовыми, углисто-глинистыми серицит-ставролитовыми сланцами; кварцевыми и кварц- полевошпатовыми песчаниками, алевролитами, алевропесчаниками, В юго-восточной части месторождения базальтами и спиллитами.

Кора выветривания светло-серого, зеленовато-серого, темно-серого цветов, сохранившая щебенку или дресву сланцев, песчаников, алевропесчаников, базальтов. В зонах тектонических нарушений щебенка и дресва осадочных и гематитизированы, вулканогенных пород лимонитизированы, многочисленные прожилки и гнезда кварца. Цвет коры выветривания в зонах гидротермальной проработки изменяется от желтого, светло-желтого до розового, малинового и вишнево-красного.

Непосредственно в пределах минерализованных зон кора выветривания серовато-грязно-зеленого, буровато-зеленого сильно цвета, рассланцована, имеет брекчиевидный облик, пропитана окислами и гидроокислами железа (лимонитом, гематитом), насыщена прожилками и жилами светло-серого кварца.

В золоторудных минерализованных зонах кора выветривания осветлена, интенсивно ожелезненная, ярко-охристая, с гнездами и пятнами светло-серого цвета. В данной коре отмечаются маломощные субвертикальные прожилки серого кварца.

Часто встречаются обломки кварца размером 1х1 см. В указанных обломках наблюдаются пустоты выщелачивания, выполненные охристым материалом лимонита и гематитом.

На гранитоидных породах кора выветривания также имеет повсеместное распространение и носит площадный, реже – линейный характер. Преобладает каолиновый профиль выветривания: кора выветривания глинистая, дресвяноглинистая, щебенисто-глинистая, щебенистая. Цвет коры светло-серый, белый. В данной коре, как правило, сохраняется структура первичных пород: от мелкосредне- до крупнозернистой. Кора выветривания часто ожелезнена. Последнее выражается в виде гнезд, по трещинкам; отмечаются разводы, гидроокислов железа. В зонах гидротермальной проработки каолиновая кора выветривания сильно осветлена.

Мощность коры выветривания в северо-западной части месторождения изменяется от 15-20 до 80 м, в юго-восточной части от 20 до 100 м. Увеличение мощности коры выветривания происходит в зонах тектонических нарушений и на контактах пород разного состава. Средняя мощность составляет 64,0 м.

Кайнозойские отложения (КZ). Среди кайнозойских отложений на территории месторождения выделяются отложения палеоген-неогеновой четвертичной систем. Отложения кайнозоя с размывом залегают на мезозойских корах выветривания и представлены пестроцветными глинами серовато-желтого, красновато-желтого цветов с примазками и пятнами гидроокислов марганца.

Палеоген-неогеновые отложения (Р-N). Представлены переотложенной корой выветривания, распространенной в северной части месторождения. Указанная кора залегает горизонтально на структурной коре, и имеет ширину выхода на дневную поверхность от 20,0 до 60,0м. Мощность данной коры выветривания колеблется от 0,2 до 2,0м. Переотложенная кора выветривания буровато-желтого, охристо-желтого (за счет интенсивного ожелезнения) цветов, плотная, сложена каолинитом и слюдами. Содержит также включения в виде обломков трещиноватого кварца размером 2-3 см в поперечнике и примесь песчаного материала.

Неогеновая система, нижний отдел (N_1) . Неогеновые представлены образованиями терсекской свиты. Сложены глинами красноватобурого, зеленовато-серого цветов с бобовинами и гидроокислами марганца и железа, примесью песчаного материала. Глины плотные, вязкие. Вскрытая мощность глин колеблется от 0,3 до 18,0-20,0 м.

Четвертичные отложения (Q). Отложения четвертичного возраста на участке имеют широкое распространение и представлены бурыми суглинками, глинами темно-коричневого цвета, маломощными линзами и горизонтами песков. Наиболее распространенными образованиями являются суглинки, вскрытые

многочисленными разведочными скважинами. Мощности данных образований изменяются от 0,3 до 4,8 м. В пределах рудных зон мощность суглинков увеличивается. Представленные отложения бурого, коричневато-бурого цветов, плотные, содержат известковистый материал, гнезда мелкокристаллического гипса, единичные обломки пород.

Почвенно-растительный слой развит повсеместно. Он представлен гумифицированными продуктами перемыва суглинков и глин. Мощность почвенного покрова в среднем составляет 0,3 м, местами достигая 0,8 м.

Интрузивные породы

В северо-западной половине месторождения Атыгай (участки Аксай, Суходольский, Атыгай и северо-восточный угол участка Баскарасу) интрузивные породы представлены гранитоидными разностями Синешиханского интрузивного массива и отнесены по времени внедрения к ранне-средне-каменноугольному Джаныспайскому комплексу.

Синешиханский интрузивный массив образует вытянутое тело, ориентированное в северо-западных румбах и контролируемое зоной западного взброса Синешиханского горста.

На площади участка Атыгай в пределах Синешиханского интрузива откартированы аплитовидные граниты или гранит-аплиты, плагиограниты и роговообманковые кварцевые диориты.

В юго-восточной половине месторождения Атыгай (участки Горониколаевский, Гучковский, Промежуточный, Фартовый) интрузивные породы можно разделить на две группы: к первой группе относятся породы основного и ультраосновного составов, ко второй – породы гранитоидного ряда.

Дайковый комплекс пород широко распространен в пределах месторождения и представлен телами диабазов, габбро-диабазов, спессартитов и плагиогранитаплитов. Они являются образованиями трещинного типа, имеют небольшие мощности (первые метры) и распространены по простиранию на расстояния 50-100м, локализуясь вблизи интрузивных массивов. Дайки ориентированы в северозападном или субмеридиональном направлениях, согласно направлению основных геологических структур участков.

Наиболее часто встречаемые дайки представлены породой основного состава диабазы и габбро-диабазы. Они зафиксированы многочисленными ЭТО скважинами.

Характеристика рудных зон

пределах площади северо-западной части месторождения морфоструктурном плане рудные зоны объединены в серии крутозалегающих (60-80°) линейно-вытянутых минерализованных зон, гидротермально измененных гранитоидов каменноугольного возраста и осадочного комплекса пород нижнего палеозоя.

Протяженность рудных зон, в пределах месторождения Атыгай, колеблются от 198м 1450 м, при ширине от первых метров до 40-60 м.

Протяженность рудных тел от 90-100 м до 300-700 м. Мощности рудных тел весьма невыдержанные, и колеблются от 1м до 12 м, достигая в раздувах 46,5 м, а в пережимах 0,3 м (коэффициенты вариации мощностей рудных тел 122%). Морфология рудных тел сложная, не редко мощности в раздувах достигают 47м, а на флангах расщепляются на несколько линзообразных тел.

Рудные зоны от подошвы кайнозойских отложений и до глубины 75-85м подвергнуты окислению.

Рудные зоны сложены глинистыми, дресвяно-глинистыми, щебенистоглинистыми корами выветривания, образовавшимися по гранитоидам (гранитам, гранит-аплитам) и осадочно-метаморфическим отложениям нижнего палеозоя. В наблюдаются составе последних переслаивающиеся хлоритовые, кварцхлоритовые, кварц-серицитовые, кварц-хлорит-серицитовые сланцы.

Самыми распространенными минералами руд коры выветривания являются глинистые минералы в составе группы каолинита; группа слюд, включающая серицит, гидросерицит, биотит, мусковит; окислы и гидроокислы железа, плагиоклаз, хлорит. В значительно меньших количествах присутствуют амфиболы, карбонаты, окислы и гидроокислы марганца. Последние совместно с гидроокислами железа образуют различные прожилковые и натечные структуры выделений. Значительно реже встречаются окисленные и «свежие» кристаллы пирита разнообразных форм.

Основным рудным минералом окисленных руд коры выветривания является самородное золото.

Распределение оруденения в пределах рудных зон весьма неравномерное. Средний коэффициент вариации содержаний золота составил 231% при среднем содержании золота по 0,84 г/т.

Мощность коры выветривания в границах зоны колеблется в пределах 16-84 м. Наблюдается увеличение мощности коры к флангам зоны. Средняя мощность коры выветривания составляет 49,4 м.

Мощность покровных отложений изменяется от 0,3 до 21,8 м. Средняя мощность аллохтонных образований – 6,4 м.

1.2.2.1 Вещественный и минеральный состав окисленных и первичных руд

Рудные тела месторождения Атыгай представлены корами выветривания по переслаивающимся кварцевым, кварц-полевошпатовым песчаникам, хлоритовым, кварц-хлорит-серицитовым, кварц-полевошпат-хлорит-серицитовым, углисто-глинистым сланцам, алевролитам, алевропесчаникам и конгломератам, переходящим в осадочные отложения нижнего палеозоя, по интрузивным телам гипербазитов, гранитов, плагиогранитов, кварцевым диоритам, габбро, габбродиабазам и гидротермально-метасоматическим образованиям.

Основным золотосодержащим минералом является кварц. Последний представлен двумя генерациями:

- квари первой генерации серого, темно-серого цвета, плотный, сливной; нередко образует небольшие гнезда и линзочки в светло-серой разновидности. Представленный кварц частично лимонитизирован, в редких случаях в нем отмечается вкрапленность единичных чешуек самородного золота;
- кварц второй генерации представлен светло-серой, мелкозернистой (до сливной) с поверхности интенсивно обохренной (лимонитизированной и гематитизированной) разновидностью. Данный кварц часто разбит сериями тонких трещин. По трещинам наблюдается лимонитизация и серицитизация, иногда отмечается мелкая вкрапленность окисленных кристалликов пирита. Непосредственно в самом кварце нередко фиксируется рассеянная и гнездовидная

вкрапленность кристаллов пирита и блеклых руд. Пирит, в основном, кубического и кубооктаэдрического габитусов.

Рыхлая часть рудной массы составляет порядка 25-30% и представлена образованиями глинисто-слюдистого состава. образованиях находится значительное количество гидроокислов железа, которые образуют примазки, а также псевдоморфозы по железосодержащим сульфидам.

минералогического результате исследования, проведенного практически фракционированном материале проб, установлено, все самородное золото концентрируются в тяжелой немагнитной фракции.

Минеральный состав золотосодержащих руд приведен в таблице 1.2.2.1. Таблица 1.2.2.1 - Минеральный состав золотосодержащих руд

Рудные		Нерудные			
первичные	вторичные	основные	второстепенные	Акцессорные	
Пирит	Гематит	Кварц	Каолинит	Циркон	
Арсенопирит	Гетит	Серицит	Мусковит	Анатаз	
Халькопирит	Гидрогетит	Хлорит	Серицит	Дистен	
Блеклая руда	Гидрогематит	Мусковит	Хлорит	Рутил	
Сфалерит	Лимонит	Обломки пород	Эпидот	Апатит	
Прустит	Псиломелан		Карбонаты	Турмалин	
Ильменит	Лейкоксен			Хром-шпинелиды	
Магнетит	Азурит				
Марказит	Хризоколла				
Сидерит	Лепидокрокит				
Золото	Ярозит				
самородное					

Основным рудным минералом на месторождении Атыгай является золото. Основная часть золота находится в свободном самородном состоянии. В тоже время, учитывая присутствие в рудах данного объекта около 1-го % сульфидов, можно предположить, что незначительная часть золота присутствует тонкодисперсном состоянии в этих минералах.

Чаще всего самородное золото наблюдается в светло-сером кварце в виде рассеянной и гнездовидной вкрапленности как по основной массе, так и вдоль трещин, выполненных лимонитом.

Параметры отдельных золотин колеблются в довольно широком диапазоне: от <0.05 до 0.675 мм. Примерно треть золотин (36.93%) относится к мелкому золоту и имеет размеры, не превышающие 0,10 мм. Около половины установленного золота (48,14%) можно отнести к средней крупности (размеры >0.10-0.30 MM).

Только 14,93% образований золота относится к крупному золоту и имеет размеры - >0,30-0,68 мм.

Установлено, что 18,62% золотин частично (реже – полностью) покрыто лимонитовой или лимонит-гематитовой «рубашкой».

Образования самородного золота имеют ярко-желтый, иногда с красноватым оттенком, цвет.

Попутно с самородным золотом на месторождении Атыгай наблюдается нахождение сульфидов и их окислов, сульфосолей, вольфраматов и самородного серебра.

Самородное серебро встречается совместно с золотом. Его содержание, по данным спектрального анализа, колеблется от <0,03 до 12,4 г/т.

Наиболее распространенными сульфидами в границах участков являются пирит, арсенопирит и халькопирит.

Пирит образует мелкую рассеянную, реже – гнездовидную вкрапленность в кварцевых жилах, линзах, прожилках, а также в кварцевых метасоматитах березитах. В перечисленных образованиях он, чаще всего, находится в ассоциации с арсенопиритом, халькопиритом, блеклыми рудами.

Арсенопирит встречается значительно реже пирита. Совместно с последним он образует мелкие просечки и отдельные изолированные кристаллы удлиненной формы.

Халькопирит в пределах участков встречается сравнительно редко. Он образует мелкие выделения в кварце совместно с блеклыми рудами, реже – с пиритом, арсенопиритом.

Другие представители сульфидов: галенит, марказит, пирротин и др. на территории разведанных участков встречаются спорадически.

распространенными образованиями коры выветривания характеризуемых участков является окислы и гидроокислы железа. Их среднее содержание колеблется в пределах 3-10%. Последние образуют пористые, охристые и плотные скрытокристаллические массы, которые часто окрашивают рудный материал в разнообразные пестрые цвета – от светло-желтого, желтого до вишнево-красного.

Гидроокислы марганца (псиломелан) присутствуют в рудных образованиях в скрытокристаллическое незначительных количествах И имеют строение. Совместно с гидроокислами железа они образуют прожилковые, реже – натечные выделения.

Остальные рудные минералы встречаются редко и представляют только минералогический интерес.

Основными нерудными составляющими в рудной массе разведанных являются кварц и глинисто-слюдистые минералы. В меньших количествах в ней присутствуют хлорит, амфиболы, полевые шпаты и карбонаты.

Практически все вышеперечисленные минералы глинисто-слюдистого вещества представляют собой вторичные продукты выветривания, образовавшиеся по разнообразным по составу сланцам, песчаникам, реже - гранитоидам.

Наиболее распространенными акцессорными минералами в составе золоторудных образований являются: циркон, рутил, турмалин, сфен, анатаз, брукит, аметист, гранат, апатит, топаз.

Основным компонентом руд месторождения Атыгай является золото. Другие полезные компоненты установлены на уровне кларковых и ниже кларковых содержаний. По результатам атомно-эмиссионного анализа установлено 30 химических элементов: мышьяк, сурьма, вольфрам, висмут, серебро, медь, свинец, цинк, марганец, олово, молибден, бор, барий, бериллий, кобальт, никель, хром, титан, стронций, ванадий, литий, ниобий, галлий, цирконий, скандий, фосфор, германий, иттрий, иттербий, золото.

Интервалы содержаний химических элементов, установленные полуколичественным спектральным анализом в образованиях исследованных участков приведены в таблице 1.2.2.2.

Таблица 1.2.2.2 - Интервалы содержаний химических элементов

1			
Элементы	Содержание, %	Элементы	Содержание, %
Золото, г/т	<1,0-12,0	Молибден	<0,0001-0,00425
Медь	0,0002-0,106	Ниобий	0,0005-0,001
Свинец	< 0,0001-0,0412	Никель	0,0006-0,025
Цинк	< 0,002-0,0737	Кобальт	<0,0001-0,004
Серебро, г/т	<0,03-12,4	Хром	0,0005-0,08
Барий	<0,01-0,03	Ванадий	<0,0002-0,04
Мышьяк	<0,003->1,0	Скандий	0,0001-0,002
Сурьма	<0,0015-0,0049	Иттрий	<0,0005-0,02
Вольфрам	<0,0002-0,0808	Иттербий	<0,00005-0,0015
Олово	<0,0001-0,0085	Стронций	<0,005-0,015
Висмут	<0,00005-0,0011	Бор	0,002-0,02
Литий	<0,001-0,002	Цирконий	0,001-0,015
Бериллий	0,00006-0,0003	Титан	<0,01->1,0
Галлий	0,0001-0,002	Марганец	0,001-0,25
Германий	0,00005-0,0002	Фосфор	0,02-0,1

Данные таблицы показывают, что, кроме золота, в единичных пробах повышены мышьяк, медь, серебро. Содержания по остальным элементам колеблются в пределах кларковых и ниже кларковых содержаний. Перечисленные попутные компоненты из-за низких содержаний не представляют практического интереса.

1.2.3 Физико-географическое положение

Месторождение Атыгай расположено Житикаринском районе В Костанайской области.

В пределах территорий, прилегающих к месторождению, широко развита сеть грунтовых степных дорог. До ближайшей асфальтированной дороги Кусакан – Житикара от центральной точки месторождения Атыгай (Северный участок) расстояние составляет 55,0 км. Расстояние от месторождения до областного центра 365 км, до г.Житикара – 110 км.

Житикаринский район связан с областным центром железной дорогой Костанай – Тобол - Житикара, протяжённость которой составляет 207 км.

Последняя обеспечивает связь с развитой, перспективной в промышленном отношении и богатой полезными ископаемыми, северо-западной частью области.

В пределах района ведётся добыча руды на Джетыгаринском асбестовом карьере, добыча и переработка руд на Комаровском, Тохтаровском и Аккаргинском золоторудных месторождениях.

В геологическом структурном плане контрактная территория располагается на стыке двух крупных геотектонических структур – Урала и Тургайского прогиба, что наложило свой отпечаток на характер рельефа, который

представляет собой холмисто-увалистую равнину, понижающуюся в восточном направлении. Ориентированные субмеридионально холмы имеют пологие склоны, расчлененные мелкими логами и балками.

Абсолютные отметки в пределах площади составляют 338,6 – 395,8 м.

В 8 километрах восточнее границы участка карьера Берсуат начинается постоянная часть русла реки Берсуат, которая имеет притоки Былкылдак (на севере) и Баскарасу (на юге). Расстояние от границы участка карьера Берсуат до последних, соответственно, 5,47 и 1,21 км.

Несмотря на относительно суровые климатические условия, территория месторождения Атыгай (Берсуат) имеет благоприятные географ экономические условия для промышленного освоения руд.

Обзорная схема расположения месторождения Атыгай 1.2.3.

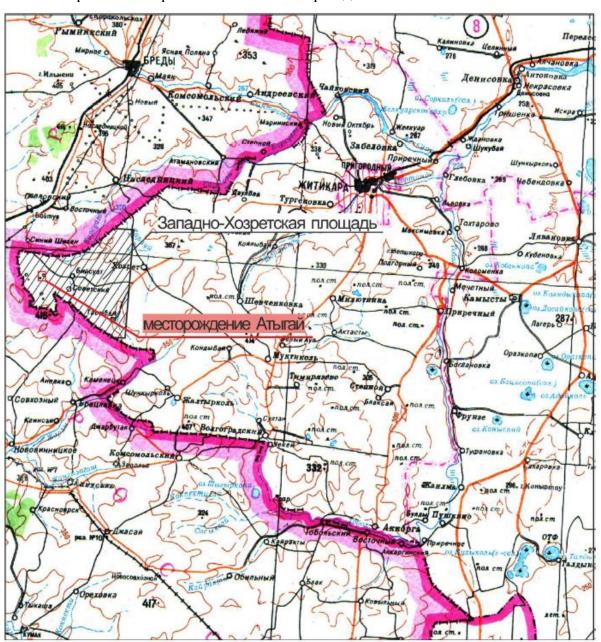


Рис. 1.2.3 – Обзорная схема расположения месторождения Атыгай

Районный центр, г. Житикара, пересекается р. Шортанды, протекающей с юго-запада на северо-восток и являющейся левым притоком р. Тобол. На югозападной окраине города река перекрыта двумя дамбами с интервалом в 1700 м, в результате чего образовались Верхнее Шортандинское и Нижнее Шортандинское водохранилища. Вода из этих водохранилищ используется для технических целей. К северо-востоку от г. Житикара находится Желкуарское водохранилище, которое является основным источником для обеспечения жителей райцентра питьевой водой.

Житикаринский район связан с областным центром железной дорогой Костанай-Тобол-Житикара, протяженность которой составляет 207 км. Последняя обеспечивает связь с развитой, перспективной в промышленном отношении и богатой полезными ископаемыми, юго-западной частью области.

Протяженность автомобильных дорог в данном районе превышает 500 км, из которых 100 км – республиканского, остальные – местного значения. Сеть автомобильных беспрепятственно дорог позволяет перевозить сельскохозяйственные и промышленные грузы во всех направлениях.

В экономическом отношении Житикаринский район является объектом с высоким аграрным и промышленным потенциалом.

Основным направлением развития аграрного комплекса является зерновое хозяйство. Кроме того, развито молочно-мясное скотоводство, тонкорунное и полутонкорунное овцеводство, свиноводство и овощеводство.

Район относится к промышленно развитым. Ведущими являются следующие отрасли: горнодобывающая, производство строительных материалов, легкая промышленность, пищевая промышленность.

Население района, состоящее, в основном, из русских, украинцев, казахов, немцев, занято в горнодобывающей отрасли и сельскохозяйственном производстве.

В районе практически полностью отсутствуют собственные топливноэнергетические ресурсы. Снабжение Житикаринского района электрической энергией осуществляется из-за пределов РК, в основном, электроэнергией, вырабатываемой Троицкой ГРЭС.

1.2.4 Существующее состояние горных работ

Месторождение Атыгай (участок Берсуат) ранее не разрабатывалось ни открытым ни подземным способом. Рельеф месторождения представляет собой всхолмленную равнину с абсолютными отметками высот от 355 до 402 м.

Месторождение выявлено в 2010 году в ходе геологоразведочных работ ТОО «Кустанайская поисково-съемочная экспедиция» в пределах Западно-Хазретской площади. Право недропользования на проведение разведки Западно-Хазретской площади принадлежит ТОО «Атыгай Голд Майнинг» на основании Контракта №2639-ТПИ от 5 мая 2008 года.

Естественные физико-геологические процессы, которые могут отрицательно влиять на разработку месторождения отсутствуют.

Обводненность месторождения умеренная. Месторождение находится в несейсмичной зоне. По степени сложности инженерно-геологических условий разработки месторождение Атыгай относится к простой категории сложности и к III типу инженерно-геологических групп вмещающих пород.

Полезная толща в окисленной части разреза представлена глинистодресвяно-щебенистой корой выветривания, в первичной - кварц-серицитхлоритовыми метасоматитами по сланцам и гранитоидам с кварцевыми жилами и зонами прожилкового окварцевания.

Плодородный почвенный слой (ППС) развит повсеместно. Мощности изменяются от 10-15 см на возвышенностях до 0.8-1.0 м в понижениях рельефа. Объёмный вес ППС – 1,1 т/м3, влажность не превышает 10%. Почвенный покров представлен южными черноземами, лугово-черноземными почвами.

присутствует Рыхлая вскрыша также повсеместно. Представлена покровными неоген - четвертичными суглинками, песками и глинами.

благоприятные горно-геологические И горнотехнические особенности позволяют вести отработку руд месторождения Атыгай открытым способом – карьером, с применением БВР в первичной части разреза месторождения.

1.2.5 Характеристика современного состояния воздушной среды

Ввиду того что, на рассматриваемой территории ранее не проводились горные работы, атмосферный воздух в районе проведения работ, находится в качественном состоянии, ниже или в пределах нормативов предельно-допустимых концентраций (ПДК) загрязняющих веществ в воздухе населенных мест.

В районе намечаемой деятельности контроль состояния атмосферного воздуха не ведется.

1.2.6 Поверхностные воды

Районный центр, г. Житикара, пересекается р. Шортанды, протекающей с юго-запада на северо-восток и являющейся левым притоком р. Тобол. На югозападной окраине города река перекрыта двумя дамбами с интервалом в 1700 м, в результате чего образовались Верхнее Шортандинское и Нижнее Шортандинское водохранилища. Вода из этих водохранилищ используется для технических целей. К северо-востоку от г. Житикара находится Желкуарское водохранилище, которое является основным источником для обеспечения жителей райцентра питьевой водой.

В 8 километрах восточнее месторождения начинается постоянная часть русла реки Берсуат, которая имеет притоки Былкылдак (на севере) и Баскарасу (на юге). Расстояние от границы участка Берсуат до последних, соответственно, 5,47 и 1.21 км.

Согласно письму РГУ «Тобол-Торгайская бассейновая инспекция по регулированию использования и охране водных ресурсов Комитета по водным ресурсам Министерства экологии, геологии и природных ресурсов Республики Казахстан» поверхностные водные объекты, водоохранные зоны и полосы на участке планируемых работ отсутствуют (Письмо прилагается в приложении 6).

1.2.7 Подземные воды

В соответствии с общей гидрогеологической характеристикой района и на основании классификации рудных месторождений - гидрогеологические условия месторождения Атыгай простые.

На месторождении пробурены 9 гидрогеологических скважин, по которым первичные гидрогеологические параметры были изучены зоны открытой трешиноватости фундамента и спорадически обводнённой пород выветривания. Проведены пробные пилотные откачки, каротаж (расходометрия, резистивеметрия и термометрия), и отобраны пробы воды на сокращённый химический анализ, агрессивность, нефтепродукты и общую радиологию. Дебиты составили 0.01-0.2 л/с, при понижениях 12.0-56.0 м. Скважины практически безводные. Удельные дебиты варьируют в пределах от менее 0,001 до 0,01 л/сек*м. В зависимости от рельефа уровни устанавливаются на глубинах 9,5-21,0 м.

По минерализации воды пресные 0,3 - 1,0 г/дм³, слабосолоноватые 1,3 - 1,9 $\Gamma/дм^3$ и солоноватые 3,2 $\Gamma/дм^3$ (скв №9 и/г).

Состав трёхкомпонентный - сульфатно-хлоридный и хлоридно-сульфатный натриево-калиевый. Нормам по требованию СанПин соответствуют подземные воды только в скважине №1G. Скважины оборудованы под «ключ» законсервированы для дальнейших работ.

Запасы подземных вод пополняются, главным образом, за счет атмосферных осадков. Величина восполнения в многолетнем ряду лет зависит от величины весенне-зимних осадков и частоты ливней. Маловодные годы повторяются в среднем с периодичностью раз в 4 года с аномальной продолжительностью до 5 лет подряд раз в 50 лет.

Гидрогеологические месторождений условия освоения предварительного осущения обводнённой толщи с глубин в среднем - с 16,0 м. Подземные воды безнапорные.

Временные водотоки формируются, как правило, в период весеннего снеготаяния, а иногда и летних ливневых дождей.

В зимнее время на неглубоких плесах и перекатах реки промерзают до дна, в среднем толщина льда достигает 1,0-1,2 м. Весеннее половодье начинается в апреле и завершается по истечению 25-30 дней. Высота подъема уровня воды в реках весной в среднем составляет 1,5-2,0 м. Питание рек происходит, в основном, за счет дождевых и талых вод, частично - за счет подземного стока.

В конце июня месяца поверхностный сток рек прекращается, перекаты пересыхают, минимальный расход равен нулю и относится к 99% обеспеченности. Минерализация воды в реках в период половодья не превышает 0,9 г/л. В период отсутствия поверхностного стока (июль-март месяцы), когда реки подпитываются разгружающимися в пойме трещинными водами палеозойского комплекса, минерализация воды достигает 1,4-1,7 г/л (р. Шортанды), 6,4-8,6 г/л (р. Тобол) и контролируется минерализацией подземных вод.

В районе и на участке месторождения основными коллекторами подземных четвертичные аллювиальные отложения, открытой трещиноватости палеозойских скальных пород и их коры выветривания.

1.2.8 Качество подземных и поверхностных вод

На качество карьерных вод оказывает влияние состав дренируемых подземных вод и технологические особенности добычных работ. В таблице 1.2.8 приведен обобщенный химический состав подземных и поверхностных вод месторождения.

Таблица 1.2.8 - Качественные показатели подземных и поверхностных вод

аолица 1.2.8 - Качественные показатели подземных и поверхностных вод Крайние значения содержаний компонентов, от-до				
Компоненты		остные воды	(карьерные) воды Воскресен-	
	р. Берсуат	р. Баскарасу	ского прииска	
Величина рН	7,24-8,25	7,47-8,00	6,95-8,20	
Сухой остаток, мг/л	802-1618	1568-3370	1795-2747	
Общая жесткость, мг-экв/л	7,0-10,4	14,1-19,0	13,3-17,5	
Карбонатная жесткость, мг-экв/л	2,6-5,4	5,8-5,9	4,4-5,2	
•	Содержание в	мг/л:		
Хлориды	302-620	967-1570	817-1226	
Сульфаты	82-338	113-458	169-507	
Гидрокарбонаты	159-330	354-360	266-319	
Карбонаты	0	0	0	
Окисляемость	2,8-4,4	11,2-16,0	1,2-2,7	
Нитриты	до 0,40	до 0,50	0,01-12,00	
Нитраты	до 11,3	до 62,0	0,4-62,8	
Натрий+калий	203-370	491-569	408-588	
Кальций	34-106	114-155	101-190	
Магний	52-101	102-137	94-130	
	До 0,32	0,05-0,63	до 0,21	
Железо сумм.	11 /			
Аммоний	до 2,01	до 32,4	до 27,7	
Бериллий	- 0.01	-	< 0,00005	
Алюминий	<0,01	- 0.002.0 #0	до 0,06	
Марганец	до 0,15	0,003-0,79	0,03-0,42	
Никель	-	-	0,001-0,025	
Медь	до 0,005	до 0,002	до 0,05	
Цинк	до 0,222	-	0,001-0,013	
Мышьяк	до 0,02	до 0,01	до 0,02	
Селен	0,002	-	до 0,030	
Молибден	0,0025	-	0,002-0,020	
Кадмий	< 0,001	до 0,002	до 0,001	
Свинец	0,010-0,040	до 0,025	0,013-0,032	
Хром	0,003	-	< 0,01	
Стронций	0,71	-	1,0-2,9	
Серебро	-	-	<0,001	
Ванадий	-	-	<0,01	
Ртуть	до 0,003	-	<0,1*10-5	
Бор	0,20-0,25	-	0,15-0,25	
Барий	0	-	0	
Бром	0,8-1,2	-	1,33-2,07	
Фтор	0,40-0,47	-	0,11-0,52	
Иод	0,10	-	-	
Фосфаты	-	-	0,01	
Фенолы	-	-	<0,001	
Цианиды	-	< 0,001	до 0,03	
Нефтепродукты	до 0,30	до 0,003	до 0,16	
ПАВ	-	-	<0,0125	
у-ГХЦГ	-	-	0	
ДДТ	-	-	0	
Общая альфа-радиоактивность, Бк/л	-	-	0,03-0,05	
, , , , , , , , , , , , , , , , , , , ,	i	i .	- , ,	

Ì	OC C			0.00.0.20
ı	Общая бета-радиоактивность, Бк/л	-	-	0,09-0,20

Район месторождения находится в аридной зоне с дефицитом влаги. Затруднённый водообмен, преобладание испарения над питанием подземных вод и связанные с этим процессы соленакопления предопределили низкое качество поверхностных и подземных вод.

Поверхностные воды и подземные воды от пресных до слабо солоноватых. По содержанию в них хлоридов, сульфатов, сухого остатка и жесткости не удовлетворяют нормам Санитарных правил. В карьерных водах рН 6,95-8,2 ед, сухой остаток 1.8 - 2.7 г/дм³, жесткость общая 13.3-17.5 ммоль/дм³, окисляемость 1,2-2,7; содержания в мг/дм³ хлоридов 817-1226; сульфатов 169-507; нитритов до 12,0; нитратов до 62,8; аммония до 27,7; железо до 0,21; мышьяка до 0,02; кадмия до 0,001; меди до 0,05; цинка 0,001-0,013; свинца 0,013-0,032; фтор до 0,52; бериллия менее 0,00005; селена до 0,03; марганца 0,03-0,42; никеля 0,001-0,025; бора 0,15-0,25; молибдена до 0,02; хрома (+6) менее 0,01; алюминия до 0,06; стронция 1,0-2,9; ртути менее 0,0001; фенолов менее 0,001. Радиационное состояние благополучное.

По отношению к свинцовым и алюминиевым оболочкам кабелей воды обладают слабой агрессивностью, по отношению к стальным конструкциям они средне агрессивные, а к алюминиевым – сильно агрессивные. По отношению к бетону воды не агрессивные, реже (сезонно) относятся к III виду агрессивности. Санитарное состояние карьерных вод в связи с их техногенным образованием постоянно не благополучное. По качеству карьерные воды могут быть использованы только для технических целей.

1.2.9 Характеристика современного состояния почвенного покрова

На территории Костанайской области распространены весьма разнообразные почвенные образования.

На лицензионной территории выделяются: аллювиально-луговые почвы, распространенные в долинах рек и в некоторых балках (пригодные для поливного земледелия и в качестве пастбищ для скота); черноземы обыкновенные средне гумусовые, развитые на водораздельных площадях (пригодные для земледелия) и погребенные почвы, развитые по элювиальным мезозойским корам выветривания.

1.2.10 Характеристика растительного мира района

На территории Костанайской области выделены следующие обобщенные категории зонального порядка: лесостепь, степь и полупустыня. Лесостепь на территории области занимает небольшие участки, где чередуется березовые и осино-березовые колки с луговыми и богато разнотравно-ковыльными степями. Южнее на территории области представлена "колочная степь", где на степных пространствах в западинах произрастают небольшие леса, в центре которых развиваются ивовые заросли или осоковые болота.

Негативное воздействие на растительный мир намечаемой хозяйственной деятельностью ожидается допустимое, находящееся в пределах установленных нормативов, незначительным ущербом естественному экологических c

воспроизводству различных видов растительности и не приводящее к необратимым последствиям для сложившихся природных экосистем.

После производства работ предусмотрена рекультивация участка.

В границах территории участка месторождения исторические памятники, археологические памятники культуры отсутствуют.

Сибироязвенных захоронений И скотомогильников на территории месторождения не имеется. В связи с вышеизложенным, риск здоровью работников и населения не наблюдается. Крупных лесных массивов в районе месторождения нет.

Территория, на которой планируется ведение эксплуатационных работ не располагается на территории ООПТ и землях государственного лесного фонда.

1.2.11 Характеристика животного мира района

В связи с отсутствием данных по животному и растительному миру были использованы данные из открытых источников, а также из отчета по геологоразведочным работам.

Современный животный мир Костанайской области насчитывает тысячи беспозвоночных, 24 вида рыб, 3 вида земноводных, 6 видов пресмыкающихся, более 400 видов птиц, гнездящихся в пределах области, 29 видов птиц, которые здесь не гнездятся, но постоянно или периодически в пределах области пребывают, около 40 видов птиц, пролетающих через территорию области от мест зимовок к местам размножения и обратно, более 60 видов млекопитающих. Всего с территорией Костанайской области так или иначе связано существование не менее 400 видов позвоночных животных.

Территория планируемых работ не служит экологической нишей для эндемичных исчезающих и «краснокнижных» видов растений и животных. В районе расположения проектируемого объекта отсутствуют особо охраняемые территории- заповедники, заказники, памятники природы.

Одним из основных факторов воздействия на животный мир является фактор вытеснения животных за пределы их мест обитания.

Факторы воздействия (буровые работы, работа автотранспорта) носят эпизодический характер. Эти факторы окажут незначительное влияние на наземных животных в виду их малочисленности. К тому же обитающие в прилегающем районе животные могут легко адаптироваться к новым условиям.

Животный мир окрестностей сохранится в существующем виде, характерном для степной полосы.

После производства работ предусмотрена рекультивация участка.

В участок намечаемой деятельности ареалы обитания животных, занесенных в Красную Книгу Республики Казахстан, не входят.

1.2.12 Особо-охраняемые природные территории

Площадка проектируемого месторождения не располагаются на территории особо охраняемых природных территорий (ООПТ) и землях гослесфонда, находящихся в ведении Комитета лесного хозяйства и животного мира Министерства экологии, геологии и природных ресурсов Республики Казахстан на территории Костанайской области, согласно письму №26 от 03.03.2022 г РГУ

«Костанайская областная территориальная инспекция лесного хозяйства животного мира», представлено в приложении 7.

1.2.12.1 Памятники истории и культуры

В соответствии с требованиями Закона Республики Казахстан «Об архитектурной, градостроительной и строительной деятельности в Республике Казахстан» (статья 10). «Осуществление архитектурной, градостроительной и строительной деятельности должно исходить из условий сохранности территорий и установленном законодательством объектов, признанных В порядке историческими, охраняемыми ландшафтными культурными ценностями И объектами.

Порядок использования земель в границах указанных зон регулируется Земельным кодексом Республики Казахстан (2003), в соответствии с которым (статья 127) «Землями историко-культурного назначения признаются земельные участки, занятые историко-культурными заповедниками, мемориальными парками, погребениями, археологическими парками (городища, стоянки), архитектурноландшафтными комплексами, наскальными изображениями, сооружениями религиозного культа, полями битв и сражений».

На основании изучения результатов предшествующих археологических изысканий, в районе размещения предприятия по добыче золотоносных руд не отмечаются объекты археологического и этнографического характера.

1.2.13 Описание изменений окружающей среды, в случае отказа от намечаемой деятельности

Поскольку намечаемой деятельностью является открытая разработка участка Берсуат золоторудного месторождения Атыгай, одним из альтернативных вариантов является «нулевой» вариант т.е. отказ от деятельности. Отказ от деятельности приведет значительному улучшению К экологических характеристик окружающей среды, когда разработка месторождения приведет к улучшению социально-экономических характеристик района, что в свою очередь приведет к улучшению условий жизни населения близлежащих городов и поселков.

Напротив, реализация проекта окажет положительный социальный эффект на жителей близлежащих населенных пунктов Житикаринского района за счет разработке месторождения. дополнительных инвестиций при месторождения потребует привлечения местных рабочих кадров из различных профессиональных сфер для выполнения различных работ. Необходимые для производства материалы будут закупаться у отечественных производителей, тем самым стимулируя производство и занятость населения.

Горнотехнические условия месторождения, морфология залегания рудных тел и экономические критерии предопределяют разработку верхней окисленной части месторождения открытым способом (карьерами) до глубины 100 м. Разработка подземным способом на первом этапе нецелесообразна, т.к. руды залегают близко к поверхности. Переход на подземный способ добычи возможен на стадии вовлечения в отработку сульфидной части месторождения.

Единственным способом осуществления добычи руды данного месторождения является открытая разработка карьерами и сооружением отвалов пустых пород.

Подземная разработка на текущем этапе проектирования не рассматривается в связи с выходом рудных залежей на дневную поверхность.

Данные о слагающих породах свидетельствуют, что постепенное уплотнение разновидностей горной массы от поверхности требует применения буровзрывных работ для их предварительной подготовки к выемке. Рыхлые породы коры выветривания простираются до глубины 25 метров от поверхности, постепенно уплотняясь и переходя в скальные породы с глубины 35 метров. В связи с этим в настоящем Плане условно принято, что буровзрывные работы планируются в следующих относительных объёмах от общих объёмов выемки горной массы, показанных в таблице.

Таблица 1.2.13.1

Интервал глуб	ины карьера, м	9/ or of the popular Macay
OT	% от объёма горной массы	
Поверхность	25	10
25	35	50
35	Полотно	100

Для рыхления будет использоваться скважинная отбойка горной массы. Имеются два альтернативных способа БВР ведения БВР: метод шпуровых зарядов и метод камерных зарядов. Оба данных метода менее эффективны. Одним из недостатков метода камерных зарядов является повышенный выход негабаритных кусков после взрыва. Основным недостатком метода шпуровых зарядов является сравнительно большая его трудоемкость. Поэтому применение метода шпуровых зарядов неэффективно при горных разработках большого масштаба. В связи с этим принят метод скважинной отбойки.

В плане горных работ принят вариант с использованием гидравлического горного оборудования на дизельном топливе типа Hitachi. Данная модель экскаваторов зарекомендовала себя как надежная техника.

Альтернативное размещение объекта производства не рассматривалось. Место размещения объекта производства, а также технические и технологические решения предопределены условиями расположения рудной залежи.

Размещение вскрышных пород месторождения предусматривается на внешних отвалах. Внутрикарьерное отвалообразование настоящим планом не предусматривается в связи с тем, что под карьером залегают не вовлекаемые в разработку утвержденные протоколом ГКЗ №2408-22-У от 04.02.2022г. запасы сульфидной руды. Внутреннее отвалообразование в данном случае представляется возможным в соответствии с п.1746 Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы.

Внутреннее отвалообразование будет применено на стадии отработки сульфидной части месторождения.

Часть вскрышных пород планируется использовать для нужд предприятия подсыпки дорог и площадок, тем самым сократив территорию, нарушенную отвалами вскрышных пород.

Проектом рассматривались несколько вариантов формирования отвалов вскрышных пород:

- Вариант 1. При отсыпке отвала в 1 ярус, высотой 20 м занимаемая отвалами площадь составит $-85~000~\text{м}^2$.
- Вариант 2. При отсыпке отвала в 2 яруса, высотой яруса 15 метров занимаемая отвалами площадь составит $-74~300~\text{м}^2$.

Был принят вариант с формированием отвала в несколько ярусов, т.к. данный вариант позволяет сократить площадь земель под размещение вскрышных пород на 12,55% (10700 м^2).

Выбранный вариант размещения отвалов позволяет:

- 1. Уменьшить расстояния транспортировки вскрыши, снизить время работы ДВС техники и эксплуатационные расходы, в следствии чего и уменьшаются объемы выбросов в окружающую среду;
 - 2. Уменьшение площади под размещение отвалов;
 - 3. Уменьшение площади пыления.

Сравнение параметров при проектном варианте и альтернативном варианте приведено в таблице 1.2.13.2.

Расчет выбросов от источников ЗВ приведен в приложении 10.

конкретных технических проектных решений исключает возможные формы неблагоприятного воздействия на окружающую среду, либо при невозможности полного исключения – обеспечивает его существенное снижение.

Учитывая, что Отказ от реализации проектных решений не приведет к значительному улучшению экологических характеристик окружающей среды, но может привести к отказу от социально и экономически важного для региона предприятия, инициатор считает нужным отказаться от «нулевого» варианта.

Охват изменений, которые могут произойти в результате существенных воздействий на затрагиваемую территорию

Основными источниками воздействия на атмосферный воздух на период проведения работ на месторождении Атыгай (Берсуат) будут являться: буровая техника, автотранспорт и спецтехника.

Воздействие на недра заключается в нарушении целостности массивов горных пород при проходке горных выработок, возникновении пустотности в недрах при извлечении руды на поверхность земли. Кроме того, неизбежно образование техногенных микроформ рельефа отвалами вскрышных пород.

Согласно Плана горных работ, максимальная годовая производительность по добыче руды достигнет 10 тыс. тонн.

Негативное воздействие работы карьера может заключаться в следующем:

- чрезмерное нарушение массива горных пород бортов карьера и связанную с этим потерю устойчивости выработки при неправильном проведении БВР;
- сверхнормативные потери полезного ископаемого в виде нечеткого определения контакта «руда-порода» и, соответственно, не извлечения ПИ;
- сверхнормативные потери ПИ при переизмельчении горной массы взрывом и оставлении ее на рабочих уступах.

предотвращения указанных негативных последствий проектом предусматривается проведение оптимизации параметров БВР процессе эксплуатации карьеров.

Основным средством пылеподавления предусмотрена ДЛЯ Источниками воды для данных нужд являются аккумулированные в водосборники талые и карьерные воды, пригодные для их использования на пылеподавлении. Нормы технологического проектирования горнорудных предприятий цветной металлургии с открытым способом разработки. В случае недостаточной эффективности пылеподавления с использованием воды на практике могут применяться обеспыливающие составы с использованием специальных реагентов и пены.

По условиям промышленной добычи прогнозируется низкий уровень воздействия на компоненты окружающей среды, когда изменения в природной среде не превышают существующие пределы природной изменчивости.

Нарушенные территории после полной отработки месторождений подлежат рекультивации с восстановлением исходных природных характеристик.

воздействие намечаемой образом, общее деятельности на геологическую среду оценивается как допустимое.

Таблица 1.2.13.2 - Сравнительная таблица параметров

	Вариа	нт 1 (1 ярус)	Вариант 2 (2	яруса)	Сопоставление 2 вариантов			
Наименование объекта	Выбросы пыли при Занимаемая статистическом занимаемая площадь, м ² хранении вскрыши, т/год		Выбросы пыли при статистическом хранении вскрыши, т/год	Сокращение занимаемой площади, м ²	Уменьшение объема пыления, т/год	Экологический эффект по 2 варианту, %		
Отвал вскрышных пород	85 000	18,64	74 300	16,3	10 700	2,34	<12,55%	

1.3 ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ $\mathbf{E}\mathbf{E}$ **ИСПОЛЬЗОВАНИЯ**

Согласно п.2 статьи 1 Земельного Кодекса РК земельные участки используются в соответствии с установленным для них целевым назначением. Правовой режим земель определяется исходя из их принадлежности к той или иной категории и разрешенного использования в соответствии с зонированием земель (территории).

Планируемая деятельность располагается на свободной от застройки территории и соседствует со следующими земельными участками:

- Кадастровый номер земельного участка № 12-179-012-015, площадь 1260000 м², предоставленное право – постоянное землепользование, категория земель – земли сельскохозяйственного назначения, целевое назначение – для ведения крестьянского хозяйства;
- Кадастровый номер земельного участка № 12-179-012-153, площадь 2380096 м², предоставленное право – временное возмездное долгосрочное землепользование, категория земель – земли промышленности, транспорта, связи, для нужд космической деятельности, обороны, национальной безопасности и иного несельскохозяйственного назначения, целевое назначение – для целей проведения операций по добыче твердых полезных ископаемых на месторождении Атыгай (Северный участок);
- Кадастровый номер земельного участка № 12-179-012-008, площадь 1980000 м², предоставленное право – частная собственность, категория земель – земли сельскохозяйственного назначения, целевое назначение – для ведения крестьянского хозяйства.

1.3.1 Территория горных работ схеме отмечена оранжевым на прямоугольником. Планируемый участок ведения работ не затрагивает соседние участки и не будет располагаться на них.

На протяжении всего периода эксплуатации месторождения осуществляться контроль над соблюдением проведения работ строго в границах земельного отвода.

Ниже приведена карта с портала Управления Земельного кадастра и Автоматизированной информационной системы государственного земельного кадастра: http://www.aisgk.kz/aisgzk/ru

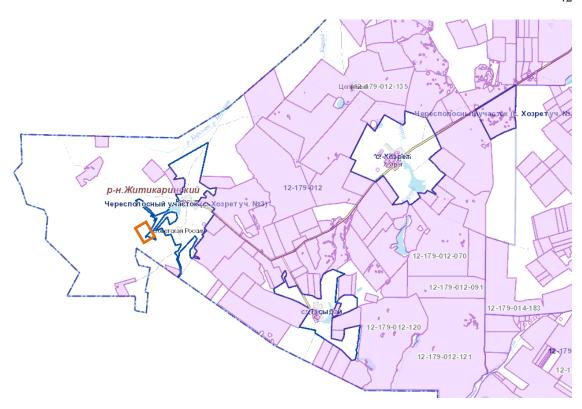


Рис. 1.3.1 – Схема расположения земельного участка

1.4 ИНФОРМАЦИЯ О МЕСТОРОЖДЕНИИ

Настоящим проектом предусматривается разработка участка Берсуат золоторудного месторождения Атыгай.

Отработку запасов месторождения предусматривается вести открытым способом в контурах двух карьеров участка Берсуат.

Отработка месторождения ведется с применением буровзрывных работ.

Режим горных работ - круглосуточный (2 смены по 12 часов), 365 рабочих дней в году. Работы ведутся вахтовым методом – две вахты в месяц. Продолжительность вахты – 15 рабочих дней.

Максимальная производительность по добыче руды из карьеров составит 26,094 тыс. тонн в год.

Общий срок эксплуатации карьеров составит 1 год.

В соответствии с заданием на проектирование объемы добычи руды приняты следующими: на 2029 год – 26,094 тыс.тонн.

Система разработки в карьере принята транспортная, нисходящая, уступная горизонтальными слоями с транспортировкой вскрышных пород во внешний отвал, а добытой руды – на рудные склады. Отработка месторождения ведется с применением буровзрывных работ. При ведении горных работ в карьере, принимая во внимание характер и морфологию оруденения, с целью уменьшения объемов горной массы, обеспечения наилучших условий выемки и сокращения уровня потерь и разубоживания высота рабочего уступа принята 5 м. В конечном положении уступы сдваиваются до высоты 10 м. Ширина предохранительной бермы в предельном положении составляет 3,5 м. Угол откоса уступов в рабочем положении –до 75° ; в предельном – $45-60^{\circ}$.

Протяженность фронта горных работ карьера должна быть достаточной для обеспечения установленной мощности карьера по полезному ископаемому и пустым породам. Исходя из условия обеспечения экскаватора объемом подготовленных выемке запасов взорванной массы, рекомендуемая К протяженность фронта добычных работ принимается равной 300 м, что в соответствии с Методическими рекомендациями обеспечивает эффективную работу экскаватора в комплексе с автомобильным транспортом на скальных породах.

Вскрытие горизонтов в карьере, исходя из предусматриваемой системы разработки, а также с учетом структуры комплексной механизации принято системой внутренних съездов в пределах рабочей зоны.

Учитывая наличие скальных разновидностей пород вскрытие месторождения с первых дней, эксплуатации потребует предварительное рыхление горной массы с помошью БВР.

По мере понижения горных работ формируется борт карьера. Горная масса загружается в средства автотранспорта и перемещается вдоль фронта работ. Далее вскрышные породы направляются на внешний отвал, руда – на переработку.

Параметры карьера приведены в таблице 1.4.1.

Таблица 1.4.1- Параметры карьеров

Наименование параметров	Ед. изм.	Берсуат-1	Берсуат-2
Длина (макс.)	M	215	241
Ширина (макс.)	M	145	204
Нижняя отметка	M	317	307
Верхняя отметка	M	354,6	362,8
Глубина	M	37,6	56
Площадь	тыс. м ²	26,3	39,1
Горная масса, в том числе:	M^3	414 328	833 541
ПРС	тыс. м ³	7,89	11,73
Вскрыша	тыс. м ³	400,8	813,8
Балансовая руда*	тыс.т	5,9	7,1

На рисунке 1.4.1 приведен ситуационный план месторождения.

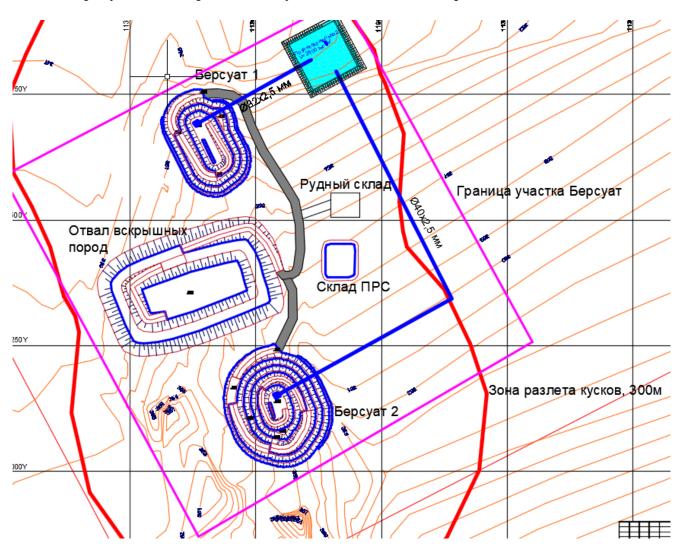


Рис. 1.4.1 - Ситуационный план месторождения M 1:2 000

Календарный план горных работ

Производительность предприятия по добыче руды определена 26,094 тыс. тонн в год. Для обеспечения заданной производительности составлен календарный график горных работ.

При разработке календарного графика учтены следующие условия: погоризонтное распределение запасов руды количеству ПО качеству; горнотехические условия, возможная скорость углубки.

Общий срок эксплуатации карьеров составит 1 год.

Суммарный коэффициент вскрыши составляет 47,32 м.куб/т.

Всего, для добычи запасов в количестве 13 тонн (с учетом потерь и разубоживания) необходимо попутно удалить 1,2 млн.м.куб вскрышных пород.

Для обеспечения заданной производительности составлен календарный график горных работ.

Календарный план горных работ приведен в таблице 1.4.2.

Таблица 1.4.2 - Сводный календарный график разработки участков Берсуат-1 и Берсуат-2

Показатель	Ед.изм	Всего	Год 2029
Руда (всего)	Т	26 094	26094
Руда (всего)	м.куб	13 047	13047
Au	г/т	1,11	1,11
Au	кг	29,01	29
Вскрыша	M^3	1 234 822	1234822
Горная масса	M^3	1 247 869	1247869
К.вскр	M^3/T	47,32	47,32

Буровзрывные работы

Подготовку горных пород к выемке предусматривается осуществлять при помощи буровзрывных работ. Для рыхления будет использоваться скважинная отбойка горной массы. Выполнение буровзрывных работ возможно, как собственными силами предприятия, так и с привлечением подрядной организации.

вертикальных и наклонных Бурение скважин на рыхлении предусматривается производить станками типа ROC L8 mk1 (первое поколение)

Основное (технологическое) и контурное бурение осуществляется одним и тем же станком. Диаметр скважин принят равным 125 мм.

Для взрывания сухих скважин используется взрывчатое вещество ANFO, для Powergel 650. Взрывание скважин короткозамедленное, неэлектрической «EXEL». применением системы взрывания В случае производственной необходимости на практике параметры БВР могут отличаться от плановых (в т.ч. тип ВВ и марка бурового станка, периодичность взрывов и проч.). При этом не должно быть допущено нарушение требований безопасности и ухудшение технико-экономических показателей.

Сводные показатели буровзрывных работ на максимальный год отработки приведены в таблице 1.4.3.

Таблица 1.4.3 – Сводные показатели буровзрывных работ

Годы отработки	Ед. изм.	Итого	9 год
Горная масса	м.куб/год	309814	309814
Годовой объем бурения	бм.	30216	30216
Выход горной массы с 1метра скважины	м.куб./бм		10,25
Расчетный рабочий парк	ед.	0,38	0,38
Принятый рабочий парк	ед.	1,00	1,00
Годовое количество рабочих смен станка	смен/год		600,00
Количество смен в сутки			2,00
Продолжительность одной смены	Ч		11,00
Общая продолжительность работы станков	Ч		2518
Среднесменная эксплуатационная производительность одного станка	бм/смену		132,00
Дизельное топливо	T	108	108
Расход масел и смазочных материалов	T	7,55	7,55
Расход ВВ (вскрыша)	кг/м3		0,65
гасход вв (векрыша)	т/год	201,18	201,18

Выемочно-погрузочные работы

На основе физико-механических свойств разрабатываемых руд и пород, а также учитывая условия разработки месторождения и производительность карьера, в качестве выемочно-погрузочного оборудования на вскрышных работах целесообразно принять гидравлические экскаваторы.

При выборе выемочно-погрузочного оборудования учитывались следующие условия:

- обеспечение годовой производительности карьера по горной массе до 8,5 $млн.м^3/год;$
 - обеспечение оптимальной скорости углубки;
- сервисное обслуживание экскаваторов и снабжение оригинальными запасными частями;
 - качество и надежность.

Для расчетов технико-экономических показателей условно принято использование экскаваторов типа HITACHI EX ZX 470 R3 на вскрышных работах (вместимость ковша 3 м^3) и HITACHI ZX 450 LD (вместимость ковша 2,6 м³) на добычных работах. В случае производственной необходимости, на выемочнопогрузочных работах могут быть задействованы экскаваторы, отличающиеся от принятых в настоящем плане, если этим не будут нарушаться требования безопасности.

Расчет основных показателей на максимальный год отработки приведен в таблице 1.4.4.

Таблица 1.4.4 – Сводные технико-экономические показатели выемочно-погрузочных работ вскрыши

Показатель	Ед. изм.	Итого	2029 год
Вскрыша	м.куб/год	1234822	1234822
Производительность экскаватора	м.куб/год	1040000	1040000
Время работы		7314	7314
Расчетный рабочий парк	ед.	1,19	1,19
Принятый рабочий парк		2,00	2,00
Дизельное топливо	тыс.л/год	314	314
Расход масел и смазочных материалов	тыс.л/год	9,43	9,43

Таблица 1.4.5 - Сводные технико-экономические показатели выемочно-погрузочных работ руды

Показатель	Ед. изм.	Итого	2029 г
Руда	м.куб/год	13047	13047
Производительность экскаватора	м.куб/год	970000	970000
Время работы		83	83
Расчетный рабочий парк	ед.	0,01	0,01
Принятый рабочий парк		1,00	1,00
Дизельное топливо	тыс.л/год	2,35	2
Норма	л/ч	33,00	33,00
Расход масел и смазочных материалов	тыс.л/год	0,07	0,07
Норма	% от ДТ	3,00	3,00

Карьерный транспорт

Горнотехнические условия разработки месторождения, параметры системы разработки, масштабы производства, а также ряд технологических факторов, предопределяют использование автомобильного транспорта на открытых горных работах. Основными преимуществами автомобильного транспорта являются: независимость от внешних источников питания энергии, упрощение процесса отвалообразования, сокращение длины транспортных коммуникаций благодаря возможности преодоления относительно крутых подъемов автодорог, мобильность.

Транспортировка горной массы из карьера предполагается на отвал вскрышных пород и склад балансовых руд.

выборе типа транспорта учитывались параметры выемочнопогрузочного оборудования и плановая производительность карьеров по горной массе.

При вместимости ковша экскаватора 3 м.куб, емкость кузова автосамосвала должна составлять 9-21 м.куб. Для расчета приняты самосвалы типа БелАЗ 7540В грузоподъемностью 30 т. На практике могут применяться другие самосвалы.

Параметры карьерной автодороги приняты следующими: ширина – 17 м, продольный уклон 80 ‰, промежуточные горизонтальные площадки длиной 50 м предусматриваются каждые 600 м длины съезда.

Технико-экономические показатели транспортировки на максимальный год отработки приведены в таблице 1.4.6.

Таблица 1.4.6 – Сводные технико-экономические показатели транспортировки

Показатели	Ед. изм.	2029 год
Объем перевозки	Т	2866185
Расчетный рабочий парк автосамосвалов	ед.	3,94
Принятый рабочий парк автосамосвалов	ед.	4,00
Дизельное топливо	тыс.л	313,963
Моторное масло	тыс.л/год	15,70
Автошины	компл.	10,50

Отвалообразование

Размещение вскрышных пород месторождения предусматривается на внешних отвалах. Внутрикарьерное отвалообразование настоящим проектом недопустимо в связи с тем, что под карьером остаются не вовлекаемые в разработку потенциальные запасы руды $(\pi.1746)$ Правил промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы).

Показатели работы отвального хозяйства приведены в таблице 1.4.7.

Таблица 1.4.7 - Показатели работы отвального хозяйства

№	Наименование показателей	Ед. изм.	Показатель
1	Объем вскрышных пород (в целике)	тыс. м ³	1215,2
2	Объем в отвале	тыс. м ³	1361,0
3	Занимаемая площадь	тыс.м2	75,0
4	Количество ярусов	ШТ	2
5	Высота первого яруса	M	20
6	Высота второго яруса	M	15
8	Продольный наклон въезда на отвал	0/0	80
9	Ширина въезда	M	17
10	Угол откоса ярусов	град	37
11	Ширина предохранительных берм	M	20

Формирование отвала осуществляется бульдозером ЧТЗ Б12, либо аналогичным.

Формирование отвалов при бульдозерном отвалобразовании осуществляют двумя способами - периферийным и площадным.

При периферийном отвалообразовании автосамосвалы разгружаются по периферии отвального фронта в непосредственной близости от верхней бровки отвального откоса или под откос. Часть породы в этом случае сталкивается бульдозером под откос.

При площадном отвалообразовании разгрузка породы из самосвалов производится по всей площади отвала или на значительной части его, а затем бульдозером планируют отсыпной слой породы, укатываемый катками, после чего цикл повторяется.

Более экономичным способом формирования является периферийный, при котором меньше объем планировочных работ. В связи с вышеизложенным в проекте принят периферийный способ отвалообразования.

Технологический процесс периферийного бульдозерного отвалообразования автомобильном транспорте состоит из трех операций: автосамосвалов, планировки отвальной бровки и устройстве автодорог.

Автосамосвалы должны разгружать породу, не доезжая задним ходом до бровки отвального уступа. Необходимо обязательно обустроить ограничитель движения автосамосвалов при заднем ходе к бровке отвала. В качестве ограничителя используют предохранительный вал породы, оставляемый на бровке отвала, согласно Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы (приказ Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 352).

Разгрузка машин может быть произведена на любом участке отвальной бровки. Для этого лишь требуется, чтобы место разворота машин было расчищено бульдозером от крупных кусков породы.

Схема бульдозерного отвалообразования приведена на рис. 1.4.8. Вместо аншлагов допускается применение обваловки по всему периметру отвалов.

- 1 Предупреждающий аншлаг "Проход запрещен! Опасная зона!"
- 2 Информационный аншлаг: "Схема отвалообразования, движения автосамосвалов, бульдозеров и др. дорожно-строительной техники. Безопасные расстояния и параметры разгрузочной площадки"

Рис. 1.4.8 – Схема бульдозерного отвалообразования

Складирование

При разработке месторождения предусмотрена транспортировка балансовой руды автосамосвалами с карьера на рудный склад.

Возведение въезда на склады и планировка бровки осуществляется с помощью бульдозера.

Технологический процесс складирования при автомобильном транспорте состоит из операций: разгрузки автосамосвалов, планировки разгрузочной бровки.

Автосамосвалы должны разгружать полезное ископаемое, доезжая задним ходом до ограничителя на бровке уступа. В качестве ограничителя используют вал, оставляемый на бровке склада в виде ориентирующего вала.

^{3 -} Указатели (флажки) работы в секторе разгрузки

Разгрузка машин может быть произведена на любом участке бровки. Для этого лишь требуется, чтобы место разворота машин было расчищено от крупных кусков руды.

Руда располагается штабелями высотой 3 метра. Параметры склада предусматривают необходимой ширины проезды между штабелями для работы погрузочно-разгрузочной техники и автосамосвалов.

Складирование ПРС

Перед началом работ с проектной площади необходимо снять почвеннорастительный слой (ПРС), в таблице 1.4.9 приведены объемы снятия ПРС.

Таблица 1.4.9 – Объемы по снятию ПРС

Haynyayanayyya	Площадь,	Мощность	Объем ПРС,	Объем ПРС
Наименование	тыс. м ²	слоя, м	тыс.м ³	с учетом Кр=1,2, тыс.м ³
Карьер Берсуат-1	26,3	0,3	7,89	9,468
Карьер Берсуат-2	39,1	0,3	11,73	14,076
Отвал вскрышных пород	74,3	0,3	22,29	26,748
Рудный склад	2,7	0,3	0,81	0,972
Дороги	12,4	0,3	3,72	4,464
Пруд-испаритель	15,6	0,3	4,68	5,616
Всего	170,4	0,3	51,12	61,344

Параметры склада ПРС отражены в таблице 1.4.10.

Таблица 1.4.10 – Параметры склада ПРС

Наименование параметров	Ед. изм.	Показатель
Площадь	M ²	6130
Высота	M	10
Объем	тыс.м ³	61,3

Общая схема электроснабжения

Электроснабжение предусматривается от дизельной электростанции, размещенной рядом с оборудованием.

Для освещения района проведения работ карьера, складов и отвала применяются мобильные передвижные дизельные осветительные мачты типа Atlas Copco QLT H50, оснащенные четырьмя прожекторами с металлогалогенными лампами мощностью 1000 Вт каждая.

Водоотлив карьера Берсуат №1 выполняется насосами ЦНС2,5-80, один в работе один в резерве, мощностью 2,2 кВт каждый.

Водоотлив карьера Берсуат №2 выполняется насосами ЦНС13-105, один в работе один в резерве, мощностью 11,0 кВт каждый.

Электроснабжение насосов карьера осуществляется от мобильной дизельной электростанции типа ЭД-40-Т400-1РПМ11 мощностью 40 кВт или аналогичной, располагаемой рядом с насосом.

Насосы подключаются через шкаф управления насосами (ШУН) типа ШУН-2ПЧ IP54 который управляет двумя насосами или аналогичным.

Электрооборудование карьера присоединяется К дизельным электростанциям с помощью гибких медных кабелей марок КГЭХЛ и КГХЛ.

Работа карьера предполагается круглогодичная. Работа механизмов и оборудования предполагается не более чем за 20 часов работы в сутки.

Потребители электроэнергии карьера Берсуат №1 напряжением 0,4 кВ:

- насосы карьера (ЦНС2,5-80, один в работе, один в резерве, мощностью 2,2 кВт каждый).

Потребители электроэнергии карьера Берсуат №2 напряжением 0,4 кВ:

- насосы карьера (ЦНС13-105, один в работе, один в резерве, мощностью 11,0 кВт каждый).

Освещение

Нормы освещенности приняты согласно СП РК 2.04-104-2012 «Естественное и искусственное освещение» и «Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы».

Проектом предусмотрено вечернее освещение карьера, освещение отвала и складов. Освещенность района проведения работ в карьере и отвале не менее 0,2 лк, а в местах работы техники – 10 лк с учетом освещенности, создаваемой прожекторами и светильниками, встроенными в конструкции машин и механизмов.

Освещение а отвала и склада выполняется передвижными мобильными дизельными осветительными мачтами в количестве не менее 2 шт. на основном карьере. По мере разработки карьера мобильные мачты освещения передвигают в район проведения работ.

1.5 ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНОЛОГИЙ

Под наилучшими доступными техниками понимается наиболее эффективная и передовая стадия развития видов деятельности и методов их осуществления, которая свидетельствует об их практической пригодности для того, чтобы служить основой установления технологических нормативов и иных экологических предотвращение или, условий, направленных на если ЭТО практически неосуществимо, минимизацию негативного антропогенного воздействия окружающую среду. При этом:

- 1) под техниками понимаются как используемые технологии, так и способы, методы, процессы, практики, подходы и решения, применяемые к проектированию, строительству, обслуживанию, эксплуатации, управлению и выводу из эксплуатации объекта;
- 2) техники считаются доступными, если уровень их развития позволяет внедрить такие техники в соответствующем секторе производства на экономически и технически возможных условиях, принимая во внимание затраты и выгоды, вне зависимости от того, применяются ли или производятся ли такие техники в Республике Казахстан, и лишь в той мере, в какой они обоснованно доступны для оператора объекта;
- 3) под наилучшими понимаются те доступные техники, которые наиболее действенны в достижении высокого общего уровня охраны окружающей среды как
- 2. Применение наилучших доступных техник направлено на комплексное предотвращение загрязнения окружающей среды, минимизацию и контроль негативного антропогенного воздействия на окружающую среду.

Под областями применения наилучших доступных техник понимаются отдельные отрасли экономики, виды деятельности, технологические процессы, технические, организационные или управленческие аспекты ведения деятельности, для которых в соответствии с настоящим Кодексом определяются наилучшие доступные техники.

Согласно Экологического Кодекса РК за №400VI от 2 января 2021 г добыча цветных металлов входит в перечень областей применения наилучших доступных техник.

В связи с отсутствием утвержденного справочника по наилучшим доступным техникам по добыче руд цветных металлов в Республике Казахстан, используется информация официального утвержденного справочника Федерального агентства по техническому регулированию и метрологии (Информационно-технический справочник по наилучшим доступным технологиям: Добыча и обогащение руд цветных металлов ИТС 23–2017).

Работа любого горно-металлургического предприятия, ведущего добычу полезных ископаемых открытым способом сопровождается:

- разрушением почвенного покрова;
- изменением/уничтожением естественных ландшафтов, уничтожением местообитаний;
- запыленностью и загазованностью атмосферы при производстве массовых взрывов в карьере, выполнении погрузочных и транспортных работ;

- негативным влиянием на гидросферу в связи с забором воды из водоемов, сбросом в них сточных вод (карьерный водоотлив);
- загрязнением земель, почв, недр и т. п., в том числе из-за образования и размещения отходов вскрышных и вмещающих пород;
- физическими воздействиями шумом и вибрацией при эксплуатации техники и ведении буровзрывных работ.

применение наилучших Планируемое технологий результаты деятельности в области охраны окружающей среды на участке проведения горных работ:

- -при экскавации горной массы проводится гидроорошение, эффективность пылеподавления около 80%;
- -пылеподавление проводится на технологических дорогах, при проведении работ на карьере, перевозке руды, а также при погрузочных работах с эффективностью 80%;
- -с целью снижения пыления при движении спецтранспорта по дорожному увлажняется поливочными дорожное полотно машинами эффективность пылеподавления 80%;
- при работах на отвалах для предупреждения пылевыделения производится увлажнение горной массы, закрепление поверхности откосов и отвалов;
- -своевременное проведение технического осмотра, чтобы транспортную технику в исправном состоянии, что исключает возникновения аварийных ситуаций. Производить постоянные наблюдения за автотранспортом и техникой;
- -сбор карьерных вод в пруд испаритель (рассматривается в рамках отдельного проекта), с частичным использованием в технологии (полив карьерных дорог).

Предприятие намерено на участке проведения горных работ по мере целесообразности технической экономической использовать И дополнительные технологии, предусмотренные в «Перечне наилучших доступных практически внедрение которых позволят исключить существенно сократить негативное воздействие хозяйственной деятельности на окружающую среду.

1.6 ХАРАКТЕРИСТИКА ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ

При оценке воздействия окружающую рассмотрены на среду И проанализированы следующие виды влияния:

- воздушная среда;
- водные ресурсы;
- недра;
- отходы производства и потребления;
- физическое воздействие;
- земельные ресурсы и почвы;
- растительность;
- животный мир;
- социально-экономическая среда;
- оценка экологического риска реализации намечаемой деятельности в регионе.

1.6.1 Воздействие на атмосферный воздух

Воздействие на воздушный бассейн прогнозируется в ожидаемых выбросах загрязняющих веществ в атмосферный воздух при проведении отработки золотосодержащих руд.

Учтены источники выбросов только OT горных работ, которые непосредственно вовлечены в процесс разработки месторождения.

Основными источниками выбросов являются буровые, взрывные, выемочнопогрузочные, статическое хранение материалов на отвалах и складах, так же от сжигания топлива в двигателях самосвалов, бульдозеров и дизельных генераторах.

выбросы, c учетом характеристик проводимых предусмотрены при проведении взрывных работ.

Аварийные выбросы, обусловленные нарушением технологии работ, не прогнозируются.

Количество эмиссий в окружающую среду на период проведения эксплуатации месторождения ориентировочно составит: 166.72054 т/год.

Количество источников выбросов на месторождении, задействованных данным проектом, составит 18 единиц, из них 5 организованных и 13 неорганизованных источников. В атмосферу будут выбрасываться загрязняющие вещества 15 наименований 1-4 класса опасности, такие как: марганец и его соединения, медь (II) сульфит, свинец и его неорганические соединения, хром, цинка оксид, азота (IV) диоксид, азот (II) оксид, углерод, сера диоксид, сероводород, углерод оксид, акролеин, формальдегид, алканы С12-19, взвешенные частицы, пыль неорганическая, содержащая двуокись кремния в %: 70-20 %.

Результаты проведенных предварительных расчетов показывают отсутствие превышения ПДКмр по всем загрязняющим веществам и группам суммации на границе СЗЗ.

Передвижные источники

Для выполнения различных работ по добыче, и транспортировке руд применяется автотранспорт и другая техника, работающая за счет сжигания дизельного топлива в двигателях внутреннего сгорания и являющаяся источником выброса загрязняющих веществ в атмосферный воздух.

Объемы топлива (ДТ), сжигаемого передвижными источниками, ориентировочно составят: 594,701 т/год.

1.6.2 Воздействие на водные ресурсы

1.6.2.1 Водоснабжение

Хозяйственно-бытовые нужды

Снабжение питьевой водой предусмотрено привозной бутилированной водой. Для хранения питьевой воды на рабочих местах персонал обеспечивается поверхностными индивидуального пользования. Пользование подземными водными ресурсами водного объекта проектом ИЗ не предусматривается.

Количество людей единовременно находящихся на участке работ около – 63 человек. Расход воды на хозяйственно-питьевые нужды для рабочего персонала на период проведения работ определяется из расчета норм расхода на одного человека -25 л/сут.

Объем водопотребления определен в соответствии со СН РК 4.01-02-2011 «Внутренний водопровод и канализация зданий и сооружений».

Объемы водопотребления зависят от количества персонала, занятого при карьерных работ. Максимальное предполагаемое персонала, которое будет задействовано порядка 63 человек.

$Q = N \times n / 1000, m^3/cym$

N – количество работающих;

норма расхода воды, (л/сут)/чел, (п=25 – для холодных цехов, (л/смену)/чел) в сутки среднего водопотребления.

Период эксплуатации:

 $63*25/1000 = 1,575 \text{ m}^3/\text{cym}$;

 $1.575 * 365 = 574.875 \,\mathrm{m}^3/200$

Ориентировочный объем потребления воды на хозяйственно-бытовые нужды составит – 574,875 $M^3/200$.

Технологические нужды

Борьба с пылью на дорогах предприятия будет осуществляться путем их орошения водой. Для этих целей будет использоваться поливомоечная машина. Этой же машиной будет осуществляться уборка снега.

Предварительное орошение и увлажнение производится в летний период с апреля по октябрь месяц, 210 дней в году.

Для пылеподавления при горных работах, для компенсации потерь на испарение могут быть использованы в технических целях карьерные воды.

Вода, используемая для пылеподавления, расходуется безвозвратно.

Расчет водопотребления воды для пылеподавления произведен исходя из норм потребления воды согласно СНиП РК 4.01-41-2006 [11], в размере 0,4 л/сут. на 1 м^2 (для поливки покрытий и площадей).

Транспортные работы

 $0.0004 \text{ m}^3 * 12400*210 = 1041,6 \text{ m}^3/\text{год}$

- где площадь автодорог -12400 м^2 .

При соблюдении технологии введения горных работ влияние на подземные воды оказываться не будет.

1.6.2.2 Водоотведение

Хозбытовые сточные воды

На борту карьера будут размещены специализированные биотуалеты, с накопительными жижесборниками. Содержимое жижесборников обрабатывается дезинфицирующим раствором. Вывоз сточных вод предусмотрен по договору специализированным предприятиям.

Объем водоотведения принимается равным объему водопотребления и ориентировочно составят – 1,575 $m^3/сутки$, 574,875 $m^3/год$.

Технологические нужды

Вода, используемая для пылеподавления, расходуется безвозвратно в объеме $4,96 \text{ м}^3/\text{сутки}, 1041,6 \text{ м}^3/\text{год}.$

Баланс суточного и годового водопотребления и водоотведения на период эксплуатации приведен в таблицах 1.6.2.2.1 и 1.6.2.2.2.

Таблица 1.6.2.2.1

Баланс водопотр	реблени	я и водоотв	едения (го	одовой)								
	Обо-	Водопотр	ебление, м	и ³ /год				Водоот	Водоотведение, м ³ /год			
	рот	На хозбы	ытовые	1		Техничес-		Произ	Хоз.	Безвозв-	В сис-	ВСЕГО
	ная вода	вода Холодное Горяче		3		кая вода	Всего	водств	водств быто-	рат ные	тему оборот-	
		водоснаб -жение	водосна бжение	водосна бжение	Горячее водосна бжение		Beero	стоки	стоки	потери	ного водоснаб жения	
Хозбытовые нужды	-	574,875	-	-	-	-	574,875	-	574,875	-	-	574,875
Технологичес- кие нужды	-	-	-	-	-	1041,6	1041,6	-	-	1041,6	-	-
ВСЕГО:	-	574,875	-	-	-	1041,6	1616,475	-	574,875	1041,6	-	574,875

Таблица 1.6.2.2.2

Баланс водопотребления и водоотведения (суточный)												
	Обо-	Водопотр	ебление, м	и ³ /сут		Водоотведение, м ³ /сут						
	рот	На хозбытовые		Производствен-		Техничес-		Произв одствен	Хоз. быто-	Безвозв- рат	В сис-	ВСЕГО
	ная	нужды	ужды		ные нужды						тему	
	вода	Холодное водоснаб- жение	•	Холодное водосна бжение	Горячее водосна бжение		Всего	ные стоки	вые стоки	ные потери	оборот- ного водоснаб жения	
Хозбытовые нужды	-	1,575	-	-	-	-	1,575	-	1,575	-	-	1,575
Технологичес- кие нужды	-	-	-	-	-	4,96	4,96	-	-	4,96	-	-
всего:	-	1,575	-	-	-	4,96	6,535	-	1,575	4,96	-	1,575

1.6.2.3 Карьерный водоотлив

В геологическом структурном лицензионная территория И плане располагается на стыке двух крупных геотектонических структур – Урала и Тургайского прогиба, что наложило свой отпечаток на характер рельефа, который представляет собой холмисто-увалистую равнину, понижающуюся в юговосточном направлении. Ориентированные субмеридионально холмы имеют пологие склоны, расчлененные мелкими логами и балками.

Абсолютные отметки в пределах площади составляют 338,6 – 395,8 м.

На лицензионной территории отмечаются многочисленные техногенные объекты, представляющие собой следы старательских разработок: старые канавы, траншеи, шурфы, отвалы горных пород.

Районный центр, г. Житикара, пересекается р. Шортанды, протекающей с юго-запада на северо-восток и являющейся левым притоком р. Тобол. На югозападной окраине города река перекрыта двумя дамбами с интервалом в 1700 м, в результате чего образовались Верхнее Шортандинское и Нижнее Шортандинское водохранилища. Вода из этих водохранилищ используется для технических целей. К северо-востоку от г. Житикара находится Желкуарское водохранилище, которое является основным источником для обеспечения жителей райцентра питьевой водой.

В 8 километрах восточнее границы участка Берсуат начинается постоянная часть русла реки Берсуат, которая имеет притоки Былкылдак (на севере) и Баскарасу (на юге). Расстояние от границы участка Берсуат до последних, соответственно, 5,47 и 1,21 км.

Водопритоки в карьерах формируются за счет атмосферных осадков и

Водоотлив из карьеров осуществляется насосами ЦНС, установленными на передвижных салазках из водосборника (зумпфа). Поступающая с горизонтов вода, по системе прибортовых канав и перепускных сооружений, собирается на нижние горизонты в водосборники (зумпфы).

Отвод воды с зумпфов будет осуществляться по напорным трубопроводам.

Предварительные водопритоки в карьеры составят:

Карьер Берсуат №1 $-1,12 \text{ м}^3/\text{час}$, 9813,66 м³/год:

Карьер Берсуат №2 – 2,48 м³/час, 21766,59 м³/год;

Конструкция пруда-испарителя

Строительство пруда-испарителя данным проектом не рассматривается. Для него будет разработана отдельная проектно-сметная документация. Прудиспаритель в данном проекте рассчитан предварительно. Для строительства сооружения Заказчиком будет разрабатываться отдельная ПСД, с требуемым объемом согласований и прохождением согласования в Государственной вневедомственной экспертизе.

В системах водоотведения горно-обогатительных предприятий для сбора карьерных вод предусматривается пруд-испаритель, представляющий собой земляную емкости полностью заглубленного типа, в которых постоянно или периодически содержатся промышленные сточные воды различной степени загрязненности. Пруд-испаритель размещается с наиболее благоприятными геологическими и гидрогеологическими условиями, чтобы

фильтрации и загрязнения почвы и грунтовых вод. Котлованным типом создается необходимая емкость для пруда-испарителя.

В пруду-испарителе происходят процессы самоочищения, аналогичные процессам естественной аэрации в биологических прудах, а также дополнительное осветление воды. Пруд-испаритель может применяться только к таким сточным водам, которые не претерпевают существенных изменений при хранении. Этот пруд-испаритель служит для хранения карьерных вод в течение полной отработки карьера. При сооружении этого пруда-испарителя не ставится никаких особых требований, в том числе и в отношении удаления ила. Тем не менее, необходима полная гидроизоляция пруда для исключения загрязнения подземных вод.

Пруд-испаритель односекционный. Необходимая степень очистки карьерной воды от взвешенных частиц достигается путем отстоя в пруде-испарителе.

Пруд-испаритель одновременно может выполнять и функцию прудаиспарителя, который служит непосредственно для испарения воды. Поэтому прудиспаритель имеет глубину (до 4,0 м) и большую площадь, чтобы обеспечить максимальное испарение.

Откачанная из карьера вода будет отводится в пруд-испаритель. Прудиспаритель односекционный. Необходимая степень очистки карьерной воды от взвешенных частиц достигается путем отстоя в пруде-испарителе. Конструкция пруда-испарителя обеспечивает полную герметичность предотвращает возможность утечек карьерной воды в грунт.

Пруд-испаритель односекционный, ориентировочными размерами 125х125м, глубиной 3 м, объемом 26 тыс. $м^3$.

Пруд-испаритель предусматривается для сбора поверхностной воды с площади карьера. Переполнение пруда-испарителя не произойдет. На дне и откосах пруда-испарителя устраиваются гидроизоляционные экраны из геомембраны HDPE или бентонитовый мат.

Проектом не предусматривается сброс карьерных вод в водные объекты и на рельеф местности.

1.6.2.4. Анализ результатов расчета ПДС загрязняющих веществ

Расчет нормативов предельно-допустимых сбросов (ПДС) выполнен для выпуска карьерных вод в пруды-испарители.

Общее отведение карьерных вод в пруд-испаритель с учетом испарения составит:

$$q_{cm}^{x/\delta} = 2,969 \text{ м}^3/\text{час}, 71,26 \text{ м}^3/\text{сутки}, 26011,6 \text{ м}^3/\text{год}.$$

Режим сброса – постоянный;

Конечный водоприемник сточных вод – пруд-испаритель (рассматривается отдельным проектом);

Согласно Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 Об утверждении «Методика определения нормативов эмиссий в окружающую среду», в случае, если конечным водоприемником сточных вод является испаритель замкнутого типа, то есть когда нет открытых водозаборов воды на орошение или не осуществляются сбросы части стоков испарителя в водные объекты и земную поверхность, и других

производственных и технических нужд, расчет допустимой концентрации производится по формуле:

$$C_{\Pi J C} = C_{\phi a \kappa \tau}$$

где Сфакт - фактический сброс загрязняющих веществ после очистных сооружений, мг/л.

Накопитель в таком случае используется как накопитель-испаритель сточных вод.

Фактический сброс загрязняющих веществ принят на основании протоколов испытаний результатов воды на химический анализ, проведенный аккредитованной лабораторией.

Результаты анализов карьерных вод приняты усреднённые со скважины и отражены в таблице 1.6.2.4.1.

Подземные воды обладают агрессивностью не выщелачивания, общекислотной, магнезиальной агрессивностью. В отношении коррозирующего влияния на металлы они безвредны. Ценные компоненты в подземных водах содержатся в малых количествах и не представляют практического интереса.

Таблица 1.6.2.4.1 - Результаты анализов карьерной воды со скважин

				r 1		
Наименование	Скв GZIF-1	Скв GZIF- 2	Скв GZIF- 3	Скв GZIF- 4	Скв GZIF-5	Скв GZIF- 6
Железо, $M\Gamma/дM^3$	1,1	30	0,7	5,4	21	10
X лориды, мг/дм 3	709	372	101	2393	638	199
Сульфаты, мг/дм ³	360	480	456	838	288	66
Нитраты, $M\Gamma/дM^3$	<0,3	<0,3	<0,3	2,9	0,8	2,1
Нитриты, мг/дм ³	<0,006	<0,006	<0,006	<0,006	<0,006	<0,006
Нефтепродукты, мг/дм ³	0,167	0,156	0,07	0,195	0,137	0,205

Примечание: Цветом выделены менее благоприятные значения концентраций, взятые для расчета нормативов ПДС.

Величины ПДС определяются как произведение максимального, суточного расхода сточных вод q_{cr} ($m^3/4$) на предельно допустимую концентрацию загрязняющих веществ Спдс (мг/л);

ПДС=
$$q_{c_T}$$
 х С $_{\Pi$ ДС

Расчет нормативов ПДС в целом на пруд- испаритель представлен в таблице 1.6.2.4.2

Таблица 1.6.2.4.2 - Расчет нормативов ПДС на пруд-испаритель

Наименование	Предлагаемая С _{пдс}	Pacx	оды сточі	ных вод	пдс		
ингредиента	мг/л	м ³ /час	м ³ /сут.	м ³ /год	г/час	т/год	
Железо, мг/л	30				89,07	0,7803	
Хлориды, мг/л	2393				7104,817	62,246	
Сульфаты, мг/л	838				2488,022	21,798	
Нитраты, мг/л	2,9	2,969	71,26	26011,6	8,6101	0,075	
Нитриты, мг/л	<0,006				0,017814	0,00016	
Нефтепродукты	0,205						
мг/л					0,609	0,005	
Всего					9691,145559	84,90475	

Ниже представлена таблица 1.6.2.4.3 «Нормативы сбросов загрязняющих веществ карьерных вод в пруд-испаритель на 2029 г.».

Таблица 1.6.2.4.3 – Ориентировочные нормативы сбросов загрязняющих веществ карьерных вод в пруд-испаритель

№ выпуска	Наименование показателя	Существующее положение					Нор	Год достижения ПДС				
		Расход сточных вод		Концент- рация на	ия Сброс		Расход сточных вод		Допустимая концент- рация на	Сброс		
		м ³ /ч	тыс. м ³ /год	выпуске, мг/дм ³	г/ч	т/год	м ³ /ч	тыс. м ³ /год	выпуске, мг/дм ³	г/ч т/год		
1	2	3	4	5	6	7	8	9	10	11	12	13
	Нефтепродукты			-	ı			0,1	0,609	0,005	2029	
D	Железо	- - -	-	-	-	-	- - 2,969	4,89076	0,3	89,07	0,7803	2029
Водовыпуск	Нитрит-ион			-	-	-			3,3	0,017814	0,00016	2029
пруда- испарителя	Нитрат-ион			-	-	-			45	8,6101	0,075	2029
	Хлориды			-	-	-			350	7104,817	62,246	2029
	Сульфаты			-	ı	ı			500	2488,022	21,798	2029
	ВСЕГО			-	-	•				9691,145559	84,90475	2029

1.6.3 Воздействия намечаемой деятельности на поверхностные воды района

Общие требования к охране водных объектов от загрязнения и засорения установлены Водным Кодексом РК и являются обязательными для физических и юридических лиц, осуществляющих в данном районе хозяйственную деятельность, влияющую на состояние водного объекта.

Оценка воздействия намечаемой деятельности на поверхностные воды включает рассмотрение потенциальную вероятность воздействия по ряду критериев, основными из которых для рассматриваемого объекта будут являться:

- вероятность загрязнения поверхностных вод путем сбросов сточных вод в водные объекты;
- вероятность воздействия на гидрологический режим поверхностных водотоков;
 - вероятность воздействия на ихтиофауну.

Характер рельефа района месторождения исключает возможность больших скоплений дождевых и талых вод в местах проектируемых объектов.

реализации намечаемой деятельности сброс поверхностные водотоки не предусматривается, воздействие по данному фактору исключается.

Во время проведения проектных работ технология и выбор применяемого оборудования исключают загрязнение почвы и воды бытовыми, промышленными отходами и ГСМ. Другая хозяйственная деятельность, кроме добычных работ не проводится.

Для отстоя автотранспорта и спецтехники на промплощадке карьера оборудована специальная площадка в пределах горного отвода. Во избежание растекания загрязненных вод с территории промплощадки во время атмосферных осадков площадка обвалована со всех сторон валом 0,5-0,7 м с глиняным замком $0.1 \, \mathrm{M}.$

Мойка машин и механизмов на территории участка объекта запрещена. Строительство стационарного склада ГСМ на участке не предусматривается.

На борту карьера будут размещены специализированные биотуалеты, с накопительными жижесборниками. Содержимое жижесборников обрабатывается дезинфицирующим раствором. Вывоз сточных вод предусмотрен автотранспортом по договору специализированным предприятием.

образом, принятые превентивные меры позволяют исключить возможность засорения и загрязнения водных объектов района. Сложившийся в данном районе природный уровень загрязнения поверхностных вод не изменится. Намечаемая деятельность не окажет дополнительного воздействия поверхностные воды района проведения работ. Непосредственное воздействие на водный бассейн при реализации проектных решений исключается.

Таким образом, общее воздействие намечаемой деятельности на поверхностную водную среду оценивается как допустимое.

1.6.4 Воздействия намечаемой деятельности на подземные воды района

В период разработки месторождения Атыгай (Берсуат) основное воздействие на водные ресурсы может выражаться в:

- изменениях условий формирования склонового стока и интенсивности эрозионных процессов в районах проведения работ;
- загрязнение водотоков ливневым и снеговым стоком в районах проведения работ от объектов энергообеспечения, техники и транспорта.

Подземные воды могут загрязняться непосредственно в результате загрязнения среды, а также поверхности земли, почвы и поверхностных вод. Вместе с атмосферными осадками загрязняющие компоненты попадают в грунтовые воды, а потом просачиваются в подземные. В естественных природных условиях подземные воды, различные по составу и свойствам, разделяются между собой малопроницаемыми породами.

Проведение добычных работ в карьере не обуславливает загрязнение токсичными компонентами подземных вод, так как осуществляемые при этом процессы инфильтрации поверхностного стока идентичны исходным природным. Непосредственного влияния на подземные воды проведение работ не оказывает.

Согласно классификации степени сложности гидрогеологических условий открытой разработки, величине напора и водопритоков подземных вод, месторождение относится к I и II типам. Оно приурочено к устойчивым сухим глинисто-песчаным и глинистым породам кайнозой-мезозоя, к слабоустойчивым переувлажнённым рыхлообломочным образованиям кор выветривания дислоцированному (с зонами разломов и смятий) водоносному комплексу устойчивых скальных пород, при отсутствии постоянных поверхностных водотоков на площади месторождения Атыгай.

Минерализация и загрязнение подземных вод в процессе реализации проектных решений при соблюдении правил проведения проектных работ также исключаются. Условия организации труда исключают загрязнение или истощение подземных вод при ведении работ на месторождении.

Таким образом, намечаемая деятельность вредного воздействия на качество подземных вод и вероятность их загрязнения не окажет. Общее воздействие намечаемой деятельности на подземные воды оценивается как допустимое.

1.6.5 Характеристика ожидаемого воздействия на почвенный покров

Разработка золотосодержащих руд будет сопровождаться усилением антропогенных нагрузок на природные комплексы территории, что может вызвать негативные изменения в экологическом состоянии почв и снижение их ресурсного Степень проявления негативного влияния на почвы определяться, прежде всего, характером антропогенных нагрузок и буферной устойчивостью почв к тому или иному виду нагрузок.

потенциальное воздействие Негативное на почвы при освоении месторождения может проявляться в виде:

- изъятия земель из существующего хозяйственного оборота;
- механических нарушений почв при ведении работ;
- усиления дорожной дигрессии;

- стимулирования развития процессов дефляции;
- загрязнения отходами производства.

Изъятие земель

Отвод земель для осуществления хозяйственной деятельности производится на основе положений Земельного кодекса Республики Казахстан (Земельный кодекс, 2003) и соответствующих решений местных акиматов.

Степень воздействия при изъятии угодий из производства определяются площадью изъятых земель, интенсивностью ведения сельскохозяйственного производства, количеством занятого в нем местного населения, близостью крупных населенных пунктов.

Изъятие земель под разработку месторождения, учитывая, сравнительно, низкое качество почв и направление использования земель (земли пастбищного назначения), отрицательного влияния на сложившуюся систему землепользования, не окажет. Отчуждение земель, как мест обитаний диких животных и птиц, для ареала их популяций, в целом, может рассматриваться, также как незначительное воздействие.

Для снижения негативного воздействия на протяжении всего периода эксплуатации месторождения будет осуществляться контроль над соблюдением проведения работ строго в границах земельного отвода.

Механические нарушения почв

Механические нарушения почвенного покрова и почв будут являться наиболее значимыми по площади при освоении месторождений и могут носить необратимый характер.

При оценке нарушенности почвенного покрова, возникающей при механических воздействиях, учитывают состояние почвенных горизонтов, их мощность, уплотнение, структуру, мощность насыпного слоя грунта, глубину проникновения нарушений, изменение физико-химических свойств, проявление процессов дефляции и водной эрозии (Экологические критерии ..., 2007).

К нарушенным относятся все земли со снятым, перекрытым или перерытым гумусовым горизонтом и непригодные для использования без предварительного восстановления плодородия, т.е. земли, утратившие в связи с их нарушением хозяйственную первоначальную ценность И являющиеся источником отрицательного воздействия на окружающую среду (ГОСТ 17.5.1.01-83. Рекультивация земель. Термины и определения).

Устойчивость почв к механическим нарушениям, при равных нагрузках, морфогенетических и совокупности ИХ физико-химических характеристик, а также ведущих процессов, протекающих в них. Это, прежде всего, механический состав почв, наличие плотных генетических горизонтов, степень покрытия поверхности почв растительностью, задернованность поверхностных горизонтов, содержание гумуса, наличие в профиле, особенно в поверхностных горизонтах, состав поглощенных катионов, прочность почвенной структуры, характер увлажнения (тип водного режима). Почвенный покров в районе месторождения обладает, преимущественно, слабой и удовлетворительной устойчивостью к техногенным механическим воздействиям.

При разработке месторождения очень сильные механические нарушения с полным уничтожением почвенного покрова и подстилающих пород будут наблюдаться на вскрытой площади размещения производственных объектов. Размещение вскрышных пород предусматривается на внешних отвалах.

На участках, прилегающих к карьерам и отвалам, могут наблюдаться механически нарушения грунта менее сильной интенсивности. Они будут связаны, преимущественно, с проездами большегрузной техники.

Дорожная дигрессия

Разработка месторождения будет сопровождаться усилением транспортных нагрузок на существующие дороги и накатыванием новых дорог. Транспортная (дорожная) дигрессия ПОЧВ может рассматриваться как разновидность механических нарушений, сопровождающихся загрязнением почв токсикантами, поступающими с выхлопными газами.

воздействии транспортном происходит линейное почвенных горизонтов, их распыление и уплотнение. Степень деформирования почвенного профиля находится в прямой зависимости от свойств генетических горизонтов и мощности нагрузки. При этом из почвенных свойств очень большое значение имеют показатели механического состава, влажности, содержания водорастворимых солей и гумуса, задернованность горизонтов.

В результате дорожной дигрессии на нарушенных участках формируются почвы с измененными, по отношению к исходным, морфологическими и химическими свойствами. Разрушенная почвенная масса легко подвержена процессам дефляции. Дорожная колея при достаточных уклонах местности может способствовать развитию линейной водной эрозии с образованием промоин и овражной сети.

Для связи производственных площадок с отвалами пустых пород и существующими дорогами с твердым покрытием необходимо сооружение покрытием. соблюдении подъездных путей твердым При строгом природоохранных мероприятий, строгой регламентации движения автотранспорта, влияние дорожной дигрессии на состояние почв влияние транспортного воздействия может быть сведено к минимуму.

Ветровая и водная эрозия

Уничтожение растительности и разрушение естественного сложения поверхностных горизонтов почв при механических нарушениях может вызвать усиление поверхностного стока вод и активизировать дефляционные процессы.

С нарушенных поверхностей, в районах активной эоловой деятельности, будет происходит вынос тонкодисперсных частиц, а также мелких кристаллов солей. Степень устойчивости почв к дефляции возрастает по мере утяжеления их механического состава. Интенсивность проявления дефляционных процессов зависит от степени увлажнения и состояния нарушенности поверхностных горизонтов почв, а также определяется погодными условиями, сезоном года, ветровой активностью и степенью нарушенности почв.

Выносимые с нарушенных поверхностей (борта добывающего карьера, отвалы пустых пород, склады рудного материала, колеи грунтовые дорог) пыль, песок, мелкие кристаллы солей, а также продукты сгорания двигателей, будут осаждаться на прилегающих территориях. Запыление поверхности почв и загрязнение продуктами сгорания будут ухудшать качество почв и могут привести к их вторичному засолению.

Для минимизации воздействия этого фактора следует предусмотреть проведение мероприятий по пылеподавлению И снижению воздействия дефляционных процессов.

Учитывая, что при освоении месторождения предусмотрены ограничение бездорожью, мероприятия проезда транспорта ПО ПО пылеподавлению, использование работе технически исправного автотранспорта высококачественных горюче-смазочных материалов с низким содержанием токсичных компонентов, а также в связи с хорошей рассеивающей способностью почвенно-растительный атмосферы, воздействие на покров прилегающих территорий будет незначительным.

Загрязнение почв отходами производства

Характер загрязнения почв определяется видами работ, которые будут проводиться на месторождении. В период эксплуатации месторождения возможно загрязнение почв бытовыми и производственными отходами, горюче-смазочными материалами в случаях их утечки при заправке и работе автотракторной техники, продуктами сгорания двигателей, запыление почв, загрязнение рудой.

работе автотракторной техники потенциальными источниками загрязнения могут быть утечки и разливы горюче-смазочных материалов, и выбросы отработанных газов. При этом может происходить комплексное загрязнение почв нефтепродуктами и другими ингредиентами.

Почвы по степени загрязнения, согласно ГОСТ 17.4.3.06-86. Общие требования к классификации почв по влиянию на них химических загрязняющих веществ, подразделяются:

- сильнозагрязненные почвы, содержание загрязняющих веществ в которых в несколько раз превышает ПДК;
- среднезагрязненные почвы, в которых установлено превышение ПДК без видимых изменений в свойствах почв;
- слабозагрязненные почвы, содержание химических веществ в которых не превышает ПДК, но выше естественного фона;
- незагрязненные почвы, характеризующиеся фоновым содержанием загрязняющих веществ.

Для устранения этих воздействий необходимо организовать контроль за техническим состоянием автотракторной техники, заправку и обслуживание её проводить в строго отведенных местах с организацией сбора и утилизации отработанных материалов.

При проведении работ в местах добычи и открытого хранения пустых пород возможно поступление материала (пылеватые частицы) в атмосферный воздух с последующим выпадением ингредиентов на поверхность почв на прилегающих территориях. Рассеивание пылеватых частиц будет происходить на значительной по площади территории, и существенного воздействия на свойства почв не будет оказывать.

При правильно организованном, предусмотренном проектом, техническом обслуживании оборудования и автотранспорта, при соблюдении технологического процесса добычи руд загрязнение почв отходами производства и сопутствующими веществами будет незначительным.

В процессе рекультивации нарушенных земель выполняется определенный объем работ, связанных с восстановлением земной поверхности - рельефа местности, почвенного и растительного покрова.

Общее воздействие намечаемой деятельности на почвенный покров и земельные ресурсы оценивается как допустимое.

1.6.6 Воздействия намечаемой деятельности на недра

Воздействие на недра заключается в нарушении целостности массивов горных пород при проходке горных выработок, возникновении пустотности в недрах при извлечении руды на поверхность земли. Кроме того, неизбежно образование техногенных микроформ рельефа отвалами вскрышных пород.

Согласно Плана горных работ, максимальная годовая производительность по добыче руды достигнет 26,094 тыс. тонн в год.

Проектом предусматривается отработка золотоносных руд открытым способом на 2029 г.

При производстве добычных работ обеспечивается безусловное соблюдение требований Кодекса О недрах и недропользовании и Экологического кодекса РК с целью предотвращения загрязнения недр техногенной водной и ветровой эрозии почвы, сохранения естественного ландшафта и природного растительного и животного мира, охрана жизни и здоровья людей.

Производственная деятельность предприятия по добыче руды связана с применением буровзрывной технологии добычи руды и ее транспортировки к местам складирования.

Негативное воздействие работы карьера может заключаться в следующем:

- чрезмерное нарушение массива горных пород бортов карьера и связанную с этим потерю устойчивости выработки при неправильном проведении БВР;
- сверхнормативные потери полезного ископаемого в виде нечеткого определения контакта «руда-порода» и, соответственно, не извлечения ПИ;
- сверхнормативные потери ПИ при переизмельчении горной массы взрывом и оставлении ее на рабочих уступах.

предотвращения указанных негативных последствий проектом предусматривается проведение оптимизации параметров БВР процессе эксплуатации карьеров.

На предприятии проводится геологическое и маркшейдерское обеспечение вскрышных и очистных работ на карьерах. В задачи входит обеспечение безопасности проведения горных работ и сохранения устойчивости массива, принятие комплекса мер для полноты извлечения ПИ и возможности отработки изолированных рудных тел, пластов залежей, имеющих промышленное значение. Реализуется максимальное и экономически целесообразное извлечение из недр всех полезных ископаемых, подлежащих к разработке в пределах горного отвода.

По условиям промышленной добычи прогнозируется низкий уровень воздействия на компоненты окружающей среды, когда изменения в природной среде не превышают существующие пределы природной изменчивости.

Нарушенные территории после полной отработки месторождений подлежат рекультивации с восстановлением исходных природных характеристик.

намечаемой Таким образом, общее воздействие деятельности на геологическую среду оценивается как допустимое.

Вибрации

Вибрацию вызывают неуравновешенные силовые воздействия, возникающие при работе различных машин и механизмов. В зависимости от источника возникновения выделяют три категории вибрации:

- транспортная;
- транспортно технологическая;
- технологическая.

Минимизация вибраций в источнике производится на этапе проектирования, и в период эксплуатации. При выборе машин и оборудования для проектируемого объекта, следует отдавать предпочтение кинематическим и технологическим схемам, которые исключают или максимально снижают динамику процессов, вызываемых ударами, резкими ускорениями и т.д. Также для снижения вибрации необходимо устранение резонансных режимов работы оборудования, то есть выбор режима работы при тщательном учете собственных частот машин и механизмов.

Шум от автотранспорта

Внешний шум автомобилей принято измерять в соответствии с ГОСТ 27436-87. Допустимые уровни внешнего шума автомобилей, действующие в настоящее время, применительно к условиям работ, составляют: грузовые автомобили с полезной массой свыше 3,5 т создают уровень звука - 89 дБ(А); грузовые дизельные автомобили с двигателем мощностью 162 кВт и выше - 91 дБ(А).

В настоящее время средний допустимый уровень звука на дорогах различного назначения, в том числе местного, составляет 73 дБ(А). Эта величина зависит от ряда факторов, в том числе от технического состояния транспорта, дорожного покрытия, интенсивности движения, времени суток, конструктивных особенностей дорог и др. Использование автотранспорта для обеспечения работ, перевозки персонала, технических грузов и др. с учетом создания звуковых нагрузок, не будет превышать допустимых нормированных шумов - 80 дБ(А), а использование мероприятий по минимизации шумов при работах, даст возможность значительно снизить последние.

Снижение звукового давления на производственном участке может быть достигнуто при разработке специальных мероприятий по снижению звуковых мероприятиям такого характера относятся: нагрузок. К оптимизация регулирование транспортных потоков; уменьшение, по мере возможности, движения грузовых автомобилей большой грузоподъемности; создание дорожных обходов; оптимизация работы технологического оборудования, использование звукопоглощающих материалов и индивидуальных средств защиты от шума.

Однако уже на расстоянии нескольких сотен метров источники шума не оказывают негативного воздействия на население и обслуживающий персонал.

Электромагнитные излучения

электромагнитных полей атмосферное Источниками являются электричество, космические лучи, излучение солнца, а также искусственные источники: различные генераторы, трансформаторы, антенны, лазерные установки, микроволновые печи, мониторы компьютеров и т.д. На предприятиях источниками электромагнитных полей промышленной частоты являются высоковольтные линии электропередач (ЛЭП), измерительные приборы, устройства защиты и автоматики, соединительные шины и др.

На территории месторождения располагаются установки, агрегаты и сооружения, которые являются источниками электромагнитных излучений промышленной частоты. К ним электродвигатели, относятся линии электрокоммуникаций, ЛИНИИ высоковольтных электропередач, электрооборудование механизмов и автотранспортных средств. Требования к условиям труда работающих, подвергающихся в процессе трудовой деятельности воздействиям непрерывных магнитных полей $(M\Pi)$ частотой устанавливаются гигиеническими нормативами «Об утверждении Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека», № 169 от 28.02.2015 года.

Оценка воздействия МП на человека производится на основании двух параметров -интенсивности и времени (продолжительности) воздействия.

Интенсивность воздействия МП определяется напряженностью (Н) или магнитной индукцией (В) (их эффективными значениями). Напряженность МП выражается в А/м (кратная величина кА/м); магнитная индукция в Тл (дольные величины мТл, мкТл, нТл). Индукция и напряженность МП связаны следующим соотношением: B = pO H, где pO = 4тт . 10-7 $\Gamma H/M$ - магнитная постоянная. Если В измеряется в мкTл, то 1 (A/м) * 1,25 (мкTл).

Продолжительность воздействия (Т) измеряется в часах (ч).

Предельно допустимые уровни (ПДУ) МП устанавливаются в зависимости от времени пребывания персонала для условий общего (на все тело) и локального (на конечности) воздействия таблица 1.6.6.1

1 12121 1 11	J J1		
Время пребывания, (ч)	Допустимые уровни МП, Н(А/м)/В(мкТл)		
	общем	локальном	
<1	1600/2000	6400/8000	
2	800/1000	3200/4000	
4	400/500	1600/2000	
8	80/100	800/1000	

Таблица 1.6.6.1 - Предельно допустимые уровни магнитных полей

Обеспечение защиты работающих от неблагоприятного влияния МП осуществляется путем проведения организационных и технических мероприятий.

Для воздушных линий электропередачи (ЛЭП) устанавливаются защитные зоны, размеры которых в зависимости от напряжения ЛЭП составляют:

Напряжение, кВ	<20	35	110	150-220	330-500	750	1150
Размер охранной зоны, м	10	15	20	25	30	40	55

Указанные расстояния считаются в обе стороны ЛЭП от проекции крайних проводов. В пределах защитных зон от электромагнитного загрязнения запрещается:

- размещать жилые и общественные здания, площадки для стоянки и остановки всех видов транспорта, машин и механизмов, предприятия по обслуживанию автомобилей, склады нефти и нефтепродуктов, автозаправочные станции;
 - устраивать всякого рода свалки;

- устраивать спортивные площадки, площадки для игр, стадионы, рынки, проводить любые мероприятия, связанные с большим скоплением людей, не занятых выполнением разрешенных в установленном порядке работ.

Используемые проектом электрические установки, устройства а также предусмотренные организационноэлектрические коммуникации, технические мероприятия обеспечивают необходимые допустимые уровни воздействия электромагнитных излучений на работающих.

Характеристика радиационной обстановки районе намечаемой деятельности

Обобщенная характеристика радиационной обстановки в районе намечаемой деятельности приводится по данным государственного контроля согласно отчету «Информационный бюллетень о состоянии окружающей среды по Костанайской области» (1 полугодие, 2022 г.).

Наблюдения за уровнем гамма-излучения на местности осуществлялись ежедневно на 6-ти метеорологических станциях (Костанай, Карабалык, Карасу, Житикара, Караменды, Сарыколь) и на 4-х автоматических постах наблюдений за загрязнением атмосферного воздуха г. Костанай (ПНЗ№2; ПНЗ№4), Рудный (ПНЗ №5; ПНЗ №6).

Средние значения радиационного гамма-фона приземного слоя атмосферы по населенным пунктам области находились в пределах 0,00-0,18 мкЗв/ч. В среднем по области радиационный гамма-фон составил 0,11 мкЗв/ч и находился в допустимых пределах.

Контроль за радиоактивным загрязнением приземного слоя атмосферы на территории Костанайской области осуществлялся на 2-х метеорологических станциях (Житикара, Костанай) путем отбора проб воздуха горизонтальными планшетами. На станции проводился пятисуточный отбор проб.

Среднесуточная плотность радиоактивных выпадений в приземном слое атмосферы на территории области колебалась в пределах 1,2-4,9 Бк/м2. Средняя величина плотности выпадений по области составила 1,84 Бк/м2, что не превышает предельно-допустимый уровень.

Радиоактивных аномалий на площади месторождения не выявлено.

Согласно представленных Заказчиком исходных данных, вскрышные породы и золотосодержащие руды карьера не относятся к радиационно опасным. В связи с вышеперечисленным мероприятия по обеспечению радиационной безопасности проектом не предусматриваются. Проведение добычных работ на месторождении возможно без ограничений.

1.7 Ожидаемые виды, характеристики и количество отходов

Согласно статье 317 Экологического Кодекса РК под отходами понимаются материалы или предметы, любые вещества, образовавшиеся в процессе производства, выполнения работ, оказания услуг или в процессе потребления (в том числе товары, утратившие свои потребительские свойства), которые их владелец прямо признает отходами либо должен направить на удаление или восстановление в силу требований закона или намеревается подвергнуть, либо подвергает операциям по удалению или восстановлению.

Накопление отходов:

Под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных в пункте, статья 320 Экологического Кодекса РК, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления.

- 2. Места накопления отходов предназначены для:
- 1) временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- 2) временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- 3) временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление.

Для вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники срок временного складирования в процессе их сбора не должен превышать шесть месяцев;

- временного горнодобывающих 4) складирования отходов И горноперерабатывающих производств, в том числе отходов металлургического и химико-металлургического производств, на месте их образования на срок не более двенадцати месяцев до даты их направления на восстановление или удаление.
- 3. Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).
- 4. Запрещается накопление отходов с превышением сроков, указанных в пункте 2 настоящей статьи, и (или) с превышением установленных лимитов накопления отходов (для объектов I и II категорий).

1.7.1 Классификация по уровню опасности и кодировка отхода

Под видом отходов понимается совокупность отходов, имеющих общие признаки в соответствии с их происхождением, свойствами и технологией управления ими.

Согласно статье 338 Экологического кодекса РК от 2 января 2021 года виды отходов определяются на основании классификатора отходов, утвержденного уполномоченным органом в области охраны окружающей среды (утвержден приказом и.о. министра экологии, геологии и природных ресурсов РК от 6 августа 2021 года №314).

Классификатор отходов разрабатывается с учетом происхождения и состава каждого вида отходов и в необходимых случаях определяет лимитирующие показатели концентрации опасных веществ в целях их отнесения к опасным или неопасным.

Каждый вид отходов в классификаторе отходов идентифицируется путем присвоения шестизначного кода.

Виды отходов относятся к опасным или неопасным в соответствии с классификатором отходов с учетом требований Экологического Кодекса РК.

Отдельные виды отходов в классификаторе отходов могут быть определены одновременно как опасные и неопасные с присвоением различных кодов («зеркальные») виды отходов) В зависимости от уровней концентрации содержащихся в них опасных веществ или степени влияния опасных характеристик вида отходов на жизнь и (или) здоровье людей и окружающую среду.

В процессе намечаемой деятельности при эксплуатации месторождения образование Атыгай (Берсуат) предполагается отходов производства потребления, из них:

- 1) Опасные отходы: промасленная ветошь, отработанные аккумуляторы, отработанные масла, отработанные фильтры, тара из-под ВВ.
- 2) Неопасные отходы: твердо-бытовые отходы (ТБО), отработанные шины, вскрышные породы.
 - 3) Зеркальные отходы отсутствуют.

Виды отходов, и их классификация представлена в таблице 1.7.1.

Таблица 1.7.1. - Виды отходов, и их классификация

№	Наименование отходов	Кодировка отходов
1	Отработанные аккумуляторы	16 06 01*
2	Отработанные масла	13 02 06*
3	Отработанные фильтры	16 01 07*
4	Промасленная ветошь	15 02 02*
5	Тара из-под ВВ	16 04 03*
6	Отработанные шины	16 01 03
7	Твердые бытовые отходы	20 03 01
8	Вскрышные породы	01 01 01

1.7.2 Объемы образования отходов на предприятии

В процессе производственной деятельности на предприятии образуются отходы производства и потребления.

Отходы производства - остатки сырья, материалов, иных изделий и продуктов, образовавшиеся в процессе производства и утратившие полностью или частично исходные потребительские свойства.

Отходы потребления - остатки продуктов, изделий и иных веществ, образовавшихся в процессе их потребления или эксплуатации, а также товары (продукция), утратившие полностью или частично исходные потребительские свойства.

План горных работ предусматривает разработку золотоносных руд открытым способом, с применением буровзрывных работ.

На исследуемой территории в период разработки месторождения все виды отходов будут собираться и временно храниться в контейнерах, герметичной таре, в специально отведенных местах, с четкой идентификацией для каждого типа отходов.

Сбор бытовых контейнеры, твердых отходов осуществляется установленные на площадке с твердым покрытием оснащенные крышками.

На территории предусмотрен раздельный сбор и накопление отдельных компонентов твердых бытовых отходов (бумага-картон, пластик, КГО, стекло и др.).

Все образованные отходы за исключением вскрышных пород, передаются по договору специализированным предприятиям для дальнейшей утилизации или использования как вторичного сырья.

Вскрышные породы размещаются на территории промплощадки.

Сроки хранения отходов осуществляются в соответствие с требованиями Экологического законодательства РК.

Основными источниками образования отходов при производственной деятельности будут являться:

- эксплуатация горной техники и автотранспорта;
- жизнедеятельность персонала, задействованного в производстве.

Количество образуемых отходов в основном зависит от производительности предприятия. Как следствие количества персонала, автотранспорта, спецтехники и людей будет зависеть от объема выполняемых работ.

Количество отходов производства И потребления рассчитано ПО действующим в РК нормативно-методическим документам. Также для определения количества отходов использовались проектные данные.

Фактическое количество образующихся отходов будут отображаться в статистической отчетности предприятия.

Ориентировочный расчет образования отходов на период эксплуатации месторождения

Твердо-бытовые отходы (ТБО)

Расчет образования ТБО выполнен на основании согласно Приложения №16 к приказу МООС РК № 100-п от 18.04.2008 г. «Методика разработки проектов нормативов предельного размещения отходов производства и потребления».

Норма образования твердых бытовых отходов рассчитывается по формуле: $M_{\text{обр}} = p \cdot m \cdot q$, т/год

 Γ де р – норма накопления отходов, 0.3 м 3 /год на человека (для промышленных предприятий);

т – количество работников на предприятии, человек;

q - плотность ТБО, 0,25 т/ м³.

Результаты расчета образования ТБО представлены в таблице 1.7.2.1.

Таблица 1.7.2.1 – Количество образования ТБО

ТБО	Период эксплуатации
Норма накопления отходов, м ³ /год	0,3
Количество работников, чел	63
Плотность ТБО, т/м ³	0,25
Масса ТБО, т/год	4,725

Промасленная ветошь

Промасленная ветошь образуется на предприятии в процессе использования текстиля при техническом обслуживании транспорта.

Расчет образования промасленной ветоши выполнен на основании согласно Приложения №16 к приказу МООС РК № 100-п от18.04.2008 г. «Методика разработки проектов нормативов предельного размещения отходов производства и потребления».

Нормативное количество отхода определяется исходя из поступающего количества ветоши, норматива содержания в ветоши масел и влаги:

$$N = M_0 + M + W$$
, т/год

где N – количество промасленной ветоши, т/год;

 M_{o} – поступающее количество ветоши, т/год;

М – содержание в ветоши масел, т/год;

 $M = 0.12 \cdot M_0$

W – содержание в ветоши влаги, т/год.

 $M = 0.15 \cdot M_o$

Результаты расчета отработанной промасленной ветоши представлены в таблице 1.7.2.2

Таблица 1.7.2.2 – Количество отработанной промасленной ветоши

Промасленная ветошь	Период эксплуатации
Расход обтирочного материала, т/год	0,327
Содержание в ветоши масел, т/год	0,072
Содержание в ветоши влаги, т/год	0,09
Количество отходов, т/год	0,489

Отработанные аккумуляторы

Справочник по эксплуатационным характеристикам автосамосвала, экскаватора, бульдозера, буровой установки, так же от вспомогательной техники.

По техническим характеристикам техники, установлены следующие аккумуляторные батареи:

- 1) автосамосвал БелАЗ: 2*12 В, 180 А-ч, вес батареи составляет 47,5 кг.
- 2) экскаватор HITACHIZX: 2*12 В, 220 А-ч, вес батареи составляет 62,8 кг.
- 3) бульдозер Shantui SD16: 2*12 B, 200 А-ч, вес батареи составляет 50 кг.
- 4) буровой станок ROC L8 mk1: 2*12 B, 150 A-ч, вес батареи составляет 43 кг.
- 5) вспомогательная техника: 2*12 В, 190 А-ч, вес батареи составляет 50 кг. Средний срок службы аккумуляторов 1 год.

Кол-во аккумуляторов берется из проекта, в среднем масса одного аккумулятора составляет от 30,5 до 55,7 кг, исходя из этого, рассчитывается годовой объем отработанных аккумуляторов:

Ma.
$$\delta = (K_{a.6.i} * M_{a.6.i} / H_{a.6.i}) * 10^{-3}$$

Ка.б.і - количество установленных аккумуляторных батарей і-й марки на предприятии;

 $M_{a.6.i}$ - средняя масса одной аккумуляторной батареи i-й марки, кг;

На.б.і - срок службы одной аккумуляторной батареи, лет.

Расчеты образования приведены в таблице 1.7.2.3

Таблица 1.7.2.3 – Расчет образования отработанных батарей свинцовых

аккумуляторов

Аккумулятор	Кол-во установ. аккумуляторных батарей і-й марки на предприятии, Ка.б.і шт	Средняя масса одной аккумуляторной батареи і-й марки, Ма.б.і кг	Средний срок службы аккумулятора, На.б.і лет	Кол-во отхода, т/год			
	буровой	станок ROC L8 mk	:1				
2*12В, 150 Ач	1	43	1	0,043			
	Авто	самосвал БелАЗ					
2*180 Ач	4	47,5	1	0,19			
	Экскан	ватор НІТАСНІZХ					
2*12 В, 110 Ач	3	62,8	1	0,188			
	Бульд	озер Shantui SD16					
2*12 В, 200 Ач	2	50	1	0,1			
	Вспомогательная техника						
2*12 В, 190 Ач	13	50	1	0,65			
	23			1,171			

Отработанные шины

Отработанные шины образуются после истечения срока годности, эксплуатации автотранспорта и спецтехники.

$$M_{\text{otx}} = 0.001 \cdot \Pi_{\text{cp}} \cdot \text{K} \cdot \text{k} \cdot \text{M/H}, \text{T/FOJ},$$

где k - количество шин;

М - масса шины (принимается в зависимости от марки шины, кг),

К - количество машин,

 Π_{cp} - среднегодовой пробег машины (тыс.км),

Н - нормативный пробег шины (тыс.км).

Масса образования отработанных шин приведена в таблице 1.7.2.4.

Таблица 1.7.2.4 - Расчет образования отработанных шин

Тип	Кол-во	Macc	Количеств	Среднегодо	Нормативн	Кол-во
шин	шин,	a	о машин,	вой пробег	ый пробег	отхода на
	шт.	шин	ШТ	машины	шины	период
		ы кг		(тыс.км)	(тыс.км)	эксплуатаци
						и, т/год
18.00R25		368	4	271,34	50	47,929

Отработанные масла

Отработанные масла образуются при эксплуатации техники автотранспортных средств.

Отработанное моторное масло

Объем образования отработанного моторного масла рассчитывается по формуле:

$$N = (N_h + N_d) \cdot 0.25$$
, т/год,

0,25 – доля потерь масла от общего его количества; где

Nd – нормативное количество израсходованного моторного масла при работе транспорта на дизельном топливе,

$$N_d = Y_d \cdot H_d \cdot \rho$$

здесь Y_d – расход дизельного топлива за год, м³;

 H_d - нормативное количество израсходованного моторного масла при работе транспорта на дизельном топливе -0.032 л/л топлива;

 ρ – плотность масла, 0,93 т/м³;

нормативное количество израсходованного моторного масла при работе транспорта на бензине, $Nb = Yb*Hb*\rho$ (Yb-расход бензина за год, M^3 ; Hb норма расхода масла, 0,024 л/л расхода топлива; р – плотность моторного масла, 0.93 T/m^3);

Nb = 0*0,024*0,93=0

Расчеты образования отработанных масел приведены в таблице 1.7.2.5.

Таблица 1.7.2.5 - Расчет образования отработанного моторного масла

Расход ДТ, м ³	Норма расхода	Плотн мотор		Доля поте от обще		Количе отработа	
	масла, л/л	масла,	T/M3	количе	ества	масла, т	г/год
591,701	0,032	0,9	3	0,2	5	4,40	2

Отработанные трансмиссионные масла

Отработанные трансмиссионные масла образуются при техническом обслуживании и ремонте автотранспорта.

Масло необходимо менять, из-за потери работоспособности пакета присадок. С течением времени, в процессе эксплуатации присадки теряют свои свойства и перестают обеспечивать надёжную защиту работающих поверхностей. Агрегатное состояние отработанных масел – жидкое. Опасные свойства отходов, содержащих нефтепродукты –пожароопасность.

Норма образования отработанных масел определяется по формуле:

N = (Tb+Td) * 0,3, т/год

где 0,3 – доля потеря масла от его общего количества;

Ть – нормативное количество израсходованного трансмиссионного масла при работе транспорта на бензине, $Nb = Yb*Hb*\rho$ (Yb–расход бензина за год, M^3 ; Hb – норма расхода масла, 0,003 л/л расхода топлива; ρ – плотность трансмиссионного масла, 0.885 т/м^3);

Tb = 0*0,003*0,885=0

Td – нормативное количество израсходованного моторного масла при работе

транспорта на дизтопливе, Nd = Yd*Hd*p (Yd-расход дизтоплива за год, м3; Hd – норма расхода масла, 0,004 л/л расхода топлива; р – плотность трансмиссионного масла, 0,885 т/м3);

Расчеты образования отработанных трансмиссионных масел приведены в таблице 1.7.2.6.

Таблица 1.7.2.6 – Расчет образования отработанного трансмиссионного масла

Расход ДТ,	Норма	Плотность	Доля потерь	Количество
M^3	расхода	трансмиссионного	масла от общего	отработанного
	масла, л/л	масла, т/м3	его количества	масла, т/год
591,701	0,004	0,885	0,3	0,628

Общее количество отработанных масел составляет 5,03 т/год.

Отработанные фильтры

Расчёт образования отработанных масляных фильтров напрямую зависит от количества отработанного масла. При замене масла происходит и замена масляного фильтра.

При ремонте и техническом обслуживании автотранспорта производится замена отдельных деталей и узлов автомобилей, отслуживших свой срок. При этом в качестве отходов образуются фильтры, загрязненные нефтепродуктами (топливные и масляные фильтры). Топливный фильтр представляет собой фильтрующий элемент в топливной магистрали, задерживающий частицы грязи и ржавчины из топлива, как правило, содержит картриджи с фильтрующей бумагой. Их можно найти на большинстве двигателей внутреннего сгорания. Топливные фильтры должны меняться через равные интервалы времени. Обычно, старый фильтр из топливной магистрали просто заменяется новым.

Расчет производится по формуле:

Количество отработанных промасленных фильтров определяется по формуле:

 $N_{\phi} = N_t * Nf * M_f * V_{of} / V_{H}, T/год$

где N_f – количество промасленных фильтров, т;

 N_t – количество техники, шт

 $M_{\rm f}$ – масса фильтра (0,0005 т - грузовых автомобилей, буровых станков, экскаваторов и бульдозеров);

 V_{06} – общее время работы автотранспорта, ч;

V_н – нормативный пробег для замены фильтра

Результаты расчета отработанных фильтров представлены в таблице 1.7.2.7.

Таблица 1.7.2.7 – Расчет количества отработанных фильтров

Количество	Количество	Общее	Нормативный	Средняя	Macca
техники, шт	фильтров,	время	пробег для	масса	отработанных
	шт.	работы, ч.	замены	фильтров,	топливных и
			фильтра,	тонн	масляных
			моточас.		фильтров на
					максимальный
					год
					эксплуатации
					т/год
23	2	8030	250	0,0005	0,739

Тара из-под ВВ

В качестве тары для доставки взрывчатых веществ обычно используются мешки, вмещающие 500 кг ВВ. Вес тары составляет 1,2 кг.

Количество мешков - N, шт./год, масса мешка - m, т.

Количество использованных мешков зависит от расхода сырья.

Норма образования отхода, $M_{\text{отх}} = N \cdot m$, т/год.

Расчет общего веса загрязненной упаковочной тары из-под ВВ приведен в таблице 1.7.2.8.

Таблица 1.7.2.8. – Расчет веса загрязненной упаковочной тары из-под ВВ

Объем расходуемых ВВ, т/год	Количество пакетов для упаковки BB, шт/год	Вес одной тары, т	Общий вес тары, т
201,18	402,36	0,0012	0,4828

Вскрышные породы

Размещение вскрышных пород месторождений предусматривается на внешних отвалах.

Вскрышные породы месторождений представлены покровными породами, породами коры выветривания и сульфидными породами.

Объем образования на максимальный год разработки карьеров Берсуат – 1234,822 тыс.м³/год = 2840090 тонн. Часть вскрышных пород планируется использовать для нужд предприятия - подсыпки дорог и площадок.

Отходы образуются при добычи руды и разработке карьеров.

Размещение вскрышных пород месторождения предусматривается на внешних отвалах. Внутрикарьерное отвалообразование настоящим проектом недопустимо в связи с тем, что под карьером остаются не вовлекаемые в разработку потенциальные запасы руды $(\pi.1746)$ Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы).

Предполагаемые лимиты накопления отходов на год максимальной производительности представлены в таблице 1.7.2.9.

Таблица 1.7.2.9. Предполагаемые лимиты накопления отходов на год максимальной производительности

Наименование отходов	Образование, т/год	Размещение, т/год	Передача сторонним организациям, т/год			
1	2	3	4			
Всего	2840150,5658	2840090	60,5658			
в т.ч. отходов производства	2840145,8408	-	55,8408			
отходов потребления	4,725	-	4,725			
	Опасн	ые				
Промасленная ветошь	0,489	-	0,489			
Тара из-под BB	0,4828	-	0,4828			
Отработанные фильтры	0,739	-	0,739			
Отработанные масла	5,03	-	5,03			
Отработанные аккумуляторы	1,171	-	1,171			
Неопасные						
ТБО	4,725		4,725			
Вскрышные породы	2840090	2840090	-			
Отработанные шины	47,929	-	47,929			

1.7.3 Система управления отходами

Процесс управления отходами регламентируется законами и нормативными документами, определяющими условия природопользования. Система обращения с отходами (жизненный цикл отходов) включают в себя следующие этапы:

- способ накопления и/или сбор;
- транспортировка;
- сортировка (с обезвреживанием);
- хранение и удаление.

Образование. Образование отходов происходит процессе производственной деятельности, а также хозяйственно-бытовой деятельности на территории предприятия. Образование отходов связано с вовлечением в производственный цикл сырья и материалов, их переработкой и получением Образование образованием различных отходов. жизнедеятельности происходит в процессе потребления различных товаров, необходимых для жизнеобеспечения.

Способ накопления и сбор. Согласно ст. 320 Экологического Кодекса, под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных ниже, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления.

Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

В соответствии со ст. 321 Экологического Кодекс, под сбором отходов понимается деятельность по организованному приему отходов от физических и юридических лиц специализированными организациями в целях дальнейшего направления таких отходов на восстановление или удаление.

Сбор отходов производится постоянно, по мере их образования. Сбор отходов производят раздельно, в соответствии с видом отходов, методами их утилизации, реализацией, хранением и размещением отходов.

Сбор и накопление отходов производства осуществляется на открытых площадках предприятия, а также в закрытых емкостях и контейнерах.

Транспортировка. Транспортировка всех видов отходов производится автотранспортом, исключающим возможность потерь по пути следования и загрязнения ОС.

Транспорт, используемый для транспортировки отходов, должен быть оборудован в соответствии с нормативными требованиями с обеспечением безопасности транспортировки для окружающей среды и здоровья населения.

Транспортирование опасных отходов на специализированные предприятия и реализация должна осуществляться на договорной основе.

Отходы, не подлежащие размещению на свалке или реализации на транспортируются на специализированные предприятия утилизации, обезвреживания или захоронения.

Сортировка (с обезвреживанием). Сортировка отходов предполагает разделение и/или смешение отходов согласно определенным критериям на качественно различающиеся составляющие для их дальнейшего использования,

переработки, обезвреживания, захоронения и уничтожения. При сортировке отходов целью является получение вторсырья— промежуточного продукта, имеющего материальную ценность.

Хранение. Хранение отходов – складирование отходов в специально установленных местах для последующей утилизации, переработки и (или) удаления. В зависимости от степени их опасности осуществляется под навесом, в контейнерах и других санкционированных местах. Выбор метода хранения отходов зависит от агрегатного состояния, токсичности, пожарной безопасности и других которые могут содержать нефтепродукты или свойств отходов. Отходы, загрязнены ими, хранятся в контейнерах, емкостях, вдали от возможных источников огня.

Сроки хранения отходов осуществляются в соответствие с требованиями Экологического законодательства РК.

Временное хранение отходов – содержание отходов в объектах размещения отходов с учётом их изоляции и в целях их последующего захоронения, обезвреживания или использования. Срок временного хранения составляет не более 6 месяцев.

Удаление. Отходы, образующиеся на предприятии, передаются сторонним организациям по договору.

В связи с тем, что образуемые в процессе эксплуатации месторождения отходы теряют свои полезные свойства, альтернативное использование возможно только после проведения специальных операций, которые требуют организацию отдельного производственного процесса.

Описание системы управления на период разработки отходами месторождения представлена в таблице 1.7.3.1

Таблица 1.7.3.1 Описание системы управления отходами на период разработки месторождения

	ТБО (20 03 01)					
1.	Образование:	В результате жизнедеятельности и				
		непроизводственной деятельности персонала				
		предприятия.				
2.	Сбор и накопление:	Сбор отходов производится в металлические				
		контейнеры с крышкой, размещенные в специально				
		отведенных местах на производственных площадках.				
		Срок хранения отходов в контейнерах при				
		температуре 0°С и ниже допускается не более трех				
		суток, при плюсовой температуре не более суток.				
3.	Идентификация:	Твердые, неоднородные, нетоксичные, не				
		пожароопасные отходы.				
4.	Сортировка (с	Сортировки по морфологическому составу – бумагу,				
	обезвреживанием):	стекло, пластмассу.				
5.	Упаковка и маркировка:	Не упаковывается.				
6.	Транспортирование:	Перевозка сторонней организации мусоровозами в				
		перегрузочный пункт с территории.				
7.	Хранение:	Временно складируется в металлических				
		контейнерах.				
8.	Удаление:	Вывозятся по договору на полигон ТБО на				
		переработку как вторсырье.				

9.	Содоруганна основину	Целюлоза-33,7%, органическое вещество-30,7%,
9.	Содержание основных	<u> </u>
	компонентов:	хлопок-8,5%, полимерные материалы-5%, стекло-
	Отработанные шины (16 0	5,6%, металл, резина, дерево, смет и прочее – 16,5 %.
1.	Образование:	·
	1	При эксплуатации автотранспорта и спецтехники.
2.	Сбор и накопление:	Временно собираются на специально выделенных
2	Иломическия	участках.
3. 4.	Идентификация: Сортировка (с	Твердые. Пожароопасные. Нерастворимые в воде.
4.	Сортировка (с обезвреживанием):	Не сортируется.
5.	Упаковка и маркировка:	<u> </u>
6.		Не упаковывается.
0.	Транспортирование:	Транспортируются автотранспортом
		специализированной организации на открытую
7.	Хранение:	площадку. Временное на открытой площадке. Хранение
/.	Аранение.	Временное на открытой площадке. Хранение составляет не более 6 месяцев.
8.	V по поущо:	
0.	Удаление:	По мере накопления сдаются на утилизацию в
9.	Солорующие	специализированную организацию.
9.	Содержание основных компонентов:	Синтетический каучук-96%, железо оксид, металл-
		3%, текстильный корд – 1%.
1	Вскрышные породы (01 01	
1.	Образование:	При добычных работах.
2.	Сбор и накопление:	Размещение вскрышных пород месторождения
2	11	предусматривается на внешнем отвале.
3.	Идентификация:	Твердые, нетоксичные, неопасные, не пожароопасные
4.	Compyrachyra	отходы.
4.	Сортировка (с	Не сортируется.
5.	обезвреживанием):	U амири постоя
6.	Упаковка и маркировка:	Не упаковывается. По мере образования из карьера автосамосвалами
0.	Транспортирование:	
7.	Vacuovino	предприятия в отвал.
8.	Хранение: Удаление:	Породные отвалы на территории предприятия.
0.	Отработанные аккумулято	Ликвидация в породном отвале.
1.		
1.	Образование:	Образуются по мере истечения эксплуатационного
2	CEOP W WOMENTOWNS	срока.
2.	Сбор и накопление:	Временно хранятся в специальном помещении на
3.	Иломичения	стеллажах.
4.	Идентификация:	Твердые. не пожароопасные и невзрывоопасные
4.	Сортировка (с обезвреживанием):	Не сортируется.
5		На упаков прастоя
5. 6.	Упаковка и маркировка:	Не упаковывается.
υ.	Транспортирование:	Транспортируются вручную в емкость хранения и
		перевозится автотранспортом специализированной
7	Vnouguya	организации.
7.	Хранение:	Временное в закрытом помещении. Хранение
0	Vио чолуго:	составляет не более 6 месяцев.
8.	Удаление:	По мере накопления сдаются на утилизацию в
0	Солопующе	специализированную организацию.
9.	Содержание основных	Свинец-52,3%, вода-9,8%, прочее-37,9%.
	компонентов:	

	Отработанные масла (13 0	2.06*)	
1.	Образование:	Образуются после истечения срока службы,	
1.	Ооразование.	вследствие снижения параметров качества масел при	
		эксплуатации автотранспортных средств,	
		1	
2.	CE	спецтехники и оборудования.	
۷.	Сбор и накопление:	Временно накапливаются в герметичных емкостях, в	
2	171	специально отведенном месте.	
3.	Идентификация:	Жидкие отходы, горючие, умерено опасные.	
4.	Сортировка (с	Не сортируется.	
	обезвреживанием):	***	
5.	Упаковка и маркировка:	Не упаковывается.	
6.	Транспортирование:	Перевозится автотранспортом специализированной организации.	
7.	Хранение:	Временно складируется в герметичных бочках.	
		Хранение составляет не более 6 месяцев	
8.	Удаление:	По мере накопления сдаются на утилизацию в	
		специализированную организацию.	
9.	Содержание основных	Масло минеральное-91,2%, вода-4,543%,	
	компонентов:	механические примеси 2,3%, прочее-1,957%.	
	Отработанные фильтры (1	6 01 07*)	
1.	Образование:	Образуются в результате замены масляных,	
		топливных, трансмиссионных и воздушных фильтров	
		в автомобилях, горной технике после окончания	
		срока их службы, при проведении технического	
		обслуживания механизмов.	
2.	Сбор и накопление:	Временно накапливаются в герметичных	
		металлических контейнерах.	
3.	Идентификация:	Твердые, пожароопасные, невзрывоопасные	
4.	Сортировка (с	Не сортируется.	
	обезвреживанием):		
5.	Упаковка и маркировка:	Не упаковывается.	
6.	Транспортирование:	Перевозится автотранспортом специализированной	
		организации.	
7.	Хранение:	Временное в металлическом контейнере. Хранение	
	-	составляет не более 6 месяцев.	
8.	Удаление:	По мере накопления сдаются на утилизацию в	
		специализированную организацию.	
9.	Содержание основных	Целюлоза-38,7%, масло минеральное-10%, железо	
	компонентов:	оксид-25%, оксид алюмминия-17,3%, механические	
		примеси-9%.	
	Промасленная ветошь (15		
1.	Образование:	Образуется при эксплуатации и ремонте	
	•	транспортных средств и спецтехники, эксплуатации	
		технологического оборудования.	
2.	Сбор и накопление:	Временно собирается в металлическую емкость,	
	1	установленную в гараже.	
3.	Идентификация:	Твердые, пожароопасные, невзрывоопасные.	
4.	Сортировка (с	Не сортируется.	
	обезвреживанием):	Tre askinklaraw	
5.	Упаковка и маркировка:	Не упаковывается.	
6.	* *		
υ.	Транспортирование:	Перевозится автотранспортом специализированной	

		организации.			
7.	Хранение:	Временное в металлическом контейнере. Хранение			
		составляет не более 6 месяцев.			
8.	Удаление:	По мере накопления сдаются на утилизацию в			
0.	э даление.	*			
		специализированную организацию.			
9.	Содержание основных	Тряпье-56%, масло-30,6%, парафины-8,5%,			
	компонентов:	смолистые вещества-4,9%.			
	Тара из-под BB (16 04 03*)				
1.	Образование:	Образуется при разработке месторождения.			
2.	Сбор и накопление:	Временно собирается в специально выделенном месте			
		в различные виды упаковки в зависимости от их			
		свойств, условий перевозки и хранения			
3.	Идентификация:	Твердые, пожароопасные, взрывоопасные.			
4.	Сортировка (с	Не сортируется.			
	обезвреживанием):				
5.	Упаковка и маркировка:	Упаковываются в различные виды упаковки в			
		зависимости от их свойств, условий перевозки и			
		хранения			
6.	Транспортирование:	Перевозится автотранспортом специализированной			
		организации.			
7.	Хранение:	Временное хранение не более 6 месяцев.			
8.	Удаление:	По мере накопления вывозятся на утилизацию в			
		специализированную организацию.			

1.7.4 Мероприятия, обеспечивающие снижение негативного влияния размещаемых отходов на окружающую среду и здоровье населения

В состав мероприятий включено следующее:

Организация и оборудование мест временного хранения отходов включает следующие мероприятия:

- использование достаточного количества специализированной тары для отхолов:
 - осуществление маркировки тары для временного накопления отходов;
 - организация мест временного хранения, исключающих бой;
- своевременный вывоз образующихся отходов на оборудованные места и согласованные с госорганами полигоны.

Основными экологическими мероприятиями в сфере обращения с отходами по снижению вредного воздействия отходов производства, образующихся в период проведения работ, на окружающую среду являются:

- Временное размещение отходов только на специально оборудованных площадках или контейнерах (емкостях).
- Недопущение процессе эксплуатации проливов, просыпей технологических материалов и немедленное их устранение в случае обнаружения.
 - Недопущение разгерметизации оборудования.
- Обращение с отходами в соответствии с рабочими инструкциями, 4. разработанными и утвержденными в установленном порядке.
- Постоянный визуальный контроль исправным состоянием накопителей отходов и площадок временного хранения отходов.
 - 6. Текущий учет объемов образования и размещения отходов.

С учетом вышеизложенных критериев, сформирован перспективный План мероприятий по реализации программы управления отходами для ТОО «Атыгай Голд Майнинг» на период проведения работ, представленный ниже.

План мероприятий является составной частью Программы и содержит совокупность действий/мероприятий, направленных на полное достижение цели и задач Программы, с указанием показателей результатов по мероприятиям (ожидаемые мероприятия), определением сроков, исполнителей, c завершения, необходимых затрат на реализацию программы и источников финансирования.

План мероприятий по реализации программы управления отходами для ТОО «Атыгай Голд Майнинг» на период проведения работ

№ п/ п	Мероприятия	Показатель (качественный / количественный)	Форма завер- шения	Ответствен- ный за исполнение	Срок испол- нения	Предпола гаемые расходы (тыс. тенге) в	Источ- ники финан- сирова- ния
1	2	3	4	5	6	7	8
	Передача отход	ов на утилизацию спе	ециализиро	ванным предпрі	иятиям по	договору	
1	Организация сбора, временного хранения и вывоз с территории ТБО	4,725 тонн/год	Снижение нагрузки на окружающую среду	Ответственный за сбор и утилизацию отходов на предприятии	-	-	Собст- венные средства
2	Организация сбора, временного хранения и передача сторонним организациям для переработки	55,8408 тонн/год	Снижение нагрузки на окружающую среду	Ответствен- ный за сбор и утилизацию отходов на предприятии	-	-	Собст- венные средства

1.7.5 Оценка воздействия отходов на окружающую среду

Все образующиеся отходы при неправильном обращении, могут оказывать негативное влияние на окружающую среду.

Негативное воздействие отходов производства и потребления проявляться при несоблюдении надлежащих требований, а также в результате непредвиденных ситуаций на отдельных стадиях транспортировки, хранения либо утилизации в местах их сдачи.

В случае неправильного сбора, хранения, транспортировки и захоронения всех видов планируемых отходов может наблюдаться влияние на все компоненты экологической системы:

- почвенно-растительный покров;
- животный мир;
- атмосферный воздух;
- поверхностные и подземные воды.

Основными загрязнителями компонентов окружающей среды являются следующие отходы: твердо-бытовые отходы, промасленная ветошь, отработанные аккумуляторы, отработанные масла, отработанные фильтры, тара из-под ВВ, отработанные шины, вскрышные породы.

Все отходы, образующиеся в период эксплуатации, будут собираться с мест образования и временно складироваться в специальных емкостях, контейнерах, на обустроенных площадках. По мере накопления отходы будут вывозиться по договорам для дальнейшей утилизации в специализированные организации.

Учет накопления отходов ведется специалистами предприятия.

Предназначенные для удаления отходы будут храниться с учетом требований по предотвращению загрязнения окружающей среды. Будут предусмотрены необходимые меры на участках хранения для предотвращения распространения неприятных запахов, загрязнения почвы и грунтовых вод в результате загрязнения дождевых стоков или стоков с участков хранения.

При условии правильного хранения отходов и своевременной их утилизации отрицательного воздействия на окружающую среду не будет.

В связи с тем, что все места временного складирования отходов будут отвечать санитарным и экологическим нормам - воздействие на компоненты окружающей среды оказываться не будет.

Таким образом, воздействие на окружающую природную среду образовавшихся в процессе планируемых работ отходов производства и потребления будет низким.

1.7.6 Отходы, образуемые в результате осуществления пост утилизации существующих зданий, строений, сооружений, оборудования

На территории намечаемой деятельности нет существующих зданий, строений месторождения сооружений. Согласно проекту, планируется отработка золотоносных руд.

Данные по отходам, образуемых в результате осуществления пост утилизации существующих зданий, строений, сооружений, оборудования не приводится, так как постутилизация существующих зданий, строений, сооружений, оборудования в рамках намечаемой деятельности не предусматривается.

План ликвидации рассматривается отдельным проектом.

В отдельном проекте, на данном этапе определены общие положения задач. В период дальнейшей отработки месторождения данные задачи будут уточняться и корректироваться. Целью всех мероприятий по ликвидации и консервации объектов недропользования является восстановление нарушенных земель по всем нормам и требованиям Республики Казахстан и сохранения объектов для возможности дальнейшего пользования.

Таблица 1.7.6.1 - Запланированные мероприятия для объектов недропользования, их

задачи и основные критерии

Объект	Назначение объекта	Запланированные	Задачи запланированных
недропользования		мероприятия	мероприятий
Карьер	Добыча руды	Консервация	- Обеспечение физической и геотехнической стабильности консервируемого объекта; - Сведение к минимуму загрязнение воды на объекте; - Сведение к минимуму передвижения и сброса загрязненных вод на объект; - Обеспечение безопасного уровня запыленности для людей, растительности и животных.
Отвал вскрышных пород	Складирование вскрышных пород	Ликвидация. Выполаживание откосов отвала и нанесение плодородного слоя почвы.	- Сведение к минимуму загрязнения воды; - Обеспечения безопасного для людей, растений и животных качества поверхностных стоков и дренажной воды; - Обеспечения физической и геотехнической стабильности

Объект	Назначение объекта	Запланированные	Задачи запланированных
недропользования		мероприятия	мероприятий
			объекта; - Сведение к минимуму риска эрозии, оседаний, провалов склонов, обрушений и выброса загрязнителей; - Обеспечение баланса высоты отвала с занимаемой площадью поверхности отвала; - Приведение объекта в соответствие с окружающим ландшафтом; - Обеспечение безопасного уровня запыленности для людей, растительности
Рудин не отпетт	Pnovouvos vesvovos	Пикрипочия	И ДИКИХ ЖИВОТНЫХ.
Рудные склады	Временное хранение извлеченной руды	Ликвидация, восстановление рельефа и плодородного слоя почвы	- Приведение рельефа в соответствие с окружающим ландшафтом; - Обеспечение безопасного уровня запыленности для людей, растительности, водных организмов и диких животных; - Самозарастание нарушенной поверхности
Склад ПРС	Складирование	Ликвидация,	- Обеспечение полноты
	почвенно-плодородного слоя	возвращение почв на нарушенные территории	использования объекта для рекультивации нарушенных недропользованием территорий.
Склад	Складирование	Консервация.	- Ограничение доступа на
забалансовой руды	нерентабельных запасов	Обеспечение сохранности бедных руд с целью переработки в будущем	объект для обеспечения безопасности людей и животных; - Обеспечение физической и геотехнической стабильности консервируемого объекта; - Обеспечение баланса высоты склада с занимаемой площадью поверхности склада; - Обеспечение безопасного уровня запыленности для людей, растительности, водных организмов и диких животных.
Подъездные автодороги	Производственные нужды и коммуникация	Консервация	- Сооружения не являются и не будут являться источником загрязнения для окружающей среды и источником опасности для людей и животных.

2. Описание затрагиваемой территории с указанием численности ее населения, участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой деятельности на окружающую среду, с учетом их характеристик и способности переноса в окружающую среду; участков извлечения природных ресурсов и захоронения отходов

Месторождение золотосодержащих руд Атыгай расположено в Житикаринском районе Костанайской области Республики Казахстан, в 95 км к западу от г. Житикара.

Ближайшим населенным пунктом является п. Хозрет, на расстоянии 32 км восточнее от месторождения.

Житикаринский район находится на юго-западе Костанайской области. На севере район граничит с Денисовским районом, на востоке — с Камыстинским районом, на юге граница проходит с Адамовским и Светлинским районами Оренбургской области России, на западе — с Брединским районом Челябинской области России. Площадь района составляет 7311,99 км.

Житикаринский район (каз. Жітіқара ауданы) — административнотерриториальная единица в Костанайской области, на расстоянии 217 км югозападнее от областного центра города Костанай. Административный центр района город Житикара.

В районе ведётся добыча золота, а также находится крупнейшее месторождение хризотил-асбеста в Казахстане.

Район располагается на территории Зауральского плато. Самая высокая точка — гора Житикара (414 м). В районе нет лесов, только на севере есть осиновые и березовые колки площадью 2000 га.

Гидрографическая сеть представлена рекой Тобол и его притоками: Бозбие, Актастысай, Шортанды, Желкуар. Имеются озёра Тулубайкопа, Карамола, Кундыбай, Мюктиколь и другие.

На реке Желкуар с 1965 года в районе введено в эксплуатацию Желкуарское водохранилище. На реке Шортанды построено 2 плотины для регулирования подачи воды на дачные участки.

```
Национальный состав (на начало 2019 года):
```

```
казахи — 21 601 чел. (44,76 %) русские — 18 190 чел. (37,69 %) украинцы — 3583 чел. (7,42 %) немцы — 1635 чел. (3,39 %) татары — 1076 чел. (2,23 %) белорусы — 747 чел. (1,55 %) башкиры — 327 чел. (0,68 %) молдаване — 159 чел. (0,33 %) корейцы — 119 чел. (0,25 %) азербайджанцы — 114 чел. (0,24 %) другие — 710 чел. (1,47 %) Всего — 48 261 чел. (100,00 %)
```

На территории имеются месторождения строительных материалов, в том числе Житикаринское месторождение хризотил-асбеста. До 1960 года разрабатывалось Житикаринское месторождение золота.

В начале XX века в районе были найдены золоторудные месторождения. В 1914 году появилось товарищество «Джетыгариских золотых приисков», затем Проектная компания "АНТАЛ"

реорганизованный в трест «Джетыгаразолото». В середине XX века добыча золота прекратилась. В 2001 году началось строительство Комаровского рудника (ТОО «Орион Минералс»), которое возобновило добычу золота в районе, а в 2003 году уже был получен слиток в 6 кг.

В районе находится крупное месторождение хризотил-асбеста градообразующее предприятие города Житикара АО «Костанайские минералы». По запасам хризотил-асбеста месторождение занимает пятое место в мире.

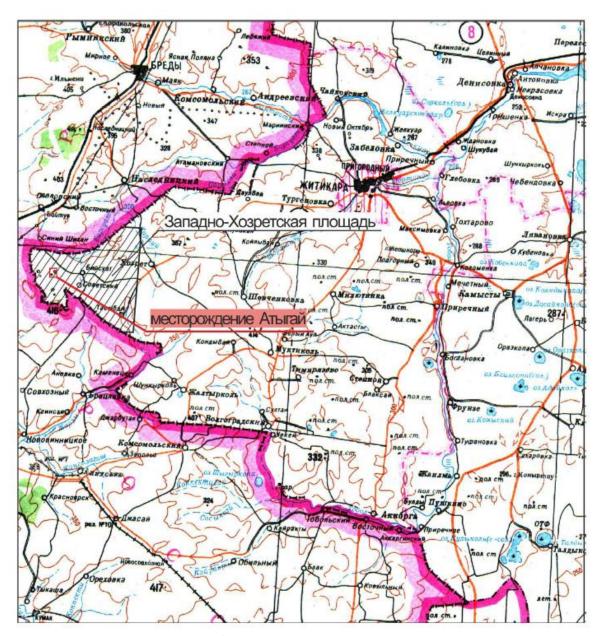


Рис. 2.1 – Обзорная карта Житикаринского района

От автовокзала города Житикара курсируют автобусы по направлениям до Костаная, Магнитогорска, Троицка, Южноуральска, Челябинска, Актобе, а также сёл Житикаринского и Камыстинского районов, приграничных сёл Оренбургской области.

В районе курсирует пригородный поезд «Костанай — Житикара». Через район проходит трасса А23 с выходом к границе России (Денисовка — Житикара — Муктиколь — Граница РФ).

В районе насчитывается 94 памятника историко-культурного значения. В мае году в городе Житикара открылась районная библиотека «Житикаринская районная централизованная библиотечная система». В состав библиотеки входит Центральная районная библиотека, центральная районная детская библиотека и 9 сельских подразделений. С 1971 года в районе действует Дворец Культуры «Асбест».

11 марта 1978 года открылся первый музей в районе, с 1986 года назван «Музей истории Джетыгары» (сейчас филиал ГУ «Костанайского областного историкокраеведческого музея»). Фонд музея — 8390 экспонатов.

Город Житикара расположен на реке Шортанды. С 1936 года районным центром стал посёлок Джетыгара, а с 1939 года посёлок получил статус города.

С 1961 года город Джетыгара стал городом областного значения и вернулся в состав Житикаринского района в 1997 году Указом Президента и был переименован в город Житикара.

Экономика. В экономическом отношении Житикаринский район является объектом с высоким аграрным и промышленным потенциалом.

Основным направлением развития аграрного комплекса является зерновое хозяйство. Кроме того, развито молочно-мясное скотоводство, тонкорунное и полутонкорунное овцеводство, свиноводство и овощеводство.

городе находится крупнейший Житикаринский асбестовый обогатительный комбинат (ныне АО «Костанайские минералы»).

Район относится к промышленно развитым. Ведущими являются следующие горнодобывающая, производство строительных материалов, промышленность, пищевая промышленность.

Население района, состоящее, в основном, из русских, украинцев, казахов, немцев, занято в горнодобывающей отрасли и сельскохозяйственном производстве.

Энергетическая и топливная базы. В районе практически полностью отсутствуют собственные топливно-энергетические ресурсы. Житикаринского района электрической энергией осуществляется из-за пределов РК, в основном, электроэнергией, вырабатываемой Троицкой ГРЭС.

При обобщении и анализе материалов, полученных в результате проведения оценочных работ, можно сделать вывод, что несмотря на довольно суровые климатические условия, лицензионгная территория имеет благоприятные географоэкономические условия для промышленного освоения месторождения Атыгай.

2.1 Объекты месторождения

Участки, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия на окружающую среду:

- участок намечаемой деятельности, т.е. сама разработка золотоносного месторождения Атыгай.

месторождения: карьер Берсуат-1, карьер Берсуат-2, вскрышных пород, склад ПРС, рудный склад, буровые работы, взрывные работы, дизельные генераторы буровых станков, пруд-испаритель, карьерные дороги.

Перечень основных объектов генерального плана приведено в таблице 2.1.

Таблица 2.1 – Перечень основных объектов генерального плана

$\mathcal{N}_{\underline{0}}$	Наименование объекта	Назначение
1	Карьер Берсуат-1	Добыча руды
2	Карьер Берсуат-2	Добыча руды
3	Склад ПРС	Складирование ПРС
4	Отвал вскрышных пород	Складирование вскрышных пород
5	Рудный склад	Складирование балансовых руд
6	Пруд-испаритель	Сбор и испарение карьерных вод
7	Карьерные дороги	Транспортировка

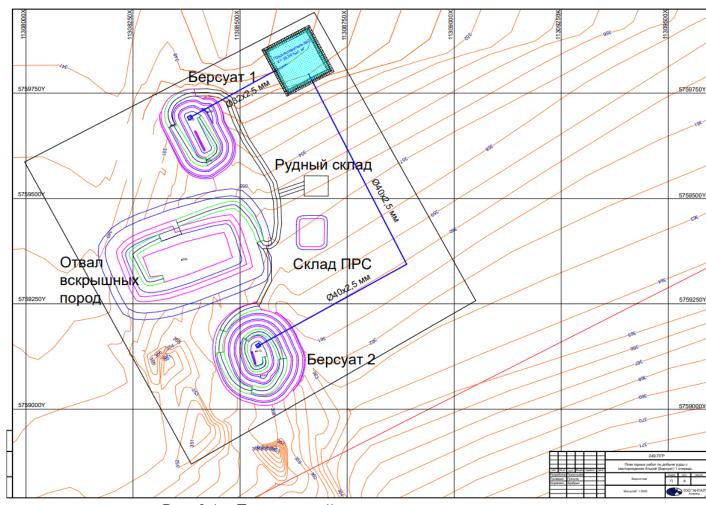


Рис. 2.1 – Генеральный план месторождения

Перечень предполагаемых источников выбросов, на которых могут быть обнаружены выбросы вредных веществ, и иные негативные воздействия намечаемой деятельности на окружающую среду представлены в таблице 2.2.

Таблица 2.2 – Предполагаемые ист	очники вы	оросов вредных веществ в атмосферу
Объект	№ИВ	Источник выброса
Дизельные генераторы буровых станков	0001	Дизельные генераторы буровых станков
	0002	Осветительная мачта
Drawer a avacerrance	0003	Осветительная мачта
Электроснабжение	0004	Передвижная электростанция
	0005	Передвижная электростанция
Карьер	6001	Снятие ПРС и погрузка в самосвалы
Склад ПРС	6002	Хранение ПРС
	6003	Буровые работы
Карьер	6004	Взрывные работы
	6005	Выемочно-погрузочные работы
	6008	Погрузочно-разгрузочные работы
	6013	Автотранспортные работы
	6011	Хранение руды
Рудный склад	6007	Разгрузочные работы на рудном складе
	6010	Бульдозерные работы на рудном складе
	6012	Хранение вскрышной породы
Отвал вскрышных пород	6006	Разгрузочные работы на отвале вскрышных пород

Общее количество выбросов в окружающую среду на период проведения эксплуатации месторождения ориентировочно составит: 166.72054 т/год.

Бульдозерные работы на отвале

6009

Предполагаемый состав выбросов ожидаются в атмосферу 15 наименований загрязняющих веществ.

При реализации намечаемой деятельности сброс сточных вод в поверхностные водотоки не предусматривается, воздействие по данному фактору исключается.

Количество образуемых отходов в основном зависит от производительности предприятия. Как следствие количества персонала, автотранспорта, спецтехники и людей будет зависеть от объема выполняемых работ.

Предполагаемый объем образования отходов на период эксплуатации месторождения составит: 2840150,5658 т/год, из них опасных - 7,9118 т/год, неопасных -2840142,654 т/год.

Объем образования на максимальный год разработки карьеров Берсуат -1234,822 тыс.м³/год = 2840090 тонн. Часть вскрышных пород планируется использовать для нужд предприятия - подсыпки дорог и площадок.

Размещение вскрышных пород месторождения предусматривается внешних отвалах. За весь период отработки на отвале вскрышных пород будет размещено 2840,09 тыс.тонн вскрыши.

Остальные виды отходов будут передаваться ПО договору специализированным предприятиям на утилизацию.

2.2 Запасы месторождения

Запасы окисленных и первичных руд для открытой и подземной отработки месторождения Атыгай утверждены Протоколом №2408-22-У от 04.02.2022 г. по состоянию на 02.01.2022 г. (таблица 2.3).

Подсчет запасов выполнен по рекомендуемым к утверждению промышленным кондициям для открытой разработки по бортовому содержанию золота 0,3 г/т.

Таблица 2.3 – Запасы месторождения Атыгай по состоянию на 02.01.2022 г.

Таолица 2.3 – Запасы месторождения Атыгаи по состоянию на 02.01.2022 г.							
Показатели	En vov		алансовые запасы		Забалансовые		
Показатели	Ед. изм.	C_1	C_2	$C_1 + C_2$	запасы		
	Всего по месторождению:						
руда	тыс. т	3 012,79	8645,98	11 658,77	3 288,94		
золото	КГ	2 714,68	9183,30	11 897,75	3 790,42		
среднее содержание	Γ/T	0,90	1,06	1,02	1,15		
	в том числе:						
	Окисленные						
руда	тыс. т	1 995,21	3 989,22	5 984,43	171,04		
золото	КГ	1 769,55	4 070,64	5 840,19	146,22		
среднее содержание	Γ/T	0,89	1,02	0,98	0,85		
Первичные							
руда	тыс. т	1 017,58	4 656,76	5 674,34	3 117,90		
золото	КГ	945,13	5 112,66	6 057,79	3 644,20		
среднее содержание	г/т	0,93	1,10	1,07	1,17		

Недропользователю ТОО «Атыгай Голд Майнинг» рекомендовано:

- продолжить разведку на глубоких горизонтах с целью перевода запасов в более изученные категории;
- продолжить изучение объемной массы, гидрогеологических и инженерногеологических условий месторождения.

3. ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

намечаемой деятельностью является открытая золоторудного месторождения Атыгай (Берсуат), одним из альтернативных вариантов является «нулевой» вариант т.е. отказ от деятельности. Отказ от деятельности не приведет к значительному улучшению экологических характеристик окружающей среды, когда разработка месторождения приведет к улучшению социальноэкономических характеристик района, что в свою очередь приведет к улучшению условий жизни населения близлежащих городов и поселков.

Напротив, реализация проекта окажет положительный социальный эффект на жителей близлежащих населенных пунктов Житикаринского района за счет инвестиций разработке месторождения. Разработка дополнительных при месторождения потребует привлечения местных рабочих кадров из различных профессиональных сфер для выполнения различных работ. Необходимые для производства материалы будут закупаться у отечественных производителей, тем самым стимулируя производство и занятость населения.

Горнотехнические условия месторождения, морфология залегания рудных тел и экономические критерии предопределяют разработку верхней окисленной части месторождения открытым способом (карьерами) до глубины 100 м. Разработка подземным способом на первом этапе нецелесообразна, т.к. руды залегают близко к поверхности. Переход на подземный способ добычи возможен на стадии вовлечения в отработку сульфидной части месторождения.

Единственным способом осуществления добычи руды данного месторождения является открытая разработка карьерами и сооружением отвалов пустых пород.

Подземная разработка на текущем этапе проектирования не рассматривается в связи с выходом рудных залежей на дневную поверхность.

Данные о слагающих породах свидетельствуют, что постепенное уплотнение разновидностей горной массы от поверхности требует применения буровзрывных работ для их предварительной подготовки к выемке. Рыхлые породы коры выветривания простираются до глубины 25 метров от поверхности, постепенно уплотняясь и переходя в скальные породы с глубины 35 метров. В связи с этим в настоящем Плане условно принято, что буровзрывные работы планируются в следующих относительных объёмах от общих объёмов выемки горной массы, показанных в таблице.

Интервал глуб	% от объёма горной массы	
ОТ	70 от ооъема горной массы	
Поверхность	Поверхность 25	
25	35	50
35	Полотно	100

Для рыхления будет использоваться скважинная отбойка горной массы. Имеются два альтернативных способа БВР ведения БВР: метод шпуровых зарядов и метод камерных зарядов. Оба данных метода менее эффективны. Одним из недостатков метода камерных зарядов является повышенный выход негабаритных кусков после взрыва. Основным недостатком метода шпуровых зарядов является сравнительно большая его трудоемкость. Поэтому применение метода шпуровых зарядов неэффективно при горных разработках большого масштаба. В связи с этим принят метод скважинной отбойки.

В плане горных работ принят вариант с использованием гидравлического горного оборудования на дизельном топливе типа Hitachi. Данная модель экскаваторов зарекомендовала себя как надежная техника.

Альтернативное размещение объекта производства не рассматривалось. Место размещения объекта производства, а также технические и технологические решения предопределены условиями расположения рудной залежи.

Размещение вскрышных пород месторождения предусматривается на внешних Внутрикарьерное отвалообразование настоящим отвалах. предусматривается в связи с тем, что под карьером залегают не вовлекаемые в разработку утвержденные протоколом ГКЗ №2408-22-У от 04.02.2022г. запасы сульфидной руды. Внутреннее отвалообразование в данном случае не представляется возможным в соответствии с п.1746 Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы.

Внутреннее отвалообразование будет применено на стадии отработки сульфидной части месторождения.

Часть вскрышных пород планируется использовать для нужд предприятия подсыпки дорог и площадок, тем самым сократив территорию, нарушенную отвалами вскрышных пород.

Проектом рассматривались несколько вариантов формирования отвалов вскрышных пород:

- Вариант 1. При отсыпке отвала в 1 ярус, высотой 20 м занимаемая отвалами площадь составит $-85~000~\text{м}^2$.
- Вариант 2. При отсыпке отвала в 2 яруса, высотой яруса 15 метров занимаемая отвалами площадь составит – 74 300 м².

Был принят вариант с формированием отвала в несколько ярусов, т.к. данный вариант позволяет сократить площадь земель под размещение вскрышных пород на 12,55% (10 700 M^2).

Выбранный вариант размещения отвалов позволяет:

- 1. Уменьшить расстояния транспортировки вскрыши, снизить время работы ДВС техники и эксплуатационные расходы, в следствии чего и уменьшаются объемы выбросов в окружающую среду;
 - 2. Уменьшение площади под размещение отвалов;
 - 3. Уменьшение площади пыления.

Наличие конкретных технических проектных решений исключает возможные неблагоприятного воздействия либо на окружающую среду, при невозможности полного исключения – обеспечивает его существенное снижение.

Учитывая, что Отказ от реализации проектных решений не приведет к значительному улучшению экологических характеристик окружающей среды, но может привести к отказу от социально и экономически важного для региона предприятия, инициатор считает нужным отказаться от «нулевого» варианта.

В соответствии с заданием на проектирование объемы добычи руды приняты следующими: на 2029 год – 26,094 тыс.тонн.

3.1 Обоснование типоразмера горнотранспортного оборудования

Экскавация

На основе физико-механических свойств разрабатываемых руд и пород, а также учитывая условия разработки месторождения и производительность карьера, в качестве выемочно-погрузочного оборудования вскрышных работах на целесообразно принять гидравлические экскаваторы.

При выборе выемочно-погрузочного оборудования учитывались следующие условия:

- обеспечение годовой производительности карьера по горной массе до 8,5 $млн.м^3/год$;
 - обеспечение оптимальной скорости углубки;
- сервисное обслуживание экскаваторов и снабжение оригинальными запасными частями:
 - качество и надежность.

расчетов технико-экономических показателей условно использование экскаваторов типа HITACHI EX ZX 470 R3 на вскрышных работах (вместимость ковша 3 м^3) и HITACHI ZX 450 LD (вместимость ковша $2,6 \text{ м}^3$) на добычных работах. В случае производственной необходимости, на выемочнопогрузочных работах могут быть задействованы экскаваторы, отличающиеся от принятых в настоящем плане, если этим не будут нарушаться требования безопасности.

Технические характеристики экскаватора приведены в таблице 3.1.1.

Таблица 3.1.1 – Технические характеристики экскаваторов

Параметр	Значение				
Двигатель					
Модель	HITACHI EX ZX 470 R3	HITACHI ZX 450 LD			
Мощность, кВт	260	235			
Рабо	чее оборудование				
Максимальная высота резания грунта, мм	11060	10150-12110			
Максимальная высота разгрузки, мм	7650	6910-9090			
Максимальная глубина резания грунта, мм	7770	7390-10360			
Вместимость ковша «с шапкой», м ³	3	2,6			
	Масса				
Эксплуатационная масса, кг	48 100	42 500			

Транспортировка

В качестве транспорта для перевозки руд и вскрышных пород принимается автомобильный транспорт, основными преимуществами которого являются: независимость от внешних источников питания энергии, упрощение процесса отвалообразования, сокращение длины транспортных коммуникаций (благодаря возможности преодоления относительно крутых подъемов автодорог), мобильность.

Горнотехнические условия разработки месторождения, параметры системы разработки, масштабы производства, а также ряд технологических факторов,

предопределяют использование автомобильного транспорта на открытых горных работах. Основными преимуществами автомобильного транспорта являются: независимость от внешних источников питания энергии, упрощение процесса отвалообразования, сокращение длины транспортных коммуникаций благодаря возможности преодоления относительно крутых подъемов автодорог, мобильность.

Транспортировка горной массы из карьера предполагается на отвал вскрышных пород и склад балансовых руд.

При выборе типа транспорта учитывались параметры выемочно-погрузочного оборудования и плановая производительность карьеров по горной массе.

При вместимости ковша экскаватора 3 м.куб, емкость кузова автосамосвала должна составлять 9-21 м.куб. Для расчета приняты самосвалы типа БелАЗ 7540В грузоподъемностью 30 т. На практике могут применяться другие самосвалы.

Параметры карьерной автодороги приняты следующими: ширина – 17 м, продольный уклон 80 %, промежуточные горизонтальные площадки длиной 50 м предусматриваются каждые 600 м длины съезда.

Ценовое сравнение

запросу информации OT производителей оборудования получены коммерческие предложения, включающие в себя стоимость приобретения и эксплуатационные расходы.

В соответствии с Техническим заданием расчет количества оборудования выполнен с учетом обновления парка. По рекомендациям производителей периодичность обновления парка автосамосвалов и экскаваторов принята равной 10 лет.

4. КОМПОНЕНТЫ ПРИРОДНОЙ СРЕДЫ

4.1 Жизнь и (или) здоровье людей, условия их проживания деятельности

Проведение планируемых работ приведет к созданию ряда рабочих мест, позволит максимально использовать существующую транспортную систему и социально-бытовые объекты, привлечь местных подрядчиков для обеспечения строительных работ, приведет к увеличению спроса на продукты питания местных сельхозпроизводителей. Создание дополнительных рабочих мест приведет к увеличению поступлений в местные бюджеты финансовых средств за счет отчисления социальных и подоходных налогов. Реализация проектных решений окажет немало положительных аспектов для населения. Это и создание новых рабочих мест, повышение доходов, реализация социальных проектов, развитие инфраструктуры. Повышение уровня жизни поможет также снизить отток местного населения из региона.

Негативного влияния на здоровье населения оказываться не будет, так как на проведенных расчетов, превышений предельных концентраций основании загрязняющих веществ в атмосфере на границе ССЗ объекта и за ее пределами не превышает допустимых норм.

Оценка воздействия на здоровье населения

Исходя из анализа санитарно-гигиенической обстановки в регионе можно сделать вывод, что основным фактором, влияющим на состояние здоровья населения, являются в первую очередь социальные условия, важнейшие из которых:

- плохое качество питьевой воды;
- низкий уровень водопользования;
- отсутствие водопроводных и канализационных систем;
- низкая степень благоустройства населенных пунктов;
- высокий уровень безработицы.

Загрязнение окружающей среды, как отрицательно влияющий на состояние здоровья населения фактор, на территории Житикаринского района играет неоднозначную роль. Наряду с отдельными районами, где его значение входит в ряд определяющих, на большей части территории области, на которой роль промышленного производства крайне незначительна и источники загрязнения практически отсутствуют, состояние здоровья населения больше зависит от социальных факторов.

Современное состояние здоровья населения в регионе определяют следующие демографическая ситуация, состояние здравоохранения, заболеваемости населения, санитарно-эпидемиологическая и эпидемиологическая обстановка в областях.

Проведение работ на рассматриваемом объекте, размах намечаемых действий предопределяет то, что проведение работ будет иметь большое значение в социально экономической жизни района, с точки зрения занятости местного населения. В течение реализации данного проекта, предполагается, что дополнительная требуемая рабочая сила составит 63 человека. За исключением нескольких специалистов, связанных с производством работ и имеющих необходимый опыт, остальные работники и рабочие предприятия будут набираться из местного населения. Этот

фактор окажет позитивное значение на социально-экономические условия жизни населения района.

Работы по внедрению проекта предполагается вести с соблюдением норм и правил техники безопасности, промышленной санитарии, противопожарной безопасности, что обеспечит безопасное проведение планируемых работ и не вызовет дополнительной, нежелательной на грузки на социально - бытовую инфраструктуру близрасположенных районов.

При поступлении на работу, работники проходят предварительный медицинский осмотр, а в дальнейшем — периодические медосмотры. Все работники проходят необходимую вакцинацию и инструктаж по соблюдению правил личной гигиены, с учетом местных региональных особенностей, поэтому повышение эпидемиологической ситуации в районе работ маловероятно.

Будет обеспечиваться комплексное использование природных ресурсов, полная утилизация отходов производства и антропогенного воздействия, а также создание условий безопасного природопользования для жителей региона.

Условия для рабочего персонала.

Предполагается, что на здоровье персонала, непосредственно занятого при промышленной разработке, и членов их семей будет оказано низкое положительное воздействие.

Потенциальными локальными, кратковременными, источниками отрицательного воздействия на социальную сферу при промышленной разработки могут быть:

- выбросы вредных веществ в атмосферу от работающей техники;
- проявления физических факторов (электромагнитное излучение, шум, вибрация);
- образование, транспортировка, утилизация/захоронение отходов производства и потребления.

В темное время суток все рабочие места и проходы будут освещены, по контуру карьера будут выставлены предупредительные знаки.

Периодически будет вестись контроль соблюдения предельно-допустимых концентраций на контрольных точках. Также будут производиться мероприятия по пылеподавлению на автодорогах.

Для профилактики заболеваний, как бытового, так и профессионального работнику, полностью или частично утратившему трудоспособность в результате несчастного случая на производстве или профессионального заболевания, или лицам, имеющим на это право в случае смерти работника, предприятием выплачивается единовременное пособие и возмещается ущерб за причиненное повреждение здоровья или смерть работника в порядке и размерах, установленных законодательством (ст. 30 Закона «Об охране труда»). Этой же статьей Закона предприятие будет руководствоваться и при возмещении пострадавшему работнику расходов на лечение, протезирование и других видов медицинской помощи, если ОН необходимости нуждающимся обеспечивает них. При предприятие профессиональную реабилитацию, переподготовку и трудоустройство потерпевшего в соответствии с медицинским заключением или возмещает расходы на эти цели.

Около месторождения будет размещаться промплощадка карьера, где предусматривается размещение передвижного вагончика, в котором имеется гардеробная, умывальники, помещения для обработки и хранения спецодежды. Также предусматривается установка контейнера для сбора мусора, противопожарный щит, емкость для воды, емкость для сбора бытовых стоков, уборная (биотуалет).

вагончике будет храниться медицинская аптечка, ДЛЯ индивидуальной защиты от вредных воздействий (респираторы, при необходимости средства от поражения людей электрическим током и пр.)

Так как Участок Берсуат расположен в 17 км от ближайшего населенного пункта п. Хозрет, уровень предельно-допустимых концентраций вредных веществ будет оставаться минимальным.

Исходя из этого, эксплуатационные работы на месторождении не вызовут негативного влияния на здоровье населения.

Вывод. Охрана здоровья населения, а также работников карьера – один из важнейших вопросов, который будет постоянно контролироваться руководством предприятия.

Воздействие производственной деятельности месторождения на окружающую среду в районе участка оценивается как вполне допустимое при несомненно крупном социально экономическом эффекте – обеспечении занятости населения. вытекающими из этого другими положительными последствиями.

Прогноз социально-экономических последствий, связанных с современной и будущей деятельностью предприятия - благоприятен. Проведение работ с соблюдением норм и правил техники безопасности, промышленной санитарии, противопожарной безопасности обеспечит безопасное проведение планируемых работ и не вызовет дополнительной, нежелательной нагрузки на социальнобытовую инфраструктуру близрасположенных населенных пунктов. С точки зрения увеличения опасности техногенного загрязнения в районе анализ прямого и опосредованного техногенного воздействия позволяет говорить, о том, что планируемые работы не окажут влияния на здоровье местного населения.

4.2 Биоразнообразие растительного мира, природные ареалы растений, экосистемы

факторам негативного потенциального воздействия на почвеннорастительный покров при проведении работ относятся:

- отчуждение земель;
- нарушение и повреждение земной поверхности, механические нарушения почвенно-растительного покрова;
 - дорожная дигрессия;
- нарушения естественных форм рельефа, изменение условий дренированности территории;
 - стимулирование развития водной и ветровой эрозии.

Основными видами воздействия на растительность при работах будут:

- непосредственное механическое воздействие;
- влияние возможных загрязнений.

По природно-климатическим условиям региона растительность исследуемой территории отличается слабой устойчивостью (динамичностью) к природным, а также антропогенным воздействиям. Сильная деградация растительного покрова будет наблюдаться при механическом воздействии, связанная с выемочными работами.

Разработка карьера и отсыпка отвалов. В процессе вскрытия месторождения растительность в зоне разработки будет уничтожена.

Разработка карьера и отсыпка отвалов окажет ограниченное, но умеренное воздействие на растительный покров. Подготовка площадок будет связана с полным Вокруг уничтожением растительности. площадок растительность трансформирована (зона работ техники, многоразовые проезды машин, и др.).

Земляные работы, а также движение транспорта приводит к сдуванию с поверхности почвы части твердых частиц. Повышенное содержание пыли в воздухе может привести к закупорке устьичного аппарата у растений и нарушению их жизнедеятельности на физиологическом и биохимическом уровнях.

Дорожная дигрессия. При механическом нарушении почвенно-растительного покрова на прилегающих к месту работ участках перестраивается поверхностный и грунтовый сток воды, изменяется характер снегонакопления, гидротермический режим нарушенного участка. Это в дальнейшем будет сказываться на восстановлении растительного покрова.

Наиболее чувствительными к механическим воздействиям являются мелкая растительность, а также полукустарнички и кустарнички. На местах с уничтоженной растительностью появятся, преимущественно, низкорослые растения, переносящие повреждение стеблей, смятие, деформацию, способные быстро и интенсивно размножаться семенным и вегетативным путем и осваивать освободившиеся пространства. То есть в период восстановления растительного покрова произойдет изменение состава и структуры растительности на нарушенных участках.

При проезде автотранспорта по ненарушенной территории растения могут быть сломаны (кустарники, полукустарники), примяты (травянистые растения), раздавлены колесами (однолетние виды, эфемероиды). Дорожная дигрессия (воздействие от движения транспорта) будет развиваться при неоднократном проезде транспортных средств и техники вне дорог с твердым покрытием. При этом площадь нарушенных территорий изменяется и увеличивается за счет возникновения дорог-«спутников», сопровождающих первую колею.

Принятые меры, уменьшающие движение транспорта по не согласованным маршрутам, позволят снизить этот вид негативного воздействия.

Таким образом, можно сказать, что по интенсивности и силе воздействия проезд вне дорог с твердым покрытием (полевые дороги и бездорожье) в период обустройства и создания собственных автодорог будет оказывать как умеренное, так и сильное воздействие на растительность.

Восстановление растительности на нарушенных участках будет происходить с различной скоростью. Участки, подверженные незначительному воздействию, будут зарастать быстро, благодаря вегетативной подвижности основных доминирующих видов злаков и полыней. На участках полного уничтожения растительного покрова процесс восстановления растянется на годы. Если на прилегающих участках жизненное состояние этих видов хорошее, то они достаточно быстро займут позиции на нарушенной в результате строительства территории. Вновь сформированные вторичные сообщества будут характеризоваться неполночленностью растительности и неустойчивой ее структурой.

прекращения механических воздействий будет происходить самовосстановление растительности в исходное состояние. Скорость восстановления будет неодинаковой. Скорость восстановления растительности зависит как от климатических условий в период восстановления, так и почвенных разностей.

Загрязнение. При проведении работах химическое загрязнение растительного покрова будет связано с выбросами токсичных веществ, с выхлопными газами, возможными утечками горюче-смазочных материалов. Загрязнение

происходить при заправке техники, неправильном хранении ГСМ и несоблюдении требований по сбору и вывозу отходов.

При правильно организованном обслуживании оборудования, техники и автотранспорта; выполнении основных требований по охране окружающей среды: заправка в специально отведенных местах, использование поддонов, выполнение запланированных требований в управлении отходами и хранении ГСМ - воздействие на загрязнение почвенно-растительного покрова углеводородами и другими химическими веществами оценивается как умеренное.

4.3 Биоразнообразие животного мира, природные ареалы диких животных, пути миграции диких животных, экосистемы

Основной фактор воздействия со стороны горнодобывающего предприятия на фауну данной территории - изъятие территории занятой промышленными объектами и сооружениями из естественного оборота земель в системе природопользования.

Основной вид воздействия на фауну обследуемых территорий - техногенное изменение характера рельефа в результате обустройства месторождения, отвалов породы, дорог, коммуникаций, монтажа линий электропередач. На состояние фауны будет влиять обустройство и эксплуатация промышленных площадок, движение автотранспорта, присутствие людей.

Образование отвалов породы, насыпей, котлованов вызывает возникновение искусственных убежищ, в результате на территории увеличивается число синантропных видов. Отвалы пустой породы используются хищными птицами в качестве мест гнездования.

Необходимое условие снижения степени воздействия на фауну в целом и на представителей ценных и охраняемых видов - сохранение пойменной и прибрежной зоны, а также мелких водоёмов в естественном состоянии. Деградация растительности приведёт к ухудшению условий гнездования пернатых и изменению состояния кормовой базы.

Основное воздействия - фактор беспокойства при перемещении автотранспорта, землеройных работах в совокупности с присутствием людей.

Возможным вредным воздействием, связанным с добычей полезных ископаемых, будет являться выброс загрязняющих веществ, в окружающую среду.

Возможно нанесение ущерба фауне при попадании в окружающую среду бытовых, производственных отходов, химикатов, сточных вод, аварийного и произвольного слива остатков ГСМ, использованной обтирочной ткани.

Зона воздействия проектируемого объекта на животный мир ограничивается границами земельного отвода (прямое воздействие, заключается в вытеснении за пределы мест обитания) и санитарно-защитной зоны (косвенное воздействие, крайне опосредованное через эмиссии в атмосферный воздух). Воздействие намечаемой деятельности на пути миграции и места концентрации животных исключается.

Общее воздействие намечаемой деятельности на животный мир оценивается как допустимое.

4.4 Генетические ресурсы

Генетические ресурсы – это генетический материал растительного, животного, микробного или иного происхождения, содержащий функциональные единицы наследственности (ДНК) и представляющий фактическую или потенциальную

ценность. Генетическими ресурсами является как природное биологическое разнообразие страны (растения, животные), так и штаммы микроорганизмов, коллекции сортов и семян, сельскохозяйственных культур, генетически измененные организмы и т.д.

В процессе разработки и эксплуатации месторождения генетические ресурсы не используются.

4.5 Земли (в том числе изъятие земель)

Изъятие земель

Отвод земель для осуществления хозяйственной деятельности производится на основе положений Земельного кодекса Республики Казахстан (Земельный кодекс, 2003) и соответствующих решений местных акиматов.

Степень воздействия при изъятии угодий из производства определяются земель, интенсивностью ведения сельскохозяйственного площадью ХІЧТКІСК производства, количеством занятого в нем местного населения, близостью крупных населенных пунктов.

Изъятие земель под разработку месторождения, учитывая, сравнительно, низкое качество почв и направление использования земель (земли пастбищного назначения), отрицательного влияния на сложившуюся систему землепользования, не окажет. Отчуждение земель, как мест обитаний диких животных и птиц, для ареала их популяций, в целом, может рассматриваться, также как незначительное воздействие.

Для снижения негативного воздействия на протяжении всего периода эксплуатации месторождения будет осуществляться контроль над соблюдением проведения работ строго в границах земельного отвода.

Дополнительного изъятия земель проектом не предусматривается.

Ввиду того, что площадь горного отвода составляет более 25 га, что в свою очередь подпадает под перечень экологически опасных видов хозяйственной и иной деятельности («Об утверждении Перечня экологически опасных видов хозяйственной и иной деятельности» Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 27 июля 2021 года No 271) ТОО «Атыгай Голд Майнинг» необходимо предусмотреть требования ст.129 Экологического Кодекса о заключении договора обязательного экологического страхования.

4.6 Почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации)

Разработка золотосодержащих руд будет сопровождаться усилением антропогенных нагрузок на природные комплексы территории, что может вызвать негативные изменения в экологическом состоянии почв и снижение их ресурсного потенциала. Степень проявления негативного влияния на почвы будет определяться, прежде всего, характером антропогенных нагрузок и буферной устойчивостью почв к тому или иному виду нагрузок.

Негативное потенциальное воздействие на почвы при освоении месторождения может проявляться в виде:

- изъятия земель из существующего хозяйственного оборота;
- механических нарушений почв при ведении работ;
- усиления дорожной дигрессии;

- стимулирования развития процессов дефляции;
- загрязнения отходами производства.

4.6.1 Механические нарушения почв

Механические нарушения почвенного покрова и почв будут являться наиболее значимыми по площади при освоении месторождений и могут носить необратимый характер.

почвенного При нарушенности покрова, возникающей оценке механических воздействиях, учитывают состояние почвенных горизонтов, их мощность, уплотнение, структуру, мощность насыпного слоя грунта, глубину проникновения нарушений, изменение физико-химических свойств, проявление процессов дефляции и водной эрозии (Экологические критерии, 2007).

К нарушенным относятся все земли со снятым, перекрытым или перерытым гумусовым горизонтом и непригодные для использования без предварительного восстановления плодородия, т.е. земли, утратившие в связи с их нарушением первоначальную хозяйственную ценность и являющиеся источником отрицательного воздействия на окружающую среду (ГОСТ 17.5.1.01-83. Рекультивация земель. Термины и определения).

Устойчивость почв к механическим нарушениям, при равных нагрузках, зависит от совокупности их морфогенетических и физико-химических характеристик, а также ведущих процессов, протекающих в них. Это, прежде всего, механический состав почв, наличие плотных генетических горизонтов, степень покрытия поверхности почв растительностью, задернованность поверхностных горизонтов, содержание гумуса, наличие в профиле, особенно в поверхностных горизонтах, поглощенных катионов, прочность почвенной структуры, увлажнения (тип водного режима). Почвенный покров в районе месторождения обладает, преимущественно, слабой и удовлетворительной устойчивостью техногенным механическим воздействиям.

При разработке месторождения очень сильные механические нарушения с полным уничтожением почвенного покрова и подстилающих пород будут наблюдаться на вскрытой площади размещения производственных объектов. Размещение вскрышных пород предусматривается на внешних отвалах.

На участках, прилегающих к карьерам и отвалам, могут наблюдаться механически нарушения грунта менее сильной интенсивности. Они будут связаны, преимущественно, с проездами большегрузной техники.

4.6.2 Дорожная дигрессия

Разработка месторождения будет сопровождаться усилением транспортных нагрузок на существующие дороги и накатыванием новых дорог. Транспортная (дорожная) дигрессия почв может рассматриваться как разновидность механических нарушений, сопровождающихся загрязнением почв токсикантами, поступающими с выхлопными газами.

При транспортном воздействии происходит линейное разрушение почвенных горизонтов, их распыление и уплотнение. Степень деформирования почвенного профиля находится в прямой зависимости от свойств генетических горизонтов и мощности нагрузки. При этом из почвенных свойств очень большое значение имеют

показатели механического состава, влажности, содержания водорастворимых солей и гумуса, задернованность горизонтов.

В результате дорожной дигрессии на нарушенных участках формируются почвы с измененными, по отношению к исходным, морфологическими и химическими свойствами. Разрушенная почвенная масса легко подвержена процессам дефляции. Выносимые с колеи дорог пылеватые частицы вместе с выбросами продуктов сгорания транспорта загрязняют прилегающие территории. Дорожная колея при достаточных уклонах местности может способствовать развитию линейной водной эрозии с образованием промоин и овражной сети.

На месторождении будет работать большегрузная автомобильная техника, поэтому при движении её вне дорог будут наблюдаться сильные нарушения почв. Для минимизации этого воздействия необходима строгая регламентация движения автотранспорта вне дорог. Для связи производственных площадок с отвалами пустых пород и существующими дорогами с твердым покрытием необходимо сооружение подъездных путей с твердым покрытием. При строгом соблюдении природоохранных мероприятий, строгой регламентации движения автотранспорта, влияние дорожной дигрессии на состояние почв влияние транспортного воздействия может быть сведено к минимуму.

4.6.3 Ветровая и водная эрозия

Уничтожение растительности И разрушение естественного сложения поверхностных горизонтов почв при механических нарушениях может вызвать усиление поверхностного стока вод и активизировать дефляционные процессы.

С нарушенных поверхностей, в районах активной эоловой деятельности, будет происходит вынос тонкодисперсных частиц, а также мелких кристаллов солей. Степень устойчивости почв к дефляции возрастает по мере утяжеления их механического состава. Интенсивность проявления дефляционных процессов зависит от степени увлажнения и состояния нарушенности поверхностных горизонтов почв, а также определяется погодными условиями, сезоном года, ветровой активностью и степенью нарушенности почв.

Выносимые с нарушенных поверхностей (борта добывающего карьера, отвалы пустых пород, склады рудного материала, колеи грунтовые дорог) пыль, песок, мелкие кристаллы солей, а также продукты сгорания двигателей, будут осаждаться на прилегающих территориях. Запыление поверхности почв и загрязнение продуктами сгорания будут ухудшать качество почв и могут привести к их вторичному засолению.

минимизации воздействия этого фактора следует предусмотреть Для проведение мероприятий по пылеподавлению и снижению негативного воздействия дефляционных процессов.

Учитывая, что при освоении месторождения предусмотрены ограничение проезда транспорта по бездорожью, мероприятия по пылеподавлению, использование в работе технически исправного автотранспорта и высококачественных горючесмазочных материалов с низким содержанием токсичных компонентов, а также в связи с хорошей рассеивающей способностью атмосферы, воздействие на почвеннорастительный покров прилегающих территорий будет незначительным.

4.6.4 Загрязнение почв отходами производства

Характер загрязнения почв определяется видами работ, которые будут проводиться на месторождении. В период эксплуатации месторождения возможно загрязнение почв бытовыми и производственными отходами, горюче-смазочными материалами в случаях их утечки при заправке и работе автотракторной техники, продуктами сгорания двигателей, запыление почв, загрязнение золотоносными рудами.

При работе автотракторной техники потенциальными источниками загрязнения могут быть утечки и разливы горюче-смазочных материалов, и выбросы отработанных газов. При этом может происходить комплексное загрязнение почв нефтепродуктами, тяжелыми металлами и другими ингредиентами.

Почвы по степени загрязнения, согласно ГОСТ 17.4.3.06-86. Общие требования к классификации почв по влиянию на них химических загрязняющих веществ, подразделяются:

- сильнозагрязненные почвы, содержание загрязняющих веществ в которых в несколько раз превышает ПДК;
- среднезагрязненные почвы, в которых установлено превышение ПДК без видимых изменений в свойствах почв;
- слабозагрязненные почвы, содержание химических веществ в которых не превышает ПДК, но выше естественного фона;
- незагрязненные почвы, характеризующиеся фоновым содержанием загрязняющих веществ.

Для устранения этих воздействий необходимо организовать контроль за техническим состоянием автотракторной техники, заправку и обслуживание её проводить в строго отведенных местах с организацией сбора и утилизации отработанных материалов.

При проведении работ в местах добычи и открытого хранения пустых пород возможно поступление материала (пылеватые частицы) в атмосферный воздух с последующим выпадением ингредиентов на поверхность почв на прилегающих территориях. Рассеивание пылеватых частиц будет происходить на значительной по площади территории, и существенного воздействия на свойства почв не будет оказывать.

При правильно организованном, предусмотренном проектом, техническом обслуживании оборудования и автотранспорта, при соблюдении технологического процесса добычи руд загрязнение почв отходами производства и сопутствующими токсичными химическими веществами будет незначительным.

после завершения функционирования карьеры ИХ будут рекультивированы, то загрязняющее воздействие на ОС останется на том же существующем допустимом уровне и принятие дополнительных мер по его снижению не требуется.

В процессе рекультивации нарушенных земель выполняется определенный объем работ, связанных с восстановлением земной поверхности - рельефа местности, почвенного и растительного покрова.

Общее воздействие намечаемой деятельности на почвенный покров и земельные ресурсы оценивается как допустимое.

4.7 Воды (в том числе гидроморфологические изменения, количество и качество вод)

В 8 километрах восточнее границы участка Берсуат начинается постоянная часть русла реки Берсуат, которая имеет притоки Былкылдак (на севере) и Баскарасу (на юге). Расстояние от границы участка Берсуат до последних, соответственно, 5,47 и 1,21 км.

В зимнее время на неглубоких плесах и перекатах реки промерзают до дна, в среднем толщина льда достигает 1,0-1,2 м. Весеннее половодье начинается в апреле и завершается по истечению 25-30 дней. Высота подъема уровня воды в реках весной в среднем составляет 1,5-2,0 м. Питание рек происходит, в основном, за счет дождевых и талых вод, частично - за счет подземного стока.

В конце июня месяца поверхностный сток рек прекращается, перекаты пересыхают, минимальный расход равен нулю и относится к 99% обеспеченности. Минерализация воды в реках в период половодья не превышает 0,9 г/л. В период отсутствия поверхностного стока (июль-март месяцы), когда реки подпитываются разгружающимися в пойме трещинными водами палеозойского комплекса, минерализация воды достигает 1,4-1,7 г/л (р. Шортанды), 6,4-8,6 г/л (р. Тобол) и контролируется минерализацией подземных вод.

Запасы подземных вод пополняются, главным образом, за счет атмосферных осадков. Величина восполнения в многолетнем ряду лет зависит от величины весенне-зимних осадков и частоты ливней. Маловодные годы повторяются в среднем с периодичностью раз в 4 года с аномальной продолжительностью до 5 лет подряд раз в 50 лет.

Гидрогеологические условия освоения месторождений требуют предварительного осушения обводнённой толщи с глубин в среднем - с 16,0 м. Подземные воды безнапорные.

Временные водотоки формируются, как правило, в период весеннего снеготаяния, а иногда и летних ливневых дождей.

В районе и на участке месторождения основными коллекторами подземных вод являются четвертичные аллювиальные отложения, зоны открытой трещиноватости палеозойских скальных пород и их коры выветривания.

Исходя из сложившихся условий, водопритоки в карьер формируются за счет подземных во и атмосферных осадков.

4.8 Атмосферный воздух

Основными источниками выбросов являются буровые, взрывные, выемочнопогрузочные, статическое хранение материалов на отвалах и складах, так же от сжигания топлива в двигателях самосвалов, бульдозеров и дизельных генераторах.

Залповые выбросы, с учетом характеристик проводимых работ, предусмотрены при проведении взрывных работ.

При проведении расчетов рассеивания превышения ПДКмр на внешней границе СЗЗ и за ее пределами не превышают 1,0 ПДК.

Аварийные выбросы, обусловленные нарушением технологии работ, не прогнозируются.

Соблюдение регламента работ, техники безопасности проведение природоохранных мероприятий, сведут к минимуму воздействие промышленной разработки месторождения на атмосферный воздух.

4.9 Сопротивляемость к изменению климата экологических и социально-экономических систем

Наиболее явным положительным воздействием при промышленной разработке является добавление еще некоторого количества рабочих мест в данном районе. Для проведения работ будут привлечены дополнительные люди из числа местного населения.

Увеличение количества рабочих мест и сопутствующее этому повышение личных доходов персонала, занятого в деятельности предприятия, будут неизбежно сопровождаться мероприятиями по улучшению социально-бытовых условий проживания, активизацией сферы обслуживания.

Большое значение в решении проблем с безработицей будет иметь создание новых рабочих мест за счет обеспечения заказами местных организаций, участвующих в деятельности предприятия.

4.10 Материальные активы

Разработку золотоносного месторождения Атыгай, участок Берсуат предусматривается проводить 1 год -2029 г.

В соответствии с заданием на проектирование объемы добычи руды приняты следующими: на 2029 год – 26,094 тыс.тонн.

Суммарный коэффициент вскрыши составляет 47,32 м.куб/т.

Всего, для добычи запасов в количестве 13 тонн (с учетом потерь и разубоживания) необходимо попутно удалить 1,2 млн.м.куб вскрышных пород.

Отвал вскрышных пород формируется в два яруса высотой до 20 метров.

Емкость рудного склада принимается равной объему добычи за 1 месяц. Оперативная ёмкость склада — 10 тыс. тонн.

Руда располагается штабелями высотой 3 метра. Параметры склада предусматривают необходимой ширины проезды между штабелями для работы погрузочно-разгрузочной техники и автосамосвалов.

Принятые в проекте варианты складирования руды на рудных складах и формирования отвалов позволяют осуществлять добычу руд в течение 1 года.

4.11 Объекты историко-культурного наследия (в том числе архитектурные и археологические)

На основании изучения результатов предшествующих археологических изысканий, в районе размещения предприятия по добыче золотосных руд не отмечаются объекты археологического, архитектурного и этнографического характера.

На территории месторождения не встречаются объекты, занесённые в Государственный список памятников истории и культуры по Костанайской области. Следовательно, негативного воздействия на памятники истории и культуры не ожидается. Научное заключение, проведенное ТОО «Центр Археологических изысканий», на проведение научно-исследовательских работ по выявлению объектов историко-культурного наследия на участке Берсуат, приведено в приложении 16.

Участки недр и земная поверхность, на которых будут проводиться добычные работы, не представляет особую экологическую, научную, культурную и иную

ценность и не является охраняемой природной территорией с правовым режимом особой охраны и регулируемым режимом хозяйственной деятельности для сохранения объектов природно-заповедного фонда.

4.12 Ландшафты

Ландшафт географический – относительно однородный участок географической оболочки, отличающийся закономерным сочетанием её компонентов (рельефа, климата, растительности и др.) и морфологических частей (фаций, урочищ, местностей), а также особенностями сочетаний и характером взаимосвязей с более территориальными единицами. Географические ландшафты подразделить на 3 категории: природные, антропогенные и техногенные.

Антропогенные ландшафты включают посевы, молодые (до 5 лет) и старые (более 5 лет) пашни, пастбища, заросшие водоёмы и т.д. Техногенные ландшафты представлены карьерами, отвалами пород и техногенных минеральных образований, насыпными полотнами дорог, трубопроводами, населёнными пунктами и объектами инфраструктур. Природные ландшафты подразделяются на два вида: слабоизменённые, 2 - модифицированные.

Эколого-ландшафтная ситуация в рассматриваемом районе определяется сочетанием природных, антропогенных и техногенных ландшафтов. Для природных ландшафтов рассматриваемого района характерно засоление поверхностного слоя в результате испарения воды. В процессе галогенеза происходит накопление тяжёлых микроэлементов (Mo, Cu, Pb, Zn, Ag, W и др.).

В соответствии с требованиями О недрах и недропользовании Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI ЗРК., Экологическим кодексом Республики Казахстан, другими нормативными документами, при прекращении работ по недропользованию, все производственные объекты и земельные участки должны быть приведены в состояние, обеспечивающее безопасность жизни, здоровья населения и охрану окружающей среды.

Предприятием разработан план ликвидации месторождения, где отражены методы ликвидации и рекультивации последствий деятельности предприятия.

На территории месторождения нет живописных скал, водопадов, озер, ценных пород деревьев и других «памятников» природы, представляющих историческую, эстетическую, научную и культурную ценность. Негативного влияния на ландшафт территория предприятия не оказывает.

5. ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ

Инструкция по организации и проведению экологической оценки (Утверждена приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280) определяет порядок выявления возможных существенных воздействий намечаемой деятельности в рамках оценки воздействия на окружающую среду на окружающую среду в пунктах 25, 26.

Если воздействие, указанное в пункте 25 настоящей Инструкции, признано возможным приводится краткое описание возможного воздействия.

При воздействии, указанные в пункте 25 настоящей Инструкции, признано невозможным указывается причина отсутствия такого воздействия.

Характеристика возможных форм негативного и положительного воздействий на окружающую среду:

- 1) не осуществляется в Каспийском море (в том числе в заповедной зоне), на особо охраняемых природных территориях, в их охранных зонах, на землях оздоровительного, рекреационного и историко-культурного назначения; в пределах природных ареалов редких и находящихся под угрозой исчезновения видов животных и растений; на участках размещения элементов экологической сети, связанных с системой особо охраняемых природных территорий; на территории (акватории), на которой компонентам природной среды нанесен экологический ущерб; на территории (акватории), на которой выявлены исторические загрязнения; в черте населенного пункта или его пригородной зоны; на территории с чрезвычайной экологической ситуацией или в зоне экологического бедствия;
- не оказывает косвенное воздействие на состояние земель, ареалов, объектов, указанных в подпункте 1) настоящего пункта;
- приводит к изменениям рельефа местности, но не приводит к истощению, опустыниванию, водной и ветровой эрозии, селям, подтоплению, заболачиванию, вторичному засолению, иссушению, уплотнению, другим процессам нарушения почв, повлиять на состояние водных объектов;
- 4) не включает лесопользование, использование нелесной растительности, специальное водопользование, пользование животным миром, использование невозобновляемых или дефицитных природных ресурсов, в том числе дефицитных для рассматриваемой территории;
- 5) связана производством, использованием, транспортировкой или обработкой веществ или материалов, способных нанести вред здоровью человека, окружающей среде или вызвать необходимость оценки действительных или предполагаемых рисков для окружающей среды или здоровья человека;
- не приводит к образованию опасных отходов производства и (или) 6) потребления;
- не осуществляет выбросы загрязняющих (в том числе токсичных, 7) ядовитых или иных опасных) веществ в атмосферу, которые могут привести к нарушению экологических нормативов или целевых показателей атмосферного воздуха, а до их утверждения – гигиенических нормативов;
- не является источником физических воздействий на природную среду: ионизирующего излучения, напряженности электромагнитных полей, световой или тепловой энергии, иных физических воздействий на компоненты природной среды; оказывает незначительное воздействие шума и вибрации на компоненты природной среды;

- 9) создает риски загрязнения земель или водных объектов (поверхностных и подземных) в результате попадания в них загрязняющих веществ;
- 10) не приводит к возникновению аварий и инцидентов, способных оказать воздействие на окружающую среду и здоровье человека;
- 11) не приводит к экологически обусловленным изменениям демографической ситуации, рынка труда, условий проживания населения и его деятельности, включая традиционные народные промыслы;
- 12) не повлечет строительство или обустройство других объектов (трубопроводов, дорог, линий связи, иных объектов), способных оказать воздействие на окружающую среду;
- 13) Не оказывает потенциальные кумулятивные воздействия на окружающую среду вместе с иной деятельностью, осуществляемой или планируемой на данной территории;
- 14) Не оказывает воздействие на объекты, имеющие особое экологическое, научное, историко-культурное, эстетическое рекреационное или значение, расположенные особо охраняемых природных территорий, оздоровительного, рекреационного и историко-культурного назначения отнесенные к экологической сети, связанной с особо охраняемыми природными территориями, и объектам историко-культурного наследия;
- 15) не оказывает воздействие на компоненты природной среды, важные для ее состояния или чувствительные к воздействиям вследствие их экологической взаимосвязи с другими компонентами (например, водно-болотные угодья, водотоки или другие водные объекты, горы, леса);
- 16) не оказывает воздействие на места, используемые (занятые) охраняемыми, ценными или чувствительными к воздействиям видами растений или животных (а именно, места произрастания, размножения, обитания, гнездования, добычи корма, отдыха, зимовки, концентрации, миграции);
- 17) не оказывает воздействие на маршруты или объекты, используемые людьми для посещения мест отдыха или иных мест;
- 18) не оказывает воздействие на транспортные маршруты, подверженные рискам возникновения заторов или создающие экологические проблемы;
- 19) не оказывает воздействие на территории или объекты, имеющие историческую или культурную ценность (включая объекты, не признанные в установленном порядке объектами историко-культурного наследия);
- 20) не осуществляется на неосвоенной территории и повлечет за собой застройку (использование) незастроенных (неиспользуемых) земель;
- 21) не оказывает воздействие на земельные участки или недвижимое имущество других лиц;
 - 22) не оказывает воздействие на населенные или застроенные территории;
- 23) не оказывает воздействие на объекты, чувствительные к воздействиям (например, больницы, школы, культовые объекты, объекты, общедоступные для населения);
- 24) не оказывает воздействие на территории с ценными, высококачественными или ограниченными природными ресурсами, (например, с подземными водами, поверхностными водными объектами, лесами, участками, сельскохозяйственными угодьями, рыбохозяйственными водоемами, местами, пригодными для туризма, полезными ископаемыми);
- 25) не оказывает воздействие на участки, пострадавшие от экологического ущерба, подвергшиеся сверхнормативному загрязнению или иным негативным Проектная компания "АНТАЛ"

воздействиям, повлекшим нарушение экологических нормативов качества окружающей среды;

- 26) не создает или усиливает экологические проблемы под влиянием землетрясений, просадок грунта, оползней, эрозий, наводнений, также экстремальных неблагоприятных ИЛИ климатических условий (например, температурных инверсий, туманов, сильных ветров);
- перечисленные факторы воздействия на окружающую среду не требуют 27) изучения.

Воздействие на окружающую среду признается несущественным:

- не приведет к деградации экологических систем, истощению природных ресурсов, включая дефицитные и уникальные природные ресурсы;
- не приведет к нарушению экологических нормативов качества окружающей среды;
- не приведет к ухудшению условий проживания людей и их деятельности, включая: состояние окружающей среды, влияющей на здоровье людей; посещение мест отдыха, туризма, культовых сооружений и иных объектов; заготовку природных использование транспортных и других объектов; осуществление населением сельскохозяйственной деятельности, народных промыслов или иной деятельности.

ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ

6.1. Источники выбросов

В разделе учтены источники выбросов только от горных работ, которые непосредственно вовлечены в процесс разработки месторождения. В данном проекте скорректировали только объемы выбросов в соответствии с календарным графиком работ предприятия. Проектом предусматривается отработка золотосодержащих руд открытым способом (2029 г.).

При эксплуатации месторождения основными источниками выбросов являются буровые, взрывные, выемочно-погрузочные, транспортировка, статическое хранение материалов на отвалах и складах, так же от сжигания топлива в двигателях самосвалов, бульдозеров и дизельных генераторах, и осветительных мачтах.

Перечень источников выбросов вредных веществ в атмосферу представлены в таблице 6.1.

Таблица 6.1 – Источники выбросов вредных веществ в атмосферу

Объект	№ИВ	Источник выброса
Дизельные генераторы буровых станков	0001	Дизельные генераторы буровых станков
	0002	Осветительная мачта
Электроснабжение	0003	Осветительная мачта
Электроснаожение	0004	Передвижная электростанция
	0005	Передвижная электростанция
Карьер	6001	Снятие ПРС и погрузка в самосвалы
Склад ПРС	6002	Хранение ПРС
	6003	Буровые работы
Карьер	6004	Взрывные работы
	6005	Выемочно-погрузочные работы
	6008	Погрузочно-разгрузочные работы
	6013	Автотранспортные работы
	6011	Хранение руды
Рудный склад	6007	Разгрузочные работы на рудном складе
	6010	Бульдозерные работы на рудном складе
	6012	Хранение вскрышной породы
Отвал вскрышных пород	6006	Разгрузочные работы на отвале вскрышных пород
	6009	Бульдозерные работы на отвале

Основными источниками загрязнения атмосферы на период эксплуатации на территории месторождения являются:

Организованные источники выбросов

<u>Источник 0001 – Дизельные генераторы буровых станков.</u> Буровые станки оборудованы дизельными генераторами. Расход дизельного топлива для генераторов буровых станков -108 т/год (42,89 кг/час). Время работы -2518 ч/год. Загрязняющими веществами являются: азота диоксид, азота оксид, углерод оксид, сажа, сера диоксид, акролеин, формальдегид, алканы С₁₂-С₁₉ и сероводород.

Электроснабжение

Источники 0002,0003 – Осветительная мачта типа Atlas Copco QLT H50. Для освещения района проведения работ карьера, складов и отвала применяются

мобильные передвижные дизельные осветительные мачты Atlas Copco QLT H50. Передвижные дизельные осветительные мачты типа Atlas Copco QLT H50, оснащенные четырьмя прожекторами с металлогалогенными лампами мощностью 1000 Вт каждая. Расход дизельного топлива составляет — 102 л/час. Годовой расход дизельного топлива составляет — 286,3 т/год. Время работы — 3650 ч/год. Загрязняющими веществами являются азот диоксид, азот оксид, углерод, сера диоксид, углерод оксид, бенз/а/пирен, формальдегид, алканы C₁₂-C₁₉.

<u>Источники 0004,0005 – ДЭС ЭД-40-Т400-1РПМ11.</u> Электроснабжение насосов карьера осуществляется от мобильной дизельной электростанции типа ЭД-40-Т400-1РПМ11 мощностью 40 кВт или аналогичной, располагаемой рядом с насосом. Расход топлива составляет 14,3 л/час, или 80,3 т в год за период эксплуатации. Время работы дизельгенератора — 7300 ч/год. При работе дизель-генераторов происходит выброс азота диоксида, азота оксида, углерод, серы диоксида, углерода оксида, бенз/а/пирена, формальдегида, алканов C_{12} - C_{19} .

Неорганизованные источники выбросов *Карьер Берсуат*

<u>Источник 6001 — Снятие ПРС.</u> Потенциально плодородный слой почвы (ПРС) снимается до начала горных работ. Общий объем снятия ПРС — 61,3 тыс.м³ (67430 тонн). Снятие ПРС предусмотрено при помощи бульдозера. Производительность бульдозера на снятии ПРС — 150 т/час. Время работы — 450 ч/год. Погрузка ПРС в автосамосвалы предусмотрена экскаватором с производительностью 150 т/час. Загрязняющим веществом является пыль неорганическая 70-20% SiO₂.

<u>Источник 6002 — Склад хранения ПРС.</u> Потенциально-растительный слой, ранее снятый с участков работ, размещён на временном складе ПРС. Высота склада ПРС — 10 м. Общий объём хранения ПРС — 61300 м³. Площадь пыления склада в плане — 6130 м². Время хранения — 8760 ч/год. На складе применяется пылеподавление водой. Загрязняющим веществом является пыль неорганическая 70-20% SiO_2 .

<u>Источник 6003 – Буровые работы</u>. Буровые работы осуществляются буровыми станками ROC L8 mk1 ударно-вращательного бурения производительностью не менее 14,4 м/час и диаметром буровой коронки 125 мм в количестве 1 штука. Время работы станков – 2518 ч/год. Бурение производится с обязательным пылеподавлением, путем автоматизированной подачи водовоздушной смеси в забой скважины. Проведен расчет выбросов при буровых работах. Загрязняющим веществом является пыль неорганическая 70-20% SiO₂.

<u>Источник 6004 — Взрывные работы.</u> После предварительного бурения скважин их заряжают BB и проводят взрывные работы. Для взрывания сухих скважин используется взрывчатое вещество ANFO, для обводненных Powergel 650. Взрывание скважин короткозамедленное, с применением неэлектрической системы взрывания EXEL. Периодичность взрывов — 52 раза в год (каждые 7 суток). Время взрывов — 17 ч/год (20 мин. * 52 раза / 60 мин). Расход BB — 201,18 т/год (0,325 т/1 раз) (в случае производственной необходимости может быть использован иной тип BB и марка бурового станка). Объём взорванной горной массы — 309814 м^3 /год (501 м 3 /1 раз). Загрязнение атмосферного воздуха при взрывных работах происходит за счет

выделения вредных веществ из пылегазового облака и выделения газов из взорванной горной массы. Загрязняющими веществами является диоксид азота, оксид азота, оксид углерода и пыль неорганическая 20 -70% SiO₂.

<u>Источник 6005 – Выемочно-погрузочные работы.</u> На участке разработки месторождения экскавируются вскрышные породы, балансовая и забалансовая руда. Для выемочно-погрузочных работ на месторождении рациональным является использование экскаваторов типа HITACHI ZX 470 (емкость ковша 3 м³), HITACHI ZX 450 LD (емкость ковша 2,6 м³) с прямой и обратной лопатами. Количество вскрыши -1234,822 тыс.м 3 /год =2840090 тонн. Время работы -2270 ч/год. Производительность экскаваторов по вскрыше – 1251,2 т/час. Количество руды – 13047 м^3 (26094 тонн). Время работы – 57 ч/год. Производительность экскаваторов по руде – 508 т/час. Для снижения пыления при выемочно-погрузочных работах производится пылеподавления, ДЛЯ этих пелей будет использоваться поливооросительная машина с эффективностью 85%. Загрязняющими веществами являются: марганец и его соединения, медь (ІІ) сульфит, хром, цинк оксид, взвешенные вещества, пыль неорганическая 70-20% SiO₂.

Источник 6006 – Разгрузочные работы на отвале вскрышных пород. Количество вскрышной породы, поступающей на отвалы, согласно плану горных работ -1234,822 тыс.м³/год (2840090 тонн). Для снижения пыления при разгрузочных работах производится пылеподавления, для этих целей будет использоваться поливооросительная машина с эффективностью 85%. Загрязняющим веществом является пыль неорганическая 70-20% SiO₂.

<u>Источник 6007 – Разгрузочные работы на рудном складе.</u> Количество руды, поступающей на склад, согласно плану горных работ – 13047 м³ (26094 тонн). Для снижения пыления при разгрузочных работах производится пылеподавления, для этих целей будет использоваться поливооросительная машина с эффективностью 85%. Загрязняющими веществами являются: марганец и его соединения, медь (II) сульфит, хром, цинк оксид, взвешенные вещества.

Источник 6008 – Погрузочно-разгрузочные работы. Проведен расчет выбросов при сжигании топлива при работе техники. В карьере для ведения добычных работ используются экскаваторы (3 шт.) и бульдозер (2 шт.). Время работы – 7397 ч/год (672,5 смен в год * 11 часов в смену). Загрязняющими веществами являются: азота диоксида, азот оксида, углерод, сажа, углерод оксид, керосин.

Источник 6009 – Бульдозерные работы на отвале. На карьере принят бульдозерный способ отвалообразования. Формирование отвалов при бульдозерном отвалообразовании осуществляют периферийным способом. перерабатываемой вскрышной породы бульдозерами в год – 1234,822 тыс.м3/год (2840090 тонн). Загрязняющим веществом является пыль неорганическая 70-20% SiO₂.

Источник 6010 – Бульдозерные работы на рудном складе. Количество перерабатываемой руды бульдозером в год -13047 м 3 (26094 тонн). Загрязняющими веществами являются: марганец и его соединения, медь (II) сульфит, хром, цинк оксид, взвешенные вещества.

<u>Источник 6011 — Рудный склад.</u> Площадь склада — 2700 м 2 . Время хранения — 8760 ч/год. На складе применяется пылеподавление водой. Загрязняющими веществами являются: марганец и его соединения, медь (II) сульфит, хром, цинк оксид, взвешенные вещества.

<u>Источник 6012 – Отвал вскрышных пород.</u> На конец отработки месторождении в соответствии с настоящим планом горных работ площадь отвала будет составлять — 74300 м^2 . Время хранения — 8760 ч/год. Периодичность пылеподавления на 2 раза в сутки, в теплое время года. Эффективность 85%. Загрязняющим веществом является пыль неорганическая 70-20% SiO₂.

<u>Источник 6013 — Автотранспортные работы.</u> Перевозка горных пород производится автосамосвалом типа БелАЗ 7540В грузоподъемностью 30 т. Количество работающих в карьере автосамосвалов — 4 шт. Средняя протяжённость одной ходки 1,6 км. Транспорт работает на дизельном топливе и перевозит весь перечень экскавируемых пород. Загрязняющим веществом является пыль неорганическая 70-20% SiO_2 , азота диоксида, азот оксида, углерод, сажа, сера диоксид, углерод оксид, бенз/а/пирен, керосин.

Количество эмиссий в окружающую среду на период проведения эксплуатации месторождения ориентировочно составит: **166.72054** т/год.

Количество источников выбросов на месторождении, задействованных данным проектом, составит **18** единиц, из них **5** организованных и **13** – неорганизованных источников. В атмосферу будут выбрасываться загрязняющие вещества **15** наименований 1-4 класса опасности, такие как: марганец и его соединения, медь (II) сульфит, свинец и его неорганические соединения, хром, цинка оксид, азота (IV) диоксид, азот (II) оксид, углерод, сера диоксид, сероводород, углерод оксид, акролеин, формальдегид, алканы C12-19, взвешенные частицы, пыль неорганическая, содержащая двуокись кремния в %: 70-20 %.

Основным загрязняющим веществом является пыль неорганическая.

Количественные и качественные характеристики выбросов в атмосферу от источников выбросов загрязняющих веществ определены теоретическим методом согласно методикам расчета выбросов вредных веществ в атмосферу, утвержденных в РК.

Теоретический расчет выбросов загрязняющих веществ от источников выбросов на период эксплуатации представлен в Приложении 10.

Перечень загрязняющих веществ приведен в таблице 6.2. Параметры выбросов приведены в таблице 6.3.

Передвижные источники

Для выполнения различных работ по добыче, и транспортировке руд применяется автотранспорт и другая техника, работающая за счет сжигания дизельного топлива в двигателях внутреннего сгорания и являющаяся источником выброса загрязняющих веществ в атмосферный воздух.

Согласно п.17 статьи 202 Экологического Кодекса РК, нормативы допустимых выбросов для передвижных источников не устанавливаются.

Объемы топлива (ДТ), сжигаемого передвижными источниками, ориентировочно составят: **594,701** т/год.

ЭРА v3.0 ТОО "АНТАЛ"

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Код	наиская оол. жетикарински, план горных Наименование	ЭНК,	пдк	ПДК	TITELL COT (E	Класс	Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь-	среднесу-	обув,	опас-	с учетом	с учетом	м/энк
	2007	,	ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год	,
			вая, мг/м3	мг/м3	,	3B		(M)	
1	2	3	4	5	6	7	8	9	10
0143	Марганец и его соединения /в		0.01	0.001		2	0.12669	0.3375	337.5
	пересчете на марганца (IV) оксид/								
	(327)								
0145	Медь (II) сульфит (1:1) /в		0.003	0.001		2	0.05358	0.14289	142.89
	пересчете на медь/ (Медь								
	сернистая) (331)								
0184	Свинец и его неорганические		0.001	0.0003		1	0.02556	0.0712	237.333333
	соединения /в пересчете на								
	свинец/ (513)								
0203	Хром /в пересчете на хром (VI)			0.0015		1	0.04061	0.10822	72.1466667
	оксид/ (Хром шестивалентный) (
	647)								
0207	Цинк оксид /в пересчете на цинк/			0.05		3	0.03817	0.10179	2.0358
	(662)								
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	2.3562	26.4119	660.2975
	диоксид) (4)								
	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	2.2015		
0328	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.265	4.202	84.04
	583)								
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	0.5332	8.404	168.08
	Сернистый газ, Сера (IV) оксид) (
	516)								
0337	Углерод оксид (Окись углерода,		5	3		4	2.4156	22.6458	7.5486
	Угарный газ) (584)					_			
	Проп-2-ен-1-аль (Акролеин,		0.03	0.01		2	0.0634	1.0052	100.52
	Акрилальдегид) (474)								
	Формальдегид (Метаналь) (609)		0.05	0.01		2	0.0634		
2754	Углеводороды предельные C12-C19 (1			4	0.6344	10.0914	10.0914
	в пересчете на С) (10)								
	Взвешенные частицы (116)		0.5	0.15		3	0.7249		12.854
2908	Пыль неорганическая, содержащая		0.3	0.1		3	7.8303	57.25684	572.5684

Таблица 6.2. ЭРА v3.0 ТОО "АНТАЛ"

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Костанайская обл. Жетикарински, План горных работ по добыче руды с месторождения Атыгай (Берсуат) без авто

	nanekan oon: жетикаринеки, план төрных	1	- 1011	<u>1</u> -	- , .	-1 -0 - /			
Код	Наименование	ЭНК,	ПДК	пдк		Класс	Выброс вещества	Выброс вещества	Значение
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	м/энк
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
	всего:						17.37251	166.72054	3058.56737

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

10001	апаис	лая оол. метикар	MINCKM,	Illian I.C	рных расот по досыче	: Руды	C MECTO	ромдепи.	IN WIDIT	in (Depcyar)					
		Источник выдел	ения	Число	Наименование	Номер	Высо	Диа-	Параме	гры газовозд.с	смеси	K	оординать	источника	
Про		загрязняющих вещ	еств	часов	источника выброса	источ	та	метр	на вых	оде из трубы п	ри		на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	симальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин.
TBO			чест-	В		СОВ	выбро					/1-го коні	ца лин.	/длина, ши	
			во,	году			COB,	M	ско-	объем на 1	тем-	/центра пл		площад	_
			шт.				M		рость	трубу, м3/с	пер.	ного источ		источ	
									M/C	100	oC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		l .		1	l		Площа	дка 1				l .	l		
003	3	Дизельные	1	2518	Труба	0001	3	0.1	4.5	0.035343	450	5421	8327	ĺ	
		генераторы													
		буровых													
		станков													
010)	Осветительная	1	3650	Труба	0002	2	0.1	4.75	0.0373065	450	5363	8817		
1		мачта													
1															
1															
1															

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

				_		не руды с месторождения А				1
Номер	Наименование	Вещество	ффеох	_	Код		Выброс з	отэшикнего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат		Наименование	1			
ника	установок,	рому	газо-		ще-	вещества				
выбро	тип и	произво-	очист	очистки/			r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	용	очистки%						тиже
	выбросов	очистка								RNH
										ндв
7	17	18	19	20	21	22	23	24	25	26
			1	<u> </u>	I.	Площадка 1	-			1
0001		1		İ	0301	Азота (IV) диоксид (0.1028	7703.097	3.2419	2029
0001					0001	Азота диоксид) (4)	0.1020	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.2123	2023
					0304	Азот (II) оксид (0.1339	10033.508	4.2227	2029
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.017	1273.858	0.536	2029
						Углерод черный) (583)				
					0330	Сера диоксид (0.034	2547.717	1.072	2029
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.0858	6429.238	2.7058	2029
						углерода, Угарный				
						газ) (584)				
					1301	Проп-2-ен-1-аль (0.004	299.731	0.126	2029
						Акролеин,				
						Акрилальдегид) (474)				
					1325	Формальдегид (0.004	299.731	0.126	2029
						Метаналь) (609)				
					2754	Углеводороды	0.041	3072.247	1.293	2029
						предельные С12-С19 (в				
						пересчете на С) (10)				
0002					0301	Азота (IV) диоксид (0.656	46568.793	8.589	2029
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.853	60553.629	11.1657	2029
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.109	7737.803	1.4315	2029

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

KOCI	анаис	ская оол. Жетикар	ински,	илан го	рных работ по добыче	руды	с место		IA ATHI	аи (Берсуат)					
		Источник выдел	тения	Число	Наименование	Номер	Высо	Диа-	Параме	тры газовозд.с	меси	K	оординать	ы источника	
Про		загрязняющих веш	еств	часов	источника выброса	источ	та	метр	на вых	оде из трубы п	ри		на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	ман	ссимальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин.
TBO			чест-	В		СОВ	выбро					/1-го коні	ца лин.	/длина, ши	трина
			во,	году			COB,	М	ско-	объем на 1	тем-	/центра пл	тошал-	площад	тного
			шт.	-110			M			трубу, м3/с	пер.	ного источ		источ	
									M/C	10-07	oC				
									, -			X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
_	-	3	+ -		9	, ·	Ŭ		10	++	16	10		10	10
010		0	1	2050	W	0003	2	0 1	4 75	0 0272065	450	E200	8037		
010)	Осветительная	1	3030	Труба	0003		0.1	4.75	0.0373065	450	5299	8037		
		мачта													
			1												

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер источ	Наименование	Вещество по кото-	Коэфф обесп	±	Код	Наименование	Выброс з	вагрязняющего	вещества	
ника	газоочистных установок,	рому	raso-	эксплуат степень	ще-	паименование вещества				-
выбро	установок,	произво-	очист	очистки/	'	Бещества	r/c	мг/нм3	т/год	Год
СОВ	мероприятия	дится	кой,	тах.степ			170	MI / IIMIS	1/10д	дос-
002	по сокращению	газо-	%	очистки%						тиже
	выбросов	очистка		0 1910 1101 0						Вин
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						Углерод черный) (583)				
					0330	Сера диоксид (0.219	15546.594	2.863	2029
						Ангидрид сернистый,	***			
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.547	38830.991	7.1575	2029
						углерода, Угарный				
						газ) (584)				
					1301	Проп-2-ен-1-аль (0.026	1845.714	0.3436	2029
						Акролеин,				
						Акрилальдегид) (474)				
					1325	Формальдегид (0.026	1845.714	0.3436	2029
						Метаналь) (609)				
					2754	Углеводороды	0.26	18457.144	3.4356	2029
						предельные С12-С19 (в				
						пересчете на С) (10)				
0003						Азота (IV) диоксид (0.656	46568.793	8.589	2029
						Азота диоксид) (4)				
						Азот (II) оксид (0.853	60553.629	11.1657	2029
						Азота оксид) (6)				
						Углерод (Сажа,	0.109	7737.803	1.4315	2029
						Углерод черный) (583)				
						Сера диоксид (0.219	15546.594	2.863	2029
						Ангидрид сернистый,				
						Сернистый газ, Сера (
					0007	IV) оксид) (516)	0 547	20020 201	7 1575	2000
			1		033/	Углерод оксид (Окись	0.547	38830.991	7.1575	2029

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

костанаиская обл. Жетикарински, шлан горных работ по добыче руды с месторождения Атыгаи (Берсуат)															
		Источник выдеј	ения	Число	Наименование	Номер	Высо	Диа-	Парамет	гры газовозд.с	смеси	K	оординать	источника	
Про		загрязняющих веш	еств	часов	источника выброса	источ	та	метр	на выхо	оде из трубы п	при		на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	симальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин.
TBO			чест-	В		COB	выбро					/1-го коні	ца лин.	/длина, ши	прина
			во,	году			COB,	M	ско-	объем на 1	тем-	/центра пл	пощад-	площад	отонд
			шт.				М		рость	трубу, м3/с	пер.	ного исто	иника	источ	ника
									M/C		οС				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
010		Передвижная ДЭС	1	. 7300	Труба	0004	2	0.1	4.7	0.0369138	450	5552	8695		

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер	Наименование	Вещество	Коэфф	±	Код		Выброс з	загрязняющего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат	ве-	Наименование				
ника	установок,	рому	газо-	степень	ще-	вещества				
выбро	тип и	произво-	очист	очистки/	ства		r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	용	очистки%						тиже
	выбросов	очистка								пия
										НДВ
7	17	18	19	2.0	21	22	23	24	25	26
				-		углерода, Угарный				
						газ) (584)				
					1301	Проп-2-ен-1-аль (0.026	1845.714	0.3436	2029
						Акролеин,	0.020	2010.721	0.0100	
						Акрилальдегид) (474)				
						Формальдегид (0.026	1845.714	0.3436	2029
						Метаналь) (609)				
						Углеводороды	0.26	18457.144	3.4356	2029
						предельные С12-С19 (в				
						пересчете на С) (10)				
0004					0301	- Азота (IV) диоксид (0.0917	6578.945	2.409	2029
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.1192	8551.911	3.1317	2029
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.015	1076.163	0.4015	2029
						Углерод черный) (583)				
					0330	Сера диоксид (0.0306	2195.373	0.803	2029
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.0764	5481.258	2.0075	2029
						углерода, Угарный				
						газ) (584)				
						Проп-2-ен-1-аль (0.0037	265.454	0.096	2029
						Акролеин,				
						Акрилальдегид) (474)			_	
1					1325	Формальдегид (0.0037	265.454	0.096	2029

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

KOCT	анаис	ckas oom, merukap	MHCKM,		рных работ по добыч			-	'IId'I'A KI	аи (версуат)					
		Источник выде.	ления	Число	Наименование	Номер	Высо	Диа-	Параме	тры газовозд.	смеси	K	Соординат	ы источника	a
Про		загрязняющих веш	цеств	часов	источника выброса	источ	та	метр	на вых	оде из трубы г	іри		на карте	е-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	ман	ксимальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин
TBO			чест-	В		СОВ	выбро					/1-го кон	ца лин.	/длина, ш	ирина
			во,	году			COB,	М	ско-	объем на 1	тем-	/центра па	пощад-	площа	дного
			шт.				M		рость	трубу, м3/с	пер.	ного исто	иника	исто	чника
									M/C		oC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
010		Передвижная	-	7300	Труба	0005	2	0.1	4.7	0.0369138	450	5394	8111		
		дэс													
001		Снятие ПРС		1063	Неорг. источник	6001	2				25	5221	8564	1	1
001				1 1003	пеорг. источник	3001					2.5	3321	0004	'	- -
l	1	Погрузка ПРС в	-	L [1	1				1	1	1	1

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер	Наименование	Вещество	Коэфф	±	Код		Выброс з	отэшикнгки	вещества	
источ	газоочистных	по кото-	обесп	эксплуат	ве-	Наименование				
ника	установок,	рому	газо-	степень	ще-	вещества				
выбро	тип и	произво-	очист	очистки/	ства		r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	용	очистки%						тиже
	выбросов	очистка								RNH
										ндв
7	17	18	19	20	21	22	23	24	25	26
						Метаналь) (609)				
						Углеводороды	0.0367	2633.013	0.9636	2029
						предельные С12-С19 (в				
						пересчете на С) (10)				
0005					0301	Азота (IV) диоксид (0.0917	6578.945	2.409	2029
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.1192	8551.911	3.1317	2029
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.015	1076.163	0.4015	2029
						Углерод черный) (583)				
					0330	Сера диоксид (0.0306	2195.373	0.803	2029
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.0764	5481.258	2.0075	2029
						углерода, Угарный				
						газ) (584)				
						Проп-2-ен-1-аль (0.0037	265.454	0.096	2029
						Акролеин,				
						Акрилальдегид) (474)				
						Формальдегид (0.0037	265.454	0.096	2029
						Метаналь) (609)		0.500 0.50		
					2754	Углеводороды	0.0367	2633.013	0.9636	2029
						предельные С12-С19 (в				
6001						пересчете на С) (10)	0 0005		0 00104	2000
6001					2908	Пыль неорганическая,	0.0225		0.02184	2029
						содержащая двуокись				

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

KOCT	анаис	кая обл. Жетикар	ински,	План го	рных работ по добыче		с место	рождени	ия Атыга	аи (Берсуат)					
		Источник выдел	пения	Число	Наименование	Номер	Высо	Диа-	Параме	тры газовозд.	смеси	K	Соординать	источника	L
Про		загрязняющих веш	цеств	часов	источника выброса	источ	та	метр	на вых	оде из трубы г	іри		на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	симальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин.
TBO			чест-	В		COB	выбро					/1-го кон	ца лин.	/длина, ши	ирина
			во,	году			COB,	М	ско-	объем на 1	тем-	/центра пл	пощад-	площа	цного
			шт.				М		рость	трубу, м3/с	пер.	ного исто		источ	ника
									M/C		oC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		автосамосвалы													
002		Склад хранения ПРС	1	. 8760	Неорг. источник	6002	2				25	5637	8448	1	1
003		Буровые работы	1	. 2518	Неорг. источник	6003	2				25	5357	8616	1	1

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Костана	ийская обл. Жетика	ринскй, Пј	тан горн	ых работ по	добыч	не руды с месторождения А	тыгай (Берсуат	!)		
Номер	Наименование	Вещество	ффеох	Средняя	Код		Выброс з	отещикнего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат	ве-	Наименование				
ника	установок,	рому	газо-	степень	ще-	вещества				
выбро	тип и	произво-	очист	очистки/	ства		r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	%	очистки%						тиже
	выбросов	очистка								пия
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
6002					2908	Пыль неорганическая,	0.0213		0.168	2029
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
6003					2908	Пыль неорганическая,	0.155		6.294	2029
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Кост	анайс	кая обл. Жетикар	инскй,	План го	рных работ по добыче		с местс	рождени	ия Атыга	ай (Берсуат)					
		Источник выдеј	пения	Число	Наименование	Номер	Высо	Диа-	Параме	тры газовозд.	смеси	K	Соординат	ы источника	ì
Про		загрязняющих веш	цеств	часов	источника выброса	источ	та	метр	на вых	оде из трубы г	іри		на карте	е-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	ман	ксимальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин.
TBO			чест-	В		СОВ	выбро					/1-го коні	ца лин.	/длина, ш	ирина
			во,	году			COB,	М	ско-	объем на 1	тем-	/центра пл	пощад-	площа,	дного
			шт.				M		рость	трубу, м3/с	пер.	ного источ	иника	источ	иника
									м/с		οС				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
004		Взрывные	1	. 17	Неорг. источник	6004	2				25	5484	8616	1	1
		работы			-										
														1	
005		Выемочно-	1	2270	Неорг. источник	6005	2				25	5370	8711	1	1
000	l	DDICMOAUO	1 1	/ U	TIEODI. MCIOAUNK	0000		1	1			55/5	0/11	1 1	1 -

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Костана	йская обл. Жетика	ринскй, Пл	іан горн	ых работ по	добыч	не руды с месторождения А	тыгай (Берсуат)		
Номер	Наименование	Вещество	Коэфф	Средняя	Код		Выброс з	отэшикнего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат	ве-	Наименование				
ника	установок,	рому	газо-	степень	ще-	вещества				
выбро	тип и	произво-	очист	очистки/	ства		r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	용	очистки%						тиже
	выбросов	очистка								пия
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
6004						Азота (IV) диоксид (0.758		1.174	2029
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.1232		0.191	2029
						Азота оксид) (6)				
					0337	Углерод оксид (Окись	1.083		1.61	2029
						углерода, Угарный				
						газ) (584)				
					2908	Пыль неорганическая,	0.855		1.268	2029
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)			0.05	
6005					0143	Марганец и его	0.07141		0.00792	2029

ЭРА v3.0 ТОО "АНТАЛ"
Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

$\overline{}$		Источник выдеј		Число	рных работ по добыче Наименование	Номер	Высо	Диа-		тры газовозд.с	меси	K	оорпинат	ы источника	
Ipo		загрязняющих веш			источника выброса	источ				гры газовозд.с оде из трубы п			-	-схеме, м	
	Цех	OGI PADITATIONAL BEIL	,0011	рабо-	вредных веществ	ника		метр устья		оде из труоы п ссимальной раз			па карте	CZCIAC, M	
рдс	цсл	Наименование	Коли-	ты	Бредими веществ	выбро	ника	трубы	Mar	нагрузке	ОВОИ	точечного	испон	2-110 1/2	онца лиі
гво		палменование	чест-	В		СОВ	выбро	труоы		nai pysice		/1-го конц		/длина, ши	
ььо						COB	_	М	ско-	объем на 1	тем-	/центра пл		площал	_
			во, Шт.	году			COB,			трубу, м3/с		ного источ		источ	
			шт.				IVI		м/с	трубу, мэ/с	пер. oC	HOTO MCTO	пика	источ	пика
									M/C		00	X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		погрузочные	7	3	0	,	0	,	10	11	12	13	1.1	13	10
		погрузочные работы вскрыши													
		Выемочно-	1	57											
		погрузочные	_	37											
		работы руды													
		рассты руды													
								ĺ		1				1	

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер	Наименование	Вещество	Коэфф	±	Код		Выброс з	вагрязняющего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат		Наименование			Т	
ника	установок,	рому	газо-		ще-	вещества	,	/ 2	,	_
выбро	тип и	произво-	очист	очистки/	ства		r/c	мг/нм3	т/год	Год
СОВ	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	%	очистки%						тиже
	выбросов	очистка								RNH
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						соединения /в				
						пересчете на марганца				
						(IV) оксид/ (327)				
					0145	Медь (II) сульфит (1:	0.0302		0.0034	2029
						1) /в пересчете на				
						медь/ (Медь				
						сернистая) (331)				
					0184	Свинец и его	0.0151		0.0017	2029
						неорганические				
						соединения /в				
						пересчете на свинец/				
					0203	Хром /в пересчете на	0.0229		0.00254	2029
					0203	хром /в пересчете на хром (VI) оксид/ (0.0229		0.00234	2023
						хром (VI) оксид, (Хром шестивалентный)				
						(647)				
					0207	Цинк оксид /в	0.02154		0.00239	2029
					0207	пересчете на цинк/ (0.02101		0.00233	2023
						662)				
					2902	Взвешенные частицы (0.40786		0.0452	2029
						116)				
					2908	Пыль неорганическая,	2.8		13.74	2029
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

		Источник выде:	ления	Число	Наименование	Номер	Высо	Диа-		гры газовозд.		K	оординать	ы источника	1
Про		загрязняющих веш	цеств	часов	источника выброса	источ	та	метр		оде из трубы г			на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	симальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин
TBO			чест-	В		COB	выбро					/1-го коні	ца лин.	/длина, ши	ирина
			во,	году			COB,	М	ско-	объем на 1	тем-	/центра пл	пощад-	площа	цного
			шт.				М		рость	трубу, м3/с	пер.	ного источ		источ	ника
									M/C		oC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
006		Разгрузочные работы на отвале вскрышных пород	1	. 4544	Неорг. источник	6006	2				25	5152	8311	1	1
007		Разгрузочные работы на рудном складу	1	. 174	Неорг. источник	6007	2				25	5589	8379	1	1

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Костана	ийская обл. Жетика	ринскй, Пл	тан горн	ых работ по	добыч	ие руды с месторождения А	тыгай (Берсуат)		
Номер	Наименование	Вещество	Ффеох	Средняя	Код		Выброс з	отаризняющего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат	ве-	Наименование				
ника	установок,	рому	газо-	степень	ще-	вещества				
выбро	тип и	произво-	очист	очистки/	ства		r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	%	очистки%						тиже
	выбросов	очистка								кин
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
6006					2908	Пыль неорганическая,	0.28		2.75	2029
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
6007					0143	Марганец и его	0.0042		0.00158	2029
						соединения /в				
						пересчете на марганца				
						(IV) оксид/ (327)				
		1			0145	Медь (II) сульфит (1:	0.00178		0.0007	2029
						1) /в пересчете на				
						медь/ (Медь				
						сернистая) (331)				
					0184	Свинец и его	0.00069		0.0003	2029

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

ROCT	анаис	Ray OUII. MeTHRap	ински,	IIJIAH I'C	рных работ по добыче	з руды	с место	рождени	ия Апыпс	яй (версуат)					
		Источник выдел	пения	Число	Наименование	Номер	Высо	Диа-	Параме	тры газовозд.	смеси	K	Соординать	ы источника	L
Про		загрязняющих вещ	еств	часов	источника выброса	источ	та	метр	на выхо	оде из трубы г	іри		на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	симальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин.
TBO			чест-	В		СОВ	выбро			1 0		/1-го коні	ца лин.	/длина, ш	ирина
			во,	году			COB,	М	ско-	объем на 1	тем-	/центра пл		площа	-
			шт.	1040			M		рость	трубу, м3/с	пер.	ного источ		источ	*
									M/C	-1-0-0,	oC				
									, -			X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			1		9	,	0	,	10	11	12	13	1.1	15	10
008		Погрузочно- разгрузочные работы экскаватора и бульдозера	1	. 7397	Неорг. источник	6008	2				25	5205	8243	1	1
006		Бульдозерные работы на отвале	1	4544	Неорг. источник	6009	2				25	5131	8600	1	1

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер	Наименование	Вещество	Коэфф	±	Код		Выброс з	загрязняющего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат	ве-	Наименование			1	
ника	установок,	рому	газо-		ще-	вещества				
выбро	тип и	произво-	очист	очистки/			r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	૾	очистки%						тиже
	выбросов	очистка								RNH
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						неорганические				
						соединения /в				
						пересчете на свинец/				
						(513)				
					0203	Хром /в пересчете на	0.00135		0.00051	2029
						хром (VI) оксид/ (
						Хром шестивалентный)				
						(647)				
					0207	Цинк оксид /в	0.00127		0.00048	2029
						пересчете на цинк/ (
						662)				
					2902	Взвешенные частицы (0.02431		0.00905	2029
						116)				
6008						Азота (IV) диоксид (0.2464		6.565	2029
						Азота диоксид) (4)				
						Азот (II) оксид (0.04		1.067	2029
						Азота оксид) (6)	0 000		1 00507	0000
						Углерод (Сажа,	0.039		1.03587	2029
						Углерод черный) (583)	0 271		0 005	2020
						Углерод оксид (Окись	0.371		9.885	2029
						углерода, Угарный				
						ras) (584)	0.3166		8.4315	2029
6009						Керосин (654*) Пыль неорганическая,	1.4		13.74	
0003					2300	содержащая двуокись	1.4		13.74	2029
						кремния в %: 70-20 (
						*				
						шамот, цемент, пыль				

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

KOCT	апаис	кая оол. жетикар	ински,		рных работ по добыче	= Руды	с место	рождени	AT ATMIC	аи (версуат)					
		Источник выде:	пения	Число	Наименование	Номер	Высо	Диа-	Параме	тры газовозд.	смеси	K	оординать	источника	
Про		загрязняющих веш	цеств	часов	источника выброса	источ	та	метр		оде из трубы г			на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	ман	ксимальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин.
TBO			чест-	В		СОВ	выбро					/1-го коні	ца лин.	/длина, ши	ирина
			во,	году			COB,	M	ско-	объем на 1	тем-	/центра пл	пощад-	площад	цного
			шт.				М		рость	трубу, м3/с	пер.	ного источ	иника	источ	ника
									M/C		oC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
007		Бульдозерные работы на рудном складе	1	. 174	Неорг. источник	6010	2				25	5705	8464	1	1

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер	Наименование	Вещество	Коэфф	±	Код		Выброс з	загрязняющего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат		Наименование			1	_
ника	установок,	рому	газо-		ще-	вещества	,		,	
выбро	тип и	произво-	очист	очистки/			r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	용	очистки%						тиже
	выбросов	очистка								RNH
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
6010					0143	Марганец и его	0.02108		0.003	202
0010					0110	соединения /в	0.02200			
						пересчете на марганца				
						(IV) оксид/ (327)				
					0145	Медь (II) сульфит (1:	0.0089		0.00129	202
						1) /в пересчете на				
						медь/ (Медь				
						сернистая) (331)				
					0184	Свинец и его	0.00347		0.0006	202
						неорганические				
						соединения /в				
						пересчете на свинец/				
						(513)				
					0203	Хром /в пересчете на	0.00676		0.00097	202
						хром (VI) оксид/ (
						Хром шестивалентный)				
						(647)				
					0207	Цинк оксид /в	0.00636		0.00092	202
						пересчете на цинк/ (

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Коста	анайс	ская обл. Жетикар	инскй,		рных работ по добыч					_					
		Источник выде:	ления	Число	Наименование	Номер	Высо	Диа-	Параме	тры газовозд.	смеси	K	Соординати	ы источника	a
Про		загрязняющих веш	цеств	часов	источника выброса	источ	та	метр		оде из трубы г			на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	ксимальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин
TBO			чест-	В		СОВ	выбро					/1-го кон	ца лин.	/длина, ш	ирина
			во,	году	•		COB,	M	ско-	объем на 1	тем-	/центра пл	пощад-	площа	дного
			шт.				M		рость	трубу, м3/с	пер.	ного источ	иника	NCTO	иника
									M/C		oC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
007		D	1	07.00		CO11	2				2.5	E C 1 C	0574	1	1
007		Рудный склад	_	8/60	Неорг. источник	6011					25	2010	8574	1	- -
006		Отвал	1	8760	Неорг. источник	6012	2				25	5157	8469	1	. 1
		вскрышных													

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер	Наименование	Вещество	Коэфф	±	Код		Выброс з	оперязняющего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат		Наименование			T	
ника	установок,	рому	газо-		ще-	вещества	- / -	/ 2	_ /	D
выбро	тип и	произво-	очист	очистки/			r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	%	очистки%						тиже
	выбросов	очистка								ния НДВ
7	17	18	19	20	21	22	23	24	25	26
						662)				
					2902	Взвешенные частицы (0.12143		0.01735	2029
						116)				
6011					0143	Марганец и его	0.03		0.325	2029
						соединения /в				
						пересчете на марганца				
					01.45	(IV) оксид/ (327)	0.0107		0 1075	0000
					0145	Медь (II) сульфит (1:	0.0127		0.1375	2029
						1) /в пересчете на медь/ (Медь				
						сернистая) (331)				
					0184	Свинец и его	0.0063		0.0686	2029
						неорганические				
						соединения /в				
						пересчете на свинец/				
						(513)				
					0203	Хром /в пересчете на	0.0096		0.1042	2029
						хром (VI) оксид/ (
						Хром шестивалентный)				
						(647)				
					0207	Цинк оксид /в	0.009		0.098	2029
						пересчете на цинк/ (
					0000	662)	0 1=10		1 0-0-	0000
					2902	Взвешенные частицы (0.1713		1.8565	2029
6010					0000	116)	0.07		1.00	0000
6012						Пыль неорганическая,	2.07		16.3	2029
			1			содержащая двуокись				

Таблица 6.3

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

KOCT	анайс				рных работ по добыч							1			
		Источник выде.		Число	Наименование	Номер	Высо	Диа-		гры газовозд.		K	-	источника	l
Про		загрязняющих веш	цеств	часов	источника выброса	источ	та	метр		оде из трубы г			на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	ссимальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного		2-го к	онца лин
TBO			чест-	В		COB	выбро					/1-го коні	ца лин.	/длина, ш	ирина
			BO,	году			COB,	М	CKO-	объем на 1	тем-	/центра па	пощад-	площа;	дного
			шт.				М		рость	трубу, м3/с	пер.	ного исто	иника	источ	иника
									M/C		oC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		пород													
009		Автотранспортн	1	7920	Неорг. источник	6013	2				25	5442	8474	1	1
		ые работы													

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер	Наименование	Вещество	Коэфф	±	Код		Выброс з	загрязняющего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат		Наименование			1	-
ника	установок,	рому	газо-		ще-	вещества	- / -		_ /	T
выбро	тип и	произво-	очист	очистки/			r/c	мг/нм3	т/год	Год
СОВ	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	%	очистки%						тиже
	выбросов	очистка								RNH
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
6013					0301	Азота (IV) диоксид (0.08		91.2384	2029
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.13		14.828	2029
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.388		44.192	2029
						Углерод черный) (583)				
					0330	Сера диоксид (0.5		57.024	2029
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	2.5		285.12	2029
						углерода, Угарный				
						ras) (584)				
						Бенз/а/пирен (3,4-	0.000008		0.00092	2029
						Бензпирен) (54)				
					2732	Керосин (654*)	0.75		85.536	
					2908	Пыль неорганическая,	0.2265		2.975	2029

Таблица 6.3

ЭРА v3.0 ТОО "АНТАЛ" Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

10016	инаис	=		1	горных расот по досыча Г	_	1	1		_					
		Источник выдел	ения	Число	Наименование	Номер	Высо	Диа-	Параме	гры газовозд.с	смеси	K	оординаты	источника	L
Про		загрязняющих вещ	еств	часов	источника выброса	источ	та	метр	на вых	оде из трубы г	при		на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	ман	симальной раз	овой				
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин
TBO			чест-	В		СОВ	выбро					/1-го конц	ца лин.	/длина, ши	ирина
			во,	году	•		COB,	М	ско-	объем на 1	тем-	/центра пл	пощад-	площа	цного
			шт.				М		рость	трубу, м3/с	пер.	ного источ	иника	источ	ника
									M/C		оC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
						1									

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2029 год

Номер	Наименование	Вещество	Коэфф	_	Код	руда с месторождении п		загрязняющего	вещества	
источ	газоочистных	по кото-	обесп	эксплуат	ве-	Наименование	_	-		
ника	установок,	рому	газо-	степень	ще-	вещества				
выбро	тип и	произво-	очист	очистки/	ства		r/c	мг/нм3	т/год	Год
COB	мероприятия	дится	кой,	max.cren						дос-
	по сокращению	газо-	%	очистки%						тиже
	выбросов	очистка								RNH
										НДВ
7	17	18	19	20	21	22	23	24	25	26
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				

Проведен расчет рассеивания загрязняющих веществ в атмосферу.

При расчетах уровня загрязнения приняты следующие критерии качества атмосферного воздуха:

- максимально-разовые (ПДК м.р.), согласно списку «Предельно допустимые концентрации загрязняющих веществ в атмосферном воздухе населенных мест» приложения 1 к Приказу МНЭ РК «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах», № 168 от 28 февраля 2015 года;
- ориентировочные безопасные уровни воздействия ОБУВ, согласно списку «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест» приложения 2 к вышеназванным гигиеническим нормативам.

При моделировании рассеивания принят расчетный прямоугольник следующими данными:

- размеры 40436 x 21834 м;
- шаг сетки 2183 м;
- координаты центра прямоугольника: x = 5152 м, y = 10606 м;
- угол между координатной осью 0X и направлением на север составляет 90°.

Объект намечаемой деятельности – вновь проектируемый.

Расчет рассеивания приземных концентраций на период эксплуатации месторождения был произведён на максимальный выброс загрязняющих веществ 17.37251г/с (с учетом сжигания от автотранспорта и при взрывных работах), который достигается при наиболее худших условиях в летний период.

Вычислением в программном комплексе ЭРА определены приземные концентрации вредных веществ в атмосфере и вклады отдельных источников в максимальную концентрацию вредных веществ, содержащихся в выбросах.

Расчеты выполнены по всем загрязняющим веществам и группам веществ, обладающих при совместном присутствии суммирующим вредным действием, на более худшие условия для рассеивания загрязняющих веществ в летний период года на границе СЗЗ, без учета фонового загрязнения.

Анализ результатов расчетов приземных концентраций превышений ПДК по всем загрязняющим веществам на границе санитарно-защитной зоны не выявлено, таблица 6.4.

Результаты расчета рассеивания (карты-схемы) в год максимальной работы представлены в Приложении 11.

соответствии требованиями Санитарных правил «Санитарноэпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», (утв. приказом Министра здравоохранения РК от 11 января 2022 года № ҚР ДСМ-2), нормативный размер санитарно-защитной зоны для отвалов при добыче цветных металлов составляет 1000 м (Приложение 1, раздел 3, п.11 пп.11 примечание Санитарных правил).

Ближайшая жилая зона п.Хозрет (17 км) и п.Екатериновка (Россия) (16,3 км) располагается вне зоны влияния выбросов от места расположения проектируемых объектов предприятия. При проведении работ выбросы загрязняющих веществ в атмосферу (по результатам расчетов) не будут достигать ПДКм.р. и воздействовать на здоровье населения.

При проведении расчетов рассеивания превышения ПДКмр на внешней границе СЗЗ и за ее пределами не превышают 1,0 ПДК.

Расчеты выполнены по всем загрязняющим веществам и группам веществ, обладающих при совместном присутствии суммирующим вредным действием, на более худшие условия для рассеивания загрязняющих веществ в летний период года на границе СЗЗ, без учета фоновых концентраций, так как в рассматриваемом районе не производится наблюдение за состоянием атмосферного воздуха, кроме того, ближайшая жилая зона п.Хозрет находится на расстоянии 17 км от месторождения.

В границах СЗЗ не размещаются: жилая застройка, санатории и дома отдыха, садово-огородные участки, лечебно-профилактические оздоровительные И организации, объекты пищевой отрасли.

Анализ результатов расчета рассеивания на период эксплуатации

Анализ результатов расчетов показывает, что максимальные значения предельно допустимых концентраций (ПДК_{мр}) на границе нормативной СЗЗ наблюдается по меди сульфиту и марганцу. На границе жилой зоны превышений нет.

Максимальные приземные концентрации на границе расчетной санитарнозащитной зоны (1000 м), по результатам расчета рассеивания выбросов на период эксплуатации месторождения будут наблюдаться по веществам:

- пыль неорганическая, содержащая SiO₂: 70-20% 0,4388 ПДК на границе СЗЗ; 0,43 ПДК на границе расчетной точки;
- медь сульфит 0,748 ПДК на границе СЗЗ; 0,688 ПДК на границе расчетной точки;
- марганец и его соед. 0,53 ПДК на границе СЗЗ; 0,488 ПДК на границе расчетной точки.

Результаты расчета рассеивания загрязняющих веществ, выбросы которых создают наибольшие максимальные приземные концентрации нормативной санитарно-защитной зоны и на границе селитебной территории в год максимальной добычи представлены в таблице 6.4.

Расчеты рассеивания выполнены при максимально неблагоприятных условиях. Расчеты производились при теоретическом максимуме при одновременной работе всех установок на максимальной мощности, что в действительности невозможно, однако даже при подобных расчетах, концентрация загрязняющих веществ на границе санитарно-защитной зоны не показывает превышений нормативных показателей

Код			мальная приземная	Коорди	наты точек				Принадлежность
вещества	Наименование		ня и без учета фона)		мальной	наибо	льший вн	клад в	источника
/	вещества	доля ПД:	К / мг/м3	приземн	ой конц.	макс.	концент	грацию	(производство,
группы									цех, участок
суммации		в жилой	на границе	в жилой	на грани	N	% BI	клада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
			2029 год						
			няющие веще						
0143	Марганец и его	0.0028917/0.0000289	0.5307592/0.0053076	23214/	4179/	6005	55.5	66.5	Выемочно-
	соединения /в пересчете			11354	9310				погрузочные
	на марганца (IV) оксид/								работы
	(327)					6011	24.1	20.3	Рудный склад
						6010	17.1	11.8	Рудный склад
0145	Медь (II) сульфит (1:1)	0.0040766/0.0000122	0.7482383/0.0022447	23214/	4179/	6005	55.5	66.5	Выемочно-
	/в пересчете на медь/ (11354	9310				погрузочные
	Медь сернистая) (331)								работы
	_					6011	24.1	20.3	Рудный склад
						6010	17	11.7	Рудный склад
0184	Свинец и его	0.0027731/0.0000028	0.2283039/0.0002283	23214/	6570/	6011	32	41.3	Рудный склад
	неорганические	·	·	11354	7417	6010	17.7	25.7	Рудный склад
	соединения /в пересчете					6005	44.6	22.9	Выемочно-
	на свинец/ (513)								погрузочные
	, , , , , , ,								работы
0203	Хром /в пересчете на	0.0006179/0.0000093	0.113425/0.0017014	23214/	4179/	6005	55.5	66.5	Выемочно-
0200	хром (VI) оксид/ (Хром	0.000017370.0000030	0.110120, 0.001,011	11354	9310		00.0		погрузочные
	шестивалентный) (647)			11001	3010				работы
	meetynbasterrinast, (617)					6011	24.1	20.3	Рудный склад
						6010	-	11.8	Рудный склад
0207	Цинк оксид /в пересчете	0.0000174/0.0000087	0.0031986/0.0015993	23214/	4179/	6005		66.6	Выемочно-
0201	на цинк/ (662)	0.000017170.0000007	0.003190070.0013993	11354	9310	0000	33.0	00.0	погрузочные
	110 14,1111() (002)			11334	3310				работы
						6011	24	20.2	Рудный склад
						6010		11.8	Рудный склад
0301	Азота (IV) диоксид (0.0068079/0.0013616	0.3136975/0.0627395	23214/	4576/	6008	-	34.3	Работа

Таблица 6.4

ЭРА v3.0 ТОО "АНТАЛ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения

Код			мальная приземная	F	наты точек				Принадлежность
вещества	Наименование		ая и без учета фона)		мальной		льший вк		источника
/	вещества	доля ПД	ĮК / мг/м3	приземн	ой конц.	макс.	концент	рацию	(производство,
группы									цех, участок
суммации		в жилой	на границе		на грани	N	% BF	пада	
		зоне	санитарно -	зоне	це СЗЗ	ИСТ.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
	Азота диоксид) (4)			11354	7054				экскаватора и
									бульдозера
						0003	16.7	15.1	Электроснабжени
									е
						0005		10.6	Электроснабжени
									е
						0002	17.3		Электроснабжени
									е
0304	Азот (II) оксид (Азота	0.005316/0.0021264	0.4530235/0.1812094	23214/	5426/	0002	33.4	49.7	Электроснабжени
	оксид) (6)			11354	9994				е
						0003	31.9	27.6	Электроснабжени
									е
						6013	8.8	4.7	Автотранспортны
0.000		0.0000000000000000000000000000000000000	0 1551050 /0 0000506	00011/	5 4 O C /	6010	6.5.4	64.1	е работы
0328	Углерод (Сажа, Углерод	0.0008696/0.0001304	0.1551372/0.0232706	23214/	5426/	6013	67.4	64.1	Автотранспортны
	черный) (583)			11354	9994	0000	10.0	00 7	е работы
						0002	10.9	20.7	Электроснабжени
						0003	10.4	8.1	е Электроснабжени
						0003	10.4	0.1	электроснаожени
0330	Сера диоксид (Ангидрид	0.0023181/0.0011591	0.1508636/0.0754318	23214/	5426/	6013	62.3	47.4	Автотранспортны
0330	сера диоксид (Ангидрид сернистый, Сернистый	0.0023181/0.0011391	0.1300030/0.0734310	11354	9994	0013	02.3	4/.4	е работы
	газ, Сера (IV) оксид) (11334	3334	0002	15.7	29.9	Электроснабжени
	516)					0002	10.7	23.3	e oneki poendokem
						0003	15	14.9	Электроснабжени
							10		e
0337	Углерод оксид (Окись	0.0013582/0.0067911	0.0804659/0.4023294	23214/	5426/	6013	53.1	50.5	Автотранспортны
	углерода, Угарный газ)			11354	9994				е работы

Таблица 6.4

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Костанайская обл. Жетикаринскй, План горных работ по добыче руды с месторождения Атыгай (Берсуат)

Код		Расчетная макси	иальная приземная	Коорди	наты точек	Источ	ники, да	ющие	Принадлежность
вещества	Наименование	концентрация (обща	я и без учета фона)	с макси	мальной	наибо	льший вк	лад в	источника
/	вещества	доля ПДІ	К / мг/м3	приземн	ой конц.	макс.	концент	рацию	(производство,
группы				_					цех, участок
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
	(584)					6004	23.2	24	Взрывные работы
									Электроснабжени
						0002		12	е
									Работа
						6008	7.5		экскаватора и
					,				бульдозера
0703	Бенз/а/пирен (3,4-	0.0001812/1.8122E-9	0.032019/3.E-7	23214/	4179/	6013	100	100	Автотранспортн
1 2 0 1	Бензпирен) (54)	0.0017200/0.000050	0 1650017/0 00406	11354	9310	0000	41 7	F F O	е работы
1301	Проп-2-ен-1-аль (0.0017328/0.000052	0.1653317/0.00496	23214/ 11354	5426/ 9994	0002	41.7	55.8	Электроснабжен
	Акролеин, Акрилальдегид) (474)			11354	9994	0003	39.8	31.2	Электроснабжен:
	Arbungueder.nd) (414)					0003	39.0	31.2	oneki pochaokeni
						0004		4.6	Электроснабжен
						0001		1.0	е
						0001	6.6		Буровые работы
1325	Формальдегид (Метаналь)	0.0010397/0.000052	0.099199/0.00496	23214/	5426/	0002	41.7	55.8	Электроснабжен
	(609)			11354	9994				e
						0003	39.8	31.2	Электроснабжен
									е
						0004		4.6	Электроснабжен
									е
						0001			Буровые работы
2732	Керосин (654*)	0.0012669/0.0015203	0.0693808/0.0832569	23214/	3885/	6013	71.2	68.1	Автотранспортн
				11354	8289	6000	20.0	21 0	е работы
						6008	28.8	31.9	Работа
									экскаватора и
2754	37	0 0005303/0 0005333	0.040(11/0.040(11	22214/	E 40.0 /	0000	11 (E = 7	бульдозера
2754	Углеводороды предельные	0.0005202/0.0005202	0.049611/0.049611	23214/	5426/	0002	41.6	55.7	Электроснабжен

ЭРА v3.0 ТОО "АНТАЛ"

	обл. Жетикаринскй, План гор					1			1
Код			иальная приземная	_	наты точек				Принадлежность
вещества	Наименование		я и без учета фона)		мальной		льший вк		источника
/	вещества	доля ПДІ	С / мг/мЗ	приземн	ой конц.	макс.	концент	рацию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BF	пада	
		зоне	санитарно -	зоне	це СЗЗ	ИСТ.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
	C12-C19 (в пересчете на			11354	9994				е
	C) (10)					0003	39.8	31.2	Электроснабжени
									е
						0004		4.5	Электроснабжени
									e
						0001	6.8		Буровые работы
2902	Взвешенные частицы (0.0003309/0.0001655	0.060698/0.030349	23214/	4179/	6005	55.4	66.4	Выемочно-
	116)			11354	9310				погрузочные
									работы
						6011	24	20.3	- Рудный склад
						6010	17.2	11.8	Рудный склад
2908	Пыль неорганическая,	0.0035599/0.001068	0.4384784/0.1315435	-12619/	3885/	6009	30.2	56.1	Отвал вскрышных
	содержащая двуокись			10688	8289				пород
	кремния в %: 70-20 (Взрывные работы
	шамот, цемент, пыль					6004	17.6	22.2	Выемочно-
	цементного производства								погрузочные
	- глина, глинистый					6005	21.3	6.9	работы
	сланец, доменный шлак,								
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (494)								
		Гру	ппы суммаци	и:	1	•	1	1	ı
07(31) 0301	Азота (IV) диоксид (0.0087221	0.4041597	23214/	4576/	6008	19.5	26.3	Работа
	Азота диоксид) (4)			11354	7054				экскаватора и
0330	Сера диоксид (Ангидрид								бульдозера
	сернистый, Сернистый					6013	23.2	24.4	Автотранспортны
	газ, Сера (IV) оксид) (е работы

Таблица 6.4

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Костанайская обл. Жетикарински, План горных работ по лобыче рулы с месторожления Атыгай (Берсуат)

Код		Расчетная макси	мальная приземная	Коорди	наты точек	Источ	ники, да	.ющие	Принадлежность
вещества	Наименование	концентрация (обща	я и без учета фона)	с макси	мальной	наибо	льший вк	лад в	источника
/	вещества	доля ПД	К / мг/м3	приземн	ой конц.	макс.	концент	рацию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ΣЖ	C33	
1	2	3	4	5	6	7	8	9	10
	516)					0003		13.3	Электроснабжени
						0002	15.3		Электроснабжени
35(27) 0184	Свинец и его	0.0050913	0.3055326	23214/	5426/	6005	24.3	34.6	е Выемочно-
33(27) 0104	неорганические	0.0030913	0.3033320	11354	9994	0003	24.5	34.0	погрузочные
	соединения /в пересчете			11334	2224				работы
	на свинец/ (513)					6013	28.4	25.7	Автотранспортны
	Сера диоксид (Ангидрид								е работы
0330	сернистый, Сернистый					0002		13.6	Электроснабжени
	газ, Сера (IV) оксид) (е
	516)					6011	17.4		Рудный склад
57 (81) 0207	Цинк оксид /в пересчете	0.0023356	0.1521804	23214/	5426/	6013	61.8	47	Автотранспортны
	на цинк/ (662)			11354	9994				е работы
	Сера диоксид (Ангидрид					0002	15.6	29.6	Электроснабжени
0330	сернистый, Сернистый								e
	газ, Сера (IV) оксид) (0003	14.9	14.8	Электроснабжени
	516)		п						е
2902	Papawayyy waamuu /	0.0034736	Пыли: 0.520777	-12619/	6324/	6005	41	57.8	Выемочно-
2902	Взвешенные частицы (0.0034/36	0.520///	10688	9723	6005	41	3/.8	
2908	Пыль неорганическая,			10000	9123				погрузочные работы
2 9 0 0	содержащая двуокись					6009	18.6	15.3	Отвал вскрышных
	кремния в %: 70-20 (0003	10.0	13.3	пород
	шамот, цемент, пыль								Отвал вскрышных
	цементного производства					6012	16.6	10.5	пород
	- глина, глинистый								
	сланец, доменный шлак,								

ЭРА v3.0 ТОО "АНТАЛ"

Таблица 6.4

Костаналская	OOM. METHRAPHICKH, IMAH 10	рных расст по досыче ру	ды с месторождения аты	тай (версу	a1)				•
Код			мальная приземная		наты точек				Принадлежность
вещества	Наименование	концентрация (обща	я и без учета фона)	с макси	имальной	наибо	льший вн	клад в	источника
/	вещества	доля ПДН	К / мг/м3	приземн	ой конц.	макс.	концент	грацию	(производство,
группы									цех, участок
суммации		в жилой	на границе	в жилой	на грани	N	% BF	клада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (494)								
l									

Нормативы допустимых выбросов загрязняющих веществ

Согласно статье 28 п.б. Экологического Кодекса Республики Казахстан Нормативы эмиссий от передвижных источников выбросов загрязняющих веществ в атмосферу не устанавливаются. За выбросы от автотранспорта предприятие отчитывается по объему сжигаемого топлива (бензин, д/топливо).

Максимальные разовые залповые выбросы (г/с) не нормируются ввиду их кратковременности и в расчетах рассеивания вредных веществ в атмосфере не учитываются.

Предельно допустимый выброс (ПДВ) является нормативом, устанавливаемым для каждого конкретного источника загрязнения атмосферы при условии, что выбросы вредных веществ от него и от совокупности других источников предприятия, с учетом их рассеивания, не создадут приземные концентрации, превышающие установленные нормативы качества (ПДК) для населенных мест.

Период эксплуатации

Срок действия нормативов ПДВ загрязняющих веществ в атмосферу устанавливается для периода проведения эксплуатации на 2029 г.

Предварительные нормативы выбросов загрязняющих веществ в атмосферу при проведении работ предлагаются по расчетным показателям на период эксплуатации и представлены в таблице 6.5.

Производство истану, участок истану, участок инка Период эксплуатации долу по дол		Но- мер		H	ормативы выбросов	загрязняющих вещ	еств		
Код и наименование	-	ис- точ-	-				ндв	3	год дос-
1 2 3 4 5 6 7 8 **0143, Мартанец и его соединения /в пересчете на марганца (IV) оксид/ Не о р г а н и з о в а н н ы е и с т о ч н и к и Выемочно-погрузочные редоты Рудный склад 6007 0.0042 0.00158 0.0042 0.00158 0.003 0.02108 0.003 0.02108 0.003 0.02108 0.003 0.02108 0.003 0.02108 0.003 0.02108 0.003 0.02108 0.003 0.02108 0.003 0.02108 0.003 0.02108 0.003 0.025 0.003 0.0255 0.003 0.00355 0.0035	Код и наименование	ника	r/c	т/год	r/c	т/год	r/c	т/год	тиже ния
**0143, Марганец и его соединения /В пересчете на марганца (IV) оксид/ Неорганизованные источники Выемочно-погрузочные 6005 0.07141 0.00792 0.07141 0.00792 работы Рудный склад 6007 0.0042 0.00158 0.0042 0.00158 0.003 0.02108 0.0325 0.03375 0.12669 0.0375 0.12669 0.12	загрязняющего вещества								НДВ
Неорганизованные источники Выемочно-погрузочные работы Рудный склад 6007 Рудный склад 6010 Рудный склад 6011 Всего по веществу: **0145, Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) Выемочно-погрузочные работы Рудный склад 6010 О.0012669 О.03375 Всего по ванизованные источники Выемочно-погрузочные работы Рудный склад 6010 О.12669 О.3375 О.1269 О.3375 О.12669 О.12669 О.3375 О.12669 О.3375 О.12669 О.3375 О.12669 О.	1	2	3	4	5	6	7	8	9
Выемочно-погрузочные работы рудный склад 6007 0.00141 0.00792 0.07141 0.00792 2 0.00158 0.00158 0.00159 0.00158 0.00159 0.00158 0.00159 0.00158 0.00159	**0143 , Марганец и его с	оединен	ия /в пересчете	на марганца (IV	7) оксид/	<u>. </u>			
работы Рудный склад Рудный скл	Неорганизова:	нные	источні	ики					
Рудный склад 6010 0.02108 0.003 0.02108 0.003 2 Рудный склад 6011 0.03 0.325 0.03 0.325 0.03 0.325 2 Итого: 0.12669 0.3375 0.12669 0.3375 0.12669 0.3375 2 Всего по вагрязняющему веществу: **0145, Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) Неорганизованные источники Выемочно-погрузочные 6005 0.00178 0.0007 0.00178 0.0007 2 Рудный склад 6007 0.00178 0.0007 0.00178 0.0007 2 Рудный склад 6010 0.0089 0.00129 0.0089 0.00129 2 Рудный склад 6011 0.00177 0.1375 0.0127 0.1375 2 Итого: 0.05358 0.14289 0.05358 0.14289 2 Всего по вагрязняющему веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/	Выемочно-погрузочные	6005			0.07141	0.00792	0.07141	0.00792	2029
Рудный склад 6010 Рудный склад 6011 Олитог: О	работы								
Рудный склад 6011 0.03 0.325 0.03 0.325 0.3375 0.12669 0.03375 0.12669 0.03375	Рудный склад	6007			0.0042	0.00158	0.0042	0.00158	202
Всего по загрязняющему веществу: **0145, Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) Н е о р г а н и з о в а н н ы е и с т о ч н и к и Выемочно-погрузочные работы Рудный склад 6010 Рудный склад 6010 О.00178 О.00129	Рудный склад	6010			0.02108	0.003	0.02108	0.003	202
Всего по загрязняющему веществу: **0145, Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) Не организованные источники Выемочно-погрузочные 6005 0.0034 0.0032 0.0034 0.00302 0.0034 2 0	Рудный склад	6011			0.03	0.325	0.03	0.325	202
загрязняющему веществу: **0145, Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) Неорганизованные источники Выемочно-погрузочные работы Рудный склад 6007 0.00178 0.0007 0.00178 0.0007 0.00178 0.0007 0.00178 0.0007 0.00178 0.0007 0.00129	Итого:				0.12669	0.3375	0.12669	0.3375	
веществу: **0145, Медь (II) сульфит (1:1) / в пересчете на медь/ (Медь сернистая) Не организованные источники Выемочно-погрузочные работы Рудный склад 6007 0.00178 0.0007 0.00178 0.0007 2 Рудный склад 6010 0.0089 0.00129 0.0089 0.00129 Рудный склад 6011 0.00127 0.1375 0.0127 0.1375 2 Итого: 0.05358 0.14289 0.05358 0.14289 Всего по вагрязняющему веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/	Всего по				0.12669	0.3375	0.12669	0.3375	202
**0145, Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) Н е о р г а н и з о в а н н ы е и с т о ч н и к и Выемочно-погрузочные работы Рудный склад 6007 0.00178 0.0007 0.00178 0.0007 2 Рудный склад 6010 0.0089 0.00129 0.0089 0.00129 0.0089 Рудный склад 6011 0.00127 0.1375 0.0127 0.1375 2 Итого: 0.05358 0.14289 0.05358 0.14289 Всего по 0.05358 0.14289 0.05358 0.14289 2 загрязняющему веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/	загрязняющему								
Неорганизованные источники Выемочно-погрузочные рудный склад 6007 Рудный склад 6010 Рудный склад 6011 Оли	веществу:								
Выемочно-погрузочные 6005 0.0034 0.0032 0.0034 0.0032 0.0034 2 работы Рудный склад 6007 0.00178 0.0007 0.00178 0.0007 2 Рудный склад 6010 0.0089 0.00129 0.0089 0.00129 2 Рудный склад 6011 0.005358 0.14289 0.05358 0.14289 0.05358 0.14289 0.05358 0.14289 0.05358 0.14289 2 загрязняющему веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/			_		ернистая)	·	•		
работы Рудный склад Рудный склад Рудный склад Рудный склад Рудный склад О.00178 О.00079 О.00178 О.00079 О.00129 О.00129 О.00129 О.00127 О.1375 О.0127 О.1375 О.0127 О.1375 О.0127 О.05358 О.14289 О.05358 О.14289 Веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/	-		источні	ики Г	ا مومو				1
Рудный склад 6007 0.00178 0.0007 0.00178 0.0007 2 Рудный склад 6010 0.0089 0.00129 0.0089 0.00129 2 Рудный склад 6011 0.0127 0.1375 0.0127 0.1375 0.0127 0.1375 2 Итого: 0.05358 0.14289 0.05358 0.14289 0.05358 0.14289 2 веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/		6005			0.0302	0.0034	0.0302	0.0034	2029
Рудный склад 6010 0.0089 0.00129 0.0089 0.00129 2 Рудный склад 6011 0.0127 0.1375 0.0127 0.1375 2 Итого: 0.05358 0.14289 0.05358 0.14289 0.05358 0.14289 2 веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/	1								
Рудный склад 6011 0.0127 0.1375 0.0127 0.1375 2 0.05358 0.14289 0.05358 0.14289 0.05358 0.14289 2 3агрязняющему веществу:	* * * * * * * * * * * * * * * * * * * *								
Итого: Всего по загрязняющему веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/	• * * * * * * * * * * * * * * * * * * *								
Всего по загрязняющему веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/	* * * * * * * * * * * * * * * * * * * *	6011							
загрязняющему веществу: **0184, Свинец и его неорганические соединения /в пересчете на свинец/	Итого:				0.05358	0.14289	0.05358	0.14289	
веществу:	Всего по				0.05358	0.14289	0.05358	0.14289	202
**0184, Свинец и его неорганические соединения /в пересчете на свинец/	загрязняющему								
	веществу:								
Неорганизованные источники	· · · · · · · · · · · · · · · · · · ·	-		-	а свинец/				
Выемочно-погрузочные 6005 0.017 0.017 0.017 0.017 2	-			ики 	0 0151	0 0017	0 0151	0 0017	1 202

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.5 Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Костанайская обл. Жетика		План горных ра	бот по добыче ру	ды с месторождені	ия Атыгай (Берсуа	ar)				
	Но- мер	Нормативы выбросов загрязняющих веществ								
Производство цех, участок	ис- точ- ника	существующее положение на 2022 год		Период эксплуатации 2029 г.		ндв		год дос- тиже		
Код и наименование загрязняющего вещества		r/c	т/год	F/C	т/год	r/c	т/год	ния НДВ		
1	2	3	4	5	6	7	8	9		
работы Рудный склад Рудный склад Рудный склад Итого:	6007 6010 6011			0.00069 0.00347 0.0063 0.02556	0.0003 0.0006 0.0686 0.0712	0.00069 0.00347 0.0063 0.02556	0.0003 0.0006 0.0686 0.0712	2029 2029		
Всего по загрязняющему веществу:				0.02556	0.0712	0.02556	0.0712	2029		
**0203, Хром /в пересчет	_		-	нтный) (647)						
Неорганизова		источн	ики					1		
Выемочно-погрузочные работы	6005			0.0229	0.00254	0.0229	0.00254			
Рудный склад Рудный склад	6007 6010			0.00135 0.00676	0.00051 0.00097	0.00135 0.00676	0.00051 0.00097	2029		
Рудный склад Итого:	6011			0.0096 0.04061	0.1042 0.10822	0.0096 0.04061	0.1042 0.10822			
Всего по загрязняющему веществу:				0.04061	0.10822	0.04061	0.10822	2029		
**0207 , Цинк оксид /в пе	ересчете	на цинк/ (662)	I							
Неорганизова	нные	источн	ики							
Выемочно-погрузочные работы	6005			0.02154	0.00239	0.02154	0.00239	2029		
Рудный склад Рудный склад	6007 6010			0.00127 0.00636	0.00048	0.00127 0.00636	0.00048 0.00092			

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.5 Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Костанайская обл. Жетика		План горных рас	от по добыче ру	ды с месторождени	ия Атыгаи (Берсуа	ar)				
	Но- мер	Нормативы выбросов загрязняющих веществ								
Производство цех, участок	ис- точ- ника	существующее положение на 2022 год		Период эксплуатации 2029 г.		ндв		год дос- тиже		
Код и наименование загрязняющего вещества		r/c	т/год	r/c	т/год	r/c	т/год	ния НДВ		
1	2	3	4	5	6	7	8	9		
Рудный склад Итого:	6011			0.009 0.03817	0.098 0.10179	0.009 0.03817	0.098 0.10179			
Всего по загрязняющему веществу:				0.03817	0.10179	0.03817	0.10179	2029		
**0301, Азота (IV) диоко	сид (Азог	га диоксид) (4)			L.			.1		
Организованн	ые и	сточникј	M							
Буровые работы	0001	ļ		0.1028	3.2419	0.1028	3.2419	2029		
Электроснабжение	0002			0.656	8.589	0.656	8.589	2029		
Электроснабжение	0003			0.656	8.589	0.656	8.589	2029		
Электроснабжение	0004			0.0917	2.409	0.0917	2.409	2029		
Электроснабжение	0005			0.0917	2.409	0.0917	2.409	2029		
Итого:				1.5982	25.2379	1.5982	25.2379)		
Неорганизова	нные	источни	ики		·	·		·		
Взрывные работы Итого:	6004			0.758 0.758	1.174 1.174	0.758 0.758	1.174 1.174			
Всего по				2.3562	26.4119	2.3562	26.4119	2029		
загрязняющему										
веществу:										
**0304, Азот (II) оксид	(Азота о	оксид) (6)			<u>'</u>	'				
Организованн	ые и	сточники	N							
Буровые работы	0001	ļ		0.1339	4.2227	0.1339	4.2227	7 2029		
Электроснабжение	0002			0.853	11.1657	0.853	11.1657	7 2029		
Электроснабжение	0003			0.853	11.1657	0.853	11.1657	7 2029		
Электроснабжение	0004			0.1192	3.1317	0.1192	3.1317	7 2029		

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.5 Нормативы выбросов загрязняющих веществ в атмосферу по объекту

	Но- мер	Нормативы выбросов загрязняющих веществ							
Производство цех, участок	ис- точ- ника				Период эксплуатации 2029 г.		ндв		
Код и наименование		r/c	т/год	г/с	т/год	r/c	т/год	ния	
загрязняющего вещества								НДВ	
1	2	3	4	5	6	7	8	9	
Электроснабжение Итого:	0005			0.1192 2.0783	3.1317 32.8175	0.1192 2.0783	3.1317 32.8175		
Неорганизован	и н ы е	источн	ики						
Взрывные работы Итого:	6004			0.1232 0.1232	0.191	0.1232 0.1232	0.191 0.191	l l	
Всего по				2.2015	33.0085	2.2015	33.0085	2029	
загрязняющему									
веществу:									
**0328, Углерод (Сажа, У	_	-							
Организованны		сточник:	N		0 =0.5				
Буровые работы	0001			0.017			0.536	l l	
Электроснабжение	0002			0.109	1.4315	0.109	1.4315		
Электроснабжение	0003			0.109	1.4315	0.109	1.4315	l l	
Электроснабжение	0004			0.015	0.4015	0.015	0.4015	l l	
Электроснабжение Итого:	0005			0.015 0.265	0.4015 4.202	0.015 0.265	0.4015 4.202		
JIIOIO.				0.203	4.202	0.203	4.202		
Всего по				0.265	4.202	0.265	4.202	2029	
загрязняющему									
веществу:									
**0330, Сера диоксид (Ан	_		_	(IV) оксид)		-			
Организованны		Сточник	N	•		i			
Буровые работы	0001			0.034	1.072		1.072		
Электроснабжение	0002			0.219	2.863	0.219	2.863		
Электроснабжение	0003			0.219	2.863	0.219	2.863		
Электроснабжение	0004			0.0306	0.803	0.0306	0.803	2029	

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.5 Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Костанайская обл. Жетика		План горных раб	от по добыче ру	уды с месторождені	ия Атыгаи (Берсу	ar)			
	Но- мер	Нормативы выбросов загрязняющих веществ							
Производство цех, участок	ис- точ- ника	существующее положение на 2022 год		Период эксплуатации 2029 г.		нд	ндв		
Код и наименование загрязняющего вещества		r/c	т/год	r/c	т/год	r/c	т/год	ния НДВ	
1	2	3	4	5	6	7	8	9	
Электроснабжение Итого:	0005			0.0306 0.5332	0.803 8.404	0.0306 0.5332	0.803 8.404	l l	
Всего по загрязняющему веществу:				0.5332	8.404	0.5332	8.404	2029	
**0337, Углерод оксид (Экись уг	лерода, Угарный	газ) (584)		l	l.			
Организованн		_							
Буровые работы	0001			0.0858	2.7058	0.0858	2.7058	2029	
Электроснабжение	0002			0.547	7.1575	0.547	7.1575	2029	
Электроснабжение	0003			0.547	7.1575	0.547	7.1575	2029	
Электроснабжение	0004			0.0764	2.0075	0.0764	2.0075	2029	
Электроснабжение	0005			0.0764	2.0075	0.0764	2.0075	2029	
Итого:				1.3326	21.0358	1.3326	21.0358	į	
Неорганизова	н н ы е	источни	1 К И	•	·	·		· ·	
Взрывные работы Итого:	6004			1.083 1.083	1.61 1.61	1.083	1.61 1.61		
Всего по				2.4156	22.6458	2.4156	22.6458	2029	
загрязняющему									
веществу:									
**1301, Проп-2-ен-1-аль	-								
Организованн		СТОЧНИКИ	ſ					i	
Буровые работы	0001			0.004	0.126	0.004	0.126		
Электроснабжение	0002			0.026	0.3436	0.026	0.3436		
Электроснабжение	0003			0.026	0.3436	0.026	0.3436		
Электроснабжение	0004			0.0037	0.096	0.0037	0.096	2029	

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.5 Нормативы выбросов загрязняющих веществ в атмосферу по объекту

ROCTATIONCKAN OOM: MCTMKA	рински,	план горных рао	от по дооыче ру	ды с месторожден	ия атыгай (Берс	yar)				
	Но- мер		Нормативы выбросов загрязняющих веществ							
Производство цех, участок	ис- точ- ника	существующее на 202				нд	ндв			
Код и наименование загрязняющего вещества		r/c	т/год	r/c	т/год	r/c	т/год	ния НДВ		
1	2	3	4	5	6	7	8	9		
Электроснабжение Итого:	0005			0.0037 0.0634	0.096 1.0052	0.0037 0.0634	0.096 1.0052			
Всего по загрязняющему веществу:				0.0634	1.0052	0.0634	1.0052	2029		
**1325 , Формальдегид (Ме	етаналь)	(609)								
Организованн	ые и	сточники	I							
Буровые работы Электроснабжение Электроснабжение Электроснабжение Электроснабжение Итого:	0001 0002 0003 0004 0005			0.004 0.026 0.026 0.0037 0.0037 0.0634	0.126 0.3436 0.3436 0.096 0.096	0.026 0.026 0.0037 0.0037	0.126 0.3436 0.3436 0.096 0.096	2029 2029 2029 2029		
Всего по загрязняющему веществу:				0.0634	1.0052		1.0052			
**2754, Углеводороды пре)						
Организованн Буровые работы	ые и 0001	. сточники 	L	0.041	1.293	0.041	1.293	3 2029		
Буровые расоты Электроснабжение Электроснабжение Электроснабжение Электроснабжение Итого:	0001 0002 0003 0004 0005			0.041 0.26 0.26 0.0367 0.0367 0.6344	3.4356 3.4356 0.9636 0.9636 10.0914	0.26 0.26 0.0367	1.293 3.4356 3.4356 0.9636 0.9636	2029 2029 2029 2029		

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.5 Нормативы выбросов загрязняющих веществ в атмосферу по объекту

	Но- мер		Н	ормативы выбросов	загрязняющих веш	ECTB		
Производство цех, участок	ис- точ- ника		ее положение Период экспл 22 год 2029 г		*	ндв		год дос- тиже
Код и наименование загрязняющего вещества		r/c	т/год	r/c	т/год	r/c	т/год	ния НДВ
1	2	3	4	5	6	7	8	9
Всего по	+ - +		-	0.6344	10.0914	0.6344	10.0914	2029
загрязняющему					10.0311	0.0011	10.0311	
веществу:								
**2902, Взвешенные части	ицы (116)			<u> </u>		I		
Неорганизова		источн	ики					
Выемочно-погрузочные	6005			0.40786	0.0452	0.40786	0.0452	2029
работы								
Рудный склад	6007			0.02431	0.00905	0.02431	0.00905	2029
Рудный склад	6010			0.12143	0.01735	0.12143	0.01735	2029
Рудный склад	6011			0.1713	1.8565	0.1713	1.8565	2029
Итого:				0.7249	1.9281	0.7249	1.9281	
Всего по				0.7249	1.9281	0.7249	1.9281	2029
загрязняющему								
веществу:								
**2908, Пыль неорганичес	ская, сод	ержащая двуоки	сь кремния в %:	70-20 (шамот				
Неорганизова		источн	ики		•			
Снятие ПРС	6001			0.0225	0.02184	0.0225	0.02184	
Склад хранения ПРС	6002			0.0213	0.168	0.0213	0.168	
Буровые работы	6003			0.155	6.294	0.155	6.294	
Взрывные работы	6004			0.855	1.268	0.855	1.268	
Выемочно-погрузочные	6005			2.8	13.74	2.8	13.74	2029
работы								
Отвал вскрышных пород	6006			0.28	2.75	0.28	2.75	
Отвал вскрышных пород	6009			1.4	13.74	1.4	13.74	
Отвал вскрышных пород	6012			2.07	16.3	2.07	16.3	
Автотранспортные	6013			0.2265	2.975	0.2265	2.975	2029

ЭРА v3.0 ТОО "АНТАЛ" Таблица 6.5 Нормативы выбросов загрязняющих веществ в атмосферу по объекту

	Но- мер		Нормативы выбросов загрязняющих веществ							
Производство ис- цех, участок точ- ник:			ощее положение Период экспл 2022 год 2029 г		-	ндв		год дос- тиже		
Код и наименование загрязняющего вещества		r/c	т/год	r/c	т/год	r/c	т/год	ния НДВ		
1	2	3	4	5	6	7	8	9		
работы Итого: Всего по загрязняющему веществу:				7.8303 7.8303	57.25684 57.25684	7.8303 7.8303	57.25684	2029		
Всего по объекту: Из них:	ĺ			17.37251	166.72054	17.37251	166.72054			
Итого по организованным источникам:				6.5685	103.799	6.5685	103.799			
Итого по неорганизованны источникам:	М			10.80401	62.92154	10.80401	62.92154			

6.2. Физические воздействия

Основными физическими факторами воздействия на окружающую среду при промышленной разработке месторождения «Атыгай» Берсуат будут являться шум, вибрационное и электромагнитное воздействие.

Проектными решениями предусмотрено использование такого оборудования, при котором уровни звука, вибрации, электромагнитного излучения и освещения будут обеспечены в пределах, установленных соответствующими ГОСТами, СанПиНами и СНиПами.

Шум.

Шум является неизбежным видом воздействия на окружающую среду при выполнении всех работ. В силу специфики работ уровни шума будут изменяться в зависимости от используемых видов техники (оборудования). При проведении добычных работ источниками шума будут являться ДВС автотранспорта и карьерной техники, буровые работы, площадки погрузки руды в автосамосвалы, забои экскаваторов, работа двигателей ДЭС осветительных установок и насосов водопонижения, а также залповые источники шума при производстве взрывных работ.

Снижение уровня звука от источника при беспрепятственном распространении происходит примерно на 3 дБ при каждом двукратном увеличении расстояния, снижение пиковых уровней звука происходит примерно на 6 дБ. Поэтому с увеличением расстояния происходит постепенное снижение среднего уровня звука.

При удалении от источника шума на расстоянии до двухсот метров, происходит быстрое затухание шума, при дальнейшем увеличении расстояния, снижения уровня звука происходит медленнее. Также следует учитывать изменение уровня звука в зависимости от направления и скорости ветра, характера и состояния прилегающей территории, рельефа территории.

Проектными решениями предполагается использование техники и средств защиты, обеспечивающих уровень звука на рабочих местах, не превышающий 80 дБА. Вся техника, работающая в карьере, обеспечивается современными средствами защиты – глушители шума выхлопных газов, шумогасящие накладки в кузовах автосамосвалов. При производстве взрывных работ предусматривается вывод всех работников за пределы зоны воздействия.

При проведении работ следует принимать все необходимые меры по снижению шума, воздействующего на человека на рабочих местах до значений, превышающих допустимые:

- применение средств и методов коллективной защиты;
- применение средств индивидуальной защиты.

В зоне акустического дискомфорта снижение шумового воздействия осуществляется следующими способами:

снижение шума источнике (усовершенствование производственных В процессов, использование малошумных транспортных средств, регламентация интенсивности движения и т.д.);

следить за исправным техническим состоянием двигателей, используемой строительной техники и транспорта;

использование мер личной профилактики, лечебночисле профилактических мер, средств индивидуальной защиты и т.д.

Вибрация.

По своей физической природе вибрация тесно связана с шумом. Вибрация представляет собой колебания твердых тел или образующих их частиц. Вибрации возникают, главным образом, вследствие вращательного или поступательного движения неуравновешенных масс двигателя и механических систем машин. В отличие от звука вибрации воспринимаются различными органами и частями тела. При низкочастотных колебаниях, вибрации воспринимаются оолитовым и вестибулярным аппаратом человека, нервными окончаниями кожного покрова, а вибрации высоких частот воспринимаются подобно ультразвуковым колебаниям, вызывая тепловое ощущение.

Вибрация, подобно шуму, приводит к снижению производительности труда, нарушает деятельность центральной и вегетативной нервной системы, приводит к заболеваниям сердечно-сосудистой системы. Работа в условиях постоянной вибрации может приводить к возникновению вибрационной болезни. Вибрационная патология стоит на втором месте среди профессиональных заболеваний.

Проектными решениями предполагается использование техники и средств защиты, обеспечивающих уровни вибрации при проведении работ на карьере (в пределах, не превышающих 63 Гц и не могут причинить вреда здоровью человека и негативно отразиться на состоянии фауны.

Для снижения вибрации от технологического оборудования предусмотрено: установление гибких связей, упругих прокладок и пружин; тяжелое вибрирующее оборудование устанавливается на самостоятельные фундаменты, сокращение времени пребывания в условиях вибрации, применение средств индивидуальной защиты.

Вибрационная безопасность труда на карьере должна обеспечиваться проведением следующих мероприятий:

соблюдением правил и условий эксплуатации машин и введения технологических процессов, использованием машин только в соответствии с их назначением, предусмотренным НД;

исключением контакта работающих с вибрирующими поверхностями за пределами рабочего места или зоны введением ограждений, предупреждающих знаков, использованием предупреждающих надписей, окраски, сигнализации, блокировки и т.п.;

применением средств индивидуальной защиты от вибрации;

введением и соблюдением режимов труда и отдыха, в наибольшей мере снижающих неблагоприятное воздействие вибрации на человека;

контролем вибрационных характеристик машин и вибрационной нагрузки на оператора, соблюдением требований вибробезопасности и выполнением предусмотренных для условий эксплуатации мероприятий.

Электромагнитные излучения

Проектная компания "АНТАЛ"

Электромагнитное излучение — это комплекс электрических и магнитных полей, оказывающих влияние на среду обитания человека и самого человека.

Источниками электромагнитного излучения являются бытовые электроприборы, линии электропередач (ЛЭП), радио- и телевизионные вещательные станции, радиолокационные установки, различные системы радиосвязи, технологические установки в промышленности, трансформаторные подстанции и многое другое.

Неконтролируемый постоянный рост числа источников электромагнитных излучений (ЭМИ), увеличение их мощности приводят к тому, что возникает

электромагнитное загрязнение окружающей среды. Высоковольтные электропередач, трансформаторные станции, электрические двигатели. Персональные компьютеры (ПК), широко используемые в производстве – все это источники электромагнитных излучений.

Беспокойство за здоровье, предупреждение жалоб должно стимулировать проведение мероприятий по электромагнитной безопасности. В этой связи определяются наиболее важные задачи по профилактике: заболеваний глаз, в том числе хронических; зрительного дискомфорта; изменения в опорно-двигательном аппарате; кожно-резорбтивных проявлений; стрессовых состояний; изменений мотивации поведения; неблагополучных исходов беременности; эндокринных нарушений и т.д.

Основными источниками электромагнитного излучения на период проведения являться различные виды связи и оборудование. электромагнитного излучения при проведении работ не будут превышать значений, определенных ГОСТ 12.1.06-84, что не окажет влияния на работающий персонал. И, соответственно, уровень электромагнитных излучений на территории карьера месторождения «Атыгай» Берсуат не будет превышать допустимых значений.

Вследствие влияния электромагнитных полей, как основного и главного фактора, провоцирующего заболевания, особенно у лиц с неустойчивым нервнопсихологическим или гормональным статусом все мероприятия должны проводиться комплексно, в том числе:

- возможные системы защиты, в т.ч. временем и расстоянием;
- противопоказания для работы у конкретных лиц;
- соблюдение основ нормативной базы электромагнитной безопасности.

Тепловое загрязнение.

Тепловое загрязнение является результатом повышения температуры среды, возникающее пи отводе воды от систем охлаждения в водные объекты или при выбросе потоков дымовых газов или воздуха. Тепловое загрязнение является специфическим видом воздействия на окружающую среду, которое в локальном плане оказывает негативное воздействие на флору и фауну, в частности на трофическую цепь обитателей водоемов, что ведет к снижению рыбных запасов и ухудшению качества питьевой воды. В глобальном плане тепловое загрязнение сопутствует выбросам веществ, вызывающих парниковый эффект в атмосфере.

По оценкам экспертов ООН, антропогенный парниковый эффект на 57% обусловлен добычей топлива и производством энергии, на 20% - промышленным производством, не связанным с энергетическим циклом, но потребляющим топливо, на 9% - исчезновением лесов, на 14% - сельским хозяйством.

При проведении работ на месторождении «Атыгай» Берсуат источников теплового воздействия на окружающую среду не предусмотрено.

Влияние токсичности отработавших газов

Проблема токсичности отработавших газов занимает одно из ведущих мест в комплексе развития двигателестроения. В процессе работы поршневого двигателя внутреннего сгорания в атмосферу выбрасываются токсичные вещества. Выброс происходит с отработавшими газами, картерными газами, а также в результате испарения топлива. Около 98% отработавших газов составляют вещества, содержащие углерод. Оставшуюся часть составляют окислы азота.

Токсичными компонентами являются: оксид углерода СО, углеводороды СН, оксиды азота NO_x, формальдегид, бенз/а/пирен, сажа.

Основными составляющими, опасными для человека, в выхлопных газах являются: NO_x, CO, C_nH_m. Рассмотрим воздействие токсичных веществ на окружающую среду и человека.

Окись углерода СО.

Попадая в организм человека и соединяясь с гемоглобином крови, СО дает устойчивое соединение - карбоксигемоглобин, препятствующее процессу газообмена в клетках организма и вызывая тем самым удушье. При вдыхании воздуха с содержанием СО свыше 0,125 мг/л появляются признаки легкого отравления, а при концентрации 1,25 мг/л через два часа появляются головная боль, тошнота, заканчивающиеся потерей сознания.

Окислы азота NO_x.

Отравление NO_x имеет скрытый характер: человек может удовлетворительно чувствовать себя при работе на воздухе, содержащем опасные концентрации, но впоследствии тяжело заболевает.

Основное воздействие на организм человека дают азотная и азотистая кислоты, образующиеся непосредственно в дыхательных путях человека при соединении NO_x с водой. При вдыхании с воздухом 0,2 мг/л NO_х в течение 0,5 часа человек серьезно заболевает.

Токсичное воздействие NO_х при его выбросах в атмосферу влечет за собой разрушение озонного слоя земли, расположенного на высоте от 10 до 50 км.

Нормируемые концентрации двуокиси азота по ІМО на 80% от максимальной мошности — $14 \, \text{г/к} \text{Вт*ч}$.

Класс опасности -2.

Сажа.

Сама по себе не токсична, но в атмосфере она способна адсорбировать бенз/а/пирен – полициклический углеводород ароматического ряда, который обладает канцерогенным действием. Сажа может длительное время находиться во взвешенном состоянии, увеличивая тем самым время воздействия токсических веществ на человека.

Наибольшую опасность для здоровья человека представляют частицы размером от 0,7 до 8 мкм. Частицы размером менее 0,7 мкм и более 8 мкм при вдыхании в легкие не попадают благодаря естественной защите дыхательных органов человека.

Углеводороды C_nH_m.

Наибольшую опасность ДЛЯ человека представляют углеводородные соединения канцерогенной группы. Среди них выделяется бензопирен С₂₀H₁₂, являющийся индикатором присутствия в смеси других канцерогенов.

Попадая в организм человека, полициклические ароматические углеводороды накапливаются до критических концентраций и стимулируют образование злокачественных опухолей.

Нормируемая концентрация для бензопирена ПДК (рз)=0.00015мг/м³ ПДК $(cc)=0.001 \text{ MKF/M}^3$

Класс опасности – 1 (канцерогены).

Углекислый газ СО2.

Воздействие концентраций СО₂ опасно в том отношении, что при поглощении длинноволнового теплового излучения создается так называемый парниковый эффект, обуславливающий перегрев поверхности земли и изменение земного климата.

Радиационное воздействие.

Контроль за радиационной безопасностью. Радиологические испытания товарной продукции и отходов производства.

Оценка и контроль радиационной опасности, а так же разработка мероприятий по радиационной защите направлены на создание условий труда, обеспечивающих не превышение допустимых уровней загрязнённости в соответствии с Санитарными правилами «Санитарно-эпидемиологические требования к радиационно-опасным объектам», утвержденными приказом и.о. Министра национальной экономики РК от 27 марта 2015 г №260 и Гигиенических нормативов «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности», утвержденных приказом Министра национальной экономики Республики Казахстан от 27 февраля 2015 года №155.

Главной целью радиационной безопасности является охрана здоровья населения, включая персонал, от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях народного хозяйства.

На предприятии предусматривается:

- планирование И осуществление мероприятий ПО обеспечению И совершенствованию радиационной безопасности;
- получение санитарного паспорта, заключения органов и учреждений, осуществляющих государственный санитарный надзор, на новые технологии, виды продукции, материалы и вещества, содержащие или основанные на использовании источников излучения;
- создание условий труда с источниками излучения, соответствующих правилам по охране труда, технике безопасности, другим санитарным нормам и правилам.

Мероприятия по снижению негативного воздействия физических факторов

Проектом промышленной разработки месторождения золотосодержащих руд «Атыгай» Берсуат рассматриваются мероприятия по ограничению шума и вибрации для непосредственно работающих в карьере людей.

Защита от шума и вибрации обеспечивается конструктивными решениями используемого оборудования (бульдозеры, экскаваторы, автосамосвалы и др.). Фактором увеличения уровней шума и вибрации является механический износ технологического оборудования и его узлов, поэтому для предотвращения возможных превышений уровня шума и вибрации выполняются следующие мероприятия:

- контрольные замеры шума и вибрации на рабочих местах машинистов и операторов, которые производятся специализированной организацией не реже одного раза в год;
- при превышении уровней шума и вибрации, производится контрольное обследование с целью установления причины и принятия мер по замене или ремонту узлов;

- периодическая проверка оборудования, машин и механизмов на наличие и исправность звукопоглощающих кожухов, облицовок и ограждающих конструкций, виброизоляции рукояток управления, подножек, сидений, площадок работающих машин.

Для предотвращения вредного влияния вибрации на человека при бурении шпуров и скважин все ручные перфораторы оснащаются виброгасящими устройствами, а буровые каретки и установки управляются дистанционно. При проходке горных выработок с применением специального полка, полки оборудуются специальными виброгасящими ковриками.

Оценка воздействия физических факторов

При выполнении всех мероприятий, предусмотренных рабочим проектом уровни воздействия физических факторов (шума и вибраций, электромагнитного излучения) не превысят нормативных значений, установленных санитарными нормами и правилами Республики Казахстан.

Вывод: Воздействие физических факторов в период проведения работ на месторождении «Атыгай» Берсуат на окружающую среду оценивается как допустимое.

7. ОБОСНОВАНИЕ ПОКАЗАТЕЛЕЙ И ВЫБОРА ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ И НАКОПЛЕНИЮ ОТХОДОВ ПО ИХ ВИДАМ

В процессе производственной деятельности на предприятии образуются отходы производства и потребления.

Отходы производства - остатки сырья, материалов, иных изделий и продуктов, образовавшиеся в процессе производства и утратившие полностью или частично исходные потребительские свойства.

Отходы потребления - остатки продуктов, изделий и иных веществ, образовавшихся в процессе их потребления или эксплуатации, а также товары (продукция), утратившие полностью или частично исходные потребительские свойства.

Основными источниками образования отходов производственной при деятельности будут являться:

- эксплуатация горной техники и автотранспорта;
- жизнедеятельность персонала, задействованного в производстве.

Количество образуемых отходов в основном зависит от производительности предприятия. Как следствие количества персонала, автотранспорта, спецтехники и людей будет зависеть от объема выполняемых работ.

В процессе намечаемой деятельности при эксплуатации месторождения предполагается образование отходов производства и потребления, из них:

промасленная ветошь, Опасные отходы: отработанные отработанные масла, отработанные фильтры, тара из-под ВВ.

- 2) Неопасные отходы: твердо-бытовые отходы (ТБО), отработанные шины, вскрышные породы.
 - 3) Зеркальные отходы отсутствуют.

Количество отходов производства и потребления рассчитано по действующим в РК нормативно-методическим документам. Также для определения количества отходов использовались проектные данные на максимальные годовые показатели.

Фактическое количество образующихся отходов будут отображаться в статистической отчетности предприятия.

Ориентировочное количество отходов период эксплуатации на месторождения

Расчеты методике разработки проектов произведены ПО предельного размещения отходов производства и потребления. Приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п.

Твердо-бытовые отходы (ТБО)

В составе ТБО имеются отходы запрещенные принимать для захоронения на полигонах согласно ЭК РК статьи 351, такие как бумага и картон, стеклобой, пищевые отходы, пластмасса.

Состав отходов (%): бумага и древесина -60; тряпье -7; пищевые отходы -10; стеклобой - 6; металлы - 5; пластмассы - 12.

Морфологический состав ТБО принят в соответствии с приказом Министра охраны окружающей среды РК от 12 июня 2014 года №221 приложение 11 таблица 1. Однако пищевые отходы рассчитаны отдельно согласно приложению 16 к приказу Министра ООС РК от 18 апреля 2008 г №100-п.

Объем образования ТБО – 4,725 т/год. Неопасные, твердые, нерастворимые, рабочего персонала пожаробезопасные. Бытовые отходы складируются контейнеры с закрывающейся крышкой на металлические бетонированной последующим вывозом специализированной лицензированной площадке, с организацией по договору. Хранение не более 6 мес.

Промасленная ветошь

Ветошь замасленная образуется при обслуживании и ремонте основного и вспомогательного оборудования автотранспортной техники. Промасленная ветошь хлопчатобумажная ткань, пропитанная горюче-смазочными материалами.

Состав (%): тряпье - 73; масло - 12; влага - 15. Применяется для разового употребления. По агрегатному состоянию отходы твердые, по физическим свойствам – пожароопасные, невзрывоопасные, нерастворимы в воде, химически не активны.

Объем образования – 0,894 т/год. Способ хранения – временное хранение в металлической емкости. Хранение не более 6 мес. Метод утилизации – по договору со специализированными организациями.

Отработанные аккумуляторы

Образуются в процессе эксплуатации автотранспорта. Объем образования – 1,171 т/год. Опасные, твердые, нерастворимые, пожароопасные. Способ хранения – временное хранение в металлической емкости. Хранение не более 6 мес. Метод утилизации – по договору со специализированными организациями.

Отработанные шины

Отработанные образуются ШИНЫ после истечения срока эксплуатации автотранспорта и спецтехники. Состав (%): синтетический каучук 86%, марганец 0,5, сажа 5%, кремния диоксид 0,5%, железо металлическое 8%. Непожароопасны, устойчивы к действию воды, воздуха и атмосферным осадкам. Объем образования – 47,929 т/год. Не опасные, твердые, нерастворимые, пожароопасные. Способ хранения – временное хранение в металлической емкости. Хранение не более 6 мес. Метод утилизации – по договору со специализированными организациями.

Отработанные масла

Отработанные трансмиссионные масла образуются при техническом обслуживании и ремонте автотранспорта. Объем образования -5.03 т/год.

Масло необходимо менять, из-за потери работоспособности пакета присадок. С течением времени, в процессе эксплуатации присадки теряют свои свойства и перестают обеспечивать надёжную защиту работающих поверхностей. Агрегатное состояние отработанных масел – жидкое. Опасные свойства отходов, содержащих нефтепродукты – пожароопасность.

Способ хранения – временное хранение в металлической емкости. Хранение не более 6 мес. Метод утилизации – по договору со специализированными организациями.

Отработанные фильтры

Отработанные промасленные фильтры образуются в результате замены фильтров при техническом обслуживании автотранспорта.

При ремонте и техническом обслуживании автотранспорта производится замена отдельных деталей и узлов автомобилей, отслуживших свой срок. При этом в качестве отходов образуются фильтры, загрязненные нефтепродуктами (топливные и масляные фильтры). Топливный фильтр представляет собой фильтрующий элемент в топливной магистрали, задерживающий частицы грязи и ржавчины из топлива, как правило, содержит картриджи с фильтрующей бумагой. Их можно найти на большинстве двигателей внутреннего сгорания. Топливные фильтры должны меняться через равные интервалы времени. Обычно, старый фильтр из топливной магистрали просто заменяется новым.

Состав: алюминий 7%, мехпримеси 13%, полиэтилен 2%, сталь 60%, целлюлоза 2,6%, масло минеральное 15,4%. Объем образования – 0,739 т/год.

Агрегатное состояние – твердое. Опасные свойства отходов, содержащих нефтепродукты – пожароопасность. Способ хранения – временное хранение в металлической емкости. Хранение не более 6 мес. Метод утилизации – по договору со специализированными организациями.

Тара из-под взрывчатых веществ

Образуются в процессе эксплуатации автотранспорта. Объем образования – 0,4828 т/год. Опасные, твердые, нерастворимые, пожароопасные. Способ хранения – временное хранение в металлической емкости. Хранение не более 6 мес. Метод утилизации – по договору со специализированными организациями.

Вскрышные породы

Размещение вскрышных пород месторождений предусматривается на внешних отвалах.

Вскрышные породы месторождений представлены покровными породами, породами коры выветривания и сульфидными породами.

Объем образования на максимальный год разработки карьеров Берсуат -1234,822 тыс.м 3 /год = 2840090 тонн. Часть вскрышных пород планируется использовать для нужд предприятия - подсыпки дорог и площадок.

Размещение вскрышных пород месторождения предусматривается на внешних отвалах. Внутрикарьерное отвалообразование настоящим проектом недопустимо в связи с тем, что под карьером остаются не вовлекаемые в разработку потенциальные запасы руды (п.1746 Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы).

при деятельности Количество отходов, которое будет образовываться предприятия на период эксплуатации, приводится в таблице 7.9.

Таблица 7.9 – Виды отходов, их классификация и объемы образования отходов

№	Наименование отходов	Кодировка отходов	Количество отходов, т/год	Вид отхода
1	Отработанные аккумуляторы	16 06 01*	1,281	Опасные
2	Отработанные масла	13 02 06*	0,801	Опасные
3	Отработанные фильтры	16 01 07*	0,803	Опасные
4	Промасленная ветошь	15 02 02*	0,274	Опасные
5	Тара из-под ВВ	16 04 03*	0,0487	Опасные
6	Отработанные шины	16 01 03	1,59	Неопасные
7	Твердые бытовые отходы	20 03 01	4,125	Неопасные
8	Вскрышные породы	01 01 01	549619,5	Неопасные

Предполагаемый объем образования отходов на период эксплуатации месторождения составит: 2840150,5658 т/год, из них опасных - 7,9118 т/год, неопасных — 2840142,654 т/год.

8. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ ОБЪЕМОВ ЗАХОРОНЕНИЯ ОТХОДОВ ПО ИХ ВИДАМ

Лимиты накопления отходов рассчитаны, согласно утвержденного приказа Министра экологии, геологии и природных ресурсов РК от 22 июня 2021 года № 206.

Лимиты накопления отходов обосновываются в соответствии с пунктом 5 статьи 41 Кодекса и методикой расчета лимитов накопления отходов, утвержденной уполномоченным органом в области охраны окружающей среды.

накопления отходов на период эксплуатации месторождения на максимальный год отработки приведены в таблице 8.1.

Таблица 8.1 – Лимиты накопления отходов на период эксплуатации

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год
1	2	3
Всего	0	2840150,5658
в том числе отходов производства	0	2840145,8408
отходов потребления	0	4,725
Опасные отходы		
Промасленная ветошь	0	0,489
Тара из-под ВВ	0	0,4828
Отработанные фильтры	0	0,739
Отработанные масла	0	5,03
Отработанные аккумуляторы	0	1,171
Не опасные отходы		
ТБО	0	4,725
Вскрышные породы	0	2840090
Отработанные шины	0	47,929
Зеркальные	•	
-	0	0

Таблица 8.2 – Лимиты захоронения отходов на период эксплуатации

Наименование отходов	Объем захороненн ых отходов на существую щее положение, тонн/год	Образование, тонн/год	Лимит захоронения, тонн/год	Повторное использова ние, переработк а, тонн/год	Передача сторонним организаци ям, тонн/год
1	2	3	4	5	6
Всего		2840150,5658	2840090	0	60,5658
в том числе отходов производства		2840145,8408	2840090	0	55,8408
отходов потребления		4,725	0	0	4,725
Опасные отходы					
Промасленная ветошь	0	0,489	0	0	0,489
Тара из-под ВВ	0	0,4828	0	0	0,4828
Отработанные фильтры	0	0,739	0	0	0,739
Отработанные масла	0	5,03	0	0	5,03
Отработанные аккумуляторы	0	1,171	0	0	1,171
Не опасные отходы					
Отработанные шины	0	4,725	0	0	1,59
Твердые бытовые отходы	0	2840090	0	0	4,125
Вскрышные породы	0	47,929	2840090	0	
Зеркальные		·	•	•	
-	0	0	0	0	0

9. ВЕРОЯТНОСТЬ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ

Под аварией понимают экстремальное событие техногенного характера, происшедшее по конструктивным, производственным, технологическим или эксплуатационным причинам, либо из-за случайных внешних воздействий, и заключающееся в повреждении, выходе из строя, разрушения технических устройств или сооружений.

Возникающие на производстве аварии и риск их возникновения могут быть определены разными методами. Один из самых распространенных - построение дерева отказов. Дерево отказов (аварий, происшествий, последствий, нежелательных событий, несчастных случаев и пр.) лежит в основе логико-вероятностной модели причинно-следственных связей отказов системы с отказами ее элементов и другими событиями (воздействиями). Анализ возникновения отказа состоит из последовательностей и комбинаций нарушений и неисправностей, и таким образом он представляет собой многоуровневую графологическую структуру причинных взаимосвязей, полученных в результате прослеживания опасных ситуаций в обратном порядке, для того чтобы отыскать возможные причины их возникновения.

Причины отказов могут происходить по причине:

- природно-климатических условий, температуры окружающей среды;
- низкой квалификации обслуживающего персонала;
- нарушения трудовой и производственной дисциплины;
- низкого уровня надзора за техническим состоянием спецтехники и автотранспорта.

Степень риска производства зависит как от природных, так и техногенных факторов. Естественные факторы, представляющие угрозу проектируемым работам, характеризуются очень низкими вероятностями. При возникновении данных факторов горные работы прекращаются. Техногенные факторы потенциально более опасны.

При реализации проектных решений возможны локальные аварии, возникающие при утечках дизельного топлива и ГСМ. К процессам повышенной опасности следует отнести погрузочно-разгрузочные операции.

большинстве случаев подавляющем причины аварийных обуславливаются человеческим фактором недостаточной компетенцией, грубейшими безответственностью должностных лиц, нарушениями производственной и технологической дисциплины, невыполнением элементарных требований техники безопасности и проектных решений, терпимым отношением к нарушителям производственной дисциплины. Поэтому при разработке мер профилактики и борьбы с авариями следует особо обращать внимание на строгое соблюдение требований и положений, излагаемых в производственных инструкциях.

Наиболее вероятными авариями могут быть:

- пожары административно-бытовых и производственных объектов;
- порывы напорных трубопроводов;
- выход из строя перекачивающего оборудования;
- просыпи при транспортировке руды и породы;
- проливы горюче-смазочных материалов.

Анализ опасности и оценка степени риска

Вероятность возникновения аварийных ситуаций зависит от множества факторов, обусловленных горно-геологическими, климатическими, техническими и другими особенностями. Количественная оценка вероятности возникновения аварийной ситуации возможна только при наличии достаточно полной репрезентативной статистической информационной базы данных, учитывающей специфику эксплуатации объекта

Экологические последствия аварийных ситуаций могут быть тяжелыми, и зависят, в первую очередь, от характера аварии. Однако, технические решения по обеспечению безопасности, которые учитывают все возможные чрезвычайные ситуации при эксплуатации предприятия, а также постоянно разрабатываемые на предприятии мероприятия по повышению промышленной безопасности, позволяют свести вероятность появления любой аварийной ситуации к минимуму.

Технические решения по обеспечению безопасности предусмотрены проектом и будут реализованы в ходе эксплуатации месторождения и соответствуют требованиям государственных стандартов и противопожарных правил.

вероятного возникновения аварийной ситуации Оценки **ТОНКПОВЕОП** прогнозировать негативное воздействие аварий на компоненты окружающей среды. Такое воздействие может быть оказано на:

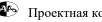
- атмосферный воздух;
- подземные воды;
- почвенно-растительные ресурсы.

Воздействие возможных аварий на атмосферный воздух

Воздействие на атмосферный воздух связано с испарением нефтепродуктов и летучих соединений тяжелых металлов при аварийных утечках. Летучие соединения тяжелых металлов, помимо отравляющего действия, вызывают загрязнение почв и растений тяжелыми металлами.

Воздействие возможных аварий на подземные воды

Воздействие на подземные воды связано с поступлением нефтепродуктов и соединений тяжелых металлов в подземные воды при аварийных утечках.


Воздействие возможных аварий на почвенно-растительный покров

Основные аварийные ситуации, которые могут иметь негативные последствия для почвенно-растительного покрова связаны со следующими процессами:

- Пожары;
- Утечки дизельного топлива и ГСМ.

9.1 Вероятность возникновения аварий и инцидентов

- 1) Возможные причины возникновения и развития аварий и инцидентов
- В общем случае внутренними предпосылками причинами возникновения и развития возможных аварийных ситуаций и инцидентов на месторождении Атыгай могут быть:
 - отказы и неполадки оборудования, технических устройств;
 - ошибочные действия персонала;
 - внешние воздействия природного и техногенного характера.

В большинстве случаев причины аварийных ситуаций обуславливаются человеческим фактором - недостаточной компетенцией, безответственностью должностных лиц, грубейшими нарушениями производственной и технологической дисциплины, невыполнением элементарных требований техники безопасности и проектных решений, терпимым отношением к нарушителям производственной дисциплины.

Таким образом, надежность эксплуатации опасных производственных объектов горнорудного предприятия зависит от множества организационных, технических и факторов. Несбалансированность личностных или выпадение любого производственного объекта неизбежно ведет к технологическим сбоям, инцидентам или авариям.

Причиной развития аварийных ситуаций на объекте ΜΟΓΥΤ деформация бортов, откосов уступов карьера и отвала, взрыв ВМ, падение техники с уступа карьера или яруса отвала.

Другие аварийные ситуации, связанные с эксплуатацией месторождения и его объектов, носят, как правило, локальный характер, ликвидируются силами «Атыгай Голд Майнинг».

Возможные причины возникновения и развития аварийных ситуаций на месторождении:

При добычных работах:

- обрушение бортов карьера;
- деформация откосов уступов карьера;
- затопление карьера паводковыми водами;
- падение техники;
- ошибки обслуживающего персонала.

При взрывных работах:

- преждевременный (несанкционированный) взрыв ВМ;
- ошибки обслуживающего персонала.

При эксплуатации грузоподъемных механизмов (ГПМ):

- обрыв каната;
- деформация элементов запорного устройства;
- разрушение конструкций грузоподъемных механизмов.
- ошибка обслуживающего персонала.
- 2) Сценарии возможных аварий, инцидентов

Аварии при добычных работах:

Сценарий 1 - Обрушение (оползень) горной массы с борта карьера (уступа)

Нарушение технологии ведения горных работ → отступление от проектных параметров ведения горных работ -> отсутствие геомеханического контроля за состоянием горного массива -> несоблюдение требований правил безопасности -> снижение устойчивости борта (уступа) карьера -> обрушение (оползень) горной массы с борта (уступа) карьера → вывод из строя горнотранспортного оборудования, коммуникаций -> травмирование людей -> остановка всех работ в карьере -> принятие мер по эвакуации людей и по ликвидации ЧС.

Сценарий 2 - Падение техники с уступа карьера или яруса отвала

- 2.1. Нахождение оборудования в пределах призмы обрушения → обрушение призмы → падение оборудования → остановка работ на данном направлении, которое должно быть оцеплено → принятие мер по эвакуации людей и по ликвидации ЧС.
- 2.2. Нарушение правил дорожного движения → выезд за пределы проезжей части или ограничивающего вала → падение транспортного средства с уступа карьера или с яруса отвала → остановка работ на данном направлении, которое должно быть оцеплено → принятие мер по эвакуации людей и по ликвидации ЧС.
- 2.3. Выезд за пределы проезжей части или ограничивающего вала, в результате плохой видимости → падение транспортного средства с уступа карьера или яруса отвала → остановка работ на данном направлении, которое должно быть оцеплено → принятие мер по эвакуации людей и по ликвидации ЧС.

Сценарий С-3 - Затопление карьера

Неисправность насосных установок главного водоотлива или временное отключение электроэнергии (более 4 часов) \rightarrow затопление горных выработок, уничтожение оборудования, травмирование людей \rightarrow принятие мер по эвакуации людей и по ликвидации ЧС.

Аварии при взрывных работах:

Сценарий 1 - Преждевременный (несанкционированный) взрыв ВМ при проведении массовых взрывов на карьере

Развитие указанной аварийной ситуации может идти в результате: воздействия блуждающих токов на электродетонаторы; механического воздействия на средства взрывания; удара молнии; преждевременной детонации ВМ в блоке; нарушения правил безопасности при ведении горных работ; недостаточной подготовки блока перед заряжанием; несоблюдения требований безопасности при проверке средств инициирования; самовольной передачи взрывниками ВМ горнорабочим для заряжания блока и монтажа взрывной сети, производства взрывных работ в отсутствии взрывперсонала; нарушения охраны границ опасной зоны; механического воздействия на отказавшие заряды ВВ \rightarrow преждевременный (несанкционированный) взрыв $BM \rightarrow$ распространение ударно-воздушной волны \rightarrow уничтожение ударно-воздушной волной оборудования, травмирование, гибель людей → остановка всех работ в карьере → принятие мер по эвакуации людей и по ликвидации ЧС.

Аварии, связанные с эксплуатацией ГПМ:

Сценарий 1 - Разрушении металлоконструкций крана или его отдельных элементов \rightarrow потеря устойчивости крана (падение) \rightarrow повреждение материальных ценностей, находящихся под краном \rightarrow несчастный случай с машинистом крана и стропальщиком.

Сценарий 2 - Обрыв каната \to деформация элементов запорного устройства \to ошибка обслуживающего персонала \to падение груза \to травмирование персонала упавшим грузом.

Сценарий 3 - Падение груза из-за неисправных грузозахватных приспособлений → повреждение груза → несчастный случай со стропальщиком.

3) Количество опасных веществ, способных участвовать в аварии

При добычных работах — количество опасного вещества (обрушившейся породы) не прогнозируется.

При взрывных работах - максимальное количество ВВ необходимого для Проектная компания "АНТАЛ"

взрывания блока составляет: -201,18 т/год (0,325 т/1 раз);

Стационарно установленные подъемные механизмы – количество опасного вещества не прогнозируется.

При заправке и транспортировке ДT - 594,701 м³ (топливозаправщик, цистерна).

4) Физико-математические модели и методы расчета

Для определения вероятной частоты и возможного возникновения (риска аварий) воспользуемся, методом Киннея. Метод дает количественную оценку уровней опасности для различных анализируемых ситуаций, путем присвоения оцениваемым уровням опасности цифровых значений (баллов) по трем показателям:

- Р вероятность того, что опасное событие действительно произойдет (таблица 9.1);
 - Е частота подверженности потенциально опасной ситуации (таблица 9.2);
- G серьезность последствий или повреждений, причиненных в результате свершения опасного события (таблица 9.3).

Показатель степени риска (R_i), рассчитывается как произведение этих трех переменных:

$$R_i = P \cdot E \cdot G$$

Если показатель степени риска, рассчитанный по этой формуле не превышает 70, то риск считается приемлемым.

Таблица 9.1 - Вероятность происшествия опасного события, Р

Балл	Наименование	
10	Высокая степень вероятности	
6	Средняя степень вероятности	
3	Не всегда, но возможно	
1	Низкая степень вероятности	
0,5	Невероятно, но совсем исключить возможность нельзя	
0,2	Практически невозможно	
0,1	Фактически невозможно	

Таблица 9.2 - Показатель частоты подверженности риску, Е

Балл	Частота	
10	Постоянно (не реже одного раза в час)	
6	Часто (не реже одного раза в день)	
3	Иногда (не реже одного раза в неделю)	
2	Не постоянно (не реже одного раза в месяц)	
1	Редко (несколько раз в год)	
0,5	Очень редко (реже одного раза в год)	

Таблица 9.3 – Показатель серьезности повреждений, явившихся последствием опасного события, G

Балл	Последствия	
100	Катастрофические (смерть многих людей)	
40	Трагические (смерть нескольких человек)	

Продолжение таблицы 9.3

15	Очень серьёзные (смерть одного человека)
7	Тяжёлые (полная потеря трудоспособности)

3	Значительные (временная нетрудоспособность)
1	Лёгкие (ограничение вызовом скорой медицинской помощи)

 $2,28\times10^4$, P=1 – низкая аварии Вероятность степень вероятности. Частота подверженности риску – очень редко (реже, чем один раз в год). $2,28\times10^4 \sim 0,003$ раз в год, E=0,5. Очень серьезные последствия (смерть одного и более человек) G=15.

 $R_{i} = 1 \times 0.5 \times 15 = 7.5 < 50$. Уровень риска приемлем.

Таким образом, исходя из степени риска и тяжести отдельных техногенных аварий и инцидентов, в целом по опасным объектам степень риска можно считать приемлемой. Возникновение аварийной ситуации на объекте, в том числе с человеческими жертвами, является крайне редким событием.

Расчет радиусов опасных зон

Ударная воздушная волна (УВВ) представляет собой скачок уплотнения, распространяющегося со сверхзвуковой скоростью. Поверхность, которая отделяет сжатый воздух от невозмущенного, представляет собой фронт ударной волны (УВВ) определяет безопасное расстояние до зданий (сооружений) от мест изготовления ВВ, хранения ВМ на складах (хранилища, площадки и тому подобное), мест погрузки, разгрузки и переработки ВМ.

Расстояние, на котором снижается интенсивность воздушной волны взрыва на земной поверхности, рассчитывается по формуле:

$$r_{_{\! B}} = K_{_{\! B}} \sqrt[3]{Q} \approx 758 \text{ M}$$

k_в - коэффициент пропорциональности, зависящий от условий расположения и где массы заряда (при первой степени повреждения (отсутствие повреждений) $k_B=20$);

Q - максимальная масса заряда в блоке, кг.

Расстояние, опасное для людей по разлету отдельных кусков породы при взрывании скважинных зарядов, рассчитанных на разрыхляющее (дробящее) действие, определяется по формуле:

$$r_{paзл} = 1250 \,\eta_{_3} \sqrt{\frac{f}{1 + \eta_{_{3a\delta}}} \cdot \frac{d}{a}} = 285,1 \text{ м}$$

 η_3 - коэффициент заполнения скважины BB, $\eta_3 = L_{\text{зар}}/L_{\text{скв}} = 3,4/6,0 = 0,57$; где

 η_{3a6} - коэффициент заполнения скважины забойкой (при полной забойке η_{3a6} =1;

f - коэффициент крепости пород, <math>f = 9;

d – диаметр скважины, d = 0.125 м;

а – расстояние между скважинами, а=3,5 м

Границы опасной зоны для людей (по разлету кусков) устанавливаются проектом не менее 300 метров. Безопасные расстояния от места взрыва до механизмов, зданий, сооружений определяются в проекте на взрыв с учетом конкретных условий.

Расстояния, на которых колебания грунта, вызываемые однократным взрывом сосредоточенного заряда ВВ, становятся безопасными для зданий и сооружений, определяются по формуле:

$$r_c = K_c K_c \alpha \sqrt[3]{Q} ,$$

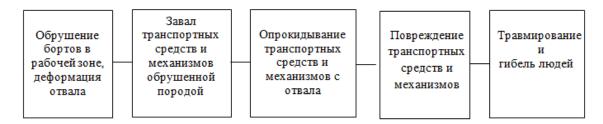
 r_{a} - расстояние от места взрыва до охраняемого здания (сооружения), м; где

- K_{ϵ} коэффициент, зависящий от свойств грунта в основании охраняемого здания (сооружения);
- K_{c} коэффициент, зависящий от типа здания (сооружения) и характера застройки;
 - α коэффициент, зависящий от условий взрывания;
 - *Q* масса заряда, кг

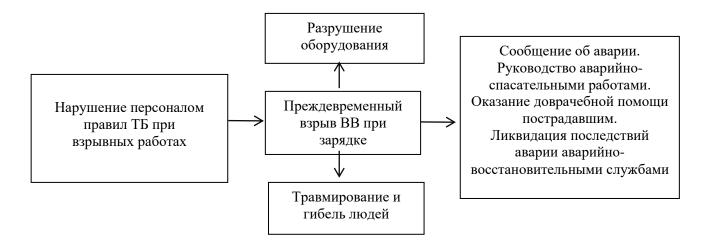
$$r_c = 5 * 1 * 1 \sqrt[3]{Q} = 189$$
M

9.1.1 Блок-схема анализа вероятных сценариев возникновения и развития аварий, инцидентов

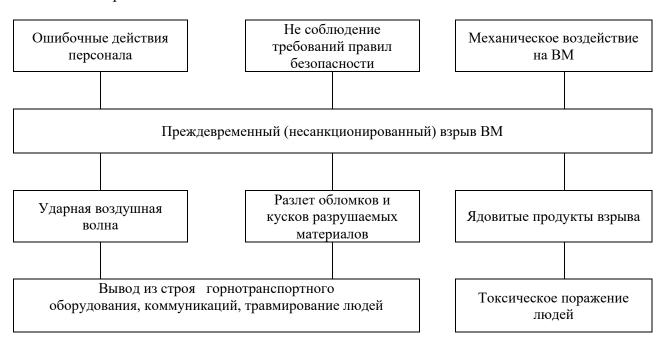
2. Затопление нижнего горизонта карьера водой

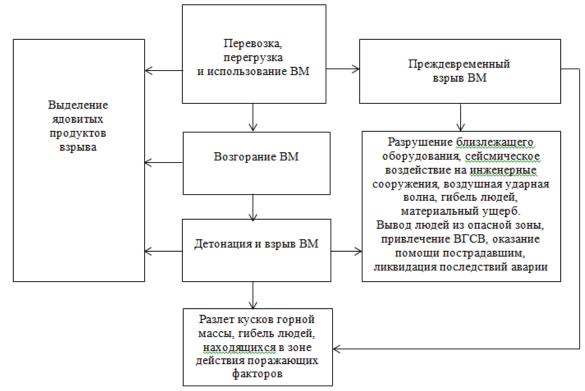

3. Обрушение (оползень) горной массы с борта (уступа) карьера

4. Разрушение уступа/борта карьера или борта отвала


5. Обрушение бортов в рабочей зоне, деформация отвала

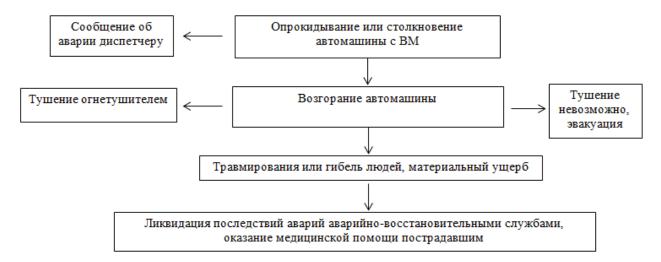
6. Поломка вращающих частей и механизмов буровой установки

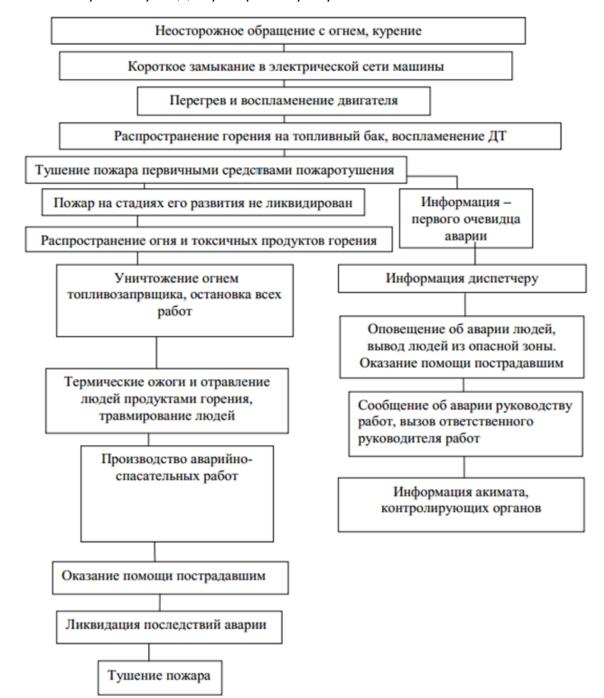

7. Преждевременный взрыв ВВ при зарядке


8. Преждевременный взрыв на карьере

9. Преждевременный (несанкционированный) взрыв ВВ при проведении массового взрыва


10. Авария при перевозке, перегрузки и использование ВМ


11. Опрокидывание или столкновение автомашины при ДТП


12. Падение техники (оборудования) с уступа карьера

13. Опрокидывание или столкновение автомашины с ВМ

14. Пожар или взрыв ДТ при транспортировке

9.2 Возможные неблагоприятные последствия для окружающей среды, которые могут возникнуть в результате инцидента, аварии

1) Последствия аварий и инцидентов

Последствиями аварий и чрезвычайных ситуаций могут являться: разрушение и уничтожение горных выработок. травмирование, и даже гибель людей, находящихся в зоне действия поражающих факторов.

Возможно повреждение транспортных коммуникаций, горнотранспортного оборудования и инженерных сооружений в карьерах, как следствие, нарушение технологического процесса и отвлечение материально-технических ресурсов на ликвидацию последствий.

При добычных работах:

- обрушение бортов карьера;
- завал транспортных средств и механизмов;
- опрокидывание транспортных средств и механизмов в карьер;
- завал рабочих находящихся в зоне обрушения;
- травмирование или гибель людей.

При взрывных работах:

- преждевременный взрыв на взрывном блоке со смертью людей и выбросом вредных веществ;
- преждевременный (несанкционированный) взрыв ВМ при проведении массовых взрывов на карьере;
 - возгорание автомобиля с ВМ с последующим взрывом и смертью людей.

Вероятность возникновения взрыва 3.2×10^{-2} или 1 взрыв за 31 год.

Опасные факторы пожара и взрыва:

- пламя и искры, повышенная температура окружающей среды;
- токсичные продукты горения и термического разложения, дым;
- ударная волна.

Вторичные проявления опасных факторов пожара и взрыва: осколки, части разрушившегося оборудования.

горном оборудовании, возможно, их повреждение с При пожаре на последующим ремонтом.

При обрушении борта карьера или падении машин с уступа, отвала возможно повреждение бурового или погрузочного оборудования, травмирование людей.

При обрушении (оползень) горной массы с борта карьера (уступа):

- разрушение бортов траншей, уступов, транспортных берм;
- разрушение машин и оборудования находящегося в зоне схождения оползня;
- травмирование и гибель персонала карьера находящегося в зоне оползня;
- оставление под грязевым потоком техники и оборудования;
- материальный ущерб.

При сдвижении бортов и уступов карьера:

- разрушение бортов траншей, уступов, транспортных берм;
- разрушение машин и оборудования находящегося в зоне обрушения;
- травмирование и гибель персонала карьера находящегося в зоне обрушения;
- оставление под завалом техники и оборудования.

При затоплении карьера возможно затопление горного оборудования на нижних горизонтах карьера и как следствие приостановка ведения горных работ и дополнительные материальные затраты на ремонт, снижение производительности карьера и затраты на водоотлив.

При дорожно-транспортном происшествии:

- вывод из строя автомобиля;
- гибель и травмы людей, участвовавших в ДТП;
- в случае утечки нефтепродуктов возможно загрязнение грунта (впитывание);
- материальный ущерб.

Стационарно установленные подъемные механизмы:

- обрыв каната;
- падение груза;
- деформация запорного устройства элементов заклинивание грузоподъемного механизма, падение груза;
- несчастные случаи с работниками, находящимися в опасной зоне работы грузоподъемного механизма.
- 2) Зоны действия основных поражающих факторов (оценка зоны действия основных поражающих факторов при различных сценариях аварий)

При аварии, связанной с обрушением (оползнем) горной массы с борта карьера (уступа) - зона действия основных поражающих факторов – 3-5 метров по периметру карьера.

При оползневых явлениях на отвале (деформации отвала) зона действия основных поражающих факторов – район отвала.

При аварии, связанной с затоплением карьера - зона действия основных поражающих факторов – затопленный горизонт карьера.

При аварии на автомобильном транспорте возможна утечка и пожар нефтепродуктов вокруг автомобиля. Зона действия основных поражающих факторов участок дорожно-транспортного происшествия.

При пожаре или взрыве ДТ при транспортировке основными поражающими факторами являются ударная воздушная волна, разлет осколков, пламя и токсичные продукты горения и взрыва ДТ.

Обрушение бортов карьера, опрокидывание в карьер транспортных средств и механизмов трудно прогнозируется и носит локальный характер, не нанося ущерб третьим лицам и работоспособности каких-либо опасных производственных процессов с опасными веществами.

При реализации сценариев аварий, зоны поражения персонала не выйдут за пределы декларируемого объекта.

3) Число пострадавших

При добычных работах – обрушение бортов карьера, опрокидывание в карьер транспортных средств и механизмов трудно прогнозируется и носит локальный характер, не нанося ущерб третьим лицам и работоспособности каких-либо опасных производственных процессов с опасными веществами.

При взрывных работах - возможное число пострадавших 2 человека.

При дорожно-транспортном происшествии - возможное число пострадавших до 2 человек.

При сползании горной массы (оползни) пострадавших не ожидается.

По отказавшим скважинным зарядам - пострадавших нет.

При пожаре или взрыве ДТ при транспортировке число пострадавших ограничивается числом работающих на участке людей.

Стационарно установленные подъемные механизмы – число пострадавших ограничено рабочим персоналом.

В зависимости от вида аварии максимальное число пострадавших на карьере, его объектах и среди персонала может достигать до 2 человек, а смертельно травмированных людей до 1 человека.

Предполагаемые аварийные ситуации распространяются, в основном, на ограниченное количество лиц обслуживающего персонала и не затрагивают население, так как ближайшие населенные пункты находятся за пределами опасных зон.

Безвозвратных потерь среди и населения не ожидается, так как население в зоне действия поражающих факторов отсутствует.

4) Величина возможного ущерба

Согласно требованиям инструкций по техническому расследованию и учету аварий на предприятиях, подконтрольных Комитету по промышленной безопасности, учитывается лишь непосредственный ущерб, нанесенный производственным зданиям и оборудованию; выплаты пострадавшим; непредусмотренные выплаты заработной платы за все работы по ликвидации аварии; затраты на ремонт и восстановление оборудования и прочие расходы.

При оценке ущерба от аварии на опасном производственном объекте, подсчитываются те составляющие ущерба, для которых известны исходные данные. Окончательный ущерб от аварии рассчитывается после окончания сроков расследования аварии и получения всех необходимых данных.

Структура ущерба от аварий на опасных производственных объектах складывается из:

- прямых потерь организации, эксплуатирующей опасный производственный объект, П п.п.;
 - затрат на локализацию (ликвидацию) и расследование аварии, П л.а.;
- социально-экономических потерь (затраты, понесенные вследствие гибели и травматизма людей), Π с.э:
 - косвенного ущерба, П н.в;
- экологического ущерба (урон, нанесенный объектам окружающей природной среды), П экол.;
- потерь от выбытия трудовых ресурсов в результате гибели людей или потери ими трудоспособности, Π в.т.р.

Полный ущерб от аварий на опасных производственных объектах может быть выражен в общем виде формулой:

$$\Pi$$
 а = Π п.п + Π л.а + Π с.э + Π н.в + Π экол. + Π в.т.р., тенге

Величина возможного ущерба определяется в каждом случае отдельно, согласно РД 03-496-02 «Методические рекомендации по оценке ущерба от аварий на опасных производственных объектах» и согласно трудовому законодательству о величине выплаты компенсаций за возможный ущерб, нанесенный физическим и юридическим лицам.

Величина возможного ущерба при:

- воспламенении самоходного оборудования (автотракторная техника) стоимость автотракторной техники и стоимость разрушенных элементов коммуникации;
- *пожаре или взрыве ДТ при транспортировке* стоимость уничтоженного взрывом ДТ, уничтоженных машины для доставки ДТ, поврежденных инженерных конструкций, оборудования и машин;
- *опрокидывание транспортных средств и механизмов* стоимость транспортных средств и механизмов;

- взрыве автомашины с ВМ материальный ущерб составит в размере стоимости автомобиля и взрывчатых материалов, доставленных на карьер;
- преждевременном взрыве заряженного блока материальный ущерб определяется упущенной коммерческой выгодой от нереализованной готовой продукции.

Ущерб физическим лицам возмещается по договору обязательного страхования ответственности работодателя за причинение вреда жизни и здоровью работника. Страховая сумма определяется договором обязательного страхования ответственности, то не должна быть менее годового фонда оплаты труда всех работников по категориям персонала. Статья 16 закона Республики Казахстан «Об обязательном страховании гражданско-правовой ответственности работодателя за причинение вреда жизни и здоровью работника при исполнении им трудовых (служебных) обязанностей».

9.3 Примерные масштабы неблагоприятных последствий

9.3.1 Технологические данные о распределении опасного вещества на опасном объекте

№ п/п	Наименование параметра	Параметр	Нормативные источники информации
1.	Наименование вещества	Интерит	
1.1	Химическое	Аммиачно - селитренное BB	
1.2	Торговое	Интерит	Промышленные
2.	Формула		взрывчатые вещества
2.1	Эмпирическая	NH ₄ NO ₃ +A1	M., 1988
2.2	Структурная		Справочник по
3.	Состав, (%) весовой	Аммиачная селитра NH ₄ NO ₃ – 62-63%, Водомасляная эмульсия - 37-38 %	буровзрывным работам. М.:1976 ГОСТ 12.1.007-76
3.1	Основной продукт	Аммиачная селитра NH ₄ NO ₃	Система стандартов
3.2	Примеси	Водомасляная эмульсия	безопасности труда.
4.	Общие данные	Применяется для механизированного и ручного заряжания сухих скважин в патронированном и насыпном виде.	Вредные вещества. Классификация и общие требования
4.1	Теплота взрыва, кДж/кг	1248	безопасности.
4.2	Насыпная плотность при 20°C, г/см ³	0,8-0,9	
5.	Данные о пожаровзрыво- опасности	Пожаро- взрывоопасен.	
6.	Данные о токсичной	Токсичен.	
	опасности	По степени вредного воздействия на организм человека относится ко 2 классу опасности. В организм человека может попадать в виде пыли через органы дыхания, кожу, пищеварительный тракт, вызывая острые и хронические отравления. Действует на кровь, печень, нервную	
		систему. При длительном воздействии вызывает	

		катаракту. К местному воздействию	
		относится раздражение слизистых	
		оболочек и верхних дыхательных	
		путей.	
		При контакте с кожей может вызывать	
		экземы, эритемиты, дерматиты.	
		экземы, эритемиты, дерматиты.	
6.1	ПДК в воздухе рабочей зоны	Окислы азота NO+NO ₂ -0,00026%	
	продуктов взрыва	Окись углерода - СО-0,0017%	
		Сернистый газ SO ₂ - 0,00038%	
7.	Реакционная	Гигроскопичен	ГОСТ 12.1.007-76
	способность		Система стандартов
8.	Запах	Без характерного запаха	безопасности труда.
9.	Коррозионное	Сильное	Вредные вещества.
	воздействие		Классификация и
10.	Меры предосторожности	Оберегать от воздействия огня,	общие требования
		солнечных лучей и атмосферных	безопасности.
		осадков.	
		Герметизация всего оборудования,	
		обеспечение эффективными	
		вентиляционными установками	
		средствами защиты органов дыхания и	
		кожных покровов, глаз – респираторы	
		«Лепесток», Астра-2, РУ-60М, РПГ-67,	
		противогаз марки А, спецодежда,	
		перчатки, защитные кремы, очки	
		защитные.	
11.	Информация о	Отравление продуктами взрыва,	
	воздействии на людей	воздействие ударной воздушной	
		волной.	
12.	Средства защиты	Респиратор, защитные очки,	
		перчатки. Проветривание мест	
		взрыва, орошение.	
13.	Методы перевода	Растворение в воде.	
	вещества в безвредное		
	состояние		
14.	Меры оказания первой	При попадании на кожу немедленно	
	помощи пострадавшим от	смыть струей воды загрязненное	
	воздействия вещества	место.	
		При токсическом воздействии –	
		свежий воздух, покой	
		искусственное дыхание.	
13.	Средства защиты Методы перевода вещества в безвредное состояние Меры оказания первой помощи пострадавшим от	волной. Респиратор, защитные очки, перчатки. Проветривание мест взрыва, орошение. Растворение в воде. При попадании на кожу немедленно смыть струей воды загрязненное место. При токсическом воздействии — свежий воздух, покой	

Дизельное топливо

	T	Augenblioe Tollando	I	
No	Наименование	Параметр	Нормативный источник	
п/п	параметра	· ·	информации	
1.	Название вещества	Дизельное топливо	ГОСТ 305-82	
1.1	Химическое	Продукт переработки нефти (смесь	Топливо дизельное. Технические условия.	
		метана и метилнафталина)	ГОСТ 1667-68	
1.2	Торговое	Дизельное топливо	10011007-00	
2.	Формула			
2.1	Эмпирическая	$C_{14,511}H_{29,120}$ Смесь насыщенных и		
		ароматических углеводородов		
2.2	Структурная	С-Н	Автомобильные топлива,	
3.	Состав, % (весовой)	86%-углерод, 13,5%-водород,	масла и	
		0,5%-кислород, сера, азот	эксплуатационные	
3.1	Основной продукт	Углеводородные соединения	жидкости.	
3.2	Примеси	Cepa 0,2-0,5%	Краткий справочник М,	
	(с идентификацией)	Меркаптановая сера 0,01%	2003	
		Азот, кислород – до 0,1%	Малотоксичные дизели.	
		Mex. примеси – до 0,005%	Особенности	
		Вода – до 0,03%	конструкции, рабочего	
			процесса и испытаний, 1972 ТУ38.101889-81	
4.	Общие данные		17/2 13 36.101667-61	
4.1	Молекулярный вес	203,6		
4.2	Температура кипения,°С	170-360 в зависимости от марки ДТ	ГОСТ 305-82	
	(при давлении 101 кПа)		ГОСТ 1667-68	
4.3	Плотность при 20°C, кг/м ³	Летних до 860	Автомобильные топлива,	
	(при давлении 101 кПа)	Зимних до 840	масла и	
	, ,	Арктических до 830	эксплуатационные	
5.	Данные о взрыво-	Взрывопожароопасен	жидкости. Краткий	
	пожароопасности		справочник М, 2003	
6.	Данные о токсической	ДТ относится к малотоксичным	Малотоксичные дизели. Особенности	
	опасности	веществам 4 класса опасности	конструкции, рабочего	
6.1	ПДК в воздухе рабочей	300 (ПДК углеводородов в воздухе	процесса и испытаний,	
	зоны, мг/м ³	производственных помещений)	1972	
6.2	ПДК в атм. воздухе	1,0	ТУ38.101889-81	
6.3	Летальная токсодоза Ct50	Более 50000 мг/м ³		
6.4	Пороговая токсодоза Ct50			
7.	Реакционная	Отсутствует		
	способность	OleyterByer		
8.	Запах	Резкий		
9.	Коррозионное	Обладает коррозионным	ГОСТ 305-82	
	воздействие	воздействием	Топливо дизельное.	

10.	Меры	Оборудование, аппараты слива и	Технические условия.
	предосторожности	налива, должны быть	,
	•	герметизированы. В помещениях для	ГОСТ 12.1.007-76
		хранения ДТ запрещается обращение	Система стандартов
		с открытым огнём и применение	безопасности труда.
		освещения не во взрывобезопасном	Вредные вещества.
		исполнении.	Классификация и общие
		При работе с топливом не	требования безопасности.
		допускается использовать	
		инструменты, дающие при ударе	
		искру. При разливах – собрать в	Автомобильные топлива,
		отдельную тару, место пролива	масла и
		протереть и присыпать песком с	эксплуатационные
		последующим его удалением.	жидкости. Краткий
		Не допускать образование в воздухе	справочник М, 2003
		взрывоопасных концентраций паров	Малотоксичные дизели.
		ДТ.	Особенности
11.	Информация о	Раздражает слизистую оболочку и	конструкции, рабочего
	воздействии на людей	кожу человека	процесса и испытаний,
12.	Средства защиты	Применение СИЗ и защитных	1972
		кремов, перчаток из маслостойких	
		материалов.	TT 120 101000 01
13.	Методы перевода	Вентиляция, пропарка емкостей.	ТУ38.101889-81
	вещества в безвредное	При загорании ДТ применимы	
	состояние при	следующие средства пожаротушения:	
	чрезвычайных	распыленная вода, пена, углекислый	
	ситуациях	газ, состав СЖБ, перегретый пар;	
		перекрыть поступление ДТ в зону ЧС	
14.	Меры первой помощи	Вывод пострадавшего из зоны	
14.	пострадавшим от	опасности, доступ свежего воздуха,	
	воздействия вещества	искусственное дыхание с подачей	
	возденствия вещества	кислорода. При попадании на	
		открытые участки кожи - смыть	
		тёплой водой с мылом. При	
		попадании на слизистые оболочки	
		промыть прохладной водой и	
		обратится к врачу. При ожогах и	
		отравлениях – госпитализация.	
		отравлениях тоенитализация.	

9.4 Мероприятия по обеспечению промышленной безопасности и защите населения

Для опасных производственных объектов ТОО «Атыгай Голд Майнинг» составляется план ликвидации аварий в соответствии с Законом Республики Казахстан «О гражданской защите», требованиями промышленной безопасности и инструкцией по составлению планов ликвидации аварий.

9.4.1 Система оповещения

1) Локальная система оповещения персонала промышленного объекта и населения

При чрезвычайных ситуациях на месторождении Атыгай для оповещения рабочих и служащих работающей смены используют сети внутреннего радиовещания, телефонной и диспетчерской связи.

Для оповещения используют предупредительный сигнал ГО «Внимание всем». При задействовании сигнала оповещения «Внимание всем!» система оповещения должна обеспечить одновременное и многократно повторяемое доведение информации об угрозе возникновения или возникновении чрезвычайной ситуации до населения и о порядке действий людей в сложившейся ситуации.

Цель оповещения — своевременное информирование руководящего состава и населения о возникновении непосредственной опасности чрезвычайной ситуации и о необходимости принятия мер и защиты.

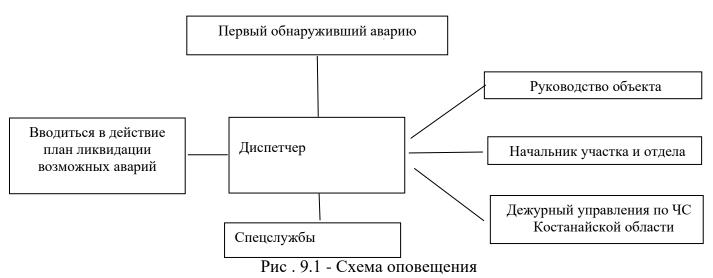
На объекте разработана локальная сеть оповещения персонала о чрезвычайных ситуациях, которая представлена в плане ликвидации аварий.

Локальная система оповещения включает в себя:

- оперативную связь;
- световую сигнализацию;
- звуковую сигнализацию.

Ведется регулярный контроль за состоянием и качеством связи, а также осуществляется своевременный её ремонт. Исправность аварийной сигнализации и других систем оповещения рабочих об аварии систематически проверяется в установленные сроки.

Учитывая, что в зоне действия поражающих факторов население отсутствует, при возникновении ЧС оповещение населения не требуется.


2) Схемы и порядок оповещения об авариях, инцидентах

Оповещение персонала и руководящих органов о чрезвычайной ситуации на промышленном объекте происходит согласно плану ликвидации аварии, где приводится схема оповещения, учитывающая характер и уровень опасности аварийной ситуации, и список оповещаемых лиц с указанием номера телефона.

Согласно схемы и порядка оповещения каждый работник рудника, обнаруживший аварию или ее признаки, обязан сообщить об аварии диспетчеру и, при возможности, горному мастеру.

Диспетчер, получив сообщение об аварии, немедленно извещает об аварии, согласно списку оповещений, должностных лиц и учреждения. Схема оповещения находится у диспетчера предприятия.

Схема оповещения

3) Требования к передаваемой при оповещении информации

Передаваемая при оповещении информация о чрезвычайных ситуациях должна быть точной, краткой и четкой, а главное — своевременной. Информация передается в соответствии с полученным или утвержденным текстом. Какие-либо изменения и дополнения к полученной информации не допускаются. Получаемая и передаваемая информация должны фиксироваться в журнале с отображением полного текста, даты и времени, фамилии лица, получившего или передавшего информацию.

Информация должна содержать:

- место и время аварии;
- характер и масштаб аварии;
- наличие и количество пострадавших;
- принимаемые меры по локализации и ликвидации возникшей аварийной ситуации.

Специальных мер по оповещению населения о чрезвычайных ситуациях на объекте не требуется, т.к. в зоне действия поражающих факторов постоянно проживающее население отсутствует.

Во время поступления сигнала об аварии включается сирена.

9.4.2 Средства и мероприятия по защите людей

1) Мероприятия по созданию и поддержанию готовности к применению сил и средств

На объекте будет разработан и утвержден План ликвидации аварий, где предусмотрены мероприятия по созданию и поддержанию готовности к применению сил и средств, и определены необходимые меры по защите персонала.

На предприятии создаются и поддерживаются в рабочем состоянии локальная система оповещения, аварийно-спасательные формирования.

На дороге, ведущей на территорию предприятия, установлен КПП, где осуществляется строгий пропускной режим, ограничен проезд постороннего автотранспорта, не допускается проникновение посторонних лиц на территорию.

Проводится обучение персонала способам защиты и действиям при аварии.

Проводятся периодические инструктажи и обучение персонала способам защиты и действиям при авариях.

Создан запас средств индивидуальной и противопожарной защиты, а также материально-технических средств.

Осуществляется ежесменное поддержание в готовности средств пожаротушения и круглосуточный визуальный надзор за объектами.

Имеется автотранспорт для эвакуации людей в случае возникновения ЧС.

Организованы службы технического надзора, которые ведут учет, анализ и оценку работ по охране труда, проводят контроль за состоянием охраны труда, планируют работы по охране труда.

2) Мероприятия по обучению работников

Безопасность работы на объектах ТОО «Атыгай Голд Майнинг» может быть достигнута в условиях:

- технически грамотной эксплуатации оборудования;
- знаниями всех работниками опасных свойств, применяемых процессов, продуктов и способов защиты;
- безошибочных действий персонала при возникновении сбоев в работе Проектная компания "АНТАЛ"

оборудования и в аварийных ситуациях;

- обеспечения согласованных действий персонала различных служб по ликвидации аварии;
- систематического обучения персонала и проведения регулярных учений и тренировок по предупреждению и ликвидации аварийных ситуаций.

Эти условия и действия выполняются путем создания эффективной системы обучения и подготовки персонала профессиональным навыкам и обеспечению промышленной безопасности, инструктажа мерам безопасности и действиям в аварийных ситуациях персонала ТОО «Атыгай Голд Майнинг» при поступлении на работу, а также при двухразовом ежегодном инструктаже.

Персонал аварийно-спасательных формирований привлекается к тренировкам 2 раза в год.

Каждый работник, принимаемый на работу, должен проходить инструктаж по безопасности труда с записью в личной карточке проведения инструктажей, стажировку под руководством опытного наставника и допускаться к самостоятельной работе только после окончания стажировки, проверки знаний по безопасным способам работы.

Всем вновь принимаемым рабочим выдаются под роспись инструкции, разрабатываемые по профессиям и видам работ, эксплуатации оборудования, проведению работ повышенной опасности, по действиям обслуживающего персонала при возможных аварийных ситуациях. Инструкции разрабатываются в соответствии с документами, регламентирующими требования по безопасному ведению работ. Требования инструкций изучаются В процессе профессиональной противоаварийной подготовки персонала.

Ежеголно должна проводиться аттестация работников производственных инструкций по охране труда и технике безопасности в аттестационной комиссии предприятия. Аттестация стимулирует профессиональную подготовку инженерно-технических работников. Итоги аттестации являются основой для формирования резерва специалистов и руководителей.

В соответствии с ежегодным планом основных мероприятий по вопросам ГО осуществляется области гражданской подготовка персонала В предупреждения и ликвидации последствий аварий и ЧС, а также проводится систематическое обучение персонала невоенизированных формирований ГО и персонала, не вошедшего в формирования ГО, способам защиты и действий при авариях.

Для совершенствования навыков действий при чрезвычайных ситуациях организуется проведение объектовых тренировок по ликвидации чрезвычайных ситуаций по утвержденным планам учебных тренировок.

На предприятии проводится обучение персонала правилам пользования средствами индивидуальной защиты и приемам оказания первой медицинской помоши.

Мероприятия по обучению работников ежегодно пересматриваются утверждаются с последующим их изучением персоналом предприятия.

3) Мероприятия по защите персонала

Мероприятия по защите персонала предусматривают:

- способы оповещения об аварии всех участников;
- наличие путей выхода из аварийного участка;
- назначение лиц, ответственных за выполнение отдельных мероприятий и

расстановка постов безопасности;

- использование транспорта для быстрого удаления людей из аварийного участка;
 - обеспечение персонала средствами индивидуальной защиты;
 - обучение персонала действиям в чрезвычайных ситуациях;
 - применение безопасного инструмента при ликвидации аварии;
- разработку плана ликвидации аварий и проведение систематических учебных тренировок по ПЛА;
- обеспеченность материально-техническими запасами, имуществом, оборудованием;
 - ограничение на передвижение людей и грузов вблизи особоопасных объектов;
- создание гигиенических нормативных уровней по физическим, химическим и другим вредным факторам на рабочих местах;
 - автоматизацию и механизацию труда;
- внедрение прогрессивных технологий и приемов технического обслуживания и ремонта технологического оборудования;
- постоянный контроль за состоянием параметров технологических процессов и оборудования;
 - обеспечение пожарной безопасности;
- рабочих комплектацию всех мест производственного персонала медицинскими средствами первой помощи;
- приведение в готовность И задействование мероприятиях предупреждению и ликвидации чрезвычайных ситуациях штатных медицинских формирований;
- оказание медицинской помощи раненым и пострадавшим с их госпитализацией в медицинских центрах;
- обучение персонала по оказанию первой медицинской помощи пострадавшим при авариях и несчастных случаях;
- пропаганда знаний по ведению здорового образа жизни и по оказанию само- и взаимопомощи;
- неукоснительное соблюдение отраслевых норм и требований по эксплуатации и ремонту зданий, сооружений и оборудования.

4) Порядок действия сил и средств

Порядок действия сил и средств по предупреждению и ликвидации чрезвычайных ситуаций предусматривается Планом ликвидации аварий.

- случае возникновения чрезвычайных ситуаций и при ликвидации чрезвычайных ситуаций на предприятии создается предупреждению и ликвидации чрезвычайных ситуаций. Персонал объекта действует согласно планам ликвидации аварий. Основными положениями, которых являются:
- немедленная остановка аварийного оборудования или принятия решений по ликвидации ЧС по заранее разработанному сценарию;
 - оценка обстановки;
 - оповещение рабочих и специалистов по заранее разработанной схеме;
 - эвакуация (вывод) персонала в безопасную зону;
- приведение в действие технических средств и сил по локализации и ликвидации аварийной ситуации и чрезвычайной обстановки;
 - применение индивидуальных средств защиты;
 - оказание медицинской помощи.

9.4.3 Противопожарная защита

Согласно Закону Республики Казахстан «О гражданской защите», обеспечение пожарной безопасности и пожаротушения возлагается на руководителя предприятия.

Пожарную безопасность на промышленной площадке, участках работ и рабочих местах обеспечивают мероприятия в соответствии с требованиями «Правил пожарной безопасности в РК», утвержденных Постановлением Правительства РК, от 9.10.2014 Γ, №1077.

№ п/п	Наименование показателей	Марка	Количество (шт.)
1	Стационарная пожарная техника	-	-
2	Передвижная пожарная техника	поливооросительная машина	1
3	Автоматическая система пожаротушения	-	-
4	Первичные средства пожаротушения		Согласно
			нормативам
5	Система дымоудаления	-	-
6	Пожарная сигнализация	-	=
7	Пожарные водоемы	-	-
	(резервуарные запасы воды)		
8	Пожарные гидранты	-	-
9	Пожарные рукава	-	-

Техническое состояние подъездных путей – удовлетворительное.

На территории месторождения размещены пожарные щиты со следующим минимальным набором пожарного инвентаря, шт.:

топоров -2, ломов и лопат -2, багров железных -2, ведер, окрашенных в красный цвет -2, огнетушителей -2.

На экскаваторах, бульдозерах и автосамосвалах имеются углекислотные и пенные огнетушители, ящики с песком, простейший противопожарный инвентарь.

9.4.4 Резервы финансовых и материальных ресурсов

На период эксплуатации месторождения Атыгай для локализации и ликвидации последствий аварий должны быть заложены материальные и финансовые ресурсы.

No	Наименование показателей	Ед. изм.	Количество
Π/Π			
			Предусматриваются
1.	Финансовые средства	тыс. тенге	согласно
			утвержденного
			бюджета и плана ГО
2.	Материально-технические резервы по основному ас	сортименту:	
	- электростанции передвижные	шт.	-
	- компрессорные станции передвижного типа	шт.	-
	- экскаваторы одноковшовые	шт.	3
	- бульдозеры	шт.	2
	- автомобили-самосвалы	шт.	4
	- молотки отбойные	шт.	-
	- домкраты гидравлические	шт.	-
	- комплект газосварочного оборудования	шт.	-
	- пиломатериалы	M^3	-

No	Наименование показателей	Ед. изм.	Количество
Π/Π			
	- палатки	шт.	-
	- юрты	шт.	-
	- печи обогревательные	шт.	-
3.	Укомплектованность медицинским имуществом в о	сновном ассорт	гименте:
	- медицинские сумки с набором лекарств	шт.	
	- средства дезинфекции	шт.	
	- санитарные носилки	шт.	В наличии
	- пакеты перевязочные	шт.	
4.	Теплая одежда:		
	- куртки ватные	шт.	Согласно
	- брюки ватные	шт.	штатному
	- рукавицы меховые	пар.	расписанию
	- ботинки кирзовые	пар	

Резервы финансовых и материальных ресурсов дополняются в зависимости от масштабов вероятных аварий, инцидентов на опасном объекте с учетом его специфики.

9.4.5 Организации медицинского обеспечения в случае аварий, инцидентов

1) Состав сил медицинского обеспечения на опасном объекте

На предприятии организован пункт первой медицинской помощи, где предусматривается медицинское обслуживание трудящихся. Пункт медицинской помощи оборудован телефонной связью и обеспечен необходимыми средствами для оказания помощи.

На каждом рабочем месте имеются аптечки первой помощи с необходимой номенклатурой лекарственных средств.

Для доставки пострадавших или внезапно заболевших на работе в лечебное учреждение предусмотрена санитарная машина. В санитарной машине должна быть теплая одежда и одеяла, необходимые для перевозки пострадавших в зимнее время года.

Работники проходят обязательные предварительные (при поступлении на работу) и периодические медицинские осмотры с учетом профиля и условий их работы.

Допуском к работе служат результаты предварительного и периодического медицинского осмотра. С целью выявления профессиональных заболеваний ежегодно проводится профилактический осмотр персонала.

2) Порядок оказания доврачебной помощи пострадавшим

Рабочие и служащие проходят обязательное обучение по оказанию первой медицинской помощи пострадавшему. Персонал обучен способам самопомощи и взаимопомощи при ожогах, отравлениях, ушибах, переломах и др.

Доврачебная помощь оказывается пострадавшему свидетелями происшествия, которыми сообщается о несчастном случае лицу технического надзора. В случае, если пострадавший находился в опасном месте, его необходимо эвакуировать (вынести) в безопасное место. При передаче пострадавшего врачу, оказывающие первую помощь должны кратко изложить причину несчастного случая, рассказать о мерах, принятых при оказании помощи, времени, прошедшем с момента несчастного случая. В случае необходимости госпитализации пострадавший доставляется на транспорте больницу.

Порядок оказания доврачебной помощи пострадавшим при:

- остановке дыхания, потери пульса. Дать доступ чистому воздуху, освободите от стесняющей одежды. Запрокиньте голову назад, приподнимите подбородок. Убедитесь, что рот свободен. Если дыхания нет. Сделайте искусственное дыхание изо рта в рот. Для этого расположите тыльную часть ладони чуть ниже середины грудины. Другую руку положите сверху первой. Надавите на грудную клетку 15 раз, затем зажав нос и прижав свой рот ко рту пострадавшего, сделать два глубоких выдоха. Повторять процедуру до восстановления дыхания;
- кровотечении и ампутации. Наложить на кровоточащую рану, давящую повязку из чистой салфетки, при необходимости наложить новый материал на старый. При кровотечении на конечности, наложить давящую повязку и жгут выше раны с указанием времени наложения, через 1,5 часа жгут ослабить и при необходимости сместить. Рану бинтовать крепко, но не туго. При ампутации конечности, завернуть ампутированную часть в марлю или полотенце, поместить ее в полиэтиленовый пакет, а затем в лед. Срочно доставить больного в больницу;
- тепловом ожоге. Потушить пламя на одежде, перекатывая человека по земле. При необходимости сделать искусственное дыхание. Освободить пострадавшего от одежды, волдыри и ожоги не трогать, срочно доставить в больницу;
- химическом ожоге. Быстро смойте химикаты с кожи, обильно поливая в течение 15 минут. При отсутствии дыхания, провести искусственную вентиляцию легких. Не трогайте ожоговые волдыри. Укройте чистой простыней, приподнимите ноги;
- электроожогах и травмах. Обесточить пострадавшего, при необходимости сделать искусственное дыхание. Тепло укрыть и доставить в больницу;
- переломе костей. Определить поврежденный участок тепа, в случае открытого перелома прикрыть место чистой салфеткой. Наложить шину на конечность в том положении, в котором она находится. В случае перелома плеча, ключицы, локтя, поместить руку в поддерживающую повязку и прибинтовать к телу. При переломе руки, наложить шину и плотно зафиксировать. Применить косыночную повязку. При подозрении на перелом позвоночника больного осторожно положить на жесткую поверхность и зафиксировать тело полосками материи или клейкой ленты. При переломе бедра, больного поместить на жесткую горизонтальную поверхность и зафиксировать ногу в одном положении;
- травме глаз. При ударе или травме положить на глаз лед, завернутый в ткань. При порезе накрыть глаза стерильными салфетками и слабо забинтовать, срочно доставить больного в травмпункт. При попадании инородного тела, накрыть глаза салфеткой и срочно доставить пострадавшего в больницу.

9.4.6 Информирование общественности

9.4.6.1 Порядок информирования населения и местного исполнительного органа

В соответствии с законом Республики Казахстан «О гражданской защите» организации обязаны предоставлять в установленном порядке информацию, оповещать работников об угрозе возникновения или о возникновении чрезвычайных ситуаций.

Порядок информирования об угрозе или возникновении чрезвычайной ситуации отражен в «Плане ликвидации аварий», где имеется список должностных лиц и организаций, которые должны быть немедленно извещены об аварии.

Диспетчер объекта, получив извещение об аварии, немедленно с помощью телефонной связи оповещает по этому списку должностных лиц и организации, и поддерживает непрерывную связь с руководителями работ по ликвидации аварии.

Руководитель объекта обязан незамедлительно сообщить о происшедшей аварии, местным органам по госконтролю за чрезвычайными ситуациями и промышленной безопасностью, администрации города и органам прокуратуры.

Информирование местного исполнительного органа и управления по ЧС об угрозе или возникновении ЧС осуществляется по телефону незамедлительно. Уточнение информации о ходе работ по локализации и ликвидации последствий ЧС производится каждый час в течение действия ЧС.

Информация передается за подписью руководителя предприятия, который несет ответственность за переданную информацию.

Информация должна содержать: дату, время, место, причину возникновения чрезвычайной ситуации, количество пострадавших (в том числе погибших), характеристику и масштабы чрезвычайной ситуации, влияние на работу других отраслей, ущерб жилому фонду, материальный ущерб, возможность справиться собственными силами, ориентировочные сроки ликвидации чрезвычайной ситуации, дополнительные силы и средства необходимые для ликвидации последствий чрезвычайной ситуации, краткую характеристику работ по ликвидации последствий чрезвычайной ситуации.

При возникновении ЧС информирование населения не требуется, так как оно находится вне зоны действия поражающих факторов.

9.5 Профилактика и ранее предупреждение инцидентов аварий, их последствий

Технические решения по обеспечению безопасности

Работы на объектах ТОО «Атыгай Голд Майнинг» должны производиться в соответствии с «Правилами обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы», утвержденные приказом Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года №352, а также действующими в Республике Казахстан нормативными документами по безопасному производству горных работ.

- 1) Решения по исключению разгерметизации оборудования и предупреждению выбросов опасных веществ
- В целях исключения разгерметизации оборудования и предупреждения аварийных выбросов опасных веществ предусматривается:
 - плановое производство осмотров, технического обслуживания и ремонтов;
- ознакомление и выдача обслуживающему персоналу в необходимом направленных безопасное проведение инструкций, на количестве предупреждение возможных аварий и принятие необходимых мер в случае их
 - регулярный осмотр оборудования, в котором перевозится и заряжается ВВ;

- перемещение, хранение и использование всех поступающих в рудник ВМ в заводских упаковках.

При производстве взрывных работ и работ с ВМ необходимо проводить мероприятия обеспечению безопасности персонала взрывных предупреждению отравлений людей пылью ВВ и ядовитыми продуктами взрывов, а также комплекс мер, исключающих возможность преждевременного взрыва ВМ.

Эксплуатация оборудования, механизмов, инструмента состоянии или с неисправными устройствами безопасности (блокировочные, фиксирующие и сигнальные приспособления и приборы), а также при нагрузках и давлениях выше паспортных запрещается.

Пуск в эксплуатацию вновь смонтированного или модернизированного оборудования осуществляется комиссией после проверки соответствия его проекту, требованиям правил технической эксплуатации.

Технологические системы оснащаются необходимыми средствами контроля, защиты и блокировки, обеспечивающих их безопасную эксплуатацию.

Проведение работ по техническому обслуживанию и ремонту оборудования, предусмотрено согласно отраслевым правилам технической эксплуатации.

Техническое обслуживание и ремонт оборудования производится утвержденным техническим руководителем Графикам.

В целях исключения разгерметизации оборудования и предупреждения аварийных выбросов ВВ в окружающую среду все ВВ хранятся в заводских упаковках.

Для исключения разгерметизации зарядного оборудования и предупреждения просыпи ВВ, при зарядке ежесменно производится техническое обслуживание зарядных устройств, согласно графикам ППР, утвержденных главным инженером рудника, производится техническое обслуживание и ремонт зарядного оборудования, капитальные ремонты осуществляет завод изготовитель.

При загрузке ВВ в автомобильные зарядчики, загрузочные шнеки оборудуются специальными рукавами, опускаемыми в проем загрузочного окна бункера зарядчика, исключающие возможность выброса ВВ в окружающую среду.

Эффективность борьбы с загрязнением воздушного бассейна пылью и газами достигается внедрением в технологические процессы комплекса инженернотехнических и организационных мероприятий:

- орошение забоев экскаваторов водой при погрузке в автосамосвалы;
- орошение автомобильных дорог;

оборудования, Запрещается эксплуатация механизмов, инструмента или с неисправными устройствами состоянии безопасности (блокировочные, фиксирующие и сигнальные приспособления, приборы).

Технологические системы должны быть оснащены необходимыми средствами контроля, защиты и блокировки, обеспечивающими их безопасную эксплуатацию.

С целью предотвращения опасных ситуаций, возникающих вследствие разрушающих деформаций, на карьерах организуется специальная маркшейдерская сеть для ведения инструментальных наблюдений за деформациями дневной поверхности, примыкающей к бортам карьерах, которая позволяет контролировать деформации прибортового массива.

Горные выработки карьеров в местах, представляющих опасность падения в них людей, животных, а также провалы, оползневые участки, воронки должны быть проволокой, быть ограждены колючей должны выставлены также предупреждающие знаки, освещенные в темное время суток.

К управлению горными и транспортными машинами допускаются лица, прошедшие специальное обучение, сдавшие экзамены и получившие удостоверение на право управления соответствующей техникой.

2) Решения, направленные на предупреждение и локализацию выбросов опасных веществ

Все используемое горное оборудование должно эксплуатироваться в режимах и сроках согласно проектным решениям и указаниям, предоставляемым в комплекте поставки на каждое оборудование.

Для ликвидации возможных аварий на месторождении разрабатывается план ликвидации аварий, с которым должны быть ознакомлены все работники.

Применение производственного оборудования, удовлетворяющего требованиям нормативной документации и не являющегося источником травматизма и профессиональных заболеваний.

Применение надежно действующих и регулярно проверяемых контрольноизмерительных приборов, устройств противоаварийной защиты, средств получения и переработки информации.

Применение быстродействующих средств локализации опасных и вредных производственных факторов.

Эксплуатация оборудования В соответствии его техническими характеристиками.

Рациональное размещение производственного оборудования и рабочих мест.

Производство работ повышенной опасности осуществляется в соответствии с инструкцией, устанавливающей требования к организации И безопасному проведению этих работ.

Технологические установки оснащаются современными системами автоматического регулирования параметров процесса эффективными быстродействующими системами приведения технологических параметров регламентным значениям.

Для защиты от шума и механического захвата, вибрации двигающихся частей оборудования, всё оборудование оснащено кожухами, демпфирующими опорами, сетчатым ограждением.

В служебных помещениях предусматриваются аптечки, укомплектованные перевязочным материалом и медикаментами.

Предусмотренные мероприятия по технике безопасности и промышленной санитарии позволяют до минимума сократить и исключить воздействие оборудования и химических веществ на персонал.

Проводятся плановые профилактические работы, обучение и инструктаж обслуживающего ГПМ персонала безопасным методам работы, вывод в ремонт ГПМ, изъятие из эксплуатации неисправных приспособлений и тары. Осмотры, техническое обслуживание и ремонт проводятся согласно утвержденного графика.

Для обслуживания ГПМ при погрузо-разгрузочных работах допускаются лица, прошедшие обучение и имеющие удостоверение на право производства этих работ, прошедшие проверку знаний в экзаменационной комиссии.

Для предотвращения постороннего вмешательства в деятельность объекта предусмотрена охрана.

3) Решения по обеспечению взрыво-пожаробезопасности

Пожарную безопасность на участках работ и рабочих местах обеспечивают мероприятия в соответствии с требованиями «Правил пожарной безопасности в РК», утв. Постановлением Правительства РК, от 9 октября 2014 г, №1077.

Для обеспечения режима пожарной безопасности при работе на горной технике, автотехнике на территории месторождения должны быть разработаны противопожарные мероприятия по тушению пожаров и возгораний, а также профилактические мероприятия среди рабочих и служащих.

Временные сооружения, а также подсобные сооружения обеспечиваются первичными средствами пожаротушения в соответствии Правилами пожарной безопасности в РК.

Для обеспечения взрывопожаробезопасности карьерное оборудование оснащено первичными средствами пожаротушения – порошковыми огнетушителями ОПУ-2, ОПУ-8.

Помимо противопожарного оборудования зданий и сооружений, на территории складов, зданий будут размещены пожарные щиты со следующим минимальным набором пожарного инвентаря, шт: топоров -2, ломов и лопат -2, багров железных -2, ведер, окрашенных в красный цвет -2, огнетушителей -2.

Оповещение о пожаре осуществляется с помощью мобильных радиостанций.

Другие работы, связанные с выполнением требований осуществляются в соответствии с действующими инструкциями, правилами и другими государственными и ведомственными нормативными документами.

4) Описание систем автоматического регулирования, блокировок, сигнализации

Технологической частью Плана горных работ принято типовое оборудование и рациональные конструктивно-компоновочные решения, обеспечивающие надежное и устойчивое ведение технологического процесса, максимальную механизацию процесса основного производства.

Основной технологический процесс механизирован, обеспечена автоматизация регулирования и контроля технологического процесса, обслуживающий персонал контролирует работу оборудования визуально и по контрольно-измерительным приборам.

Трудоемкие операции предусматривается выполнять c помощью приспособлений, поставляемых комплектно оборудованием заводамиизготовителями, использованием механизированного ручного инструмента подъемно-транспортного оборудования.

Система автоматизации разработана в соответствии с комплексом стандартов на автоматизированные системы.

Грузоподъемные приборами безопасности механизмы оборудованы И блокировки.

Автосамосвалы оборудованы сигнализаторами заднего хода.

Горные машины оборудованы звуковой сигнализацией.

Все электроприводы экскаваторов оборудованы электрической блокировкой, исключающей самозапуск механизмов после подачи напряжения питания.

Эксплуатация оборудования, механизмов, инструмента В неисправном состоянии или при неисправных устройствах безопасности (блокировочные, фиксирующие, сигнальные приспособления и приборы), при нагрузках и давлениях выше паспортных не допускается.

Для передачи распоряжений, сообщений, поиска необходимых лиц, находящихся на территории месторождения, а также для предупреждения персонала о начале и окончании взрывных работ предусмотрено звуковое (электрическая сирена) оповещение.

Сигнализация об аварии производится сиреной, радиотелефоном.

10. МЕРЫ ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ СУЩЕСТВЕННЫХ воздействий ПЛАНИРУЕМОЙ выявленных ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ

Основная задача при деятельности предприятия состоит в безопасном проведении всего комплекса работ с отсутствием вреда здоровью персонала и минимальном воздействии на окружающую среду.

Атмосферный воздух

Основными источниками воздействия на атмосферный воздух на период проведения работ будут являться: автотранспорт и спецтехника. Применение мер по смягчению оказываемого техникой и механизмами воздействия на атмосферный воздух не предусматривается ввиду отсутствия в практике технологий, позволяющих исключать или снизить воздействие.

Для создания нормальных санитарно-гигиенических условий труда обеспечения минимального уровня воздействия на атмосферный воздух проектом предусмотрено осуществление следующих мероприятий предупредительного характера:

- для предупреждения загрязнения воздуха производить проверку двигателей всех механизмов на токсичность выхлопных газов;
 - соблюдать правила и технику пожарной безопасности при эксплуатации.
- В комплекс организационно-технических мероприятий, направленных на снижение воздействия на атмосферный воздух, включаются:
- -при инструктаже обслуживающего персонала, водителей обращается особое внимание о необходимости работы двигателей на оптимальных режимах, с целью уменьшения выбросов;
- выпуске промышленностью нейтрализаторов выхлопных газов, соответствующих используемым машинам, прорабатывается возможность установки на автомобилях.

Таким образом, остаточные воздействия намечаемой деятельности, используемые при оценке величины и значимости воздействий на воздушную среду, ввиду отсутствия возможных смягчающих мероприятий, принимаются на уровне определенных первоначальных воздействий.

Мониторинг за состоянием загрязнения атмосферного воздуха

Мониторинг загрязнения атмосферного воздуха предусматривает определение концентраций загрязняющих веществ на границах СЗЗ. Производственный мониторинг воздушного бассейна включает в себя организацию наблюдений, сбор данных, проведение анализа и оценки воздействия производственной деятельности предприятия на состояние атмосферного воздуха.

Для оценки влияния производственных объектов промышленной площадки на окружающую среду в рамках производственного мониторинга должны быть выполнены работы по изучению загрязнения атмосферного воздуха в зоне влияния предприятия на границе санитарно-защитной зоны.

Количество источников выбросов на период эксплуатации карьеров составит 18 единиц, из них 5 организованных и 13 – неорганизованных источников.

Валовое количество выбрасываемых вредных веществ на период эксплуатации – 166.72054 т/год; секундное количество выбрасываемых вредных веществ на период эксплуатации - 17.37251 г/сек.

Периодичность проведения измерений концентраций ЗВ в атмосферном воздухе – 1 раз в квартал на 4 контрольных точках на границе СЗЗ. Наблюдаемыми параметрами будут являться температура воздуха, направление и скорость ветра, содержание в воздухе пыли, окислов азота, оксида углерода, углерода, диоксида серы. В процессе выполнения работ по мониторингу воздействия, изучаются имеющиеся фондовые материалы, а также ведется сбор и обработка материалов по изменению компонентов окружающей среды в зоне воздействия источников загрязнения.

В таблице 10.1 приведены сведения по мониторингу выбросов загрязняющих веществ.

Таблица 10.1 – План-график контроля атмосферного воздуха на границе санитарнозащитной зоны (СЗЗ)

Точки	Гидро-метереологические	Контролируемое	Периодичность
контроля	характеристики	вещество	
1	2	3	4
Точка №1,	Температура воздуха	Азота (IV) диоксид	1 раз в квартал
наветренная	Направление ветра	Углерод	
сторона	Скорость ветра	Сера диоксид	
	Атмосферное давление	Углерод оксид	
		Пыль неорганическая	
Точка №2,	Температура воздуха	Азота (IV) диоксид	1 раз в квартал
подветренная	Направление ветра	Углерод	
сторона	Скорость ветра	Сера диоксид	
	Атмосферное давление	Углерод оксид	
		Пыль неорганическая	
Точка №3,	Температура воздуха	Азота (IV) диоксид	1 раз в квартал
подветренная	Направление ветра	Углерод	
сторона	Скорость ветра	Сера диоксид	
	Атмосферное давление	Углерод оксид	
		Пыль неорганическая	
Точка №4,	Температура воздуха	Азота (IV) диоксид	1 раз в квартал
подветренная	Направление ветра	Углерод	
сторона	Скорость ветра	Сера диоксид	
	Атмосферное давление	Углерод оксид	
		Пыль неорганическая	

Основными процессами, при которых происходит выделение вредных веществ в атмосферу, являются выемочно-разгрузочные работы. Основные компоненты, загрязняющие атмосферный воздух – это пыль неорганическая, азот диоксид и алканы С₁₂₋₁₉.

Водоохранные мероприятия

соблюдении специального хозяйственная режима деятельность рассматриваемого объекта вредного воздействия на поверхностные и подземные воды оказывать не будет.

Сбросов сточных вод в поверхностные водные источники предприятием не производится, разработка проекта нормативов ПДС для предприятия не требуется.

Водоснабжение предприятия на хозбытовые нужды предусмотрено привозной бутилированной водой.

Вода будет использоваться на хозяйственно-бытовые нужды (санитарнопитьевые нужды), производственные нужды (пылеподавление).

Источниками воды для пылеподавления являются аккумулированные в водосборники талые и карьерные воды, пригодные для их использования на пылеподавлении.

Водоотведение. На борту карьера будут размещены специализированные биотуалеты, с накопительными жижесборниками. Содержимое жижесборников обрабатывается дезинфицирующим раствором. Вывоз сточных вод предусмотрен по договору специализированным предприятиям.

Вода, используемая для пылеподавления, расходуется безвозвратно.

Для защиты поверхностных и подземных вод от загрязнения рабочим проектом предусмотрены следующие мероприятия:

- внутренний сток ливневых и талых вод с площади карьера собирается в зумпфе и откачивается в пруд-испаритель.
- хозяйственно-бытовые сточные воды сбрасываются биотуалета и по мере накопления вывозятся по договору со специализированной организацией.
- заправка спецтехники, работающей на карьерах, предусмотрена топливозаправщиком, оборудованным специальными наконечниками на наливных шлангах, с применением маслоулавливающих поддонов, а также установкой специальных емкостей для опускания в них шлангов во избежание утечки горючего (возможность загрязнения почв, в случае утечек ГСМ из ёмкостей при заправке техники, крайне низка);
- все механизмы оборудованы металлическими поддонами для сбора проливов ГСМ и технических жидкостей;
- ремонт горных и транспортных машин производится в соответствии с утвержденным на предприятии графиком на базе предприятия;
- технический осмотр техники производится на специальной площадке с использованием мер по защите территории от загрязнения и засорения;
 - четкая организация учета водопотребления и водоотведения;
- планировка устройство технологических объектов И целью предотвращения загрязнения поверхностного стока и подземных вод;
- промасленные обтирочные отходы (ветошь) собираются в герметичную тару, в дальнейшем вывозятся для утилизации;
- твёрдые бытовые отходы собираются в закрытый бак-контейнер, располагаемый на оборудованной площадке, в дальнейшем передаются сторонним организациям;
- отработки месторождения будут предусмотрены ПО окончании мероприятия, направленные на рекультивацию нарушенных земель;

- образования производственных сточных вод при проведении работ не предусматривается;
 - мойка машин и механизмов на территории участка работ запрещена;
 - хранение ГСМ на участке работ не предусматривается.

Для предупреждения загрязнения поверхностных и подземных вод ливневыми и талыми водами, стекающими с участка работ, проектом предусмотрены природоохранные мероприятия:

- карьер ограждается нагорной канавой, предупреждающей попадание склонового поверхностного стока на участок;
- отвод воды с зумпфа до пруда-испарителя будет осуществляться по напорному трубопроводу с помощью насосов.

Таким образом, принятые превентивные меры **ТОЗВОЛЯЮТ** исключить возможность засорения и загрязнения водных объектов района.

ТОО «Атыгай Голд Майнинг» проводит организационные, технологические, санитарно-эпидемиологические гидротехнические, другие мероприятия, И обеспечивающие охрану вод от загрязнения и засорения. Предусмотрено проведение регулярное санитарный осмотр территории и при обнаружении мусора, пятен от разлива нефтепродуктов производится очистка.

Земельный участок ТОО «Атыгай Голд Майнинг» на месторождении Атыгай используется только по целевому назначению.

Предложения по организации мониторинга и контроля за состоянием водных ресурсов.

Операторы объектов I и II категорий обязаны осуществлять производственный экологический контроль в соответствии со ст. 182 «Экологического Кодекса Республики Казахстан».

Производственный экологический контроль проводится операторами объектов на основе программы производственного экологического контроля, разрабатываемой операторами I и II категорий.

соответствии «Методикой определения c нормативов эмиссий окружающую среду», утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 г. №63 (п. 40) операторы, ДЛЯ которых установлены нормативы допустимых осуществляют производственный экологический контроль соблюдения допустимых выбросов на основе программы, разработанной в объеме необходимом для слежения за соблюдением экологического законодательства Республики Казахстан с учетом своих технических и финансовых возможностей.

Основной целью осуществления контроля использования и охраны вод является оценка процессов формирования состава и свойств воды в водных объектах.

При проведении промышленной добычи золотоносных руд месторождения Атыгай должна быть предусмотрена организация экологического мониторинга подземных вод.

Предложения по контролю за состоянием водных ресурсов:

1. С целью снижения возможного негативного воздействия производственной деятельности, связанной с добычей руды на месторождении Атыгай на подземные воды, предлагается, при разработке месторождения расположить 2 наблюдательных скважины на границе СЗЗ (таблица 10.2).

Отбор проб подземных вод должен проводиться из мониторинговых скважин ежеквартально.

3. Рекомендуем проведение экологического контроля качества карьерных и подземных вод. Отобранные образцы поверхностных и подземных вод анализировать в аттестованной лаборатории, имеющей лицензию на выполнение данного вида работ.

Таблица 10.2 - Мониторинг по наблюдательным скважинам качества подземных вод

Место отбора проб	Определяемые ингредиенты	Метод определения	Периодичность отбора проб
1	2	3	4
Наблюдательные скважины	Железо Хлориды Сульфаты Нитраты Нитриты	В соответствии с методиками, утвержденными в РК	1 раз в квартал
	Нефтепродукты		

Бурение наблюдательных скважин быть должно выполнено специализированной организацией, имеющей лицензию. Перед началом работ предусмотрено проведение обследование территории, где намечается работы по бурению наблюдательных скважин. Результатом обследования является акт обследования, составленный с участием представителей Санэпиднадзора, местных органов власти и проектирующей организации.

Конструкция наблюдательных скважин на воду должна отвечать следующим требованиям:

- качественное вскрытие и опробование водоносного горизонта;
- надежная изоляция водоносного горизонта от поверхностного загрязнения;
- простота сооружения и минимальная стоимость.

Строительная откачка выполняется с целью формирования естественного фильтра возле водоприемной части и для установления соответствия фактического дебита скважины.

Конструкция оголовка скважины (бетонная подушка) должна обеспечивать полную герметизацию, исключающую проникновение в затрубное пространство скважины поверхностной воды и загрязнений.

конструкции скважины необходимо предусмотреть возможность систематических замеров дебита, уровня и отбора проб воды для анализов.

Необходимым мероприятием, предупреждающим загрязнение подземных вод, является создание вокруг скважины зоны санитарной охраны.

После ввода скважин в эксплуатацию, с целью непрерывного получения систематической информации о качественном и количественном состоянии подземных вод, необходимой для обеспечения их рационального использования и своевременного выявления негативных изменений, в смысле истощения и загрязнения подземных вод, необходимо проведение мониторинга.

Дополнительных мероприятий для организации мониторинга за состоянием поверхностных и подземных вод не требуется.

Мероприятия по охране почвенного покрова

В целях охраны и рационального использования земельных ресурсов, а также недопущения их истощения и деградации должны быть проведены следующие основные мероприятия:

- -строгое соблюдение границ отводимых земельных участков при проведении работ подготовительного и основного периода работы рудника во избежание сверхнормативного изъятия земельных участков;
 - -запрет езды по нерегламентированным дорогам и бездорожью;
- -недопущение захламления и загрязнения отводимой территории пустой породой, рудой, бытовым мусором и др. путем организации их сбора в специальные емкости (мусоросборники) и вывозом для обезвреживания на полигоны хранения указанных отходов;
 - предупреждение разливов ГСМ;
- -своевременное выявление загрязненных земель, установление уровня их загрязнения (площади загрязнения и концентрации);
- -производственный мониторинг почв и озеленение территории растительностью.

Проведение природоохранных мероприятий должно снизить негативное воздействие эксплуатации месторождения, обеспечить сохранение ресурсного потенциала земель, плодородия почв и экологической ситуации в целом.

Мониторинг за состоянием загрязнения почв

Мониторинг почвенного покрова производится с целью получения достоверной аналитической информации о состоянии почвенного покрова, содержанию в почвах загрязняющих веществ, определение источников загрязнения для оценки влияния предприятия на его качество.

Отбор почвенных проб необходимо проводить в конце лета — начале осени в период наибольшего накопления водорастворимых солей и загрязняющих веществ.

Система наблюдений за почвами и грунтами, заключается в контроле показателей состояния грунтов на участках, подвергнувшихся техногенному нарушению, на предмет определения их загрязнения вредными веществами.

Оценка состояния почв осуществляется по результатам анализа направленности и интенсивности изменений, путем сравнения полученных показателей с первичными данными, а также с нормативными показателями.

Мониторинг мест размещения отходов производства и потребления

Производственный контроль в области обращения с отходами в общем случае включает в себя:

- проверка порядка и правил обращения с отходами;
- анализ существующих производств, с целью выявления возможностей и способов уменьшения количества и степени опасности образующихся отходов;
- учет образовавшихся, использованных, обезвреженных, переданных другим лицам или полученных от других лиц, а также размещенных отходов;
- нахождение класса опасности отходов по степени возможного вредного воздействия на окружающую природную среду при непосредственном или опосредованном воздействии опасного отхода на нее;
 - составление и утверждение Паспорта опасного отхода;
- определение массы размещаемых отходов в соответствии с выданными разрешениями;

- мониторинг состояния окружающей среды в местах хранения (накопления) и (или) объектах захоронения отходов;
- проверку эффективности и безопасности для окружающей среды и здоровья населения эксплуатации объектов для размещения отходов.

Временное хранение отходов производства и потребления на территории предприятия осуществляется в специально отведенных и оборудованных для этой цели местах (на площадках временного хранения отходов).

Условия хранения отходов производства и потребления зависят от класса опасности отхода, химических и физических свойств отходов, агрегатного состояния, опасных свойств.

Образующиеся производственные отходы передаются в специализированные предприятия на хранение и переработку.

В результате деятельности будут образовываться следующие виды отходов: твердые бытовые отходы (неопасные) в количестве 4,725 тонн/год, промасленная ветошь (опасные) в количестве 0,489 тонн/год, отработанные шины (неопасные) в количестве 47,929 тонн/год, отработанные аккумуляторы (опасные) в количестве 1,171 тонн/год, отработанные масла (опасные) в количестве 5,03 тонн/год, отработанные фильтры (опасные) в количестве 0,739 тонн/год, тара из-под ВВ (опасные) в количестве 0,4828 т/год, вскрышные породы (неопасные) в количестве 2840090 т/год.

Размещение вскрышных пород месторождения предусматривается на внешних отвалах. Внутрикарьерное отвалообразование настоящим проектом недопустимо в связи с тем, что под карьером остаются не вовлекаемые в разработку потенциальные запасы руды (п.1746 Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы). Вскрышные породы будут использоваться для подсыпки дорог.

Отходы производства потребления, образующиеся на участках производственных площадок ТОО «Атыгай Голд Майнинг», собираются, временно складируются в металлических контейнерах или на территории производственных площадок в местах с твердым покрытием, затем передаются на утилизацию в сторонние организации, по имеющимся договорам.

Общие правила безопасности, накопления и хранения токсичных отходов, техники безопасности и ликвидации аварийных ситуаций установлены санитарными, строительными и ведомственными нормативными документами и инструкциями РК.

Правила для персонала по соблюдению экологической безопасности и техники безопасности при сборе, хранении и транспортировке отходов, образующихся на предприятии при выполнении технологических процессов и деятельности персонала, предусматривают создание условий, при которых отходы не могут оказывать отрицательного воздействия на окружающую среду и здоровье человека.

Таким образом, мониторинг обращения с отходами заключается в слежении за процессами образования, временного хранения и своевременного вывоза отходов производства и потребления.

Радиационный мониторинг.

При проведении работ по промышленной разработке месторождения будет радиационный дозиметрический контроль, обеспечивающий получение необходимой информации о состоянии радиационной обстановки на предприятии, внешней среде, дозе облучения персонала. во 0

осуществляется штатной службой радиационной безопасности или специально выделенным лицом из числа сотрудников, прошедших специальную подготовку.

В программу работ службы радиационного контроля входит наблюдение за радиационной обстановкой на окружающей предприятие территории.

Контроль дозы излучения предусматривает получение результатов измерений по гамма-излучению.

Таблица 10.3 - План-график контроля ведения радиационного мониторинга

Контролируемый	Измеряемый	роля ведения рад Периодичность	Кем	Метод проведения
объект	уровень радиации	контроля	осуществляется	мониторинга
OOBCRI	уровень радиации	контроли	контроль	мониторинга
1	2	3	4	5
1		Подземные воды	+]
Дренажные	α-активность	1 раз в год (летний	Специальная	Аккредитованная
скважины	β-автивность	период)	служба или лицо,	лаборатория
Скважины	концентрация	период)	ответственное за	радиационного
	радона		радиационную	контроля,
	радона		безопасность	инструментальный
			осзопасность	метод
		<u>।</u> Атмосферный воздух		мстод
Рабочие места в	Объёмная	1 раз в год	Специальная	Аккредитованная
	активность	т раз в год	служба или лицо,	лаборатория
карьере	(OA, Бк/м ³)		ответственное за	радиационного
	Мощность			_
	эквивалентной		радиационную безопасность	контроля, инструментальный
	ДОЗЫ		осзопасность	метод
	(МЭД мкЗв/ч)			метод
Площадка	Объёмная	1 раз в год	Специальная	Аккредитованная
складирования	активность	т раз в год	служба или лицо,	лаборатория
руды	(OA, Бк/м ³)		ответственное за	радиационного
руды	Мощность		радиационную	контроля,
	эквивалентной		безопасность	инструментальный
	дозы		осзопасноств	метод
	(МЭД мкЗв/ч)			мстод
	(MSA MRSB/ 1)	Почвы		
Контрольные точки	Мощность	1 раз в год	Специальная	Аккредитованная
отбора проб на	эквивалентной	т раз в тод	служба или лицо,	лаборатория
границе СЗЗ	дозы		ответственное за	радиационного
(4 точки)	(МЭД мкЗв/ч)		радиационную	контроля,
(1101km)	Объёмная		безопасность	инструментальный
	активность		000011110012	метод
	$(OA, Bk/m^3)$			мотод
	(OTI, BRIM)			
Рабочие места в	Мощность	1 раз в год	Специальная	Аккредитованная
карьере	эквивалентной	1	служба или лицо,	лаборатория
1 1	дозы		ответственное за	радиационного
	(МЭД мкЗв/ч)		радиационную	контроля,
			безопасность	инструментальный
				метод
Площадка	Мощность	1 раз в год	Специальная	Аккредитованная
складирования	эквивалентной		служба или лицо,	лаборатория
руды	дозы		ответственное за	радиационного
	(МЭД мкЗв/ч)		радиационную	контроля,
	Объёмная		безопасность	инструментальный
	активность			метод
	$(OA, Ek/m^3)$			

Предполагаемая программа производственного мониторинга состояния компонентов окружающей среды зоне влияния деятельности В позволит целенаправленно получать, накапливать и анализировать базу данных о состоянии компонентов природной среды. Она обеспечит полноту и объективность оценки воздействия предприятия на экосферу и, как следствие, повысит социальную и экономическую эффективность принятия решений по минимизации отрицательных воздействий для природы и населения.

11. МЕРЫ ПО СОХРАНЕНИЮ И КОМПЕНСАЦИИ ПОТЕРИ БИОРАЗНООБРАЗИЯ.

Согласно п. 2 статьи 240 ЭК РК при проведении экологической оценки и оценки воздействия на окружающую среду должны быть:

- выявлены негативные воздействия намечаемой деятельности на биоразнообразие (посредством проведения исследований);
- 2) предусмотрены мероприятия по предотвращению, минимизации негативных воздействий на биоразнообразие, смягчению последствий таких воздействий;
- 3) в случае выявления риска утраты биоразнообразия проведена оценка потери биоразнообразия и предусмотрены мероприятия по их компенсации.

Согласно п. 2 статьи 241 ЭК РК компенсация потери биоразнообразия должна быть ориентирована на постоянный и долгосрочный прирост биоразнообразия и осуществляется в виде:

- 1) восстановления биоразнообразия, утраченного в результате осуществленной деятельности;
- 2) внедрения такого же или другого, имеющего не менее важное значение для окружающей среды вида биоразнообразия на той же территории (в акватории) и (или) на другой территории (в акватории), где такое биоразнообразие имеет более важное значение.

Площадка проектируемого месторождения не располагаются на территории особо охраняемых природных территорий (ООПТ) и землях гослесфонда, находящихся в ведении Комитета лесного хозяйства и животного мира Министерства экологии, геологии и природных ресурсов Республики Казахстан на территории Костанайской области, согласно письму №26 от 03.03.2022 г РГУ «Костанайская областная территориальная инспекция лесного хозяйства и животного мира», представлено в приложении 7.

При реализации намечаемой деятельности, меры по сохранению и компенсации потери биоразнообразия не предусматриваются, в виду отсутствия негативных воздействий на биоразнообразие.

11.1 Мероприятия по обеспечению охраны редких и находящихся под угрозой исчезновения видов растений в случае обнаружения

К основным источникам химического загрязнения почвенно-растительного покрова относятся выбросы от транспортных средств (выхлопные газы, утечки топлива) и выбросы вредных веществ от предприятия (выпадение с осадками).

Воздействие по вышеприведенным источникам загрязнения на почвеннорастительный покров носит локальный характер и при выполнении всех работ в соответствии с проектом не вызывает изменения земной поверхности.

Современное состояние растительного мира в зоне деятельности предприятия условно можно считать удовлетворительным, существенно не отличающимся от полученных ранними исследованиями данных, аналогичных биотопов сопредельных территориях.

В целях охраны видов в период проведения работ необходимо предусмотреть следующие мероприятия:

- строгое соблюдение границ земельного отвода под объекты намечаемой деятельности. Постоянный контроль за соблюдением установленных границ земельного отвода для сохранения почвенно-растительного покрова на прилегающих территориях и сохранения естественных местообитаний;

- в случае обнаружения редких видов на территории намечаемой деятельности приостановить работы на соответствующем участке и сообщить об этом уполномоченному органу (Департамент недропользования и природных ресурсов) и предусмотреть мониторинг обнаруженных охраняемых и редких видов фауны;
 - взять на учет места произрастания редких видов;
- вести за редкими растениями наблюдения и разработать мероприятия по охране видов;
 - ограничивать выпас скота на данной территории;
- проведение инструктажа с персоналом на предмет обнаружения редких видов растений, занесенных в Красные книги, а также проведение просветительской работы с персоналом по выполнению природоохранных мероприятий;
- пересадка редких и охраняемых видов растений в случае их обнаружения, по решению уполномоченного органа;
- предусмотреть мониторинг обнаруженных охраняемых и редких видов растений;
 - соблюдение мер противопожарной безопасности.

11.2 Мероприятия по обеспечению охраны редких и охраняемых видов животных в случае обнаружения

Согласно Закона РК «Об охране, воспроизводстве и использовании животного мира» при проектировании и осуществлении хозяйственной и иной деятельности, необходимо предусматривать и осуществлять мероприятия по сохранению среды обитания и условий размножения объектов животного мира, путей миграции и мест концентрации животных, а также обеспечивать неприкосновенность участков, представляющих особую ценность в качестве среды обитания диких животных.

Для этих целей проектом предусмотрен ряд мероприятий:

- 1. не допускаются любые действия, которые могут привести к гибели сокращению численности или нарушению среды обитания объектов животного мира;
- 2. инструктаж персонала о недопустимости охоты на животный мир, уничтожение пресмыкающихся;
 - 3. запрещение кормления и приманки диких животных и их изъятие;
 - 4. запрещение любого вида охоты и браконьерства;
 - 5. запрещено внедорожного перемещения автотранспорта;
 - 6. запрещается уничтожение животных, разрушение их гнёзд, нор, жилищ;
- 7. поддержание в чистоте территории промплощадки и прилегающих площадей, отходы потребления и производства хранить в контейнерах с крышками на оборудованных площадках;
- 8. обязательное соблюдение границ территорий, отведенных в постоянное или временное пользование для осуществления производственной деятельности;
- 9. уничтожение растительности и иные действия, ухудшающие условия среды обитания животных;
- 10. обеспечение соответствия используемой техники экологическим требованиям (по токсичности отработанных газов, по шумовым характеристикам);
- 11. недопущение проливов нефтепродуктов и других реагентов, а в случае их возникновения оперативная ликвидация;

12. запрещается под кроной деревьев складировать материалы и ставить машины, технику.

Для сохранения объектов животного мира, занесённых в Красную книгу РК, предусматриваются следующие мероприятия:

- все мероприятия, указанные выше;
- в случае обнаружения гнездования или обитания позвоночных на территории земельного отвода производственной площадки, необходимо создать зону покоя и сообщить в РГУ «Костанайская областная территориальная инспекция лесного хозяйства и животного мира Комитета лесного хозяйства министерства экологии, геологии и природных ресурсов Республики Казахстан»;
- не допускать любые действия, которые могут привести к гибели редких и находящихся под угрозой исчезновения животных;
- не допускать любые действия, которые могут привести к сокращению численности или нарушению среды обитания редких и находящихся под угрозой исчезновения видов животных;
- по согласованию с госорганом возможна организация переноса гнезд в сходные условия (с привлечением специалистов - орнитологов) с последующим установлением охранной зоны и мониторингом.
- мониторинг обнаруженных редких и находящихся под угрозой исчезновения видов птиц; – проведение инструктажа с персоналом, определение четких запретов (запрещается охота, провоз оружия и собак);
 - соблюдение мер противопожарной безопасности;
- ознакомление сотрудников с предполагаемыми видами животного мира, местообитание которых возможно на территории проведения работ (за границами земельного отвода). На территории площадки временного размещения бытовых и административных помещений организовать информационный стенд с видами птиц, занесенных в Красную книгу РК;
- юридические и физические лица, виновные в незаконной добыче (сборе) или уничтожении, а также в незаконном вывозе, скупке, продаже, пересылке и хранении видов фауны и флоры, внесенных в Красные книги, несут административную, ответственность, предусмотренную уголовную законодательством РК. Причиненный ущерб взыскивается в установленном законом порядке по соответствующим таксам;
 - приведены мероприятия по защите растительного и животного мира,
- проведение совместных акций по природоохранным мероприятиям по защите животного и растительного мира;
- приостанавливать работы во время миграции редких и находящихся под угрозой исчезновения видов животных;
- нарушение законодательства Республики Казахстан в области охраны, воспроизводства и использования животного мира влечет ответственность, установленную законами Республики Казахстан.

Для сохранения редких и находящихся под угрозой исчезновения объектов животного мира, занесённых в Красную книгу Республики Казахстан предусмотрены мероприятия, которые в том числе включают перенос гнезд в сходные условия с последующим установлением охранной зоны и мониторингом. Перенос гнезда подразумевает установку гнездовой платформы для облегчения строительства нового гнезда. Гнездовая платформа устанавливается заранее, желательно в летний период, тогда, когда птицы гнездятся еще в своем гнезде, которое должно пойти под "снос",

чтобы они присмотрелись к ней, знали о его существовании. Само гнездо может убираться только в зимний период, когда птиц нет на гнездовой территории.

В целом, при строгом выполнении всех проектных решений и рекомендуемых мероприятий воздействие на животный и растительный мир можно оценить, как допустимое.

Предприятие в целях пропаганды будет организовывать и каждый год проводит конкурсы, информировать население по защите окружающей среды.

11.3 Мониторинг растительного и животного мира

мониторинг. Мониторинг Операционный растительного разработке месторождений золотоносных руд необходимо проводить в комплексе с мониторингом состояния почв. Наблюдения будут проводиться за соблюдением технологического процесса проведения вскрышных работ, создания отвала и работе транспорта в пределах земельного отвода и за состоянием растительного покрова на прилегающей территории.

Мониторинг растительности осуществляется общепринятым геоботаническим методикам визуальным путем с одновременным проведением фотосъемки, что позволит проследить за динамикой зарастания растительностью нарушенных участков.

Наблюдения за состоянием растительного покрова позволят направленность и интенсивность развития негативных процессов, устойчивость почвенно-растительного покрова к техногенному воздействию и эффективность применяемой системы природоохранных мероприятий.

Одним из основных факторов воздействия на животный мир проектируемого объекта является фактор вытеснения животных за пределы их мест обитания. Этому способствует сокращение кормовой базы за счет изъятия части земель под технические сооружения, транспортные магистрали. Прежде всего, пострадают животные с малым радиусом активности (беспозвоночные, пресмыкающиеся, мелкие млекопитающие).

Другим существенным фактором воздействия на животный мир является загрязнение воздушного бассейна выбросами вредных веществ в атмосферу, почвенно-растительного покрова.

Незначительная часть животных, наиболее чувствительная к техногенным нарушениям территории будет вытеснена, но большинство животных будут адаптированы к новым условиям.

Немаловажное значение в жизни наземных позвоночных имеют автомобильные дороги и территории, примыкающие к ним. Перемещение автотранспорта таит в себе угрозу для животных. Для снижения вероятности гибели животных на дорогах необходимо в местах наибольшей их концентрации ограничить скорость движения автотранспорта.

Следовательно, при эксплуатации объектов месторождения существующее экологического равновесие природы (видовой состав растительности и животного мира) не изменится. Ведение проектируемых работ не приведет к существенному нарушению растительного покрова и мест обитания животных, а так миграционных путей животных в сколько-нибудь заметных размерах, в связи с чем проведение каких-либо особых мероприятий по охране животного и растительного мира проектом не намечается.

По окончании отработки месторождений будут проведены рекультивационные работы, которые позволят частично восстановить нарушенные территории и природное экологическое равновесие.

ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА **12.** ОКРУЖАЮЩУЮ СРЕДУ

Возможных необратимых воздействий на окружающую среду при проведении разработки месторождения золотоносных руд не предусматривается.

Обоснование необходимости выполнения операций, влекущих воздействия, в том числе сравнительный анализ потерь от необратимых воздействий и выгоды от операций, вызывающие эти потери, в экологическом, культурном, экономическом социальном контекстах рамках данного отчета предусматривается.

13. ПРОИЗВОДСТВЕННЫЙ МОНИТОРИНГ КОМПОНЕНТОВ ОКРУЖАЮЩЕЙ СРЕДЫ

13.1. Существующая система производственного мониторинга

- 1. Физические и юридические лица, осуществляющие специальное природопользование, обязаны осуществлять производственный экологический контроль.
 - 2. Целями производственного экологического контроля являются:
- 1) получение информации для принятия решений в отношении экологической политики природопользователя, целевых показателей качества окружающей среды и инструментов регулирования производственных процессов, потенциально оказывающих воздействие на окружающую среду;
- 2) обеспечение соблюдения требований экологического законодательства Республики Казахстан;
- 3) сведение к минимуму воздействия производственных процессов природопользователя на окружающую среду и здоровье человека;
- 4) повышение эффективности использования природных и энергетических ресурсов;
- 5) формирование более высокого уровня экологической информированности и ответственности руководителей и работников природопользователей;
- 6) информирование общественности об экологической деятельности предприятий и рисках для здоровья населения;
 - 7) повышение уровня соответствия экологическим требованиям;
- 8) повышение производственной и экологической эффективности системы управления охраной окружающей среды;
 - 9) учет экологических рисков при инвестировании и кредитовании.

Система производственного мониторинга окружающей среды ориентирована на организацию наблюдений, сбора данных, проведение анализа, оценку воздействия на состояние окружающей среды с целью принятия своевременных мер по предотвращению, сокращению и ликвидации загрязняющего воздействия данного предприятия на окружающую среду.

Координацию производственного мониторинга окружающей среды осуществляет уполномоченный орган в области охраны окружающей среды.

13.2. Существующее положение об экологическом контроле

Производственный мониторинг окружающей среды проводится организациями, имеющей лицензию на выполнение работ по производственному мониторингу компонентов окружающей среды. В состав производственного мониторинга входит отбор проб атмосферного воздуха, контроль за обращениями с отходами, отбор проб поверхностных вод. Анализы проб производятся в лабораторных условиях в специализированных лабораториях, имеющих аккредитацию.

Экологическая оценка эффективности производственного процесса в рамках производственного экологического контроля осуществляется на основе измерений и Проектная компания "АНТАЛ"

(или) на основе расчетов уровня эмиссий в окружающую среду, производственных факторов, а также фактического объема потребления природных, энергетических и иных ресурсов.

13.3 Расчет платежей за природопользование

В результате намечаемой деятельности в той или иной степени будет произведено воздействие на компоненты окружающей среды, то есть будет происходить снижение экологического качества природной среды, будет нанесен ущерб, убытки народному хозяйству. Ущерб от воздействия атмосферных загрязнений, сточных вод, отходов производства и потребления на состояние окружающей среды, как правило, проявляется на состоянии здоровья населения, проявляется в негативных последствиях загрязнения водных ресурсов, почв, снижении биопродуктивности природных комплексов, проявляется в потерях от снижения рекреационного потенциала территорий и т.д. Все это влечет за собой затраты на восстановление сред, на очистку территорий, других потерь, связанных с негативными материальными, социальными и экологическими процессами.

Эколого-экономическая оценка ущерба окружающей среде заключается в определении возможных материальных и финансовых потерь и убытков от изменения качественных и количественных параметров окружающей природной среды в целом и ее эколого-ресурсных компонентов (атмосферный воздух, водные ресурсы, земельные ресурсы, ресурсы растительного и животного мира).

Экологический ущерб представляет собой оценку в денежной форме отрицательных последствий от загрязнения природной среды.

В качестве мер по охране окружающей среды и для компенсации неизбежного ущерба природным ресурсам, в соответствии со статьей 101 Экологического Кодекса Республики Казахстан вводятся экономические методы воздействия на предприятия – плата за эмиссии в окружающую среду.

Плата взимается за фактический объём эмиссии в окружающую среду в пределах и (или) сверх установленных нормативов эмиссии в окружающую среду.

13.4 Расчет платы за загрязнение воздушного бассейна

Платежи за выбросы загрязняющих веществ в атмосферу рассчитываются в соответствии с Кодексом Республики Казахстан «О налогах и других обязательных платежах в бюджет» (Налоговый кодекс) № 120-IV 3PK от 25 декабря 2017 года.

Платежи взимаются как за установленные лимиты выбросов загрязняющих веществ, так и за их превышение.

Ставки платы определяются исходя из размера месячного расчетного показателя, установленного на соответствующий финансовый год законом о республиканском бюджете (далее - МРП).

Расчет платы за выбросы загрязняющих веществ осуществляется по следующей формуле:

Ci выбр. = $H \times MP\Pi \times Vi$,

где: Сі – плата за выбросы і-го вида загрязняющего вещества, тенге;

Н – утвержденная ставка платы за выбросы одной тонны загрязняющего вещества, утвержденная местными представительными органами на текущий год, в долях МРП;

Vi – объем i-ого загрязняющего вещества выбрасываемого в атмосферу, тонн.

Месячный расчетный показатель (МРП) установлен на 2024 год в размере 3345 тенге.

Таблица 13.4.1 - Ставки платы за выбросы загрязняющих веществ от стационарных источников

№	Виды загрязняющих	Ставки платы за 1 тонну,	Ставки платы за 1
Π/Π	веществ	(МРП)	килограмм, (МРП)
1.	Окислы серы	10	
2.	Окислы азота	10	
3.	Пыль и зола	5	
4.	Свинец и его соединения	1993	
5.	Сероводород	62	
6.	Фенолы	166	
7.	Углеводороды	0,16	
8.	Формальдегид	166	
9.	Окислы углерода	0,16	
10.	Метан	0,01	
11.	Сажа	12	
12.	Окислы железа	15	
13.	Аммиак	12	
14.	Хром шестивалентный	399	
15.	Окислы меди	299	
16.	Бенз(а)пирен		498,3

14. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА, ТРЕБОВАНИЯ К ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДОСТАВЛЕНИЯ ОТЧЕТОВ О ПОСЛЕПРОЕКТНОМ АНАЛИЗЕ УПОЛНОМОЧЕННОМУ ОРГАНУ

Послепроектный анализ фактических воздействий при реализации намечаемой деятельности проводится составителем отчета о возможных воздействиях в целях подтверждения соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

Послепроектный анализ должен быть начат не ранее чем через двенадцать месяцев и завершен не позднее чем через восемнадцать месяцев после начала эксплуатации соответствующего объекта, оказывающего негативное воздействие на окружающую среду.

Проведение послепроектного анализа обеспечивается оператором соответствующего объекта за свой счет, согласно со статьей 78 ЭК РК.

Согласно Инструкции по организации и проведению экологической оценки утвержденная приказом Министра экологии, геологии и природных ресурсов РК от 30.07.2021 г. №280, согласно пункта 27 инструкции по каждому выявленному воздействию на окружающую возможному среду проводится существенности.

По п. 28 воздействие на окружающую среду признается существенным во всех случаях, кроме случаев соблюдения в совокупности следующих условий:

- 1) воздействие на окружающую среду, в силу его вероятности, частоты, продолжительности, сроков выполнения работ, пространственного охвата, места его осуществления, кумулятивного характера и других параметров, а также с учетом указанных в заявлении о намечаемой деятельности мер по предупреждению, исключению и снижению такого воздействия и (или) по устранению его последствий:
- не приведет к деградации экологических систем, истощению природных ресурсов, включая дефицитные и уникальные природные ресурсы;
- не приведет к нарушению экологических нормативов качества окружающей среды;
- не приведет к ухудшению условий проживания людей и их деятельности, включая: состояние окружающей среды, влияющей на здоровье людей; посещение мест отдыха, туризма, культовых сооружений и иных объектов; заготовку природных транспортных ресурсов, использование И других объектов; осуществление населением сельскохозяйственной деятельности, народных промыслов или иной деятельности;
- не приведет к ухудшению состояния территорий и объектов, указанных в подпункте 1) пункта 25 настоящей Инструкции;
 - не повлечет негативных трансграничных воздействий на окружающую среду;
 - не приведет к последствиям, предусмотренным пунктом 3 статьи 241 Кодекса.

Оператором намечаемой деятельности, было подготовлено заявление о намечаемой деятельности (далее 3ОНД) № KZ86RYS00264700 от 04.07.2022 г. в котором в соответствии с требованиями п. 26 и п.27 Инструкции были определены все типы возможных воздействий и проведена оценка их существенности.

При проведении данной оценки по результатам ЗОНД, возможные воздействия по п.28 Инструкции признаны невозможными и несущественными.

Согласно «Правил проведения послепроектного анализа и формы заключения по результатам послепроектного анализа» утвержденных приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 1 июля 2021 года № 229, проведение послепроектного анализа проводится при выявлении в ходе оценки воздействия на окружающую среду неопределенностей в оценке существенных воздействий на окружающую среду.

Ввиду отсутствия выявленных неопределенностей, проведение послепроектного анализа в рамках намечаемой деятельности не требуется.

15. Способы и меры восстановления окружающей среды на случаи прекращения намечаемой деятельности, определенные на начальной стадии ее осуществления

Проектом предусматривается восстановление поверхности, нарушенной горными работами, в состояние пригодное для их дальнейшего использования в максимально короткие сроки. Неотъемлемой частью рекультивационных работ является снятие и хранение почвенно-растительного слоя (ПРС) со всей территории строительства, для дальнейшего его использования при благоустройстве и озеленении автодорог, рекультивации отвала и для покрытия неплодородных площадей. Снимается почвенно-растительный слой до начала горных работ, и складируется во временный склад ПРС. Мощность снятия ПРС в районе работ составляет 0,3 м. Кроме того ПГР предусматривается биологическая рекультивация, в основе которой лежит использование преобразовательных функций растительности, сводится к созданию растительного покрова, играющего значительную роль в оздоровлении окружающей среды.

Биологическая рекультивация земель включает в себя комплекс мероприятий, целью которых является улучшение агрофизических, агрохимических, биохимических и других свойств почв. То есть, биологическая рекультивация земель является завершающей стадией комплекса рекультивационных работ.

Биологический этап начинается после окончания технического этапа и проводится с целью создания на подготовленной в ходе проведения технического этапа поверхности растительного слоя. Выполнение биологического этапа рекультивации позволяет снизить выбросы пыли в атмосферу и улучшить микроклимат района.

При прекращении намечаемой деятельности, определенные на начальной стадии ее осуществления и для уменьшения негативных последствий этих процессов должен осуществляться комплекс мер по охране окружающей среды, оздоровлению местности и рациональному использованию земельных ресурсов, среди которых одной из наиболее важных является рекультивация нарушенных земель. Согласно статьи 217 Кодекса РК «О недрах и недропользовании» от 27.12.2017 г. №125-VI ЗРК План ликвидации является документом, содержащим описание мероприятий по выводу из эксплуатации рудника и других производственных и инфраструктурных объектов, расположенных на участке добычи, по рекультивации земель, нарушенных в результате проведения операций по добыче, мероприятий по проведению прогрессивной ликвидации, иных работ по ликвидации последствий операций по добыче, а также расчет приблизительной стоимости таких мероприятий по ликвидации.

План ликвидации представляет собой проект с детальными расчетами ликвидации и консервации объектов недропользования последствий операций по добыче золотоносных руд на месторождении Атыгай (Берсуат) в проектных контурах карьеров.

После извлечения запасов согласно Плану горных работ, все объекты недропользования будут ликвидированы или законсервированы.

Согласно п. 1 статьи 58 Кодекса РК от 27 декабря №125-VI «О недрах и недропользовании» для обеспечения своих обязательств по ликвидации последствий недропользования недропользователь вправе заключить договор страхования со страховой организацией, в силу которого неисполнение недропользователем обязательств по ликвидации последствий недропользования в предусмотренном

настоящим Кодексом порядке (страховой случай) влечет выплату страховой суммы в пользу Республики Казахстан (выгодоприобретатель).

Объектом страхования является имущественный интерес недропользователя, связанный с исполнением его обязательств по ликвидации последствий операций по недропользованию в порядке и сроки, которые установлены настоящим Кодексом.

После добычи запасов, предусмотренных к открытой добыче разработанным Планом горных работ, карьер будет законсервирован до последующей отработки оставшихся руд. Для остальных объектов месторождения приняты следующие мероприятия по ликвидации:

Отвалы вскрышных пород – ликвидация. После завершения укладки вскрышных пород, откосы отвала будут выположены до 20°. Вся поверхность отвала будет покрыта слоем плодородной почвы и оставлена под самозаростание местными представителями флоры.

Рудные склады – ликвидация. К моменту ликвидации вся руда будет вывезена со складов. Территория, нарушенная размещением руды, будет покрыта слоем почвы.

Склады ПРС – ликвидация. На этапе биологической рекультивации весь объем складируемой почвы будет использован для восстановления плодородного слоя почвы на территориях, нарушенных другими объектами недропользования.

Подъездные автодороги ликвидация. Территория, расположением транспортных путей, будет восстановлена и покрыта плодородным слоем почвы.

Мероприятия по ликвидации объектов, находящихся на данный момент на этапе проектирования, будут описаны в последующих пересмотрах Плана ликвидации.

В период ликвидационных работ будет производиться мониторинг за состоянием флоры и фауны, почв, физической и геотехнической стабильностью ликвидируемых объектов, системой управления водными ресурсами.

На предприятии в течение всего периода эксплуатации месторождения будет проводиться мониторинг и контроль компонентов окружающей среды. После недропользователем завершения работ ПО ликвидации будет произведен ликвидационный мониторинг.

На данном этапе разработки плана ликвидации учитываются требования к ликвидационному мониторингу. При последующих пересмотрах плана ликвидации, будут разработаны предварительные мероприятия по ликвидационному мониторингу после завершения основных работ по ликвидации. Мероприятия по ликвидационному мониторингу должны быть предусмотрены в плане ликвидации окончательно ближе к запланированному завершению недропользования.

16. Описание методологии исследований и сведения об источниках экологической информации, использованной при составлении отчета возможных воздействиях

Для описания намечаемой деятельности были использованы следующие источники и методологии:

- Экологический кодекс РК от 02.01.2021 г. №400-VI ЗРК;
- 2. Земельный кодекс РК от 20.06.2003 г. №442;
- 3. Водный кодекс РК от 09.07.2003 г. №481-II (с изменениями и дополнениями по состоянию на 01.07.2021 г.);
- 4. Методика определения нормативов эмиссий в окружающую среду (утверждена приказом Министра экологии, геологии и природных ресурсов РК от 10.03.2021 №63).
- 5. Инструкция по организации и проведению экологической оценки. Утверждена приказом Министра экологии, геологии и природных ресурсов РК от 30.07.2021 г. №280.
- 6. Данные с Бюро национальной статистики Агенства по стратегическому планированию и реформам PK сайт https://stat.gov.kz/
 - 7. Данные о фоновых концентрациях на сайте https://www.kazhydromet.kz/ru/
- 8. Схема расположения земельного участка на сайте Управления земельного кадастра и автоматизированной информационной системы государственного земельного кадастра http://www.aisgzk.kz/aisgzk/ru/content/maps/
- Санитарные правила «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утв. Приказом исполняющего обязанности Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2.
- Методика разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п.
- 11. Классификатор отходов. Приложение к приказу и.о. Министра экологии, геологии и природных ресурсов РК от 6 августа 2021 года №314.
- 12. Приказ Министра национальной экономики Республики Казахстан от 28 февраля 2015 года № 168 "Об утверждении гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах".
- «Об утверждении Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека», утв. приказом Министра национальной экономики РК от 16 февраля 2022 года № КР ДСМ-15.
- 14. Информационный бюллетень состоянии окружающей среды Костанайской области, выпуск №1, январь 2022 г.
- расчета выбросов 15. Методика OT предприятий строительных материалов (приложение 11 к приказу МООС РК №100-п);
- Методика разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п.
- Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

17. Описание трудностей, возникших при проведении исследований и связанных с отсутствием технических возможностей и недостаточным уровнем современных научных знаний

проведении исследований трудностей связанных отсутствием технических возможностей и недостаточным уровнем современных научных знаний нет.

18. КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ

Инициатором намечаемой деятельности является - TOO «Атыгай Голд Майнинг».

Намечаемая деятельность, по отработке золотоносных руд месторождения (Берсуат), расположена на территории – Житикаринском районе Костанайской области, ближайший поселок Хозрет расположен на расстоянии 17 км восточнее от проектируемого объекта. Районный центр Житикаринского района г. Житикара расположен в 75 км восточнее участка ведения работ. Территориально намечаемая деятельность не затрагивает другие районы и области.

Площадь участка ведения горных работ составляет – 61,1977 Га.

ведения Планируемая площадка горных работ располагается непосредственной близости от границы с Российской Федерацией. Объекты располагаются в 4,52 км от Казахстано-Российской границы. Ближайший населенный пункт Российской Федерации – Екатериновка, расположен в восточном направлении, на расстоянии 16,3 км от территории площадки ведения горных работ.

В 8 километрах восточнее границы участка Берсуат начинается постоянная часть русла реки Берсуат, которая имеет притоки Былкылдак (на севере) и Баскарасу (на юге). Расстояние от границы участка Берсуат до последних, соответственно, 5,47 и 1,21 км.

Житикаринский район связан с областным центром железной дорогой Костанай-Тобол-Житикара, протяженность которой составляет 207 км. Последняя обеспечивает связь с развитой, перспективной в промышленном отношении и богатой полезными ископаемыми, юго-западной частью области.

Географические координаты месторождения приведены в таблице 1.

Таблице 1 - Географические координаты месторождения

Номер	Координаты угловых точек		
угловых точек	Северная широта	Восточная долгота	
1	51°55'57.09"	60°12'25.55"	
2	51°56'9.41"	60°13'0.20"	
3	51°55'47.76"	60°13'21.27"	
4	51°55'34.40"	60°12'47.34"	

Проектом предусматривается отработка золотоносных руд открытым способом на 2029 г.

Согласно Приложения 2 Экологического Кодекса РК, намечаемая деятельность по добыче золотоносных руд относится к объектам 1 категории (п.3.1 добыча и обогащение твердых полезных ископаемых, за исключением общераспространенных полезных ископаемых).

Краткое описание намечаемой деятельности

Планом горных работ предусматривается проведение добычи на участке Берсуат месторождения Атыгай, расположенного в пределах контрактной Западно-Хазретской площади ТОО «Атыгай Голд Майнинг» (Контракт №2639 от 05.05.2008 г., лист М-41-I).

В рамках контрактной территории предполагается разработка участков Центр-Юг, Маржан, Берсуат, Восточный-Султан, на каждый из которых будет получена отдельная лицензия на добычу. Данным проектом рассматривается разработка участка Берсуат на основании уведомления с Министерства индустрии и инфраструктурного развития РК №04-2-18/23592 от 08.07.2022 г. на разработку проектной документации, которая включает в себя План горных работ и План ликвидации.

Данным планом горных работ разработка участка Берсуат месторождения Атыгай предусматривается открытым способом в контурах двух карьеров.

отработки рудных залежей месторождения предусматривается транспортная система разработки с транспортировкой вскрышных пород во внешние отвалы, а добытой руды на рудные склады.

Отработка месторождения ведется с применением буровзрывных работ.

Режим горных работ - круглосуточный (2 смены по 12 часов), 365 рабочих дней в году. Работы ведутся вахтовым методом – две вахты в месяц. Продолжительность вахты – 15 рабочих дней.

Максимальная производительность по добыче руды из карьеров составит 26,094 тыс. тонн в год.

Общий срок эксплуатации карьеров составит 1 год.

Площадь участка ведения горных работ составляет – 61,1977 Га.

месторождения: карьер Берсуат-1, карьер Берсуат-2, вскрышных пород, склад ПРС, рудный склад, буровые работы, взрывные работы, дизельные генераторы буровых станков, пруд-испаритель, карьерные дороги.

Перечень основных объектов генерального плана приведено в таблице 2.

Таблица 2 - Перечень основных объектов генерального плана

No	Наименование объекта	Назначение
1	Карьер Берсуат-1	Добыча руды
2	Карьер Берсуат-2	Добыча руды
3	Склад ПРС	Складирование ПРС
4	Отвал вскрышных пород	Складирование вскрышных пород
5	Рудный склад	Складирование балансовых руд
6	Пруд-испаритель	Сбор и испарение карьерных вод
7	Карьерные дороги	Транспортировка

Учитывая наличие скальных разновидностей пород вскрытие месторождения с первых дней, эксплуатации потребует предварительное рыхление горной массы с помощью БВР.

По мере понижения горных работ формируется борт карьера. Горная масса загружается в средства автотранспорта и перемещается вдоль фронта работ. Далее вскрышные породы направляются на внешний отвал, руда – на переработку.

Электроснабжение предусматривается OT дизельной электростанции, размещенной рядом с оборудованием.

Для освещения района проведения работ карьера, складов и отвала применяются мобильные передвижные дизельные осветительные мачты типа Atlas Copco QLT H50, оснащенные четырьмя прожекторами с металлогалогенными лампами мощностью 1000 Вт каждая.

Календарный план горных работ

В соответствии с заданием на проектирование объемы добычи руды приняты следующими: на 2029 год – 26,094 тыс.тонн.

Оценка воздействия на воздушную среду

Воздействие на воздушный бассейн прогнозируется в ожидаемых выбросах загрязняющих веществ в атмосферный воздух при проведении отработки золотоносных руд.

Учтены источники выбросов только от горных работ, которые непосредственно вовлечены в процесс разработки месторождения.

Основными источниками выбросов являются буровые, взрывные, выемочнопогрузочные, статическое хранение материалов на отвалах и складах, так же от сжигания топлива в двигателях самосвалов, бульдозеров и дизельных генераторах.

Количество эмиссий в окружающую среду на период проведения эксплуатации месторождения ориентировочно составит: **166.72054** т/год.

Количество источников выбросов на месторождении, задействованных данным проектом, составит 18 единиц, из них 5 организованных и 13 — неорганизованных источников. В атмосферу будут выбрасываться загрязняющие вещества 15 наименований 1-4 класса опасности, такие как: марганец и его соединения, медь (II) сульфит, свинец и его неорганические соединения, хром, цинка оксид, азота (IV) диоксид, азот (II) оксид, углерод, сера диоксид, сероводород, углерод оксид, акролеин, формальдегид, алканы С12-19, взвешенные частицы, пыль неорганическая, содержащая двуокись кремния в %: 70-20 %.

Залповые выбросы, с учетом характеристик проводимых работ, предусмотрены при проведении взрывных работ.

Аварийные выбросы, обусловленные нарушением технологии работ, не прогнозируются.

Согласно санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденным Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2, месторождение относится к объектам 1 класса опасности с СЗЗ не менее 1000 м (Раздел 3, п.11, пп. 5 производства по добыче полиметаллических руд).

Расчеты выполнены по всем загрязняющим веществам и группам веществ, обладающих при совместном присутствии суммирующим вредным действием, на более худшие условия для рассеивания загрязняющих веществ в летний период года на границе СЗЗ, без учета фоновых концентраций, так как в рассматриваемом районе не производится наблюдение за состоянием атмосферного воздуха, кроме того, ближайший населенный пункт п. Хозрет находится на расстоянии 17 км от участка планируемых работ.

Ближайший населенный пункт п.Хозрет (17 км) располагается вне зоны влияния выбросов от места расположения объектов предприятия. При проведении

работ выбросы загрязняющих веществ в атмосферу (по результатам расчетов) не будут достигать ПДК_{м.р.} и воздействовать на здоровье населения.

В границах СЗЗ не размещаются: жилая застройка, санатории и дома отдыха, лечебно-профилактические оздоровительные садово-огородные участки, И организации, объекты пищевой отрасли.

При проведении расчетов рассеивания превышения ПДКмр на внешней границе СЗЗ и за ее пределами не превышают 1,0 ПДК.

Анализ результатов расчетов показывает, что максимальные значения предельно допустимых концентраций (ПДК_{мр}) на границе нормативной СЗЗ наблюдается по меди сульфиту и марганцу. На границе жилой зоны превышений нет.

Максимальные приземные концентрации на границе расчетной санитарнозащитной зоны (1000 м), по результатам расчета рассеивания выбросов на период эксплуатации месторождения будут наблюдаться по веществам:

- пыль неорганическая, содержащая SiO_2 : 70-20% 0,4388 ПДК на границе СЗЗ; 0,43 ПДК на границе расчетной точки;
- медь сульфит 0,748 ПДК на границе СЗЗ; 0,688 ПДК на границе расчетной точки:
- марганец и его соед. 0,53 ПДК на границе СЗЗ; 0,488 ПДК на границе расчетной точки.

Оценка воздействия на водные ресурсы

Водоснабжение

Хозяйственно-бытовые нужды

Снабжение питьевой водой предусмотрено привозной бутилированной водой. Для хранения питьевой воды на рабочих местах персонал обеспечивается флягами индивидуального пользования. Количество людей единовременно находящихся на участке работ – 63 человека. Ориентировочный объем потребления воды на хозяйственно-бытовые нужды составит – $574,875 \text{ м}^3/200$; $1,575 \text{ м}^3/\text{суm}$.

Технологические нужды

На период работ на пылеподавление на внутрикарьерных и площадочных автодорогах, экскаваторных забоях, при бурении, смачивании взрываемых блоков, увлажнении поверхности отвалов ПРС и вскрышных пород будет использоваться очищенные карьерные воды из пруда-испарителя.

Пылеподавление производится в тёплый период года при плюсовой температуре (с апреля по ноябрь, 210 дней в году).

Для пылеподавления на карьере применяется, полив автодорог водой с помощью специальной оросительной техники в тёплый период. Вода, используемая для пылеподавления, расходуется безвозвратно. Площадь автодорог – 12400 м². Ориентировочный объем потребления воды на технологические нужды (полив дорог) составит – $1041,6 \text{ м}^3/год$; $4,96 \text{ м}^3/сут$.

пруде-испарителе происходят процессы самоочищения, аналогичные процессам естественной аэрации в биологических прудах, а также дополнительное осветление воды. Необходимая степень очистки карьерной воды от взвешенных частиц достигается путем отстоя в пруде-испарителе для карьерных вод. При соблюдении технологии введения горных работ влияние на подземные воды оказываться не будет.

Водоотведение

Хоз-бытовые сточные воды

На борту карьеров будут размещены специализированные биотуалеты, с накопительными жижесборниками. Содержимое жижесборников обрабатывается дезинфицирующим раствором. Вывоз сточных вод предусмотрен по договору специализированным предприятиям.

Объем водоотведения принимается равным объему водопотребления и ориентировочно составят – 1,575 $M^3/cym\kappa u$, 574,875 M^3/cod .

Технологические нужды

Вода, используемая для пылеподавления, расходуется безвозвратно в объеме $4,96 \text{ m}^3/\text{cym}, 1041,6 \text{ m}^3/\text{200}.$

Отходы производства и потребления

В производственных подразделениях ТОО «Атыгай Голд Майнинг» имеет место определенная система сбора, накопления, хранения и вывоза отходов. Отходы, образующиеся при нормальном режиме работы подразделений, незначительного и постепенного накопления, либо сразу вывозятся в места их хранения, либо собираются в металлические контейнеры и временно хранятся на отведенных для этих целей площадках, затем сдаются на утилизацию.

Основными источниками образования отходов при производственной деятельности будут являться:

- эксплуатация горной техники и автотранспорта;
- жизнедеятельность персонала, задействованного в производстве.

Количество образуемых отходов в основном зависит от производительности предприятия. Как следствие количества персонала, автотранспорта, спецтехники и людей будет зависеть от объема выполняемых работ.

Основные виды отходов, образующихся В процессе эксплуатации месторождения, будут представлены промышленными отходами, а также отходами потребления.

Промышленные отходы будут образовываться в процессе проведения выемочно-погрузочных работ, проведении БВР, эксплуатации различной спецтехники и автотранспорта; при сооружении отвалов.

Виды отходов: опасные, неопасные и зеркальные.

- В процессе намечаемой деятельности при эксплуатации участка Берсуат месторождения золотосодержащих руд Атыгай предполагается образование отходов производства и потребления, из них:
- 1) Опасные отходы: промасленная ветошь, отработанные аккумуляторы, отработанные масла, отработанные фильтры, тара из-под ВВ.
- 2) Неопасные отходы: твердо-бытовые отходы (ТБО), отработанные шины, вскрышные породы.
 - 3) Зеркальные отходы отсутствуют.

Вскрышные породы образуются при разработке карьеров.

Размещение вскрышных пород месторождения предусматривается на внешнем отвале.

Предполагаемый объем образования отходов на период эксплуатации месторождения составит: 2840150,5658 т/год, из них опасных - 7,9118 т/год, неопасных — 2840142,654 т/год.

Размещение отходов

Временное хранение отходов – содержание отходов в объектах размещения отходов с учётом их изоляции и в целях их последующего захоронения, обезвреживания или использования. Срок временного хранения составляет не более 6 месяцев.

Вскрышные породы. Размещение вскрышных пород месторождения предусматривается на внешних отвалах.

Отвал представляет собой насыпь извлеченных из недр разрыхленных пород. Породы не обладают токсичными, радиоактивными или иными вредными для окружающей среды свойствами. Также отвал сверху не обрабатывается кислотными или другими растворами. В связи с этим, стекающие с отвала атмосферные осадки, а также подотвальные воды не загрязняются.

Объем образования на максимальный год разработки карьеров Берсуат -1234,822 тыс.м 3 /год = 2840090 тонн. Часть вскрышных пород планируется использовать для нужд предприятия - подсыпки дорог и площадок.

Выводы:

Реализация проектных решений окажет немало положительных аспектов для населения. Это и создание новых рабочих мест, повышение доходов, реализация социальных проектов, развитие инфраструктуры.

В рамках планирования работы по привлечению местного населения к основным видам деятельности намечается максимизация занятости, подбор местных поставщиков, обучение.

Повышение уровня жизни поможет снизить отток местного населения из региона.

Общее воздействие от проектной деятельности будет иметь среднее положительное воздействие.

Негативного влияния на здоровье населения оказываться не будет, так как на основании проведенных расчетов, превышений предельных концентраций загрязняющих веществ в атмосфере на границе ССЗ объекта и за ее пределами не превышает допустимых норм.

Добыча полезных ископаемых и ряд других видов хозяйственной деятельности организаций и предприятий сопровождаются изъятием земель, преимущественно из сельскохозяйственного пользования, их нарушением, загрязнением и снижением продуктивности прилегающих территорий.

уменьшения негативных последствий ЭТИХ процессов осуществляться комплекс мер по охране окружающей среды, оздоровлению местности и рациональному использованию земельных ресурсов, среди которых одной из наиболее важных является рекультивация нарушенных земель.

Нарушенные территории после полной отработки месторождений подлежат рекультивации с восстановлением исходных природных характеристик.

Проектом предусматривается восстановление поверхности, горными работами, в состояние пригодное для их дальнейшего использования в максимально короткие сроки.

В целях снижения потерь предусмотрены следующие мероприятия:

Систематически осуществлять геолого-маркшейдерский контроль, правильностью и полнотой отработки месторождений.

- 2. При проведении вскрышных работ производить тщательную зачистку кровли полезной толщи с целью получения минимальных потерь и засорения породы.
 - 3. Не допускать перегруза при транспортировке.
- 4. Размещение отвалов и других объектов предприятия, прокладку подъездных путей необходимо производить на землях несельскохозяйственного назначения по оптимальному кратчайшему расстоянию с максимальным использованием существующих полевых дорог.

Мероприятия по ликвидации месторождения более подробно описаны в Плане ликвидации.

После завершения проектных работ, откачка воды из карьеров прекратится. Тем самым карьеры постепенно затопятся грунтовыми водами. Для предотвращения падения людей и животных, карьерные выемки подлежат обваловке вскрышным материалом по всему периметру, на расстоянии 10 метров от призмы возможного разрушения.

На момент ликвидации вся руда со склада будет вывезена. Работы по ликвидации рудных складов на участке Берсуат месторождения Атыгай заключаются в приведении рельефа в соответствие с окружающим ландшафтом, путем разравнивания и планировки бульдозером поверхности, нарушенной при образовании склада.

Для создания нормальных санитарно-гигиенических условий труда и обеспечения минимального уровня воздействия на атмосферный воздух проектом предусмотрено осуществление следующих мероприятий предупредительного характера:

- для предупреждения загрязнения воздуха производить проверку двигателей всех механизмов на токсичность выхлопных газов;
 - соблюдать правила и технику пожарной безопасности при эксплуатации.
- В комплекс организационно-технических мероприятий, направленных на снижение воздействия на атмосферный воздух, включаются:
- при инструктаже обслуживающего персонала, водителей обращается особое внимание о необходимости работы двигателей на оптимальных режимах, с целью уменьшения выбросов;
- при выпуске промышленностью нейтрализаторов выхлопных газов, соответствующих используемым машинам, прорабатывается возможность их установки на автомобилях.

Таким образом, остаточные воздействия намечаемой деятельности, используемые при оценке величины и значимости воздействий на воздушную среду, ввиду отсутствия возможных смягчающих мероприятий, принимаются на уровне определенных первоначальных воздействий.

С учетом специфики деятельности принимается, что технологическая схема производства работ соответствует современному опыту в данной сфере хозяйства.

Поскольку намечаемой деятельностью является открытая разработка золоторудного месторождения Атыгай, одним из альтернативных вариантов является «нулевой» вариант т.е. отказ от деятельности. Отказ от деятельности не приведет к значительному улучшению экологических характеристик окружающей среды, когда разработка месторождения приведет к улучшению социально-экономических характеристик района, что в свою очередь приведет к улучшению условий жизни населения близлежащих городов и поселков.

Горнотехнические условия месторождения, морфология залегания рудных тел и экономические критерии предопределяют разработку верхней окисленной части Проектная компания "АНТАЛ"

месторождения открытым способом (карьерами) до глубины 100 м. Разработка подземным способом на первом этапе нецелесообразна, т.к. руды залегают близко к поверхности. Переход на подземный способ добычи возможен на стадии вовлечения в отработку сульфидной части месторождения.

Единственным способом осуществления добычи руды данного месторождения является открытая разработка карьерами и сооружением отвалов пустых пород.

Подземная разработка на текущем этапе проектирования не рассматривается в связи с выходом рудных залежей на дневную поверхность.

Данные о слагающих породах свидетельствуют, что постепенное уплотнение разновидностей горной массы от поверхности требует применения буровзрывных работ для их предварительной подготовки к выемке.

Для рыхления будет использоваться скважинная отбойка горной массы. Имеются два альтернативных способа БВР ведения БВР: метод шпуровых зарядов и метод камерных зарядов. Оба данных метода менее эффективны. Одним из недостатков метода камерных зарядов является повышенный выход негабаритных кусков после взрыва. Основным недостатком метода шпуровых зарядов является сравнительно большая его трудоемкость. Поэтому применение метода шпуровых зарядов неэффективно при горных разработках большого масштаба. В связи с этим принят метод скважинной отбойки.

В плане горных работ принят вариант с использованием гидравлического горного оборудования на дизельном топливе типа Hitachi. Данная модель экскаваторов зарекомендовала себя как надежная техника.

Альтернативное размещение объекта производства не рассматривалось. Место размещения объекта производства, а также технические и технологические решения предопределены условиями расположения рудной залежи.

Размещение вскрышных пород месторождения предусматривается на внешних отвалообразование отвалах. Внутрикарьерное настоящим планом предусматривается в связи с тем, что под карьером залегают не вовлекаемые в разработку утвержденные протоколом ГКЗ №2408-22-У от 04.02.2022г. запасы сульфидной руды. Внутреннее отвалообразование в данном случае не представляется с п.1746 Правил обеспечения возможным в соответствии промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы.

Внутреннее отвалообразование будет применено стадии сульфидной части месторождения.

Часть вскрышных пород планируется использовать для нужд предприятия подсыпки дорог и площадок, тем самым сократив территорию, нарушенную отвалами вскрышных пород.

Проектом рассматривались несколько вариантов формирования отвалов вскрышных пород:

- Вариант 1. При отсыпке отвала в 1 ярус, высотой 20 м занимаемая отвалами площадь составит $-85~000~\text{м}^2$.
- Вариант 2. При отсыпке отвала в 2 яруса, высотой яруса 15 метров занимаемая отвалами площадь составит – 74 300 м².

Был принят вариант с формированием отвала в несколько ярусов, т.к. данный вариант позволяет сократить площадь земель под размещение вскрышных пород на 12,55% (10 700 M^2).

Выбранный вариант размещения отвалов позволяет:

- 1. Уменьшить расстояния транспортировки вскрыши, снизить время работы ДВС техники и эксплуатационные расходы, в следствии чего и уменьшаются объемы выбросов в окружающую среду;
 - 2. Уменьшение площади под размещение отвалов;
 - 3. Уменьшение площади пыления.

Наличие конкретных технических проектных решений исключает возможные неблагоприятного воздействия на окружающую среду, невозможности полного исключения – обеспечивает его существенное снижение.

Учитывая, что Отказ от реализации проектных решений не приведет к значительному улучшению экологических характеристик окружающей среды, но может привести к отказу от социально и экономически важного для региона предприятия, инициатор считает нужным отказаться от «нулевого» варианта.

приложения

1 - 1 14017824

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

<u>26.11.2014 года</u> <u>01714P</u>

Выдана Товарищество с ограниченной ответственностью "АНТАЛ"

050000, Республика Казахстан, г.Алматы, Бостандыкский район, БУХАР ЖЫРАУ, дом №

33,н.п.50., БИН: 920940000013

(полное наименование, местонахождение, реквизиты БИН юридического лица /

полностью фамилия, имя, отчество, реквизиты ИИН физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

<u>среды</u>

(наименование лицензируемого вида деятельности в соответствии с Законом

Республики Казахстан «О лицензировании»)

Вид лицензии

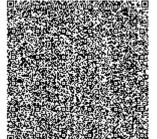
Особые условия действия лицензии

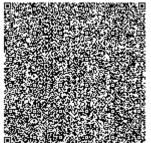
(в соответствии со статьей 9-1 Закона Республики Казахстан «О лицензировании»)

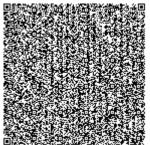
Тицензиар <u>Комитет экологического регулирования, контроля и</u>

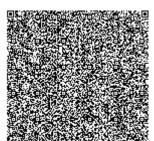
государственной инспекции в нефтегазовом комплексе.

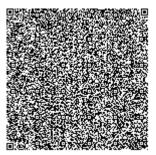
Министерство энергетики Республики Казахстан.


(полное наименование лицензиара)


Руководитель (уполномоченное лицо)


ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ


(фамилия и инициалы руководителя (уполномоченного лица) лицензиара)


Место выдачи г.Астана

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ ЛИЦЕНЗИИ

Номер лицензии <u>01714P</u>

Дата выдачи лицензии 26.11.2014 год

Подвид(ы) лицензируемого вида деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О лицензировании»)

- Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

Производственная база

(местонахождение)

Лицензиат Товарищество с ограниченной ответственностью "АНТАЛ"

050000, Республика Казахстан, г.Алматы, Бостандыкский район, БУХАР ЖЫРАУ, дом

№ 33,н.п.50., БИН: 920940000013

(полное наименование, местонахождение, реквизиты БИН юридического лица / полностью фамилия,

имя, отчество, реквизиты ИИН физического лица)

Тицензиар <u>Комитет экологического регулирования, контроля и государственной</u>

инспекции в нефтегазовом комплексе. Министерство энергетики Республики

<u>Казахстан.</u>

(полное наименование лицензиара)

Руководитель

(уполномоченное лицо)

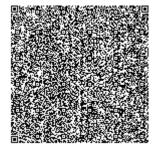
ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ

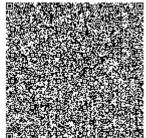
фамилия и инициалы руководителя (уполномоченного лица) лицензиара

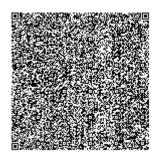
Номер приложения к

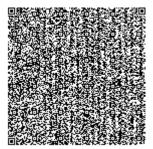
лицензии

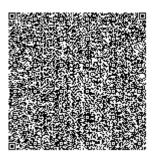
001


Дата выдачи приложения


к лицензии


26.11.2014


Срок действия лицензии


Место выдачи г. Астана

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ГЕОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ

Номер: KZ20VWF00073518 министерство эдетно 1808.2022 геологии и природных ресурсов республики казахстан

КОМИТЕТ ЭКОЛОГИЧЕСКОГО РЕГУЛИРОВАНИЯ И КОНТРОЛЯ

010000, г. Нур-Султан, просп. Мангилик ел, 8 «Дом министерств», 14 подъезд Тел.: 8(7172) 74-01-05, 8(7172) 74-08-55

ЭКОЛОГИЯЛЫҚ РЕТТЕУ ЖӘНЕ БАҚЫЛАУ КОМИТЕТІ

010000, Нұр-Сұлтан қ, Мәңгілік ел даңғ., 8 «Министрліктер үйі», 14 кіреберіс Тел.: 8(7172) 74-01-05, 8(7172)74-08-55

№	

Заключение об определении сферы охвата оценки воздействия на окружающую среду

На рассмотрение представлено: Заявление о намечаемой деятельности Товарищество с ограниченной ответственностью «Атыгай Голд Майнинг»

Материалы поступили на рассмотрение: KZ86RYS00264700 от 04.07.2022 года.

Общие сведения

Сведения об инициаторе намечаемой деятельности: Товарищество с ограниченной ответственностью «Атыгай Голд Майнинг», 110700, Республика Казахстан, Костанайская область, Житикаринский район, г.Житикара, Микрорайон 4, дом № 5А, 131040006314, Марьин Александр Анатольевич, 87710944322, office@atgm.kz.

Общее описание видов намечаемой деятельности. согласно приложению 1 Экологического кодекса Республики Казахстан (далее - Кодекс) Проектом предусматривается План горных работ по добыче руды с месторождения Атыгай (Берсуат), 1-я очередь с экологической и технико-экономической частью в Костанайской области. Площадь участка ведения горных работ составляет — 61,1977 Га. Добыча руды подпадает под перечень видов намечаемой деятельности и объектов, для которых проведение оценки воздействия на окружающую среду является обязательным согласно п. 2.2 раздела 1 приложения 1 Экологического кодекса (карьеры и открытая добыча твердых полезных ископаемых на территории, превышающей 25 га). Таким образом, для данного объекта является обязательным проведение оценки воздействия на окружающую среду.

Сведения о предполагаемом месте осуществления намечаемой деятельности, обоснование выбора места и возможностях выбора других мест:

Месторождение золотосодержащих руд Атыгай (Берсуат) расположено Житикаринском районе Костанайской области Республики Казахстан, в 75 км к западу от г. Житикара. Ближайшим к месторождению работ населенным пунктом является п. Хозрет, расположенный на расстоянии 17 км на запад от границы участка. Площадь участка ведения горных работ составляет – 61,1977 Га. Максимальная производительность по добыче руды из карьеров Берсуат составит 26,094 тыс. тонн. Общий срок эксплуатации карьеров составит 1 год. Запасы утверждены протоколом ГКЗ РК №2408-22-У от 04.02.2022 г. Поскольку намечаемой деятельностью является открытая разработка золоторудного месторождения Атыгай, единственным альтернативным вариантом является «нулевой» вариант т.е. отказ от деятельности. Отказ от деятельности не приведет к значительному улучшению экологических характеристик окружающей среды, когда разработка месторождения приведет к улучшению

социально-экономических характеристик района, что в свою очередь приведет к улучшению условий жизни населения близлежащих городов и поселков. Применение альтернативных способов достижения целей намечаемой деятельности не представляется возможным в связи с отсутствием других технологий и методов разработки месторождений данного типа, а также соответствующей практики. Единственным способом осуществления добычи руды данного месторождения является открытая разработка карьерами и сооружением отвалов пустых пород. Подземная разработка на текущем этапе проектирования не рассматривается в связи с выходом рудных залежей на дневную поверхность. В плане горных работ принят вариант с использованием гидравлического горного оборудования на дизельном топливе типа Hitachi. Данная модель экскаваторов зарекомендовала себя как надежная техника. Альтернативное размещение объекта производства не рассматривалось. Место размещения объекта производства, а также технические и технологические решения предопределены условиями расположения рудной залежи.

Общие предполагаемые технические характеристики намечаемой деятельности, включая мощность производительность) объекта, его предполагаемые размеры, характеристику продукции

Планом горных работ предусматривается проведение добычи на участке Берсуат месторождения Атыгай, расположенного в пределах контрактной Западно-Хазретской площади ТОО «Атыгай Голд Майнинг» (Контракт №2639 от 05.05.2008 г., лист М-41-I). Данным планом горных работ разработка месторождения Атыгай предусматривается открытым способом в контурах двух карьеров. Для отработки рудных залежей месторождения предусматривается транспортная система разработки с транспортировкой вскрышных пород во внешний отвал, а добытой руды на рудный склад. Отработка месторождения ведется с применением буровзрывных работ. Режим горных работ - круглосуточный (2 смены по 12 часов), 365 рабочих дней в году. Работы ведутся вахтовым методом — две вахты в месяц. Продолжительность вахты — 15 рабочих дней. Производительность по добыче руды из карьеров Берсуат составит 26,094 тыс. тонн. Всего, для добычи запасов необходимо попутно удалить 1,2 млн.м.куб вскрышных пород. Общий срок эксплуатации карьеров составит 1 год.

Краткое описание предполагаемых технических и технологических решений для намечаемой деятельности.

ПГР предусматривается открытый способ отработки запасов месторождения путём проходки карьера с применением буровзрывных работ (БВР) с экскавацией горной массы экскаваторами с обратной и прямой лопатой транспортировкой вынутой горной массы за пределы карьеров автотранспортом. Основными наземными сооружениями являются – карьеры, отвал вскрышных пород, рудный склад, склад пруд-испаритель, сеть внутрихозяйственных дорог. Проектная перерабатывающего производства в рамках настоящего ПГР не рассматривается. Планом горных работ предусматривается эксплуатация месторождения в течении 1 года (2029 года). Планируется проведение комплекса подготовительных работ, которые включают в себя: снятие и складирование ПРС, мощностью до 0,3 м; подготовка производственных площадок; организация капитальных врезных траншей.

Предположительные сроки начала реализации намечаемой деятельности и ее завершения (включая строительство, эксплуатацию, и постутилизацию объекта) Эксплуатация Карьера Берсуат запланирована на 2029 год. Ориентировочный срок разработки месторождения составит 1 год. После добычи запасов, предусмотренных к открытой добыче разработанным Планом горных работ, карьеры будут законсервированы до последующей отработки оставшихся руд. Консервация или ликвидация объектов обеспечивается принятием мер по предотвращению падения людей и животных в выработки ограждением или

обваловкой высотой не менее 2,5 метров на расстоянии 5 метров за возможной призмой обрушения верхнего уступа.

Краткая характеристика компонентов окружающей среды

Описание ожидаемых выбросов загрязняющих веществ в атмосферу: наименования загрязняющих веществ, их классы опасности, предполагаемые объемы выбросов, сведения о веществах, входящих в перечень загрязнителей, данные по которым подлежат внесению в регистр выбросов и переноса загрязнителей в соответствии с правилами ведения регистра выбросов и переноса загрязнителей, утвержденными уполномоченным органом (далее – правила ведения регистра выбросов и переноса загрязнителей).

На период эксплуатации ожидаются выбросы 15 наименований загрязняющих веществ в атмосферный воздух 2-4 класса опасности.

Описание сбросов загрязняющих веществ: наименования загрязняющих веществ, их классы опасности, предполагаемые объемы сбросов, сведения о веществах, входящих в перечень загрязнителей, данные по которым подлежат внесению в регистр выбросов и переноса загрязнителей в соответствии с правилами ведения регистра выбросов и переноса загрязнителей:

Водопритоки в карьере формируются исключительно за счет атмосферных осадков.

Водоотлив из карьера осуществляется насосами ЦНС, установленными на передвижных салазках из водосборника (зумпфа). Поступающая с горизонтов вода, по системе прибортовых канав и перепускных сооружений, собирается на нижние горизонты в водосборники (зумпфы).

Отвод воды с зумпфов будет осуществляться по напорным трубопроводам.

Откачанная из карьера вода будет отводится пруды-испарители. Пруд-испаритель односекционный. Необходимая степень очистки карьерной воды от взвешенных частиц достигается путем отстоя в пруде-испарителе. Конструкция пруда-испарителя обеспечивает полную герметичность и предотвращает возможность утечек карьерной воды в грунт.

Описание отходов, управление которыми относится к намечаемой деятельности: наименования отходов, их виды, предполагаемые объемы, операции, в результате которых они образуются, сведения о наличии или отсутствии возможности превышения пороговых значений, установленных для переноса отходов правилами ведения регистра выбросов и переноса загрязнителей

В процессе эксплуатации карьеров образуются ориентировочно следующие виды отходов:

- ТБО, (неопасные). Объем образования -4,725 т/год. Отходы образуются от деятельности рабочих, занятых на производстве.
- Промасленная ветошь (опасные). Объем образования 0,489 т/год. Ветошь, замасленная образуется при обслуживании и ремонте основного и вспомогательного оборудования автотранспортной техники. Промасленная ветошь хлопчатобумажная ткань, пропитанная горюче-смазочными материалами.
- Отработанные аккумуляторы (опасные). Объем образования -1,171 т/год. Отходы образуются в результате эксплуатации автотранспортной техники.
- Отработанные шины (неопасные). Объем образования 47,929 т/год. Отходы образуются в результате эксплуатации техники и автотранспортных средств.
- Отработанные масла (опасные). Объем образования -5,03 т/год. Отходы образуются при эксплуатации техники и автотранспортных средств.
- Отработанные масляные фильтры (опасные). Объем образования 0,739 т/год. Отходы образуются при эксплуатации, техническом обслуживании и ремонте автотранспорта.
 - Тара из-под взрывчатых веществ (опасные). Объем образования 0,4828 т/год.

Отходы образуются при использовании взрывчатых веществ при разработке карьеров.

- Вскрышная порода (неопасные). Объем образования при разработке карьеров Берсуат
- -1234,822 тыс.м3/год = 2840090 тонн. Отходы образуются при добычи руды и разработке карьеров.

Все образованные отходы, передаются по договору специализированным предприятиям для дальнейшей утилизации или использования как вторичного сырья.

Вскрышные породы подлежат размещению на отвале.

Сроки хранения отходов осуществляются в соответствие с требованиями Экологического законодательства РК.

Выводы:

При разработке отчета о возможных воздействиях:

- 1. Представить ситуационную карту-схему расположения объекта, отношение его к водным объектам, жилым застройкам (Приложение 1 к «Правилам оказания государственных услуг в области охраны окружающей среды» от 2 июня 2020 года № 130).
- 2. Согласно п.7 Правил проведения общественных слушаний, утвержденными приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 3 августа 2021 года № 286, общественные слушания по документам, намечаемая деятельность по которым может оказывать воздействие на территорию более чем одной административнотерриториальной единицы (областей, городов республиканского значения, столицы, районов, городов областного, районного значения, сельских округов, поселков, сел), проводятся на территории каждой такой административно-территориальной единицы. В этой связи необходимо проведение общественных слушаний в ближайших к объекту населенных пунктах.
- 3. В соответствии с требованиями статей 125 и 126 Водного кодекса Республики Казахстан, в случае размещения предприятия и других сооружений, производства строительных и других работ на водных объектах, водоохранных зонах и полосах, установленных акиматами соответствующих областей, Инициатору намечаемой деятельности, подлежит реализовать при наличии соответствующих согласований, предусмотренных Законодательствами Республики Казахстан, в т.ч. согласования с бассейновой инспекцией;
- 4. При отсутствии на территории установленных на водных объектах водоохранных зон и полос, соответствующее решение о реализации намечаемой деятельности принять после установления водоохранных зон и полос и с учетом вышеизложенного требования.
- 5. Инициатором, пользование поверхностными и (или) подземными водными ресурсами непосредственно из водного объекта с изъятием или без изъятия для удовлетворения намечаемой деятельности в воде, осуществлять при наличии разрешения на специальное водопользование в соответствии с требованиями статьи 66 Водного кодекса Республики Казахстан.
- 6. В отчете необходимо привести компонентно-качественную характеристику вариантов воздействия объектов и сооружений намечаемой деятельности при возможных аварийных ситуациях вариантов разработки месторождения (источники, виды, степень и зоны воздействия, в том числе вид, состав, ориентировочные объемы загрязняющих веществ, характер образующихся отходов производства и потребления вид, объем, уровень опасности).
- 7. Соблюдение экологических требований при сбросе сточных вод (ст.222 Кодекса) Согласно п. 2 статьи 216 Экологического кодекса РК сброс не очищенных до нормативов допустимых сбросов сточных вод в водный объект или на рельеф местности запрещается. В этой связи необходимо рассмотреть возможность повторного использования этих вод. Так же

предусмотреть сбор и очистку подотвальных вод и возможность их повторного использования. В целях рационального использования водных ресурсов обязаны разрабатывать и осуществлять мероприятия по повторному использованию воды, оборотному водоснабжению (ст. 222 Экологического кодекса РК).

- 8. Необходимо детализировать информацию по описанию технических и технологических решений для намечаемой деятельности.
 - 9. Необходимо описать процесс сортировки отходов до его передачи.
- 10. Указать место хранения отходов до их передачи, а также учесть гидроизоляцию мест размещения в отходов.
- 11. В ходе проведения работ необходимо обеспечить соблюдение требований статьи 17 Закона Республики Казахстан от 09 июля 2004 года №593 «Об охране, воспроизводстве и использовании животного мира».

Вместе с тем, необходимо исключить риск наложения территории объекта на особо охраняемые природные территории.

- 12. Согласно п.4 статьи 344 Экологическому Кодексу Республики Казахстан (далее Кодекс) субъект предпринимательства, осуществляющий предпринимательскую деятельность по сбору, транспортировке, восстановлению и (или) удалению опасных отходов, обязан разработать план действий при чрезвычайных и аварийных ситуациях, которые могут возникнуть при управлении опасными отходами. В этой связи необходимо описать возможные чрезвычайные и аварийные ситуации, а также план действий при данных ситуациях.
- 13. Необходимо предоставить характеристику возможных форм негативного и положительного воздействий на окружающую среду в результате осуществления намечаемой деятельности, их характер и ожидаемые масштабы с учетом их вероятности, продолжительности, частоты и обратимости, оценка их существенности.
- 14. Необходимо включить информацию относительно расположения проектируемого объекта и источников его воздействия к жилой зоне, розы ветров, СЗЗ для строящегося объекта в соответствии с требованиями по обеспечению безопасности жизни и здоровья населения. Согласно пп.2 п.4 ст. 46 Кодекса о здоровье народа и системе здравоохранения проводится санитарно-эпидемиологическая экспертиза проектов нормативной документации по предельно допустимым выбросам и предельно допустимым сбросам вредных веществ и физических факторов в окружающую среду, зонам санитарной охраны и санитарно-защитным зонам.
 - 15. Согласно ст.320 Кодекса накопление отходов:

Под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных в пункте 2 настоящей статьи, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления.

Места накопления отходов предназначены для:

- 1) временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- 2) временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;

3) временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление.

Для вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники срок временного складирования в процессе их сбора не должен превышать шесть месяцев;

4) временного складирования отходов горнодобывающих и горноперерабатывающих производств, в том числе отходов металлургического и химико-металлургического производств, на месте их образования на срок не более двенадцати месяцев до даты их направления на восстановление или удаление.

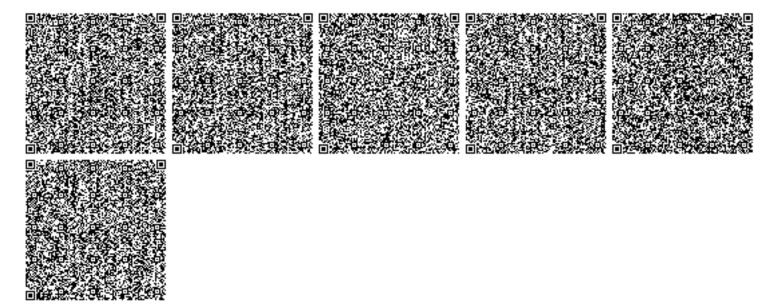
Необходимо собюдать вышеуказанные треблования Кодекса.

- 16. Также согласно ст.329 необходимо придерживаться принципа иерархии. Образователи и владельцы отходов должны применять следующую иерархию мер по предотвращению образования отходов и управлению образовавшимися отходами в порядке убывания их предпочтительности в интересах охраны окружающей среды и обеспечения устойчивого развития Республики Казахстан:
 - 1) предотвращение образования отходов;
 - 2) подготовка отходов к повторному использованию;
 - 3) переработка отходов;
 - 4) утилизация отходов;
 - 5) удаление отходов.
- 17. Необходимо накапливать отходы только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).
- 18. При передаче опасных отходов необходимо учесть требования ст.336 Кодекса: Субъекты предпринимательства для выполнения работ (оказания услуг) по переработке, обезвреживанию, утилизации и (или) уничтожению опасных отходов обязаны получить лицензию на выполнение работ и оказание услуг в области охраны окружающей среды по соответствующему подвиду деятельности согласно требованиям Закона Республики Казахстан "О разрешениях и уведомлениях".
 - 19. Предусмотреть внедрение мероприятий согласно Приложения 4 к Кодексу.
- 20. Представить предложения по организации мониторинга и контроля за состоянием атмосферного воздуха, водных ресурсов, мест размещения отходов.
- 21. Необходимо рассмотреть вопрос разработки наилучших доступных техник (НДТ) и получения комплексного экологического разрешения.
- Согласно ст.185 Кодекса, а также Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 14 июля 2021 года № 250 «Об утверждении Правил разработки программы производственного экологического контроля объектов I и II категорий, ведения внутреннего учета, формирования и предоставления периодических результатам производственного отчетов ПО экологического контроля» установить периодичность проведения мониторинга эмиссий в окружающую среду в рамках производственного экологического контроля по почвенному покрову ежеквартально. Кроме этого, разработать карту расположения постов наблюдений контроля за атмосферным воздухом, почвенными ресурсами и подземными водами, с организацией экоплощадок для мониторинга состояния растительного и животного мира.
- 23. Необходимо предоставить характеристику возможных форм негативного и положительного воздействий на окружающую среду в результате осуществления намечаемой

деятельности, их характер и ожидаемые масштабы с учетом их вероятности, продолжительности, частоты и обратимости, оценка их существенности.

- 24. В отчете необходимо указать объемы образования всех видов отходов, а также предусмотреть альтернативные методы использования отходов.
- 25. Соблюдение экологических требований при проведении операций по недропользованию (ст.397 Экологического кодекса РК):
- применение технологий с внутренним отвалообразованием, использование отходов производства в качестве вторичных ресурсов, их переработка и утилизация, прогрессивная ликвидация последствий операций по недропользованию и другие методы;
- по предотвращению загрязнения недр, в том числе при использовании пространства недр.
- 26. Необходимо отразить информацию о наличии земель оздоровительного, рекреационного и историко-культурного назначения на территории и вблизи расположения участка работ.

В соответствии с п.4 статьи 72 Кодекса, проект отчета о возможных воздействиях должен быть подготовлен с учетом содержания заключения об определении сферы охвата оценки воздействия на окружающую среду.


Заместитель председателя

А. Абдуалиев

Исп. Сайлаубекова 75-09-86

Заместитель председателя

Абдуалиев Айдар Сейсенбекович

Ответы на Замечания ЗОНД Берсуат:

1. Представить ситуационную карту-схему расположения объекта, отношение его к водным объектам, жилым застройкам (Приложение 1 к «Правилам оказания государственных услуг в области охраны окружающей среды» от 2 июня 2020 года № 130).

Замечание принято. Ситуационная картасхема расположения объекта, отношение его к водным объектам, жилым застройкам представлена в п 1.1 рис. 1.2. стр 12.

2. Согласно п.7 Правил проведения общественных слушаний, утвержденными приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 3 августа 2021 года № 286, общественные слушания по документам, намечаемая деятельность по которым может оказывать воздействие на территорию более чем одной административно-территориальной единицы (областей, городов республиканского значения, столицы, районов, городов областного, районного значения, сельских округов, поселков, сел), проводятся на территории каждой такой административнотерриториальной единицы. В этой связи необходимо проведение общественных слушаний в ближайших к объекту населенных пунктах.

Замечание принято. Общественные слушания будут проведены согласно Правил проведения общественных слушаний, утвержденными приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 3 августа 2021 года № 286

3. В соответствии с требованиями статей 125 и 126 Водного кодекса Республики Казахстан, в случае размещения предприятия и других сооружений, производства строительных и других работ на водных объектах, водоохранных зонах и полосах, установленных акиматами соответствующих областей, Инициатору намечаемой деятельности, подлежит реализовать при наличии соответствующих согласований, предусмотренных Законодательствами Республики Казахстан, в т.ч. согласования с бассейновой инспекцией;

Замечание принято. Письмо РГУ «Тобол-Торгайская бассейновая инспекция по регулированию использования и охране водных ресурсов Комитета по водным ресурсам Министерства экологии, геологии и природных ресурсов Республики Казахстан» от 22.09.2022 №3Т-2022-02373628 представлено в приложении 6 отчета о ВВ. Согласно письму, поверхностные водные объекты, водоохранные зоны и полосы на участке планируемых работ отсутствуют

4. При отсутствии на территории установленных на водных объектах водоохранных зон и полос, соответствующее решение о реализации намечаемой деятельности принять после установления водоохранных зон и полос и с учетом вышеизложенного требования.

Замечание принято. Согласно письму РГУ «Тобол-Торгайская бассейновая инспекция по регулированию использования и охране водных ресурсов Комитета по водным ресурсам Министерства экологии, геологии и природных ресурсов Республики Казахстан» от 22.09.2022 №3Т-2022-02373628 поверхностные водные объекты, водоохранные зоны и полосы на участке планируемых работ отсутствуют. Письмо представлено в приложении 6 отчета о ВВ.

5. Инициатором, пользование поверхностными Согласно письму РГУ «Тобол-Торгайская и (или) подземными водными ресурсами бассейновая инспекция по регулированию непосредственно из водного объекта с изъятием использования и охране водных ресурсов или без изъятия для удовлетворения намечаемой Комитета по водным ресурсам деятельности в воде, осуществлять при наличии Министерства экологии, геологии и природных ресурсов Республики разрешения на специальное водопользование в соответствии с требованиями статьи 66 Водного Казахстан» от 22.09.2022 №3Т-2022кодекса Республики Казахстан. 02373628 поверхностные водные объекты, водоохранные зоны и полосы на участке планируемых работ отсутствуют. Письмо представлено в приложении 6 отчета о ВВ. 6. В отчете необходимо привести компонентно-Замечание принято. В п 9. Отчета о ВВ качественную характеристику вариантов разработан план действий при аварийных воздействия объектов и сооружений намечаемой ситуациях по недопущению и (или) деятельности при возможных аварийных ликвидации последствии загрязнения всех ситуациях вариантов разработки месторождения компонентов окружающей среды (источники, виды, степень и зоны воздействия, в (земельных ресурсов, атмосферного том числе вид, состав, ориентировочные объемы воздуха и водных ресурсов). загрязняющих веществ, характер образующихся отходов производства и потребления - вид, объем, уровень опасности). 7. Соблюдение экологических требований при Строительство прудов-испарителей сбросе сточных вод (ст.222 Кодекса) Согласно данным проектом не рассматриваются. п. 2 статьи 216 Экологического кодекса РК Для них будет разработана отдельная проектно-сметная документация. Прудысброс не очищенных до нормативов допустимых сбросов сточных вод в водный объект или на испарители в данном проекте рассчитаны рельеф местности запрещается. В этой связи предварительно. Для строительства сооружений Заказчиком будет необходимо рассмотреть возможность разрабатываться отдельная ПСД, с повторного использования этих вод. Так же предусмотреть сбор и очистку подотвальных требуемым объемом согласований и вод и возможность их повторного прохождением согласования в использования. В целях рационального Государственной вневедомственной использования водных ресурсов обязаны экспертизе. разрабатывать и осуществлять мероприятия по повторному использованию воды, оборотному водоснабжению (ст. 222 Экологического кодекса РК). 8. Необходимо детализировать информацию по Замечание принято. Информация описанию технических и технологических детализирована решений для намечаемой деятельности. 9. Необходимо описать процесс сортировки Замечание принято. Операции по отходов до его передачи. управлению отходами, сортировки и передачи представлен в п.7 отчета о ВВ 10. Указать место хранения отходов до их Замечание принято. Места хранения передачи, а также учесть гидроизоляцию мест отходов и гидроизоляция мест отходов размещения в отходов. учтена в п. 7 отчета о ВВ 11. В ходе проведения работ необходимо Замечание принято. Площадка обеспечить соблюдение требований статьи 17 проектируемого месторождения не Закона Республики Казахстан от 09 июля 2004 располагаются на территории особо года №593 «Об охране, воспроизводстве и охраняемых природных территорий, использовании животного мира». Вместе с тем, согласно письму №26 от 03.03.2022 г РГУ «Костанайская областная территориальная необходимо исключить риск наложения

территории объекта на особо охраняемые природные территории.

12. Согласно п.4 статьи 344 Экологическому Кодексу Республики Казахстан (далее - Кодекс) субъект предпринимательства, осуществляющий предпринимательскую деятельность по сбору, транспортировке, восстановлению и (или) удалению опасных отходов, обязан разработать план действий при чрезвычайных и аварийных ситуациях, которые могут возникнуть при управлении опасными отходами. В этой связи необходимо описать возможные чрезвычайные и аварийные ситуации, а также план действий при данных ситуациях.

инспекция лесного хозяйства и животного мира», представлено в приложении 7.

Замечание принято. План действий при чрезвычайных и аварийных ситуациях, которые могут возникнуть при управлении опасными отходами представлен в п.7 отчета о BB

13. Необходимо предоставить характеристику возможных форм негативного и положительного воздействий на окружающую среду в результате осуществления намечаемой деятельности, их характер и ожидаемые масштабы с учетом их вероятности, продолжительности, частоты и обратимости, оценка их существенности.

Замечание принято. Характеристика возможных форм негативного и положительного воздействий на окружающую среду в результате осуществления намечаемой деятельности, их характер и ожидаемые масштабы с учетом их вероятности, продолжительности, частоты и обратимости, оценка их существенности представлена в отчете о ВВ.

14. Необходимо включить информацию относительно расположения проектируемого объекта и источников его воздействия к жилой зоне, розы ветров, СЗЗ для строящегося объекта в соответствии с требованиями по обеспечению безопасности жизни и здоровья населения. Согласно пп.2 п.4 ст. 46 Кодекса о здоровье народа и системе здравоохранения проводится санитарно-эпидемиологическая экспертиза проектов нормативной документации по предельно допустимым выбросам и предельно допустимым сбросам вредных веществ и физических факторов в окружающую среду, зонам санитарной охраны и санитарнозащитным зонам.

Замечание принято. Информация относительно расположения проектируемого объекта и источников его воздействия к жилой зоне, розы ветров, СЗЗ для строящегося объекта в соответствии с требованиями по обеспечению безопасности жизни и здоровья населения приведена в отчете о ВВ в п.1, п.6.

15. Согласно ст.320 Кодекса накопление отходов: Под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных в пункте 2 настоящей статьи, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления. Места накопления отходов предназначены для: 1) временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора

Замечание принято. Места накопления отходов учтены. Срок временного хранения отходов должен не превышать 6 мес., п.7 отчета о BB.

(передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению; 2) временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению; 3) временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление. Для вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники срок временного складирования в процессе их сбора не должен превышать шесть месяцев; 4) временного складирования отходов горнодобывающих и горноперерабатывающих производств, в том числе отходов металлургического и химикометаллургического производств, на месте их образования на срок не более двенадцати месяцев до даты их направления на восстановление или удаление. Необходимо собюдать вышеуказанные треблования Кодекса. 16. Также согласно ст.329 необходимо Замечание принято. В отчете о возможных придерживаться принципа иерархии. воздействиях предусмотрено управление Образователи и владельцы отходов должны отходами, в соответствии с принципом применять следующую иерархию мер по иерархии в п.1.7 предотвращению образования отходов и управлению образовавшимися отходами в порядке убывания их предпочтительности в интересах охраны окружающей среды и обеспечения устойчивого развития Республики Казахстан: 1) предотвращение образования отходов; 2) подготовка отходов к повторному использованию; 3) переработка отходов; 4) утилизация отходов; 5) удаление отходов. 17. Необходимо накапливать отходы только в Замечание принято. Места накопления специально установленных и оборудованных в отходов учтены. Срок временного соответствии с требованиями законодательства хранения отходов должен не превышать 6 Республики Казахстан местах (на площадках, в мес., п.7 отчета о ВВ. складах, хранилищах, контейнерах и иных объектах хранения). Замечание принято. Передача опасных 18. При передаче опасных отходов необходимо учесть требования ст.336 Кодекса: Субъекты отходов предусмотрена

предпринимательства для выполнения работ специализированным предприятиям для (оказания услуг) по переработке, утилизации п.7 отчета о ВВ. обезвреживанию, утилизации и (или) уничтожению опасных отходов обязаны получить лицензию на выполнение работ и оказание услуг в области охраны окружающей среды по соответствующему подвиду деятельности согласно требованиям Закона Республики Казахстан "О разрешениях и уведомлениях". 19. Предусмотреть внедрение мероприятий Замечания приняты. Проектом согласно Приложения 4 к Кодексу. предусмотрено проведение мероприятий согласно Приложения 4 к Кодексу 20. Представить предложения по организации Замечание принято. Предложения по мониторинга и контроля за состоянием организации мониторинга и контроля за атмосферного воздуха, водных ресурсов, мест состоянием атмосферного воздуха, водных ресурсов, подземных вод, почв приведено размещения отходов. в п. 10 отчета о ВВ. Замечание принято. Вопрос разработки 21. Необходимо рассмотреть вопрос разработки наилучших доступных техник (НДТ) и наилучших доступных техник (НДТ) и получения комплексного экологического получения комплексного экологического разрешения учтен в п.1.5 отчета о ВВ разрешения. 22. Согласно ст. 185 Кодекса, а также Приказа Замечание принято. Периодичность Министра экологии, геологии и природных проведения, компонентный состав ресурсов Республики Казахстан от 14 июля 2021 загрязняющих веществ при организации года № 250 «Об утверждении Правил мониторинга и контроля за состоянием разработки программы производственного атмосферного воздуха, водных ресурсов, экологического контроля объектов I и II подземных вод, почвы приведено в п. 10 категорий, ведения внутреннего учета, отчета о ВВ. формирования и предоставления периодических отчетов по результатам производственного экологического контроля» установить периодичность проведения мониторинга эмиссий в окружающую среду в рамках производственного экологического контроля по почвенному покрову ежеквартально. Кроме этого, разработать карту расположения постов наблюдений контроля за атмосферным воздухом, почвенными ресурсами и подземными водами, с организацией экоплощадок для мониторинга состояния растительного и животного мира. 23. Необходимо предоставить характеристику Замечание принято. Характеристика возможных форм негативного и возможных форм негативного и положительного воздействий на окружающую положительного воздействий на среду в результате осуществления намечаемой окружающую среду в результате деятельности, их характер и ожидаемые осуществления намечаемой деятельности, масштабы с учетом их вероятности, их характер и ожидаемые масштабы с продолжительности, частоты и обратимости, учетом их вероятности, оценка их существенности. продолжительности, частоты и обратимости, оценка их существенности

представлена в отчете о ВВ

24. В отчете необходимо указать объемы	Замечание принято. Объемы образования
образования всех видов отходов, а также	всех видов отходов, а также предусмотреть
предусмотреть альтернативные методы	альтернативные методы использования
использования отходов.	отходов представлены в п.7 отчета о ВВ
25. Соблюдение экологических требований при	Замечание принято. Описание работ по
проведении операций по недропользованию	плану ликвидации ПЛ и рекультивации
(ст.397 Экологического кодекса РК): -	м/р Атыгай предусмотрено отдельным
применение технологий с внутренним	проектом.
отвалообразованием, использование отходов	
производства в качестве вторичных ресурсов, их	
переработка и утилизация, прогрессивная	
ликвидация последствий операций по	
недропользованию и другие методы; - по	
предотвращению загрязнения недр, в том числе	
при использовании пространства недр.	
26. Необходимо отразить информацию о	Замечание принято. Площадка
наличии земель оздоровительного,	проектируемого месторождения не
рекреационного и историко-культурного	располагаются на территории особо
назначения на территории и вблизи	охраняемых природных территорий,
расположения участка работ.	согласно письму №26 от 03.03.2022 г РГУ
	«Костанайская областная территориальная
	инспекция лесного хозяйства и животного
	мира», представлено в приложении 7.

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ГЕОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІНІҢ "ҚАЗГИДРОМЕТ" ШАРУАШЫЛЫҚ ЖҮРГІЗУ ҚҰҚЫҒЫНДАҒЫ РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК КӘСІПОРНЫНЫҢ ҚОСТАНАЙ ОБЛЫСЫ БОЙЫНША ФИЛИАЛЫ

ФИЛИАЛ РЕСПУБЛИКАНСКОГО ГОСУДАРСТВЕННОГО ПРЕДПРИЯТИЯ НА ПРАВЕ ХОЗЯЙСТВЕННОГО ВЕДЕНИЯ «КАЗГИДРОМЕТ» МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН ПО КОСТАНАЙСКОЙ ОБЛАСТИ

110000, Қостанай қ., О. Дощанов к., 43 тел./факс: 50-26-49, 50-21-51, 50-13-56

110000, г. Костанай, ул. О. Дощанова, 43 тел./факс: 50-26-49, 50-21-51, 50-13-56

28-03-1-03/1240 59B76D6320644A3C 20.12.2021

Исполнительному директору ТОО «Антал» Аманкулову М.Б.

СПРАВКА

На Ваш запрос № 249/623 от 08 декабря 2021 года сообщаем метеорологические данные за 2020 год по Житикаринскому району.

По данным метеостанции Житикара за 2020 год:

1. Среднегодовая повторяемость направления ветра и штилей по 8 румбам, %.

Наименование		Румбы				Штиль			
показателей	С	CB	В	ЮВ	Ю	ЮЗ	3	C3	
Повторяемость									
направлений ветра %	10	8	7	6	10	26	22	11	12

- 2. Скорость ветра, повторяемость превышений которой составляет 5% 11 м/с.
- 3. Средняя скорость ветра за roд 3,4 м/с.
- 4. Количество дней с устойчивым снежным покровом 129.
- 5. Количество дней с жидкими осадками за год 77.
- 6. Количество осадков за год 380,5 мм.

И.о. директора филиала по Костанайской области

К. Абикенов

Издатель ЭЦП - ҰЛТТЫҚ КУӘЛАНДЫРУШЫ ОРТАЛЫҚ (GOST), АБИКЕНОВ КАИРЖАН, РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ НА ПРАВЕ ХОЗЯЙСТВЕННОГО ВЕДЕНИЯ "КАЗГИДРОМЕТ" МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН, ВІN990540002276

Исп.: Сюткина Виктория

Тел.: 87013025154

https://seddoc.kazhydromet.kz/Qegkfs

Электрондық құжатты тексеру үшін: https://sed.kazhydromet.kz/verify мекен-жайына өтіп, қажетті жолдарды толтырыңыз. Электрондық құжаттың көшірмесін тексеру үшін қысқа сілтемеге өтіңіз немесе QR код арқылы оқыңыз. Бұл құжат, «Электрондық құжат және электрондық цифрлық қолтаңба туралы» Қазақстан Республикасының 2003 жылғы 7 қаңтарда шыққан Заңының 7-бабының 1-тармағына сәйкес, қағаз құжатпен тең дәрежелі

болып табылады. / Для проверки электронного документа перейдите по адресу: https://sed.kazhydromet.kz/verify и заполните необходимые поля. Для проверки копии электронного документа перейдите по короткой ссылке или считайте QR код. Данный документ согласно пункту 1 статьи 7 3PK от 7 января 2003 года «Об электронном документе и электронной цифровой подписи» равнозначен документу на бумажном носителе.

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ГЕОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІНІҢ "ҚАЗГИДРОМЕТ" ШАРУАШЫЛЫҚ ЖҮРГІЗУ ҚҰҚЫҒЫНДАҒЫ РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК КӘСІПОРНЫНЫҢ ҚОСТАНАЙ ОБЛЫСЫ БОЙЫНША ФИЛИАЛЫ

ФИЛИАЛ РЕСПУБЛИКАНСКОГО ГОСУДАРСТВЕННОГО ПРЕДПРИЯТИЯ НА ПРАВЕ ХОЗЯЙСТВЕННОГО ВЕДЕНИЯ «КАЗГИДРОМЕТ» МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН ПО КОСТАНАЙСКОЙ ОБЛАСТИ

110000, Қостанай қ., О. Дощанов к., 43 тел./факс: 50-26-49, 50-21-51, 50-13-56

110000, г. Костанай, ул. О. Дощанова, 43 тел./факс: 50-26-49, 50-21-51, 50-13-56

28-06-57/199 8C1F295E94F64BDE 02.03.2022

> И.о. директора ТОО «Атыгай Голд Майнинг» Горбунову Н.В.

В ответ на Ваш запрос исх. № 25-АГМ-2022 от 21.02.2022г. сообщаем, лаборатория филиала Республиканского государственного предприятия на праве хозяйственного ведения «Казгидромет» Министерства экологии, геологии и природных ресурсов Республики Казахстан по Костанайской области (далее филиал) сообщает, что справку о фоновых концентрациях можно свободно получить на официальном сайте РГП «Казгидромет», однако на данный момент справки по фоновым концентрациям загрязняющих веществ в атмосферном воздухе выдаются согласно произведенным расчетам для города Костанай.

По городам Рудный, Лисаковск, Житикара, Аркалык, поселкам Заречный и Дружба, Карабалык наблюдения за состоянием атмосферного воздуха проводились на стационарных автоматических постах. Фоновая справка по данным автоматических постов не выдается.

По районным центрам Костанайской области и населенным пунктам регулярные и эпизодические наблюдения за состоянием атмосферного воздуха не ведутся.

Директор филиала

Кузьмина Л.В.

Издатель ЭЦП - ҰЛТТЫҚ КУӘЛАНДЫРУШЫ ОРТАЛЫҚ (GOST), КУЗЬМИНА ЛАРИСА, ФИЛИАЛ РЕСПУБЛИКАНСКОГО ГОСУДАРСТВЕННОГО ПРЕДПРИЯТИЯ НА ПРАВЕ ХОЗЯЙСТВЕННОГО ВЕДЕНИЯ "КАЗГИДРОМЕТ" МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН ПО КОСТАНАЙСКОЙ ОБЛАСТИ, ВIN120841015383

Исп.: Радченко Н.В.

Тел.: 50-34-29

https://seddoc.kazhydromet.kz/q79I2C

Электрондық құжатты тексеру үшін: https://sed.kazhydromet.kz/verify мекен-жайына өтіп, қажетті жолдарды толтырыңыз. Электрондық құжаттың көшірмесін тексеру үшін қысқа сілтемеге өтіңіз немесе QR код арқылы оқыңыз. Бұл құжат, «Электрондық құжат және электрондық цифрлық қолтаңба туралы» Қазақстан Республикасының 2003 жылғы 7 қаңтарда шыққан Заңының 7-бабының 1-тармағына сәйкес, қағаз құжатпен тең дәрежелі болып табылады. / Для проверки электронного документа перейдите по адресу: https://sed.kazhydromet.kz/verify и заполните необходимые поля. Для проверки копии электронного документа перейдите по короткой ссылке или считайте QR код. Данный документ согласно пункту 1 статьи 7 ЗРК от 7 января 2003 года «Об электронном документе и электронной цифровой подписи» равнозначен документу на бумажном носителе.

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ГЕОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІНІҢ "ҚАЗГИДРОМЕТ" ШАРУАШЫЛЫҚ ЖҮРГІЗУ ҚҰҚЫҒЫНДАҒЫ РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК КӘСІПОРНЫНЫҢ ҚОСТАНАЙ ОБЛЫСЫ БОЙЫНША ФИЛИАЛЫ

ФИЛИАЛ РЕСПУБЛИКАНСКОГО ГОСУДАРСТВЕННОГО ПРЕДПРИЯТИЯ НА ПРАВЕ ХОЗЯЙСТВЕННОГО ВЕДЕНИЯ «КАЗГИДРОМЕТ» МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН ПО КОСТАНАЙСКОЙ ОБЛАСТИ

110000, Қостанай к., О. Дощанов к., 43 тел./факс: 50-26-49, 50-21-51, 50-13-56

110000, г. Костанай, ул. О. Дощанова, 43 тел./факс: 50-26-49, 50-21-51, 50-13-56

28-03-37/44 7BC4A1AB0E834CB7 20.01.2022

Исполнительному директору ТОО «АНТАЛ» ЖШС Аманкулову М. Б.

Справка

Согласно Вашего запроса № 249/624 от 08.12.2021 года о предоставлении информации о прогнозировании НМУ (неблагоприятные метеорологические условия), Филиал РГП «Казгидромет» по Костанайской области сообщает, что отделом метеорологических прогнозов проводится прогнозирование неблагоприятных метеорологических условий ежедневно только по городу Костанай на 1 сутки. Бюллетени состояния воздушного бассейна публикуются на сайте РГП «Казгидромет».

Директор филиала по Костанайской области

Л. Кузьмина

Издатель ЭЦП - ҰЛТТЫҚ КУӘЛАНДЫРУШЫ ОРТАЛЫҚ (GOST), КУЗЬМИНА ЛАРИСА, ФИЛИАЛ РЕСПУБЛИКАНСКОГО ГОСУДАРСТВЕННОГО ПРЕДПРИЯТИЯ НА ПРАВЕ ХОЗЯЙСТВЕННОГО ВЕДЕНИЯ "КАЗГИДРОМЕТ" МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН ПО КОСТАНАЙСКОЙ ОБЛАСТИ, BIN120841015383

Исп.: Шибаршина А. Тел.:8(7142)50-18-17

https://seddoc.kazhydromet.kz/b2VOld

Электрондық құжатты тексеру үшін: https://sed.kazhydromet.kz/verify мекен-жайына өтіп, қажетті жолдарды толтырыңыз. Электрондық құжаттың көшірмесін тексеру үшін қысқа сілтемеге өтіңіз немесе QR код арқылы оқыңыз. Бұл құжат, «Электрондық құжат және электрондық цифрлық қолтаңба туралы» Қазақстан Республикасының 2003 жылғы 7 қаңтарда шыққан Заңының 7-бабының 1-тармағына сәйкес, қағаз құжатпен тең дәрежелі болып табылады. / Для проверки электронного документа перейдите по адресу: https://sed.kazhydromet.kz/verify и заполните необходимые поля. Для проверки копии электронного документа перейдите по короткой ссылке или считайте QR код. Данный документ согласно пункту 1 статьи 7 ЗРК от 7 января 2003 года «Об электронном документе и электронной цифровой подписи» равнозначен документу на бумажном носителе.

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ГЕОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ СУ РЕСУРСТАРЫ КОМИТЕТІНІҢ

«СУ РЕСУРСТАРЫН ПАЙДАЛАНУДЫ РЕТТЕУ ЖӘНЕ ҚОРҒАУ ЖӨНІНДЕГІ ТОБЫЛ-ТОРҒАЙ БАССЕЙНДІК ИНСПЕКЦИЯСЫ» РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК МЕКЕМЕ

МИНИСТЕРСТВО ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН КОМИТЕТ ПО ВОДНЫМ РЕСУРСАМ

РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ТОБОЛ-ТОРГАЙСКАЯ БАССЕЙНОВАЯ ИНСПЕКЦИЯ ПО РЕГУЛИРОВАНИЮ ИСПОЛЬЗОВАНИЯ И ОХРАНЕ ВОДНЫХ РЕСУРСОВ»

110000, Қостанай қаласы, Гоголь көшесі, 75 тел.: (7142) 50-11-09, 50-16-39; 50-10-95 ttbi@ecogeo.gov.kz

110000, город Костанай, ул.Гоголя, 75 тел.: (7142) 50-11-09, 50-16-39; 50-10-95 ttbi@ecogeo.gov.kz

22.09 2022. No 37-2022-02373628

И.о. директора **ТОО «Атыгай Голд Майнинг» Н.В. Горбунову** *БИН 131040006314* г.Костанай, 4 мкрн, д. 5A

РГУ «Тобол-Торгайская бассейновая инспекция по регулированию использования и охране водных ресурсов», рассмотрев Ваш запрос №3Т-2022-02373628 от 19.09.2022г о наличии поверхностных водных объектов в районе расположения участка недр месторождения Атыгай (Берсуат) в Большевитском сельском округе Житикаринского района, сообщает следующее:

- согласно представленных Вами координат географических точек, на территории планируемых работ отсутствуют поверхностные водные объекты.

Вместе с тем, доводим до Вашего сведения, что в районе расположения участка «Берсуат» протекает река Берсуат.

В настоящее время проектная документация по установлению водоохранных зон и полос данного водного объекта не разработана и не утверждена в порядке, установленном п.п.2 ст.39 и п.2 ст.116 Водного кодекса Республики Казахстан и Правилами установления водоохранных зон и полос, утвержденными приказом Министра сельского хозяйства РК №19-1/446 от 18 мая 2015 года (далее – Правила).

Согласно п.12 Правил, окончательные размеры водоохранной зоны определяются по итогам проектирования на основании проведенного обследования водного объекта и прилегающей к нему территории.

В соответствии п. 6 Правил установления водоохранных зон и полос утвержденный приказом Министра сельского хозяйства Республики Казахстан от 18 мая 2015 года № 19-1/446 «Заказчиками проектов водоохранных зон и полос являются местные исполнительные органы, а по отдельным водным объектам (или их участкам) выступают также физические и юридические лица, заинтересованные в необходимости установления водоохранных зон и полос по конкретному объекту».

Порядок определения береговой линии определяется правилами установления водоохранных зон и полос, утвержденными уполномоченным органом в области использования и охраны водного фонда, водоснабжения, водоотведения.

Вместе с тем, ставим Вас в известность, что при намерении производства работ в границах указанных координат, для поддержания водного объекта в состоянии, соответствующем санитарно-гигиеническим и экологическим

требованиям, для предотвращения загрязнения, засорения и истощения поверхностных вод, а также сохранения растительного и животного мира, необходимо до начала производства работ разработать Проект установления водоохранных зон и полос водного объекта и утвердить акиматом Костанайской области с вынесением постановления, согласно пункта 2 статьи 39 и пункта 2 статьи 116 Водного кодекса.

В соответствие со ст.11 закона РК «О языках в Республике Казахстан» от 11 июля 1997 года №151 ответы выдаются на государственном языке или на

языке обращения.

При несогласии с результатом рассмотрения участник административной процедуры вправе обжаловать административный акт, административное действие (бездействие), не связанное с принятием административного акта, в административном (досудебном) порядке в соответствии со статьей 91 Административного процедурно-процессуального Кодекса Республики Казахстан от 29 июня 2020 года №350-VI.

И.о. руководителя

A STATE OF THE STA

А.Абжанов

Қазақстан Республикасы «Атыгай Голд Майнинг» Жауапкершілігі шектеулі серіктестігі

Республика Казахстан «Атыгай Голд Майнинг» Товарищество с ограниченной Ответственностью

Житкара к., 4 мкр.,5А БИН **131 040 006 314**, Тел. (факс): 8(71435)2-59-44 E-mail: office@atgm.kz

г. Житикара, 4 мкр д.5А БИН **131 040 006 314**, Тел. (факс): 8(7135)2-59-44 E-mail: office@atgm.kz

Исх.№ <u>//3</u>-АГМ-2022 от 19.0.2022г.

Руководителю РГУ «Тобол-Торгайская бассейновая инспекция по регулированию использования и охране водных ресурсов Комитета по водным ресурсам МСХ РК» Г-ну Мухамеджанову В.С. 110000 Республика Казахстан, г. Костанай, ул.Гоголя, д.75 Тел./факс +7-7142-50-11-09

Уважаемый Виктор Сергеевич,

просим Вас предоставить информацию о наличии/отсутствии водных объектов в районе расположения участков, отведенных под лицензионную территорию ТОО «Атыгай Голд Майнинг», расположенных по адресу Костанайская область, Житикаринский район, Большевитский сельский округ.

Границы территории участков недр со следующими географическими координатами:

Берсуат

№№ точек	Географические координаты			
NEW TOACK	с. ш.	в. д.		
1	51° 55' 54.871068"	60° 12' 21.68154"		
2	51° 56' 17.870676"	60° 13' 28.77636"		
3	51° 55' 50.210184"	60° 13' 54.7806"		
4	51° 55' 26.887188"	60° 12' 48.021408"		
Центр ГО	51° 55' 42.784248"	60° 12' 59.393736"		

Указанный участок будет использован в целях проведения операций по добыче твердых полезных ископаемых.

Данные запрашиваются для проекта «Оценка воздействия на окружающую среду», раздел ОВОС к проекту «План горных работ по добыче руды месторождения Атыгай (Берсуат)».

Приложение: Обзорная карта

И.о. директора

Горбунов Н.В.

Исп. Дущанова Л.К. м.87710944322

ҚОСТАНАЙ ОБЛЫСЫ ӘКІМДІГІ ТАБИҒИ РЕСУРСТАР ЖӘНЕ ТАБИҒАТ ПАЙДАЛАНУДЫ РЕТТЕУ БАСҚАРМАСЫНЫҢ «ҚАМЫСТЫ ОРМАН ШАРУАШЫЛЫҒЫ МЕКЕМЕСІ» КОММУНАЛДЫҚ МЕМЛЕКЕТТІК МЕКЕМЕСІ

КОММУНАЛЬНОЕ
ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
«КАМЫСТИНСКОЕ УЧРЕЖДЕНИЕ
ЛЕСНОГО ХОЗЯЙСТВА» УПРАВЛЕНИЯ
ПРИРОДНЫХ РЕСУРСОВ И
РЕГУЛИРОВАНИЯ
ПРИРОДОПОЛЬЗОВАНИЯ АКИМАТА
КОСТАНАЙСКОЙ ОБЛАСТИ

110500, Қостанай облысы, Денисов ауданы, Денисов ауылы, Элеваторная көшесі, 1 тел: 8(714-34) 2-11-58,2-14-44 e-mail: kam_leshoz@mail.kz

110500, Костанайская область, Денисовский район, село Денисовка, улица Элеваторная, 1 тел: 8(714-34) 2-11-58,2-14-44 e-mail: kam_leshoz@mail.kz

		_Nº	26	
r) z	03.	200	22r	

Руководителю РГУ «Костанайская областная территориальная инспекция лесного хозяйства и животного мира» Каркенову Р.Х.

На ваш исходящий № 8-01/81-И от 2.03.2022 года предоставляем вам информацию о наличие земель государственного лесного фонда КГУ «Камыстинское учреждение лесного хозяйства» в районе расположения участков, отведенных под лицензионную территорию ТОО «Атыгай Голд Майнинг».

Участок Атагай (центр, юг)

	географически	е координаты
NC	с.ш.	в.д.
№ точек	51°56′57.2838″	60°4′0.005052″
1	51°57′59.369256″	60°6′43.300836″
2		60°7′59.998836″
3	51°56'32.964"	60°6'48.045744"
4	51°56′8.646108″	60°8′51.841212″
5	51°53'46.78242"	60°8′58.390728″
6	51°53′39.040764″	60°9′34.999272″
7	51°53′31.999272″	60°9'47.00178"
8	51°53′30.001344″	
9	51°53′25.000908″	60°9′46.50138″
10	51°52′23.599344″	60°9′24.0012″
11	51°52′21.208908″	60°9'38.728656"
	51°52′10.740144″	60°9′37.832364″
12	51°51′58.679712″	60°9′7.21458″
13	51°55′34.384764″	60°6′1.306764″
14		60°5′25.842912″
15	51°56′14.274744″	60°4'49.265256"
16	51°56′1.326336″	

Центр ГО	51°54′39.79314″	60°7′28.795908″	
Heurbro	31 37 37.77317	00 / 20.133300	

На данном участке имеются земли государственного лесного фонда КГУ «Камыстинское учреждение лесного хозяйства», а именно квартал 42 выдела 1, 6,7,33,37 Орджоникидзевского лесничества.

Участок Маржан

	географические координаты		
№ точек	с.ш.	в.д.	
1	51°55′25.25178″	60°10′7.82112″	
2	51°55′40.393344″	60°10′48.890424″	
3	51°55′9.893676″	76" 60°11′16.011024"	
4	51°54′56.204856″		
Центр ГО	51°55′18.280668″	60°10′41.873304″	

На данном участке имеются земли государственного лесного фонда КГУ «Камыстинское учреждение лесного хозяйства», а именно квартал 42 выдел 31 Орджоникидзевского лесничества.

Участок Берсуат

	географические координаты		
№ точек	с.ш.	в.д.	
1	51°55′54.871068″	60°12′21.68154″	
2	51°56′17.870676″	60°13′28.77636″	
3	51°55′50.210184″	60°13′54.7806″	
4	51°55′26.887188″	60°12'48.021408"	
Дентр ГО	51°55'42.784248"	60°12'59.393736"	

На данном участке не имеется земель государственного лесного фонда.

Участок Султан, Восточный

	географические координаты		
№ точек	с.ш.	в.д.	
1	51°58′8.157468″	60°13′30.592812″	
2	51°58′39.52776″	60°15′3.210732″	
3	51°56′31.06914″	60°17′9.171024″	
4	51°55′57.38898″	60°15′40.679748″	
Центр ГО	51°57′16.770312″	60°15′20.921292″	

На данном участке имеются земли государственного лесного фонда КГУ «Камыстинское учреждение лесного хозяйства», а именно квартал 43 выдела 1, 2 Орджоникидзевского лесничества.

Руководитель:

Alef.

Божко С.А.

Исполнитель: Омаров Д.Г. Тел:8(71434)21444

«ҚАЗГЕОАҚПАРАТ» РЕСПУБЛИКАЛЫҚ ГЕОЛОГИЯЛЫҚ АҚПАРАТ ОРТАЛЫҒЫ» ЖАУАПКЕРШІЛІГІ ШЕКТЕУЛІ СЕРІКТЕСТІГІ

ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «РЕСПУБЛИКАНСКИЙ ЦЕНТР ГЕОЛОГИЧЕСКОЙ ИНФОРМАЦИИ «КАЗГЕОИНФОРМ»

010000, Нұр-Сұлтан қ, Θ . Мәмбетова көшесі 32 тел: 8(7172) 57-93-34, факс: 8(7172) 57-93-34 e-mail: delo@geology.kz, web: rcgi.geology.gov.kz

No 26-14-03/318

010000, город Нур-Султан, ул, А. Мамбетова, 32 тел: 8(7172) 57-93-34, факс: 8(7172) 57-93-34 e-mail: delo@geology.kz, web: rcgi.geology.gov.kz

ТОО «Атыгай Голд Майнинг»

Исх №43-АГМ-2022 от 16.03.2022 г.

ТОО «РЦГИ «Казгеоинформ», как Национальный оператор по сбору, хранению, обработке и предоставлению геологической информации РК и согласно Правил учета, хранения, систематизации, обобщения и предоставления геологической информации, находящейся в собственности, а также владении и пользовании у государства, утвержденных приказом Министра по инвестициям и развитию Республики Казахстан от 24 мая 2018 года № 380, рассмотрев Ваше обращение сообщает следующее.

Месторождения подземных вод в пределах запрашиваемых <u>Вами</u> координат, на территории участка расположенного в Костанайской области, Житикаринского района, состоящие на государственном учете по состоянию на 01.01.2021 г. отсутствуют. Ближайшее месторождение подземных вод расположено в 45 километрах восточнее запрашиваемого участка.

Вместе с тем, сообщаем, что РЦГИ «Казгеоинформ» оказывает услуги по предоставлению геологической информации, формированию пакетов геологической информации, предоставлению информации о запасах полезных наличии/отсутствии ископаемых, справок о подземных информации изученности территорий, определению свободности территорий, сопровождению программы управления государственным фондом недр и другие, а также выпускает справочные и картографические материалы (справочники по месторождениям, картографические материалы, аналитические обзоры, атласы, периодические издания, информационные и геологические карты и другое).

Также информируем вас, что на официальном сайте РЦГИ «Казгеоинформ» в разделе Информационные ресурсы функционируют - Интерактивная карта действующих объектов недропользования и участков недр, включенных в Программу управления государственным фондом недр и Электронная картотека геологических отчетов.

Генеральный директор ТОО РЦГИ «Казгеоинформ»

do

Ж. Карибаев

Исп. Ибраев И.К. тел.; 57-93-45

«ҚАЗГЕОАҚПАРАТ» РЕСПУБЛИКАЛЫҚ ГЕОЛОГИЯЛЫҚ АҚПАРАТ ОРТАЛЫҒЫ» ЖАУАПКЕРШІЛІГІ ШЕКТЕУЛІ СЕРІКТЕСТІГІ

ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «РЕСПУБЛИКАНСКИЙ ЦЕНТР ГЕОЛОГИЧЕСКОЙ ИНФОРМАЦИИ «КАЗГЕОИНФОРМ»

010000, Нұр-Сұлтан қ, Ә. Мөмбетова көшесі 32 тел: 8(7172) 57-93-34, факс: 8(7172) 57-93-34 e-mail: delo@geology.kz, web: rcgi.geology.gov.kz

No RE-14-03/01

010000, город Нур-Султан, ул, А. Мамбетова, 32 тел: 8(7172) 57-93-34, факс: 8(7172) 57-93-34 e-mail: delo@geology.kz, web: rcgi.geology.gov.kz

ТОО «Атыгай Голд Майнинг»

Ha ucx. №155-AΓM-2021 om 13.12.2021z.

ТОО «РЦГИ «Казгеоинформ», как Национальный оператор по сбору, хранению, обработке и предоставлению геологической информации РК и согласно Правил учета, хранения, систематизации, обобщения и предоставления геологической информации, находящейся в собственности, а также владении и пользовании у государства, утвержденных приказом Министра по инвестициям и развитию Республики Казахстан от 24 мая 2018 года №380, рассмотрев Ваше обращение, сообщает следующее.

Полезные ископаемые в пределах запрашиваемых Вами координат отсутствуют.

Вместе с тем, сообщаем, что РЦГИ «Казгеоинформ» оказывает услуги по предоставлению геологической информации, формированию пакетов геологической информации, предоставлению информации о запасах полезных справок наличии/отсутствии ископаемых, 0 подземных вод, краткой информации ПО изученности территорий, определению свободности территорий, сопровождению программы управления государственным фондом недр и другие, а также выпускает справочные и картографические материалы (справочники по месторождениям, картографические материалы, аналитические обзоры, атласы, периодические издания, информационные и геологические карты и другое).

Также информируем вас, что на официальном сайте РЦГИ «Казгеоинформ» в разделе Информационные ресурсы функционируют - Интерактивная карта действующих объектов недропользования и участков недр, включенных в Программу управления государственным фондом недр и Электронная картотека геологических отчетов.

Генеральный директор ТОО РЦГИ «Казгеоинформ» (H)

Ж. Карибаев

Исп. Хамитова М. Тел 57-93-45

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ НА ПЕРИОД ЭКСПЛУАТАЦИИ КАРЬЕРОВ

Карьер Берсуат

Снятие ПРС – источник №6001

Потенциально плодородный слой почвы (ПРС) снимается до начала горных работ.

Общий объем снятия $\Pi PC - 61,3$ тыс. M^3 . (67430 тонн)

Снятие ПРС предусмотрено при помощи бульдозера.

Производительность бульдозера на снятии ПРС – 150 т/час.

Время работы -450 ч/год.

Погрузка ПРС в автосамосвалы предусмотрена экскаватором с производительностью 150 т/час.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Источник выделения N 001, работа бульдозера на снятии ПРС

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 12

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.5

Суммарное количество перерабатываемого материала, т/час, GMAX = 150

Суммарное количество перерабатываемого материала, τ/Γ од, GGOD = 67430

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.5 \cdot 150 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.03125$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.5 \cdot 67430 \cdot (1-0.85) = 0.03034$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.03125 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.03034 = 0.03034

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.03034 = 0.01214$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.03125 = 0.0125$

Источник выделения N 002, погрузка ПРС в автосамосвалы

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: ПРС

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 12

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 150

Суммарное количество перерабатываемого материала, т/год, GGOD = 67430

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 150 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.025$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 67430 \cdot (1-0.85) = 0.02427$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.025 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.02427 = 0.02427

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.02427 = 0.0097$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.025 = 0.01$

Итого от ИЗА:

Код	Примесь	Выброс г/с	Выброс т/год
2908	Пыль неорганическая: 70-20% двуокиси кремния		
	(шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок,	0.0225	0.02184
	клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

<u>Склад хранения ПРС – источник №6002</u>

Потенциально-растительный слой, ранее снятый с участков работ, размещён на временном складе ПРС.

Высота склада ПРС – 10 м.

Общий объём хранения ПРС – 61300 м³.

Площадь пыления склада в плане -6130 м^2 .

Время хранения – 8760 ч/год.

На складе применяется пылеподавление водой.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, **КОС** = **0.4** Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: ПРС

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 12

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Поверхность пыления в плане, м2, S = 6130

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 129

Продолжительность осадков в виде дождя, часов/год, TO = 1008

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 1008 / 24 = 84$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.004 \cdot 6130 \cdot (1-0.85) = 0.0533$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.004 \cdot 6130 \cdot (365 \cdot (129 + 84)) \cdot (1 \cdot 0.85) = 0.42$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0533 = 0.0533 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.42 = 0.42

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.42 = 0.168$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0533 = 0.0213$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.0213	0.168
	двуокись кремния в %: 70-20		

Буровые работы – источник №6003

Буровые работу осуществляются буровыми станками ROC L8 mk1 вращательного бурения производительностью не менее 14,4 м/час и диаметром буровой коронки 125 мм в количестве 1 шт.

Время работы станков – 2518 ч/год.

Бурение производится с обязательным пылеподавлением, путем автоматизированной подачи водовоздушной смеси в забой скважины.

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, **КОС** = **0.4**

Тип источника выделения: Расчет выбросов пыли при буровых работах

Буровой станок: ROC L8 mk1

Общее количество работающих буровых станков данного типа, шт., N = 1

Количество одновременно работающих буровых станков данного типа, шт., NI = 1

"Чистое" время работы одного станка данного типа, час/год, T = 2518

Крепость горной массы по шкале М.М.Протодьяконова: >8 - < = 10

Средняя объемная производительность бурового станка, м3/час(табл.3.4.1), V = 0.83

Тип выбуриваемой породы и ее крепость (f): Магнетитовые роговики, f>8 - < = 10

Влажность выбуриваемого материала, %, VL = 4

Коэфф., учитывающий влажность выбуриваемого материала(табл.3.1.4), K5 = 0.7

Средства пылеподавления или улавливание пыли: ВВП - водно-воздушное пылеподавление Удельное пылевыделение с 1 м3 выбуренной породы данным типом станков в зависимости от крепости породы, кг/м3(табл.3.4.2), Q = 2.4

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

С учетом коэффициента гравитационного осаждения

Максимальный разовый выброс одного станка, г/с (3.4.4), $G = KOC \cdot V \cdot Q \cdot K5 / 3.6 = 0.4 \cdot 0.83 \cdot 2.4 \cdot 0.7 / 3.6 = 0.155$

Валовый выброс одного станка, т/год (3.4.1), $M = KOC \cdot V \cdot Q \cdot _T_ \cdot K5 \cdot 10^{-3} = 0.4 \cdot 0.83 \cdot 2.4 \cdot 2518 \cdot 0.7 \cdot 10^{-3} = 1.404$

Разовый выброс одновременно работающих станков данного типа, г/c, $_G_ = G \cdot NI = 0.155 \cdot 1 = 0.155$

Валовый выброс от всех станков данного типа, т/год, $M = M \cdot N = 1.404 \cdot 1 = 1.404$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.155	1.404
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак,		
	песок, клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений) (494)		

Дизельные генераторы буровых станков – источник №0001.

Буровые станки оборудованы дизельными генераторами.

Расход дизельного топлива для генераторов буровых станков — 108 т/год (42,89 кг/час) Время работы — 2518 ч/год

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок. Приложение №9 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.

Расчет параметров выбросов производится по формулам.

Выброс вредного (загрязняющего) вещества за год:

$$G_{BB_{\Gamma}B_{\Gamma}} = 3,1536*10^4 * E_{\Gamma 0 J}, кг/год$$

где $3,1536*10^4$ - коэффициент размерности, полученный как частное от деления числа секунд в год на число г в кг.

Среднегодовая скорость выделения ВВ:

$$E_{\rm rog}$$
 =1.144*10⁻⁴ * $E_{\rm s}$ * $\frac{G_{\rm frro}}{G_{\rm fl}}$, г/сек

где $1.141*10^{-4}$ - коэффициент размерности, равный обратной ветчине числа часов в году; $G_{\rm firo}$ - количество топлива, израсходованное дизельной установкой за год эксплуатации, $108000~{\rm kr/rod}$

 $G_{\rm fJ}$ - значения расхода топлива дизельной установкой на дискретном режиме работы, кг/час.

Среднеэксплуатационная скорость выделения ВВ:

$$E_9 = 2.778 * 10^{-4} * e_j^t * G_{f_9}, \Gamma/cek$$

где 2,778 *10-4 - коэффициент размерности, равный обратной величине числа секунд в часу;

 $G_{\mathrm{f}_{\mathrm{9}}}$ - значения расхода топлива дизельной установкой средний за эксплуатационный цикл, кг/час.

Максимальная скорость выделения ВВ:

$E_{mp}=2.778*10^{-4} (e_j^{t*} G_{fJ}) max, г/сек$

где e_j^t - оценочные значения среднециклового выброса г/кг топлива, принимается по таблице 4 для каждого загрязняющего вещества.

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

 $E_{Mp} = 2,778 * 10^{-4} * 30 * 42,89 = 0,357 \ \Gamma/\text{cek}$

 $E_3 = 2,778 * 10^{-4} * 30 * 42,89 = 0,357 \text{ r/cek}$

 $E_{coo} = 1,144 * 10^{-4} * 0.357 * (108000/42,89) = 0,1028 \ r/cek$

 $G_{BB2B2} = 3,1536 *10^4 *0,1028 = 3241,9008 кг/год = 3,2419 т/год$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $E_{Mp} = 2,778 * 10^{-4} * 39 * 42,89 = 0,465 \text{ r/cek}$

 $E_3 = 2,778 * 10^{-4} * 39 * 42,89 = 0,465 \text{ r/cek}$

 $E_{200} = 1,144 * 10^{-4} * 0.465 * (108000/42,89) = 0,1339$ г/сек

 $G_{BB cB c} = 3,1536 *10^4 *0,1339 = 4222,67$ кг/год = 4,2227 т/год

Примесь:0328 Углерод (Сажа, Углерод чёрный) (583)

 $E_{MP} = 2,778 * 10^{-4} * 5 * 42,89 = 0.06 \, \text{r/cek}$

 $E_3 = 2,778 * 10^{-4} * 5 * 42,89 = 0.06 \,\text{г/cek}$

 $E_{cod} = 1,144 * 10^{-4} * 0.06 * (108000/42,89) = 0.017 \text{ r/cek}$

 $G_{BBcBc} = 3,1536*10^4*0.017 = 536,112$ кг/год = 0,536 т/год

<u>Примесь:0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)</u> (516)

 $E_{MD} = 2,778 * 10^{-4} * 10 * 42,89 = 0,119 \text{ r/cek}$

 $E_3 = 2,778 * 10^{-4} * 10 * 42,89 = 0,119 \text{ г/сек}$

 $E_{cod} = 1,144 * 10^{-4} * 0,119 * (108000/42,89) = 0,034 \ r/cek$

 $G_{BB cBc} = 3,1536 *10^4 *0,034 = 1072,224$ кг/год = 1,072 т/год

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $\overline{E_{MP}} = 2,778 * 10^{-4} * 25 * 42,89 = 0,2979 \,\text{r/cek}$

 $E_3 = 2,778 * 10^{-4} * 25 * 42,89 = 0,2979 \,\text{г/сек}$

 $E_{cod} = 1,144 * 10^{-4} * 0,2979 * (108000/42,89) = 0.0858$ г/сек

 $G_{BB2B2} = 3,1536 *10^4 *0,0858 = 2705,789 \text{ кг/год} = 2,7058 \text{ т/год}$

Примесь:1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

 $E_{Mp} = 2,778 * 10^{-4} * 1,2 * 42,89 = 0.014 \text{ r/cek}$

 $E_3 = 2,778 * 10^{-4} * 1,2 * 42,89 = 0.014 \text{ r/cek}$

 $E_{cod} = 1,144 * 10^{-4} * 0.014 * (108000/42,89) = 0.004 \ \Gamma/\text{cek}$

 $G_{BB \ge Bz} = 3,1536 *10^4 *0.004 = 126,144$ кг/год = 0,126 т/год

<u> Примесь:1325 Формальдегид (609)</u>

 $E_{MD} = 2,778 * 10^{-4} * 1,2 * 42,89 = 0.144 \text{ r/cek}$

 $E_3 = 2,778 * 10^{-4} * 1,2 * 42,89 = 0.144 \text{ r/cek}$

 $E_{cod} = 1,144 * 10^{-4} * 0.144 * (108000/42,89) = 0.004 \ \Gamma/\text{cek}$

 $G_{BB \ge Bz} = 3,1536 *10^4 *0.004 = 126,144$ кг/год = 0,126 т/год

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в</u> пересчете на C); Растворитель РПК-265П) (10)

 $E_{MP}=2,778*10^{-4}*12*42,89=0,143$ г/сек $E_3=2,778*10^{-4}*12*42,89=0,143$ г/сек $E_{20\partial}=1,144*10^{-4}*0,143*(108000/42,89)=0,041$ г/сек $G_{BB2B2}=3,1536*10^4*0,041=1292,976$ кг/год = 1,293 т/год

Взрывные работы — источник №6004.

Для взрывания сухих скважин используется взрывчатое вещество ANFO, для обводненных Powergel 650. Взрывание скважин короткозамедленное, с применением неэлектрической системы взрывания EXEL.

Периодичность взрывов — 52 раза в год (каждые 7 суток).

Время взрывов -17 ч/год (20 мин. * 52 раза / 60 мин).

Расход BB -201,18 т/год (0,325 т/1 раз)

Объём взорванной горной массы $-309814 \text{ м}^3/\text{год}$ (501 м $^3/1$ раз)

Расчет выбросов загрязняющих веществ при взрывных работах проведен по методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Астана. (Приложение №11 к Приказу МООС №100-п от 18.04.08г.)

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Расчет выбросов загрязняющих веществ при взрывных работах Взрывчатое вещество: Граммонит, Аммонит ЖВ

Количество взорванного взрывчатого вещества данной марки, τ /год, A = 201.18

Количество взорванного взрывчатого вещества за один массовый взрыв, т, AJ = 0.325

Объем взорванной горной породы, м3/год, V = 309814

Максимальный объем взорванной горной породы за один массовый взрыв, м3, VJ = 501

Крепость горной массы по шкале М.М.Протодьяконова: >8 - < = 10

Удельное пылевыделение, кг/м3 взорванной породы(табл.3.5.2), QN = 0.08

Эффективность средств газоподавления, в долях единицы, N = 0.5

Эффективность средств пылеподавления, в долях единицы, N1 = 0.6

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

С учетом коэффициента гравитационного осаждения

Валовый, т/год (3.5.4), $_M_ = KOC \cdot 0.16 \cdot QN \cdot V \cdot (1-N1) / 1000 = 0.4 \cdot 0.16 \cdot 0.08 \cdot 309814 \cdot (1-0.6) / 1000 = 0.634$

$$\Gamma/C$$
 (3.5.6), $\underline{G} = KOC \cdot 0.16 \cdot QN \cdot VJ \cdot (1-N1) \cdot 1000 / 1200 = 0.4 \cdot 0.16 \cdot 0.08 \cdot 501 \cdot (1-0.6) \cdot 1000 / 1200 = 0.855$

Крепость породы: >8 - < = 10

Удельное выделение CO из пылегазового облака, τ/τ (табл.3.5.1), Q = 0.008

Кол-во выбросов с пылегазовым облаком при производстве взрыва, т/год (3.5.2), M1GOD = $Q \cdot A \cdot (1-N) = 0.008 \cdot 201.18 \cdot (1-0.5) = 0.805$

Удельное выделение CO из взорванной горной породы, τ/τ (табл.3.5.1), Q1 = 0.004

Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, т/год (3.5.3), $M2GOD = Q1 \cdot A = 0.004 \cdot 201.18 = 0.805$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Суммарное кол-во выбросов при взрыве, т/год (3.5.1), M = M1GOD + M2GOD = 0.805 + 0.805 = 1.61

Максимальный разовый выброс, г/с (3.5.5), $G = Q \cdot AJ \cdot (1-N) \cdot 10^6 / 1200 = 0.008 \cdot 0.325 \cdot (1-0.5) \cdot 10^6 / 1200 = 1.083$

Удельное выделение NOx из пылегазового облака, $\tau/\tau(\tau a \delta n.3.5.1)$, Q = 0.007 Кол-во выбросов с пылегазовым облаком при производстве взрыва, $\tau/\tau c d (3.5.2)$, M1GOD

 $= Q \cdot A \cdot (1-N) = 0.007 \cdot 201.18 \cdot (1-0.5) = 0.704$

Удельное выделение NOx из взорванной горной породы, т/т(табл.3.5.1), Q1 = 0.0038 Кол-во выбросов, постепенно выделяющихся в атмосферу из взорванной горной породы, т/год (3.5.3), $M2GOD = Q1 \cdot A = 0.0038 \cdot 201.18 = 0.764$

Суммарное кол-во выбросов NOx при взрыве, т/год (3.5.1), M = M1GOD + M2GOD = 0.704 + 0.764 = 1.468

Максимальный разовый выброс NOx, г/с (3.5.5), $G = Q \cdot AJ \cdot (1-N) \cdot 10^6 / 1200 = 0.007 \cdot 0.325 \cdot (1-0.5) \cdot 10^6 / 1200 = 0.948$

С учетом трансформации оксидов азота, получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Суммарное кол-во выбросов при взрыве, т/год (2.7), $\underline{M} = 0.8 \cdot M = 0.8 \cdot 1.468 = 1.174$ Максимальный разовый выброс, г/с (2.7), $G = 0.8 \cdot G = 0.8 \cdot 0.948 = 0.758$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Суммарное кол-во выбросов при взрыве, т/год (2.8), $_{_}M_{_} = 0.13 \cdot M = 0.13 \cdot 1.468 = 0.191$ Максимальный разовый выброс, г/с (2.8), $_{_}G_{_} = 0.13 \cdot G = 0.13 \cdot 0.948 = 0.1232$

Итоговая таблина:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.758	1.174
0304	Азот (II) оксид (Азота оксид) (6)	0.1232	0.191
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1.083	1.61
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (494)	0.855	1.268

Выемочно-погрузочные работы – источник №6005

Количество вскрыши -1234,822 тыс.м³/год = 2840090 тонн

Время работы – 2270 ч/год

Производительность экскаваторов по вскрыше – 1251,2 т/час;

Количество руды $-13047 \text{ м}^3 (26094 \text{ тонн})$

Время работы – 57 ч/год

Производительность экскаваторов по руде -508 т/час;

Для снижения пыления при выемочно-погрузочных работах производится пылеподавления, для этих целей будет использоваться поливооросительная машина с эффективностью 85%.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Вскрыша

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.07

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.4

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.2

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, $\tau/$ час, *GMAX* = 1251.2

Суммарное количество перерабатываемого материала, T/rod, GGOD = 2840090

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 1251.2 \cdot 10^6 / 3600 \cdot (1-0.85) = 7$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 2840090 \cdot (1-0.85) = 34.35$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 7 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 34.35 = 34.35

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 34.35 = 13.74$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 7 = 2.8$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	2.8	13.74
	двуокись кремния в %: 70-20		

Источник выделения N 6005 02, Выемочно-погрузочные работы руды

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Руда

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

Примесь: Пыль руды (пыль общая)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 4

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.2

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 508

Суммарное количество перерабатываемого материала, т/год, GGOD = 26094

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.7 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 508 \cdot 10^6 / 3600 \cdot (1-0.85) = 1.422$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 26094 \cdot (1-0.85) = 0.1578$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 1.422 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.1578 = 0.1578

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.1578 = 0.0631$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 1.422 = 0.569$

Итоговая таблица:

Код	Примесь	Выброс г/с	Выброс т/год
	Пыль руды (пыль общая), в том числе:		0.0631
0143	Марганец и его соединения	0,07141	0,00792

0145 Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь	0,0302	0,0034
сернистая) (331)		
0184 Свинец и его неорганические соединения	0,0151	0,0017
0203 Хром	0,0229	0,00254
0207 Цинк оксид /в пересчете на цинк/	0,02154	0,00239
2902 Взвешенные частицы (116)	0,40786	0,04523

Разгрузочные работы на отвале вскрышных пород – источник №6006.

Количество вскрышной породы, поступающей на отвал, согласно плану горных работ – 1234,822 тыс. м^3 /год = 2840090 тонн.

Для снижения пыления при разгрузочных работах производится пылеподавления, для этих целей будет использоваться поливооросительная машина с эффективностью 85%.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, **КОС = 0.4** Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Вскрышная порода

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.07

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.4

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.2

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Грузоподьемность одного автосамосвала до 10 т, коэффициент, **К9 = 0.2**

Суммарное количество перерабатываемого материала, т/час, GMAX = 625

Суммарное количество перерабатываемого материала, т/год, GGOD = 2840090

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Разгрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.7$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 1 \cdot 0.4 \cdot 2840090 \cdot (1-0.85) = 6.87$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.7 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 6.87 = 6.87

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 6.87 = 2.75$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.7 = 0.28$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.28	2.75
	двуокись кремния в %: 70-20		

Разгрузочные работы на рудном складу – источник №6007.

Количество руды, поступающей на склад, согласно плану горных работ -13047 м^3 (26094 тонн).

Для снижения пыления при разгрузочных работах производится пылеподавления, для этих целей будет использоваться поливооросительная машина с эффективностью 85%.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Руда

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

Примесь: Пыль руды (пыль общая)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 4

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.2

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Грузоподьемность одного автосамосвала до 10 т, коэффициент, K9 = 0.2

Суммарное количество перерабатываемого материала, т/час, GMAX = 150

Суммарное количество перерабатываемого материала, т/год, GGOD = 26094

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Разгрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.7 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 1 \cdot 0.4 \cdot 150 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.084$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 1 \cdot 0.4 \cdot 26094 \cdot (1-0.85) = 0.03156$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.084 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.03156 = 0.03156

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.03156 = 0.01262$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.084 = 0.0336$

Итого выбросы от ИЗА:

Код	Примесь	Выброс г/с	Выброс т/год
	Пыль руды (пыль общая), в том числе:	0.0336	0.01262
0143	Марганец и его соединения	0,0042	0,00158
	Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) (331)	0,00178	0,0007
0184	Свинец и его неорганические соединения	0,00069	0,0003
0203	Хром	0,00135	0,00051
0207	Цинк оксид /в пересчете на цинк/	0,00127	0,00048
2902	Взвешенные частицы (116)	0,02431	0,00905

Погрузочно-разгрузочные работы – источник №6008.

В карьере для ведения добычных работ используются экскаваторы (3 шт.) и бульдозер (2 шт.)

Время работы – 7397 ч/год (672,5 смен в год * 11 часов в смену).

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.
- 2. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе от асфальтобетонных заводов. Приложение №12 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 года №100 -п.

п.6 «Расчет выбросов загрязняющих веществ в атмосферу при погрузочно-разгрузочных работах».

Масса i-го вредного вещества, выделяющегося при работе дизельного двигателя экскаватора:

$$m$$
 бrі = (q_{yx} t xx + q_{yx} i t 40% + q_{yx} i t 100%) T_{ex} N 6 10⁻³, $T/\Gamma O J$ (6.7)

Суммарная масса вредных веществ, выделяющихся при работе двигателя экскаватора:

$$m_{6r} = \sum m_{6ri}$$
, $T/\Gamma O J (6.8)$

Гле:

- $q_{yдi}$ удельный выброс i-го вредного вещества при работе двигателя в соответствующем режиме, кг/ч (<u>таблица 20</u>)* согласно приложению к настоящей Методике,
- t_{xx} , $t_{40\%}$, $t_{100\%}$ время работы двигателя в течение смены, соответственно на холостом ходу, при частичном использовании мощности двигателя, %.

$$t_{xx} = t_{1/100} x t_{cm}, y; (6.9)$$

- $t_{40\%}$, $t_{100\%}$ определяется аналогично;
- где t1 процентное распределение времени работы двигателя на различных нагрузочных режимах;
- t_{cm} чистое время работы в смену, ч; $t_{cm} = 11$ ч
- Тсм число смен работы в году; Тсм = 672,5
- Nб количество техники 5 шт.

$$t_{xx} = 20/100 * 11 = 2,2 = 10,00 * 11 = 2,4 = 10,00 * 11 = 4,4 = 10,000 * 11 = 4,4 = 10,000 * 11 = 4,4 = 10,000 * 11 = 4,4 = 10,000 * 11 = 4,4 = 10,000 * 11 = 4,4 = 10,000 * 11 = 4,4 = 10,000 * 10,$$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

 $m_{6r} = (0.054 * 2.2 + 0.351 * 4.4 + 0.133 * 4.4) * 730 * 5 * 10^{-3} = 8,20666 \text{ т/год}$ $m_{6r} = (8,20666 \text{ т/год} * 10^6) / (3600 \text{ сек} * 7397 \text{ ч/год}) = 0.308 \text{ г/сек}$ Валовый выброс, т/год , $_M_ = 0.8 * M = 0.8 * 8,20666 = 6,565$ Максимальный разовый выброс, г/с , GS = 0.8 * G = 0.8 * 0.308 = 0.2464

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

 $m_{6r}=(0.0\overline{54*2.2+0.351*4.4+0.133*4.4)*730*5*10^{-3}=8,20666$ т/год $m_{6r}=(8,20666$ т/год * 10^6) / (3600 сек * 7397 ч/год) = 0,308 г/сек Валовый выброс, т/год , $\underline{M}_{-}=0.13*M=0.13*8,20666=1,067$ Максимальный разовый выброс,г/с , GS=0.13*G=0.13*0,308=0,04

Примесь: 0328 Углерод (Сажа, Углерод чёрный) (583)

 $m_{6r} = (0.003*2.2+0.019*4.4+0.044*4.4)*730*5*10^{-3} = 1.03587$ т/год $m_{6r} = (1.03587$ т/год * 10^6) / (3600 сек * 7397 ч/год) = 0.039 г/сек

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $m_{6r} = (0.137 * 2.2 + 0.205 * 4.4 + 0.342 * 4.4) * 730 * 5 * 10^{-3} = 9.885 \text{ т/год}$ $m_{6r} = (9.885 \text{ т/год} * 10^6) / (3600 \text{ сек} * 7397 \text{ ч/год}) = 0.371 \text{ г/сек}$

<u>Примесь: 2732 Керосин (654*)</u>

 $m_{6r} = (0.072 * 2.2 + 0.214 * 4.4 + 0.275 * 4.4) * 730 * 5 * 10^{-3} = 8,4315 \text{ т/год}$ $m_{6r} = (8,4315 \text{ т/год} * 10^6) / (3600 \text{ сек} * 7397 \text{ ч/год}) = 0.3166 \text{ г/сек}$

ИТОГО выбросы от ИЗА:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,2464	6,565
0304	Азот (II) оксид (Азота оксид) (6)	0,04	1,067
0328	Углерод (Сажа, Углерод чёрный) (583)	0,039	1,03587
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,371	9,885
2732	Керосин (654*)	0,3166	8,4315

Выбросы от двигателей экскаваторов и бульдозеров не нормируются.

Бульдозерные работы на отвалах – источник №6009

На карьере принят бульдозерный способ отвалообразования.

Формирование отвалов при бульдозерном отвалообразовании осуществляют периферийным способом.

Количество перерабатываемой вскрышной породы бульдозером в rog - 1234,822 тыс. $m^3/rog = 2840090$ тонн.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Источник выделения N 001, работа бульдозера на отвалах вскрышных пород Коэффициент гравитационного осаждения твердых компонентов, п.2.3, **КОС** = **0.4** Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Вскрышная порода

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.07

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.4

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), **К7 = 0.2**

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 625

Суммарное количество перерабатываемого материала, т/год, GGOD = 2840090

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 625 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 10^6 / 3000 \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot$

(1-0.85) = 3.5

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.07 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 2840090 \cdot (1-0.85) = 34.35$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 3.5 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 34.35 = 34.35

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 34.35 = 13.74$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 3.5 = 1.4$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	1.4	13.74
	двуокись кремния в %: 70-20		

Бульдозерные работы на рудном складе – источник №6010.

Количество перерабатываемой руды бульдозером в $rod - 13047 \text{ м}^3$ (26094 тонн).

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Источник выделения N 001, работа бульдозера на рудном складе

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Руда

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

Примесь: Пыль руды (пыль общая)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 4

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.2

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 150

Суммарное количество перерабатываемого материала, т/год, GGOD = 26094

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.7 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 150 \cdot 10^6 / 3600 \cdot (1-0.85) = 0.42$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.2 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 26094 \cdot (1-0.85) = 0.1578$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.42 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.1578 = 0.1578

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.1578 = 0.0631$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.42 = 0.168$

Итого выбросы от ИЗА:

Код	Примесь	Выброс г/с	Выброс т/год
	Пыль руды (пыль общая), в том числе:	0.168	0.0631
0143	Марганец и его соединения	0,02108	0,00792
	Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) (331)	0,0089	0,0034
0184	Свинец и его неорганические соединения	0,00347	0,0017
0203	Хром	0,00676	0,00254
0207	Цинк оксид /в пересчете на цинк/	0,00636	0,00239
2902	Взвешенные частицы (116)	0,12143	0,04523

Рудный склад – источник №6011.

Площадь склада — 2700 м^2 .

Время хранения – 8760 ч/год.

На складе применяется пылеподавление водой.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Источник выделения N 001, рудный склад

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Руда

Примесь: Пыль руды (пыль общая)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), **К4 = 1**

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 4

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.2

Поверхность пыления в плане, м2, S = 2700

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.005

Количество дней с устойчивым снежным покровом, TSP = 129

Продолжительность осадков в виде дождя, часов/год, TO = 1008

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 1008 / 24 = 84$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2$

 $1 \cdot 0.7 \cdot 1.45 \cdot 0.2 \cdot 0.005 \cdot 2700 \cdot (1-0.85) = 0.822$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 1.45 \cdot 0.2 \cdot 0.005 \cdot 2700 \cdot (365 \cdot (129 + 84)) \cdot (1 \cdot 0.85) = 6.48$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.822 = 0.822

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 6.48 = 6.48

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 6.48 = 2.59$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.822 = 0.329$

Итого выбросы от ИЗА:

Код	Примесь	Выброс г/с	Выброс т/год
	Пыль руды (пыль общая), в том числе:	0.329	2.59
0143	Марганец и его соединения	0,030	0,325
0145	Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь		
	сернистая) (331)	0,0127	0,1375
0184	Свинец и его неорганические соединения	0,0063	0,0686
0203	Хром	0,0096	0,1042
0207	Цинк оксид /в пересчете на цинк/	0,0090	0,0980
2902	Взвешенные частицы (116)	0,1713	1,8565

Отвал вскрышных пород – источник №6012.

На конец отработки месторождении в соответствии с настоящим планом горных работ площадь отвала будет составлять – 74300 м2.

Время хранения – 8760 ч/год.

Периодичность пылеподавления на 2 раза в сутки, в теплое время года.

Эффективность 85%.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Источник выделения N 001, Отвал вскрышных пород №1

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Вскрышная порода

<u>Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.4

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.2

Поверхность пыления в плане, м2, S = 74300

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 129

Продолжительность осадков в виде дождя, часов/год, TO = 1008

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 1008 / 24 = 84$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.4 \cdot 1.45 \cdot 0.2 \cdot 0.002 \cdot 74300 \cdot (1-0.85) = 5.17$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1-NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 1.45 \cdot 0.2 \cdot 0.002 \cdot 74300 \cdot (365 \cdot (129 + 84)) \cdot (1-0.85) = 40.75$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 5.17 = 5.17

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 40.75 = 40.75

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 40.75 = 16.3$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 5.17 = 2.07$

Итоговая таблица:

Код	Наимено	вание ЗВ		Выброс г/с	Выброс т/год
2908	Пыль	неорганическая,	содержащая	2.07	16.3
	двуокись	кремния в %: 70-20			

Автотранспортные работы карьера – источник №6013.

Количество работающих в карьере автосамосвалов — 4 шт. Средняя протяжённость одной ходки 1,5 км.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Источник выделения N 001, автотранспортные работы Коэффициент гравитационного осаждения твердых компонентов, п.2.3, **КОС** = **0.4**

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: >25 - < = 30 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1 = 2.5

Средняя скорость передвижения автотранспорта: >10 - <= 20 км/час

Коэфф., учитывающий скорость передвижения (табл. 3.3.2), C2 = 2

Состояние дороги: Дорога со щебеночным покрытием

Коэфф., учитывающий состояние дороги(табл.3.3.3), C3 = 0.5

Число автомашин, одновременно работающих в карьере, шт., N1 = 4

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1.5

Число ходок (туда + обратно) всего транспорта в час, N = 40

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влажность поверхностного слоя дороги, %, VL = 4

Коэфф., учитывающий увлажненность дороги(табл.3.1.4), K5 = 0.7

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V1 = 3.4

Средняя скорость движения транспортного средства, км/час, V2 = 20

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (3.4 \cdot 20 / 3.6)^{0.5} = 4.35$

Коэфф., учитывающий скорость обдува материала в кузове(табл.3.3.4), C5 = 1.26

Площадь открытой поверхности материала в кузове, м2, S = 14

Перевозимый материал: Порфироиды

Унос материала с 1 м2 фактической поверхности, г/м2*c(табл.3.1.1), Q = 0.002

Влажность перевозимого материала, %, VL = 4

Коэфф., учитывающий влажность перевозимого материала(табл.3.1.4), K5M = 0.7

Количество дней с устойчивым снежным покровом, TSP = 129

Продолжительность осадков в виде дождя, часов/год, TO = 1008

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 1008 / 24 = 84$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

С учетом коэффициента гравитационного осаждения

Максимальный разовый выброс, г/с (3.3.1), $G = KOC \cdot (C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1) = 0.4 \cdot (2.5 \cdot 2 \cdot 0.5 \cdot 0.7 \cdot 0.01 \cdot 40 \cdot 1.5 \cdot 1450 / 3600 + 1.45 \cdot 1.26 \cdot 0.7 \cdot 0.002 \cdot 14 \cdot 4) = 0.2265$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.2265 \cdot (365 \cdot (129 + 84)) = 2.975$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.2265	2.975
	двуокись кремния в %: 70-20		

Тип источника выделения: Выбросы токсичных газов при работе карьерных машин

Транспортное средство: БелАз-7540

Вид топлива: Дизельное

Время работы одной машины в ч/год, NUM1 = 7920

Количество машин данной марки, шт., *NUM3* = 4

Число одновременно работающих машин, шт., NUM2 = 1

Мощность двигателя, л.с., LS = 360

Расход топлива, т/час , $RASH = LS * 0.25 / 10 ^ 3 = 360 * 0.25 / 10 ^ 3 = 0.09$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Выброс вредного вещества, кг/т , TOXIC = 32

Максимальный разовый выброс ЗВ, г/с

 $_G_ = (RASH * TOXIC * NUM2) * 10 ^ 3 / 3600 = (0.09 * 32 * 1) * 10 ^ 3 / 3600 = 0.8$ Валовый выброс ЗВ, т/год

 $_M_ = RASH * TOXIC * NUM1 * NUM3 / 1000 = 0.09 * 32 * 7920 * 4 / 1000 = 91,2384$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс вредного вещества, кг/т , TOXIC = 5.2

Максимальный разовый выброс ЗВ, г/с

 $_G_$ = (RASH * TOXIC * NUM2) * 10 ^ 3 / 3600 = (0.09 * 5.2 * 1) * 10 ^ 3 / 3600 = 0.13 Валовый выброс 3В, т/год

 $_M_ = RASH * TOXIC * NUM1 * NUM3 / 1000 = 0.09 * 5.2 * 7920 * 4 / 1000 = 14,828$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Выброс вредного вещества, $\kappa \Gamma / T$, TOXIC = 15.5

Максимальный разовый выброс 3В, г/с

 $_G_$ = (RASH * TOXIC * NUM2) * 10 ^ 3 / 3600 = (0.09 * 15.5 * 1) * 10 ^ 3 / 3600 = 0.388 Валовый выброс ЗВ, т/год

 $_M_ = RASH * TOXIC * NUM1 * NUM3 / 1000 = 0.09 * 15.5 * 7920 * 4 / 1000 = 44,192$

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)</u> (516)

Выброс вредного вещества, кг/т , TOXIC = 20

Максимальный разовый выброс 3В, г/с

 $_G_ = (RASH * TOXIC * NUM2) * 10 ^ 3 / 3600 = (0.09 * 20 * 1) * 10 ^ 3 / 3600 = 0.5$ Валовый выброс ЗВ, т/год

 $_M_ = RASH * TOXIC * NUM1 * NUM3 / 1000 = 0.09 * 20 * 7920 * 4 / 1000 = 57,024$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Выброс вредного вещества, кг/т , TOXIC = 100

Максимальный разовый выброс ЗВ, г/с

 $_G_$ = (RASH * TOXIC * NUM2) * 10 ^ 3 / 3600 = (0.09 * 100 * 1) * 10 ^ 3 / 3600 = 2.5 Валовый выброс 3В, т/год

 $_M_ = RASH * TOXIC * NUM1 * NUM3 / 1000 = 0.09 * 100 * 7920 * 4/1000 = 285,12$

Примесь: 0703 Бенз/а/пирен (3,4-Бензапирен) (54)

Выброс вредного вещества, кг/т , TOXIC = 0.00032

Максимальный разовый выброс ЗВ, г/с

Валовый выброс ЗВ, т/год

$$_M_ = RASH * TOXIC * NUM1 * NUM3 / 1000 = 0.09 * 0.00032 * 7920 * 4 / 1000 = 0.00092$$

Примесь: 2732 Керосин (654*)

Выброс вредного вещества, кг/т , TOXIC = 30

Максимальный разовый выброс ЗВ, г/с

$$_G_=(RASH*TOXIC*NUM2)*10^3/3600=(0.09*30*1)*10^3/3600=0.75$$
 Валовый выброс ЗВ, т/год

$$_{M}$$
 = RASH * TOXIC * NUM1 * NUM3 / 1000 = 0.09 * 30 * 7920 * 4 / 1000 = 85,536

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	1.6	91,2384
0304	Азот (II) оксид (Азота оксид) (6)	0.26	14,828
0328	Углерод (Сажа, Углерод черный) (583)	0.7752	44,192
	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1.0	57,024
	Углерод оксид (Окись углерода, Угарный газ) (584)	5.0	285,12
0703	Бенз/а/пирен (3,4-Бензапирен) (54)	0.000016	0.00092
2732	Керосин (654*)	1.5	85,536

Выбросы от двигателей автосамосвалов не нормируются.

Электроснабжение

Осветительная мачта типа Atlas Copco QLT H50 - источник № 0002-0003.

Расчеты на максимальный объем производительности

Для освещения района проведения работ карьера, складов и отвала применяются мобильные передвижные дизельные осветительные мачты типа Atlas Copco QLT H50, оснащенные четырьмя прожекторами с металлогалогенными лампами мощностью 1000 Вт каждая.

Время работы дизельгенератора – 3650 ч/год.

Расход топлива при 100% нагрузке составляет 1,7 л/мин * 60 = 102 л/час.

В соответствии с подпунктом 2) пункта 4 статьи 280 Кодекса Республики Казахстан от 10 декабря 2008 года «О налогах и других обязательных платежах в бюджет» (Налоговый кодекс)», утвержденным постановлением Правительства Республики Казахстан от 13 марта 2015 года № 133, в случае, когда единицей измерения объема дизельного топлива является литр, перевод литров в тонны осуществляется по следующей формуле:

М - объем дизельного топлива, в тоннах;

V — объем дизельного топлива, в литрах;

0,769 - показатель плотности для дизельного топлива, кг/литр. Расход топлива: 102 л/час (мах) = 78,438 кг/час * 3650 часов = 286,3 т/год.

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Список литературы:

«Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок», утвержденная приказом Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө Исходные данные:

Максимальный расход диз. топлива установкой, кг/час , BS = 78,738 Годовой расход дизельного топлива, т/год , BG = 286,3

<u>Примесь: 0301 Азота (IV) диоксид (4)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=30 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=78,738*30/3600=0.656$ Валовый выброс, т/год , $M=BG*E/10 ^3=286,3*30/10 ^3=8,589$

Примесь: 0304 Aзот (II) оксид (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=39 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=78,738*39/3600=0.853$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=286,3*39/10 ^3=11,1657$

Примесь: 0330 Сера диоксид (526)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=10 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=78,738*10/3600=0.219$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=286,3*10/10 ^3=2,863$

Примесь: 0328 Углерод (593)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=5 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=78,738*5/3600=0.109$ Валовый выброс, т/год , $M=BG*E/10^3=286,3*5/10^3=1,4315$

Примесь: 0337 Углерод оксид (594)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=25 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=78,738*25/3600=0.547$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=286,3*25/10 ^3=7,1575$

Примесь: 1301 Акролеин

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=1.2 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=78,738*1.2/3600=0.026$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=286,3*1.2/10 ^3=0.3436$

Примесь: 1325 Формальдегид (619)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=1.2 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=78,738*1.2/3600=0.026$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=286,3*1.2/10 ^3=0.3436$

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на С/ (592)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=12 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=78,738*12/3600=0.26$ Валовый выброс, т/год , $_M_=BG*E/10 ^ 3=286,3*12/10 ^ 3=3,4356$

Передвижная дизельная электростанция - источник №0004, 0005.

Расчеты на максимальный объем производительности

Электроснабжение насосов карьера осуществляется от мобильной дизельной электростанции типа ЭД-40-Т400-1РПМ11 мощностью 40 кВт.

Время работы дизельгенератора – 7300 ч/год.

Расход топлива при 100% нагрузке составляет 14,3 л/час.

В соответствии с подпунктом 2) пункта 4 статьи 280 Кодекса Республики Казахстан от 10 декабря 2008 года «О налогах и других обязательных платежах в бюджет» (Налоговый кодекс)», утвержденным постановлением Правительства Республики Казахстан от 13 марта 2015 года № 133, в случае, когда единицей измерения объема дизельного топлива является литр, перевод литров в тонны осуществляется по следующей формуле:

М - объем дизельного топлива, в тоннах;

V — объем дизельного топлива, в литрах;

0,769 - показатель плотности для дизельного топлива, кг/литр. Расход топлива: 14,3 л/час (мах)=11 кг/час * 7300 часов = 80,3 т/год.

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Список литературы:

«Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок», утвержденная приказом Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө Исходные данные:

Максимальный расход диз. топлива установкой, кг/час, BS = 11 Годовой расход дизельного топлива, т/год, BG = 80.3

Примесь: 0301 Азота (IV) диоксид (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=30 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=11*30/3600=0.0917$ Валовый выброс, т/год , $M=BG*E/10^3=80,3*30/10^3=2,409$

Примесь: 0304 Азот (II) оксид (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=39 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=11*39/3600=0.1192$ Валовый выброс, т/год , $M=BG*E/10^3=80.3*39/10^3=3.1317$

Примесь: 0328 Углерод (593)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=5 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=11*5/3600=0.015$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=80,3*5/10 ^3=0,4015$

Примесь: 0330 Сера диоксид (526)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=10 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=11*10/3600=0.0306$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=80,3*10/10 ^3=0,803$

Примесь: 0337 Углерод оксид (594)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=25 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=11*25/3600=0.0764$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=80,3*25/10 ^3=2,0075$

Примесь: 1301 Акролеин

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=1.2 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=11*1.2/3600=0.0037$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=80,3*1.2/10 ^3=0.096$

Примесь: 1325 Формальдегид (619)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=1.2 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=11*1.2/3600=0.0037$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=80.3*1.2/10 ^3=0.096$

Примесь: 2754 Углеводороды предельные С12-19/в пересчете на С/ (592)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4) , E=12 Максимальный разовый выброс, г/с , $_G_=BS*E/3600=11*12/3600=0.0367$ Валовый выброс, т/год , $_M_=BG*E/10 ^3=80,3*12/10 ^3=0,9636$

Альтернатива по размещению отвала

Отвал вскрышных пород – источник №6012.

На конец отработки месторождении в соответствии с настоящим планом горных работ площадь отвала будет составлять – 85 000 м2.

Время хранения – 8760 ч/год.

Периодичность пылеподавления на 2 раза в сутки, в теплое время года.

Эффективность 85%.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

Источник выделения N 001, Отвал вскрышных пород №1

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Вскрышная порода

<u>Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 11

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.4

Размер куска материала, мм, G7 = 200

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.2

Поверхность пыления в плане, м2, S = 85000

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 129

Продолжительность осадков в виде дождя, часов/год, TO = 1008

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 1008 / 24 = 84$

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.4 \cdot 1.45 \cdot 0.2 \cdot 0.002 \cdot 85000 \cdot (1-0.85) = 5.92$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1 \cdot NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 1.45 \cdot 0.2 \cdot 0.002 \cdot 85000 \cdot (365 \cdot (129 + 84)) \cdot (1 \cdot 0.85) = 46.6$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 5.92 = 5.92

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 46.6 = 46.6

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 46.6 = 18.64$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 5.92 = 2.37$

Итоговая таблица:

Код	Наименование ЗВ			Выброс г/с	Выброс т/год
2908	Пыль	неорганическая,	содержащая	2.07	18.64
	двуокись	кремния в %: 70-20			

РАСЧЕТ

рассеивания вредных

веществ

в приземном слое атмосферы

<u>для Объекта «План горных работ по</u> <u>добыче руды с месторождения Атыгай</u> (Берсуат), 1-я очередь в Костанайской <u>области»</u>

ЭРА v3.0 ТОО "АНТАЛ"

Таблица 11.1 Таблица групп суммаций на существующее положение

Костанайская обл. Жетикаринскй, План горных работ по добыче руды с месторождения Атыгай (Берсуат)

Номер	Код	
группы	загряз-	Наименование
сумма-	няющего	загрязняющего вещества
ЦИИ	вещества	
1	2	3
		Площадка:01,Площадка 1
6007	0301	Азота (IV) диоксид (Азота диоксид) (4)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Сера (IV) оксид) (516)
6035	0184	Свинец и его неорганические соединения /в пересчете
		на свинец/ (513)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Сера (IV) оксид) (516)
6457	0207	Цинк оксид /в пересчете на цинк/ (662)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Сера (IV) оксид) (516)

ЭРА v3.0 ТОО "АНТАЛ" Таблица 11.2

Определение необходимости расчетов приземных концентраций по веществам на существующее положение

Костанайская обл. Жетикаринскй, План горных работ по добыче руды с месторождения Атыгай (Берсуат)

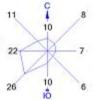
	айская оол, метикарински, план горных рабо				=			
Код	Наименование	пдк	пдк	ОБУВ	Выброс	Средневзве-	М/(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	ДИМОСТЬ
веще-			суточная,		r/c	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	УВ , мг/м3	(M)	(H)	для Н<10	РИН
								расчетов
1	2	3	4	5	6	7	8	9
0143	Марганец и его соединения /в пересчете на	0.01	0.001		0.12669	2	12.669	Да
	марганца (IV) оксид/ (327)							
0145	Медь (II) сульфит (1:1) /в пересчете на	0.003	0.001		0.05358	2	17.860	Да
	медь/ (Медь сернистая) (331)							
0203	Хром /в пересчете на хром (VI) оксид/ (0.0015		0.04061	2	2.7073	Да
	Хром шестивалентный) (647)							
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		2.3715		5.9288	Да
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.692	2.02	4.6133	Да
0337	Углерод оксид (Окись углерода, Угарный	5	3		5.2866	2.02	1.0573	Да
	ras) (584)							
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0.000001		0.000008	2	0.800	Да
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид)	0.03	0.01		0.0634	2.06	2.1133	Да
	(474)							
1325	Формальдегид (Метаналь) (609)	0.05	0.01		0.0634	2.06	1.268	Да
2732	Керосин (654*)			1.2	1.0666	2	0.8888	Да
2754	Углеводороды предельные С12-С19 (в	1			0.6344	2.06	0.6344	Да
	пересчете на С) (10)							
2902	Взвешенные частицы (116)	0.5	0.15		0.7249	2	1.4498	Да
2908	Пыль неорганическая, содержащая двуокись	0.3	0.1		7.8303	2	26.101	Да
	кремния в %: 70-20 (шамот, цемент, пыль							
	цементного производства - глина,							
	глинистый сланец, доменный шлак, песок,							
	клинкер, зола, кремнезем, зола углей							
	казахстанских месторождений) (494)							
	Вещества, обла	дающие эф	ректом сумі	марного вре	едного воздейс	гвия		'
0184	Свинец и его неорганические соединения /в	0.001	0.0003	_	0.02556	2	25.560	Да
	пересчете на свинец/ (513)							
0207			0.05		0.03817	2	0.0763	Нет
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2	0.04		2.6826	2.04	13.413	Да

ЭРА v3.0 ТОО "АНТАЛ" Таблица 11.2

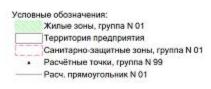
Определение необходимости расчетов приземных концентраций по веществам на существующее положение

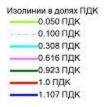
Костанайская обл. Жетикаринскй, План горных работ по добыче руды с месторождения Атыгай (Берсуат)

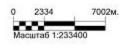
Код	Наименование	ПДК	пдк	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	ДИМОСТЬ
веще-		разовая,	суточная,	безопасн.	r/c	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	УВ,мг/м3	(M)	(H)	для Н<10	RNH
								расчетов
1	2	3	4	5	6	7	8	9
	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.5	0.05		1.0332	2.03	2.0664	Да

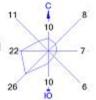

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с

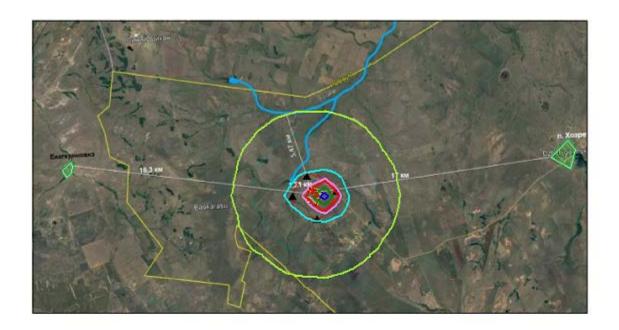

2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

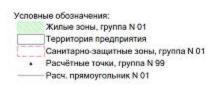

Объект : 0003 План горных работ по добыче руды с месторождения Атыгай (Берсуат) Вар.№ 1 22

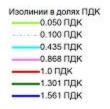

ПК ЭРА v3.0 Модель: MPK-2014

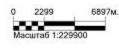

0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

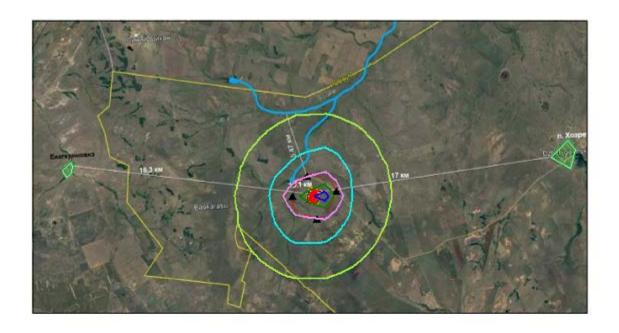


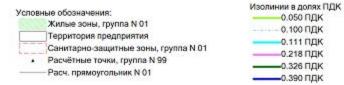

Макс концентрация 1.2296884 ПДК достигается в точке x= 6244 y= 8423 При опасном направлении 285° и опасной скорости ветра 11 м/с Расчетный прямоугольник № 1, ширина 41477 м, высота 21830 м, шаг расчетной сетки 2183 м, количество расчетных точек 20°11 Расчёт на существующее положение.

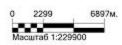

Объект : 0003 План горных работ по добыче руды с месторождения Атыгай (Берсуат) Вар.№ 1 22


ПК ЭРА v3.0 Модель: MPK-2014

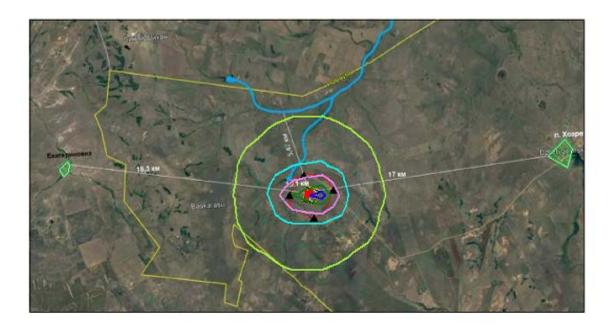

0145 Медь (II) сульфит (1:1) /в пересчете на медь/ (Медь сернистая) (331)

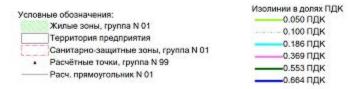

Макс концентрация 1.7340184 ПДК достигается в точке x= 6244 y= 8423 При опасном направлении 285° и опасной скорости ветра 11 м/с Расчетный прямоугольник № 1, ширина 41477 м, высота 21830 м, шаг расчетной сетки 2183 м, количество расчетных точек 20°11 Расчёт на существующее положение.

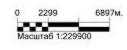

Объект : 0003 План горных работ по добыче руды с месторождения Атыгай (Берсуат) Вар.№ 1 22


ПК ЭРА v3.0 Модель: MPK-2014

0301 Азота (IV) диоксид (Азота диоксид) (4)

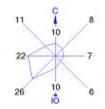



Макс концентрация 0.4327429 ПДК достигается в точке х= 6244 у= 8423 При опасном направлении 270° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 41477 м, высота 21830 м, шаг расчетной сетки 2183 м, количество расчетных точек 20°11 Расчёт на существующее положение.

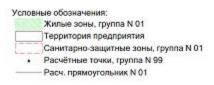

Объект : 0003 План горных работ по добыче руды с месторождения Атыгай (Берсуат) Вар.№ 1

ПК ЭРА v3.0 Модель: MPK-2014

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских 10 6 месторождений) (494)

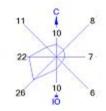


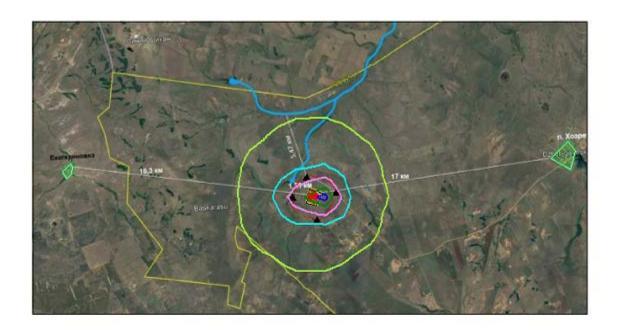

Макс концентрация 0.7371001 ПДК достигается в точке x= 6244 у= 8423 При опасном направлении 281° и опасной скорости ветра 11 м/с Расчетный прямоугольник № 1, ширина 41477 м, высота 21830 м, шаг расчетной сетки 2183 м, количество расчетных точек 20°11 Расчёт на существующее положение.


Объект : 0003 План горных работ по добыче руды с месторождения Атыгай (Берсуат) Вар.№ 1

ПК ЭРА v3.0 Модель: MPK-2014

6007 0301+0330




Макс концентрация 0.615897 ПДК достигается в точке x= 6244 y= 8423 При опасном направлении 271° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 41477 м, высота 21830 м, шаг расчетной сетки 2183 м, количество расчетных точек 20*11 Расчёт на существующее положение.

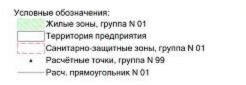
Объект : 0003 План горных работ по добыче руды с месторождения Атыгай (Берсуат) Вар.№ 1

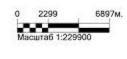
ПК ЭРА v3.0 Модель: MPK-2014

__ПЛ 2902+2908

Изолинии в долях ПДК

--- 0.100 ПДК


0.050 ПДК


0.250 ПДК

0.497 ПДК

0.745 ПДК

0.893 ПДК

Макс концентрация 0.9800255 ПДК достигается в точке x= 6244 у= 8423 При опасном направлении 286° и опасной скорости ветра 11 м/с Расчетный прямоугольник № 1, ширина 41477 м, высота 21830 м, шаг расчетной сетки 2183 м, количество расчетных точек 20°11 Расчёт на существующее положение.

Форма письма-ответа инициатору общественных слушаний от местных исполнительных органов административно-территориальных единиц (района, города) на проведение общественных слушаний

исходящий номер: 22431439002, Дата: 14/09/2022

(регистрационные данные письма, исходящий номер, дата)

«В ответ на Ваше письмо (исх. $N_{22431439002}$, от 14/09/2022 (дата)) о согласовании предлагаемых Вами условий проведения общественных слушаний, сообщаем следующее:

«Согласовываем проведение общественных слушаний по предмету <u>Отчет о возможных воздействиях к «Плану горных работ по добыче руды с месторождения Атыгай (Маржан), 1-я очередь» в Костанайской области»; Отчет о возможных воздействиях к «Плану горных работ по добыче руды с месторождения Атыгай (Берсуат), 1-я очередь» в Костанайской области»; Отчет о возможных воздействиях к «Плану горных работ по добыче руды с месторождения Атыгай (Восточный-Султан), 1-я очередь» в Костанайской области», в предлагаемую Вами <u>27/10/2022</u> 15:00, Костанайская область, Житикаринский район, <u>Большевистский с.о., с.Тургеновка</u>(дату, место, время начала проведения общественных слушаний)»</u>

(к причинам несогласования относятся: несоответствие места предлагаемых общественных слушаний и перечня административно-территориальных единиц, на территорию которых может быть оказано воздействие в результате осуществления намечаемой деятельности, и на территории которых будут проведены общественные слушания; неудобные для населения дата, время и место проведения общественных слушаний).

«Подтверждаем наличие технической возможности организации видеоконференцсвязи в ходе проведения общественных слушаний».

«В соответствии с требованиями Экологического кодекса Республики Казахстан и Правил проведения общественных слушаний будет обеспечено в том числе: председательствование общественных слушаний, регистрация участников общественных слушаний, видео- и аудиозапись открытого собрания общественных слушаний для приобщения (публикации) к протоколу общественных слушаний.»

ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "АТЫГАЙ ГОЛД МАЙНИНГ" (БИН: 131040006314), 8-714-352-5944, OFFICE@ATGM.KZ,

(фамилия, имя и отчество (при наличии), должность, наименование организации представителем которой является, подпись, контактные данные инициатора общественных слушаний).

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ИНДУСТРИЯ ЖӘНЕ ИНФРАҚҰРЫЛЫМДЫҚ ДАМУ МИНИСТРЛІГІ

МИНИСТЕРСТВО ИНДУСТРИИ И ИНФРАСТРУКТУРНОГО РАЗВИТИЯ РЕСПУБЛИКИ КАЗАХСТАН

010000, Нұр-Сұлтан қ, Қабанбай Батыр даңғылы, 32/1 32/1

тел.: 8(7172) 98 33 11, 98 33 33 факс: 8(7172) 98 31 11 e-mail: miid@miid.gov.kz miid@miid.gov.kz

 $N_{\underline{0}}$

№ 04-2-18/23592 от 08.07.2022

010000, г. Нур-Султан, пр. Кабанбай Батыра

тел.: 8(7172) 98 33 11, 98 33 33 факс: 8(7172) 98 31 11

ТОО «Атыгай Голд Майнинг»

Уведомление

Министерство индустрии и инфраструктурного развития Республики Казахстан (далее - Компетентный орган), рассмотрев ваше заявление на получение лицензии на добычу твердых полезных ископаемых №83-АГМ-2022 от 27 мая 2022 года (вх.№23592 от 01.06.2022г.), в соответствии с пунктом 3 статьи 205 Кодекса Республики Казахстан «О недрах и недропользовании» (далее - Кодекс) уведомляет о необходимости получения соответствующего экологического разрешения на операции по добыче, описанные в плане горных работ, проведения экспертиз и согласований плана горных работ и плана ликвидации, предусмотренных статьями 216 и 217 Кодекса.

Дополнительно сообщаем, что копия экологического разрешения на операции по добыче, описанные в плане горных работ, согласования и положительные заключения экспертиз должны быть представлены заявителем в Компетентный орган не позднее одного года со дня настоящего уведомления, после чего вам будет выдана соответствующая лицензия согласно пункту 3 статьи 205 Колекса.

Вице-министр

Р. Баймишев

Исп.: Акимбекова Б.Ж.

Тел: 983-414

b.akimbekova@miid.gov.kz

ТОО «ЦЕНТР АРХЕОЛОГИЧЕСКИХ ИЗЫСКАНИЙ»

Республика Казахстан, 140000 г. Павлодар, ул. М. Горького 35, оф. 42 БИН 130440015078, ИИК KZ858560000010582909, БИК KCJBKZKX AO Банк ЦентрКредит г. Павлодар, т.87059868116,8(7182)677750 email:archaeologicalcenter@mail.ru

НАУЧНОЕ ЗАКЛЮЧЕНИЕ

по проекту: «Проведение научно-исследовательских работ по выявлению объектов историко-культурного наследия на участках месторождения «Атыгай» в Костанайской области» № АЭ-18 от 22 сентября 2022 г.

В 2022 г. ТОО «Центр археологических изысканий» в рамках договора с ТОО «Атыгай Голд Майнинг» осуществлено выполнение І этапа исследовательских работ по проекту: «Проведение научно-исследовательских работ по выявлению объектов историко-культурного наследия на участках месторождения «Атыгай» в Костанайской области».

<u>Целью исследовательских работ</u> на I этапе являлось проведение изысканий на предмет наличия объектов историко-культурного наследия на земельном участке предназначенном для площадки под строительство завода путем изучения архивного материала, а также данных дистанционного зондирования искусственных спутников Земли на предмет наличия на земельном участке ранее известных объектов историко-культурного наследия.

<u>Территория исследовательских работ</u> включает в себя участки месторождения «Атыгай» (центр, юг), «Маржан», «Берсуат», «Восточный Султан», «Воскресенский, Аксай, Никольский», КГК-12, «Суходольский» со следующими географическими координатами:

Атыгай(центр,юг)

	Атыгаи(центр,юг)						
№№ точек	Географические координаты						
JULIUS TOACK	с. ш.	в. д.					
1	51° 56' 57.2838"	60° 4' 0.005052"					
2	51° 57' 59.369256"	60° 6' 43.300836"					
3	51° 56' 32.964"	60° 7' 59.998836"					
4	51° 56' 8.646108"	60° 6' 48.045744"					
5	51° 53' 46.78242"	60° 8' 51.841212"					
6	51° 53' 39.040764"	60° 8' 58.390728"					
7	51° 53' 31.999272"	60° 9' 34.999272"					
8	51° 53' 30.001344"	60° 9' 47.00178"					
9	51° 53' 25.000908"	60° 9' 46.50138"					
10	51° 52' 23.599344"	60° 9' 24.0012"					
11	51° 52' 21.208908"	60° 9' 38.728656"					
12	51° 52' 10.740144"	60° 9' 37.832364"					
13	51° 51' 58.679712"	60° 9' 7.21458"					
14	51° 55' 34.384764"	60° 6' 1.306764"					
15	51° 56' 14.274744"	60° 5' 25.842912"					
16	51° 56' 1.326336"	60° 4' 49.265256"					
Центр ГО	51° 54' 39.79314"	60° 7' 28.795908"					

Маржан

1.11							
Нуктелер	C	Солтүстік ендік		Шығыс бойлық			
Nº	гр.	мин.	сек.	гр.	мин.	сек.	
1	51	55	22,53	60	10	5,64	
2	51	55	35,82	60	10	41,41	
3	51	55	20,9	60	10	56,36	
4	51	55	7,22	60	10	21,86	

Берсуат

Береуат						
№№ точек	Географические координаты					
JAPAS LOACK	С. Ш.	В. Д.				
1	51° 55' 54.871068"	60° 12' 21.68154"				
2	51° 56' 17.870676"	60° 13' 28.77636"				
3	51° 55' 50.210184"	60° 13' 54.7806"				
4	51° 55' 26.887188"	60° 12' 48.021408"				
Центр ГО	51° 55' 42.784248"	60° 12' 59.393736"				

Восточный Султан

Бұрыштық	Бұрыштық нүктелердің координаттары								
нуктелер	Солтустік ендік			Шығыс бойлық					
	гр.	мин.	сек	гр.	мин.	сек.			
1	51	58	9,12	60	13	26,0			
2	51	58	26,26	60	14	17,82			
3	51	57	14,23	60	15	40,84			
4	51	57	22,94	60	16	4,29			
5	51	56	58,63	60	16	32,23			
6	51	57	6,89	60	16	55,85			
7	51	56	40,84	60	17	15,53			
8	51	56	15,14	60	16	3,21			
9	51	57	38,54	60	14	31,57			
10	51	57	28,89	60	14	6,74			

Воскресенскии, Аксаи, Никольскии						
№№ точек	Географические координаты					
JAENA IOACK	с. ш.	в. д.				
1	51° 59' 18.488976"	60° 0' 23.975424"				
2	51° 59' 31.526196"	60° 1' 8.249952"				
3	51° 58' 43.015764"	60° 1' 49.623276"				
4	51° 59' 20.025672"	60° 3' 44.11584"				
5	51° 58' 34.5855"	60° 4' 26.195376"				
6	51° 57' 57.216492"	60° 2' 31.089804"				
7	51° 58' 29.664876"	60° 2' 1.626936"				
8	51° 58' 15.950964"	60° 1' 18.898176"				
Центр ГО	51° 58' 45.284664"	60° 2' 25.84482"				

КГК-12

№№ точек	Географические координаты			
MENT TOACK	с. ш.	В. Д.		
1	51° 59' 18.237084"	60° 18' 35.600184"		

2	51° 59' 32.096724"	60° 19' 15.324024"
3	51° 59' 4.844112"	60° 19' 42.646368"
4	51° 58' 50.638296"	60° 19' 4.397628"
Центр ГО	51° 59' 10.744368"	60° 19' 8.677632"

Суходольский

№№ точек	Географические координаты	
	с. ш.	в. д.
1	51° 57' 45.39996"	60° 4' 7.099896"
2	51° 58' 28.499988"	60° 6' 14.999832"
3	51° 58' 13.700136"	60° 6' 28.299852"
4	51° 57' 38.000016"	60° 5' 46.999896"
5	51° 57' 11.399904"	60° 4' 37.19982"
Центр ГО	51° 57' 49.760532"	60° 5' 18.32874"

<u>Основанием для проведения</u> работ послужила необходимость выполнения Закона Республики Казахстан «Об охране и использовании объектов историко-культурного наследия».

В ходе проведения исследований научной группой ТОО «Центр археологических изысканий» были выполнены следующие виды работ:

- изучение архивного и картографического материала на предмет наличия ранее известных объектов историко-культурного наследия;
- камеральная обработка полученных данных, разработка научного заключения.

В результате проведения I этапа исследовательских работ по проекту: «Проведение научно-исследовательских работ по выявлению объектов историко-культурного наследия на участках месторождения «Атыгай» в Костанайской области» объекты историко-культурного наследия не выявлены.

Директор ТОО «Центр археологических жыскани

- Смагулов Т.Н.