Рабочий проект
«Капитальный ремонт автомобильной дороги областного значения
«Алмалыбак (Киз) - Жетысу» «Алматы 1 - ст. Шамалган Узынагаш» (Боралдай - ст. Шамалган), км 0-18,177 Карасайского района
Алматинской области»

Раздел «Охрана окружающей среды»

Разработчик ИП «Чигина Т.О.»

Чигина Т.О.

СОДЕРЖАНИЕ

	введение	4
1	ОБЩИЕ СВЕДЕНИЯ	5
2	ПРОЕКТНЫЕ РЕШЕНИЯ	7
3	АТМОСФЕРНЫЙ ВОЗДУХ	10
	3.1 Климатическая характеристика района	10
	3.2 Характеристика источников загрязнения атмосферного воздуха в	
	период проведения строительно-монтажных работ	11
	3.3 Характеристика источников загрязнения атмосферного воздуха на	
	период эксплуатации	40
	3.4 Расчет и анализ величин приземных концентраций загрязняющих	
	веществ в атмосфере	40
	3.5 Обоснование размера санитарно-защитной зоны	40
	3.6 Мероприятия по снижению воздействия на атмосферный воздух	40
	3.7 Оценка загрязнения атмосферного воздуха	40
	3.8 Декларируемое количество выбросов	44
4	ВОДНЫЕ РЕСУРСЫ	48
	4.1 Гидрографическая и гидрогеологическая характеристика района	48
	4.2 Источники воздействия намечаемой деятельности,	
	водопотребление и водоотведение	50
	4.3 Мероприятия по снижению воздействия на водные	
	ресурсы	51
	4.4 Оценка загрязнения водных ресурсов	52
5	ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ	53
	5.1 Количество и виды отходов	53
	5.2 Лимиты накопления отходов	57
	5.3 Декларируемое количество отходов	58
6	ФИЗИЧЕСКИЕ ВОЗДЕЙСТВИЯ	60
7	ЗЕМЕЛЬНЫЕ РЕСУРСЫ И ПОЧВЫ	61
	7.1 Геологическая характеристика района	61
	7.2 Характеристика намечаемой деятельности, как источника	
	загрязнения почв в период проведения СМР и период эксплуатации	61

	7.3 Мероприятия по предотвращению нарушения и загрязнения земельных ресурсов и почв	61
	7.4 Оценка воздействия на земельные ресурсы, почвы	62
8	РАСТИТЕЛЬНЫЙ, ЖИВОТНЫЙ МИР	63
	8.1 Воздействие на растительный мир	63 63
9	СОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СРЕДА	64
10	ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА 10.1Оценка риска для здоровья человека. 10.2 Риск возникновения аварийных ситуаций. 10.3 Оценка неизбежного ущерба. 10.4 Оценка воздействия СМР на компоненты окружающей среды с использованием бальной системы СПИСОК ИСПОЛЬЗОВАННЫХ НОРМАТИВНО-	65 65 65 65
	МЕТОДИЧЕСКИХ ДОКУМЕНТОВ	69
	 ПРИЛОЖЕНИЯ. Мотивированный отказ РГУ «Департамент экологии по Алматинской области» № KZ08VWF00151819 от 10.04.2024 года. Лицензия ИП «Чигина Т.О.» на природоохранное проектирование и нормирование. 	71
	3. Исходные данные для выполнения раздела ООС.	

ВВЕДЕНИЕ

Экологическая оценка к рабочему проекту «Капитальный ремонт автомобильной дороги областного значения «Алмалыбак (Киз) - Жетысу» - «Алматы 1 - ст. Шамалган - Узынагаш» (Боралдай - ст. Шамалган), км 0-18,177 Карасайского района Алматинской области» выполнена по упрощенному порядку как Раздел «Охрана окружающей среды» (далее-раздел «ООС») согласно мотивированному отказу РГУ «Департамент экологии по Алматинской области» KZ08VWF00151819 от 10.04.2024 года (приложение 1).

Целью выполнения экологической оценки является подготовка материалов, необходимых для принятия отвечающих цели и задачам экологического законодательства РК, решений о реализации намечаемой деятельности.

Раздел «ООС» выполнен в соответствии с Экологическим Кодексом Республики Казахстан [Л.1], Инструкцией по организации и проведению экологической оценки [Л.2] и другими нормативно-методическими документами, действующими на территории Республики Казахстан.

Целью выполнения рабочего проекта является капитальный ремонт автомобильной дороги, замена существующих водопропускных труб, устройство примыканий и пересечений и устройство автобусных остановок.

Заказчик рабочего проекта — ГУ «Управление пассажирского транспорта и автомобильных дорог Алматинской области».

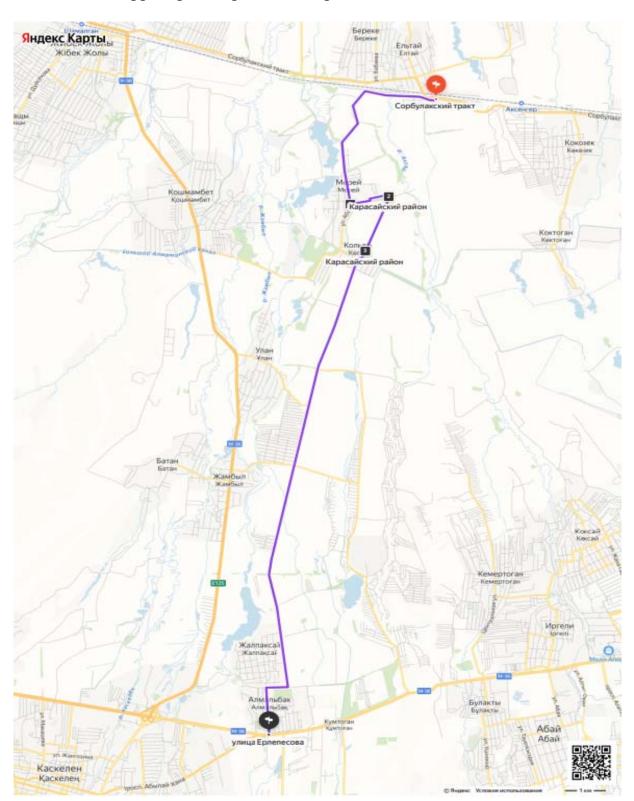
Разработчик проектной документации – ТОО «Игілік Стройпроект».

Адрес: г.Алматы, Ауэзовский район, ул. Жандосова, дом 150/2, кв.1.

БИН 090140008798

Телефон: +77474027784

Разработчик раздела «ООС» — ИП «Чигина Т.О.», лицензия на выполнение работ и оказание услуг в области охраны окружающей среды № 02511P от 06.05.2021 г. (приложение 1).


Адрес разработчика раздела «ООС»: Республика Казахстан, 140008, г. Павлодар, ул. Ак.Сатпаева, 253-150, тел.: +7 701 7587646, e-mail: chigina.to@mail.ru.

Исходными данными для выполнения раздела «ООС» являются:

- рабочий проект «Капитальный ремонт автомобильной дороги областного значения «Алмалыбак (Киз) Жетысу» «Алматы 1 ст. Шамалган Узынагаш» (Боралдай ст. Шамалган), км 0-18,177 Карасайского района Алматинской области»;
 - результаты инженерных изысканий.

1 ОБЩИЕ СВЕДЕНИЯ

Ремонтируемая дорога расположена между поселками Ельтай и Алмалыбак на территории Карасайского района Алматинской области.

Автомобильная дорога облосного значения "Алмалыбак (Киз) - Жетысу» - «Алматы 1 - ст. Шамалган - Узынагаш» (Боралдай - ст. Шамалган), км 0-18,177 Карасайского района Алматинской области» является ІІ технической категорией.

Проектными решениями предусмотрено устройство дорожной одежды капитального типа с асфальтобетонным покрытием, замена существующих водопропускных труб, устройство примыканий и пересечений, устройство автобусных остановок, разработка проекта обустройства дороги и проекта охраны окружающей среды. Общая протяженность трассы 20650,69 м.

Категория намечаемой деятельности

Согласно п.п 3) п.2 Раздела 3 Экологического кодекса РК рассматриваемый объект относится к III категории.

Так же намечаемая деятельность отнесена к III категории на основании следующего:

- соответствия критерию, указанному в п.п.7) п. 12 Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду, утвержденной приказом Министра экологии, геологии и природных ресурсов РК от 13 июля 2021 года № 246 (с изменениями и дополнениями, внесенными приказом Министра экологии и природных ресурсов Республики Казахстан от 13 ноября 2023 года № 317) (накопление на объекте отходов: для неопасных отходов от 10 до 100 000 тонн в год, для опасных отходов от 1 до 5 000 тонн в год);
- соответствия критерию, указанному в п.п. 8) п. 12 Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду, утвержденной приказом Министра экологии, геологии и природных ресурсов РК от 13 июля 2021 года № 246 (с изменениями и дополнениями, внесенными приказом Министра экологии и природных ресурсов Республики Казахстан от 13 ноября 2023 года № 317) (проведение строительно–монтажных работ при которых масса загрязняющих веществ в выбросах в атмосферный воздух составляет 10 тонн в год и более за исключением критериев, предусмотренных подпункте 2) пункта 10 и подпункте 2) пункта 11 настоящей Инструкции).

2 ПРОЕКТНЫЕ РЕШЕНИЯ

Проектом предусмотрено:

- капиталный ремонт автодороги II категории;
- замена водопропускных труб с применением звеньев под нагрузку A14 (12 шт.);
 - устройство примыканий и пересечений в одном уровне (92 шт);
- обустройство участка автомобильной дороги (в том числе устройство 30-х— автобусных остановок).

Автомобильная дорога

Автомобильная дорога облосного значения "Алмалыбак (Киз) - Жетысу» - «Алматы 1 - ст. Шамалган - Узынагаш» (Боралдай - ст. Шамалган), км 0-18,177 Карасайского района Алматинской области» является ІІ технической категорией. Расчетный срок службы дорожной одежды принят 20 лет.

Принятые технические параметры

		Показ	атели
№ п/п	Наименование параметров	По СП РК 3.03-101-2013	Принятые
1	Категория дороги	II	II
2	Расчетная скорость движения, км/час	100	100
3	Число полос движения, шт	2	2
4	Ширина полосы движения, м	3,75	3,75
5	Ширина проезжей части, м	7,5	7,5
6	Ширина обочины, м	3,75	3,75
7	Ширина земляного полотна, м	15,0	15,0

План трассы

Начало участка ПК 0+00 начинается от автодороги Алматы-Бишкек-Ташкент от км 25 и прымыкается к автодороге Шамалган-Узынагаш», на км 16,5 Карасайского района Алматинской области. Далее трасса проходит по густо населённому пункту Алмалы бак, Жалпак сай, Колди протяженностью 17,0 км. Конец трассы ПК206+50,69 соответствует сущ. км 19 трассы. Общая длина трассы составляет – 20650,69 м.

Минимальная длина прямых вставок 45,88 м; Общая длина трассы 21059 м

Основные показатели трассы:

количество углов поворота
количество углов поворота на 1 км
минимальный радиус закругления
общая длина прямых
общая длина кривых

4 уг/км;
20 м;
13273,65 м;

- минимальная длина прямых вставок

- общая длина трассы 21059 м.

Дорожная одежда

Верхний слой покрытия - щебеночно-мастичный асфальтобетон ЩМА-20 на модифицированном битуме -5 см. Подгрунтовка по нижнему слою покрытия битумной эмульсией (0.3 л/м2) Нижний слой покрытия - горячий плотный крупнозернистый асфальтобетон, марки II Тип Б, на битуме 70/100-10 см. Подгрунтовка по верхнему слою основания битумной эмульсией (0.3 л/м2). Верхний слой основания - горячий пористый крупнозернистый асфальтобетон, Марки II Тип Б, на битуме 70/100-12 см. Подгрунтовка по нижнему слою основания битумной эмульсией (0.7 л/м2). Нижний слой основания - щебеночно-песчаная смесь фракции 0-80мм С4 -20 см. Подстилающий слой - песчано-гравийная смесь (природная) -28 см.

45,88 м;

Укрепление обочин производится из ПГС толщиной 15 см. Для устройства присыпных обочин используются грунты из вне трассовых резервов.

Дорожная одежда на съездах в пределах закругления запроектирована по типу конструкции дорожной одежды основной автомобильной дороги, за пределами закругления для IV категории предусматривается тип A, для V категории тип Б.

Конструкция дорожной одежды Тип А на примыканиях IV категории:

- плотный мелкозернистый асфальтобетон тип Б марки II 0.05 м.
- нижний слой покрытия горячий пористый крупнозернистый асфальтобетон марки II на битуме БНД 70/100 0.06 м.
 - основание из щебеночно-песчанной смеси С4 0.15 м.
 - подстилающий слой гравийно-песчаная смесь природная 0.20 м.
 - земляное полотно уплотненный грунт земляного полотна.

Автобусные остановки

Проектом предусмотрено устройство 30 остановок с установкой автопавильонов на основной дороге в районе расположения населенных пунктов.

Автобусные остановки запроектированы с переходно-скоростными полосами. Дорожная одежда на переходно-скоростных полосах принята по типу основной дороги.

От остановочных площадок в направлении потока пассажиров устраиваются пешеходные дорожки шириной 1,0 м.

В состав автобусной остановки входит:

- остановочная площадка;
- посадочная площадка;
- автопавильон АП-6;
- пешеходные дорожки.

Для организации дорожного движения в зоне автобусных остановок предусмотрена установка дорожных знаков.

Дорожные знаки и разметка

Для дорожных знаков принят типоразмер II. Опоры типа СКМ - на сборном фундаменте Φ 1, Φ 2, с омоноличиванием стойки. Для указания водителям направления автомобильной дороги, границы обочин, протяженности и формы опасных участков, на водопропускных трубах (преимущественно в темное время суток и при неблагоприятных погодных условиях) установлены металлическое барьерное ограждение I группы. Проектом предусмотрена расстановка сигнальных столбиков типа с-3.

Дорожная разметка предусмотрена термопластиком белого цвета со светоотражающими шариками. Ширина разметки для І-б технической категории дороги 0,15 м. ширина разметки для ІІ технической категории дороги 0,10 м.

Водопропускные трубы

Всего в рабочем проекте принято

- 7 круглых железобетонных труб диаметром 1,0м общей длиной 166,75 метров;
- 24 круглые железобетонные трубы диаметром 1,5м общей длиной 964,52 метров;
 - 8 прямоугольных железобетонных труб общей длиной 309,37 метров;
 - 2 прямоугольные железобетонные трубы общей длиной 64,18 метров.

Все элементы труб должны быть изготовлены на сульфатостойком портландцементе.

Для обеспечения отвода и перелива образующейся в период снеготаяния воды из резервов, входные оголовки труб привязаны ко дну кювета. Все трубы предусмотрены на фундаментах типа III, так как условное сопротивление грунтов составляет менее 250 КПа.

Общая продолжительность строительства — 23 месяца (начало работ 2 квартал 2024 года).

Потребность в работающих - 28 человек.

3 АТМОСФЕРНЫЙ ВОЗДУХ

3.1 Климатическая характеристика района

Климатическая характеристика района приводится по многолетним наблюдениям метеостанции Алматы ГМО.

Климат резко континентальный, с большими суточными и годовыми амплитудами температур воздуха. В соответствии со СП РК 2.04-01-2017 (Строительная климатология) район расположен в III климатическом районе, подрайон В.

Температура воздуха

Среднегодовая температура воздуха в районе положительная и составляет $+9,8^{\circ}$ С. Средняя температура самого холодного месяца — января $-5,3^{\circ}$ С. Абсолютный минимум — $-37,7^{\circ}$ С. Наиболее теплый месяц — июль со среднемесячной температурой $+23,8^{\circ}$ С, средняя из максимальных температур достигает $+30,0^{\circ}$ С. Абсолютный максимум температуры в июле - августе достигает $+43,4^{\circ}$ С. Температура наиболее холодных суток с обеспеченностью 0,98 — $-26,9^{\circ}$ С, с обеспеченностью 0,92 — $-23,4^{\circ}$ С. Температура наиболее холодной пятидневки с обеспеченностью 0,98 — $-23,3^{\circ}$ С, с обеспеченностью 0,92 — $-20,1^{\circ}$ С. Продолжительность теплого периода составляет 176 дней. Продолжительность отопительного сезона составляет 159 дней.

Таблица 3.1-1. Средняя месячная и годовая температура воздуха, °С

Станция	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Годовая средняя
Алматы	-5,3	-3,6	2,9	11,5	16,5	21,5	23,8	22,7	17,5	9,9	2,6	-2,9	9,8

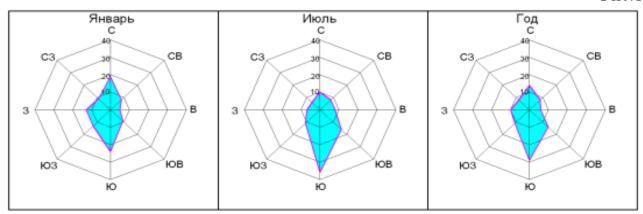
Осадки, влажность

В данном районе годовое значение относительной влажности воздуха составляет 62%. Наибольшая относительная влажность воздуха бывает в зимнее время - 79%, наименьшая — в теплое время года — 45%. Средняя месячная относительная влажность воздуха в 15ч наиболее холодного месяца — 65%. Средняя месячная относительная влажность воздуха в 15ч наиболее теплого месяца — 36%. Средняя месячная относительная влажность за отопительный период — 75%.

Распределение осадков по временам года неравномерное, наибольшее количество их выпадает в весенний период (большая часть выпадает в апреле – в среднем 103мм). Самый засушливый месяц — август (в среднем 30мм). В среднем по району количество осадков за многолетие составляет 678 мм.

Таблица 3.1-2. Среднее месячное и годовое количество осадков, мм

	Месяц													
I	I II III IV V VI VII VIII IX X XI XII Годовая средняя													
37	38	75	103	101	60	45	30	35	55	57	42	678		


Дата образования устойчивого снежного покрова приходится на конец ноября - начало декабря, а окончательное освобождение полей от снега наблюдается в начале апреля. Продолжительность залегания снежного покрова 102 дня. Наибольшая высота снежного покрова за зиму достигает 43 см.

Ветер

Район характеризуется усиленной ветровой деятельностью. Преобладающими являются ветры южного направления. Средняя годовая скорость ветра 1,7м/сек. Наибольшие скорости ветра, как правило, наблюдаются весной. Максимальная скорость ветра достигает 20 м/с, порыв — 28 м/с. Число случаев штилевой погоды составляет 5-10%.

Розы ветров по временам года и за год по данным метеостанции Алматы ГМО приведены на рис.1.

Рис.1

3.2 Характеристика источников загрязнения атмосферного воздуха в период проведения строительно-монтажных работ

Источниками выбросов загрязняющих веществ в период проведения строительно-монтажных являются выбросы от работы двигателей автостроительной техники, при работе установок с ДВС, при выполнении земляных, сварочных, лакокрасочных работ, паяльных и других работ.

На период строительно-монтажных работ определено 13 неорганизованных источников выбросов (№6001-№6013).

Выбросы загрязняющих веществ осуществляются при:

- земляных работах (источник №6001);

- ссыпке инертных материалов (источник №6002);
- транспортных работах (источник №6003);
- буровых работах (источник №6004);
- сварочных работах (источник №6005);
- газорезательных работах (источник №6006);
- механической обработке металлов (источник №6007);
- лакокрасочных работах (источник №6008);
- разогрев битумных материалов (источник №6009);
- слив битумных материалов и укладка асфальтобетона (источник №6010);
 - заправка автостроительной техники (источник №6011),
 - работе двигателей стройтехники (источник №6012);
 - работе двигателей автотехники (источник №6013).

Для определения количественных и качественных характеристик выбросов загрязняющих веществ проведен их расчет в соответствии с расходом сырьевых и строительных материалов (объем лакокрасочных и сварочных материалов, кол-во машиночасов автостроительной техники и др.), предусмотренных в сметной части рабочего проекта (данные из смет, принятые в расчет, приведены в приложении 2).

Расчет выбросов загрязняющих веществ при проведении строительно-монтажных работ

Источник загрязнения №6001 – Земляные работы

Максимальный разовый объем пылевыделений при разработке грунта рассчитывается по формуле 8 [Л.10]:

$$Q_{CEK} = P_1 x P_2 x P_3 x P_4 x P_5 x P_6 x B x G_{vac} x K_{op} x 10^6 / 3600, c/ceK$$

Валовый выброс рассчитывается путем перевода из г/сек в т/год:

$$Q_{200} = Q_{CEK} * T * 3600 * 10^{-6}, m/200$$

где: Р1 - доля пылевой фракции в породе, (табл. 1 [Л.10]).

- P_2 доля переходящей в аэрозоль летучей пыли с размером частиц 0-50 мкм по отношению ко всей пыли в материале, (табл. 1 $[\Pi.10]$).
- P_3 коэффициент, учитывающий скорость ветра в зоне работы экскаватора, (табл. 2 [Л.10]).
 - Р4 коэффициент, учитывающий влажность материала, (табл. 4 [Л.10]).
 - Р5 коэффициент, учитывающий крупность материала (табл. 5 [Л.10]).
 - Р6 коэффициент, учитывающий местные условия, (табл. 3 [Л.10]).
 - В' коэффициент, учитывающий высоту пересыпки, (табл. 7 [Л.10]).
 - $G_{\text{час}}$ количество перерабатываемой экскаватором породы, т/час.
 - G_{год} количество перерабатываемой экскаватором породы, т/год.

 $K_{o\varphi}$ - коэффициент гравитационного оседания.

Коэффициент оседания - исходя из имеющихся данных о распределении размеров частиц с удалением от источника выделения с учетом гравитационного осаждения рекомендуется принимать значение поправочного коэффициента к различной величине выделения, определен по $[\Pi.11]$).

Расчет выбросов пыли при ссыпке пылящих материалов сведен в таблицу 3.2.-1.

Таблица 3.2-1. Расчет выбросов пыли от источника №6001

										T,		Наименование		Выбро	сы ЗВ
Источник выделения	\mathbf{P}_1	P ₂	P ₃	P ₄	P ₅	P ₆	B'	Gчас, т/ч	G год, т/год	час/год	$\mathbf{k}_{o\phi}$	загрязняющего	Код ЗВ	г/с	т/год
												вещества		170	1,100
Doons forms provides												Пыль неорганическая,			
Разработка грунта	0,05	0,03	1,2	0,01	0,7	1	0,7	85	234956,9	2764,2	0,4	содержащая двуокись	2908	0,0833	0,82893
экскаваторами												кремния в %: 70-21			
Засыпка грунта												Пыль неорганическая,			
бульдозерами, планировка	0,05	0,03	1,2	0,01	0,7	1	0,5	107	827388,2	7732,6	0,4	содержащая двуокись	2908	0,0749	2,08502
территории												кремния в %: 70-22		-	
												Пыль			
												неорганическая,			
Итого по источнику выдел	гого по источнику выделения:											содержащая двуокись	2908	0,0833	2,91395
												кремния в %: 70-22			
												кремпия в /0. /0-22			

Итого выбросы пыли от источника №6001

Код ЗВ	Наименование ЗВ	Выброс г/с	Выброс тонн
1 790X	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,0833	2,91395

ИП «Чигина T.O.»

Источник загрязнения №6002 – Ссыпка инертных материалов

Максимальный разовый объем пылевыделений рассчитываются по формуле 2 [Л.10].

$$Q = k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x B x G x K_{od} x 10^6 / 3600, c/c$$

Валовый выброс рассчитывается путем перевода из г/сек в т/год:

$$Q_{200} = Q_{CEK} * T * 3600 * 10^{-6}, m/200$$

где: k_1 - весовая доля пылевой фракции в материале, (табл. 1 [Л.10]).

k₂ - доля пыли (от всей массы пыли), переходящая в аэрозоль, (табл. 1 [Л.10]).

k₃ - коэффициент, учитывающий местные метеоусловия, (табл. 2 [Л.10]).

k4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования, (табл. 3 [Л.10]).

k5 - коэффициент, учитывающий влажность материала, (табл. 4 [Л.10]).

 k_7 - коэффициент, учитывающий крупность материала, (табл. 5 [Л.10]).

В' - коэффициент, учитывающий высоту пересыпки, (табл. 7 [Л.10]).

G - производительность узла пересыпки, т/час.

Коф - коэффициент гравитационного оседания.

Коэффициент оседания - исходя из имеющихся данных о распределении размеров частиц с удалением от источника выделения с учетом гравитационного осаждения рекомендуется принимать значение поправочного коэффициента к различной величине выделения.

Расчет выбросов пыли при ссыпке пылящих материалов сведен в таблицу 3.2.-2.

Таблица 3.2-2. Расчет выбросов пыли от источника №6002

										140	,,,,,,,,,	10.2 2.1	асчет выприсов пыли	or mero mi	111111111111111111111111111111111111111
Наименование	1	1	1	,	,		Di	C /		T,	١,	IC OD	Наименование	Выбро	осы ЗВ
источника выделения	\mathbf{k}_1	\mathbf{k}_2	k ₃	k ₄	k ₅	k ₇	В'	G, т/час	G _{год}	час/год	k	Код ЗВ	загрязняющего вещества	г/с	т/год
Пересыпка щебня фр. 10-20 мм	0,04	0,02	1,2	1	0,7	0,6	0,5	15,0	62,83	4	0,4	2908	Пыль неорганическая: 70- 20% двуокиси кремния	0,336	0,00484
Пересыпка щебня фр. 20-40 мм	0,04	0,02	1,2	1	0,7	0,5	0,5	15,0	199,57	13	0,4	2908	Пыль неорганическая: 70- 20% двуокиси кремния	0,28	0,0131
Пересыпка щебня фр. 40-80 мм	0,04	0,02	1,2	1	0,7	0,4	0,5	0,01	0,01	1	0,4	2908	Пыль неорганическая: 70- 20% двуокиси кремния	0,00015	0,000001
Пересыпка песка	0,05	0,03	1,2	1	0,6	0,8	0,5	7,0	106,16	15	0,4	2908	Пыль неорганическая: 70- 20% двуокиси кремния	0,336	0,01814
Пересыпка смеси песчано-гравийной	0,05	0,03	1,2	1	0,6	0,8	0,5	15,0	204099,17	13607	0,4	2908	Пыль неорганическая: 70- 20% двуокиси кремния	0,72	35,26934
Пересыпка смеси щебеночно-гравийно-песчаной	0,05	0,03	1,2	1	0,6	0,8	0,5	15,0	48823,26	3255	0,4	2908	Пыль неорганическая: 70- 20% двуокиси кремния	0,72	8,43696
Итого по источнику в	ого по источнику выделения:											2908	Пыль неорганическая: 70-20% двуокиси кремния	0,72	43,742381

Итого выбросы пыли от источника №6002

Код ЗВ	Наименование ЗВ	Выброс г/с	Выброс тонн
1 /9UX	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,72	43,742381

ИП «Чигина T.O.»

Источник загрязнения №6003 – Транспортные работы

Выбросы пыли осуществляются при перевозке различных грузов (щебень, песок, грунт, строительный груз). Выбросы ЗВ выделяются в результате взаимодействия колес автотранспорта с полотном дороги. Сдув с поверхности материала находящегося в кузове, будет отсутствовать, так как при перевозке строительных материалов и грузов используются тенты.

Максимальный разовый выброс рассчитывается по формуле [Л.10]:

$$Q_{CEK} = C_1 x C_2 x C_3 x N x L x q_1 x C_6 x C_7 / 3600 + (C_4 x C_5 x C_6 x q' x F_0 x n), z/c$$

Валовый выброс рассчитывается путем перевода из г/сек в т/год:

$$Q_{cod} = Q_{cek} * T * 3600 * 10^{-6}, m/cod$$

где,

- C_1 коэффициент, учитывающий среднюю грузоподъемность транспорта (определен по таблице 9 [Л.10], как для автосамосвала грузоподъемностью 20 т.);
- C_2 коэффициент, учитывающий среднюю скорость передвижения транспорта (определен по таблице 10 [Л. 10]);
 - С3 коэффициент, учитывающий состояние дорог (определен по таблице 11 [Л.10]);
- C_6 коэффициент, учитывающий влажность поверхностного слоя материала (принят по таблице 4 [Л.10]);
 - С7 коэффициент, учитывающий долю пыли, уносимой в атмосферу и равный 0,01;
 - N число ходок (туда + обратно) всего транспорта в час;
 - L среднее расстояние транспортировки в пределах промплощадки, км;
- q_1 пылевыделение в атмосферу на 1 км пробега при C_1 , C_2 , C_3 =1, принимается равным 1450 г/км;

Расчет выбросов сведен в таблицу 3.2-3.

Таблица 3.2-3. Расчет выбросов пыли от источника №6003

Наименование	C		C	C .	C 7	01	N	L	L'az DD	Наименование	Выбросы ЗВ		
процесса	CI	C2	C3	C 6	C 7	q ₁	11	L	Код ЗВ	вещества	г/с	т/год	
Транспортные работы	1	1	1	0,1	0,01	1450	4	5	2908	Пыль неорганическая, содержащая двуокись кремния	0,00806	1,16184	
										(SiO ₂) 70-20%			

Итого выбросы пыли от источника №6003

Код ЗВ	Наименование ЗВ	Выброс, г/с	Выброс, тонн
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,00806	1,16184

<u>Источник загрязнения №6004 – Буровые работы</u>

В период строительства предусмотрена работа машины бурильно-крановой и бурильного молотка. Выбросы пыли рассчитываются согласно [Л.10]. Расчет выбросов приведен в таблице 3.2-3.

Максимально разовые выбросы определяются по формуле:

$$Q_1 = \underline{\mathbf{n} \times \mathbf{z}}, \, \Gamma/\mathbf{c}$$

Валовые выбросы определяются по формуле:

$$Q = n \times z \times T \times 10^{-6}$$
, тонн/период СМР

где,

n – количество единовременно работающих установок;

z – количество пыли, выделяемое при бурении станком, г/ч;

Т – время работы установки.

Расчет выбросов сведен в таблицу 3.2-4.

Таблица 3.2-4. Расчет выбросов от источника №6004

100111111111111111111111111111111111111	· I ac ici bbiop	0000							
Наименование	Наименование	п, шт	z, г/час	Т, час	Наименование загрязняющего	Код ЗВ	Выбросы ЗВ		
процесса	материала				вещества		г/с	тонн	
Бурение скважин под котлованы	Бурильно крановая машина	1	97	147,474	Пыль неорганическая: 70-20% двуокиси кремния	2908	0,02694	0,0143	
Итого по источні	ику выделения:				Пыль неорганическая: 70-20% двуокиси кремния	2908	0,02694	0,0143	

Источник загрязнения №6005 – Сварка стали

Сварочные работы производятся электродуговой ручной сваркой штучными электродами, газовая сварка пропан-бутановой смесью, полуавтоматическая сварка с применением проволоки специального назначенния.

Валовое количество загрязняющих веществ, выбрасываемых в атмосферу в процессе сварки (наплавки), определяются по формуле 5.1 [Л.12]:

$$M_{rod} = \frac{B_{rod} \times K_{T}^{x}}{106} \times (1 - \eta)$$
, т/период СМР

где,

 $B_{\text{год}}$ - расход применяемого сырья и материалов, кг/период СМР;

 $K_{\rm T}^{\rm x}$ - удельный показатель выброса загрязняющего вещества «х» на единицу массы расходуемых материалов, г/кг (табл.1 [Л.12);

 $\pmb{\eta}$ - степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Максимально разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессах сварки (наплавки), определяются по формуле 5.2 [Л.12]:

$$M_{\text{cek}} = \frac{K_{\text{T}}^{\text{X}} \times B_{\text{vac}}}{3600} \times (1 - \eta), \Gamma/c$$

где,

 $B_{\rm vac}$ — фактический максимальный расход применяемых материалов с учетом дискретности работы оборудования, кг/час.

Результаты расчета сведены в таблицу 3.2-5.

Таблица 3.2-5. Расчет выбросов от источника №6005.

Наименование	Наименование	Вчас,		K ^x m,	Наименование	Код	Выбро	сы ЗВ
процесса	материала	кг/час	В, кг	г/кг	загрязняющего вещества	3B	г/с	т/год
Сварка с	Электроды	1,65	17,06	14,97	Железо (II, III) оксид	0123	0,00686	0,00026
применением электродов	марки АНО-6 (Э42)	1,65	17,06	1,73	Марганец и его соединения	0143	0,00079	0,00003
Газовая сварка	Пропан- бутановая смесь	1,5	30,67	15	Азота (IV) диоксид	0301	0,00625	0,00046
	Проволока марки	1	0,85	7,67	Железо (II, III) оксид	0123	0,00213	0,00001
Сварка сталей полуавтоматичес	СВ-10НМА (СВ- 08А, проволока	1	0,85	1,9	Марганец и его соединения	0143	0,00053	0,000002
кая	для сварки с неомедненной поверхностью)	1	0,85	0,43	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	2908	0,00012	0,0000004
					Железо (II, III) оксид	0123	0,00686	0,00027
					Марганец и его соединения	0143	0,00079	0,000032
					Азота (IV) диоксид	0301	0,00625	0,00046
					Пыль неорганическая,	2908		
					содержащая двуокись		0,00012	0,0000004
					кремния в %: 70-20			

Источник загрязнения №6006 – Газорезательные работы

Валовое количество загрязняющих веществ, выбрасываемых в атмосферу при резке металла, определятся по формуле 6.1 [Л.12]:

$$G = K^{x} x T x 10^{-6}, m/200$$

где:

 K^x - удельный показатель выброса загрязняющего вещества «х» на единицу времени работы оборудования, при толщине разрезаемого металла σ , г/час, табл.4 [Л.12];

Т – время работы одной единицы оборудования, час/год;

 η - степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу при резке металла, определяются по формуле 6.2 [Л.12]:

$$M = K^x / 3600$$
, c/c

Результаты расчета сведены в таблицу 3.2-6.

Таблица 3.2-6. Расчет выбросов от источника №6006.

Технологический	Толщина	Т,	K ^x ,	Наименование		Выбро	сы ЗВ
процесс	разрезаемого металла, мм	час/год	г/час	загрязняющего вещества	Код ЗВ	г/с	тонн
		107,81	129,1	Железо (II, III) оксиды	0123	0,03586	0,01392
Газовая резка	10 мм	107,81	1,9	Марганец и его соединения	0143	0,00053	0,0002
металла		107,81	64,1	Азота (IV) диоксид	0301	0,01781	0,00691
		107,81	63,4	Углерод оксид	0337	0,01761	0,00684
				Железа (II, III)			
				оксиды	0123	0,03586	0,01392
				Марганец и его			
				соединения	0143	0,00053	0,0002
				Азота (IV) диоксид	0301	0,01781	0,00691
Итого по источнику	выделения:			Углерод оксид	0337	0,01761	0,00684

Источник загрязнения №6007 – Механическая обработка металла

Выбросы загрязняющих веществ, образующихся при механической обработке металлов, без применения СОЖ, от одной единицы оборудования, определяются по формулам [Л.22].

Валовый выброс для источников выделения, не обеспеченных местными отсосами, определяется по формуле:

$$M_{rod} = \frac{3600 \times k \times Q \times T}{10^6}$$
, т/год

где,

k - коэффициент гравитационного оседания (п.5.3.2 [Л.22]);

Q - удельное выделение пыли технологическим оборудованием, г/с (табл. 1-5);

Т - фактический годовой фонд времени работы одной единицы оборудования, час.

Максимальный разовый выброс для источников, не обеспеченных местными отсосами, определяется по формуле:

$$M_{cek} = k \times Q, \Gamma/c$$

Расчеты выбросов от источника №6007 сведены в таблицу 3.2-8.

Таблица 3.2-8. Расчет выбросов ЗВ при механической обработке металлов

Технологический	Q, г/с Т, час.		N, кВт	k	Наименование загрязняющего	Код ЗВ	Выбросы ЗВ	
процесс	C)	,	,		вещества	-7,	г/с	т/год
Станки шлифовальные, d=150	0,02	5,22	-	0,2	Взвешенные частицы	2902	0,004	0,00008
MM	0,013	5,22	-	0,2	Пыль абразивная	2930	0,0026	0,00005
Итого по источникам	выделен	ия:			Взвешенные частицы	2902	0,004	0,00008
					Пыль абразивная	2930	0,0026	0,00005

Источник загрязнения №6008 - Лакокрасочные работы

Валовый выброс нелетучей (сухой) части аэрозоля краски, образующийся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле 1 [Л.13]:

$$M_{_{\rm H.OKp}}^{^a} = \frac{m_{_\varphi} \times \delta_{_a} \times (100 - f_{_p})}{10^4} \times (1 - \eta), \label{eq:mass}$$
 _T/год

где,

 m_{ϕ} - фактический годовой расход ЛКМ (т);

 δ_a - доля краски, потерянной в виде аэрозоля (% мас.), табл. 3;

f_p - доля летучей части (растворителя) в ЛКМ, (%, мас.), табл. 2;

тепень очистки воздуха газоочистным оборудованием (в долях единицы).

Максимальный разовый выброс нелетучей (сухой) части аэрозоля краски, образующийся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле 2 [Л.13]:

$$M_{_{H.OKp}}^{a} = \frac{m_{_{M}} \times \delta_{_{a}} \times (100 - f_{_{p}})}{10^{4} \times 3.6} \times (1 - \eta),$$

где,

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования (кг/час). При отсутствии этих данных допускается использовать

максимальную паспортную производительность.

Валовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам [Л.13]:

а) при окраске:

$$M_{\text{okp}}^{x} = \frac{m_{\phi} \times f_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6}} \times (1 - \eta),$$
 т/год

где,

 δ'_p - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, мас.), табл. 3:

 δ_{x} - содержание компонента «х» в летучей части ЛКМ, (%, мас.), табл. 2

б) при сушке:

$$M_{\text{суш}}^{x} = \frac{m_{\phi} \times f_{p} \times \delta_{p}^{"} \times \delta_{x}}{10^{6}} \times (1 - \eta),$$
 т/год

где,

 δ''_{p} - доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, мас.), табл. 3.

Максимальный разовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам [Л.13]:

а) при окраске:

$$M_{\text{okp}}^{x} = \frac{m_{\text{M}} \times f_{\text{p}} \times \delta_{\text{p}}^{'} \times \delta_{\text{x}}}{10^{6} \times 3.6} \times (1 - \eta),$$

$$\Gamma/c$$

где,

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования (кг/час). При отсутствии этих данных допускается использовать максимальную паспортную производительность;

б) при сушке:

$$M_{\text{cym}}^{x} = \frac{m_{\text{M}} \times f_{\text{p}} \times \delta_{\text{p}}^{"} \times \delta_{\text{x}}}{10^{6} \times 3.6} \times (1 - \eta), \quad \Gamma/c$$

где:

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом времени сушки (кг/час). Время сушки берется согласно технологических или справочных данных на данный вид ЛКМ.

Общий валовый или максимальный разовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле 7 [Л.13]:

$$M_{oбij}^{x} = M_{okp}^{x} + M_{cym}^{x}$$

Расчеты выбросов от источника №6008 сведены в таблицу 3.2-9.

Таблица 3.2-9. Расчет выбросов ЗВ при окрасочных работах

22

						1 a	юлица 3.2-	-9. Расчет выбросо	в зв прі	и окрасочны	іх раоотах
			£	2	21	δ"p,	2	Наименование	I/o.z	Выбр	осы ЗВ
Марка ЛКМ	т _ф , тонн	т _м , кг/час	f _р , % масс.	δ _a , % масс.	δ' _p , % масс.	% масс.	δ _x , % масс.	загрязняющего вещества	Код 3В	г/с	тонн
Эмаль	0,09622	1,5	45	30	25	75	-	Взвешенные частицы	2902	0,06875	0,01588
пентафталевая ПФ - 115	0,09622	1,5	45	-	25	75	50	Ксилол	0616	0,09375	0,02165
ΠΦ - 113	0,09622	1,5	45	-	25	75	50	Уайт-спирит	2752	0,09375	0,02165
Лак битумный	0,79642	0,5	63	-	28	72	42,6	Уайт-спирит	2752	0,03728	0,21374
БТ-123	0,79642	0,5	63	-	28	72	57,4	Ксилол	0616	0,05023	0,288
Уайт-спирит	0,01497	0,5	100	-	28	72	100	Уайт-спирит	2752	0,13889	0,01497
Грунтовка ГФ-021	0,07354	1	45	-	28	72	100	Ксилол	0616	0,125	0,03309
Эмаль для	1,42866	0,5	73	-	28	72	26	Пропан-2-он (Ацетон)	1401	0,02636	0,27116
дорожной	1,42866	0,5	73	-	28	72	12	Бутилацетат	1210	0,01217	0,12515
разметки АК 511	1,42866	0,5	73	-	28	72	62	Толуол	0621	0,06286	0,64661
Растворители для	0,02754	0,5	100	-	28	72	26	Пропан -2-он (Ацетон)	1401	0,03611	0,00716
лакокрасочных	0,02754	0,5	100	-	28	72	12	Бутилацетат	1210	0,01667	0,0033
материалов Р-4	0,02754	0,5	100	-	28	72	62	Толуол	0621	0,08611	0,01707
Эмаль ХВ-124,	0,28314	0,5	27	-	28	72	26	Пропан -2-он (Ацетон)	1401	0,00975	0,01988
XB-161	0,28314	0,5	27	-	28	72	12	Бутилацетат	1210	0,0045	0,00917
	0,28314	0,5	27	-	28	72	62	Толуол	0621	0,02325	0,0474
<u> </u>			•	•		l .		Ксилол	0616	0,125	0,34274
								Толуол	0621	0,08611	0,71108
								Бутилацетат	1210	0,01667	0,13762
Итого но наточника								Пропан -2-он	1401	0,03611	0,2982
Итого по источника	ии выделения:							(Ацетон)			
								Уайт-спирит	2752	0,13889	0,25036
								Взвешенные	2902	0,06875	0,01588
								частицы			

Источник загрязнения №6009 - Выбросы при разогреве битумных материалов

Выбросы 3В осуществляются при разогреве битумных материалов в котле автогудронатора и электрическом битумоварочном котле. Потребность в горячем битуме для устройства дорожного покрытия составит 213,4 тонн.

Выбросы углеводородов рассчитываются по формулам [Л.15, 16]

Максимально разовый выброс углеводородов при разогреве битума рассчитывается по формуле $\Pi 1.3 \ [\Pi.15]$:

$$M = \underbrace{0.445 \times P_t \times m \times K_p \operatorname{max} \times V_q \operatorname{max} \times K_B}_{10^2 \times (273 + t_{\mathcal{H}} \operatorname{max})}, \ \varepsilon/c$$

Валовый выброс углеводородов при разогреве битума рассчитывается по формуле $\Pi 1.4 \ [\Pi.15]$:

$$G = \underline{0,160 \ x \ (P_t^{max} x \ K_B + P_t^{min}) \ x \ m \ x \ K_p^{cp} x \ K_{OE} x \ B}}, \quad m$$
онн $10^4 \ x \
ho_{\mathcal{H}} x \ (546 + t_{\mathcal{H}}^{max} + t_{\mathcal{H}}^{min})$

где: Pt – давление насыщенных паров нефтепродукта, мм.рт.ст.;

 P_t^{max} , P_t^{min} — давление насыщенных паров нефтепродукта при максимальной и минимальной температуре жидкости соответственно, мм.рт.ст. (P_t^{max} P_t^{min} принимается по таблице П1.1 [Л.15]);

 K_p^{cp} , K_p^{max} – опытные коэффициенты ([Л.15] приложение 8);

 $V_{\mbox{\tiny H}}^{\mbox{\tiny max}}$ — максимальный объем паровоздушной смеси, вытесняемой из резервуара, м 3 /час;

 t_{**}^{max} , t_{**}^{min} — максимальная и минимальная температура нефтепродукта в резервуаре соответственно, ${}^{0}C$;

m — молекулярная масса битума (принимается равной 187 по температуре начала кипения битума [Л.15]);

 K_B – опытный коэффициент ([Л.15] приложение 9);

 $\rho_{\text{ж}}$ – плотность нефтепродукта, т/м³ (принимается 0,95 т/м³ [Л.15]);

 K_{o6} – коэффициент оборачиваемости ([Л.15] приложение 10);

B – количество нефтепродукта, разогреваемое в резервуаре, т/год.

Расчеты выбросов загрязняющих веществ сведены в таблицу 3.2-10.

Таблица 3.2-10. Расчет выбросов ЗВ при разогреве битума

Технологический	Ptmax,	Ptmin,					0	t _ж max,	t _ж ^{min} ,			Vumax,	В,	Наименование	Код	Выбро	сы ЗВ
процесс	мм.рт.ст.	мм.рт.ст.	Кв	m	$\mathbf{K}_{\mathbf{p}}^{\mathbf{cp}}$	Коб	ρж, т/м ³	°С ,	°C,	Pt	K _p ^{max}	м ³ /час	тонн	загрязняющего вещества	3В	г/с	тонн
Разогрев дорожного битума в электричеком битумоварочном котле	38,69	2,74	1	187	0,7	2,5	0,95	160	90	38,69	1	4,2	208,4	Углеводороды предельные C12-C19	2754	0,31229	0,05978
Разогрев мастики и битума в автогудронаторе	38,69	2,74	1	187	0,7	2,5	0,95	160	90	38,69	1	0,1	5,0	Углеводороды предельные C12-C19	2755	0,00744	0,00143
Итого по источник	Ітого по источнику выделения:											Углеводороды предельные С12-С19	2754	0,31229	0,06121		

Источник загрязнения №6010 - Выбросы при разогреве битумных материалов

Выбросы в атмосферу углеводородов предельных С₁₂-С₁₉ осуществляются при следующих процессах:

- Разгрузка дорожного битума и мастики из автогудронатора и битумоварочного котла при строительстве проектируемого асфальтобетонного покрытия. По таблице 3.1 [Л.15] норма естественной убыли битума при разгрузке составляет 0,2%. Согласно рабочему проекту расход битума на период строительства составляет 213,4 тонн.
- Укладка асфальтобетонной смеси и дорожного битума при строительстве асфальтобетонного покрытия. Асфальтобетон на площадку строительства доставляется в готовом виде. Согласно [Л.15] нормативы естественной убыли (потери) дорожностроительных материалов битума при разгрузке и укладке составляет 0,2%. Объем используемого асфальтобетона составляет 68508,17509 тонн. В используемом асфальтобетоне битума содержится 6% от массы, т.е. 4110,5 тонн. Количество дорожного битума 214,7 (с учетом битумных материалов холодного применения) тонн.

Выбросы углеводородов предельных С12-С19 в атмосферный воздух в процессе разгрузки битума определяются по формуле:

$$G = B x n x 10^{-2}$$
, тонн $M = G x 10^6 / (T x 3600)$, г/с

где: В – расход битума, тонн;

n – нормативы естественной убыли, % (табл. 3.1 [Л.15]);

Т – время работы по разгрузке битума, час.

Расчеты выбросов сведены в таблицу 3.2-11.

Таблица 3.2-11. Расчет выбросов ЗВ при разгрузке и укладке битумных материалов

Tuotingu et 2 110 1 ue te 1 2210 poed 52 inpin pust pysike in yikinagke enry minera martephantos												
	В,			Наименование		Выбро	сы ЗВ					
Наименование процесса	тонн	n, %	Т, час	загрязняющего вещества	Код ЗВ	г/с	тонн					
Разгрузка битума с разогревающих устройств	213,4	0,2	427	Углеводороды предельные C12-C19	2754	0,27778	0,4268					
Укладка битума при устройстве дорожного покрытия	214,7	0,2	429	Углеводороды предельные C12-C19	2754	0,27778	0,42936					
Укладка асфальтобетона	4110,5	0,2	10973	Углеводороды предельные C12-C19	2754	0,20812	8,221					
Итого по источнику выделения:				Углеводороды предельные С12-С19	2754	0,27778	9,07716					

Источник загрязнения №6011 - Выбросы при заправке строительной техники.

Заправка строительной техники дизтопливом осуществляется автозаправщиком с использованием поддонов. Расход дизтоплива составляет 1032,421 тонн. При плотности дизельного топлива $0.85~\text{т/m}^3$ объем закачиваемого топлива $877,5577~\text{m}^3$. Производительность насоса автозаправщика составляет $36.0~\text{m}^3/\text{час}$ (10~п/c).

Максимально разовые выбросы при заполнении баков техники рассчитываются по формуле 9.2.2 [Л. 16]:

$$M_{\delta.a/M} = (V_{c\pi} x C^{max}_{\delta.a/M}) / 3600, \varepsilon/c$$

где: $M_{6.a/M}$ — максимальные выбросы паров нефтепродуктов при заполнении баков техники, г/с (приложение 12 [Л.16]);

 ${
m V_{cn}}- {
m \varphi}$ актический максимальный расход топлива, м $^3/{
m q}$;

ИП «Чигина T.O.»

 $C^{\max}_{6.a/M}$ — максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении баков техники, г/м³ (приложение 12 [Л.16]).

Валовые выбросы паров нефтепродуктов при заправке рассчитываются как сумма выбросов из баков техники ($G_{\delta,a}$) и выбросов от проливов нефтепродуктов на поверхность поддона ($G_{np,a}$) по формуле 9.2.6. [Л.16]:

$$G_{mp\kappa} = G_{\delta.a.} + G_{np.a}$$
, тонн

Значение G_{б.а.} рассчитывается по формуле 9.2.7. [Л.16]:

$$G_{\delta.a.} = (C_{\delta}^{o3} x Q_{o3} + C_{\delta}^{en} x Q_{en}) x 10^{-6}$$
, тонн

где: C_6^{o3} , $C_6^{вл}$ – концентрации паров нефтепродуктов в выбросах паровоздушной смеси при заполнении баков в осенне-зимний и весенне-летний период соответственно, г/м³ (приложение 15 [Л.16]).

Значение $G_{\text{пр.а.}}$ вычисляется по формуле 9.2.8. [Л.16]:

$$G_{np.a.} = 0.5 x J x (Q_{o3} + Q_{en}) x 10^{-6}$$
, тонн

где: $J - удельные выбросы при проливах, <math>r/m^3$. Для дизтоплива – 50;

 $Q_{\text{оз}},\,Q_{\text{вл}}$ – количество нефтепродуктов, закачиваемое в резервуары в осенне-зимний и весенне-летний периоды, м³/период.

Выбросы загрязняющих веществ в составе паров нефтепродуктов рассчитываются по формулам 5.2.4 и 5.2.5 [Л.16]:

Максимальные выбросы і-того загрязняющего вещества:

$$M_i = M \times C_i/100$$
, ε/c

Годовые выбросы і-того загрязняющего вещества:

$$G_i = G x C_i/100$$
, m/20 ∂

где: C_i - концентрация і-того загрязняющего вещества, % (приложение 14 [Л.16]). Расчеты выбросов загрязняющих веществ сведены в таблицу 3.2-12.

Таблица 3.2-12. Расчет выбросов ЗВ при заправки автотехники

Наименование	V _{сл} ,	Сб.а/ммах,	Сбоз,	Сб вл,	Q ₀₃ ,	Q _{вл} ,	J,	M,	G, Ci,		G,	Наименование	IC - 2D	Выбросы ЗВ	
нефтепродукта	м ³ /час	г/м ³	г/м ³	г/м ³	M ³	M ³	г/м ³	г/с	т/год	%	загрязняющего вещества	Код ЗВ	г/с	тонн	
Дизтопливо	36	3,14	0	2,2	0	877,5577	50	0,0314	0,0239	99,72	Углеводороды предельные C12-C19	2754	0,03131	0,0238	
	36	3,14	0	2,2	0	877,5577	50	0,0314	0,0239	0,28	Сероводород	0333	0,00009	0,000067	
											Углеводороды предельные С12-С19	2754	0,03131	0,0238	
											Сероводород	0333	0,00009	0,000067	

Источник загрязнения №6012 - Работа двигателей стройтехники

Количество вредных веществ, содержащихся в выхлопных газах строительной техники (бульдозер, экскаватор и др.), рассчитывается путем умножения величины расхода топлива в тоннах (т/час) на соответствующие коэффициенты [Л.10].

Максимальный разовый выброс токсичных веществ газов при работе строительной техники производится по формуле:

$$M = B * q / 3600, r/c$$

где,

B — расход топлива, т/час (расход топлива для дизельных двигателей составляет 0,25 кг/час на 1 л.с. мощности [Л.10]),

q – коэффициент эмиссий і-того загрязняющего вещества (таблица 13 [Л.10]).

Валовый выброс токсичных веществ газов при работе строительной техники рассчитывается по формуле:

$$G = M * T * 3600 * 10^{-6}$$
, т/период СМР

где,

Т – время работы строительной техники, маш.час.

Перечень используемой стройтехники представлен в таблице 3.2-13. Расчеты выбросов сведены в таблицу 3.2-14.

Таблица 3.2-13. Перечень стройтехники

№ п\п	Наименование	Маш/час
1	Автогрейдеры среднего типа мощностью от 88,9 до 117,6 кВт (от 121 до 160 л.с.), массой от 9,1 до 13 т	2097
2	Автопогрузчики, г/п 5т	5627,27
3	Электростанции переносные, мощность до 4 кВт	5,4
4	Бульдозеры, 96 кВт	4702,7
5	Катки дорожные прицепные на пневмоколесном ходу, 25-30 т	5799,09
6	Катки дорожные самоходные гладкие, 13-16 т	2982,88
7	Катки дорожные самоходные гладкие, до 10 т	7935,4
8	Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 0,5-2,2 м3/мин	2,4
9	Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 5 м3/мин	578,71
10	Краны на автомобильном ходу, 10 т	282,68
11	Краны на автомобильном ходу, г/п 16 т	18,74
12	Краны на гусеничном и пневмоколесном ходу, 25 т	293,86
13	Краны на гусеничном ходу, 50-63 т	29,19
14	Грейдер-элеватор мощность 121 кВт (165 л.с.)	168,31
15	Тракторы на гусеничном ходу, 79 кВт	1865,49
16	Трактор с щетками дорожными навесными	778,77
17	Асфальтоукладчики, типоразмер 3	809,69
18	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 0,65 до 1 м ³ , масса свыше 13 до 20 т	1004,95
19	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 1,5 до 2,5 м3, масса свыше 26 до 35 т	130,06
20	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 0,4 до 0,5 м3, масса свыше 5 до 13 т	44,18

№ п\п	Наименование	Маш/час
21	Погрузчики одноковшовые универсальные фронтальные пневмоколесные	11,12
22	Машины бурильные	147,47

Таблица 3.2-14. Расчеты выбросов от работы стройтехники

Наименование	Мощность,	D /			Наименование		Выбро	осы ЗВ
техники	л.с.	В, т/час	Т, час	kэi	загрязняющего вещества	Код ЗВ	г/с	т/год
Автогрейдеры среднего	160	0,040	2097	10000	Азота (IV) диоксид	0301	0,11111111	0,83879999
типа мощностью от 88,9 до 117,6 кВт (от 121 до 160 л.с.), массой	160	0,04	2097	15500	Углерод (Сажа, Углерод черный)	0328	0,17222222	1,30013998
от 9,1 до 13 т	160	0,04	2097	20000	Сера диоксид	0330	0,2222222	1,67759998
,	160	0,04	2097	0,1	Углерод оксид	0337	0,00000111	0,00000838
	160	0,04	2097	0,32	Бенз/а/пирен	0703	0,00000356	0,00002688
	160	0,04	2097	30000	Керосин	2732	0,33333333	2,51639997
Автопогрузчики, г/п 5т	80	0,020	5627,27	10000	Азота (IV) диоксид	0301	0,0555556	1,12545409
	80	0,020	5627,27	15500	Углерод (Сажа, Углерод черный)	0328	0,08611111	1,74445368
	80	0,020	5627,27	20000	Сера диоксид	0330	0,11111111	2,25090798
	80	0,020	5627,27	0,1	Углерод оксид	0337	0,00000056	0,00001134
	80	0,020	5627,27	0,32	Бенз/а/пирен	0703	0,00000178	0,00003606
	80	0,020	5627,27	30000	Керосин	2732	0,16666667	3,37636207
Электростанции	5,5	0,001	5,4	10000	Азота (IV) диоксид	0301	0,00388889	0,0000756
переносные, мощность до 4 кВт	5,5	0,0014	5,4	15500	Углерод (Сажа, Углерод черный)	0328	0,00602778	0,00011718
	5,5	0,0014	5,4	20000	Сера диоксид	0330	0,00777778	0,0001512
	5,5	0,0014	5,4	0,1	Углерод оксид	0337	0,00000004	0,000000001
	5,5	0,0014	5,4	0,32	Бенз/а/пирен	0703	0,00000012	0,000000002
	5,5	0,0014	5,4	30000	Керосин	2732	0,01166667	0,0002268
Бульдозеры, 96 кВт	130	0,033	4702,7	10000	Азота (IV) диоксид	0301	0,09166667	1,55189106
	130	0,033	4702,7	15500	Углерод (Сажа, Углерод черный)	0328	0,14208333	2,40543099
	130	0,033	4702,7	20000	Сера диоксид	0330	0,18333333	3,10378194
	108	0,033	4702,7	0,1	Углерод оксид	0337	0,00000092	0,00001558
	130	0,033	4702,7	0,32	Бенз/а/пирен	0703	0,00000293	0,0000496
	130	0,033	4702,7	30000	Керосин	2732	0,275	4,655673
Катки дорожные	180	0,045	5799,09	10000	Азота (IV) диоксид	0301	0,125	2,6095905
прицепные на пневмоколесном ходу, 25-30 т	180	0,045	5799,09	15500	Углерод (Сажа, Углерод черный)	0328	0,19375	4,04486528
23-30 1	180	0,045	5799,09	20000	Сера диоксид	0330	0,25	5,219181
	180	0,045	5799,09	0,1	Углерод оксид	0337	0,00000125	0,0000261
	180	0,045	5799,09	0,32	Бенз/а/пирен	0703	0,000004	0,00008351
	180	0,045	5799,09	30000	Керосин	2732	0,375	7,8287715
Катки дорожные	115	0,03	2982,88	10000	Азота (IV) диоксид	0301	0,08055556	0,86503525
самоходные гладкие, 13-16 т	115	0,03	2982,88	15500	Углерод (Сажа, Углерод черный)	0328	0,12486111	1,34080455
	115	0,03	2982,88	20000	Сера диоксид	0330	0,16111111	1,73007039
	115	0,03	2982,88	0,1	Углерод оксид	0337	0,00000081	0,0000087
	115	0,03	2982,88	0,32	Бенз/а/пирен	0703	0,00000258	0,0000277
	115	0,03	2982,88	30000	Керосин	2732	0,24166667	2,59510564
Катки дорожные	90	0,02	7935,4	10000	Азота (IV) диоксид	0301	0,06388889	1,82514203
самоходные гладкие, до 10 т	90	0,023	7935,4	15500	Углерод (Сажа, Углерод черный)	0328	0,09902778	2,82897016
	90	0,023	7935,4	20000	Сера диоксид	0330	0,12777778	3,65028406
	90	0,023	7935,4	0,1	Углерод оксид	0337	0,00000064	0,00001828

Наименование	Мощность,	n '	700		Наименование	10 00	Выбро	осы ЗВ
техники	л.с.	В, т/час	Т, час	kэi	загрязняющего вещества	Код ЗВ	г/с	т/год
	90	0,023	7935,4	0,32	Бенз/а/пирен	0703	0,00000204	0,00005828
	90	0,023	7935,4	30000	Керосин	2732	0,19166667	5,4754261
Компрессоры	80	0,02	2,4	10000	Азота (IV) диоксид	0301	0,0555556	0,00048
передвижные с двигателем	80	0,02	2,4	15500	Углерод (Сажа, Углерод черный)	0328	0,08611111	0,000744
внутреннего сгорания давлением до 686 кПа	80	0,02	2,4	20000	Сера диоксид	0330	0,11111111	0,00096
(7 атм), 0,5-2,2 м3/мин	80	0,02	2,4	0,1	Углерод оксид	0337	0,00000056	0,000000000
	80	0,02	2,4	0,32	Бенз/а/пирен	0703	0,00000178	0,00000002
	80	0,02	2,4	30000	Керосин	2732	0,16666667	0,00144
Компрессоры	100	0,025	578,71	10000	Азота (IV) диоксид	0301	0,06944444	0,14467749
передвижные с двигателем	100	0,025	578,71	15500	Углерод (Сажа, Углерод черный)	0328	0,10763889	0,22425013
внутреннего сгорания давлением до 686 кПа	100	0,025	578,71	20000	Сера диоксид	0330	0,13888889	0,289355
(7 атм), 5 м3/мин	100	0,025	578,71	0,1	Углерод оксид	0337	0,00000069	0,00000144
	100	0,025	578,71	0,32	Бенз/а/пирен	0703	0,00000222	0,00000463
	100	0,025	578,71	30000	Керосин	2732	0,20833333	0,43403249
Краны на	75	0,019	282,68	10000	Азота (IV) диоксид	0301	0,05222222	0,05314384
автомобильном ходу, 10 т	75	0,019	282,68	15500	Углерод (Сажа, Углерод черный)	0328	0,08094444	0,08237295
	75	0,019	282,68	20000	Сера диоксид	0330	0,10444444	0,10628768
	75	0,019	282,68	0,1	Углерод оксид	0337	0,00000052	0,00000053
	75	0,019	282,68	0,32	Бенз/а/пирен	0703	0,00000167	0,0000017
	75	0,019	282,68	30000	Керосин	2732	0,15666667	0,15943152
Краны на	90	0,023	18,74	10000	Азота (IV) диоксид	0301	0,0625	0,0042165
автомобильном ходу, г/п 16 т	90	0,0225	18,74	15500	Углерод (Сажа, Углерод черный)	0328	0,096875	0,00653558
	90	0,0225	18,74	20000	Сера диоксид	0330	0,125	0,008433
	90	0,0225	18,74	0,1	Углерод оксид	0337	0,00000063	0,00000002
	90	0,0225	18,74	0,32	Бенз/а/пирен	0703	0,000002	0,00000013
	90	0,0225	18,74	30000	Керосин	2732	0,1875	0,0126495
Краны на гусеничном и	100	0,025	293,86	10000	Азота (IV) диоксид	0301	0,06944444	0,073465
пневмоколесном ходу, 25 т	100	0,025	293,86	15500	Углерод (Сажа, Углерод черный)	0328	0,10763889	0,11387075
	100	0,025	293,86	20000	Сера диоксид	0330	0,13888889	0,14693
	100	0,025	293,86	0,1	Углерод оксид	0337	0,00000069	0,00000073
	100	0,025	293,86	0,32	Бенз/а/пирен	0703	0,00000222	0,00000233
	100	0,025	293,86	30000	Керосин	2732	0,20833333	0,220395
Краны на гусеничном	110	0,028	29,19	10000	Азота (IV) диоксид	0301	0,07638889	0,00802725
ходу, 50-63 т	110	0,0275	29,19	15500	Углерод (Сажа, Углерод черный)	0328	0,11840278	0,01244224
	110	0,0275	29,19	20000	Сера диоксид	0330	0,15277778	0,0160545
	110	0,0275	29,19	0,1	Углерод оксид	0337	0,00000076	0,00000008
	110	0,0275	29,19	0,32	Бенз/а/пирен	0703	0,00000244	0,00000026
	110	0,0275	29,19	30000	Керосин	2732	0,22916667	0,02408175
Грейдер-элеватор	165	0,041	168,31	10000	Азота (IV) диоксид	0301	0,11472222	0,06951203
мощность 121 кВт (165 л.с.)	165	0,0413	168,31	15500	Углерод (Сажа, Углерод черный)	0328	0,17781944	0,10774364
	165	0,0413	168,31	20000	Сера диоксид	0330	0,22944444	0,13902406
	165	0,0413	168,31	0,1	Углерод оксид	0337	0,00000115	0,00000069
	165	0,0413	168,31	0,32	Бенз/а/пирен	0703	0,00000367	0,00000222
	165	0,0413	168,31	30000	Керосин	2732	0,34416667	0,20853609
Тракторы на	108	0,027	1865,49	10000	Азота (IV) диоксид	0301	0,075	0,5036823
гусеничном ходу, 79 кВт	108	0,027	1865,49	15500	Углерод (Сажа, Углерод черный)	0328	0,11625	0,78070757

Наименование	Мощность,				Наименование		Выбро	осы ЗВ
техники	л.с.	В, т/час	Т, час	kэi	загрязняющего вещества	Код ЗВ	г/с	т/год
	108	0,027	1865,49	20000	Сера диоксид	0330	0,15	1,0073646
	108	0,027	1865,49	0,1	Углерод оксид	0337	0,00000075	0,00000504
	108	0,027	1865,49	0,32	Бенз/а/пирен	0703	0,0000024	0,00001612
	108	0,027	1865,49	30000	Керосин	2732	0,225	1,5110469
Трактор с щетками	60	0,015	778,77	10000	Азота (IV) диоксид	0301	0,04166667	0,11681551
дорожными навесными	60	0,015	778,77	15500	Углерод (Сажа, Углерод черный)	0328	0,06458333	0,18106402
	60	0,015	778,77	20000	Сера диоксид	0330	0,08333333	0,23363099
	60	0,015	778,77	0,1	Углерод оксид	0337	0,00000042	0,00000118
	60	0,015	778,77	0,32	Бенз/а/пирен	0703	0,00000133	0,00000373
A 1	60	0,015	778,77	30000	Керосин	2732	0,125	0,3504465
Асфальтоукладчики, типоразмер 3	80	0,020	809,69	10000	Азота (IV) диоксид	0301	0,0555556	0,16193801
типоразмер 3	80	0,020	809,69	15500	Углерод (Сажа, Углерод черный)	0328	0,08611111	0,2510039
	80	0,020	809,69	20000	Сера диоксид	0330	0,11111111	0,323876
	80	0,020	809,69	0,1	Углерод оксид	0337	0,00000056	0,000001632
	80	0,020	809,69	0,32	Бенз/а/пирен	0703	0,00000178	0,000005188
	80	0,020	809,69	30000	Керосин	2732	0,16666667	0,48581401
Экскаваторы	110	0,028	1004,95	10000	Азота (IV) диоксид	0301	0,07638889	0,27636125
одноковшовые дизельные на гусеничном ходу ковш	110	0,028	1004,95	15500	Углерод (Сажа, Углерод черный)	0328	0,11840278	0,42835995
свыше 0,65 до 1 м ³ ,	110	0,028	1004,95	20000	Сера диоксид	0330	0,15277778	0,55272251
масса свыше 13 до 20 т	110	0,028	1004,95	0,1	Углерод оксид	0337	0,00000076	0,00000275
	110	0,028	1004,95	0,32	Бенз/а/пирен	0703	0,00000244	0,00000883
	110	0,028	1004,95	30000	Керосин	2732	0,22916667	0,82908376
Экскаваторы	125	0,031	130,06	10000	Азота (IV) диоксид	0301	0,08694444	0,04070878
одноковшовые дизельные на гусеничном ходу ковш	125	0,031	130,06	15500	Углерод (Сажа, Углерод черный)	0328	0,13476389	0,06309861
свыше 1,5 до 2,5 м3,	125	0,031	130,06	20000	Сера диоксид	0330	0,17388889	0,08141756
масса свыше 26 до 35 т	125	0,031	130,06	0,1	Углерод оксид	0337	0,00000087	0,00000041
	125	0,031	130,06	0,32	Бенз/а/пирен	0703	0,00000278	0,0000013
	125	0,031	130,06	30000	Керосин	2732	0,26083333	0,12212634
Экскаваторы	90	0,023	44,18	10000	Азота (IV) диоксид	0301	0,0625	0,0099405
одноковшовые дизельные на гусеничном ходу ковш	90	0,023	44,18	15500	Углерод (Сажа, Углерод черный)	0328	0,096875	0,01540778
свыше 0,4 до 0,5 м3,	90	0,023	44,18	20000	Сера диоксид	0330	0,125	0,019881
масса свыше 5 до 13 т	90	0,023	44,18	0,1	Углерод оксид	0337	0,00000063	0,0000001
	90	0,023	44,18	0,32	Бенз/а/пирен	0703	0,000002	0,00000032
	90	0,023	44,18	30000	Керосин	2732	0,1875	0,0298215
Погрузчики	100	0,025	11,12	10000	Азота (IV) диоксид	0301	0,06944444	0,00278
одноковшовые универсальные фронтальные	100	0,025	11,12	15500	Углерод (Сажа, Углерод черный)	0328	0,10763889	0,004309
пневмоколесные	100	0,025	11,12	20000	Сера диоксид	0330	0,13888889	0,00556
	100	0,025	11,12	0,1	Углерод оксид	0337	0,00000069	0,00000003
	100	0,025	11,12	0,32	Бенз/а/пирен	0703	0,00000222	0,00000009
	100	0,025	11,12	30000	Керосин	2732	0,20833333	0,00834
Машины бурильные	115	0,029	147,47	10000	Азота (IV) диоксид	0301	0,08	0,04247136
	115	0,0288	147,47	15500	Углерод (Сажа, Углерод черный)	0328	0,124	0,06583061
	115	0,0288	147,47	20000	Сера диоксид	0330	0,16	0,08494272
	115	0,0288	147,47	0,1	Углерод оксид	0337	0,0000008	0,00000042
	115	0,0288	147,47	0,32	Бенз/а/пирен	0703	0,00000256	0,00000136
	115	0,0288	147,47	30000	Керосин	2732	0,24	0,12741408

Наименование	Мощность,				Наименование		Выбро	осы ЗВ
техники	л.с.	В, т/час	Т, час	kэi	загрязняющего вещества	Код ЗВ	г/с	т/год
					Азота (IV) диоксид	301	0,125	10,32420834
					Углерод (Сажа, Углерод черный)	328	0,19375	16,00252255
Итого по источникам і	выделения:				Сера диоксид	330	0,25	20,64841617
					Углерод оксид	337	0,00000125	0,000103465
					Бенз/а/пирен	703	0,000004	0,000330284
					Керосин	2732	0,375	30,97262452

Источник загрязнения №6013 - Работа двигателей автотехники

Перечень используемой автотехники представлен в таблице 3.2-15.

Таблица 3.2-15. Перечень автотехники

№ п\п	Наименование	дней
1	Автомобили-самосвалы общестроительные (дорожные) грузоподъёмностью 15 т	225,9
2	Машины поливомоечные 6000 л	295,4
3	Автомобили бортовые с гидравлической кран-манипуляторной установкой грузоподъёмностью до 5 т, грузоподъёмность КМУ на максимальном вылете стрелы до 1 т, на минимальном вылете стрелы до 3 т	1,5
4	Автомобили бортовые грузоподъёмностью до 5 т	12
5	Автомобили бортовые, грузопассажирские грузоподъёмностью до 1,5 т	47,96
6	Автомобили-самосвалы общестроительные (дорожные) грузоподъёмностью 7 т	1
7	Автогудронаторы 3500 л	7,5
8	Автогидроподъемники высотой подъема 12 м	1,5
9	Автозаправщик, г/п 5 т	90

Выбросы рассчитываются согласно [Л.9].

Выброс загрязняющих веществ одним автомобилем в день при работе на территории промплощадки рассчитывается по формуле (3.17 [Л.9]):

$$M_1 = M_1 \times L_1 + 1.3 \times M_1 \times L_{1n} + M_{xx} \times T_{xs}$$
, Γ

где,

M1 – пробеговый выброс вещества автомобилем при движении по территории предприятия, г/км (определен по таблице 3.8 [Л.9]);

L₁ – пробег автомобиля без нагрузки по территории предприятия, км/день;

1,3 – коэффициент увеличения выбросов при движении с нагрузкой;

 L_{1n} – пробег автомобиля с нагрузкой по территории предприятия, км/день;

 M_{xx} – удельный выброс при работе двигателя на холостом ходу, г/мин;

 T_{xs} – суммарное время работы двигателя на холостом ходу в день, мин;

Максимальный разовый выброс от 1 автомобиля рассчитывается по формуле (3.18 [Л.9]):

$$M_2 = M_1 \times L_2 + 1,3 \times M_1 \times L_{2n} + M_{xx} \times T_{xm}$$
, г/30 мин

где,

L₂ – максимальный пробег автомобиля без нагрузки за 30 мин, км;

L_{2n} – максимальный пробег автомобиля с нагрузкой за 30 мин, км;

Т_{хт} – максимальное время работы на холостом ходу за 30мин, мин;

Валовый выброс загрязняющих веществ автомобилями рассчитывается раздельно для каждого периода по формуле (3.19 [Л.9]):

$$M = A \times M_1 \times N_k \times D_n \times 10^{-6}$$
, т/год

где,

А – коэффициент выпуска (выезда);

N_k – общее количество автомобилей данной группы;

 D_n – количество рабочих дней в расчетном периоде (теплый, переходный, холодный);

Для определения общего валового выброса валовые выбросы одноименных веществ от разных расчетных периодов года суммируются.

Максимальный разовый выброс от автомобилей данной группы рассчитывается по формуле $(3.20 \, [\Pi.9])$:

$$G = M_2 \times N_{k1} / 1800$$
, Γ / cek

где,

 N_{k1} — наибольшее количество машин данной группы, двигающихся в течении получаса.

Расчеты выбросов сведены в таблицу 3.2-16.

Таблица 3.2-16. Расчет выбросов ЗВ при работе двигателей автотехники

													таолица 3.2-10. гасчет выоросов 36 при раоот									JUIC A	(Bill a lesten a	САПИКИ				
Тип машин	Т	еплый		1	Период олоднь	-	пер	еходны	ій	T _{xm}	T _{xs} 1	L ₁]	L _{1n}	L ₂	L _{2n}	A	Nĸ	Nk1	М ₁ ^т , г	М ₁ ^х , г	М1 ^п , г	М ₂ ^т , г/30	M ₂ ^x , г/30	М ₂ п, г/30	Наименование	Код	Выбр	осы ЗВ
-	Ml	M _{xx}	Dn	Ml	M _{xx}	Dn	Ml	M _{xx}	Dn													мин	мин	мин	вещества	3B	г/с	т/год
Автомобили- самосвалы, г/п 15 т	2,72	0,368	75		0,368	75	2,72	0,368	76	5	5	1	3	1	2	1	1	1	15,168	15,168	15,168	11,632	11,632	11,632	Азота (IV) диоксид	0304	0,01939	0,00343
	0,44	0,060	75	0,44	0,060	75	0,44	0,060	76	5	5	1	3	1	2	1	1	1	2,465	2,465	2,465	1,890	1,890	1,890	Азота (II) оксид	0301	0,00315	0,00056
	0,20	0,019	75	0,30	0,019	75	0,18	0,019	76	5	5	1	3	1	2	1	1	1	1,075	1,565	0,977	0,815	1,175	0,743	Углерод (сажа)	0328	0,00152	0,00027
	0,475	0,100	75	0,59	0,100	75	0,43	0,100	76	5	5	1	3	1	2	1	1	1	2,828	3,391	2,595	2,210	2,624	2,039	Серы диоксид	0330	0,00382	0,00066
	4,90	0,840	75	5,90	0,840	75	4,41	0,840	76	5	5	1	3	1	2	1	1	1	28,21	33,110	25,809	21,840	25,440	20,076	Углерода оксид	0337	0,03742	0,00656
	0,70	0,420	75	0,80	0,420	75	0,63	0,420	76	5	5	1	3	1	2	1	1	1	5,530	6,020	5,187	4,620	4,980	4,368	Керосин	2732	0,00776	0,00126
Машина поливомоечная	2,80	0,480	150	2,80	0,480	0	2,80	0,480	145	5	5	1	3	1	2	1	1	1	16,120	16,120	16,120	12,480	12,480	12,480	Азота (IV) диоксид	0304	0,02080	0,00476
объемом 6000 л	0,46	0,078	150	0,46	0,078	0	0,46	0,078	145	5	5	1	3	1	2	1	1	1	2,620	2,620	2,620	2,028	2,028	2,028	Азота (II) оксид	0301	0,00338	0,00077
	0,25	0,030	150	0,35	0,030	0	0,32	0,030	145	5	5	1	3	1	2	1	1	1	1,375	1,865	1,694	1,050	1,410	1,284	Углерод (сажа)	0328	0,00208	0,00045
	0,45	0,090	150	0,56	0,090	0	0,50	0,090	145	5	5	1	3	1	2	1	1	1	2,655	3,194	2,920	2,070	2,466	2,264	Серы диоксид	0330	0,00378	0,00082
	5,10	2,800	150	6,20	2,800	0	5,58	2,800			5	1	3	1	2	1	1	1	38,99	44,380	41,342	32,360	36,320	34,088	Углерода оксид	0337	0,05709	0,01184
	0,90	0,350	150	1,10	0,350	0	0,99	0,350	145	5	5	1	3	1	2	1	1	1	6,160	7,140	6,601	4,990	5,710	5,314	Керосин	2732	0,00890	0,00188
Автомобили бортовые с гидравлической	0,34	0,07	1,5	0,34	0,07	0	0,34	0,07	0	5	5	1	3	1	2	1	1	1	1,981	1,981	1,981	1,542	1,542	1,542	Азота (IV) диоксид	0304	0,00257	0,00000
кран-манипуляторной установкой	2,08	0,40	1,5	2,08	0,40	0	2,08	0,40	0	5	5	1	3	1	2	1	1	1	12,192	12,192	12,192	9,488	9,488	9,488	Азота (II) оксид	0301	0,01581	0,00002
грузоподъёмностью до 5 т, грузоподъёмность	0,20	0,020	1,5	0,30	0,020	0	0,27	0,020	0	5	5	1	3	1	2	1	1	1	1,080	1,570	1,423	0,820	1,180	1,072	Углерод (сажа)	0328	0,00171	0,000002
КМУ на максимальном вылете	0,39	0,072	1,5	0,49	0,072	0	0,44	0,072	0	5	5	1	3	1	2	1	1	1	2,271	2,761	2,521	1,764	2,124	1,948	Серы диоксид	0330	0,00324	0,000003
стрелы до 1 т, на минимальном вылете	3,50	1,500	1,5	4,30	1,500	0	3,87	1,500	0	5	5	1	3	1	2	1	1	1	24,65	28,570	26,463	20,100	22,980	21,432	Углерода оксид	0337	0,03584	0,00004
стрелы до 3 т	0,70	0,250	1,5	0,80	0,250	0	0,72	0,250	0	5	5	1	3	1	2	1	1	1	4,680	5,170	4,778	3,770	4,130	3,842	Керосин	2732	0,00652	0,00001
Автомобили бортовые грузоподъёмностью до		0,08	48	0,46	0,08	0	0,46	0,08	12	5	5	1	3	1	2	1	1	1	2,620	2,620	2,620	2,028	2,028	2,028	Азота (IV) диоксид	0304	0,00338	0,00016
5 т	2,80	0,48	48	2,80	0,48	0	2,80	0,48	12	5	5	1	3	1	2	1	1	1	16,120	16,120	16,120	12,480	12,480	12,480	Азота (II)	0301	0,02080	0,00097

ИСП-25-03/2022-РООС

Рабочий проект «Капитальный ремонт автомобильной дороги областного значения «Алмалыбак (Киз) - Жетысу» - «Алматы 1 - ст.Шамалган - Узынагаш» (Боралдай - ст.Шамалган), км 0-18,177 Карасайского района Алматинской области» Раздел «Охрана окружающей среды»

				I	Период	ы																M ₂ ^T ,	M ₂ ^x ,	M ₂ п,			Выбросы ЗВ	
Тип машин	Т	еплый		X	олоднь	1	пер	еходны	1	T _{xm}	T _{xs} I	1 l	L _{1n}	L ₂	L _{2n}	A	Nĸ	N_{k1}	М₁т, г	M ₁ ^x , г	М1 ^π , г	г/30	г/30	г/30	Наименование вещества	Код ЗВ	выор	осы зв
	MI M _{xx}		Dn	Ml	M _{xx}	Dn	Ml	M _{xx}	Dn													мин	мин	мин	оксид		г/с	т/год
	0.25	0.020	40	0.25	0.020		0.22	0.020	10		_		2		•	1			1.075	1.065	1.604	1.050	1 410	1.004	Углерод	0220	0.00200	0.00000
	0,25	0,030			0,030		0,32	0,030	12		5	_	3	1	2	1	1	1	1,375	1,865	1,694	1,050	1,410		(сажа)	0328	0,00208	0,00009
	0,45	0,090			0,090		0,50	0,090	12		5		3	l	2	l	1	l	2,655	3,194	2,920	2,070	2,466	2,264	Серы диоксид Углерода	0330	0,00378	0,00016
	5,10	2,800			2,800		5,58	2,800	12	5	5		3	1	2	1	1	1			41,342				оксид	0337	0,05709	0,00237
	0,90	0,350	48	1,10	0,350	0	0,99	0,350	12	5	5	l	3	1	2	1	1	1	6,160	7,140	6,601	4,990	5,710	5,314	Керосин	2732	0,00890	0,00037
Автомобили- самосвалы, г/п 7 т	2,40	0,232	1	2,40	0,232	0	2,40	0,368	0	5	5	1	3	1	2	1	1	1	12,920	12,920	13,600	9,800	9,800	10,480	Азота (IV) диоксид	0304	0,01671	0,00001
	0,39	0,038	1	0,39	0,038	0	0,39	0,060	0	5	5	l	3	1	2	1	1	1	2,100	2,100	2,210	1,593	1,593	1,703	Азота (II) оксид	0301	0,00272	0,000002
	0,15	0,012	1	0,23	0,012	0	0,14	0,019	0	5	5	l	3	1	2	1	1	1	0,795	1,187	0,757	0,600	0,888	0,581	Углерод (сажа)	0328	0,00115	0,000001
	0,400	0,081	1	0,50	0,081	0	0,36	0,100	0	5	5	1	3	1	2	1	1	1	2,365	2,855	2,264	1,845	2,205	1,796	Серы диоксид	0330	0,00325	0,000002
	4,10	0,540	1	4,90	0,540	0	3,69	0,840	0	5	5	l	3	1	2	1	1	1	22,79	26,710	22,281	17,460	20,340	17,484	Углерода оксид	0337	0,03071	0,00002
	0,60	0,270	1	0,70	0,270	0	0,54	0,420	0	5	5	l	3	1	2	1	1	1	4,290	4,780	4,746	3,510	3,870	4,044	Керосин	2732	0,00635	0,000004
Автозаправщик, г/п 5 т	0,34	0,07	30	0,34	0,07	30	0,34	0,07	30	5	5	l	3	1	2	1	1	1	1,981	1,981	1,981	1,542	1,542	1,542	Азота (IV) диоксид	0304	0,00257	0,00018
	2,08	0,40	30	2,08	0,40	30	2,08	0,40	30	5	5	l	3	1	2	1	1	1	12,192	12,192	12,192	9,488	9,488	9,488	Азота (II) оксид	0301	0,01581	0,00110
	0,20	0,020	30	0,30	0,020	30	0,27	0,020	30	5	5	1	3	1	2	1	1	1	1,080	1,570	1,423	0,820	1,180	1,072	Углерод (сажа)	0328	0,00171	0,00012
	0,39	0,072	30	0,49	0,072	30	0,44	0,072	30	5	5	l	3	1	2	1	1	1	2,271	2,761	2,521	1,764	2,124	1,948	Серы диоксид	0330	0,00324	0,00023
	3,50	1,500	30	4,30	1,500	30	3,87	1,500	30	5	5	l	3	1	2	1	1	1	24,65	28,570	26,463	20,100	22,980	21,432	Углерода оксид	0337	0,03584	0,00239
	0,70	0,250	30	0,80	0,250	30	0,72	0,250	30	5	5	1	3	1	2	1	1	1	4,680	5,170	4,778	3,770	4,130	3,842	Керосин	2732	0,00652	0,00044
Автогудронаторы 3500 л	0,34	0,07	7,5	0,34	0,07	0	0,34	0,07	0	5	5	l	3	1	2	1	1	1	1,981	1,981	1,981	1,542	1,542	1,542	Азота (IV) диоксид	0304	0,00257	0,00001
	2,08	0,40	7,5	2,08	0,40	0	2,08	0,40	0	5	5	l	3	1	2	1	1	1	12,192	12,192	12,192	9,488	9,488	9,488	Азота (II) оксид	0301	0,01581	0,00009
	0,20	0,020	7,5	0,30	0,020	0	0,27	0,020	0	5	5	l	3	1	2	1	1	1	1,080	1,570	1,423	0,820	1,180	1,072	Углерод (сажа)	0328	0,00171	0,00001
	0,39	0,072	7,5	0,49	0,072	0	0,44	0,072	0	5	5	1	3	1	2	1	1	1	2,271	2,761	2,521	1,764	2,124	1,948	Серы диоксид	0330	0,00324	0,00002

ИСП-25-03/2022-РООС

Рабочий проект «Капитальный ремонт автомобильной дороги областного значения «Алмалыбак (Киз) - Жетысу» - «Алматы 1 - ст.Шамалган - Узынагаш» (Боралдай - ст.Шамалган), км 0-18,177 Карасайского района Алматинской области» Раздел «Охрана окружающей среды»

				Ι	Іериод	Ы																M ₂ ^T ,	M ₂ ^x ,	M2 ^п ,			Drven	o av v DD
Тип машин	Т	еплый	I	холодный			пер	еходны	Й	T_{xm}	Txs	$\mathbf{L_1}$	L _{1n}	L_2	L _{2n}	A	Nĸ	N_{k1}	M ₁ ^т , г	М1 ^х , г	M ₁ ^п , г		г/30	г/30	Наименование вешества	Код ЗВ	ьыор	осы ЗВ
	Ml	M_{xx}	Dn	Ml	M_{xx}	Dn	Ml	M_{xx}	Dn													мин	мин	МИН		32	г/с	т/год
	3,50	1,500	7,5	4,30	1,500	0	3,87	1,500	0	5	5	1	3	1	2	1	1	1	24,65	28,570	26,463	20,100	22,980	21,432	Углерода оксид	0337	0,03584	0,00018
	0,70	0,250	7,5	0,80	0,250	0	0,72	0,250	0	5	5	1	3	1	2	1	1	1	4,680	5,170	4,778	3,770	4,130	3,842	Керосин	2732	0,00652	0,00004
Автогидроподъемники высотой подъема 12 м	0,34	0,07	1,5	0,34	0,07	0	0,34	0,07	0	5	5	1	3	1	2	1	1	1	1,981	1,981	1,981	1,542	1,542	1,542	Азота (IV) диоксид	0304	0,00257	0,000003
	2,08	0,40	1,5	2,08	0,40	0	2,08	0,40	0	5	5	1	3	1	2	1	1	1	12,192	12,192	12,192	9,488	9,488	9,488	Азота (II) оксид	0301	0,01581	0,00002
	0,20	0,020	1,5	0,30	0,020	0	0,27	0,020	0	5	5	1	3	1	2	1	1	1	1,080	1,570	1,423	0,820	1,180	1,072	Углерод (сажа)	0328	0,00171	0,000002
	0,39	0,072	1,5	0,49	0,072	0	0,44	0,072	0	5	5	1	3	1	2	1	1	1	2,271	2,761	2,521	1,764	2,124	1,948	Серы диоксид	0330	0,00324	0,000003
	3,50	1,500	1,5	4,30	1,500	0	3,87	1,500	0	5	5	1	3	1	2	1	1	1	24,65	28,570	26,463	20,100	22,980	21,432	Углерода оксид	0337	0,03584	0,00004
	0,70	0,250	1,5	0,80	0,250	0	0,72	0,250	0	5	5	1	3	1	2	1	1	1	4,680	5,170	4,778	3,770	4,130	3,842	Керосин	2732	0,00652	0,00001
																									Азота (IV) диоксид	0304	0,02080	0,008553
																									Азота (II) оксид	0301	0,02080	0,003532
Итого по источникам	выдел	іения:																							Углерод (сажа)	0328	0,00208	0,000945
																									Серы диоксид	0330	0,00382	0,001898
																									Углерода оксид	0337	0,05709	0,02344
																									Керосин	2732	0,00890	0,004014

Согласно проведенным расчетам выбросов загрязняющих веществ в атмосферный воздух при проведении строительно-монтажных работ выделяется 19 видов загрязняющих веществ. Перечень веществ с указанием класса опасности и значений предельно-допустимых концентраций приведен в таблице 3.2-17 с учетом работы передвижных источников и в таблице 3.2-18 — без учета работы передвижных источников.

Таблица 3.2-17. Перечень загрязняющих веществ на период СМР (с авто)

	іца э.2-17. Перечень загрязняющих	,	•			Класс	Выброс	Выброс	Значение
Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р , мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	опаснос	вещества, г/с	вещества, т/год, (М)	М/ЭНК
0123	Железа (II) оксид			0,04		3	0,04272	0,01419	3,5475
0143	Марганец и его соединения		0,01	0,001		2	0,00132	0,000232	0,232
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,16986	10,33591834	258,3979585
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,0208	0,013523	0,225383333
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,19583	16,00386655	320,077331
0330	Сера диоксид		0,5	0,05		3	0,25382	20,65122217	413,0244434
0333	Сероводород		0,008			2	0,00009	0,000067	0,008375
0337	Углерод оксид (Окись углерода, Угарный газ)		5	3		4	0,07470125	0,040803465	0,013601155
0616	Диметилбензол (смесь о-, м-, п- изомеров)		0,2			3	0,125	0,34274	1,7137
0621	Метилбензол (349)		0,6			3	0,08611	0,71108	1,185133333
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,000004	0,000330284	330,284
1210	Бутилацетат		0,1			4	0,01667	0,13762	1,3762
1401	Пропан-2-он (Ацетон) (470)		0,35			4	0,03611	0,2982	0,852
2732	Керосин (654*)				1,2		0,3839	30,97847452	25,81539543
2752	Уайт-спирит (1294*)				1		0,13889	0,25036	0,25036
2754	Алканы С12-19 /в пересчете на С/		1			4	0,62138	9,16217	9,16217
2902	Взвешенные частицы (116)		0,5	0,15		3	0,07275	0,01596	0,1064
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20		0,3	0,1		3	0,83842	47,8324714	478,324714
2930	Пыль абразивная				0,04		0,0026	0,00005	0,00125
	ΒСΕΓΟ:						3,08097525	136,7892787	1844,597915

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

Таблица 3.2-18. Перечень загрязняющих веществ на период СМР (без авто)

1 40011	іца 3.2-10. Перечень загрязняющих	Вещеет	ma mep	iog Civil	(OCS al	10)			
Код		ЭНК,	ПДКм.р	ПДКс.с.,	обув,	Класс	Выброс	Выброс	Значение
3В	Наименование загрязняющего вещества	мг/м3	, мг/м3	пдкс.с., мг/м3	мг/м3	опаснос ти	вещества, г/с	вещества, т/год, (М)	М/ЭНК
0123	Железа (II) оксид		-	0,04	ı	3	0,04272	0,01419	3,5475
0143	Марганец и его соединения		0,01	0,001	ı	2	0,00132	0,000232	0,232
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,02406	0,00737	0,18425
0333	Сероводород		0,008	-	ı	2	0,00009	0,000067	0,008375
0337	Углерод оксид (Окись углерода, Угарный		5	3		4			
	газ)						0,01761	0,00684	0,00228
0616	Диметилбензол (смесь о-, м-, п- изомеров)		0,2			3	0,125	0,34274	1,7137
0621	Метилбензол (349)		0,6			3	0,08611	0,71108	1,185133333
1210	Бутилацетат		0,1			4	0,01667	0,13762	1,3762
1401	Пропан-2-он (Ацетон) (470)		0,35			4	0,03611	0,2982	0,852
2752	Уайт-спирит (1294*)				1		0,13889	0,25036	0,25036
2754	Алканы С12-19 /в пересчете на С/		1			4	0,62138	9,16217	9,16217
2902	Взвешенные частицы (116)		0,5	0,15		3	0,07275	0,01596	0,1064
2908	Пыль неорганическая, содержащая двуокись		0,3	0,1		3			
	кремния в %: 70-20						0,83842	47,8324714	478,324714
2930	Пыль абразивная		-	-	0,04	-	0,0026	0,00005	0,00125
	ΒСΕΓΟ:						2,02373	58,7793504	496,9463323

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

3.3 Характеристика источников загрязнения атмосферного воздуха на период эксплуатации

После реализации проектных решений источники выбросов загрязняющих веществ от проектируемых объектов отсутствуют.

3.4 Расчет и анализ величин приземных концентраций загрязняющих веществ в атмосфере

Расчет приземных концентраций загрязняющих веществ в атмосфере (расчет рассеивания) в данном разделе ООС не проводился, так как источники, определенные на период строительно-монтажных работ являются временными и рассредоточенными по трассе проектируемой автодороги.

3.5 Обоснование размера санитарно-защитной зоны

Документом, регламентирующим размеры санитарно-защитной зоны объектов, являются санитарные правила "Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека", утвержденные приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2. В соответствии с Санитарными правилами виды деятельности, осуществляемые в период проведения строительно-монтажных работ, являются не классифицируемыми. Санитарно-защитная зона не устанавливается.

3.6 Мероприятия по снижению воздействия на атмосферный воздух

В качестве мероприятий, направленных на снижение выбросов ЗВ в период СМР, предлагается следующее:

- осуществлять эксплуатацию автостроительной техники с исправными двигателями;
 - сокращать холостые пробеги и работу двигателей без нагрузок;
- устранять открытое хранение и перевозку инертных материалов без использования специальных тентов;
 - запрещать сжигание отходов на строительной площадке.

3.7 Оценка загрязнения атмосферного воздуха

Проведенный анализ воздействия на атмосферный воздух рабочего проекта по капитальному ремонту автодороги «Алмалыбак (Киз) - Жетысу» - «Алматы 1 - ст.Шамалган - Узынагаш» (Боралдай - ст.Шамалган)» показал следующее:

Период строительно-монтажных работ

1. Определено 13 неорганизованных источника выбросов загрязняющих

веществ в атмосферу.

- 2. Источники выбросов являются временными.
- 3. Всего в атмосферу будет выбрасываться 19 видов загрязняющих веществ, в том числе:

1-го класса опасности — 1 шт.
 2-го класса опасности — 3 шт.
 3-го класса опасности — 8 шт.
 4-го класса опасности — 4 шт.
 без класса опасности (ОБУВ) — 3 шт.

Общее количество валовых выбросов загрязняющих веществ в атмосферу на период СМР с учетом работы автостроительной техники составит 136,7892787 тонн и 58,7793504 тонн без учета работы автотехники.

- 4. Воздействие на загрязнение атмосферного воздуха на период проводимых работ по критериям классифицируется как:
 - пространственный масштаб воздействия ограниченное воздействие;
 - временной масштаб воздействия продолжительное (23 месяца);
- интенсивность воздействия умеренное воздействие (категория опасности источников СМР 2-я, приведена в таблице 3.7-1).

Категория значимости воздействия, учитывая вышеперечисленные критерии определена как "средняя".

Период эксплуатации

После реализации проектных решений источники выбросов загрязняющих веществ от проектируемых объектов отсутствуют.

Таблица 3.7-1. Категория опасности источников СМР

Код ЗВ Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение КОВ (М/ПДК)**а
1 2	3	4	5	6	7	8	9	10
0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,04272	0,01419	0
0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,00132	0,000232	0
0301 Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,16986	10,3359183	1367,65262
0304 Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,0208	0,013523	0
0328 Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,19583	16,0038666	320,077331
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,25382	20,6512222	413,024443
0333 Сероводород (Дигидросульфид) (518)		0,008			2	0,00009	0,000067	0
0337 Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	0,07470125	0,04080347	0
0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,125	0,34274	1,7137
0621 Метилбензол (349)		0,6			3	0,08611	0,71108	1,18513333
0703 Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,000004	0,00033028	19147,3559
1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)		0,1			4	0,01667	0,13762	1,33294859
1401 Пропан-2-он (Ацетон) (470)		0,35			4	0,03611	0,2982	0
2732 Керосин (654*)				1.2		0,3839	30,9784745	25,8153954
2752 Уайт-спирит (1294*)				1		0,13889	0,25036	0
2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)		1			4	0,62138	9,16217	7,34173173
2902 Взвешенные частицы (116)		0,5	0,15		3	0,07275	0,01596	0
2908 Пыль неорганическая, содержащая		0,3	0,1	·	3	0,83842	47,8324714	478,324714

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение КОВ (М/ПДК)**а
	двуокись кремния в %: 70-20 (шамот,								
	цемент, пыль цементного производства								
	- глина, глинистый сланец, доменный								
	шлак, песок, клинкер, зола, кремнезем,								
	зола углей казахстанских								
	месторождений) (494)								
2930	Пыль абразивная (Корунд белый,				0.04		0,0026	0,00005	0
	Монокорунд) (1027*)							·	
	Β С Ε Γ Ο:						3,0809753	136,78928	21763,824

Суммарный коэффициент опасности: 21763,82395

Категория опасности: 2

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ;"а" - константа, зависящая от класса опасности ЗВ

2. "0" в колонке 10 означает, что для данного ЗВ М/ПДК < 1. В этом случае КОВ приравнивается к 0.

3.8 Декларируемое количество выбросов

Деятельность по эксплуатации объектов III категории может осуществляться при условии подачи декларации о воздействии на окружающую среду.

Данная намечаемая деятельность по капитальному ремонту автомобильной дороги относится к объекту III категории.

В соответствии с п. 11 статьи 39 Экологического Кодекса РК нормативы эмиссий для объектов III категории не устанавливаются.

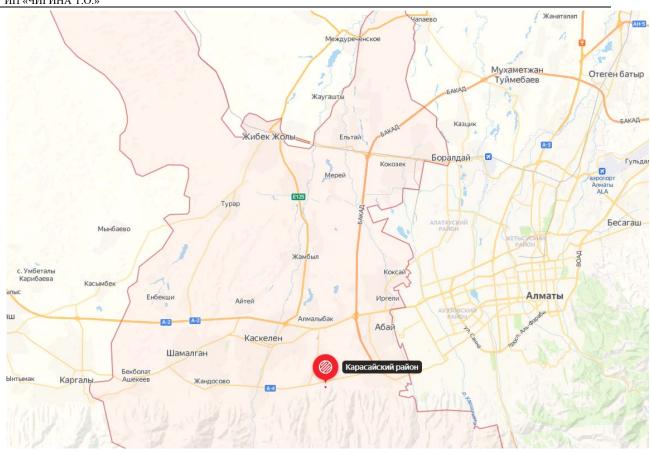
В таблице 3.8-1 приведено декларируемое количество выбросов загрязняющих веществ на период строительства, определенное на основании расчета, проведенного в разделе 3.2. Передвижные источники не учитывались.

Таблица 3.8-1. Декларируемое количество выбросов ЗВ на период СМР

	мый год: 2024	*		
Номер источника загрязнения	Наименование загрязняющего вещества	г/сек	т/год	
1	2	3	4	
6001	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0833	0,8858408000	
6002	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,72	13,2976838240	
6003	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,00806	0,3531993600	
6004	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,02694	0,0043472000	
6005	(0123) Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,00686	0,0000820800	
	(0143) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00079	0,0000097280	
	(0301) Азота (IV) диоксид (Азота диоксид) (4)	0,00625	0,0001398400	
	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,00012	0,0000001216	
6006	(0123) Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,03586	0,0042316800	
	(0143) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00053	0,0000608000	
	(0301) Азота (IV) диоксид (Азота диоксид) (4)	0,01781	0,0021006400	
	(0337) Углерод оксид (Окись углерода, Угарный газ) (584)	0,01761	0,0020793600	
6007	(2902) Взвешенные частицы (116)	0,004	0,0000243200	

І «ЧИГИНА Т	Γ.O.»		
	(2930) Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0,0026	0,0000152000
6008	(0616) Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,125	0,1041929600
	(0621) Метилбензол (349)	0,08611	0,2161683200
	(1210) Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,01667	0,0418364800
	(1401) Пропан-2-он (Ацетон) (470)	0,03611	0,0906528000
	, , , , ,	0,13889	· ·
	(2752) Уайт-спирит (1294*)		-
	(2902) Взвешенные частицы (116)	0,06875	0,0048275200
6009	(2754) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0,31229	0,0186078400
6010	(2754) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0,27778	2,7594566400
6011	(0333) Сероводород (Дигидросульфид) (518)	0,00009	0,0000203680
	(2754) Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,03131	0,0072352000
Всего:		2,02373	17,868922521
•			
6001	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0833	1,52108190000
6002	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства -	0,72	22,8335228820
	глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		
6003	(2908) Пыль неорганическая, содержащая двуокись кремния в	0,00806	0,6064804800
	%: 70-20 (шамот, цемент, пыль цементного производства -	,	
	глина, глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		
6004	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,	0,02694	0,0074646000
	кремнезем, зола углей казахстанских месторождений) (494)		
6005	(0123) Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,00686	0,0001409400
	(0143) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00079	0,0000167040
	(0301) Азота (IV) диоксид (Азота диоксид) (4)	0,00625	0,0002401200
	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,	0,00012	0,0000002088
6006	кремнезем, зола углей казахстанских месторождений) (494) (0123) Железо (II, III) оксиды (в пересчете на железо)	0,03586	0,0072662400
0000	(от25) железо (п, пт) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,03380	0,0072002400
	(0143) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00053	0,0001044000
	(0301) Азота (IV) диоксид (Азота диоксид) (4)	0,01781	0,0036070200
	(0337) Углерод оксид (Окись углерода, Угарный газ) (584)	0,01761	0,0035704800
6007	(2902) Взвешенные частицы (116)	0,004	
0007	(2902) Взвешенные частицы (110) (2930) Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0,004	
(000	7 7 7 7 7		· ·
6008	(0616) Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,125	· ·
	(0621) Метилбензол (349)	0,08611	0,3711837600

ЧИГИНА Т	.O.»		
	(1210) Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,01667	0,07183764000
	(1401) Пропан-2-он (Ацетон) (470)	0,03611	0,15566040000
	(2752) Уайт-спирит (1294*)	0,13889	0,13068792000
	(2902) Взвешенные частицы (116)	0,06875	
6009	(2754) Алканы С12-19 /в пересчете на С/ (Углеводороды	0,31229	
0007	предельные С12-С19 (в пересчете на С); Растворитель РПК-	0,51227	0,0317310200
	265Π) (10)		
6010	(2754) Алканы С12-19 /в пересчете на С/ (Углеводороды	0,27778	4,73827752000
	предельные С12-С19 (в пересчете на С); Растворитель РПК-		
	265Π) (10)		
6011	(0333) Сероводород (Дигидросульфид) (518)	0,00009	0,00003497400
	(2754) Алканы С12-19 /в пересчете на С/ (Углеводороды	0,03131	0,01242360000
	предельные С12-С19 (в пересчете на С); Растворитель РПК-		
	265Π) (10)		
Всего:		2,02373	30,682820908
клариру	емый год: 2026		
6001	(2008) The manufacture of the state of the st	0.0922	0,5070273000
6001	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства -	0,0833	0,30/02/300
	глина, глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		
6002	(2908) Пыль неорганическая, содержащая двуокись кремния в	0,72	7,611174294
	%: 70-20 (шамот, цемент, пыль цементного производства -	ŕ	,
	глина, глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		
6003	(2908) Пыль неорганическая, содержащая двуокись кремния в	0,00806	0,202160160
	%: 70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер, зола,		
6004	кремнезем, зола углей казахстанских месторождений) (494)	0.02604	0.002488200
6004	(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства -	0,02694	0,002488200
	глина, глинистый сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских месторождений) (494)		
6005	(0123) Железо (II, III) оксиды (в пересчете на железо)	0,00686	0,000046980
	(диЖелезо триоксид, Железа оксид) (274)	ŕ	,
	(0143) Марганец и его соединения (в пересчете на марганца (IV)	0,00079	0,000005568
	оксид) (327)		
	(0301) Азота (IV) диоксид (Азота диоксид) (4)	0,00625	0,000080040
	(2908) Пыль неорганическая, содержащая двуокись кремния в	0,00012	0,000000069
	%: 70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер, зола,		
(00)	кремнезем, зола углей казахстанских месторождений) (494)	0.02506	0.002422000
6006	(0123) Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,03586	0,002422080
	(0143) Марганец и его соединения (в пересчете на марганца (IV)	0,00053	0,000034800
	оксид) (327)	0,00033	0,000034800
	(0301) Азота (IV) диоксид (Азота диоксид) (4)	0,01781	0,001202340
	(0337) Углерод оксид (Окись углерода, Угарный газ) (584)	0,01761	0,001190160
	(0357) 3 глерод оксид (Окиев углерода, 3 гарный газ) (304)	0,004	0,00013920
6007	(2002) Papaulaulu la hactique (116)		
6007	(2902) Взвешенные частицы (116)	1	-
	(2930) Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0,0026	0,000008700
6007	(2930) Пыль абразивная (Корунд белый, Монокорунд) (1027*) (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0026 0,125	0,000008700 0,059636760
	(2930) Пыль абразивная (Корунд белый, Монокорунд) (1027*) (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) (0621) Метилбензол (349)	0,0026	0,000008700 0,059636760
	(2930) Пыль абразивная (Корунд белый, Монокорунд) (1027*) (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0026 0,125	-
	(2930) Пыль абразивная (Корунд белый, Монокорунд) (1027*) (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) (0621) Метилбензол (349)	0,0026 0,125 0,08611	0,000008700 0,059636760 0,123727920


ИП «ЧИГИНА Т.О.»

	(2902) Взвешенные частицы (116)	0,06875	0,0027631200
6009	(2754) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0,31229	0,0106505400
6010	(2754) Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,27778	1,5794258400
6011	(0333) Сероводород (Дигидросульфид) (518)	0,00009	0,0000116580
	(2754) Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,03131	0,0041412000
Всего:		2,02373	10,22760696960

4 ВОДНЫЕ РЕСУРСЫ

4.1 Гидрографическая и гидрогеологическая характеристика района

- В Карасайском районе Алматинской области протекает большое количество рек, основными явояются:
- *Каскелен*, берёт начало с северного склона хребта Заилийский Алатау на высоте 3580 м и впадает в Капчагайское водохранилище на высоте 475 м над уровнем моря. Длина 177 км, площадь водосбора 3620 км². Ширина у устья около 30 м, глубина до 1,5 м. Средний годовой расход 15,2 м³/с; в окрестностях города Каскелен 15,8 м³/с. Русло обрывистое, высота берегов достигает 6-8 м. Питание в основном дождевое.
- Большая Алматинка, правый приток реки Каскелен. Длина 96 км, площадь водосбора 425 км². Образуется слиянием трёх потоков, вытекающих из-под фронтальной морены двух мощных ледников. Бассейн реки расположен в пределах различных зон горной, равнинной и переходной предгорной. Стокоформирующей является горная зона, которая занимает 46 % всей территории бассейна реки. Верхняя часть горной зоны область скал, ледников и вечных снегов. Ниже появляются альпийские луга с зарослями арчи, проходит пояс хвойного и лиственного лесов. При выходе из гор ширина долины Большой Алматинки составляет 8 м.
- Малая Алматинка, правый приток реки Каскелен. Берёт начало из Туюксуских ледников хребта Заилийский Алатау. Длина 125 км, площадь водосбора 710 км. Основные притоки Сарысай (Желтый Лог), Куйгенсай (Горельник), Кимасар (Комиссаровка), Жарбулак (Казачка), Батарейка (Бедельбай), Бутаковка, Карасу-Турксиб, Есентай, Карасу, Теренкара.
- Аюсай, левый приток Большой Алматинки. Длина реки 7 километров. Верховье реки расположено в Карасайском районе Алматинской области, а низовье в черте города Алматы. Ущелье реки является частью территории Иле-Алатауского национального парка.
- *Боралдай*, левый приток Большой Алматинки. Берёт начало на Боралдайском плато, течёт на север. Ширина реки 2-3 м. Длина 29 км. Берега суглинистые, правый берег крутой, левый пологий. Русло заболоченное и извилистое. Основное питание ледниковое и снеговое. Ширина долины реки 150-200 м.

Илийская межгорная впадина представляет собой крупный бассейн подземных вод, областями питания которых являются обрамляющие впадину горные сооружения. Для описываемой части впадины основной областью питания поверхностных и подземных вод является Заилийский Алатау.

Современные аллювиальные отложения имеют в районе ограниченное распространение. Ими выполнены пойменные террасы рек Аксенгир, Узынаргалы, Жиренайгыр, Каскелен, Курты и Копа. Ширина пойменных террас невелика, на юге района порядка 20-40м, в низовьях р. Каскелен 500-600м, в долине р. Копа – до 4-х км.

Аллювиальными верхнечетвертичными отложениями сложены первые надпойменные террасы, имеющие наибольшее распространение в долинах рек Каскелен, Большая Алматинка и Копа. Первые надпойменные террасы сохранились, основном, В виде останцов, местами вторые и третьи надпойменные террасы возвышаются отсутствуют, И непосредственно над поймами. В долинах перечисленных рек устанавливается сплошной грунтовый поток со свободной поверхностью, направление которого определяется уклоном водоупора, в целом совпадающего с направлением течения рек. Ширина потока колеблется от 2 до 4км. Глубина залегания вод изменяется от 0 до 16,7м, причем наибольшая глубина отмечается в низовьях

долин рек Копа, Каскелен и Большая Алматинка.

В пределах площадки изысканий подземные воды на исследуемую глубину 3,0м не вскрыты. Территория не подтапливается грунтовыми водами. Тип увлажнения территории – I.

4.2 Источники воздействия намечаемой деятельности на водные ресурсы, водопотребление и водоотведение

Период строительно-монтажных работ

Возможные источники воздействия на водные ресурсы:

- работа автостроительной техники;
- места хранения отходов;
- образование сточных вод.

Водопотребление водоотведение

Для хозбытовых нужд рабочих на период СМР планируется организация бытовых вагончиков с устройством биотуалетов. Организация питания путем доставки пищи к месту работ с раздачей и приемом пищи в специально выделенном помещении. Бытовые и служебные помещения перемещаются вдоль участка ремонтируемой автодороги по мере продвижения строительства.

На период проведения строительно-монтажных работ вода используется на хоз-питьевые нужды привлеченного персонала и на технологические нужды (при устройстве асфальтобетонных покрытий, устройстве оснований из песчано-гравиной смеси). Вода на нужды строительства привозная, доставляется спецавтотранспортом. Питьевая вода хранится в отдельном помещении или под навесом.

Расход воды на хоз-питьевые нужды рассчитывается исходя из численности привлеченного персонала, периода проведения работ и нормы водопотребления. Согласно проектным данным продолжительность проведения строительно-монтажных работ составляет 23 месяцев (506 дней).

Расход водопотребления рассчитывается по формуле:

$$B = n \times G \times T \times 10^{-3}$$

где,

n - норма водопотребления на 1 работающего, л/сут, согласно [Л.18];

G - количество привлеченного персонала, чел;

Т - количество рабочих дней.

Расчет сведен в таблицу 4.2-1.

Таблица 4.2-1.	Расчет хоз-питьевого водопотре	бления на период СМР

Источник водопотребления	Норма водопотребления, л/сут	Исходные данные чел	Количество рабочих дней в году	Расход воды, м ³ /период СМР
Хозбытовые нужды	12	28	506	170,02
всего:				170,02

• Примечание: период СМР составляет 23 месяца (2023-2025 гг)

Расход воды на технологические нужды составит 22178,37 м³.

На период СМР образуются хоз-бытовые сточные воды.

Водоотведение хоз-бытовых стоков осуществляется в устройство биотуалетов с последующим вывозом специализированной организацией по договору.

Сброс сточных вод на рельеф местности и в водные объекты не предусматривается.

Баланс водопотребления и водоотведения на период строительномонтажных работ приведен в таблице 4.2-2.

Таблица 4.2-2. Баланс водопотребления и водоотведения на период СМР

	Водопотре	бление, м³/ 1	период	ı CMP		Водоотведение, м3/период СМР			CMP	
	~ .	изводственн ія вода		жды Пов- торнои	На хозяйст-		Объем сточной	Произво	DAIIIIA-	Безвозвра тное
Всего	Всего	в том числе питьевого качества	ротн ая вода	спо- льзуем ая вода	венно- быто- вые нужды	Всего	воды повторно используе мой	ые воды	сточные	потреблен ие
22348,39	22178,37	-	-	-	170,02	170,02	-	-	170,02	22178,37

Вопросы обеспечением водой, питанием, электроэнергией, теплом, временными зданиями будет уточняться на стадии разработки проекта производства работ (ППР).

Период эксплуатации

На период эксплуатации источники воздействия на водные ресурсы не образуются.

4.3 Мероприятия по снижению воздействия на водные ресурсы

Для предотвращения загрязнения водных ресурсов на период строительно-монтажных работ предлагается следующее:

- принятие мер, исключающих попадание в грунт и грунтовые воды горючесмазочных материалов;
- не допускать устройство стихийных свалок отходов путем организации мест для их сбора и своевременного вывоза;

- запрет на сброс сточных вод в водные объекты и на рельеф местности.

4.4 Оценка воздействия на водные ресурсы

Проведенный анализ воздействия на водную среду намечаемой деятельности по капитальному ремонту автомобильной дороги показал следующее:

Период строительно-монтажных работ

- 1. Сброс сточных вод в поверхностный водный объект и на рельеф местности не предусматривается.
 - 2. Забор воды из водного объекта не осуществляется.
- 3. При выполнении предложенных в проекте природоохранных мероприятий, воздействие на водные объекты будет отсутствовать.
 - 4. Количество воды, используемой на период СМР, составит 22348,39 м³.
- 5. Категория значимости воздействия по критериям (пространственный, временной, интенсивность) не определялась ввиду отсутствия негативного воздействия на водные ресурсы.

Период эксплуатации

В период эксплуатации проектируемых объектов источники воздействия на водные ресурсы отсутствуют.

5 ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

5.1 Количество и виды отходов

В период проведения строительно-монтажных работ образуются следующие виды отходов:

- твердые бытовые отходы;
- строительные отходы;
- отходы битума;
- упаковка, содержащая остатки или загрязненная опасными веществами.

Твердые бытовые отходы

Образуются в результате непроизводственной деятельности привлеченного в период СМР персонала.

Состав отходов: органические материалы (бумага, древесина, текстиль), стеклобой, металлы, пластмассы.

По физическим свойствам – твердые, пожароопасные, не растворимые в воде, невзрывоопасные, некоррозионноопасные.

По химическим свойствам – токсичных веществ не содержат.

Твердые бытовые отходы классифицируются как неопасные, код отхода по классификатору <u>200301</u>.

Объем образования отходов определяется по формуле [Л.19]:

$$M = Q* n* \rho*T/365,$$

где,

Q — санитарная норма образования отходов, м³/год;

n – численность персонала, чел;

 ρ – средняя плотность отходов, т/м³;

Т – период, дни.

Расчет образования отходов сведен в таблицу 5.1-1.

Таблица 5.1-1. Расчет объемов образования ТБО

Источник образования отходов	Норма образования отходов	Данные для расчета	Количество рабочих дней	Плотность отходов, т/м ³	Количество отходов, тонн
Деятельность рабочих- строителей	0,3 м ³ /год	28 человек	506	0,25	2,59932
Всего:					2,59932

Накопление отходов осуществляется в отдельный металлический контейнер с крышкой на специально отведенной площадке с последующей передачей специализированной организации по договору. Сроки хранения отходов в контейнерах при температуре 0° С и ниже — не более трех суток, при плюсовой температуре - не более суток в соответствии с Санитарными

правилами "Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления" утвержденными Приказом и.о. Министра здравоохранения Республики Казахстан от 25 декабря 2020 года № ҚР ДСМ-331/2020.

Строительные отходы

Данный вид отходов образуется при демонтаже железобетонных звеньев труб.

По физическим свойствам отходы твердые, не растворимые в воде, непожароопасные, невзрывоопасные, некоррозионноопасные.

По химическим свойствам – не обладают реакционной способностью, токсичных веществ не содержат.

Строительные отходы классифицируются как неопасные, код отхода по классификатору <u>170101</u>.

Объем образования составит 12,73 м3 (28,6 тонн).

Накопление отходов осуществляется в контейнер на специально отведенной площадке на срок не более шести месяцев, с последующей передачей специализированной организации по договору.

Строительные отходы подлежат обязательному отделению от других видов отходов непосредственно на строительной площадке или в специальном месте. Смешивание строительных отходов с другими видами отходов случаев восстановления строительных запрещается, кроме отходов соответствии утвержденными проектными решениями. Запрещается c накопление строительных отходов вне специально установленных мест.

Отходы битума

Образуются как остатки в результате применения битумных материалов (мастика).

По физическим свойствам отходы твердые, не растворимые в воде, непожароопасные (диапазон воспламенения от 212 до 270° C), невзрывоопасные, некоррозионноопасные.

По химическим свойствам — нетоксичные (токсичные вещества могут выделяться только при нагреве выше температуры вспышки, т.е. выше 220° C).

По уровню опасности отходы битума относятся к неопасным. Код отхода по классификатору 170301.

Согласно проектным данным количество применяемых битума и мастики составит 214,7 тонн.

Количество образующихся отходов битума принимаем как 3% потерь от

количества используемых материалов, согласно Приложению Б [Л.21], что составит 6,441 тонн на период СМР.

Накопление отходов осуществляется в контейнер на специально отведенной площадке на срок не более шести месяцев с последующей передачей на специализированное предприятие для утилизации.

Упаковка, содержащая остатки или загрязненная опасными веществами

Тара (жестяные банки из-под краски) образуются в результате растаривания лакокрасочных материалов.

Состав отхода: железо, краска.

По физическим свойствам отходы твердые, не растворимые в воде, непожароопасные, невзрывоопасные, коррозионноопасные.

По химическим свойствам – содержат незначительное количество токсичных веществ.

Отходы тары из-под ЛКМ классифицируются как опасные, код отхода по классификатору <u>150110*</u>.

Расход ЛКМ (эмаль, грунтовка, растворитель) согласно проектным данным составляет 2,72 тонн.

Предполагается, что ЛКМ будут доставляться в таре по $10~\rm kr$. Масса тары $-0.5~\rm kr$.

Объем образования отхода определяется по формуле п.2.35 [Л.19]:

$$N = \sum M_i \cdot n + \sum M_{\kappa i} \cdot \alpha_{i, T/\Gamma O J},$$

где,

М_і - масса і-го вида тары, тонн;

n - число видов тары (272 шт.);

 $M_{\kappa i}$ - масса краски в і-ой таре;

 α_i - содержание остатков краски в $\,^i$ -той таре в долях от M_{ki} равна 0,03.

Расчет образования отходов сведен в таблицу 5.1-2.

Таблица 5.1-2. Расчет объемов образования отходов упаковки

Наименование отхода	М, тонн	п, шт.	Мк, тонн	α	N, т/год
Упаковка, содержащая остатки или загрязненная опасными веществами	0,0005	272	0,0095	0,03	0,13629
Всего:					0,13629

Накопление данного вида отходов осуществляется в тару, обеспечивающую локализованное хранение (не более 3-х месяцев), позволяющее выполнять погрузочно-разгрузочные и транспортные работы,

исключающие распространение вредных веществ. Передаются специализированной организации по договору на утилизацию.

Образующееся при фрезеровании существующее асфальтобетонное покрытие транспортируется на площадку временного складирования для повторного использования. Демонтируемые металлические трубы используются повторно.

Характеристика отходов, образующихся на период проведения строительно-монтажных работ, сведена в таблицу 5.1-3.

Таблица 5.1-3. Характеристика отходов на период СМР

Наименова ние, вид отходов	Уровень опасности	Физ./хим. свойства	Способы сбора и утилизации отходов	Кол-во, тонн
Твердые бытовые отходы	Неопасные	Твердые, пожароопасные, не растворимые в воде, не взрывоопасные, не коррозионноопасные, не токсичные.	Накопление в металлический контейнер на специально отведенной площадке с последующей передачей специализированной организации по договору.	2,59932
Строительн ые отходы	Неопасные	Твердые, не растворимые в воде, не пожароопасные, не взрывоопасные, не коррозионноопасные, не токсичные.	Накопление отходов осуществляется в контейнер на специально отведенной площадке, с последующей передачей специализированной организации по договору.	28,6
Отходы битума	Неопасные	Твердые, не растворимые в воде, пожароопасные, не взрывоопасные, не коррозионноопасные	Накопление в контейнер на специально отведенной площадке с последующей передачей на специализированное предприятие для утилизации.	6,441
Упаковка, содержащая остатки или загрязненная опасными веществами	Опасные	Твердые, не растворимые в воде, не пожароопасные, не взрывоопасные, коррозионноопасные, содержат незначительное количество токсичных веществ.	Накопление отходов осуществляется в тару, обеспечивающую локализованное хранение. Передаются специализированной организации по договору.	0,13629
итого:		'		37,77661

На период эксплуатации проектируемых объектов отходы производства и потребления не образуются.

5.2 Лимиты накопления отходов

Расчетные, а так же планируемые к образованию, согласно проектным решениям, объемы отходов производства и потребления на период строительно-монтажных работ не размещаются, а по мере накопления передаются специализированной организации по договору. В таблице 5.2-1 приведены лимиты накопления отходов со сроком временного хранения не более 6 месяцев.

Таблица 5.2-1. Лимиты накопления отходов на период СМР

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, т/год	
1	2	3	
Всего	-	37,77661	
в т.ч. отходов производства	-	35,17729	
отходов потребления	-	2,59932	
	Опасные отходы		
Упаковка, содержащая остатки или загрязненная опасными веществами	-	0,13629	
Н	е опасные отходы		
Твердые бытовые отходы	-	2,59932	
Строительные отходы	-	28,6	
Отходы битума	-	6,441	
	Зеркальные		
-	-	-	

5.3 Декларируемое количество отходов

Учитывая, что строительно-монтажные работы являются объектом III категории лимиты накопления отходов, согласно п.2 ст. 334 Экологического кодекса РК, не подлежат нормированию.

В таблице 5.3-1 приведено декларируемое количество опасных отходов на период СМР, в таблице 5.3-2 — декларируемое количество неопасных отходов на период СМР.

Таблица 5.3-1. Декларируемое количество опасных отходов на период СМР

Наименование отхода	Количество образования, тонн/год	Количество накопления, т/год	Декларируемый год
Упаковка, содержащая остатки или загрязненная опасными веществами	0,008056	0,008056	2024
Упаковка, содержащая остатки или загрязненная опасными веществами	0,013833	0,013833	2025
Упаковка, содержащая остатки или загрязненная опасными веществами	0,004611	0,004611	2026

ИСП-25-03/2022-РООС

Рабочий проект «Капитальный ремонт автомобильной дороги областного значения «Алмалыбак (Киз) - Жетысу» - «Алматы 1 - ст.Шамалган - Узынагаш» (Боралдай - ст.Шамалган), км 0-18,177 Карасайского района Алматинской области» Раздел «Охрана окружающей среды»

Таблица 5.3-2. Декларируемое количество неопасных отходов на период **СМР**

Наименование отхода	Количество образования, тонн/год	Количество накопления, т/год	Декларируемый год
Твердые бытовые отходы (ТБО)	0,3957776	0,3957776	2024
Огарки сварочных электродов	0,0056544	0,0056544	2024
Строительные отходы	110,625296	110,625296	2024
Металлолом	8,03928	8,03928	2024
Отходы кабеля	0,1088624	0,1088624	2024
Отходы пластмассы	0,0884032	0,0884032	2024
Твердые бытовые отходы (ТБО)	0,6795918	0,6795918	2025
Огарки сварочных электродов	0,0097092	0,0097092	2025
Строительные отходы	189,955278	189,955278	2025
Металлолом	13,80429	13,80429	2025
Отходы кабеля	0,1869282	0,1869282	2025
Отходы пластмассы	0,1517976	0,1517976	2025
Твердые бытовые отходы (ТБО)	0,2265306	0,2265306	2026
Огарки сварочных электродов	0,0032364	0,0032364	2026
Строительные отходы	63,318426	63,318426	2026
Металлолом	4,60143	4,60143	2026
Отходы кабеля	0,0623094	0,0623094	2026
Отходы пластмассы	0,0505992	0,0505992	2026

6 ФИЗИЧЕСКИЕ ВОЗДЕЙСТВИЯ

К физическим воздействиям относятся шумовое, тепловое, электромагнитное, вибрационное.

В период проведения строительно-монтажных работ к источникам физических воздействий можно отнести шумовое и вибрационное воздействие от работы автостроительной техники и механизмов (установки с ДВС).

Данные воздействия являются временными и неодновременными по интенсивности.

Для снижения уровней звука и вибрации рекомендуется следующее:

- время работы стройтехники не должно превышать 8 часов;
- для звукоизоляции двигателей строительных машин применять защитные кожухи;
- содержание в надлежащем состоянии и осуществление профилактического ремонта машин и механизмов;
 - обеспечение работников специальными шумозащитными наушниками.

Все эти меры позволят обеспечить эквивалентный уровень звука в рабочей зоне (с учетом времени пребывания обслуживающего персонала) не более 80 дБ(A).

При соблюдении данных рекомендаций, а так же учитывая временность и неодновременность проводимых работ, воздействие классифицируется как:

- локальное, ограниченное площадкой проведения работ,
- умеренное воздействие.

Оценка влияния физических факторов классифицируется как воздействие «низкой значимости».

В период эксплуатации автодорог источником физических воздействий является шум и вибрация от проезжающего автотранспорта. Учитывая, что источники шума являются кратковременными и непостоянными во времени, воздействия являются допустимыми.

7 ЗЕМЕЛЬНЫЕ РЕСУРСЫ И ПОЧВЫ

7.1 Геологическая характеристика района

В результате анализа частных значений показателей физикомеханических свойств грунтов, определенных лабораторными и полевыми методами, с учетом данных о геологическом строении и литологических особенностях грунтов, в пределах изученной толщи грунтов до глубины 3,0м (сверху вниз) выделены три инженерногеологических элемента (ИГЭ), описание которых приводится ниже:

(ИГЭ-1а) Асфальтобетон. Мощность 0,1м.

(ИГЭ-1) Насыпной грунт, представлен суглинком с включением песка и гравия, твердой консистенции. Мощность 0,3-2,0м

(ИГЭ-2) Суглинок аллювиально-пролювиальный четвертичного возраста (аQ), светло-коричневого цвета, лёссовидный, пылеватый. Консистенция грунта полутвердая. Мощность 0,9-2,7м.

7.2 Характеристика намечаемой деятельности, как источника загрязнения почв в период проведения СМР и период эксплуатации

Период строительно-монтажных работ

Прямыми источниками воздействия на почвенный покров в период проведения СМР являются автостроительная техника, работающая на площадке строительства, образующиеся отходы, отчуждение земель под временное размещение объектов площадки строительства.

Воздействие на почвы так же возможно косвенным путем за счет оседания загрязняющих веществ из атмосферы.

При соблюдении природоохранных мероприятий, а так же учитывая временность проводимых работ, воздействие на почвенный покров в период проведения СМР по интенсивности оценивается как слабое.

Период эксплуатации.

После реализации проектных решений источники воздействия на земельные ресурсы и почвы отсутствуют.

7.3 Мероприятия по предотвращению нарушения и загрязнения земельных ресурсов и почв

Для исключения воздействия на почвенный покров в период строительномонтажных работ предлагается следующее:

- организация площадок для временного накопления отходов;
- использование металлических контейнеров, ящиков с целью обеспечения раздельного сбора отходов в зависимости от уровня их опасности;
 - своевременная передача отходов специализированной организации;

- соблюдение правил эксплуатации и обслуживания автостроительной техники для исключения пролива топлива и масел;
- перемещение автотранспорта и спецтехники по отведенным дорогам и проездам.

7.4 Оценка воздействия на земельные ресурсы, почвы

Проведенный анализ воздействия на намечаемой деятельности на почвы показал следующее:

Период строительно-монтажных работ

- 1. Воздействие продолжительное, определяемое сроком проведения работ (период СМР 23 месяца).
 - 2. По пространственному масштабу воздействие ограниченное.
- 3. Определены прямые (работа автостроительной техники, образование отходов) и косвенные (выбросы загрязняющих веществ) источники воздействия.
- 4. Общее количество образуемых отходов на период СМР составит 37,77661 тонн.
- 5. При выполнении предложенных в разделе ООС природоохранных мероприятий, воздействие на почвы оценивается как умеренное.
 - 6. Категория значимости по критериям определена как «низкая».

Период эксплуатации

Источники воздействия на почвы в период эксплуатации проектируемых объектов отсутствуют.

8 РАСТИТЕЛЬНЫЙ, ЖИВОТНЫЙ МИР

8.1 Воздействие на растительный мир

Учитывая, что проектом не предусматривается снятие почвеннорастительного грунта и снос зеленых насаждений не предусматривается, а также учитывая проведение работ на освоенной территории, воздействие на растительность является допустимым.

8.2 Воздействие на животный мир

Одним из основных факторов воздействия на животный мир в период СМР является фактор беспокойства, возникающий при работе технологического оборудования, автостроительной техники. Учитывая, что строительно-монтажные работы будут иметь временный характер, а так же учитывая проведение работ на освоенной территории, воздействие на животный мир является допустимым.

9 СОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СРЕДА

Намечаемая деятельность по ремонту автомобильной дороги является социально-значимой, так как позволит обеспечить качественное и безопасное автомобильное движение.

Строительно-монтажные работы, связанные с проведением ремонтных работ осуществляются подрядными организациями. Количество людей, привлеченное для работ, согласно проектным данным, составит 28 человек.

Таким образом, воздействие намечаемой деятельности на социальноэкономические условия оценивается как положительное с учетом обеспечения объемов работ для строительно-монтажных организаций, а так же для обеспечения качественного автомобильного движения.

10 ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА

10.1Оценка риска для здоровья человека

Учитывая, что воздействие в период проведения строительно-монтажных работ носит кратковременный характер, а после реализации проектных решений стационарные источники выбросов загрязняющих веществ от проектируемых объектов отсутствуют, негативное воздействие на здоровье человека намечаемая деятельность не окажет.

10.2 Риск возникновения аварийных ситуаций

Вероятность и последствия аварийных ситуаций

Возможными аварийными ситуациями в период строительно-монтажных работ могут являться: пожар, техногенные аварии при работе с автостроительной техникой.

Работа автостроительной техники в неисправном виде может привести к утечке топлива и, тем самым загрязнению почвенного покрова, водных ресурсов, а так же к увеличению выбросов загрязняющих веществ. Возгорание каких-либо материалов так же приведет к возникновению аварийных выбросов загрязняющих веществ.

Рекомендации по предупреждению аварийных ситуаций

В период проведения строительно-монтажных работ необходимо:

- осуществлять проверку и техническое обслуживание автостроительной техники;
 - соблюдать правила пожарной безопасности при производстве работ;
- к строительно-монтажным работам приступать только при наличии проекта производства работ;
 - наличие на строительной площадке средств пожаротушения;
- складирование материалов и отходов осуществлять в специально отведенных местах, чтобы исключить захламление.

После окончания строительных работ необходимо проверить соответствие утвержденному проекту.

10.3 Оценка неизбежного ущерба

Экологический ущерб, неизбежно наносимый при проведении строительно-монтажных работ, компенсируется экологическими платежами за эмиссии в окружающую среду.

Ориентировочный расчет платежей за выбросы загрязняющих веществ в атмосферу сведен в таблицу 10.3-1 и выполнен по ставкам платы, согласно решению Алматинского областного маслихата от 25 июля 2018 года №34-174.

МРП принят по 2023 году.

Таблица 10.3-1. Расчет ориентировочных платежей за выбросы ЗВ

1 austrica 10.0 1.1 ac tet ophen inpubb indix nita temen sa bbiopoedi 3D					
Виды эмиссий	тонн/период СМР	ставки платы за 1 тонну, (МРП)	МРП	тенге/тонну	затраты, тенге
Железа (II, III) оксид	0,01419	30	3450	103500	1469
Марганец и его соединения	0,000232	0	3450	0	0
Азота (IV) диоксид	0,00737	20	3450	69000	509
Сероводород	0,000067	124	3450	427800	29
Углерод оксид	0,00684	0,32	3450	1104	8
Ксилол	0,34274	0,32	3450	1104	378
Толуол	0,71108	0,32	3450	1104	785
Бутилацетат	0,13762	0,32	3450	1104	152
Пропан-2-он	0,2982	0,32	3450	1104	329
Уайт-спирит	0,25036	0,32	3450	1104	276
Алканы С12-С19	9,16217	0,32	3450	1104	10115
Взвешенные частицы	0,01596	10	3450	34500	551
Пыль неорганическая, содержащая двуокись кремния в %: 70-20	47,8324714	10	3450	34500	1650220
Пыль абразивная	0,00005	10	3450	34500	2
Итого					1 664 823,00

10.4 Оценка воздействия СМР на компоненты окружающей среды с использованием бальной системы

Для получения категории значимости воздействия определяем средний балл комплексной оценки воздействия для каждого компонента природной среды по следующим параметрам:

- пространственный масштаб (определяется по таблице 4.3-1 [Л.3]);
- временной масштаб (определяется в соответствии с табл. 4.3-2 [Л.3]);
- интенсивность (определяется в соответствии с таблицей 4.3-3 [Л.3]). Значимость воздействия в баллах определяется по формуле 1 [Л.3].

$$O_{int\,egr}^{i} = Q_{i}^{t} \times Q_{i}^{s} \times Q_{i}^{j}$$

гле:

 $O^{i}_{_{\mathrm{int}\,\mathrm{egr}}}$ – комплексный оценочный балл для рассматриваемого воздействия;

 Q_{i}^{t} – балл временного воздействия на i- \check{u} компонент природной среды;

 Q_i^s — балл пространственного воздействия на i- \check{u} компонент природной среды;

 $Q_i^{\,{}_j}$ – балл интенсивности воздействия на i- \check{u} компонент природной среды.

Категория значимости воздействия определяется согласно приложению 2

и таблице 4.3-4 [Л.3].

Атмосферный воздух.

Результаты расчета значимости воздействия на атмосферный воздух представлены в таблице 10.4-1.

Таблица 10.4-1. Расчет значимости воздействия на атмосферный воздух

Источники и виды воздействия	Пространств енный масштаб	Временной масштаб	Интенсивность воздействия	Значимость воздействия в баллах	Категория значимости воздействия
Выбросы загрязняющих веществ в атмосферу	Ограниченное 2 балла	Продолжитель ное 3 балла	Умеренное 3 балл	18	Средней значимости

Категория значимости воздействия строительно-монтажных работ на атмосферный воздух "средняя".

Водные ресурсы.

Ввиду отсутствия сброса сточных вод на рельеф местности и в водные объекты, а так же при выполнении природоохранных мероприятий воздействие на водные ресурсы отсутствует.

Земельные ресурсы, почвы.

Результаты расчета значимости воздействия представлены в таблице 10.4-2.

Таблица 10.4-2. Расчет значимости воздействия на земельные ресурсы почвы

Источники и виды воздействия	Пространстве нный масштаб	Временной масштаб	Интенсивнос ть воздействия	Значимость воздействия в баллах	Категория значимости воздействия
Изъятие земель под временные объекты (бытовки)	Ограниченное 2 балла	Продолжительное 3 балла	Умеренное 3 балл	18	Средней значимости
Механические нарушения почвенного покрова при строительных работах	Ограниченное 2 балла	Продолжительное 3 балла	Умеренное 3 балл	18	Средней значимости
Выбросы загрязняющих веществ в атмосферу	Ограниченное 2 балла	Продолжительное 3 балла	Умеренное 3 балл	18	Средней значимости

Категория значимости воздействия на земельные ресурсы и почвы в период СМР "средняя".

Физические воздействия.

Результаты расчета значимости физических воздействий представлены в

таблице 10.4-3.

Таблица 10.4-3. Расчет значимости физических воздействий

Источники и виды воздействия	Пространст венный масштаб	Временной масштаб	Интенсивность воздействия	Значимость воздействия в баллах	Категория значимости воздействия
Шум	Локальное 1 балл	Продолжительное 3 балла	Умеренное 3 балл	9	Воздействиес редней значимости
Вибрация	Локальное 1 балл	Продолжительное 3 балла	Умеренное 3 балл	9	Воздействие средней значимости

Категория значимости воздействия физических факторов «средняя».

Выводы

По результатам проведенной экологической оценки установлено, что в период проведения строительно-монтажных работ воздействие намечаемой деятельности на атмосферный воздух, земельные ресурсы и почвы является ограниченным, продолжительным. По интенсивности воздействие умеренное. На водные ресурсы воздействие будет отсутствовать. По категории значимости строительно-монтажные работы относятся к «средней» категории. Воздействие на социально-экономическую среду является положительным с учетом обеспечения работ для строительно-монтажных организаций.

После реализации проектных решений стационарные источники выбросов загрязняющих веществ, источники сброса сточных вод и образования отходов производства и потребления отсутствуют.

СПИСОК ИСПОЛЬЗОВАННЫХ НОРМАТИВНО-МЕТОДИЧЕСКИХ ДОКУМЕНТОВ

- 1. Экологический Кодекс Республики Казахстан.
- 2. Инструкция по организации и проведению экологической оценки, утвержденная приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года №280.
- 3. Методические указания по проведению оценки воздействия хозяйственной деятельности на окружающую среду, утвержденные приказом Вице-министра охраны окружающей среды РК от 29 октября 2010 года №270-п.
- 4. Санитарные правила "Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека", утвержденные приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2.
- 5. Приказ Министра зравоохранения Республики Казахстан от 2 августа 2022 года ҚР ДСМ-70 «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах, на территориях промышленных организаций».
- 6. Методика определения нормативов эмиссий в окружающую среду, утвержденная приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года №63.
 - 7. СП РК 2.04.01-2017. Строительная климатология.
 - 8. Технический отчет об инженерных изысканиях.
- 9. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий. Приложение № 3 к приказу МООС РК от 18 апреля 2008 года № 100-п.
- 10. Методика расчета нормативов выбросов от неорганизованных источников. Приложение 8 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 года №221-ө.
- 11. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года №100 п).
- 12. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2004 г.
- 13. Методика расчета выбросов 3В в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). Астана, 2004г.

- 14. РНД 211.2.02.04-2004 Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок, Астана, 2004г.
- 15. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли, в том числе АБЗ (Приложение №12 к приказу Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года № 100-п).
- 16. РНД 211.2.02.09-2004 Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров, Астана. 2004.
- 17. Приказ Министра экологии, геологии и природных ресурсов РК от 13 июля 2021 года №246 «Об утверждении Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду».
- 18. СП РК 4.01-101-2012. Внутренний водопровод и канализация зданий и сооружений.
- 19. Методика разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу МООС РК от 18.04.2008 г. №100-п. Астана 2008 г.
- 20. Классификатор отходов, утверждённый приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года №314.
- 21. РДС 82-202-96 «Правила разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве, Москва 1996 год.
- 22. РНД 211.2.02.06-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). Астана, 2004.

приложения

Приложение 1

Мотивированный отказ РГУ «Департамент экологии по Алматинской области» KZ08VWF00151819 от 10.04.2024 года

Қазақстан Республикасы Экология және табиғи ресурстар министрлігі

"Қазақстан Республикасы Экология және табиғи ресурстар министрлігі Экологиялық реттеу және бақылау комитетінің Алматы облысы бойынша Экология департаменті" республикалық мемлекеттік мекемесі

Қонаев Қ. Ә., Қонаев қ., Сакена Сейфуллина көшесі, № 36 үй

Homep: KZ08VWF00151819

Дата: 10.04.2024

Министерство экологии и природных ресурсов Республики Казахстан

Республиканское государственное учреждение "Департамент экологии по Алматинской области Комитета экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан"

> Қонаев Г.А., г.Қонаев, улица Сакена Сейфуллина, дом № 36

Государственное учреждение "Управление пассажирского транспорта и автомобильных дорог Алматинской области"

040800, Республика Казахстан, Алматинская область, Қонаев Г.А., г. Қонаев, улица Индустриальная, здание №

Мотивированный отказ

Республиканское государственное учреждение "Департамент экологии по Алматинской области Комитета экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан", рассмотрев Ваше заявление от 09.04.2024 № KZ84RYS00590559, сообщает следующее:

Заявлением о намечаемой деятельности Государственное учреждение "Управление пассажирского транспорта и автомобильных дорог Алматинской области" является « Капитальный ремонт автомобильной дороги областного значения «Алмалыбак (Киз) — Жетысу» - «Алматы 1 — ст.Шамалган - Узынагаш» (Боралдай — ст.Шамалган), км 0-18, 177 Карасайского района Алматинской области»..

В соответствии с п. 2 ст. 69 Кодекса, подача заявления о намечаемой деятельности в целях проведения скрининга ее воздействий является обязательной:

- 1) для видов намечаемой деятельности и объектов, перечисленных в разделе 2 приложения 1 к настоящему Кодексу с учетом указанных в нем количественных пороговых значений (при их наличии);
- 2) при внесении существенных изменений в виды деятельности и (или) деятельность объектов, перечисленных в разделе 2 приложения 1 к настоящему Кодексу, в отношении которых ранее был проведен скрининг воздействий намечаемой деятельности с выводом об отсутствии необходимости проведения обязательной оценки воздействия на окружающую среду.

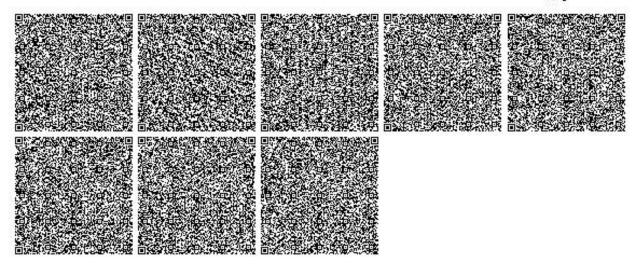
Согласно пункту 3 Ранее было выдано заключение об определении сферы охвата оценки воздействия на окружающую среду № KZ38VWF00092303 от 20.03.2023 года. Повторная подача настоящего заявления о намечаемой деятельности вызвана корректировкой сроков строительства. Существенные изменения отсутствуют.

Таким образом, согласно п. 2 ст. 69 Кодекса проведение процедуры скрининга

Бұл құжат ҚР 2003 жылдың 7 қаңтарындағы «Электронды құжат және электронды сандық қол қою» туралы заңның 7 бабы, 1 тармағына сәйкес қағаз бетіндегі заңмен тең. Данный документ согласно пункту1 статыз 7 3РКст 7 янкаря 2003 года "Об электронном документе и электронной цифро вой подписи" равнозначен документуна бумажном носителе. воздействий намечаемой деятельности для указанного объекта не является обязательным.

В соответствии с п.3 ст.49 Кодекса для намечаемой и осуществляемой деятельности, не подлежащей обязательной оценке воздействия на окружающую среду (согласно Приложению 1 к Кодексу) экологическая оценка проводится по упрощенному порядку в соответствии с настоящим Кодексом, при:

- 1) разработке проектов нормативов эмиссий для объектов I и II категорий;
- разработке раздела «Охрана окружающей среды» в составе проектной документации по намечаемой деятельности и при подготовке декларации о воздействии на окружающую среду.


На основании вышеизложенного, Департамент экологии по Алматинской области отказывает в дальнейшем рассмотрении Заявления.

Указанные выводы основаны на сведениях, представленных в Заявлении Государственное учреждение "Управление пассажирского транспорта и автомобильных дорог Алматинской области" при условии их достоверности.

В случае неудовлетворения настоящим ответом, согласно ст. 91 Административного процедурно-процессуального Кодекса Республики Казахстан, Вы имеете право на его обжалование в вышестоящих органах либо в суде.

Руководитель департамента

Байедипов Конысбек Ескендирович

Бул қужат ҚР 2003 жылдың? қандарындағы «Электронды құхат және электронды сандық қол қос» туралызанның? Оббы. 1 тархалына сойсас қатаз беліндей азықынтың. Данның қозуның солғажы түре қү" сісі іни " 3PK от " энверх 2003 гора 100 этезгромон қозуның жанда қонын қырқазын корпның құзықының жа бұназмон можылг

Приложение 2

Лицензия ИП «Чигина Т.О.» на природоохранное проектирование и нормирование

21017360

ЛИЦЕНЗИЯ

<u>06.05.2021 года</u> <u>02511Р</u>

Выдана ЧИГИНА ТАТЬЯНА ОЛЕГОВНА

ИИН: 810619450572

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес -идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае напичия), индивидуальный идентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

ср еды

(наименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

Примечание Неотчуждаемая, класс 1

(отчуждаемость, класс разрешения)

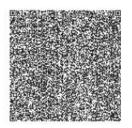
Лицензиар Республиканское государственное учреждение «Комитет

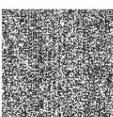
экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов

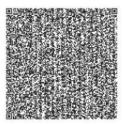
Республики Казахстан.

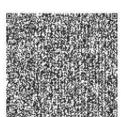
(полное наименование лицензиара)

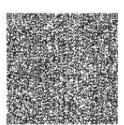
Руководитель Абд (уполномоченное лицо)


Абдуалиев Айдар Сейсенбекович


(фамилия, имя, отчество (в случае наличия)


Дата первичной выдачи


Срок действия лицензии


Место выдачи г. Нур-Султан

21017360

Страница 1 из 2

ПРИЛОЖЕНИЕ К ЛИЦЕНЗИИ

Номер лицензии 02511Р

Дата выдачи лицензии 06.05.2021 год

Подвид(ы) лицензируемого вида деятельности

 Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименов ание подвида лицензируемого вида деятельности в соответствии с Законом Республики Казах стан «О разрешениях и уведомпениях»)

Лицензиат ЧИГИНА ТАТЬЯНА ОЛЕГОВНА

ИИН: 810619450572

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Производственная база г. Павлодар, ул. Ак. Сатпаева, 253-150

(местонахождение)

Особые условия действия лицензии

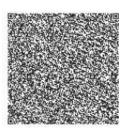
(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

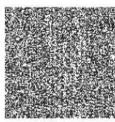
Лицензиар

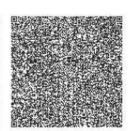
Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов Республики Казахстан.

(попное наименование органа, выдавшего припожение к лицензии)

Руководитель (уполномоченное лицо) Абдуалиев Айдар Сейсенбекович


(фамилия, имя, отчество (в случае наличия)


Номер приложения 001


Срок действия

Дата выдачи приложения 06.05.2021

Место выдачи г. Нур-Султан

Осы жүркөт «Винетр оңын жүркөт жаны электр оңын күрдүрү эшикурултан бөтүр онын Күлакстан Республикасынын 2003 жылыгы 7 жүргөр деги. Заңы 7 байынын 1 байын 1 байынын 1 байынын 1 байын 1 байын

Приложение 3

Исходные данные для выполнения раздела **ООС** (приняты по сметам)

Исходные данные для выполнения раздела ООС (выборка из смет)

№ п/п	(выоорка из смет) Наименование ресурсов, оборудования, конструкций, изделий и деталей	Единица	Количество
	СТРОИТЕЛЬНЫЕ МАШИНЫ И МЕХАНИ	измерения Эмт і	единиц
		2MIDI	
1	Автогрейдеры среднего типа мощностью от 88,9 до 117,6 кВт (от 121 до 160 л.с.), массой от 9,1 до 13 т	маш/час	2097
2		/	5627.27
2	Автопогрузчики, г/п 5т	маш/час	5627,27
3	Электростанции переносные, мощность до 4 кВт	маш/час	5,4
4	Бульдозеры, 96 кВт	маш/час	4702,7
5	Катки дорожные прицепные на пневмоколесном ходу, 25-30 т	маш/час	5799,09
6	Катки дорожные самоходные гладкие, 13-16 т	маш/час	2982,88
7	Катки дорожные самоходные гладкие, до 10 т	маш/час	7935,4
8	Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 0,5-2,2 м3/мин	маш/час	2,4
9	Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 5 м3/мин	маш/час	578,71
10	Краны на автомобильном ходу, 10 т	маш/час	282,68
11	Краны на автомобильном ходу, г/п 16 т	маш/час	18,74
12	Краны на гусеничном и пневмоколесном ходу, 25 т	маш/час	293,86
13	Краны на гусеничном ходу, 50-63 т	маш/час	29,19
14	Грейдер-элеватор мощность 121 кВт (165 л.с.)	маш/час	168,31
15	Тракторы на гусеничном ходу, 79 кВт	маш/час	1865,49
16	Трактор с щетками дорожными навесными	маш/час	778,77
17	Асфальтоукладчики, типоразмер 3	маш/час	809,69
1 /		маш/час	809,09
18	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 0,65 до 1 м³, масса свыше 13 до 20 т	маш/час	1004,95
19	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 1,5 до 2,5 м3, масса свыше 26 до 35 т	маш/час	130,06
20	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 0,4 до 0,5 м3, масса свыше 5 до 13 т	маш/час	44,18
21	Погрузчики одноковшовые универсальные фронтальные пневмоколесные	маш/час	11,12
22	Автомобили-самосвалы общестроительные (дорожные) грузоподъёмностью 15 т	дней	226
23	Машины поливомоечные 6000 л	дней	295
24	Автомобили бортовые с гидравлической кранманипуляторной установкой грузоподъёмностью до 5 т, грузоподъёмность КМУ на максимальном вылете стрелы до 1 т, на минимальном вылете стрелы до 3 т	дней	1,5
25	Автомобили бортовые грузоподъёмностью до 5 т	дней	12
26	Автомобили бортовые, грузопассажирские грузоподъёмностью до 1,5 т	дней	48
27	Автомобили-самосвалы общестроительные (дорожные) грузоподъёмностью 7 т	дней	1
28	Автогудронаторы 3500 л	дней	7,5
29	Автогидроподъемники высотой подъема 12 м	<u>дней</u> дней	1,5
30	Автозаправщик, г/п 5 т	днеи дней	90
31	<u> </u>	днеи маш/час	51,8844139
32	Котлы битумные передвижные, 400 л Аппарат для газовой сварки и резки		107,81
		маш/час	
33	Машины шлифовальные электрические СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ	маш/час	5,22

№ п/п	Наименование ресурсов, оборудования, конструкций, изделий и деталей	Единица измерения	Количество единиц
1	Песок ГОСТ 8736-2014 природный	M^3	75,831
2	Щебень из плотных горных пород для строительных работ M800 CT PK 1284-2004 фракция 10-20 мм	M^3	44,88
3	Щебень из плотных горных пород для строительных работ M1000 CT PK 1284-2004 фракция 20-40 мм	M^3	15,3846
4	Щебень из плотных горных пород для строительных работ M800 CT PK 1284-2004 фракция 20-40 мм	M^3	129,2283
5	Щебень из плотных горных пород для строительных работ M1000 CT PK 1284-2004 фракция 40-80 (70) мм	M^3	0,0092612
6	Смесь песчано-гравийная природная ГОСТ 23735-2014	T	123696,4658
7	Смесь щебеночно-гравийно-песчаная ГОСТ 25607-2009 фракция 0-80 мм	T	34873,76
8	Электроды, d=4 мм, Э42 ГОСТ 9466-75	T	0,0170598
9	Пропан-бутан, смесь техническая ГОСТ Р 52087-2018	КГ	30,67378
10	Проволока сварочная легированная марки CB-10HMA с неомедненной поверхностью ГОСТ 2246-70 диаметром 4 мм	КГ	0,85299
11	Эмаль для дорожной разметки СТ РК 2066-2010 белая АК 511 (505)	КГ	1428,663117
12	Уайт-спирит ГОСТ 3134-78	T	0,01496713
13	Краска перхлорвиниловая фасадная ХВ-161, марка А,Б	КГ	268,173
14	Эмаль СТ РК ГОСТ Р 51691-2003 ПФ-115	T	0,09621727
15	Грунтовка глифталевая ГФ-021 СТ РК ГОСТ Р 51693- 2003	Т	0,07353998
16	Растворитель для лакокрасочных материалов P-4 ГОСТ 7827-74	Т	0,0275378
17	Эмаль СТ РК ГОСТ Р 51691-2003 ХВ-124	T	0,01496713
18	Лак битумный БТ-123 ГОСТ Р 52165-2003	КГ	796,42
19	Битум нефтяной дорожный жидкий СТ РК 1551-2006 марки МГ 70/130	Т	198,5899122
20	Битум нефтяной дорожный вязкий СТ РК 1373-2013 марки БНД 70/100	Т	9,83173499
21	Битум нефтяной кровельный марки БНМ 75/35	T	3,58389
22	Мастика разная Мастика морозостойкая битумно- масляная МБ-50 ГОСТ 30693-2000	КГ	1384,42
23	Эмульсия битумная СТ РК 1274-2014 дорожная	T	1,25885966
24	Праймер битумный ГОСТ 30693-2000 битумно- полимерный	КГ	20,37
25	Смеси асфальтобетонные горячие плотные крупнозернистые СТ РК 1225-2019 типа Б, марки I	Т	43542,7297
26	Смеси асфальтобетонные щебеночно-мастичные ГОСТ 31015-2002 ЩМА-20	T	21264,52125
27	Смеси асфальтобетонные горячие пористые крупнозернистые СТ РК 1225-2019 марки II	Т	2278,66212
28	Смеси асфальтобетонные горячие плотные песчаные СТ РК 1225-2019 типа Г, марки II	Т	708,3004
29	Смеси асфальтобетонные горячие плотные мелкозернистые СТ РК 1225-2019 типа Б, марки II	T	713,96162