Номер: KZ46VWF00076251 Дата: 22.09.2022

«ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ГЕОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ ЭКОЛОГИЯЛЫҚ РЕТТЕУ ЖӘНЕ БАҚЫЛАУКОМИТЕТІНІҢ МАҢҒЫСТАУ ОБЛЫСЫ БОЙЫНША ЭКОЛОГИЯ ДЕПАРТАМЕНТІ» РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК МЕКЕМЕ

РЕСПУБЛИКАНСКОЕ
ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
«ДЕПАРТАМЕНТ ЭКОЛОГИИ
ПО МАНГИСТАУСКОЙ ОБЛАСТИ
КОМИТЕТА ЭКОЛОГИЧЕСКОГО
РЕГУЛИРОВАНИЯ И КОНТРОЛЯ
МИНИСТЕРСТВА ЭКОЛОГИИ ГЕОЛОГИИ
И ПРИРОДНЫХ РЕСУРСОВ
РЕСПУБЛИКИ КАЗАХСТАН»

Қазақстан Республикасы, Маңғыстауоблысы 130000 Ақтау қаласы, промзона 3, ғимарат 10, телефон: 8/7292/ 30-12-89 факс: 8/7292/ 30-12-90

Республика Казахстан, Мангистауская область 130000, город Актау, промзона 3, здание 10, телефон: 8/7292/ 30-12-89 факс: 8/7292/ 30-12-90

АО «Мангистаумунайгаз»

Заключение

об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействия намечаемой деятельности

На рассмотрение представлены: Заявление о намечаемой деятельности, материалы оценки воздействия на окружающую среду на «Строительство подпорной насосной станций с водозаборными скважинами в районе БКНС-1 м/р Жетыбай». Материалы поступили на рассмотрение: 18.08.2022г. Вх. КZ47RYS00279079

Общие сведения

Район строительства запроектированных объектов находится на территории действующего месторождения ПУ «Жетыбаймунагаз»: месторождение «Жетыбай»; В административном отношении входящих в состав Каракиянского района Мангистауской области РК. Ближайшими населёнными пунктами от м/р Жетыбай, являются пос.Жетыбай-13 км и пос.Мунайши—6км.

Краткое описание намечаемой деятельности

В данном проекте предусматривается строительство следующих объектов и сооружений для транспортировки альбсеноманской воды: обустройство устьев 8 водозаборных скважин и строительство водоводов от скважин до сборных коллекторов; сборного коллектора; строительство площадки РВС с подпорной насосной станцией. Состав сооружений и выбор оборудования определился на основании параметров технологической схемы сбора и транспорта воды и состоит из строительства площадки РВС с подпорной насосной станцией, обустройства устьев водозаборных скважин с водоводами до сборного коллектора и сборного коллектора. Площадка РВС с подпорной насосной станцией: резервуары РВС-5000 куб.м; подпорная насосная станция транспортировки альбсеноманской воды; площадка дренажной емкости V-16.0 куб.м; площадка узла учета воды УУВ-1/2/3; операторная. Мощность объекта – насосная производительностью 630м3/час (1 насос в работе, 2 в резерве); Размеры площадки — 106х65м в рамках существующей территории БКНС-1; Характеристика продукции — альбсеноманская вода.

Технологическая схема по сбору, транспортировке и хранению альбсеноманской воды. Вода с ранее пробуренных водозаборных скважин №№ 11, 12,

7 ,8, 8a, 8б, 3, 4 по трубопроводам диаметром 300 мм в объеме 2500 куб.м/сут с давлением 1,0 МПа через расходомер, направляется в сборный коллектор воды из СПТ диаметром 500 мм, протяженностью 3722м. Далее по сборному коллектору вода поступает на площадку проектируемой насосной станции, проходит через узел учета воды и фильтр очистки воды и направляется на резервуары Р-1,2, объемом 5000 куб.м.каждый. С резервуаров отстоявшаяся вода по трубопроводу Ø530x12 подается во всасывающие коллекторы Ø325x12 откачивающих насосов H-1,2,3, марки 1Д630-90 в количестве 3шт. (1 рабочий, 2 резервных), производительностью 630м3/ч и напором 0,9МПа каждая. От насосной станции вода давлением 0,9МПа по трубопроводу Ду500 поступает на прием действующей БКНС-1 (блочная кустовая насосная станция) и далее направляется в нагнетательные скважины. Для реализации данных решений предусматривается строительство следующих объектов и сооружений: - обустройство устьев ранее пробуренных 8 водозаборных скважин; - строительство водоводов от скважин до сборного коллектора Ду500; - сборного коллектора Ду500 из стеклопластиковой протяженностью 3722м; трубы, строительство вертикальных стальных резервуаров РВС-5000м3 для приема и отпуска воды; строительство подпорной насосной станции в количестве 3 (трех) центробежных насосов 1 Д630-90; - строительство площадки узла учета воды; - строительство фильтров воды; - операторной.

Начало строительства - 1 квартал (январь) 2023 года. Окончание строительства декабрь 2023г. Продолжительность строительства 12 месяцев. Срок поэтапного ввода в эксплуатацию -2023г.

Краткая характеристика компонентов окружающей среды

Ожидаемые выбросы ЗВ в период строительства: 0123 Железа (Зкл.оп) 0,0267г/с 0,0597т/г; 0143 Марганец и его соединения (2кл.оп) 0,0014г/сек 0,0082т/год; 0301 Азота (IV) диоксид (Азота диоксид) (2кл.оп) 0,3627 г/сек 3,7972 т/год; 0304 Азота (II) оксид (Азота оксид) (3кл.оп) 0,0486г/сек 0,1522т/год; 0328 сажа 0,2352 г/сут 16,9601т/сут, 0330 Серы диоксид (Ангидрид Сернистый газ, Сера (IV) оксид) (3кл.оп) 0,1074 г/сек 5,2055 т/год; 0337 Углерода оксид (Окись углерода) (4кл.оп) 0,3364 г/сек 7,5501 т/год; 0616 Диметилбензол (3кл.оп) 0,2922г/с 0,2744т/г; 0703 бензапирен 0,000001132г/сек 0,00005556т/г; 1210 Бутилацетат (4кл.оп) 0,0987г/с 0,0364т/г; 1325 формальдегид (4кл.оп) 0,0047г/сек 0,0152т/г; 2752 Уайт-спирит 0,2350г/с 0,2103т/г; 2754 Углеводороды предельные С12-С19 (4кл.оп) 0,1558г/с 5,3513т/г; 2902 взвешенные вещества 0,1535г/сек 0,1077т/год; 2908 Пыль неорганическая (3кл.оп) 2,5958г/с 6,7669т/г; Ожидаемые выбросы ЗВ в период эксплуатации: отсутствуют ВЗВ.

В период строительства предусматривается водопотребление на питьевые и технические нужды. Потребности в питьевой воде на период строительно-монтажных будут обеспечены за счет привозной питьевой бутилированной воды. Техническая вода - привозная, доставляется на площадку строительства автотранспортом - поливомоечными машинами. Объект находится вне водоохранных зон и полос. Вид водопользования — общее. Вода хозяйственная и для производственных нужд. Вода бутилированная для питья. Вода привозная. Расход воды в период строительства составит: на питьевые нужды — 58,4 м3/период. Техническая вода при строительстве проектируемых объектов будет использоваться для орошения площадки строительства (полив водой при уплотнении и укатке грунта.

Описание отходов, управление которыми относится к намечаемой деятельности: Использованная тара ЛКМ 0.24т/г; Промасленная ветошь -0.0164т/г; огарки сварочных электродов-0.069т/г; Металлолом -2.0, строительный мусор -2.0 т/г, Комм.отходы-6т/г при строительстве. Период эксплуатации - отсутствуют.

Растительные ресурсы не применяются при строительстве сооружений данного проекта. На территории проектируемых работ зеленые насаждения отсутствуют.

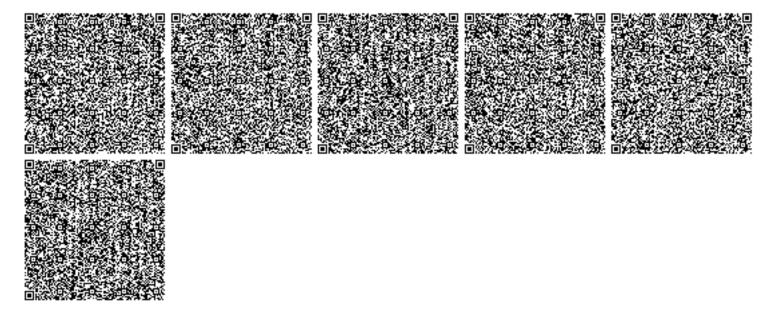
Использование объектов животного мира, их частей, дериватов, полезных свойств и продуктов жизнедеятельности животных проектом не предполагается.

Иные ресурсы, необходимые для осуществления намечаемой деятельности: при строительстве: Объемы строительных материалов на период строительства: Электроды — 4,63т ЛКМ — 880,3 т Дизтопливо — 168,927 т Битум — 1600т Коммунальные отходы — 6 т/год Объем электрической энергии от действующих энергетических Жетыбайской группы месторождении используемой в дальнейшем при эксплуатации

Оценка воздействия на окружающую среду в период воздух – пространственный масштаб(п.м.) (ограниченный (2)), Атмосферный временный масштаб (в.м.) (продолжительное (3)), интенсивность (и) (незначительная п.м. (локальный (1)), в.м. (1)) – интегральная оценка в баллах (6); Почва-(продолжительное (3)), и (слабая (2)); Отходы- п.м. (локальный (1)), (продолжительное (3)), и (незначительная (1)); Растительность - п.м. (локальный (1)), в.м. (продолжительное (3)), и (слабая (2)); Животный мир - п.м. (локальный (1)), в.м. (продолжительное (3)), и (слабая (2)); Физическое воздействие- п.м. (локальный (1)), в.м. (продолжительное (3)), и (слабая (2)); Радиационное воздействие – отсутствует. Анализируя вышеперечисленные категории воздействия проектируемых работ на окружающую среду, можно сделать общий вывод, что значимость ожидаемого экологического воздействия при строительстве допустимо принять как низкой значимости. Оценка воздействия на окружающую среду в период эксплуатации: Атмосферный воздух – пространственный масштаб (п.м.) (ограниченный (2)), временный масштаб (в.м.) (многолетнее (4)), интенсивность (и) (незначительная (1)) – интегральная оценка в баллах (6); Почва- п.м. (локальный (1)), в.м. (многолетнее (4)), и (незначительная (1)); Отходы- п.м. (локальный (1)), в.м. (многолетнее (4)), и (незначительная (1)); Растительность - п.м. (локальный (1)), в.м. (многолетнее (4)), и (незначительная (1)); Животный мир - п.м. (локальный (1)), в.м. (многолетнее (4)), и (незначительная (1)); Физическое воздействие- п.м. (локальный (1)), в.м. (многолетнее (4)), и (незначительная (1)); Радиационное воздействие – отсутствует. Анализируя вышеперечисленные категории воздействия проектируемых работ на окружающую среду, можно сделать общий вывод, что значимость ожидаемого экологического воздействия при эксплуатации допустимо принять как низкой значимости.

При проведении работ предусмотрен ряд мероприятий, снижающих или предотвращающих загрязнение атмосферного воздуха, поверхностных и подземных вод, почвы, флоры и фауны. Эти мероприятия состоят из организационных, технологических, проектно-конструкторских, санитарно-противоэпидемических и сводятся к следующему: Организационные: - разработка оптимальных схем автотранспорта; контроль своевременного прохождения задействованного автотранспорта и спецтехники; - исключение несанкционированного проведения работ. Проектно-конструкторские: - бетон для бетонных и ж/бетонных конструкций принят на сульфатостойком портландцементе ввиду сульфатной агрессии грунтов по отношению к бетонам нормальной плотности. Марка бетона по водонепроницаемости W4, по морозостойкости F100. под бетонными и железобетонными конструкциями предусматривается подготовка пропитанного битумом, толщиной 100 мм. - боковые поверхности конструкций, соприкасающееся с грунтом, обмазать горячим битумом БН-70/30 за 2 раза по грунтовке из 40% раствора битума в керосине. - антикоррозийная защита металлических конструкций; - фундаменты под оборудование с динамическими нагрузками рассчитаны с учетом динамического воздействия; -для ограничения случайных розливов нефти, площадки технологических установок наземного расположения, выполнены из монолитного бетона с отбортовкой по периметру.

антикоррозийная защита надземных и подземных трубопроводов; - экспертиза проектных решений в природоохранных органах. Санитарно-эпидемические: - выбор согласованных участков складирования отходов; - раздельный сбор и вывоз отходов. При проведении работ предусмотрен ряд мер, выполняемых подрядчиком и касающихся экологических аспектов строительства: - Поддерживание постоянной связи с Заказчиком, со специально уполномоченными органами в области ООС; - Принятие мер по предотвращению случайных проливов нефтепродуктов при работе стройтехники и автотранспорта.


Намечаемая деятельность: «Строительство подпорной насосной станций с водозаборными скважинами в районе БКНС-1 м/р Жетыбай», относится пп.1.3 п.1 раздела 1 приложения 2 к Экологическому кодексу Республики Казахстан от 02.01.2021 года №400-VI к I категории.

Выводы о необходимости или отсутствия проведения обязательной оценки воздействия на окружающую среду: Необходимость проведения обязательной оценки воздействия на окружающую среду отсутствует. В соответствии пп.2) п.3 ст. 49 Экологического кодекса провести экологическую оценку по упрощенному порядку. При проведении экологическую оценку по упрощенному порядку учесть замечания и предложения государственных органов и общественности согласно протокола размещенного на портале «Единый экологический портал».

Руководитель департамента

Тукенов Руслан Каримович

