Состав проекта

- 1. Пояснительная записка.
- 2. Графическая часть

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

СОПЕРЖАНИЕ:

- 1. Исходные данные
- 2. Климатические условия
- 3. Архитектирно-строительные решения
- 4. Технологические решения
- 5. Инженерное обеспечение
- 6. Благоустройство территории
- 7. Противопожарные требования
- 8. Охрана окружающей среды

Рабочий проект разработан в соответствии с государ веньший надлежными требованиями действующими в Республике Казахстан.

Главный инженер проекта ПСМ (И.Ю. Аленина веньший казахстан)

					15-20		73		
Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата	15 2022 1			
				۸.			Стадия	/lucm	Листов
ГИП		Алени	на И.Ю.	Anel 6	09.06.22		<i>P1</i> 7	1	20
		Пояснительная записка	TOO "VIrA West"						
<i>I IPODE</i>	<i>2pun</i>	АЛЕНЦ	<u>'JH B.B.</u>	Bul	09.06.22		ЛИЦЕН	IЗЦЯ № 16	6000128

1 ИСХОДНЫЕ ДАННЫЕ:

Рабочий проект "Переоборудование, реконструкция и перепланировка цеха по переработке сельско-хозяйственной продукции, пристроя под пробирно-аналитическую лабораторию со строительством пристроек" Самарское Шоссе 15, г. Усть-Каменогорск, ВКО, разработан на основании:

- Задания на проектирование, выданного TOO «VIrA West» и утвержденного заказчиком;
- -Технического задания на химико-аналитическую лабораторию на Самарском Шоссе 15.
- Архитектурно-планировочного задания_№ 244/0-17 от 4.12.2017;
- а также СНиП РК 3.02-02-2009 "Общественные здания и сооружения", СНиП РК 3.02-04-2009 "Административные и бытовые здания", СНиП РК 2.02-05-2009 "Пожарная безопасность зданий и сооружений", «Санитарно-эпидемиологические требования к пабораториям, использующим потенциально опасные химические и биологические вещества» (Приказ Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 345. Зарегистрирован в Министерстве юстиции Республики Казахстан 17 февраля 2015 года № 10276) и «Правилами обеспечения промышленной безопасности для опасных производственных объектов химической отрасли промышленности» (Приказ и.о. Министра национальной экономики Республики Казахстан от 15 апреля 2015 года № 338. Зарегистрирован в Министерстве юстиции Республики Казахстан 20 мая 2015 года № 11099).

2. K/IMMATUYECKASI XAPAKTEPUCTUKA PAŪOHA CTPOUTE/IbCTBA

Климатическая характеристика района строительства

Климатический район 1В;

Снеговой район /// (So = 1,5 кПа); Ветровой район /// (Wo = 0,38 кПа);

Нормативная глубина промерзания грунта 2 м; Расчетная температура наиболее холодной пятидневки —39°С; Сейсмичность района строительства 7 баллов Рельеф местности спокойный

Степень огнестойкости проектируемого объекта // Категория по взрывопожарной и пожарной опасности /

Технически несложный объект II (нормального) уровня ответственности

Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата

3. APXNTEKTYPHO-CTPONTE/IBHBE PEWEHNЯ

Конструктивная характеристика существующего объекта

Фундамент – ленточный бетонный

Несущие и ограждающие конструкции – шлакобетон 700 мм; кирпич 510 мм

Покрытие – сборные железобетонные многопустотные плиты по серии 1.141–19с/85, сборные железобетонные ребристые плиты по серии 1.042.1–4;

Балки – металлические

Колонны – металлические д=180мм

Перегородки – кирпичные 120 мм, 250 мм;

Перемычки – железобетонные;

Кровля – плоская, рулонная;

Водосток – неорганизованный наружный;

Окна – 2-х, 3-х створчатые деревянные оконные переплеты;

Двери, ворота – металлические;

Наружная отделка – штукатурка, побелка;

Внутренняя отделка – побелка известковым раствором, стены оштукатурены;

Полы – бетонные;

Потолок – окрашен водоэмульсионными красками;

Отмостка – бетонная 1000 мм.

Место размещения объекта

Реконструируемое здание цеха по переработке сельскохозяйственной продукции расположено на участке 15 вблизи Самарского шоссе. Рельеф участка спокойный.

На участке имеются строения и сооружения.

Общая площадь территории – 2,6103 га.

К реконструируемому зданию ведет грунтовая дорога

Объемно-планировочные и архитектурно-строительные решения

Реконструируемое здание цеха по переработке сельскохозяйственной продукции для размещения химико-аналитической лаборатории состоит из основного здания и двух пристроек.

Здание одноэтажное.

Основное здание существующее в осях 3–10, А–Г. Габаритные размеры 17,90х30,85 м. Высота этажа 3,78 м.

Пристройка существующая в осях 2–5, Г–Д. Габаритные размеры 5,20х9,70 м. Высота этажа от 2,60 м. до 3,80 м.

Пристройка проектируемая в осях 6–10, Г–Д. Габаритные размеры 5,20х16,75 м. Высота этажа от 2,60 м. до 3,80 м.

Пристройка проектируемая в осях 1–3, А–В. Габаритные размеры 4,40х9,50 м.

Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата

Общая площадь— 410,40 м² Площадь застройки— 543,51 м²

В состав помещений пробирно-аналитической лаборатории входят производственные помещения:

- -приемная, сушилка, в проектируемой пристройке
- -дробилка, в существующей пристройке
- -истирательная, разварка, плавилка, шихтовка в основном существующем здании

А также кабинеты , бытовка, склад, туалеты и душ в основ ном существующем здании и технические помещения в проектируемой пристройке.

Несущие стены проектируемых пристроек – газоблоки

Проектируемые перегородки :кирпич – 250 мм, 120 мм.

Кровля основного здания – двухскатная, профлист

Перекрытие -ж.б плиты, утеплитель URSA 150 мм

Кровля пристроек- односкатная, утепленная URSA 150 мм, профлист.

Наружная отделка – сайдинг, утеплитель URSA 100 мм

Окна- металлопластик, металл

Двери- металл, дерево

Внутренняя отделка – кирпич под расшиву швов, штукатурка, кафель, гипсокартон.

Указания к производству работ:

- 1. Демонтировать ненесущие стены и перегородки в указанных на плане границах, предварительно отключив участки электропроводки, проходящие в этих конструкциях от общей сети электроснабжения.
- 2. Демонтаж колонны д=180 мм по оси 9 и перенос ее в проектное положение, согласно мероприятиям, разработанным данным проектом см. листы AC-13
- 3. Выполнить установку дополнительных колонн д=180 мм для разгрузки несущих стен в местах опирания балки, согласно мероприятиям, разработанным данным проектом см. листы AC-13
- 4. Оконные проемы в указанных местах заложить керамическим полнотелым кирпичом пластического прессования М75 на растворе марки 25
 - 5. Пробить новые оконные и дверные проемы в указанных местах.
- 6. Новый пол устроить согласно мероприятиям, разработанным данным проектом. См. листы АС-9, АС-10
 - 7. Возвести новые стены из газоблоков –400 мм. в указанных на плане местах.
 - 8. Возвести новые перегородки из кирпича –250 мм., 120 мм.
 - 9. Предусмотреть деформационные швы 50 мм. между блоками здания.

						_
						ı
						l
						ı
Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата	

- 10. Заменить оконные блоки., установить новые двери и ворота.
- 11. Выполнить утепление стен существующих и новых URSA 100 мм. с последующей отделкой сайдингом.
 - 12. Установить сан.техническое оборудование, согласно разделу ВК.
 - 13. Сварка электродуговая по ГОСТ 5264-80* электродами Э42A по ГОСТ 9467-75*.
- 14. Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
- 15. После монтажа конструкций, сварные швы зачистить и произвести окраску стальных элементов эмалью ПФ-115 за два раза по грунтовке ГФ-021.
- 16. Перед началом работ по цстройству стоек необходимо выполнить временное крепление балки.
- 17. За относительную отметку 0.000 принят уровень чистого пола здания, что соответствиет абсолютной отметке
- 18. Фундаменты пристроев рассчитаны на грунт с расчетным сопротивлением RO=150κΠα.
- 19. В случае обнаружения, при вскрытии котлована, грунтов отличных от проекта или грунтовых вод необходимо сообщить в проектную организацию.
- 20. Глубина заложения возводимых фундаментов должна быть не ниже существующих финдаментов.
- 21. Все работы по устройству основания и фундаментов выполнять в полном соответствии с цказаниями СНиП 3.02.01-87.
- 22. Производство и приемки работ производить в соответствии с требованиями СНиП 3.03.01-87.
- 23. Обратнию засыпки выполнять сихим местным непросадочным гринтом с тщательным послойным уплотнением до K_{com} =0.95.
- 24. Не допускается устройство фундаментов на основание из промерзшего грунта и без защиты от цвлажнения.
 - 25. По периметру здания выполнить отмостку 1000мм.
- 26. Под фундамент выполнить подготовку из бетона В 7.5 толщиной 100мм, с размерами, превышающими размеры фундамента на 100мм в каждую сторону.
 - 27. Монолитный фундамент бетонировать непрерывно, после установки всей арматуры.
- 28. Стыки арматурных стержней выполнять внахлестку и располагать вразбежку. В одном сечении допускается не более 50% стыков. Нахлест арматурных стержней для Ø12-450mm.
 - 29. Соединение арматиры выполнить при помощи сварки.
- 30. Сварка электродуговая по ГОСТ 5264-80* электродами 342A по ГОСТ 9467-75*. Катет шва не меньше толщины свариваемых элементов.
 - 31. Выполнить вертикальную гидроизоляцию фундаментов горячим битумом за два раза.
- 32. Горизонтальную гидроизоляцию выполнить толщиной 30мм в виде непрерывного горизонтального шва из цементного раствора состава 1:2 (по весц), затворенного с добавлением 3% алюмината натрия (по весу от воды затворения).
 - 33. Все закладные изделия покрыть грунтовкой ГФ-021 за два раза.
 - 34. Деформационный шов необходимо заделать битумонизированной паклей.

			-		
Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата

37. Все металлические элементы покрыть огнезащитным составом "X–FLAME" для достижения предела огнестойкости согласно противопожарных норм. Поверхность стальных элементов перед нанесением состава очистить от грязи, окалины и обдуть сжатым воздухом. Огнезащитный состав наносится за 2 раза.

38. Покрыть эмалью ХВ-16 по ТУ 6-10-1301-83 за два раза по огнезащитному составу.

39. Перемычки устраиваются на всю толщину стены и заделываются в кладку при ширине проема до 1500 мм на глубину не менее 250 мм и при ширине проема больше 1500 мм на глубину не менее 350 мм.

40. Перемычки укладывать по слою цементно-песчаного раствора толщиной 20мм.

Порядок производства работ Перемычка ПР1.

- 1. Перед выполнением данного проема в несущей стене необходимо обратиться в проектную организацию для получения акта технического обследования. Согласно выводам акта тех. обследования откорректировать решения данного обрамления.
- 2. Перед началом работ по устройству обрамления Обр1 необходимо выполнить временное крепление в проеме данной стены.
- 3. Снять штукатурку с двух сторон существующей стены. Откорректировать размеры проема. По откорректированным размерам изготовить все элементы усиления проемов.
- 4. На проектной отметке во внутренней плоскости стены выбирается штраба глубиной ~85мм, высотой ~165мм.
- 5. Для установки сжимных болтов по отверстиям в балке перемычки сверлятся отверстия в стене с помощью электроинструмента.
- 6. На свежий намет цементного раствора марки M100 в штрабу замоноличивается балка перемычки в проектное положение.
- 7. Выбирается штраба в наружной плоскости стены. В штрабу, на свежий намет раствора замоноличивается в проектное положение вторая балка перемычки. Обе балки перемычки стягиваются сжимными болтами.
- 8. Для установки обойм на сохраняемые простенки, в вертикальных проектных плоскостях откосов через 525 мм (см. чертеж) по вертикали сверлятся отверстия. Лишняя кладка простенков срубается (без применения отбойных молотков), после чего устанавливается обойма.
- 9. После установки обоймы в проектное положение все шпильки равномерно затягиваются. При установке стяжных шпилек отверстия в кладке зачеканиваются цементным раствором М100. Гайки затягивать равномерно, шайбы приваривать к полкам уголка, а гайки к шайбам. Установить и приварить соединительные планки по длине уголка.
- 10. Заделать штрабы цементным раствором марки М100. Выполнить штукатурные работы цементно-песчаным раствором марки М100. Металлические элементы усиления оштукатуривать по сетке Рабица.
 - 11. Марка стали конструкций C245 по ГОСТ 27772–88.

							_
							ı
							l
							ı
	11	1/	Л	A 10.7	7-7-	Π	ı
	ИЗМ.	K <i>0/1.UY.</i>	/IUCM	N°OOK.	Подп.	Цата	L
_	71011.	71071.9 1.	/ /UC///	77 OOM.	7 10011.	датта	L

Взам. инв.

Инв. № подл. Подл. и дата Взам. инв. №

- 12. Все сварные работы выполнять электродами 342А. Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
 - 13. Отметки и размеры со знаком (*) уточнять по месту.
 - 14. Необходимо выполнить демонтажные работы в следующем объеме:
 - разборка кирпичных парапетов и карнизов 6,5 м³;
 - разборка рулонной мягкой кровли (4 слоя) 335 м²;
 - разборка утеплителя (минералловатная плита толщиной 100мм) 306 м 2 ;
 - разборка утеплителя (керамзитобетон на разуклонку) 306 м²;
 - разборка цементно-песчаной стяжки (толщина 30мм) 306 м².
- 15. До возведения новой кирпичной кладки в существующую кирпичную кладку вбить анкер А1 с шагом 500мм в шахматном порядке, затем выполнить антисейсмический пояс.
- 16. Для несущих конструкций применять пиломатериалы хвойных пород по ГОСТ 8486–86 с размерами по ГОСТ 24454–80*. Древесина должна быть не ниже 2 сорта, с расчетными характеристиками по СНиП II–2.5–80. Абсолютная влажность древесины не более 22%
- 17. В местах соприкосновения деревянных конструкций с кирпичной кладкой проложить 2 слоя толя.
- 18. Все деревянные элементы должны быть антисептированы и подвергнуты глубокой пропитке антипиренами.
 - 19. Шаг обрешетки 600 мм.
 - 20. Срезы в мауэрлатах выполнить только в местах примыкания стропил.
- 21. В местах установки стойки по плитам перекрытия устраивается армированный слой бетона В15 на мелком заполнителе. Размеры слоя 1000х1000х50(h), расход бетона 1.8м³. Затем выполняется кирпичный столбик 300х300х255(h).
 - 22. В качестве покрытия кровли использовать металлочерепицу.

Порядок производства работ ПР2

- 1. Перед выполнением данного проема в несущей стене необходимо обратиться в проектную организацию для получения акта технического обследования. Согласно выводам акта тех. обследования откорректировать решения данного обрамления.
- 2. Перед началом работ по устройству обрамления Обр1 необходимо выполнить временное крепление в проеме данной стены.
- 3. Снять штукатурку с двух сторон существующей стены. Откорректировать размеры проема. По откорректированным размерам изготовить все элементы усиления проемов.
- 4. На проектной отметке во внутренней плоскости стены выбирается штраба глубиной ~85мм, высотой ~165мм.
- 5. Для установки сжимных болтов по отверстиям в балке перемычки сверлятся отверстия в стене с помощью электроинструмента.
- 6. На свежий намет цементного раствора марки М100 в штрабу замоноличивается балка перемычки в проектное положение.
- 7. Выбирается штраба в наружной плоскости стены. В штрабу, на свежий намет раствора замоноличивается в проектное положение вторая балка перемычки. Обе балки

Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата

- 8. Для установки обойм на сохраняемые простенки, в вертикальных проектных плоскостях откосов с определенным шагом (см. чертеж) по вертикали сверлятся отверстия. Лишняя кладка простенков срубается (без применения отбойных молотков), после чего устанавливается обойма.
- 9. После установки обоймы в проектное положение все шпильки равномерно затягиваются. При установке стяжных шпилек отверстия в кладке зачеканиваются цементным раствором М100. Гайки затягивать равномерно, шайбы приваривать к полкам уголка, а гайки к шайбам. Установить и приварить соединительные планки по длине уголка.
- 10. Заделать штрабы цементным раствором марки М100. Выполнить штукатурные работы цементно-песчаным раствором марки М100. Металлические элементы усиления оштукатуривать по сетке Рабица.
 - 11. Марка стали конструкций С245 по ГОСТ 27772-88.
- 12. Все сварные работы выполнять электродами 342A. Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
 - 13. Отметки и размеры со знаком (*) уточнять по месту.

Порядок производства работ ПРЗ

- 1. Перед выполнением данного проема в несущей стене необходимо обратиться в проектную организацию для получения акта технического обследования. Согласно выводам акта тех. обследования откорректировать решения данной перемычки.
- 2. Перед началом работ по устройству перемычки ПР1 необходимо выполнить временное крепление в проеме данной стены.
- 3. Снять штукатурку с двух сторон существующей стены. Откорректировать размеры проема. По откорректированным размерам изготовить все элементы усиления проемов.
- 4. На проектной отметке во внутренней плоскости стены выбирается штраба глубиной ~115мм, высотой ~265мм.
- 5. Для установки сжимных болтов по отверстиям в балке перемычки сверлятся отверстия в стене с помощью электроинструмента.
- 6. На свежий намет цементного раствора марки M100 в штрабу замоноличивается балка перемычки в проектное положение.
- 7. Выбирается штраба в наружной плоскости стены. В штрабу, на свежий намет раствора замоноличивается в проектное положение вторая балка перемычки. Обе балки перемычки стягиваются сжимными болтами.
- 8. Заделать штрабы цементным раствором марки М100. Выполнить штукатурные работы цементно-песчаным раствором марки М100. Металлические элементы усиления оштукатуривать по сетке Рабица.
 - 9. Марка стали конструкций С245 по ГОСТ 27772–88.
- 10. Все сварные работы выполнять электродами 342A. Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
 - 11. Размеры со знаком (*) уточнять по месту.

						Γ
Изм.	Кол.цч.	Лист	№док.	Подп.	Дата	

Взам. инв.

- 1. Снять штукатурку с всех сторон существующих стен и перемычки. Выполнить разметку точек установки стяжных шпилек. С помощью электроинструмента просверлить все отверстия под шпильки.
- 2. Откорректировать размеры проема. По откорректированным размерам изготовить все элементы усиления проемов (уголки, соединительные планки). В планках просверлить отверстия диметром 19мм.
- 3. Установить в проектное положение уголки обрамления проема. Установить все шпильки и равномерно затянуть их. При установке стяжных шпилек отверстия в кладке зачеканивать высокомарочным раствором. Гайки затягивать равномерно, шайбы приваривать к полкам уголка, а гайки к шайбам. Установить и приварить соединительные планки по длине уголка.
- 4. Все зазоры между металлическими изделиями и стеной тщательно зачеканить или заинъецировать цементно-песчаным раствором марки 100.
- 5. Выполнить штукатурные работы цементно-песчаным раствором марки 100. Металлические элементы усиления оштукатуривать по сетке рабице.
 - 6. Марка стали конструкций С245 по ГОСТ 27772-88*.
- 7. Сварка электродуговая по ГОСТ 5264–80* электродами 342A по ГОСТ 9467–75*. Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
 - 8. На стержне поз. 5 нарезать резьбу М16 с двух сторон на длину 80 мм.
 - 9. Размеры элементов уточнять по месту.
 - 10. Расположение в плане Обр1 см. лист АС-28.

Порядок производства работ обрамления Обр2 (Обр3)

- 1. Снять штукатурку с всех сторон существующих стен и перемычки. Выполнить разметку точек установки стяжных шпилек. С помощью электроинструмента просверлить все отверстия под шпильки.
- 2. Откорректировать размеры проема. По откорректированным размерам изготовить все элементы усиления проемов (уголки, соединительные планки). В планках просверлить отверстия диметром 19мм.
- 3. Установить в проектное положение уголки обрамления проема. Установить все шпильки и равномерно затянуть их. При установке стяжных шпилек отверстия в кладке зачеканивать высокомарочным раствором. Гайки затягивать равномерно, шайбы приваривать к полкам уголка, а гайки к шайбам. Установить и приварить соединительные планки по длине уголка.
- 4. Все зазоры между металлическими изделиями и стеной тщательно зачеканить или заинъецировать цементно-песчаным раствором марки 100.
- 5. Выполнить штукатурные работы цементно-песчаным раствором марки 100. Металлические элементы усиления оштукатуривать по сетке рабице.
 - 6. Марка стали конструкций С245 по ГОСТ 27772-88*.
- 7. Сварка электродуговая по ГОСТ 5264–80* электродами 342A по ГОСТ 9467–75*. Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
 - 8. На стержне поз. 5 нарезать резьбу М16 с двух сторон на длину 80 мм.Размеры

						Г
						ı
						ı
						ı
Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата	l
						_

- 9. Расположение в плане Обр2(Обр3) см. лист АС-28.
- 4. TEXHO/IOFUYECKUE PEWEHUSI

Общие положения

Пропускная способность лаборатории до 150 геологических проб в смену (150 проб) пробоподготовка, и 300 проб (лаборатория с учетом параллельности). В случае острой необходимости, лаборатория может цвеличить производительность вдвое за счет открытия ночной смены.

Задачи:

- 1. Количественных химический анализ проб руд золотосодержащих золота методом пробирной плавки:
- 2. Количественный химический анализ сорбентов на содержание драгметаллов методом пробирной плавки;
- 3. Определение золота и серебра в золото-серебряно-медных, золото-медных и золото-серебряных сплавах, а так же катодных осадках пробирным методом анализа.

Производительность лаборатории (при наличии имеющегося оборудования)

При семи часовой рабочей смене производительность 120 навесок, при двенадцати часовой рабочей смене производительность 180 навесок (на одну пробу идет две навески + 10% контроль; при распоряжении руководства на одну пробу идет одна навеска + 10% контроль).

Перечень оборцдования (в наличии):

Дробильное отделение: дробилка ДЩ-10, валковая дробилка, истиратель баночный, шкафы сишильные, делитель «Джонсона», весы технические

Пробирное отделение : плавильные печи, муфельная печь, муфель «Snol», весы микроаналитические, весы аналитические, весы технические, печь нагревательная, дистиллятор, вытяжной шкаф

Описание работы.

Взам

Пробы поступают на специализированном транспорте в матерчатых мешках весом 4–15 кг. За один привоз постипает различное кол-во проб, от 250кг до 3 тонн. Разгружают пробы в приемное отделение, где сверяется наличие проб. Дата поступления и номер заказа (при наличии) фиксирцется в журнале поступления проб. Дальше нужные пробы поступают в сушильные шкафы, остальные находятся в приемном отделении. Полностью сушится поступивший мешок в открытом виде. Дробление осуществляется по схеме геологов. При наличии имеющегося оборцдования производительность дробильного отделения 80–100 проб в смени при 12 часовой рабочей смене и 60-80 при семи часовой смене.

- Первая стадия дробления до Змм. 1.
- 2. Вторая стадия дробления до 1мм.
- Квартование . Часть пробы 500 гр (1мм) высыпается в п/з мешок, 600гр идет на 3

Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата

15-2022-03

- 5. Квартование на два пакета: 300гр на дубликат и 300гр в рабочую пробу для лаборатории.
- а) Проба весом 300–500гр в лабораторию поступает в истертом виде (0,074меж), фиксируется в журнале поступления проб.
- б) Проба поступает к шихтовщику, который берет навеску пробы 50гр смешивает с шихтой (смесь сода 75–80гр + бура 40гр + глет 55гр+ мука 3гр + хлорное серебро 0,5гр). Упаковывает в бумажный кулек, подписывает и передает плавильщику.
- в) Плавильщик производит плавку пробы в шамотном тигле в печи 1 час (в одной печи плавится 12 навесок). Выливает по окончанию плавки в специзложницу для остывания. Расплавленная проба собирается на дне тигля (специзложница) в свинцовый верблей весом 35–45гр. После остывания пробы, свинцовый верблей выбивается из тигля и отделяется от шлака(сода, бура, примеси). Далее свинцовый верблей подвергается расплавлению (купеляции) в муфельной печи на магнезитовой или костяной капели в течении 45–60 минут. (тугоплавкие пробы в течении 90 минут, вместимость муфельной печи 18–24 капели)). В процессе купеляции идет отделение свинца, который практически полностью вбирает в себя капель, от золото-серебрянного королька. Затем капели с корольками поступают к лаборанту.
- г) Лаборант отделяет золото-серебрянный королек от капели. Отбивает его молотком придавая форму пластинки. Далее следует растворение королька нагретой почти до кипения кислоте. Растворение проходит в два этапа в разбавленной азотной кислоте 1:4 и 1:2 в фарфоровом тигильке. Объем разбавленной кислоты на одну навеску равен 5мл(1:4)+5мл.(1:2) в процессе растворения серебро уходит в раствор который сливают спец. приемник и остается золотая корточка, которую промывают горячей дис.водой трижды. (15мл). Затем корточку в фарфоровом тигильке подсушивают на плите до полного высыхания и ставят прокаливаться в муфель на 3–5 мин. При 10–5600С.После прокаливания золотую корточку взвешивают на микроаналитических весах. Проводят расчет количества золота в г/т.

Расход материала на одну навеску.

Навеска руды 50 гр., свинцовый глет – 55гр., сода кальцинированная – 75–80гр., бура техническая 40гр., восстановитель (мука) – 3–5гр., бумага газетная – 7,5гр., кислота азотная – 3,5гр., хлорное серебро – 0,5гр., шамотный тигель – 0,3шт. магнезитовая капель – 1шт., вода дистиллированная –20 мл., перчатки нитриловые–2 пары, респиратор–3 шт.

Список всех хим.реактивов используемых при проведении пробирного анализа: Свинцовый глет Бура техническая Сода кальцинированная Серебро азотнокислое Кислота азотная

Взам. инв.	
Подп. и дата	
Инв. № подл.	

Изм	Кплич	/lurm	Nº∂nĸ	Подо.	Пптп

Водоснабжение и канализация

Рабочий проект задания на проектирование, утвержденного заказчиком, СНиП РК 4.01–4.1–2006 "Внутренний водопровод и канализация зданий", а также технических условий №273 от 02.06.2017

В здании запроектированы следующие системы водопровода и канализации:

- В1 хозяйственно-питьевой водопровод;
- ТЗ горячее водоснабжение;
- К1 хоз-бытовая канализация;
- K3 производственная канализация.

Сейсмичность района работ – 7 баллов.

Система хозяйственно-питьевой водопровода

Система хозяйственно-питьевого водопровода -запроектирована от внутриплощадочных сетей Прокладка разводящих сетей предусмотрена открытая - по конструкциям здания. Трубы и фитинги - из полипропилена.

В проекте предусмотрен подвод холодной воды к санитарным приборам, к внутренним и наружному поливочным кранам. Разводящие участки сети холодного водоснабжения, а также подводки к приборам проложены с уклоном 0,002. Изоляция трубопроводов, не предусматривается.

Нормы расхода воды на хозяйственно-питьевые нужды составляет 47,6 л/ч (490,0 л/сут) на 1 работающего. Расчетные расходы воды сведены в Таблицу "Основные показатели по чертежам водопровода и канализации".

Гидравлический расчет сети внутреннего водопровода холодной воды выполнен по максимальному секундному расходу воды.

Общий объем здания – 2,6 тыс. м³, степень огнестойкости проектируемого объекта – II, категория по взрывопожарной и пожарной опасности – Г. Внутреннее пожаротушение не предусматривается. Расход воды на наружное пожаротушение определен в соответствии с Техническим регламентом Приложение 7 и составляет 10,0 л/с.

Горячее водоснабжение

Нормы расхода воды на хозяйственно-питьевые нужды составляет 8,0 л/ч (80,0 л/сут) на 1 работающего. Расчетные расходы воды сведены в Таблицу "Основные показатели по чертежам водопровода и канализации".

Канализация

Запроектированы раздельные сети хоз-бытовой и производственной канализации, отвод

Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата	
						_

15-2022-173

Прокладка разводящих сетей канализации открытая – по основным конструкциям здания, а также скрытая – под полом в грунте. Для выпусков канализации предусмотрен утепляющий керамзитовый слой, покрытый

полиэтиленовой пленкой. Жесткая заделка трубопроводов в конструкциях стен и фундаментов не допускается. Отверстия для пропуска труб через конструкции предусмотрены размером, обеспечивающим зазор трубы не менее 0,2 м, заполняемый эластичным водонепроницаемым материалом. Материал заделки – минеральная вата марки М-75 с последующей заделкой герметиком. Трубопроводы, а также стальные фасонные части, проложенные открыто, окрасить масляной краской за два раза.

Монтаж систем вести в соответствии с СНиП 3.5.01-85.

Отопление и вентиляция

Подп.

Рабочий проект разработан на основании задания на проектирование, итверждённого заказчиком, а также СНиП РК 4.02–42–2006 "Отопление, вентиляция и кондиционирование".

Климатические данные приняты согласно СНиП РК 2.04-01-2010 "Строительная КЛИМОТОЛОГИЯ":

- расчетная температура наружного воздуха tн=-39°C;
- средняя температура отопительного периода tcp=-7,5°C;
- продолжительность отопительного периода п=206 сут.

Отопление

Система отопления – горизонтальная однотрубная с нижней тупиковой разводкой магистралей. Магистральные трубопроводы прокладываются по поли. Трубы и фитинги – из полипропилена, (в помещении плавилки – трубопроводы из водогазопроводных труб по ГОСТ 3262-75*). Прокладка трубопроводов открытая. Теплоизоляция трубопроводов предусматривается.

В качестве нагревательных приборов приняты алюминиевые радиаторы DECORAL тип FR2 50 с теплоотдачей одной секции 176 Вт.

Удаление воздуха из системы отопления предусмотрено через краны Маевского, установленные в верхних пробках радиаторов.

Монтаж и приемку в эксплуатацию вести в соответствии со СНиЛ 3.05.03–85 и лами устройства и эксплуатации трубопроводов пара и горячей воды".

Трубопроводы в местах пересечения перекрытий, внутренних стен и перегородок

7	/ <i>וסמו</i> : ת	″/	יא קסטער ק
r 011 011	11HD: N° 110011.	14	<i>V</i>
Ľ	^	ИЗМ.	Кол.цч.

проложить в гильзах из негорючих материалов, края гильз должны быть на одном цровне с поверхностями стен, перегородок и потолков, но на 30 мм выше поверхности чистого пола

Заделку зазоров и отверстий в местах прокладки трубопроводов выполнить негорючими материалами, обеспечивая нормирцемый предел огнестойкости ограждения.

порядок проведения испытаний на тепловой теплопотребления определяется требованиями действующей нормативно-технической литературы и документации.

Вентиляция

В здании лаборатории предусматривается механическая приточно-вытяжная общеобменная и местная вентиляция. Подача и удаление воздуха производится с помощью металлических воздуховодов в верхнюю зону помещений через вентиляционные решетки. Оборудование приточных систем вентиляции располагается в отдельном помещении, вытяжные вентиляторы располагаются на стенах с наружной стороны здания.

В состав приточного оборудования входит заслонка с подогревом, калорифер и фильтр. Двигатели приточных вентиляторов оснащаются частотными регуляторами.

В помещениях дробильных и сушильных предусмотрены собственные системы проточно-вытяжной вентиляции, в компрессорной дополнительно обеспечен постоянный подпор воздуха. В дробильной предусмотрена система аспирации, с очисткой удаляемого воздуха в рукавном фильтре СРФ 8. В помещениях разварки и плавилки предусморены местные отсосы от оборудования с тепловыделениями и от лабораторных шкафов.

Воздуховоды систем вентиляции выполняются круглыми из оцинкованной стали по ГОСТ 14918-80, с теплоизоляцией на участках с отрицательной температурой окружающего воздуха. В качестве теплоизоляции применяются маты теплоизоляционные из минеральной ваты толщиной 50 мм с односторонним защитным покрытием.

Крепление воздуховодов производится по типовым сериям 5.904-1 и 3.900-9. После окончания наладочных работ места прохода транзитных воздуховодов через стены, перегородки и перекрытия здания цплотнить негорючими материалами, обеспечивая нормативный предел огнестойкости пересеченного ограждения.

Тепломеханические решения

Раздел тепломеханические решения выполнен на основании:технического задания на проектирование, полцченного от Заказчика, и действиющихнормативно-технических докиментов:

- CHuП PK 4.02-08-2003 "Котельные установки";
- "Правила истройства и безопасной эксплиатации паровых котлов с давлением пара не более 0,07МПа(0,7кгс/см2),водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 288°K (115° С).

СНиП2.04.14—88*"Тепловая излоляция трубопроводов и оборудования.

- CHPK 2 04-21-2004 "Энергопотребление к тепловая зашита гражданских зданий"

Климатологические данные

Изм.	Кол.цч.	Nucm	№док.	Подп.	Дата	L
	_					

-расчетная зимняя температура наружного воздуха(наиболее холодной пятидневки)=-39°C

-продолжительность отопительного периода=206 суток средняя температура отопительного периода tcp=-7,5°C.

Максимальный часовой расход электроэнергии 27 кВт/ч.

Бойлерная здания запроектирована в помещении №22 на 1 этаже. В Бойлерной предусмотрены два электрокотла по 100% от проектной мощности (1 рабочий и 1 резервный) фирмы "Келет". В качестве топлива водонагреватели используют электричество. Так же котлы могут работать в режиме каждый по 50% от проектной

мощности.

Котлы готовят теплоносители для следующих потребителей:в холодный период года Система отопления с параметрами Т1=80°C, Т2=60°C.

От превышения давления на трубопроводе к мембранному расширительному баку запроектирован предохранительный клапан. Заполнение и подпитка системы осуществляется исходной водой из водопровода. Для выравнивания объёма воды при температурных расширениях и поддержания необходимого для системы давления установлен закрытый напольный расширительный бак фирмы "Келет", Казахстан. Циркуляция воды в системе отопления осуществляется насосами (1-рабочий, 1-резервный) марки "GREENPRO".

Для предотвращения образования накипи в котле предусмотрена очистка подпиточной воды в противонакипной магнитной установке типа МПВ MWS.Опорожнение воды из котла и трубопроводов системы отопления осуществляется через воронку в канализации при помощи резинотканевого рукава и ручного насоса. Монтаж и эксплуатацию котлов выполнить согласно требованиям инструкции к котлам, входящей в комплект поставки завода — изготовителя.

Трубопроводы в котельной предусмотрены из стальных водогазопроводных труб (ГОСТ 3262–75*), подлежат тепловой изоляции.После закрепления трубопроводов на постоянных опорах, до наложениятепловой изоляции, произвести гидравлические испытания трубопроводов давлением 1,25 Рраб. Падение давления в течение 10 мин не допускается.

Результаты гидроиспытаний оформить актом.

Электрическое освещение

Рабочий проект «Реконструкция склада сельскохозяйственной продукции под пробирно-аналитическую лабораторию» разработан на основании архитектурно-планировочного задания и задания на проектирование, утверждённого заказчиком, а также СН РК 4.04-23-2004*

«Электрооборудование жилых и общественных зданий», СНиП РК 2.04–05–2002* «Естественное и искусственное освещение» и других нормативных документов, действующих на территории РК.

По степени надежности электроснабжения электроприемники лаборатории относятся ко II категории.

Проектом предусматриваются общее рабочее, аварийное (эвакуационное).
Электроосвещение помещений запроектировано согласно СНиП РК 2.04–05–2002*.
Общее рабочее освещение предусматривается во всех помещениях и выполняется

I	Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата

светодиодными светильниками.

Тип светильников выбран в соответствии со средой, в которой они цстановлены, их назначением и конструктивными особенностями.

Светильники аварийного освещения на плане обозначены буквой "А".

Аварииное освещение работает вместе с рабочим, ичаствия в создании нормириемой освещенности.

Типы светильников, количество и мощность ламп, нормирцемая освещенность цказаны ΗΠ ΠΛΠΗΠΧ.

Управление освещением принято от выключателей, установленных по месту на высоте 0,8 м от пола. В помещениях без естественного освещения, выключатели установлены вне этих помещений.

В проекте предусмотрена установка одно- и двухместных розеток с 3-м заземляющим контактом с защитными шторками для подключения оргтехники и вспомогательного оборудования.

К штепсельным розеткам с заземляющим контактом прокладывается отдельный проводник сечением равным фазноми, который служит для зануления.

Розетки в помещениях установить на высоте 0,4 м от пола.

Групповые розеточные сети и сети освещения выполнены с раздельным подключением на группах и проложены по трехпроводной схеме (L+N+PE) кабелем марки ABBГнг-LS-3x2,5 скрыто в штукатурке, по зетовому профилю и по конструкциям.

Сечения проводников осветительной и силовой сетей выбраны по допустимым нагрузкам и проверены по потере напряжения.

В местах прохода проводов и кабелей через стены кабели должны прокладываться в стальных патрубках.

Проектом предусмотрена установка в электрощитовой, тепловом узле и венткамере ящиков с понижающими трансформаторами ЯТП-0,25 220/36 В.

Щитки рабочего освещения приняты типа ЩРн-243-1-36 УХЛЗ, аварийного освещения -OUIB-3-63-6-0 36 YX/14.

На вводе – BA47-29 3P 63 A; на отходящих группах выключатели BA47-29 1P 16 A (хар-ка С).

Для розеточной сети установлены дифференциальные автоматы с устройством защитного отключения – АВДТЗ2 2Р 16 А 30 мА (Ідиф=30 мА). Все электромонтажные работы должны быть выполнены согласно ПУЭ РК.

Силовое электрооборцдование

Рабочий проект "Реконструкция склада по переработке сельскохозяйственной продукции пробирно-аналитической лабораторию" разработан архитектирно-планировочного задания и задания на проектирование, итверждённого ЗОКОЗЧИКОМ.

Рабочий проект выполнен в соответствии с действиющими на территории РК нормативными докцментами.

По степени надежности электроснабжения электроприемники лаборатории в основном

Изм.	Кол.цч.	Лист	№док.	Подп.	Дата

относятся к ІІІ-ей категории; часть электроприемников относится ко ІІ-ой категории.

Основными электроприемниками являются технологическое оборудование (истиратели, сушильные шкафы, плавильные печи и т.п.), вентиляция, вспомогательное оборудование и электрическое освещение.

Рабочим проектом предусмотрена установка вводно-распределительного устройства ВРУ-0,4 кВ с двумя вводами 2х250 А с вводными перекидными рубильниками и автоматическими выключателями.

Учет электроэнергии выполняется электронными многотарифными счетчиками активной и реактивной электроэнергии типа "Дала" CAP4Y-3721 TX P PLC IP П RS 5-7,5A, кл.1,0, 3x220/380 B, истановленными на вводах на BPY-0,4 кВ.

Электроснабжение электроприемников осуществляется с распределительных пунктов типа ПР8501, запитанных с ВРУ-0,4 кВ.

Для розеточных групп установлен щиток 1ЩР типа ЩРн–18з–1 36 УХ/13 IP31.

Щиты приняты с автоматическими выключателями для защиты групповых линий от сверхтоков и токов перегрузки. Для розеточной сети установлены дифференциальные автоматы с устройством защитного отключения типа АВДТ32-2Р с уставкой по току итечки 30 мА.

Силовые сети проложены кабелями марки ABBГнг-LS, KГH, KBBГнг-LS в лотках по конструкциям, в стальных трубах, в ПВХ кабельных каналах, в бороздах скрыто под штукатуркой и открыто на скобах.Сечения кабелей выбраны по допустимым нагрузкам и проверены по потере напряжения.

В местах прохода кабелей через стены кабели должны прокладываться в стальных патрубках. После прокладки кабелей все отверстия и патрубки заделать негорючим составом.

Заземлению подлежат все нормально нетоковедущие токопроводящие электрооборудования, которые могут оказаться под напряжением при повреждении изоляции или аварийном состоянии электрооборудования.

Для заземления электрооборудования принята система TN-C-S. Разделение совмещенного PEN проводника на N и PE проводники выполняется на ВРУ-0,4 кВ.

Сопротивление заземляющего контира для повторного заземления нилевого проводника согласно ПУЭ РК не нормируется.

Согласно СН РК 2.04-29-2005 «Инструкции по устройству молниезащиты зданий и сооружений» (таблица 1), молниезащита здания не предусматривается, так как здание II-ой степени огнестойкости относится по пожароопасности к категории Г, и его высота не превышает 30 м.

Все электромонтажные работы должны быть выполнены согласно ПУЭ РК.

Пожарная сигнализация

Рабочий проект разработан на основании требований нормативных документов РК и технического задания на проектирование, итвержденного Заказчиком.

Рабочим проектом предусмотрено оборудование помещений проборно-аналитической лаборатории истановками автоматической пожарной сигнализации и оповещения о пожаре. Система пожарной сигнализации предназначена для обнаружения очага пожара на его

Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата

ранней стадии, передачи извещений о пожаре на пожарный пост, а также для запуска системы оповещения о пожаре.

Система автоматической пожарной сигнализации и системы оповещения о пожаре выполнена в соответствии с требованиями СН РК 2.02–11–2002* и СНиП РК 2.02–15–2003.

В качестве приемно-контрольного прибора ППКОП принят прибор ВЭРС-ПК8 на 8 пожарных шлейфов.

Для передачи извещений о пожаре используется городская телефонная линия.

Питание прибора выполнено на напряжении 220 В от щита 1ЩАО гр. А4. Резервное питание осуществляется от встроенной аккумуляторной батареи 12 В, 7 А*ч.

Пожарная сигнализация выполнена на неадресных оптико-электронных дымовых извещателях типа ИПР-513-10.

Сеть пожарной сигнализации выполнить огнестойким кабелем с медными жилами типа КПСЭнг(A)–FRLS сечением 1x2x0,5 мм.кв., проложенным под перекрытием и по стенам на скобах.

Питание прибора на напряжении 220 В выполнено в части 30 огнестойким кабелем типа ABBГнг–FRLS сечением 3x2,5 мм.кв., проложенным на скобах.

Оповещение о пожаре

Согласно СН РК 2.02-11-2002 для помещений принят II-ой тип системы оповещения о пожаре.

Оповещение о пожаре решено путем установки следующих оповещателей:— звуковые охранно-пожарные оповещатели 12 В типа Маяк-12-3М, установленные внутри здания;

- световые табло 12 В "ШЫГУ/ВЫХОД" типа Люкс–12, установленные внутри здания над выходами на путях эвакуации;
- оповещатель охранно-пожарный свето-звуковой 12 В типа Маяк-12-К, установленный над входом в здание.

Сеть оповещения о пожаре выполнена огнестойким кабелем с медными жилами типа КПСЭнг(A)–FRLS сечением 2x2x0,5 мм.кв., проложенным под перекрытием и по стенам на скобах.

Отключение вентиляции при пожаре

Рабочим проектом предусмотрена система автоматического отключения вентиляции при пожаре. Для отключения вентиляции при пожаре от прибора заводится НР контакт к независимому расцепителю вводного автомата щита 1ЩВ. В момент обнаружения пожара происходит замыкание контакта на приборе, что ведет к автоматическому размыканию силовых контактов автоматического выключателя и к отключению системы вентиляции.

Монтаж системы автоматической пожарной сигнализации и системы оповещения о пожаре выполнять в соответствии с требованиями действующих нормативных документов Республики Казахстан.

I	Изм.	Кол.цч.	/lucm	№док.	Подп.	Дата

Реконструируемое здание расположено на территории производственной базы по адресу Самарское шоссе, 15.

. Рельеф спокойный.

Территория состоит из двух участков:

- -участок (кадастровый номер *05–085–093–254), 2,6103 га.*
- участок (кадастровый номер 05–085–093–027)– 1,0921 га. Общая площадь территории – 3,7024 га.

На территории имеются строения, сооружения . Существующие дороги, проезды, площадки с асфальтобетонным и грунтовым покрытием . К зданию ведет грунтовая дорога Основной въезд на территорию намечен со стороны Самарского шоссе.

Покрытие проектируемых площадок и дорожек предусмотреть грунтоасфальтовое и из каменных высевок (природного материала).

Вблизи реконструируемого здания выполнить площадки для стоянки специального автотранспорта и проезды к ним. Покрытие площадок и дорожек спланировать с учетом естественного уклона на рельеф для сбора поверхностных ливневых и талых вод.

Твердые бытовые отходы и смет с покрытия планируется собирать в контейнеры для мусора, установленные на бетонной площадке на территории участка

Проектом предусмотрены следующие мероприятия по охране земель и окружающей среды:

- 1. Срезка плодородного слоя почвы не предусмотрена, так как участок под строительство находится в пределах городской застройки, где естественный почвенный покров и рельеф полностью нарушен в результате инженерно-технических работ.
- 2. Асфальтобетонное покрытие площадок и проездов спланировано с уклоном, обеспечивающим отвод ливневых и талых вод с территории.
- 3. Высвободившийся грунт в результате устройства фундамента вывести за пределы городской черты

7. ПРОТИВОПОЖАРНЫЕ ТРЕБОВАНИЯ

- 1. Дороги, проезды, подъезды и проходы к зданию, подступы к пожарному инвентарю, должны быть всегда свободными, содержаться в исправном состоянии, а зимой быть очищенными от снега и льда (ППБ РК 2006);
- 2. Открывание всех дверей предусмотрено по направлению выхода из помещений (ППБ РК 2006);
- 3. Ширина коридоров, ширина дверных проемов, длина эвакуационных путей принята по СНиП РК 2.02–05–2002 "Пожарная безопасность зданий и сооружений";
- 4. Строительно-монтажные работы выполнять согласно правилам пожарной безопасности (ППБ РК 2006). Перед началом ведения СМР объект обеспечить противопожарным водоснабжением;
- 5. Теплоизоляционный слой URSA П–30(Г) 100 мм по ТУ 5768–00200287697–97. Группа горючести НГ (негорючие).

							_
							ı
							l
							ı
	Изм	Колич	Aurm	Nº∂nĸ	Подп.	Пата	l
_	VIJI I.	Non.y I.	/ IULIII	IV DUN.	110011.	дити	L

15-2022-173

8. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

- 1. Для промежуточного хранения ТБО временно складируются в металлические контейнеры на площадке с твердым покрытием.
- 2. При проведении планировочных работ плодородный слой почвы использовать для благоустройства участка.

Проектную документацию согласовать в установленном законодательством РК порядке.

B. No			
Взам. инв.			
Подп. и дата			
№ подл.			Лист
NHB.	Изм. Кол.уч. Лист №док. Подп. Дата	15-2022-N3	20