Центр проектирования и исследования минерального сырья TOO «DeCh»

TOO «Adelya Gold»

ПРОЕКТ

Модульная обогатительная фабрика по переработке руды месторождения Карабулак производительностью 350 000 т в год

Общая часть

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Том 1

Усть-Каменогорск 2019 год

Центр проектирования и исследования минерального сырья TOO «DeCh»

Предприятие (заказчик) ТОО «Adelya Gold» здание, сооружение

ПРОЕКТ

Наименование документа:

Модульная обогатительная фабрика по переработке руды месторождения Карабулак производительностью 350 000 т в год

Часть:

Обшая

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Том 1

Договор: № 38/17 от 01 июля 2017 г.

Директо

Главный

В.В. Чуб

С.А. Жданов

Mganob.

Исполнители:

Технологическая часть

 Технический руководитель
 Зикирова Б.К.

 Ведущий инженер обогатитель
 Старцева Т.А.

 Старший научный сотрудник
 Куленова Н.А.

Генеральный план и транспорт

Главный специалист Жданов С.А.

Архитектурно-строительные решения

Главный специалист Набикенов А.С. Инженер Зикирова К.Т.

Инженерное оборудование, сети и системы

Аспирация. Отопление. Вентиляция

Инженер Ануарбеков Н.Б. Главный специалист Набикенов А.С.

Водоснабжение и канализация

Главный специалист Ануарбеков Н.Б.

Электроснабжение

Главный специалист Пронов Д.

Гидротехническое сооружение

Инженер – гидротехник Пчелка Г.М.

Инженер – механик

обогатитель Хамидулина А.К.

Проект «Модульная обогатительная фабрика по переработке руды месторождения Карабулак производительностью 350 000 тонн в год» разработан Центром проектирования и исследования минерального сырья ТОО «DeCh» (лицензия № 12005747 от 10 июля 2012 года, лицензия № 13015517 от 23 сентября 2013 года) и субподрядчиком ТОО «ЛБСтрой» (ГО №18012044 от 15.06.2018г.) на основании задания на проектирование и в соответствии с государственными нормами, правилами и стандартами, действующими на территории Республики Казахстан.

Главный инженер проекта

С.А. Жданов

Состав проекта «Модульная обогатительная фабрика по переработке руды месторождения Карабулак производительностью 350 000 тонн в год»

Том	Книга	Наименование частей	Примечание		
1	Общая часть				
1	Пояснит	ельная записка			
		Технологическая часть	1		
ı	1	Технология переработки руды месторожде-			
		ния Карабулак.			
		Пояснительная записка			
2		Технология переработки руды месторожде-			
		ния Карабулак. Дробильное отделение. Обо-			
	2	гатительная фабрика - главный корпус фаб-			
		рики. Склад реагентов, включая склад			
		СДЯВ. Чертежи			
		Общестроительная часть	_		
		Пояснительная записка			
		Генеральный план и транспорт			
	1	Архитектурно-строительные решения			
		Инженерное оборудование, сети и системы			
3		Расчет несущей способности конструктив-			
		ных элементов			
	2	Чертежи			
		Генеральный план и транспорт.			
		Архитектурно-строительные решения			
		Инженерное оборудование, сети и системы			
		Дробильное отделение			
	1	Хвостохранилище МОФ. Пояснительная за-			
4		писка.			
	2	Хвостохранилище МОФ. Чертежи			
5		Охрана окружающей среды	•		
	Оценка	воздействия на окружающую среду (ОВОС)			
6	Деклара	ция промышленной безопасности			
	1	Проект организации строительства (ПОС).			
7		Пояснительная записка			
7	2	Проект организации строительства (ПОС).			
		Чертежи			
8		Приложения			

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	7
1.1. Основание для проектирования	
1.2. Краткая характеристика района и площадки строительства	7
2. ПРИНЯТЫЕ ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ	8
2.1. Производительность и режим работы	9
2.2. Характеристика исходного сырья	. 10
2.3. Технология дробильного отделения	
2.4. Технология обогатительного и гидрометаллургического производства	
2.5. Организация технологического контроля	. 14
2.6. Организация вспомогательного производства	. 15
3. ГЕНЕРАЛЬНЫЙ ПЛАН И ТРАНСПОРТ	. 16
4. АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЕ РЕШЕНИЯ	. 18
5. ИНЖЕНЕРНОЕ ОБОРУДОВАНИЕ, СЕТИ И СИСТЕМЫ	. 20
6. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА	
7. ХВОСТОХРАНИЛИЩЕ	. 24
8.УПРАВЛЕНИЕ ПРОИЗВОДСТВОМ И ПРЕДПРИЯТИЕМ, ОРГАНИЗАЦИ	RI
И УСЛОВИЯ ТРУДА РАБОТНИКОВ	. 26
9. ИНЖЕНЕРНО-ТЕХНИЧЕСКИЕ МЕРОПРИЯТИЯ ПО ГРАЖДАНСКОЙ	
ОБОРОНЕ И ЛИКВИДАЦИИ ЧС	. 27
10. ПРОТИВОПОЖАРНАЯ ЗАЩИТА	
11. ОХРАНА ТРУДА	. 28
12.ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ	. 29
13. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ	
14. ВЫВОДЫ	. 31

1. ВВЕДЕНИЕ

1.1. Основание для проектирования

Проект «Модульная обогатительная фабрика по переработке руды месторождения Карабулак производительностью 350 000 тонн в год» выполнен на основании договора с ТОО «Adelya Gold» № 38/17, подписанного 01 июля 2017 года в соответствии с:

- заданием на проектирование, выданным ТОО «Adelya Gold» (Приложение A);
- копией технологического регламента на проектирование модульной обогатительной фабрики, разработанного в ТОО «DeCh», 2017 г.;
- письмо TOO «Adelya Gold» и внесении изменения производительности модульной обогатительной фабрики.
- копия отчета об инженерно- геологических изысканиях, разработанного ТОО «ГеоТерр» от 13 сентября 2017 г.

Других основополагающих документов для проектирования не получено.

1.2. Краткая характеристика района и площадки строительства

Административно месторождение Карабулак находится в Аккольском районе Акмолинской области. Контрактная территория находится в 4,0-5,0 км к югу от золоторудного месторождения Кварцитовые Горки и в 8 км на север от г. Степногорска, в 1,5 км на восток автомобильная дорога Степногорск — Аксу, в 6км на север автомобильная дорога Степногорск — Степняк, по контрактной территории проходит ЛЭП. Ближайшая железнодорожная станция Алтын — Тау. Степногорск связан со столицей Астана автомобильной дорогой -200 км.

В геоморфологическом отношении территория строительства расположена на водораздельной равнине и представляет собой мелкосопочник с отдельными возвышениями и небольшими выходами скальных пород. Общий уклон с северо-запада на юго-восток. Абсолютная отметка поверхности изменяется от 270,7 до 275,8 м.

Климат района резко континентальный и засушливый. Зима холодная и продолжительная с устойчивым снежным покровом. Лето сравнительно короткое. Район относится к зоне недостаточного и неустойчивого увлажнения.

Добыча и переработка руды в настоящее время не ведутся.

2. ПРИНЯТЫЕ ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ

Проектом предусмотрена технологическая схема переработки 350 тыс.тонн руды месторождения Карабулак, состоящая из следующих переделов:

- двухстадиальное дробление с предварительным грохочением;
- –измельчение дробленной руды до крупности 65%-70% класса-0,074 мм;
- классификация в гидроциклоне продукта разгрузки мельницы.
- гравитационное обогащение слива гидроциклона на центробежном концентраторе ИТМОМАК;
- классификация хвостов центробежного концентратора на короткоконусных гидроциклонах (ККГЦ);
- направление слива ККГЦ поступает на сорбционное выщелачивание с углем.
 - интенсивное (прямое) цианирование гравитационного концентрата;
- -сорбционное выщелачивание с углем процианированного гравитационного концентрата и слива ККГЦ;
- -сгущение хвостов сорбционного выщелачивания с возвращением слива сгустителя в процесс, а разгрузки сгустителя в узел обезвреживания;
- обезвреживание хвостов сорбционного выщелачивания и направление их в хвостохранилище;
- -обезвоживание (отмывка) насыщенного угля на грохоте с последующей кислотной и водной промывками;
- -элюирование насыщенного угля, электролиз элюата, обжиг катодного осадка, плавка на сплав Доре, являющегося готовой продукцией

Хвосты направляются в хвостохранилище.

- В проекте Модульная обогатительная фабрика (МОФ) предусмотрено строительство следующих объектов:
 - Дробильное отделение (ДО)
 - Главный корпус с реагентным отделением.
- Расходный склад реагентов со складом сильнодействующих ядовитых веществ (СДЯВ)
 - Аналитическая лаборатория (АЛ)
 - Административно-бытовой корпус (АБК)

В настоящем проекте разработаны следующие объекты - дробильное отделение, главный корпус, склад реагентов и административно-бытовой корпус.

Водоснабжение работников МОФ питьевой водой предусматривается бутилированная.

Ситуационный план расположения объекта проектирования показан на чертеже ЛБС-0918-ГП, лист 2.

Выбор оборудования, вопросы электроснабжения, водоснабжения, теплоснабжения, отопления и вентиляции, архитектурно-планировочные решения даны в соответствующих разделах записки проекта.

Ремонт оборудования и хранение мелющих тел, запасных частей и агрегатов в этом случае необходимо осуществлять централизованно на складских и ремонтных площадках ТОО «Adelya Gold».

Проект выполнен в пределах границ модульной обогатительной фабрики в соответствии с действующими нормами и правилами в Республике Казахстан.

2.1. Производительность и режим работы

В соответствии с заданием на проектирование и критериями проектирования, выданными заказчиком, в проекте принято:

По дробильному отделению:

- производительность 350 тыс. тонн в год;
- режим работы

Количество рабочих дней в году – 340

Режим работы в сутки: 2 смены по 12 часов

Время работы оборудования ДО: в смену -9 часов, в сутки-18 часов.

По главному корпусу МОФ:

- производительность -350 тыс. тонн в год;
- режим работы

Количество рабочих дней в году – 340

Режим работы в сутки: 2 смены по 12 часов

Время работы оборудования ЗИФ: в смену -12 часов, в сутки-24 часов.

Годовые проектные показатели:

- производительность 350 тыс. тонн в год;
- содержание в руде: золота -1,65 г/т;

серебра – 1,00 г/т;

- извлечение в сплав Доре: золота -83,0%;

серебра – 74,0%;

2.2. Характеристика исходного сырья

По согласованию с заказчиком, для технологических расчетов процесса обогащения в проекте приняты исходные данные из следующих материалов:

- лабораторно- технологические работы, проведённые в ТОО «Центргеоаналит» на золотосодержащей руде проб 1,2 и 3 месторождения Карабулак;
- отчета о научно-исследовательской работе «Технологические исследования на обогатимость золотосодержащих руд месторождения Карабулак двух типов окисленной и сульфидной» проведенной в ТОО «DeCh», в 2017 г..

Показатели физико-механических свойств исходной руды по данным заказчика приведены в таблице 2.1.

Таблица 2.1 - Показатели физико-механических свойств

Наименова	ние показателей физико-	Окисленная	Сульфидная
меха	нических свойств	руда	руда
Объемная вес,	, T/M ³	2,83	3,03
Плотность, т/м	$\mathbf{\Lambda}^3$	2,98	3,57
Насыпная пло	тность руды, т/м3	1,83	1,85
Свободное вод	цонасыщение, W%	0,45	0,1-0,34
		(0,12-1,06)	
Предел	В сухом состоянии	109,6	120,2
прочности		(59-173,2)	
при сжатии	В водонасыщенном состо-	83,2	108
σ _ж МПа	янии	(45-119)	
Предел	В сухом состоянии	11,6	18,3
прочности			
при растя-	В водонасыщенном состо-	8,0	13,2
жении ор	янии	(5,0-14,0)	
МПа			
Коэффициент	крепости по Протодьяконо-	8,5	9,27
ву			
Коэффициент	абразивности	0,93 -1,33	1,74

Коэффициент разрыхления пород и руд месторождения по определениям колеблется от 1,37 до 1,73; составляет в среднем 1,55.

Индекс работы Бонда для шаровых мельниц – 17,6 кВтч/т.

Химический состав руды на основании данных технологического регламента на разработку проекта «Строительство модульной обогатительной фабрики» приведен в таблице 2.2. Класс опасности руды -4.

Таблица 2.2 - Результаты химического анализа руд

	Показатели	Содержание, %, г/т				
		Окисленная руда	Сульфидная руда			
Au		2,03 г/т	1,64-1,95 г/т			
Ag		менее 1 г/т	менее 1 г/т			
Cu	Copper	0,005	0,0035			
K	Potassium	0,0004	0,00027			
Al	Aliminium	9,69	7,47			
Mg	Magnium	4,91	7,48			
Na	Natrium	4,3	4,39			
Ti	Titanium	0,37	0,2673			
V	Vanadium	0,021	0,0128			
Cr	Chromium	0,006	0,006			
Mn	Manganese	0,0969	0,1015			
Fe	Iron	7,9	4,92			
Co	Cobalt	0,0033	0,002			
Ni	Nickel	0,0045	0,0036			
Zn	Zinc	0,013	0,0105			
Ga	Gallium	0,002	0,0014			
Ge	Germanium	0,00013	0,00005			
Rb	Rubidium	0,0125	0,01			
Sr	Strontium	0,0305	0,0435			
Y	Yttrium	0,001	0,001			
Mo	Molybdenum	0,001	0,0005			
Sb	Antimony	< 0,0010	0,0000091			
Ba	Barium	0,023	0,0231			
W	Tungsten	<0,0001	0,00001			
Pb	Lead	0,002	0,0017			
P	Phosphorus	0,1259	0,1070			
SiO ₂	<u> </u>	62,74	53,61			
Fe C		10,08	6,48			
Fe ₂ C) ₃	22,4	14,4			
Al ₂ C) ₃	34,88	26,89			

По данным регламента в исходной руде, поступающей на переработку среднее содержание:

- 1. Золота -1,65 г/т;
- 2. Серебра 1,00 г/т.

2.3. Технология дробильного отделения

Для проектирования приняты следующие исходные данные:

- доставка товарной руды из карьера автосамосвалами;
- погрузочные работы на складе производятся фронтальным погрузчиком;
- товарной продукцией ДО является дробленая руда -15 + 0 мм; переработка руды 350 тыс. тонн/год;
- влажность 4 % (на основании проекта по опытно-промышленной добыче);
- объемный вес руды -2,83 т/м³;
- насыпная плотность руды -1,83 т/м³
 - крепость по классификации М. М. Протодьяконова до 9,27.

На основании предварительных расчетов принята двухстадийная схема дробления руды. Щековая дробилка первой стадии дробления работает в открытом цикле, Конусная дробилка мелкого дробления работает в замкнутом цикле с предварительным и поверочным грохочением.

Данная технологическая схема включает в себя следующие операции:

- Предварительное грохочение поступающей руды отделение негабаритов (куски крупностью +500 мм) на колосниковой решетке перед приемным бункером ДО перед операцией крупного дробления;
- крупное дробление руды с получением продукта крупностью -97,5 мм;
- предварительная сортировка продукта с выводом из процесса товарной фракции -15 мм перед второй стадией дробления;
- мелкое дробление с получением продукта крупностью -15+0 мм;
- подача руды на бурт склада дробленой руды.

В состав дробильного отделения входят следующие технологические объекты:

- расходный склад руды;
- узел крупного дробления;
- корпус сортировки;
- корпус мелкого дробления;
- склад дробленой руды.

2.4. Технология обогатительного и гидрометаллургического производства

Оборудование обогатительного и гидрометаллургического производства размещено в главном корпусе модульной обогатительной фабрики, включающем следующие отделения:

- отделение измельчения и цианидного выщелачивания;
- реагентное отделение;
- отделение элюирования;
- отделение электролиза;
- золотая комната.

Дробленая руда по системе ленточных конвейеров поступает в отделение измельчения. Схема измельчения одностадиальная, осуществляется в шаровой мельнице MQY3231, работающей в замкнутом цикле с гидроциклоном ГЦ-500. Слив гидроциклона поступает на сороулавливающий грохот и далее на центробежные концентраторы ИТОМАК-30. Концентрат концентраторов направляется на классификацию в гидроциклоны ГЦ -150. Пески ГЦ -150 доизмельчается в шаровой мельнице слив после доизмельчения направляется в цикл интенсивного цианирования, состоящих их 3-х чанов с мешалками. концентраторов проходят стадию контрольного обогащения в короткоконусных гидроциклонах, пески гидроциклонов возвращается на основную операцию, слив направляется совместно с пульпой после интенсивного цианирования в цикл сорбционного выщелачивания. Сорбционное цианирование (сорбционное выщелачивание) осуществляется в чанах-агитаторах методом «CIL» - уголь в пульпе. Данный цикл осуществляется в 6-ти чанах сорбционного выщелачивания (7-ой чан в резерве). Свежий или регенеривованный уголь загружается в последний чан и перемещается при помощи аэролифтов ко 2-му чану (1-ый чан используется чисто для цианирования). Периодически из 2-го чана уголь при помощи вертикального насоса перекачивается на грохот, где он отмывается от пульпы. Отмытый уголь поступает в колонну кислотной промывки. Далее уголь перекачивается в колонну десорбции. Схема десорбции работает в оборотном режиме с использованием чана элюата, электролизера. Нагрев элюата осуществляется при помощи электронагревателя.

Далее катодный осадок проходит циклы кислотной обработки, промывки и обжига в муфельной печи. Плавка осадка осуществляется в плавильной печи, работающей на дизельном топливе.

Хвосты сорбционного выщелачивания поступают в реактор обезвреживания и затем откачивается в хвостохранилище. После осветления вода откачивается насосами плавучей насосной станции в бак оборотной воды.

2.5. Организация технологического контроля

Контроль параметров работы оборудования обеспечивается системой контроля и автоматизации, прилагаемой к каждой единице оборудования в соответствии с паспортными и режимными требованиями.

Система технологического контроля и опробования производственных процессов включает параметры оперативного и аналитического контроля.

Оперативный контроль обеспечивает постоянство следующих параметров технологии.

- 1. Подача руды в мельницу контролируется конвейерными весами, показывающими тоннаж перерабатываемой руды.
- 2. Подача воды на все операции измельчения, классификации, гравитационного обогащения и грохочения контролируется показывающими расходомерами или измерителями потока.
- 3. Подача пульпы на грохот перед гравитацией контролируется измерителями потока и регулируется автоматически с помощью запорных устройств на всасывающей трубе насоса.
- 4. Подача воздуха на интенсивное сорбционное цианирование контролируется показывающими расходомерами в каждый чан-агитатор и на каждый аэролифт и регулируется запорными устройствами. Давление в коллекторе технологического воздуха контролируется манометрами.
- 5. Оперативный контроль содержания твердого в пульпе осуществляется анализаторами плотности пульпы в потоке или отбором и взвешиванием литровой пробы пульпы. Такой контроль выполняется для сливов и песков гидроциклонов, питания интенсивного и сорбционного цианирования, сгущенного продукта хвостов цианирования.
- 6. Оперативный контроль концентрации угля в агитаторах сорбционного цианирования выполняется путем отбора пробы пульпы определенного объема, отмывки угля на сите с отверстиями 0,8 мм и определении объема мокрого угля.
- 7. Оперативный контроль заполнения колонны кислотной промывки насыщенным углем.
- 8. Оперативный контроль электролиза по показаниям амперметра и вольтметра на ваннах.
- 9. Оперативный контроль элюирования по показаниям термометра и манометра.
- 10. Оперативный контроль температуры обжига и плавки катодов.
- 11. Оперативный контроль щелочности пульпы на сливах гидроциклонов, интенсивном и сорбционном цианировании в баке обезвреживания хвостов цианирования с помощью рН-метров.

- 12. Оперативный контроль уровня пульпы в чанах-агитаторах для цианирования, воды и растворов в баковой аппаратуре реагентного отделения, элюирования и в системе водоснабжения.
- 13.Оперативный контроль выхода металла Доре взвешиванием охлажденных слитков.

Система аналитического контроля включает опробование продуктов переработки руды и растворов реагентов, подготовку и физико-химический анализ подготовленных проб. Анализ выполняется в лаборатории или на потоке, где это возможно.

2.6. Организация вспомогательного производства

Технологической частью проекта принято типовое оборудование и рациональные конструкторско-компоновочные решения, обеспечивающие надежное и устойчивое ведение технологического процесса, предусматривается автоматизация контроля и регулирования.

Трудоемкие операции предусматривается выполнять с помощью приспособлений, поставляемых комплектно с оборудованием заводами-изготовителями, использованием существующего и вновь устанавливаемого подъемно-транспортного оборудования. Все оборудование находится в зоне подъемно-транспортных средств.

Организация ремонта и технического обслуживания оборудования предусматривается на основании «Положения о планово-предупредительных ремонтах оборудования и транспортных средств на предприятиях цветной металлургии».

Смазка оборудования индивидуальная, системы смазки приняты на основании данных заводов-изготовителей. Получение и хранение смазочных материалов должно производиться с соблюдением норм и правил.

Доставка оборудования, материалов и запчастей производится автотранспортом, хранение – на складских и ремонтных площадках ТОО «Adelya Gold».

3. ГЕНЕРАЛЬНЫЙ ПЛАН И ТРАНСПОРТ

При разработке генерального плана в качестве исходных данных использованы следующие материалы:

- исполнительная съемка масштаба 1:1000, выполненная в июле 2017 г.;
- заключение об инженерно-геологических условиях, выполненным ТОО «ГеоТерр», в сентябре 2017 г.;

За основу архитектурно-планировочного решения генплана территории ДО принято секционное размещение зданий и сооружений. Рудный склад руды и разгрузочная площадка с приемным бункером размещены на абсолютной отметке 275.00 м. Склад дробленой руды запроектирован на площадке с абсолютными отметками 274.00-275,00 м.

Общая площадь земель, необходимых для строительства проектируемых объектов модульной обогатительной фабрики составляет <u>10га.</u>

За основу архитектурно-планировочного решения генплана территории обогатительной фабрики принято секционное размещение зданий и сооружений. Конструкция дорожных одежд принята усовершенствованно-облегченного типа типовым решениям серии 3.503.9-72 «Дорожные одежды автомобильных дорог промышленных предприятий». Автоподъезды к приемному бункеру и площадке склада дробленой руды предусматривается однополосным, шириной проезжей части 6.5м, земляного полотна 13.0м. На территории площадок дробильного отделения и объектов обогатительной фабрики предусматриваются внутриплощадочные проезды, шириной проезжей части 6.0м, земляного полотна 9.0м, разворотные площадки размером 12х12м.

Продольные и поперечные уклоны по автопроездам и площадкам приняты по нормам СН РК 3.01-01-2011 "Генеральные планы промышленных предприятий". Поперечный уклон проезжей части внутриплощадочных автомобильных дорог принят двухскатным. Конструктивный поперечный профиль подъездной автомобильной дороги и внутриплощадочных проездов см. чертеж ЛБС0918 - ГП, лист 3. Поверхностный водоотвод с площадок и проездов решен открытым способом со сбором в дождеприемные колодцы.

Для защиты площадок дробильного отделения и объектов обогатительной фабрики от ливневого и снегового стоков устраиваются водоотводные канавы.

Внешние инженерные сети представленные в проекте:

- Водопровод хозпитьевого от скважинного забора (B1);
- Водопровод технической воды от карьера (В3);
- Водопровод оборотного водоснабжения (В2);
- Хозбытовая канализация (К);
- Производственная канализация (КЗ);

- Пульпопровод (Π) ;
- Высоковольтная линия электропередач 6,0/0,4 кВ;
- Кабельная линия электропередач Ру-0,4кВ

Учитывая класс опасности по руде - IV, в целях охраны земель и подземных вод от загрязнения под площадки расходного склада руды и склад дробленой руды устраивается гидроизолирующее основание.

На территории проектируемых объектов устанавливается размер санитарно-защитной зоны:

- от дробильного отделения 300 м;
- от площадок для складирования руды 1000 м;
- от горно-обогатительного производства -1000 м.

Размер санитарно-защитных зон находится в границах санитарно-защитной зоны всего модульного обогатительного комплекса.

Для создания нормальных санитарно-гигиенических условий на МОФ предусматривается:

- устройство твердого покрытия проездов и площадок (щебень с обработкой верхнего слоя вязким битумом по способу пропитки);
- периодический полив водой покрытий проезжей части в теплый период года;
- уборка снега и россыпь противогололедных материалов в холодный период.

На свободной от застройки территории проектируемых промплощадок предусматривается посев трав, посадка деревьев и кустарников местных пород.

Все мероприятия по обслуживанию территорий промплощадок, внутриплощадочных автомобильных дорог выполняются оборудованием и механизмами TOO «Adelya Gold».

Для отдыха на территории фабрики запроектирована площадки для отдыха и гимнастических упражнении.

См. подробнее Том 3.

4. АРХИТЕКТУРНЫЕ РЕШЕНИЯ

Объемно-планировочные и конструктивные решения проекта приняты с учетом технологических разработок, санитарно-гигиенических, функционально-технологических и технико-экономических условий.

В состав модульной обогатительной фабрики (объекты 1-й очереди) входят следующие проектируемые объекты:

- дробильное отделение;
- объекты обогатительной фабрики;
- административно-бытовой корпус;
- лаборатория;
- склад реагентов со складом СДЯВ.

На основании имеющихся данных об инженерно-геологических условиях площадки строительства для зданий и сооружений приняты свайные фундаменты с опиранием на несущие грунты, и в некоторых случаях, на грунтовые подушки из местного грунта.

<u>Главный корпус.</u> Проектируемое здание является одноэтажным, с двумя пролетам по 9м. Длина здания по осям 1-17 составляет 95,5м. Ширина по осям Б-Г составляет 18м. Высота от уровня пола по коньку в осях Б-Д 17,11м. Главный корпус имеет пристройки в осях А-Б, Г-Д и 16-17.

Ширина пролета в осях А-Б и Г-Д составляет 9,0м. Высота пристроек в самых высоких точках от уровня пола составляет 8м.

В осях 16-17 расположена золотая комната. Ширина по осям 16-17 составляет 6,0 м. Длина по осям 6,0 м. Высота золотой комнаты 6,0 м.

Общая площадь главного корпуса обогатительной фабрики 3106 м^2 . Строительный объем здания — 38221 м^3 .

ОФ оборудовано двумя консольными мостовыми на 5 тонн и одним подвесным мостовым краном на 3 тонны. Подкрановые балки опираются на консоли колонн. Пути подвесного транспорта выполнена из двутавров.

Стены выполнены из панелей типа «Сэндвич» толщиной 125 мм (ГОСТ 32603-2012), покрытие крыши выполнены из панелей типа «Сэндвич» толщиной 125 мм (ГОСТ 32603-2012) и из профилированного стального листа (ГОСТ 24045-2010). В качестве утеплителя в сэндвич панелях используется минеральная вата плотностью γ =60-80кг/м³.

Здание дробильного отделения одноэтажное, однопролетное. Длина здания по осям 1-6 составляет 30,0 м. Ширина по осям А-В составляет 15,0 м. Высота от уровня пола — 12,815 м.

Здание дробильного отделения в конструктивном отношении каркасное, выполнено в металлическом каркасе по рамной схеме с жестким защемлением

колонн с фундаментами. Для восприятия горизонтальных нагрузок по колоннам в продольном направлении установлены вертикальные связи.

Стены выполнены из панелей типа «Сэндвич» толщиной 125 мм (ГОСТ 32603-2012), покрытие крыши выполнены из панелей типа «Сэндвич» толщиной 125 мм (ГОСТ 32603-2012) и из профилированного стального листа (ГОСТ 24045-2010). В качестве утеплителя в сэндвич панелях используется минеральная вата плотностью γ =60-80кг/м³.

Склад реагентов со складом СДЯВ. Конструктивная часть складов флюсов и активированного угля, каустической соды и гипохлорита натрия представляет собой модульные здания с размерами в плане 12,193*9,752 м. Основой зданий являются грузовые 40-футовые высокие контейнеры. Склад хранения для хранения цианида и соляной кислоты является сборным из металлических конструкции. Здание одноэтажное, однопролетное. Длина здания по осям 1-4 составляет 18,0 м. Ширина по осям А-В составляет 12,0м. Высота от уровня пола 5,05 м.

Все здания и сооружения имеют необходимое количество эвакуационных выходов.

Необходимый уровень естественного освещения рабочих мест обеспечивается достаточным количеством окон.

Функциональная сигнально - предупреждающая и опознавательная окраска элементов строительных конструкций, оборудования и коммуникаций, а также знаков безопасности на них выполняются с учетом «Указаний по проектированию цветовой отделки интерьеров производственных зданий промышленных предприятий» СН 181-70 и ГОСТ 12.4.026-76 «Цвета сигнальные и знаки безопасности». Характеристика основных объектов с указанием их степени огнестойкости, пожарной опасности и принятых конструктивных решений приведена в таблице 4.1.1 «Строительная характеристика основных зданий и сооружений».

См. подробнее Том 3.

5. ИНЖЕНЕРНОЕ ОБОРУДОВАНИЕ, СЕТИ И СИСТЕМЫ

Инженерные сети и коммуникации в проекте представлены внутриплощадочными и внешними сетями.

Внешние инженерные сети:

- Производственно-противопожарное (В3);
- водопровод оборотной воды (В2);
- хозяйственно-бытовое водоснабжение (В1);
- производственная напорная канализация (КЗН)
- пульпопровод (П).

Прокладка внешних сетей предусматривается на свободных полосах вдоль автомобильных проездов параллельно зданиям и сооружениям с соблюдением нормативных расстояний по СН РК 3.01-01-2011 «Генеральные планы промышленных предприятий».

Проектом в зданиях обогатительной фабрики, бытового корпуса, склада реагентов, лаборатории предусмотрены следующие системы внутреннего водоснабжения и водоотведения:

- хозяйственно-бытового водоснабжения (В1);
- производственно-противопожарного водопровода (В3);
- водопровода оборотной воды (В2)
- хозяйственно-бытовой канализации (К1);
- производственной напорной канализации (КЗН).
- производственная канализация (К3).

Защитное покрытие стальных трубопроводов, прокладываемых открыто, предусмотрено масляной окраской за два раза. Стальные трубы, прокладываемые в земле, покрываются антикоррозийной изоляцией типа «весьма усиленная».

Проектом в отделении приготовления реагентов обогатительной фабрики и в здании склада реагентов предусматривается защита трубопроводов от агрессивного воздействия реагентов.

См. подробнее Том 3.

6. ПРОЕКТ ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА (ПОС)

До начала строительства на условиях тендера, определяются подрядные организации. Строительные организации должны располагать комплексом подсобных предприятий и служб, штатом строителей и ИТР, необходимыми строительными машинами и механизмами. У исполнителя на все виды работ должны быть технологические карты.

Организационно-технологические схемы по строительству зданий и сооружений:

- установка временных бытовых помещений и подключение к временным сетям;
 - завоз необходимых материалов и их складирование;
 - завоз строительной и землеройной техники;
 - подготовка территории;
 - выполнение геодезической разбивки;
 - земляные работы: разработка котлованов;
 - устройство фундаментов;
 - обмазочная гидроизоляция фундаментов;
- обратная засыпка грунта с послойным уплотнением, устройство насыпной площадки под здание.

После выполнения всех работ нулевого цикла приступают к монтажу оборудования и выполнению надземной части.

Основные решения по технологии возведения надземной части:

- возведение металлического каркаса и ограждающих конструкций, монтаж стеновых панелей типа «сэндвич»;
 - устройство кровли (панели покрытия типа «сэндвич»);
 - монтаж оборудования;
 - отделочные работы.

Организационно-технологические схемы по строительству склада дробленой руды ёмкостью 4500 тонн и склада рудного склада ёмкостью 10 000 тонн:

- подготовка территории;
- выполнение геодезической разбивки;
- земляные работы: разработка котлованов;
- засыпка щебнем;
- гидроизоляция;
- устройство фундаментов;
- обмазочная гидроизоляция фундаментов;
- возведение конструкций складов;
- обратная засыпка грунта с послойным уплотнением.

После завершения всех строительно-монтажных работ произвести благоустройство территории.

Организационно-технологические схемы по строительству хвостохранилища:

- завоз необходимых материалов и их складирование;
- завоз строительной и землеройной техники;
- подготовка территории;
- выполнение геодезической разбивки;
- земляные работы;
- устройство противофильтрационного основания;

Организационно-технологические схемы по строительству инженерных сетей:

- выполнение разбивки трассы;
- земляные работы: разработка котлована;
- укладка трубопроводов;
- изоляция трубопроводов;
- утепление, засыпка с уплотнением;
- устройство водопроводных и канализационных колодцев;

Организационно-технологические схемы на строительство автодороги:

- выполнение геодезической разбивки трассы;
- возведение земляного полотна, уплотнение, планировка верха и откосов земляного полотна;
 - устройство дорожной одежды;
 - устройство и укрепление присыпных обочин;
 - обустройство установка сигнальных столбиков, дорожных знаков.

Расчет продолжительности строительства выполнен на основании СП РК 1.03-101-2013, по нормативным показателям, применительно Таблица Г.1.7.1 - Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений в цветной металлургии.

В соответствии с п. 4.5 Общих положений используется метод линейной интерполяции учитывая имеющиеся в нормах мощности 0,3 млн.т/год и 0.6 млн.т/год, сырой руды в год с нормативной продолжительностью возведения соответственно 18 и 20 мес. соответственно.

Определение продолжительности строительства методом экстраполяции, рекомендуется выполнять по формуле:

$$\frac{T_{_{3}}}{T_{_{MINN}}} = \left(\frac{S_{_{3}}}{S_{_{MINN}(MARC)}}\right)^{\alpha} \ \ \text{или} \ \ T_{_{3}} = T_{_{MINN}(MARC)}\sqrt[3]{\frac{S_{_{3}}}{S_{_{MINN}(MARC)}}} \ ,$$

где Тэкст - продолжительность строительства (нормативная), полученная экстраполяцией;

Тмин/макс - нормативная продолжительность строительства - минимальная/максимальная (с учетом экстраполяции в меньшую или большую сторону)

Ѕэкст - нормообразующий показатель, получаемый экстраполяцией;

Sмин/макс - нормообразующий показатель, минимальный/ максимальный (с учетом экстраполяции в меньшую или большую сторону);

 α - коэффициент, отражающий процент изменения нормативной продолжительности строительства при варьировании нормообразующего показателя на 1% ($\alpha=0,33$).

Сроки возведения на единицу прироста мощности составляют (20- 18)/(0,6-0,3) = 0,06 мес. Прирост мощности равен 0,35-0,3 = 0,05 тыс. тонн.

Тогда, продолжительность строительства T полученная методом интерполяции составит: $T = 0.06 \times 0.3 + 18 = 18.1 \approx 18$ мес.

Общая продолжительность строительства составляет 18 месяца, в том числе подготовительный период 4 месяца.

Сокращение сроков строительства достигается за счет максимального совмещения строительно-монтажных работ.

Распределение объемов капитальных вложений и строительномонтажных работ по годам по проекту ТОО «Adelya Gold» Модульная обогатительная фабрика по переработке руды месторождения Карабулак, в соответствии с показателями задела и в зависимости от сроков начала строительства приведены в таблице 6.1.

Таблица 6.1. Показатели задела строительства МОФ.

Продолжи- тельность	Начало строи-	Показатели строительства К по кварталам, % сметной стоимости.				сметной	
строитель-	тельства						
ства (мес.)	(квартал)	I	II	III	IV	V	VI
18	2020 I квартал						
		<u>15</u>	<u>18</u>	<u>22</u>	<u>22</u>	<u>15</u>	<u>8</u>

Сокращение сроков строительства достигается за счет максимального совмещения строительно-монтажных работ.

См. подробнее Том 8.

7. ХВОСТОХРАНИЛИЩЕ

Отвальные хвосты — это пульпа, состав твердой фазы которой сопоставим с рудой, а жидкая фаза, помимо растворенных металлов, содержит остаточные концентрации цианидов и цианатов. В хвостохранилище хвосты поступают после обезвреживания гипохлоритом кальция.

Выход хвостов (макс) составляет 45 т/ч. Объем пульпы при этом составит $86,1\text{м}^3$ /ч. Содержание твердой фазы в хвостах 39%. Годовое поступление пульпы 669,2 тыс. м^3 , в том числе твердой фазы составляет 123,6 тыс. м^3 , жидкой фазы 545,6 тыс. м^3 .

Осветленные воды, задействованные в оборотном водоснабжении, составляют 60,48 м3/час 493,5 тыс. м³год.

Объем хвостохранилища составляет 764 500 м 3 . Общий срок эксплуатации секции 3,04 года. Плотность частиц твердой фазы хвостов ρ =2,87 т/м, плотность скелета сухих хвостов 1,4 т/м 3

Отвальные хвосты обогатительной фабрики - это пульпа, состав твердой фазы сопоставим с исходной рудой.

В состав объектов хвостового хозяйства входят:

- хвостохранилище;
- магистральные и распределительные пульповоды
- насосная станция осветленной воды;
- трубопроводы осветленной воды

Отвальные хвосты в виде пульпы с обогатительной фабрики по магистральным и распределительным пульповодам перекачиваются в хвостохранилище.

Пульпа выпускается в хвостохранилище, где происходит осаждение твердой фазы и осветление жидкой фазы. Твердая фаза в виде осадка складируется в хвостохранилище. Жидкая фаза образует прудок над осажденной твердой фазой хвостов. Часть осветленной жидкой фазы (до 70 %) из прудка хвостохранилища насосной станцией осветленной воды возвращается на обогатительную фабрику для повторного использования в технологическом процессе.

Подача и забор осветленной воды из хвостохранилища осуществляется плавучей насосной станцией.

Площадка под хвостохранилище располагается юго-восточнее обогатительной фабрики на расстоянии 1450 м. Выбранная площадка представляет в плане форму пятиугольника, длина по внутренней бровке составляет около 1100 м. Площадка под хвостохранилище на северо-западе граничит с межплощадочной автомобильной дорогой, которая разделяет хвостохранилище и обогатительную фабрику. С северной, южной и восточной сторон хвостохранилища какая-либо застройка отсутствует.

Хвостохранилище по условиям складирования хвостов относятся к наливным. По рельефу земельного участка, хвостохранилище относится к равнинно-косогорному типу.

По периметру оградительных дамб хвостохранилища предусмотрено ограждение.

См. подробнее Том 4.

8.УПРАВЛЕНИЕ ПРОИЗВОДСТВОМ И ПРЕДПРИЯТИЕМ, ОРГАНИЗАЦИЯ И УСЛОВИЯ ТРУДА РАБОТНИКОВ

Функциональные подразделения предприятия устанавливаются для обеспечения четкого управления основными технологическими процессами основного и вспомогательного производства и организации условий труда работников.

Функции подразделений приведены в таблице 7.1.

Таблица 7.1 – Функции подразделений предприятия

Наименование подразделе-	Функции подразделений		
ний			
Управление	Управление общими вопросами, персоналом,		
	снабжением, транспортом, безопасностью, со-		
	циальной защитой трудящихся		
Техническое подразделе-	Решение взаимосвязи подразделений, анализ		
ние	производственных проблем, обучение персона-		
	ла, обеспечение безопасных условий труда, эко-		
	логический мониторинг		
Вспомогательное подраз-	Управление производством электрических, ме-		
деление	ханических и строительных работ по эксплуа-		
	тации, капитальному ремонту и строительству,		
	обеспечивающее бесперебойную работу пред-		
	приятия		
Подразделение социальной	Управление объектами бытового назначения		
защиты			

9. ИНЖЕНЕРНО-ТЕХНИЧЕСКИЕ МЕРОПРИЯТИЯ ПО ГРАЖДАН-СКОЙ ОБОРОНЕ И ЛИКВИДАЦИИ ЧС

Системы оповещения о ЧС.

Система оповещения работников обогатительной фабрики и дробильно-сортировочного комплекса о возможной опасности возникновения поражающих факторов включает в себя установку телефонной и громкоговорящей связи, которая сопряжена с местной и территориальной системами ГО. Кроме того, оповещение о возникновении ЧС предусмотрено включением сигнальной сирены, которая размещается на опоре освещения территории

фабрики.

Эвакуация людей с территории объекта.

Архитектурно-планировочные решения территории проектируемых объектов обеспечивают беспрепятственную эвакуацию персонала при возникновении угрозы их жизни и здоровью.

Инженерно-технические мероприятия по всему горно-обогатительному комплексу разрабатываются генеральным проектировщиком объекта.

10. ПРОТИВОПОЖАРНАЯ ЗАЩИТА

Все здания и сооружения запроектированы с учетом противопожарных требований к конструктивным и планировочным решениям, оборудованы техническими средствами пожаротушения в соответствии с противопожарным требованием (СНиП РК 2.02-05-2009 «Пожарная безопасность зданий и сооружений», СНиП 2.01.02-85. «Противопожарные нормы»); и Законом РК «О промышленной безопасности на опасных производственных объектах» № 314 от 13.01.2014 г

11. ОХРАНА ТРУДА

В настоящем проекте приняты решения, которые в сочетании с санитарно-техническими мероприятиями обеспечивают нормальные условия труда на проектируемых объектах.

Проектные решения разработаны в соответствии со «Строительными нормами и правилами», «Санитарными нормами проектирования промышленных предприятий», «Правилами безопасности труда в машиностроении», Закон РК «О промышленной безопасности на опасных производственных объектах» № 314 от 13.01.2014 г., и «Инструкцией о составе и порядке разработки мероприятий по охране труда в проектах предприятий цветной металлургии» (ВСН 08-83).

Для обеспечения безопасности труда на производственных участках предусмотрены следующие мероприятия:

- рабочие места обеспечены достаточной площадью для размещения вспомогательного оборудования и приспособлений;
- проходы и проезды приняты шириной, обеспечивающей безопасность движения;
- участки снабжены необходимыми подъемно-транспортными средствами, оснащены системами аспирации и вентиляции;
- рабочие места оснащены соответствующим необходимым оборудованием и приспособлениями;
- предусмотрено надежное заземление оборудование;
- предусмотрено освещение рабочих мест в соответствии с нормами.

Вопросы безопасных условий труда в электротехнических помещениях при обслуживании и ремонте электрооборудования решены в соответствии с «Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами устройства электроустановок» и «Едиными правилами безопасности при разработке месторождений полезных ископаемых открытым

способом», «Требования промышленной безопасности при дроблении, сортировке, обогащении полезных ископаемых и окусковании руд и концентратов. Утверждены Министром ЧС РК в октябре 2008 г.»

12.ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

Мероприятия по охране окружающей среды, предусмотренные в проекте, позволяяют обеспечить минимальное отрицательное воздействие на окружающую среду. Проведение работ на месторождении Карабулак существенно не нарушит существующего экологического равновесия. Воздействие производственной и хозяйственной деятельности на окружающую среду в целом оценивается как допустимое.

Подробнее – см. том 6 проекта (ОВОС).

13. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

Технико-экономические показатели представлены в таблице 12.1

Таблица 12.1 Технико-экономические показатели

Nº	Науманарамиа наумалата да	En way	Zwawawya
п/п	Наименование показателя	Ед. изм.	Значения
1	Годовая проектная производительность ЗИФ	тыс.тонн	350,0
3	Принятое содержание золота в руде	г/т	1,65
4	Принятое содержание серебра в руде	г/т	менее 1,0
5	Количество золота в руде	КГ	577,5
6	Количество серебра в руде	КГ	350
7	Извлечение золота в сплав Доре	%	83,0
8	Извлечение серебра в сплав Доре	%	74,0
9	Годовая плановая производительность ЗИФ по выпуску золота	кг/год	479,325
10	Режим работы ЗИФ	-	круглогодич- ный
12	Годовой фонд рабочего времени ДСК	час	5584
13	Годовой фонд рабочего времени ЗИФ	час	8322
14	Списочная численность персонала	чел	147
	в том числе: - основные		
	производственные рабочие	чел	118
	- вспомогательный персонал	чел	13
	- ИТР	чел	16
15	Общая площадь земельного участка в условных границах проектирования	га	104,9
16	Коэффициент застройки	-	0,61
17	Годовой расход электроэнергии ДСК	тыс.кВт	1112,47
18	Годовой расход электроэнергии ЗИФ	тыс. кВт	7758,732
19	Годовой расход общей воды	тыс.м3/год	946,343
	Годовой расход технической воды	тыс. м3/год	337,8732
20	Годовой расход тепла	ГДж	69305,21
	Годовой выпуск продукции на работа-		
21	ющего в натуральном выражении		
	- золото, сплав Доре	кг/чел	3,26

14. ВЫВОДЫ

Строительство и эксплуатация объекта модульной обогатительной фабрики по переработке руды месторождения Карабулак является необходимым, обоснованным, своевременным и перспективным, поскольку позволит создать новые рабочие места, снять социальную напряженность в обществе, пополнить золотой запас государства, что будет способствовать укреплению национальной безопасности и ускорению социально-экономического развития.