Республика Казахстан

РП «Проектирование, строительство и доверительное управление канализационных очистных сооружений в городе Кунаев Алматинской области»

Пояснительная записка Техническая часть

Республика Казахстан

РП «Проектирование, строительство и доверительное управление канализационных очистных сооружений в городе Кунаев Алматинской области»

Пояснительная записка Техническая часть

3.2. Количественные показатели сточных вод.

Расчет производительности КОС в РП выполнен согласно п. 5.5.5 и п.4.2 СН РК 4.01-03-2011, а также Приложения 3 к Методике по подготовке к строительству, реконструкции, модернизации канализационных очистных сооружений в пределах населенных пунктов Республики, утв. КДС от 16 сентября 2022 года № 180-НК.

Удельная норма на одного жителя определяется на основании фактического водоотведения за последние 5 лет (л/сут), подтвержденные показаниями приборов учета и оформленные надлежащим образом заказчиком и эксплуатирующей организацией.

Фактическое водоотведение КОС (для реконструкции, модернизации, расширения или технического перевооружения)

Годы	Фактическая числен- ность населения, тыс. чел	Фактический средний объем поступления хозяй- ственно-бытовых и производственных стоков м3/год м3/сут		
1	2	м3/10д	M3/Cy1	
1	<u> </u>	3	4	
2019	60,9	3 189 263,71	8 737,7	
2020	60,6	3 175 296,73	8 699,4	
2021	60,9	3 590 117,31	9 835,9	
2022	70,5	3 707 803,97	10 158,4	
2023	71,3	3 840 769,2	10 522,7	

Средняя численность населения за 5 лет составляет 64 840 человек.

Среднесуточный объем сточных вод за 5 лет составляет 9 590,8 м³/сут.

Удельное водоотведение на 1 жителя (при среднем числе жителей за 5 лет $N_{\text{сред}}$ и среднесуточном объеме сточных вод за 5 лет $Q_{\phi \text{акт}}^{\text{сред}} = 9~590,8~\text{м}^3/\text{сут}$):

$$q_{\text{ж}} = Q_{\varphi \text{акт}}^{\text{ сред}} / \, N_{\text{сред}} \, *1000 = 9 \,\, 590,\! 8 \, / \,\, 64 \,\, 840 \,\, *1000 = 148 \,\, \text{п/сут*чел.}$$

Согласно Генерального плана города Қонаев, численность населения к 2030 г. составит – 115400 человек, к 2050 г. – 200000 человек.

На 10-ти летний период расчетный **среднесуточный расход стоков** $Q_{\text{сут.ср}}$ определяем по формуле:

$$Q_{\text{cyr.cp}} = \Sigma \text{ qw x Nw} / 1000 = 132320 * 148/1000 + 5300 = 24883 \text{ m}^3/\text{cyr.}$$

где: qж - удельное водоотведение, л/сут на человека;

Nж - расчетное число жителей, исходя из данных Генерального плана к 2034 г. – (200000– 115400)*4/20 + 115400 = 132320 человек*

5300 – дополнительный объем стоков промышленных объектов, после подключения к централизованной канализации, м³/сут.

Максимальный суточный расход на КОС согласно таблице 5.1.2 СН РК 4.01-02-2009 составит:

$$Q_{\text{ cyt. Makcm.}} = Q_{\text{cyt.cp}} * K_{\text{cyt}} = 24883 \text{ x } 1,2 = 29860 \text{ m}^3/\text{cyt.}$$

Производительность КОС принята: среднесуточная – 24 900 м3/сут; максимальная – 30 000 м3/сут.

*-с учетом методики АО «КазЦентр ЖКХ» расчет численности населения производится на 10-летний период, т.е. до 2034 года. В этом случае численность населения к 2034 году принимается интерполяцией между численностью до 2030 и 2050 годами.

3.3. Качественные показатели сточных вод.

Фактические показатели качественного состава, по данным полученным в результате лабораторных исследований, приведены в Таблице 3.3.

Таблица 3.3

		таолица 5.5					
	Условные обо-	Расчетные зна-					
Наименование показателей	значения	чения					
Расчётные расход	І Ы						
• среднесуточный, м ³ /сут	$Q_{\mathrm{cp.cyt}}$	24900					
• максимальный коэффициент часовой нерав-	$K_{\text{gen.max}}$	1,55					
номерности							
 средне-часовой, м³/час (л/с) 	$q_{cp.^{_{\mathrm{T}}}}$	1 037,5 (288,2)					
• максимальный часовой, $M^3/\text{час}(\pi/c)$	$q_{\text{max.}^{ ext{ iny Y}}}$	1 611,2 (447,6)					
Расчётные концентрации исход	ных сточных вод						
• Взвешенные вещества, мг/л	Cen	160					
 БПК_{полн}, мгО₂/л 	Len	60,96					
• Азот аммонийный, мг/л	C _{en} NH4	22,5					
• Фосфаты по фосфору, мг/л	-	0,34					
• Хлориды, мг/л	-	-					
• ПАВ, мг/л	-	0,89					
Очищенные сточные	Очищенные сточные воды						
• Взвешенные вещества, мг/л	C_{ex}	5					
• БПК _{полн} , мгО ₂ /л	L_{ex}	8,2					
• Азот аммонийный, мг/л	C _{ex} NH4	20					
• Фосфаты по фосфору, мг/л	-	0,21					
• Хлориды, мг/л	-	-					
• ПАВ, мг/л	-	0,5					
• Азот нитритов, мг/л	-	1,0					
• Азот нитратов, мг/л	-	1,0					

^{*}фактически показатели приведены на основании предоставленных анализов за последние 5 лет, выполненных испытательной лабораторией контроля качества сточных вод. Представленные анализы сточных вод хранятся в базе архива проектной организации.

Фактические показатели по основным загрязнениям не превышают расчетные показатели по таблице 9.1 СН РК 4.01-03-2011 для технологического расчета приняты фактические, а не расчетные показатели.

В РП приняты фактические показатели качественного состава.

Ожидаемые эффекты очистки после строительства КОС по расчетным концентрациям

Таблица 3.4

	Исходная концентрация, мг/л	Механическая очистка		Биологическая очистка		Доочистка		Общая
Показатель		Эффек- тивность, %	Концентрация после очистки, мг/л	Эффек- тивность, %	Концентрация после очистки, мг/л	Эффек- тивность, %	Концентрация после очистки, мг/л	эффек- тивность, %
Взвешенные вещества	160,00	10	144	89,6	15	67	5	96,9
БПКполн	60,96	0	61,96	80,3	12,0	32	8	86,5
Азот общий	28,13	0	28,13	21,8	22,0	-	22,0	21,8
Азот аммонийный	22,50	0	22,5	11,1	20,0	0	20,0	11,1
Азот нитратов	0,01	0	0	-	1,0	-	1,0	-
Азот нитритов	0,10	0	0	-	1,0	-	1,0	-
Фосфор общий	0,78	0	0,78	38,5	0,48	0	0,48	38,5
Фосфор фосфатов Р-РО ₄	0,34	0	0,34	38,5	0,21	0	0,21	38,5

**для аэротенка концентрация соединений азота рассчитывается по методике:

Общая концентрация соединений азота (аммонийного, нитритного, нитратного) поступающего на очистку составляет: 22,5 мг/л (аммонийного) + 0,1 мг/л (нитритного) + 0,01 мг/л (нитратного) = 28,13 мг/л. Поскольку очищенные сточные воды планируется использовать на полив согласно нормам СТ РК ISO 16075-2-2017 категории А (очень высокого качества), ПДК по азоту общему составляет 25 мг/л.

Таким образом, после процесса нитри-денитрификации снижение концентрации азота с 28,13 до 22,0 мг/л, при этом за счет нитрификации происходит снижение аммонийного азота с 22,5 до 20,0 мг/л, увеличение концентрации нитритного азота с 0,01 д 1,0 мг/л, нитратного азота с 0,1 до 1,0 мг/л.

Конечная продукция - очищенные и обеззараженные сточные воды сбрасываются в пруды-накопители с дальнейшим использованием на полив.

Раздел 4. Обеспечение предприятия ресурсами.

Для обеспечения работоспособности системы очистные сооружения водоотведения, должны быть обеспечены сырьем, энергоресурсами, материалами, трудовыми и материальными ресурсами.

Обеспечение предприятия сырьем. Сырьем является сточная вода, образующая в результате жизнедеятельности населения города Конаев и предприятий местной промышленности.

Обеспечение предприятия энергоресурсами. Поставщиков электроэнергии на КОС являются электрические сети города Конаев. Электроснабжение предприятия предусмотрено мощностью 1700 кВт. По требованиям ПУЭ электроприемники I категорий запитываются от двух независимых источников питания.

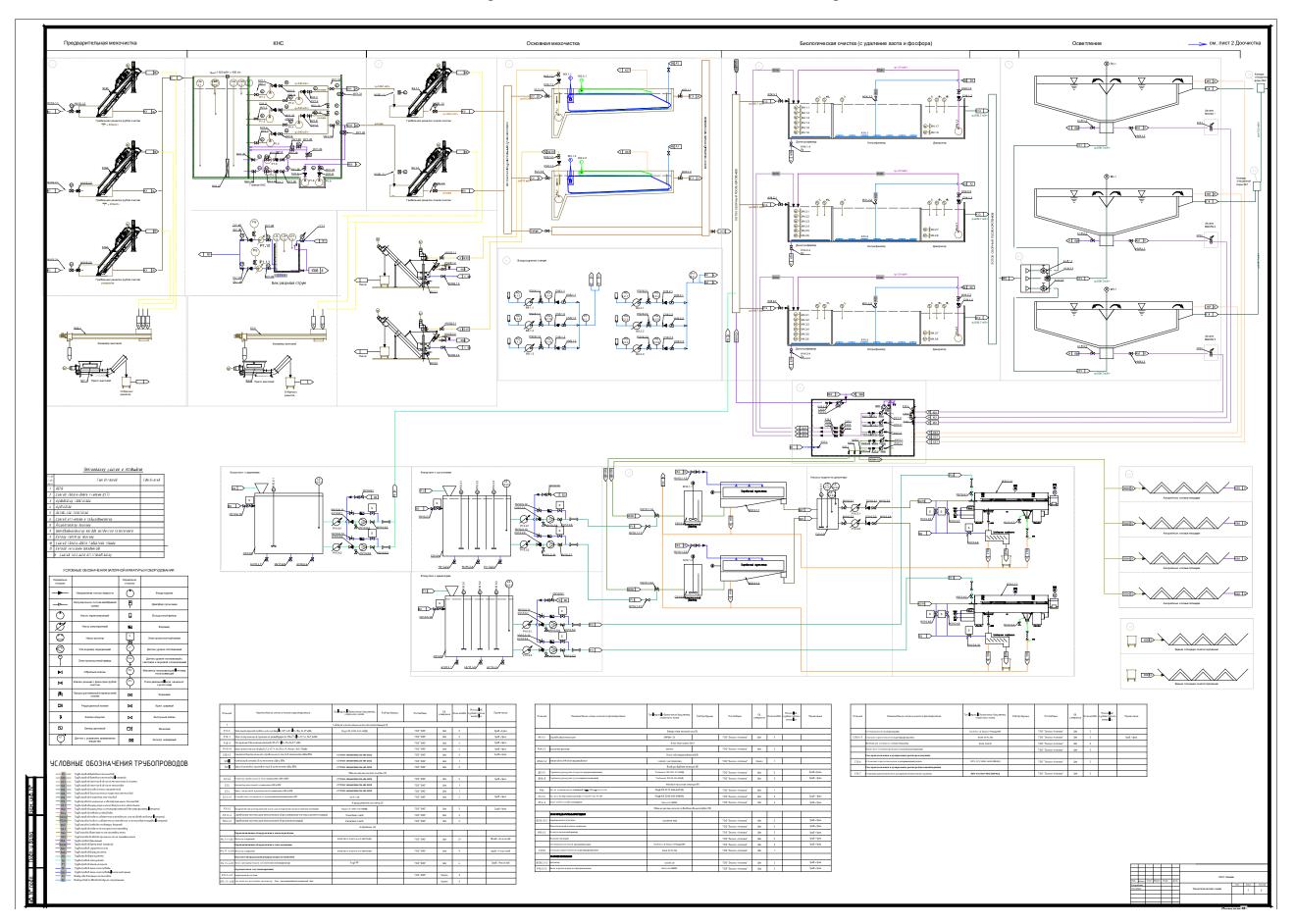
Годовой расход электроэнергии 14,89 млн. кВт/час в год.

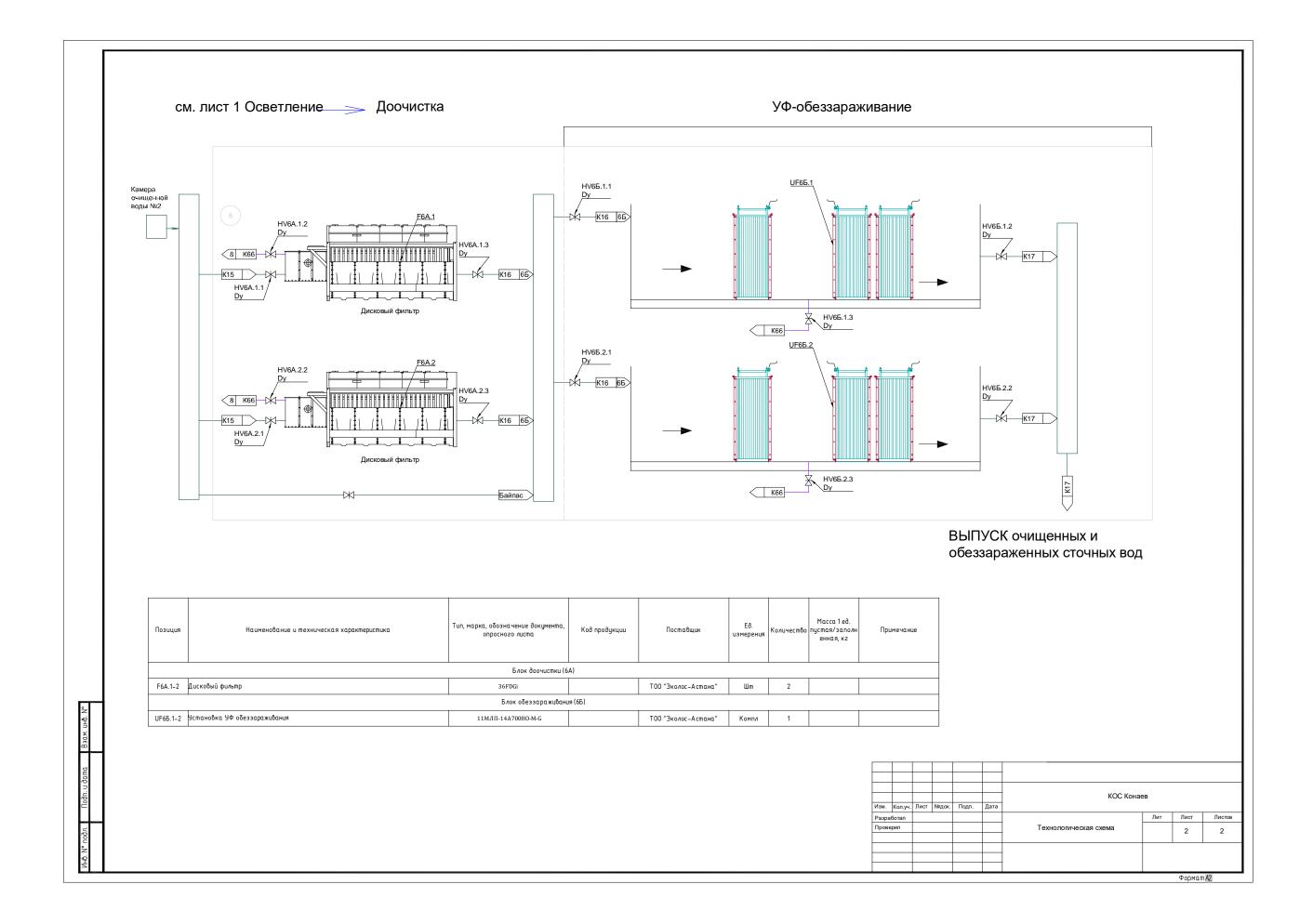
Обеспечение предприятия трудовыми ресурсами. В связи с тем, что действующим, принималось во внимание штатное расписание водохозяйственного учреждения, изменения в штатном расписании не предусмотрено. Количество персонала для обслуживания технологического процесса 45 чел.

Раздел 6. Основные технико-технологические решения.

Разработкой РП, в соответствии с заданием на проектирование, рассматривается выбор современных технологий очистки по канализационным очистным сооружениям.

Раздел 6.1 Технологии очистки сточных вод на сооружениях КОС в г. Конаев.


Технологическая схема очистки сточных вод, рассматриваемая в РП, предусматривает стадии механической, биологической очистки, обеззараживание, доочистку, обработку осадка, его утилизацию.


В РП для очистки сточных вод предусмотрены:

- механическая очистка: ступенчатые решетки, которые обеспечивают улавливания волокнистых и текстильных отбросов; горизонтальная аэрируемая песколовка с скребковой системой для сбора донного осадка и сбора плавающих веществ, эффект задержания песка в песколовках 0,03 л/ (чел. сут);
- биологическая очистка: биологические реакторы (аэротенки с зонами нитриденитрификации) и с доочисткой на сетчатых дисковых микрофильтрах. Технология биологической очистки сточной воды чередованием аноксидной/аэробной зон.

В РП для обработки осадка сточных вод, образующихся в процессе очистки сточных вод, ведется с применением сгустителей и оборудования обезвоживания, доводящие влажность осадка до 70-80%.

Рис. 6.1 Принципиальная схема очистки сточных вод и обработки осадка

6.2. Проектные решения

В проекте предусмотрено строительство зданий и сооружений на проектируемой площадке КОС производительность 30 000 м³/сут в следующем составе:

На территории строительства КОС проектом предусмотрены здания и сооружения:

- 1. ГКНС (поз.1 на $\Gamma\Pi$) новое строительство.
- 2. Здание механической очистки (поз.2 на ГП) новое строительство.
- 3. Аэрируемая песколовка (поз.3 на ГП) новое строительство.
- 4. Аэротенк (поз.4 на ГП) новое строительство.
- 5. Вторичный отстойник (поз.5 на ГП) новое строительство.
- 5.1 Распределительная камера вторичных отстойников (поз. 5.1 на $\Gamma\Pi$) *новое строи- тельство*.
- 5.2 Камера очищенной воды №1 (поз.5.2 на ГП) новое строительство
- 5.3 Камера очищенной воды №2 (поз.5.3 на ГП) новое строительство
 - 6. Здание доочистки и обеззараживания (поз.6 на ГП) новое строительство.
 - 6.1 Поворотный колодец
 - 7. Камера сбора плавающих веществ (поз.7 на ГП) новое строительство.
 - 8. Воздуходувная станция (поз.8 на ГП) капитальный ремонт.
 - 9. Иловая насосная станция (поз. 9 на ГП) новое строительство.
 - 9.1 Иловая камера №1
 - 9.2 Иловая камера №2
 - 9.3 Иловая камера №3
- 10. Здание механической обработки осадка (поз.10 на ГП) новое строительство.
- 10.1 Площадка хранения обезвоженного осадка
- 11. Резервуар противопожарный (поз.11 на ГП) новое строительство.
- 12. Иловые площадки (аварийные) новое строительство.
- 13. Административно-бытовой корпус с лабораторией (поз.13 на $\Gamma\Pi$) новое строительство.
- 14. Механическая мастерская (поз. 14 на $\Gamma\Pi$) новое строительство.
- 15. Песковая площадка (поз. 15 на ГП) новое строительство.
- 16. КПП (поз.16 на $\Gamma\Pi$) новое строительство.
- 17. Парковка
- 18. Площадка для отдыха персонала
- 19. Насосная станция пожаротушения
- 20. Площадка ТБО
- 21. Здание компостирования осадка
 - 22.1 РУ НН
 - 22.2 TΠ
 - 22.3 PY BH

6.2.1 Канализационные очистные сооружения.

Уровень ответственности объекта – первый.

В соответствии с техническим заданием на проектирование РП предусматривает строительство канализационных очистных сооружений.

После реализации проекта РП будет достигнуто следующее:

- Все основные технологические, вспомогательные здания и сооружения площадки КОС будут снабжены новейшими и эффективнейшими технологиями и выполнены из современных материалов, отвечающих стандарту качества, сертифицированные на территории РК.
- в целях сокращения продолжительности строительно-монтажных работ, отдельные технологические узлы поставляемого оборудования применены заводской готовности и максимально укомплектованные технологическим, электротехническим оборудованием, оборудованием автоматизации и контрольно-измерительными приборами.
- Конструкции зданий и сооружений запроектированы в соответствии с технологическим процессом.

В проекте РП приняты следующие планируемые расходы сточных вод:

Таблица 6.1

		Таблица 6.1
	Условные обо-	Расчетные зна-
Наименование показателей	значения	чения
Расчётные расход	цы	
• среднесуточный, м ³ /сут	$Q_{cp.cy_T}$	24900
• максимальный коэффициент часовой нерав-	K _{gen.max}	1,55
номерности		
 средне-часовой, м³/час (л/с) 	$q_{\mathrm{cp.4}}$	1 037,5 (288,2)
• максимальный часовой, $M^3/\text{час}(\pi/c)$	q _{max.ч}	1 611,2 (447,6)
Расчётные концентрации исход	ных сточных вод	
• Взвешенные вещества, мг/л	Cen	160
 БПК_{полн}, мгО₂/л 	Len	60,96
• Азот аммонийный, мг/л	C _{en} NH4	22,5
• Фосфаты по фосфору, мг/л	-	0,34
• Хлориды, мг/л	-	-
• ПАВ, мг/л	1	0,89
Очищенные сточные	е воды	
• Взвешенные вещества, мг/л	C_{ex}	5
 БПК_{полн}, мгО₂/л 	L_{ex}	8,2
• Азот аммонийный, мг/л	$C_{\rm ex}^{ m NH4}$	20
• Фосфаты по фосфору, мг/л	-	0,21
• Хлориды, мг/л	-	-
• ПАВ, мг/л	-	0,5
• Азот нитритов, мг/л	-	1,0
• Азот нитратов, мг/л	-	1,0

Технико-экономические показатели сооружений

Таблица 6.2

		Oarre				таолица о.2	
	Наименование со-	Осно	овные техн		№Т.П		
№	оружений и шифр проекта	Основные параметры	Г Количество		Примечание	повторно применен и разработан	
1	2	3	4	5	6	7	
1	Главная канализаци- онная насосная Станция (ГКНС)	Размеры количество	М ШТ.	Подземная часть круглая Ø22,5 Надземная часть 34,5x18,0 1	новое стро-ительство	Поз.1 на ГП Индив.разр.	
2	Здание механической очистки (ЗМО)	Размеры количество	М ШТ.	с размерами в осях 30,2х 6,3; 1	новое стро- ительство	Поз.2 на ГП Индив.разр.	
3	Аэрируемая песколовка	Размеры количество	М ШТ.	с размерами в осях 32,45 x 8,8; Lотд.=30,0; ширина 4,05; глубина 6,0; 2 отделения	новое стро-ительство	Поз.3 на ГП Индив. разр.	
4	Аэротенк	Размеры	М ШТ.	с размерами в осях 76,0x58,4 Lотд.=72,8; ширина 19,2; глубина 5,2; 3 отделения	новое стро- ительство	Поз.4 на ГП Индив.разр.	
5	Вторичный отстойники	Размеры количество	M IIIT.	Диаметр 24,0 3	новое стро-	Поз.5 на ГП Индив. разр.	
5.1	Распределительная камера вторичных отстойников	Размеры количество	M IIIT.	В осях 5,2х2,6; глубина 1,5 2	новое стро-	Поз.5.1 на ГП Индив. разр.	
5.2	Камера очищенной воды №1	Размеры количество	М ШТ.	с размерами в плане 1,4x1,2; глубина 2,4 1	новое стро-	Поз.5.2 на ГП Индив. разр.	
5.3	Камера очищенной воды №2	Размеры количество	М ШТ.	с размерами в плане 4,27х4,13; глубина 4,9 1	новое стро- ительство	Поз.5.3 на ГП Индив. разр.	
6	Здание доочистки и обеззараживания	Размеры количество	M IIIT.	с размерами в осях 25,5х18,0; высота этажа 9,56м. надземная часть относительно нулевой отметки +11,623 м, подземная часть -3,220м.	новое стро- ительство	Поз.6 на ГП Индив.разр.	
7	Камера сбора плава- ющих веществ	Размеры количество	M IIIT.	Ø1,5м; глубина 3,0м 1	новое стро- ительство	Поз.7 на ГП Индив.разр.	

	Наименование со-	Осно	овные техн параме		№Т.П повторно	
№	оружений и шифр проекта	Основные параметры	Един. изм.	Количество	Примечание	применен и разработан
1	2	3	4	5	6	7
8	Воздуходувная станция	Размеры	М	площадь-228,4м2; надземная часть от- носительно нулевой отметки +6,300; стр. объем 1436,4м3;	новое стро-ительство	Поз.8 на ГП Индив. разр.
		количество	шт.	1		
9	Иловая насосная станция	Размеры	M	подземная часть в плане 9,4х9,55; надземная часть в плане 9,4х12,05	новое стро-	Поз.9 на ГП Индив. разр.
		количество Размеры	ШТ. М	1 с размерами в осях		
10	Здание механической обработки осадка	-		24,0х18,0; высота 8,985	новое стро- ительство	Поз.10 на ГП Индив. разр.
		количество	шт.	1		
11	Резервуар противо- пожарный емкостью 50м ³	Размеры количество	M IIIT.	в плане 6,23х3,23; глубина 3,80м; 2	новое стро- ительство	Поз.11 на ГП Индив.разр.
	JUNI		mi.	_		
12	Площадка хранения обезвоженного осадка	Размеры	M	с размерами в плане 32,4x14,4; глубина 3,0	новое стро-	Поз.12 на ГП Индив. разр.
		количество	шт.	1		
13	Административно- бытовой корпус	Размеры количество	M IIIT.	в осях «1-4/А-В раз- мерами 36,2х12,0	новое стро- ительство	Поз.13 на ГП Индив.разр.
14	Механическая мастерская	Размеры	М Шт.	18,12х9,0 в осях "3- 6/А-В" высота +4,370м; 8,14х9,0 в осях "2- 3/А-В" высота +3,260м; 4,9х4,9 в осях "1- 2/Б-В";	новое стро-ительство	Поз.14 на ГП Индив. разр.
		Размеры	M	1		
15	Песковая площадка	количество	шт.		новое стро- ительство	Поз.15 на ГП Индив. разр.
16	КПП	Размеры количество	M IIIT.	с размерами в осях 4,2x6,1 высота 6,72 1	новое стро-ительство	Поз.17 на ГП Индив.разр.

6.2.2. Технологическое описание сточных вод на проектируемой КОС.

Хозяйственно-бытовые сточные воды от города и промпредприятий поступают по проектируемому напорному трубопроводу в приемную камеру проектируемой главной канализационной насосной станции (поз. 1 по ГП), расположенную на площадке КОС. Стоки после грубой механической очистки грабельными решетками S1Б1-3 (рис. 6.1) от насосов P1.1-5 (рис.6.1) по двум напорным трубопроводам Д630х37,4 мм поступают в канал здания механической очистки (поз.2 по ГП).

Стоки через проектируемое Здание механической очистки (поз.2 по ГП) по каналам в самотечном режиме поступают на механическую очистку, которая состоит из грабельных решеток тонкой очистки S2.1.1-2 (рис.6.1). Отбросы, задерживаемые на решетках, винтовым конвейером S2.3 (рис.6.1) подаются на винтовой пресс, из которых отбросы далее автоматически сбрасываются в контейнеры с последующим вывозом в места, согласованные с санитарной службой города.

После решеток S2.1.1-2 (рис.6.1) сточные воды подаются по трубопроводу К11 на горизонтальные аэрируемые песколовки (поз.3 по $\Gamma\Pi$), осадок с песколовок собирается скребковым механизмом M3.1-2 (рис.6.1) перемещается в приямок, откуда песковыми насосами P3.1-2 (рис.6.1) перекачиваются на сепараторы песка S2.2.1-2 (рис.6.1), располагаемые в здании механической очистки (поз.2 по $\Gamma\Pi$).

Отмытый и обезвоженный песок отвозится на песковую площадку (поз.15 по $\Gamma\Pi$) с последующим вывозом в места, согласованные с санитарной службой города по существующей схеме. Для аэрации песколовок (поз.3 по $\Gamma\Pi$) предусматривается подвод воздуха по трубопроводу A1 с воздуходувной станции (поз.8 по $\Gamma\Pi$).

Из песколовок (поз.3 по $\Gamma\Pi$) сточные воды по самотечному трубопроводу K1.2 поступают на проектируемые аэротенки (поз.4 по $\Gamma\Pi$).

Аэротенки (поз.4 по $\Gamma\Pi$) включают в себя следующие технологические зоны, разделенные ж/б перегородками:

- Аноксидная зона (денитрификатор), в которую поступает иловая смесь «нитратного рецикла» из конца зоны нитрификации насосами P4.1.1-3 (рис.6.1), и рециркуляционный активный ил. В этой зоне необходимо поддерживать аноксидные условия (отсутствие растворенного кислорода, наличие кислорода нитритов и нитратов). Концентрации растворенного кислорода в этой зоне не более 0,5 мг/л. Для поддержания иловой смеси во взвешенном состоянии в аноксидной зоне установлены погружные электромешалки M4.1.1-4.3.6 (рис.6.1).

-Аэробная зона (нитрификатор), в которой поддерживаются аэробные условия при концентрации растворенного кислорода 2 мг/л. Для этого нитрификатор оборудуется системой мелкопузырчатой аэрационной системой (дисковые аэраторы) AT4.1-4.3. Подача сжатого воздуха в аэробную зону осуществляется от воздуходувной станции (поз.8 по $\Gamma\Pi$) по двум трубопроводам A2.

- Зона деаэрации, в которой ввиду отсутствия подачи кислорода предусматривается снижение концентрации растворенного кислорода. Нитрат содержащая иловая смесь из зоны деаэрации перекачивается пропеллерными насосами P4.1.1-3.1 (рис.6.1) по трубопроводу К5.3H в начало аноксидной зоны. Это позволяет исключить поступление растворенного кислорода с нитратным рециклом в денитрификатор (в котором концентрация растворенного кислорода не должна быть более 0,5 мг/л для оптимального процесса денитрифкации). Для поддержания иловой смеси во взвешенном состоянии в зоне деаэрации установлены погружные электромешалки М4.1.7-4.3.8 (рис.6.1).

Для увеличения концентрации БПК $_{\text{полн}}$ перед сооружениями биологической очистки (необходимой для снижения азота в сточной воде) предусматривается напорное введение рабочего раствора биогенной подпитки трубопроводом Р7 (этиленгликоль, меласса или аналог) в голову аэротенка.

Для обеспечения процесса глубокого удаления азота на сооружениях биологической очистки согласно расчетам, соотношение БПК $_{\text{полн}}$ к азоту должно составлять не менее 5 к

1, для чего для восполнения нехватки БПК $_{\text{полн}}$ в сточную воду предусматривается дозирования раствора биогенной подпитки с целью доведения концентрации БПК $_{\text{полн}}$ на сооружения биологической очистки не менее 80 мг/л.

После аэротенков иловая смесь в самотечном режиме по трубопроводу К1.3 поступает в распределительную камеру вторичных отстойников (поз.5.1 по ГП) и далее на радиальные вторичные отстойники (поз.5 по ГП), где происходит отделение активного ила. Отделенный ил из вторичных отстойников (поз.5 по ГП) через иловые камеры 1-3 поступает в иловую насосную станцию (поз.9 по ГП) циркуляционного (возвратного) и избыточного ила. Циркуляционный и избыточный активный ил по трубопроводу К5.1 подается в иловую станцию (поз.9 по ГП), откуда в напорном режиме насосами Р9.1-3 (рис. 6.1) по трубопроводу К5.1Н возвращается в начало аэротенка и участвует в процессе биологической очистки. Избыточный активный ил по трубопроводам К5.5Н насосами Р9.4-5 (рис.6.1) подается на дальнейшую обработку осадка. Также предусматривается подача избыточного ила по трубопроводу К5.6Н на аварийные иловые площадки (поз.12 по ГП).

Доочистка и обеззараживание сточных вод

Биологически очищенные сточные воды со вторичных отстойников (поз. 5 по $\Gamma\Pi$) собираются в камеры очищенной воды №1 и №2 (поз.5.2 и 5.3 по $\Gamma\Pi$) и по трубопроводу К1.5 в самотечном режиме подаются в здание доочистки и обеззараживания.

Блок глубокой доочистки представлен дисковыми микрофильтрами F6A.1-2 (рис.6.1), проходя через которые, сточные воды доочищаются до заданных нормативов. В помещении обеззараживания сточные воды проходят дезинфекцию через лотковые погружные УФ-модули UF6Б.1-2 (рис.6.1).

Отвод сточных вод

Согласно разрешению на спецводопользование № от г. сброс очищенных сточных вод с канализационных очистных сооружений на пруды-накопители.

Обработка и утилизация осадка

Из иловой насосной станции (поз.9 по $\Gamma\Pi$) по трубопроводу K5.5H осадок подается в здание механической обработки осадка (поз.10 по $\Gamma\Pi$).

Первая ступень обработки – прохождение через барабанные сгустители BS10.1.1-2 (рис.6.1), обеспечивающие снижение влажности с 99,5 до 96-97%. Для интенсификации процесса сгущения предусматривается подача рабочего раствора флокулянта по трубопроводу P11 от реагентного хозяйства CS10.4 (рис.6.1). Смешение реагента с илом происходит во флокуляционном реакторе CS10.1-2 (рис.6.1).

Сгущённый осадок по трубопроводу K6.7 насосами P10.3.1-2 (рис.6.1) подается на декантерные центрифуги BS10.2.1-2 (рис.6.1), в которых производится снижение влажности до 75-80%. Для интенсификации процесса сгущения предусматривается подача рабочего раствора флокулянта по трубопроводу P11 от реагентного хозяйства CS10.5 (рис.6.1). Обезвоженный осадок собирается в контейнеры и вывозится в места, согласованные с санитарной службой города по существующей схеме. Иловая вода со здания механической обработки осадка (поз.10 по $\Gamma\Pi$) возвращается в иловую насосную станцию (поз.9 по $\Gamma\Pi$) по трубопроводу K5.4.

Вода при опорожнении аэротенков (поз.4 по $\Gamma\Pi$) и вторичных отстойников (поз.5 по $\Gamma\Pi$) подается по трубопроводу K6.6 в иловую насосную станцию (поз.9 по $\Gamma\Pi$), откуда насосом P9.6 возвращается в начало аэротенка.

6.2.3. Объекты строительства механической очистки.

Главная канализационная насосная станция;

Здание механической очистки;

Горизонтальные аэрируемые песколовки;

Иловая насосная станция

Главная канализационная насосная станция поз.1 по ГП

Главная канализационная насосная станция (ГКНС) располагается на площадке КОС.

ГКНС предназначена для перекачки хозяйственно-бытовых и близким к ним по составу производственных невзрывоопасных сточных вод до проектируемой КОС.

Главная канализационная насосная станция относится к I-ой категории надежности действия.

Производительность проектируемой ГКНС составляет 1620 м3 /час.

Сточные воды по самотечному коллектору поступают в приемный резервуар насосной станции, далее по двум самотечным лоткам в помещение решеток, где установлены Решетка вертикальная грубой очистки (2 раб. +1 рез.) для удаления крупного мусора.

Для транспортировки отбросов с решеток предусмотрен конвейер винтовой. Для промывки и складирования отбросов в контейнеры предусмотрен моечный пресс для отбросов.

В машинном зале размещаются технологические насосы, которые установлены под заливом.

Управление работой насосов - местное и от щита управления с постоянным пребыванием обслуживающего персонала.

Работа насосов автоматизирована в зависимости от уровня сточных вод в приемном резервуаре. На всасывающих трубопроводах установлены шандоры и затворы щитовые электрифицированные.

На напорных трубопроводах предусмотрены поворотные обратные клапаны фланцевые. Универсальные задвижки с обрезиненным клином на напорных трубопроводах приняты с ручным управлением.

Автоматическое включение агрегатов осуществляется при открытых затворах на всех трубопроводах. закрываются затворы и задвижки только на время ремонтных работ. При не включении или аварийной остановке любого рабочего насоса, а также при аварийном уровне сточной жидкости в приемном резервуаре включается резервный насос.

Диаметры подводящих и напорных трубопроводов приняты в зависимости от производительности насосов и допустимых скоростей движения сточных вод. В насосной станции предусмотрены два напорных трубопровода.

Приемный резервуар оборудован устройствами для взмучивания осадка и обмыва резервуара.

Здание механической очистки поз.2 по ГП

Назначение: выделение из сточной воды находящихся в ней нерастворенных примесей.

Решетки.

Предусмотрено применение грабельных решеток для тонкой механической очистки хозяйственно-бытовых стоков от механических загрязнений величиной более размера отверстий экрана решетки. Величина прозоров – 6 мм.

Для складирования отбросов предусмотрены передвижные контейнеры.

Винтовой конвейер отбросов.

Для транспортировки отбросов с решеток предусмотрен винтовой конвейер.

Винтовой промывочный пресс.

Для промывки и складирования отбросов в контейнеры предусмотрен винтовой промывочный пресс.

Песколовки поз.3 по ГП

После очистки от крупных механических примесей на ступенчатых решетках сточные воды поступают в горизонтальные аэрируемые песколовки, в которых происходит процесс задержания песка. Песколовки состоят из двух секций.

В аэрируемых песколовках осуществляется сбор и удаление тяжелых механических включений (песка), а также удаление свободно плавающих жиров с поверхности хозбытовых стоков.

Воздух в песколовки подается через системы крупнопузырчатых аэрации, от воздуходувной станции.

Горизонтальные песколовки оснащены скребком для транспортировки песка в приямок, а также песковым насосом. Осадок с помощью скребка перемещается в приямок, откуда песковым насосом подается на установку отмывки песка. Отмытый и обезвоженный песок отвозится на площадки ТБО с последующим вывозом в места, согласованные с санитарной службой города по существующей схеме.

Из песколовок сточные воды по самотечному трубопроводу подаются в аэротенки.

Распределительная камера вторичных отстойников поз. 5.1 по ГП

Распределительная камера служит для равномерного распределения стоков между вторичными отстойниками.

Иловая насосная станция осадка поз.9 по ГП

Станция оснащена состоит из:

камеры возвратного и избыточного ила, в которой установлены погружные насосы возвратного ила (2 рабочих, 1 резервный) и насосы избыточного ила (2 рабочих, 1 резервный);

камеры отвода опорожнения аэротенков и отстойников, в которой установлен погружной насос опорожнения;

камеры с арматурой насосов возвратного активного ила.

Циркуляционный активный ил возвращается в аэротенки и участвует в процессе биологической очистки, избыточный активный ил перекачивается в Здание механической обработки осадка.

В случае аварийной остановки цеха механического обезвоживания осадка избыточный активный ил сбрасывается на иловые площадки.

6.2.4. Сооружения биологической очистки.

Очистные сооружения биологической очистки являются второй ступенью очистки, в которой путём физических и биохимических процессов, происходящих в результате деятельности соответствующих микроорганизмов, происходит удаление загрязнений из сточных вод.

В проектном решении принята классическая технология биологической очистки сточных вод.

К объектам биологической очистки относятся:

Аэротенки;

Вторичные отстойники (радиальные);

Воздуходувная станция.

Аэротенки поз.4 по ГП

Аэротенки представляют собой железобетонное сооружение габаритными размерами в осях 76,0х58,4м, разделенное перегородками на секции и технологические линии.

Проектным решением предусмотрен трехсекционный биореактор.

Поступление сточной воды в каждую секцию осуществляется по входному распределительному каналу через переливные отверстия.

На входе в каждую секцию размещается щитовой шиберный затвор. Также предусмотрена подача иловой смеси из вторичных отстойник в иловой распределительный канал и, далее, в каждую секцию аэротенка.

Каждая секция разделена внутренними перегородками на следующие зоны: анаэробная, аноксидная, аэробная, зона деаэрации. Для перемешивания иловой смеси в аноксидной зоне и в зоне деаэрации предусмотрены погружные электромешалки. Аэрация иловой смеси в аэробной зоне осуществляется через мелкопузырчатые дисковые аэраторы.

В зоне деаэрации размещены погружные канализационные насосы для рециркуляшии иловой смеси.

На выходе из каждой секции биореактора предусмотрен сборный распределительный канал для отвода иловой смеси из аэротенка в распределительную камеру вторичных отстойников.

По трубопроводу А2 происходит подача воздуха в аэротенки от воздуходувной.

Механически очищенные сточные воды по трубопроводу поступают в распределительный канал аэротенка, откуда через переливные окна поступают на три линии очистки. В каждой секции биологическая очистка происходит за счет чередования зон: аноксидной/аэробной/зоне деаэрации.

Поступление иловой смеси из вторичных отстойников происходит также через распределительный канал.

В аноксидной зоне осуществляется денитрификация. Этот процесс представляет собой окисление органических веществ активным илом, в котором акцептором является не растворенный кислород, а кислород нитратов. Процессы биологического удаления азота основаны на рециркуляции иловой смеси между зоной деаэрации и аноксидной зонами и активного ила из вторичных отстойников в аноксидную зону. Степень рециркуляции R между зонами деаэрации и денитрификации как кратность циркуляционного расхода по отношению к расчетному расходу аэротенка является важным расчетным параметром циклических схем, обеспечивающим подвод в зону денитрификации нитратов с интенсивностью, соответствующей скорости денитрификации.

Поддержание иловой смеси во взвешенном состоянии осуществляется при помощи электромешалок. В зоне нитрификации поддерживаются аэробные условия при концентрации растворенного кислорода 1,5-2 мг/л за счет использования аэрационной системы.

В нитрификаторе происходит два процесса - нитрификация и окисление органических вешеств.

В зоне деаэрации концентрация растворенного кислорода в иловой смеси снижается, за счет чего не производится перенос кислорода из зоны деаэрации в аноксидную зону. Перекачка иловой смеси из зоны деаэрации в денитрификатор осуществляется при помощи циркуляционных насосов. Поддержание иловой смеси во взвешенном состоянии осуществляется при помощи электромешалок.

Иловая смесь из аэротенков через сборный распределительный лоток поступает далее в распределительную камеру вторичных отстойников.

Распределительная камера вторичных радиальных отстойников поз.5.1 по ГП

Распределительная камера служит для равномерного распределения иловой смеси между вторичными отстойниками.

Вторичные отстойники поз.5 по ГП

Вторичные отстойники предназначены для илоразделения при работе с аэротенками и имеют основные системы: распределение иловой смеси, сбора очищенной воды, сбора осевшего ила с днища и его вывода из отстойника.

РП предусмотрено строительство вторичных отстойников диаметром \emptyset 24,0м в количестве 3 шт.

В составе проекта разработаны: центральная труба подачи иловой смеси, круговой периферийный лоток сбора осветленной воды через водосливы. Для равномерного распределения смеси внутри отстойников, а также для равномерного отвода очищенных стоков установлены специальные устройства: камера распределения стоков, кольцевой отражательный щит и водосборные лотки.

Выпадающий в осадок ил удаляется при помощи илососа через иловые камеры. В иловую камеру ил поступает под гидростатическим давлением.

Воздуходувная станция поз.8 по ГП

Проектом предусмотрена система воздухоснабжения аэротенков и песколовок. Для аэрации аэротенка используются три воздухоувки (две рабочих и одна резервная).

Для аэрации песколовки используются три турбокомпрессора (2 рабочих и один резервный).

6.2.5. Линия обработки, утилизации осадка.

К сооружениям обработки осадка относятся:

Здание механической обработки осадка.

Иловые площадки.

Здание механической обработки осадка поз.10 по ГП

От иловой насосной станциии иловая смесь поступает на механическую обработку и обезвоживание осадка. Станция оборудована двумя барабанными сгустителями со шкафом управления и двумя декантерами в комплекте со шкафом управления. Для повышения эффективности обезвоживания осадка на сгустителях и декантерах, предусмотрена подача флокулянта. Приготовления реагента осуществляется в автоматической установке приготовления флокулянта, установленной в здании механической обработки осадка.

Фильтрат, который образуется на декантарах в результате обезвоживания осадка, сбрасывается во внутриплощадочную канализацию K6.6.

Обезвоженный осадок направляется в здание компостирования (поз.21 по ГП). На территории КОС предусмотрена площадка хранения обработанного осадка для сельскохозяйственных нужд и реабилитации почв для озеленения города.

Здание компостирования осадка поз.21 по ГП

Компостирование - биотермический процесс разложения органических веществ ОСВ, осуществляемый под действием аэробных микроорганизмов с целью обеззараживания, снижения влажности, стабилизации и подготовки осадков к утилизации в качестве удобрения. Аэробный процесс сопровождается выделением теплоты с саморазогреванием компостируемой массы и испарением влаги.

Метод биотермического компостирования осадка сточных вод является эффективным и прогрессивным для снижения негативного воздействия очистных сооружений предприятия на окружающую среду и получения дополнительной прибыли. Данный метод позволяет получить инертный обезвреженный конечный продукт, характеризуется простотой технологической схемы и эксплуатации технологического оборудования, низкими энергозатратами, экологичностью, быстрой окупаемостью.

Процесс биотермического компостирования осадков сточных вод в смеси с различными органическими наполнителями (торфом, опилками, соломой, сельскохозяйственными растительными отходами и т.п.) позволяет осуществить надежное обезвреживание отходов для последующей их утилизации.

Обезвоженный осадок из здания механической обработки осадка (поз. 10 по ГП) в герметичных полуприцепах направляется в здание компостирования, где при смешении с опилками в пропорции 1:1 малогабаритным погрузчиком выкладывается в бурты, шириной 4м, высотой 1.8м.

Расчет объема компоста находящегося в здании произведен из продолжительности процесса компостирования 24 дня.

На очистных сооружениях после установок обезвоживания (декантеров) образуется кек в количестве $M_{\rm сут}=3.7$ т/сут. Образующийся осадок из здания механической обработки осадка, автотранспортом вывозится в здание компостирования, где происходит его выгрузка на предварительно подготовленное основание из опилок, с последующем перемещиванием.

Габаритные размеры буртов:

- **–**Длина a=6,8 м;
- −Ширина b=4,0 м;
- -Высота h=1,8 м

Объем одного бурта составляет 24,4 м³, рассчитывается по формуле

$$V = \frac{1}{2} \cdot a \cdot b \cdot h, \,\mathbf{M}^{3}$$

$$V = \frac{1}{2} \cdot 6.8 \cdot 4.0 \cdot 1.8 = 24.4 \,\mathbf{M}^{3}$$

. Масса компоста в одном бурте 29,3 т, при плотности компоста ρ =1,2 т/м 3 .

Суточный объем обезвоженного осадка:

$$V_{
m cyt.oc.} = rac{{
m M}_{
m cyt}}{
ho}$$
 $V_{
m cyt.oc.} = rac{3.7}{1.2} = 3~{
m M}^3/{
m cyt}$

Суточный объем обезвоженного осадка составляет $V_{\rm cvr.oc.} = 3~{\rm m}^3/{\rm cyr}$

Для приготовления компостной смеси в обезвоженный осадок (кек после декантеров) вносится наполнитель (опилки), количество опилок принимается в соотношении 1:1. Суточная потребность опилок составляет $V_{\text{сут-оп}}=3 \text{ m}^3/\text{сут}$.

Суточный объем смеси обезвоженного осадка и наполнителя:

$$V_{\text{cyt}} = V_{\text{cyt.on}} + V_{\text{cyt.oc.}}$$
 $V_{\text{cyt}} = 3 + 3 = 6 \text{ m}^3/\text{cyt}$

Суточный объем смеси обезвоженного осадка и наполнителя составляет $V_{\text{сут}}\!\!=\!\!6$ м 3 /сут

Время заполнения одного бурта компостом t рассчитывается по формуле

$$t = \frac{V}{V_{\text{сут}}}$$
, дн $t = \frac{24.4}{6} = 4$ дн

Формирование первого бурта происходит в течении 4 дней.

Процесс компостирования длится 24 дня. Для обеспечения эффективного процесса компостирования применены следующие мероприятия:

- -аэрация компоста;
- -перемешивание;
- -внесение термофильных молочнокислых бактерий.

Подача воздуха на аэрацию осуществляется через перфорированные воздуховоды диаметром 100 мм, проложенные в каналах в основании буртов. Аэрация компоста осуществляется в течение 7-8 часов каждые 4 дня (время и периодичность продувки могут быть уточнены в процессе пуско-наладочных и монтажных работ).

Расход воздуха $Q_{\text{возд}}$ на 1 бурт с осадком естественной влажности составляет, округленно 5-6 м³/ч×т, на один погонный метр бурта подается 8-19 м³/ч, в зависимости от времени года и влажности органических отходов.

За сутки выкладывается компостный бурт длиной 1,7 п.м.

$$6:(0,5\cdot 4\cdot 1,8)=1,7$$
 п.м. $Q_{\text{возд}}=19\cdot 1,7\cdot 4$ дня= $129,2$ м³/ч

Масса органического вещества торг, образующегося в сутки, составляет

$$m_{
m opr} = \left(0.2 \cdot {
m M}_{
m cyt} \right) + m_{
m on}$$
, т $m_{
m on} = V_{
m cyt.on.} \cdot
ho_{
m on}$ $m_{
m on} = 3 \cdot 200 = 600 \ {
m Kr}$ $m_{
m opr} = \left(0.2 \cdot 3.7 \right) + 0.5 = 1.24 \ {
m T}$

Для расчета общего расхода воздуха принята одновременная аэрация одного бурта

$$Q_{{
m BO3J}}^{{
m oбщ}} = Q_{{
m BO3J}} \cdot 1$$
, м³/ч

$$Q_{\text{возд}}^{\text{общ}} = 129,2 \cdot 1 = 159,2 \text{ м}^3/\text{ч}$$

С учетом потерь, принимаем расход воздуха на аэрацию $Q_{\rm возд}^{\rm oбщ}=175~{\rm m}^3/{\rm q}$

В процессе компостирования температура компоста достигает 50-60°C

Начальная массовая доля влаги в компосте 80%. В конце процесса компостирования массовая доля влаги готового почвогрунта составляет 50%

На этапе складирования готовый почвогрунт перемешивается с песком в соотношении 1:5

Для ускорения процесса компостирования применен препарат термофильных молочнокислых бактерий. Для обработки 1000 кг, требуется 0,1 кг препарата, разбавленного 20 л воды.

Масса органического вещества торг, образующегося в сутки, составляет 1240 кг За 3 дня масса органического вещества в одном бурте М₁ составляет:

$$M_1 = m_{\text{орг}} \cdot t$$
, кг

$$M_1 = 1240 \cdot 3 = 3720 \ кг$$

С учетом расхода 0,1 кг препарата на 1000 кг органики, получаем необходимый объем препарата в количестве М_п:

$$M_{\pi} = \frac{3720 \cdot 0.1}{1000} = 0.37 \text{ kg}$$

Расход воды Q_в на приготовление раствора термофильных молочнокислых бактерий из расчета обработки одного бурта компоста составит $Q_{\rm B} = \frac{{\rm M_{\pi}\cdot 20}}{{\rm 0,1}} = \frac{{\rm 0,37\cdot 20}}{{\rm 0,1}} = 74,5\,{\rm m}$

$$Q_{\rm B} = \frac{{\rm M}_{\rm II} \cdot 20}{0.1} = \frac{0.37 \cdot 20}{0.1} = 74.5 \,{\rm J}$$

Для работы аэрационной системы применяют вихревые воздуходувки EVL 58/17 3 ф. (1 рабочая, 1 резервная). Расход воздуха 175 м³/ч, давление 2100 Па.

В холодное время года при среднесуточной температуре окружающей среды менее 10°C воздух, поступающий на аэрацию подогревается калориферами до температуры не менее 10°С. С этой целью применяются калориферы, 2 шт (1 рабочий, 1 резервный).

В процессе компостирования предусмотрено перемешивание буртов для обеспечения взрыхления смеси и поступления кислорода в него. При ворошении бурт перекладывается в сторону с формированием бурта.

Для укладки компостной смеси, формирования штабелей и ее периодической перебивки, а также погрузки/разгрузки товарного реагента проектом применен малогабаритный погрузчик с объемом ковша 0,6 м³, в комплекте с вилами грузовыми.

На заключительном этапе компостирования погрузчиком осуществляется перемещение компостного бурта на автотранспорт. Автотранспортом готовый компост вывозится на площадки складирования, расположенные на территории КОС, где осуществляется его перемешивание с песком в соотношении 1:5 и формированием буртов.

В конце процесса компостирования полученный почвогрунт представляет собой продукт готовый к реализации.

6.2.6. Доочистка и сброс.

Проектом предусмотрена доочистка сточных вод с помощью дисковых фильтров и обеззараживание посредством УФ. Фильтрация позволяет достичь наилучших параметров очистки сточных вод, что даёт возможность вторичного использования очищенной воды.